STABILITY CRITERIA FOR THE SYSTEM OF DELAY DIFFERENTIAL EQUATIONS AND ITS APPLICATIONS

Ikki Fukuda, Yuya Kiri, Wataru Saito, Yoshihiro Ueda

Abstract

In this paper, we consider the asymptotic stability for the system of linear delay differential equations. Because of the complicated interactions induced by the delay effects of the system, there are few results of the asymptotic stability for the system of the delay differential equations. Given the fact, that we propose the new stability conditions for the system and apply these conditions to the population models described by the delayed Lotka–Volterra system and delayed prey–predator system.

Keywords: delay differential equations, asymptotic stability, population models.

1 Introduction

We consider the system of linear delay differential equations:

\[u'_1(t) + a_1 u_1(t) + b_n u_n(t) + \alpha_1 u_1(t - \tau_{11}) + \beta_n u_n(t - \tau_{1n}) = 0, \]
\[u'_2(t) + a_2 u_2(t) + b_1 u_1(t) + \alpha_2 u_2(t - \tau_{22}) + \beta_1 u_1(t - \tau_{21}) = 0, \]
\[\vdots \]
\[u'_n(t) + a_n u_n(t) + b_{n-1} u_{n-1}(t - \tau_{nn}) + \alpha_n u_n(t - \tau_{nn}) + \beta_{n-1} u_{n-1}(t - \tau_{n-1, n}) = 0, \]

where \(u(t) = (u_1, u_2, \ldots, u_n)^T(t) \) denotes complex-valued unknown vector functions for \(t \geq 0 \). The coefficients \(a_j, \alpha_j, b_j \) and \(\beta_j \) are complex-valued constants, and \(\tau_{jk} \) are non-negative constants for \(1 \leq j, k \leq n \). Here, we remark the parameters \(\tau_{jk} \) describe the delay effects. By the coefficients of (1.1), we introduce the \(n \times n \) constant matrices \(A \) and \(B \) that

\[A := \begin{pmatrix} a_1 & 0 & \ldots & 0 & b_n \\ b_1 & a_2 & \ldots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \ldots & a_{n-1} & 0 \\ 0 & 0 & \ldots & b_{n-1} & a_n \end{pmatrix}, \quad B := \begin{pmatrix} \alpha_1 & 0 & \ldots & 0 & \beta_n \\ \beta_1 & \alpha_2 & \ldots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \ldots & \alpha_{n-1} & 0 \\ 0 & 0 & \ldots & \beta_{n-1} & \alpha_n \end{pmatrix}. \]

(1.2)

Then, our system (1.1) can be expressed by the following form:

\[u' + Au + f(u) = 0, \]

(1.3)

where \(f(u) := (f_1(u), \ldots, f_n(u))^T \) with

\[f_j(u) := \alpha_j u_j(t - \tau_{jj}) + \beta_{j-1} u_{j-1}(t - \tau_{j-1,j-1}) \]

for \(1 \leq j \leq n \), and \(u_0(t) := u_n(t), \beta_0 := \beta_n \) and \(\tau_{10} := \tau_{1n} \). Moreover, if we assume \(\tau_{jk} = \tau \) for all \(1 \leq j, k \leq n \), then (1.3) can be written by

\[u'(t) + Au(t) + Bu(t - \tau) = 0. \]

(1.4)

2010 Mathematics Subject Classification: 34K20, 34K25, 34A30.
It is very important to study the delay differential equations because they often appear in the various fields of physics and engineering via mathematical models (e.g. population models of Lotka–Volterra type and prey-predator models, neural network models, chemical kinetics, and also traffic flow, see e.g. [2, 4, 10, 14, 15, 16] and also references therein).

It is not difficult to derive the global existence of solutions to (1.1) provided by suitable initial data (cf. Hale [5], Hale–Verduyn Lunel [6]). The purpose of this paper is to analyze the asymptotic profile of the solutions to (1.1). In particular, we introduce the useful conditions to get the asymptotic stability of the solutions.

Historically, there are several known results concerned with the asymptotic stability for the delay differential equations. In the middle of 19th century, Hayes [7] and Bellman–Cooke [1] studied the scalar delay differential equation and obtained the necessary and sufficient conditions for the asymptotic stability. Their results are based on the detailed analysis of the corresponding characteristic equation mentioned in Section 2. It is well organized results and clear the relation to the delay effect and asymptotic stability. On the other hand, there are not many results for the system of delay differential equations. Furthermore, almost all of known results are focused on the case of $n = 2$. For example, Lu–Wang [10] studied the 2-dimensional system (1.1) with $\alpha_1 = \alpha_2 = 0$ and obtained the sufficient condition to get the asymptotic stability. Matsunaga [11] also studied the 2-dimensional system (1.1) with $\alpha_1 = \alpha_2$, $a_1 = a_2 = \beta_1 = \beta_2 = 0$ and $\tau_{11} = \tau_{22}$. Then he obtained the necessary and sufficient condition for the asymptotic stability. For the general multi-dimensional system, Suzuki–Matsunaga [17] studied the system (1.1) with $a_j = b_j = 0$ for all $1 \leq j \leq n$, and succeeded to get the necessary and sufficient condition for the asymptotic stability. Their method is based on the analysis of the delay effects through the characteristic equation. However, it is difficult to apply the method used in [11, 17] to our general system (1.1) because our system is supposed more general situations and the corresponding characteristic equation is complicated. To overcome this difficulty, we employ the different approach to get the sufficient condition of the asymptotic stability, and obtain the stability criteria for (1.1).

The rest of this paper is organized as follows. In Section 2, we introduce the basic results for the characteristic equation of (1.1) to prove our main results. In addition, to explain our main results, we introduce the definitions for asymptotic stability, called the absolute stability and the conditional stability. In Section 3 and 4, we introduce the stability criterion and state our main results of the asymptotic stability for (1.1). Section 3 is devoted to the absolute stability, and Section 4 is devoted to the conditional stability. In Section 5, we consider the related problem of delay differential equations with distributed delay. Finally, as ones of examples, we apply our results to the population models described by the delayed Lotka–Volterra system and delayed prey-predator system in Section 6.

2 Preliminaries

We introduce the important properties for the characteristic equation in this section. The stability of the system (1.1) is completely determined by the roots of its associated characteristic equation. Now, let $(\lambda, \phi) \in \mathbb{C} \times \mathbb{C}^n$. Substituting $u(t) = e^{\lambda t} \phi$ into (1.1) (or (1.3)), we have the following eigenvalue problem:

$$\begin{pmatrix}
\lambda + \gamma_1 & 0 & \ldots & 0 & b_n + \beta_n e^{-\lambda \tau_{1n}} \\
b_1 + \beta_1 e^{-\lambda \tau_{11}} & \lambda + \gamma_2 & \ldots & 0 & 0 \\
0 & \ddots & \ddots & \vdots & \vdots \\
0 & \ldots & \lambda + \gamma_{n-1} & 0 & 0 \\
0 & \ldots & b_{n-1} + \beta_{n-1} e^{-\lambda \tau_{n(n-1)}} & \lambda + \gamma_n & \\
\end{pmatrix} \phi = 0,$$

where $\gamma_j := a_j + \alpha_j e^{-\lambda \tau_{jj}}$ for $1 \leq j \leq n$. Thus, the characteristic equation is given by

$$G(\lambda) = 0,$$ \hspace{1cm} (2.1)
where $G(\lambda)$ is defined by

$$G(\lambda) := \det \begin{pmatrix}
\lambda + \gamma_1 & 0 & \ldots & 0 & b_n + \beta_n e^{-\lambda \tau_{1n}} \\
b_1 + \beta_1 e^{-\lambda \tau_{11}} & \lambda + \gamma_2 & \ldots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & \lambda + \gamma_{n-1} & 0 \\
0 & 0 & \ldots & b_{n-1} + \beta_{n-1} e^{-\lambda \tau_{n-1}} & \lambda + \gamma_n
\end{pmatrix}. $$

In particular, if we assume $\tau_{jk} = \tau$ for all $1 \leq j, k \leq n$, then $G(\lambda)$ can be written as the simple form $G(\lambda) = \det(\lambda I + A + Be^{-\lambda \tau})$ by using the coefficient matrices (1.2). For the system (1.1) and the characteristic equation (2.1), the following theorem plays an important role to analyze the stability of solutions (for the proof, see e.g. Hale [5] and Hale–Verduyn Lunel [6]).

Theorem 2.1. If all of the roots of the characteristic equation (2.1) lie in the left half of the complex plane, then the trivial solution of the system (1.1) is asymptotically stable. Moreover, the solutions satisfy the estimate $|u(t)| \leq Ce^{-ct}$, where C and c are certain positive constants.

By virtue of Theorem 2.1, our goal is to derive the sufficient conditions that the real parts of all of the characteristic roots are negative. In the rest of this section, we introduce the definitions of the absolute stability and conditional stability concerned with the asymptotic stability (cf. Ruan [16]).

Definition 2.2. The steady state of the system (1.1) is called absolutely stable if it is asymptotically stable for all delays τ_{jk} ($1 \leq j, k \leq n$), and the steady state is called conditionally stable if it is asymptotically stable for τ_{jk} ($1 \leq j, k \leq n$) in some intervals, but not necessarily for all delays τ_{jk} ($1 \leq j, k \leq n$).

3 Absolute Stability

In this section, we show the new criteria of the absolutely stable for the system (1.1). Our first main result is stated as follows.

Theorem 3.1. If the coefficients of the system (1.1) satisfy the following conditions:

$$\Re(a_j) - |\alpha_j| > 0, \quad 1 \leq j \leq n, \quad (3.1)$$

and

$$\prod_{j=1}^{n} (\Re(a_j) - |\alpha_j|) > \prod_{j=1}^{n} (|b_j| + |\beta_j|), \quad (3.2)$$

then the trivial solution of the system (1.1) is absolutely stable.

Remark 3.2. In the case that $b_j = 0$ for all $1 \leq j \leq n$ in Theorem 3.1, this result was obtained by Kiri–Ueda [8].

Proof of Theorem 3.1. Let $\lambda = x + iy$ with $x, y \in \mathbb{R}$. Then, we shall derive the contradiction under the assumption $x \geq 0$. By a simple calculation, the characteristic equation (2.1) is rewritten by

$$\prod_{j=1}^{n} (\lambda + a_j + \alpha_j e^{-\lambda \tau_{ij}}) + (-1)^{n+1} (b_n + \beta_n e^{-\lambda \tau_{1n}}) \prod_{j=1}^{n-1} (b_j + \beta_j e^{-\lambda \tau_{j+1j}}) = 0. $$

Namely, this gives

$$\prod_{j=1}^{n} |\lambda + a_j + \alpha_j e^{-\lambda \tau_{ij}}| = |b_n + \beta_n e^{-\lambda \tau_{1n}}| \prod_{j=1}^{n-1} |b_j + \beta_j e^{-\lambda \tau_{j+1j}}|. \quad (3.3)$$
Firstly, we treat the right hand side of (3.3). Since \(x \geq 0 \) and \(\tau_{jk} \geq 0 \) for \(1 \leq j, k \leq n \), we have \(e^{-x\tau_{jk}} \leq 1 \). Therefore, it follows that

\[
|b_n + \beta_n e^{-\lambda \tau_{1n}}| \prod_{j=1}^{n-1} |b_j + \beta_j e^{-\lambda \tau_{j1}}| \leq (|b_n| + |\beta_n|e^{-x\tau_{1n}}) \prod_{j=1}^{n-1}(|b_j| + |\beta_j|e^{-x\tau_{j1}})
\]

\[
\leq \prod_{j=1}^{n}(|b_j| + |\beta_j|).
\]

(3.4)

Secondly, since \(x \geq 0 \) and (3.1), we compute that

\[|\lambda + a_j + \alpha_j e^{-\lambda \tau_{js}}| \geq |\lambda + a_j| - |\alpha_j e^{-\lambda \tau_{js}}| \geq x + \Re(a_j) - |\alpha_j| e^{-\lambda \tau_{js}} \geq \Re(a_j) - |\alpha_j| > 0 \]

for \(1 \leq j \leq n \). Therefore, we obtain

\[
\prod_{j=1}^{n} |\lambda + a_j + \alpha_j e^{-\lambda \tau_{js}}| \geq \prod_{j=1}^{n} (\Re(a_j) - |\alpha_j|).
\]

(3.5)

Finally, combining (3.3), (3.4) and (3.5), we obtain

\[
\prod_{j=1}^{n} (\Re(a_j) - |\alpha_j|) \leq \prod_{j=1}^{n} (|b_j| + |\beta_j|).
\]

However, this inequality is a contradiction under the assumption (3.2). Consequently, we see that the real parts of all of the roots of the characteristic equation must be negative. Therefore, Theorem 2.1 tells us that the trivial solution of the system (1.1) is asymptotically stable. This completes the proof.

4 Conditional Stability

In the previous section, we derive the criteria of the absolutely stable for the system (1.1). Theorem 3.1 can be applicable for a lot of mathematical models mentioned in Section 1. However, if the system (1.1) satisfies \(\Re(a_j) \leq |\alpha_j| \) for some \(j \), we can apply Theorem 3.1 no longer. Indeed, there is a typical example of population models which does not satisfy the condition (3.1). The detail will be discussed in Section 6. For this reason, we would like to propose the different stability criteria for the system (1.1). Actually, we can modify the proof given in the previous section and derive the different criteria concerned with the conditionally stable.

Theorem 4.1. If the coefficients of the system (1.1) satisfy

\[
0 \leq \tau_{jj} < \frac{\Re(a_j + \alpha_j)}{|\alpha_j(\Re(a_j + \alpha_j) + |a_j + \alpha_j|)|} , \quad 1 \leq j \leq n ,
\]

and

\[
\prod_{j=1}^{n} \{ \Re(a_j + \alpha_j) (1 - |\alpha_j|\tau_{jj}) - |\alpha_j||a_j + \alpha_j|\tau_{jj} \} > \prod_{j=1}^{n} (|b_j| + |\beta_j|),
\]

then the trivial solution of the system (1.1) is conditionally stable.

Proof. We note that (4.1) implies

\[
\Re(a_j + \alpha_j) > 0
\]

for \(1 \leq j \leq n \). Let \(\lambda = x + iy \) with \(x, y \in \mathbb{R} \). Then, we also derive the contradiction under the assumption \(x \geq 0 \). We recall (3.3) which comes from the characteristic equation (2.1).
We have already obtained the estimate of the right hand side of (3.3), which means (3.4). Let us estimate $|\lambda + a_j + \alpha_j e^{-\lambda \tau_{ji}}|$ in the left hand side of (3.3) by a different way from the derivation of (3.5). Employing the mean value theorem, we obtain

$$e^{-\lambda \tau_{ji}} = 1 - \lambda \tau_{ji} \int_0^1 e^{-\theta \lambda \tau_{ji}} d\theta.$$

Thus, it follows that

$$|\lambda + a_j + \alpha_j e^{-\lambda \tau_{ji}}| = |(\lambda + a_j + \alpha_j)(1 - \alpha_j \tau_{ji} I) + \alpha_j (a_j + \alpha_j \tau_{ji} I)|$$

$$\geq |\lambda + a_j + \alpha_j||1 - \alpha_j \tau_{ji} I| - |\alpha_j||a_j + \alpha_j||\tau_{ji} I|$$

$$\geq |x + \text{Re}(a_j + \alpha_j)|(1 - |\alpha_j|\tau_{ji}) - |\alpha_j||a_j + \alpha_j|\tau_{jj}$$

for $1 \leq j \leq n$, where I is defined by $I := \int_0^1 e^{-\theta \lambda \tau_{ji}} d\theta$, and we used the fact that $|I| \leq 1$ obtained by the assumptions $x \geq 0$ and $\tau_{ji} \geq 0$. Furthermore, the assumption (4.1) gives

$$|\alpha_j|\tau_{jj} \leq \frac{\text{Re}(a_j + \alpha_j)}{\text{Re}(a_j + \alpha_j) + |a_j + \alpha_j|} < 1,$$

and this estimate and $x \geq 0$ lead to

$$|\lambda + a_j + \alpha_j e^{-\lambda \tau_{ji}}| \geq \text{Re}(a_j + \alpha_j)(1 - |\alpha_j|\tau_{jj}) - |\alpha_j||a_j + \alpha_j|\tau_{jj} > 0.$$

Therefore, we obtain

$$\prod_{j=1}^n |\lambda + a_j + \alpha_j e^{-\lambda \tau_{ji}}| \geq \prod_{j=1}^n \{\text{Re}(a_j + \alpha_j)(1 - |\alpha_j|\tau_{jj}) - |\alpha_j||a_j + \alpha_j|\tau_{jj}\}. \quad (4.3)$$

Finally, combining (3.3), (3.4) and (4.3), this yields

$$\prod_{j=1}^n \{\text{Re}(a_j + \alpha_j)(1 - |\alpha_j|\tau_{jj}) - |\alpha_j||a_j + \alpha_j|\tau_{jj}\} \leq \prod_{j=1}^n (|b_j| + |\beta_j|).$$

However, this inequality is a contradiction under the assumption (4.2). Consequently, we see that the real parts of all of the roots of the characteristic equation must be negative. Therefore, because of Theorem 2.1, the trivial solution of the system (1.1) is asymptotically stable, and this completes the proof. \hfill \square

Remark 4.2. If it is possible to apply Theorem 3.1 to our problems, the delay effects are not strong to break the stability phenomenon. In other words, we can obtain the asymptotic stability to our problems for any time delays. On the other hand, Theorem 4.1 tells us the possibility to derive the asymptotic stability for our problems which do not satisfy the conditions in Theorem 3.1. In this situation, the smallness assumption for the time delays is a key to get the asymptotic stability.

5 Delay Differential Equations with Distributed Delay

We shall consider the related system of equations for (1.1) in this section. We study the asymptotic stability for the following general system of differential equations with distributed
and
\begin{align*}
u_1'(t) + a_1 u_1(t) + b_n u_n(t) + \alpha_1 \int_{t-t_{11}}^t u_1(s)ds + \beta_n \int_{t-t_{21}}^t u_n(s)ds &= 0, \\
u_2'(t) + a_2 u_2(t) + b_1 u_1(t) + \alpha_2 \int_{t-t_{22}}^t u_2(s)ds + \beta_1 \int_{t-t_{21}}^t u_1(s)ds &= 0, \\
&\vdots \\
u_n'(t) + a_n u_n(t) + b_{n-1} u_{n-1}(t) + \alpha_n \int_{t-t_{nn}}^t u_n(s)ds + \beta_{n-1} \int_{t-t_{nn-1}}^t u_{n-1}(s)ds &= 0,
\end{align*}

where the coefficients \(a_j\), \(\alpha_j\), \(b_j\) and \(\beta_j\) are complex-valued constants, and \(\tau_{jk}\) are non-negative constants for \(1 \leq j, k \leq n\). There are a lot of physical models described by (5.1), and the differential equations with distributed delay are studied in [4, 12, 13]. The characteristic equation for the system (5.1) is given by

\[G(\lambda) = 0,\]

where we define

\[G(\lambda) := \det \begin{pmatrix}
\lambda + \bar{\gamma}_1 & 0 & \cdots & 0 & \bar{\gamma}_{10} \\
\bar{\gamma}_{21} & \lambda + \bar{\gamma}_2 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & \lambda + \bar{\gamma}_{n-1} & 0 \\
0 & 0 & \cdots & \bar{\gamma}_{nn-1} & \lambda + \bar{\gamma}_n
\end{pmatrix},\]

and \(\bar{\gamma}_j = a_j + \alpha_j \int_{-\tau_{jj}}^0 e^{\lambda s}ds\) and \(\bar{\gamma}_{jj-1} = b_{j-1} + \beta_{j-1} \int_{-\tau_{jj-1}}^0 e^{\lambda s}ds\) for \(1 \leq j \leq n\) with \(b_0 := b_n\), \(\beta_0 := \beta_n\) and \(\bar{\gamma}_{10} := \tau_{1n}\). Then we have the following theorem for (5.1), which is the equivalent to Theorem 2.1 for (1.1) (cf. Hale [5] and Hale–Verduyn Lunel [6]).

Theorem 5.1. If all of the roots of the characteristic equation (5.2) lie in the left half of the complex plane, then the trivial solution of the system (5.1) is asymptotically stable. Moreover, the solutions satisfy the estimate \(|u(t)| \leq Ce^{-ct}\), where \(C\) and \(c\) are certain positive constants.

Using the similar arguments as in the previous sections, we can obtain the sufficient conditions to get the asymptotic stability for the solutions to (5.1), which conditions are relevant to the conditions appeared in Theorem 3.1 and Theorem 4.1.

Theorem 5.2. Assume that the coefficients of the system (5.1) satisfy the following conditions (i) or (ii):

(i)

\[\text{Re}(a_j) - |\alpha_j| \tau_{jj} > 0, \quad 1 \leq j \leq n,\]

and

\[\prod_{j=1}^n (\text{Re}(a_j) - |\alpha_j| \tau_{jj}) > \left(|b_n| + |\beta_n| \tau_{nn} \right) \prod_{j=1}^{n-1} (|b_j| + |\beta_j| \tau_{jj+1}).\]

(ii)

\[0 \leq \frac{1}{2} \tau_{jj} < \frac{\text{Re} (a_j + \alpha_j \tau_{jj})}{|a_j| |\tau_{jj}| \left(\text{Re} (a_j + \alpha_j \tau_{jj}) + |a_j + \alpha_j \tau_{jj}| \right)}, \quad 1 \leq j \leq n,\]

and

\[\prod_{j=1}^n \left\{ \text{Re} (a_j + \alpha_j \tau_{jj}) \left(1 - \frac{1}{2} |\alpha_j| \tau_{jj}^2 \right) - \frac{1}{2} |a_j| |\alpha_j + \alpha_j \tau_{jj}| \tau_{jj}^2 \right\} > \left(|b_n| + |\beta_n| \tau_{nn} \right) \prod_{j=1}^{n-1} (|b_j| + |\beta_j| \tau_{jj+1}).\]

6
Then the trivial solution of the system (5.1) is asymptotically stable.

Proof. Let \(\lambda = x + iy \) with \(x, y \in \mathbb{R} \). Then, we derive the contradiction under the assumption \(x \geq 0 \). The characteristic equation (5.2) is rewritten by

\[
\prod_{j=1}^{n} \left(\lambda + a_j + \alpha_j \int_{-\tau_j}^{0} e^{\lambda s} ds \right) + (-1)^{n+1} \left(b_n + \beta_n \int_{-\tau_1}^{0} e^{\lambda s} ds \right) \prod_{j=1}^{n-1} \left(b_j + \beta_j \int_{-\tau_{j+1}}^{0} e^{\lambda s} ds \right) = 0.
\]

This gives

\[
\prod_{j=1}^{n} \left| \lambda + a_j + \alpha_j \int_{-\tau_j}^{0} e^{\lambda s} ds \right| = \left| b_n + \beta_n \int_{-\tau_1}^{0} e^{\lambda s} ds \right| \prod_{j=1}^{n-1} \left| b_j + \beta_j \int_{-\tau_{j+1}}^{0} e^{\lambda s} ds \right| \quad (5.7)
\]

Firstly, we estimate the right hand side of (5.7). Because of \(x \geq 0 \), we have \(e^{xs} \leq 1 \) for \(s \leq 0 \). Therefore, we compute

\[
\left| b_n + \beta_n \int_{-\tau_1}^{0} e^{\lambda s} ds \right| \prod_{j=1}^{n-1} \left| b_j + \beta_j \int_{-\tau_{j+1}}^{0} e^{\lambda s} ds \right|
\leq \left(|b_n| + |\beta_n| \int_{-\tau_1}^{0} e^{xs} ds \right) \prod_{j=1}^{n-1} \left(|b_j| + |\beta_j| \int_{-\tau_{j+1}}^{0} e^{xs} ds \right)
\leq (|b_n| + |\beta_n| \tau_1) \prod_{j=1}^{n} (|b_j| + |\beta_j| \tau_{j+1}).
\]

Secondly, we estimate the left hand side of (5.7) provided by the conditions (i) or (ii), respectively.

Case (i): Using the assumptions \(x \geq 0 \) and (5.3), we estimate

\[
\left| \lambda + a_j + \alpha_j \int_{-\tau_j}^{0} e^{\lambda s} ds \right| \geq |\lambda + a_j| - |\alpha_j| \int_{-\tau_j}^{0} e^{xs} ds
\geq x + \text{Re}(a_j) - |a_j| \tau_j
\geq \text{Re}(a_j) - |a_j| \tau_j > 0
\]

for \(1 \leq j \leq n \). Therefore, we obtain

\[
\prod_{j=1}^{n} \left| \lambda + a_j + \alpha_j \int_{-\tau_j}^{0} e^{\lambda s} ds \right| \geq \prod_{j=1}^{n} (\text{Re}(a_j) - |a_j| \tau_j). \quad (5.9)
\]

Eventually, combining (5.7), (5.8) and (5.9), we obtain

\[
\prod_{j=1}^{n} (\text{Re}(a_j) - |a_j| \tau_j) \leq (|b_n| + |\beta_n| \tau_1) \prod_{j=1}^{n} (|b_j| + |\beta_j| \tau_{j+1}).
\]

However, this inequality is a contradiction under the assumption (5.4).

Case (ii): We note that (5.5) implies

\[
\text{Re} (a_j + a_j \tau_j) > 0
\]
for $1 \leq j \leq n$. To estimate $|\lambda + a_j + \alpha_j \int_{-\tau_{jj}}^{0} e^{\lambda s} ds|$, we also apply the mean value theorem to $e^{\lambda s}$. Then this yields

$$\int_{-\tau_{jj}}^{0} e^{\lambda s} ds = \int_{-\tau_{jj}}^{0} \left(1 + \lambda s \int_{0}^{1} e^{\theta \lambda s} d\theta \right) ds = \tau_{jj} + \lambda I,$$

where

$$I := \int_{-\tau_{jj}}^{0} s \int_{0}^{1} e^{\theta \lambda s} d\theta ds.$$

It is easy to estimate I that

$$|I| = \left| \int_{-\tau_{jj}}^{0} s \int_{0}^{1} e^{\theta \lambda s} d\theta ds \right| \leq \int_{-\tau_{jj}}^{0} |s| \int_{0}^{1} |e^{\theta \lambda s}| d\theta ds \leq \int_{-\tau_{jj}}^{0} |s| ds = \frac{1}{2} \tau_{jj}^2.$$

Thus, we obtain

$$\left| \lambda + a_j + \alpha_j \int_{-\tau_{jj}}^{0} e^{\lambda s} ds \right| = |(\lambda + a_j + \alpha_j \tau_{jj})(1 + \alpha_j I) - \alpha_j(a_j + a_j \tau_{jj})I|$$

$$\geq |\lambda + a_j + a_j \tau_{jj}|(1 + \alpha_j I) - |x|\alpha_j(a_j + a_j \tau_{jj})|I|$$

$$\geq |x + \text{Re}(a_j + a_j \tau_{jj})| \left(1 - \frac{1}{2}|\alpha_j|\tau_{jj}^2 \right) - \frac{1}{2}|\alpha_j||a_j + a_j \tau_{jj}|\tau_{jj}^2$$

for $1 \leq j \leq n$. Furthermore, the assumption (5.5) gives

$$\frac{1}{2}|\alpha_j|\tau_{jj}^2 < \frac{\text{Re}(a_j + a_j \tau_{jj})}{\text{Re}(a_j + a_j \tau_{jj}) + |a_j + a_j \tau_{jj}|} < 1.$$

Hence, this estimate and $x \geq 0$ lead to

$$\left| \lambda + a_j + \alpha_j \int_{-\tau_{jj}}^{0} e^{\lambda s} ds \right| \geq \text{Re}(a_j + a_j \tau_{jj}) \left(1 - \frac{1}{2}|\alpha_j|\tau_{jj}^2 \right) - \frac{1}{2}|\alpha_j||a_j + a_j \tau_{jj}|\tau_{jj}^2 > 0.$$

Therefore, we get

$$\prod_{j=1}^{n} \left| \lambda + a_j + \alpha_j \int_{-\tau_{jj}}^{0} e^{\lambda s} ds \right| \geq \prod_{j=1}^{n} \left\{ \text{Re}(a_j + a_j \tau_{jj}) \left(1 - \frac{1}{2}|\alpha_j|\tau_{jj}^2 \right) - \frac{1}{2}|\alpha_j||a_j + a_j \tau_{jj}|\tau_{jj}^2 \right\}. \quad \text{(5.10)}$$

Eventually, combining (5.7), (5.8) and (5.10), we arrive at

$$\prod_{j=1}^{n} \left\{ \text{Re}(a_j + a_j \tau_{jj}) \left(1 - \frac{1}{2}|\alpha_j|\tau_{jj}^2 \right) - \frac{1}{2}|\alpha_j||a_j + a_j \tau_{jj}|\tau_{jj}^2 \right\} \leq (|b_n| + |\beta_n|\tau_{nn}) \prod_{j=1}^{n-1} (|b_j| + |\beta_j|\tau_{j+1j}).$$

However, this inequality is also contradiction under the assumption (5.6).

As a conclusion, we see that the real parts of all the characteristic roots must be negative under the conditions (i) or (ii). Therefore, because of Theorem 5.1, the trivial solution of the system (5.1) is asymptotically stable under these conditions. This completes the proof. \(\square \)
6 Applications

At the last section, we analyze the asymptotic stability of the equilibrium point for the mathematical models as applications for Theorem 3.1 and Theorem 4.1. Especially, we consider the population models such as the delayed Lotka–Volterra system and the delayed prey–predator system.

Delayed Lotka–Volterra System: Firstly, we consider the Lotka–Volterra type competitive system with delay effects:

\[
\begin{aligned}
 x'(t) &= x(t)\left(K_1 - x(t)\right) - px(t - \tau_1)y(t), \\
 y'(t) &= y(t)\left(K_2 - y(t)\right) - qx(t - \tau_2),
\end{aligned}
\]

(6.1)

where \(K_1, K_2, p, q, \tau_1\) and \(\tau_2\) are positive constants. The real-valued unknown functions \(x(t)\) and \(y(t)\) are the population of each competitor, and \(K_1\) and \(K_2\) are called the carrying capacity of themselves. The system (6.1) has a unique equilibrium point

\[
\left(x^*, y^*\right) = \left(\frac{K_2 - K_1}{pq - 1}, \frac{qK_1 - K_2}{pq - 1}\right).
\]

We linearize the system (6.1) around \((x^*, y^*)\), obtaining

\[
\begin{aligned}
 x'(t) &= (K_1 - 2x^*)x(t) - py^*x(t - \tau_1) - px^*y(t), \\
 y'(t) &= -qy^*x(t) + (K_2 - 2y^*)y(t) - qx^*y(t - \tau_2),
\end{aligned}
\]

(6.2)

Then the system (6.2) is rewritten as (1.3) with \(u(t) = (x(t), y(t))^T\) and

\[
A = \begin{pmatrix}
 2x^* - K_1 & px^* \\
 qy^* & 2y^* - K_2
\end{pmatrix}, \quad B = \begin{pmatrix}
 py^* & 0 \\
 0 & qx^*
\end{pmatrix},
\]

and \(\tau_1 = \tau_1, \tau_2 = \tau_2, \tau_12 = \tau_21 = 0\).

It is well known that the equilibrium point \((x^*, y^*)\) of the nonlinear system (6.1) is also asymptotically stable if the linearized system (6.2) is asymptotically stable. Therefore, applying Theorem 3.1 and Theorem 4.1 to the linearized system (6.2), we derive the following results immediately.

Corollary 6.1. If the coefficients of the system (6.1) satisfy the following conditions:

\[
2\frac{pK_2 - K_1}{pq - 1} - K_1 - p \left|\frac{qK_1 - K_2}{pq - 1}\right| > 0, \quad 2\frac{2K_1 - K_2}{pq - 1} - K_2 - q \left|\frac{pK_2 - K_1}{pq - 1}\right| > 0
\]

and

\[
\frac{2pK_2 - K_1}{pq - 1} - K_1 - p \left|\frac{qK_1 - K_2}{pq - 1}\right| > pq \left|\frac{pK_2 - K_1}{pq - 1}\right|, \quad 2\frac{2qK_1 - K_2}{pq - 1} - K_2 - q \left|\frac{pK_2 - K_1}{pq - 1}\right| > pq \left|\frac{qK_1 - K_2}{pq - 1}\right|
\]

then the equilibrium point \((x^*, y^*)\) of (6.1) is absolutely stable.

Corollary 6.2. If the coefficients of the system (6.1) satisfy the following conditions:

\[
0 < \tau_1 < \frac{pq - 1}{2p(qK_1 - K_2)}, \quad 0 < \tau_2 < \frac{pq - 1}{2q(pK_2 - K_1)}.
\]

\[
\left(1 - \frac{2p(qK_1 - K_2)\tau_1}{pq - 1}\right) \left(1 - \frac{2q(pK_2 - K_1)\tau_2}{pq - 1}\right) > pq
\]

9
and either
\[\frac{K_2}{q} < K_1 < pK_2 \quad \text{or} \quad pK_2 < K_1 < \frac{K_2}{q}, \]
then the equilibrium point \((x^*, y^*)\) of (6.1) is conditionally stable.

For example, let \(K_1 = K_2 = 1\) and \(p = q = 1/4\) for (6.2). The equilibrium point is \((x^*, y^*) = (12/15, 12/15)\). In this situation, it is easy to check that these coefficients satisfy the conditions in Corollary 6.1. Therefore, we conclude that this equilibrium point is absolutely stable.

On the other hand, let \(K_1 = K_2 = 1\) and \(p = q = 1\) for (6.2). The equilibrium point is \((x^*, y^*) = (2/3, 2/3)\). Unfortunately, these coefficients do not satisfy the conditions in Corollary 6.1. Then the conditions in Corollary 6.2 are reduced to
\[
0 < \tau_1 < \frac{3}{2}, \quad 0 < \tau_2 < \frac{3}{2}, \quad \left(1 - \frac{2}{3}\tau_1\right)\left(1 - \frac{2}{3}\tau_2\right) > \frac{1}{4}.
\]
Especially, \(\tau_1 = \tau_2 = 1/2\) satisfies the above inequalities. This fact tells us that the equilibrium point is conditionally stable.

Delayed Prey–Predator System: Secondly, we consider the prey–predator system with delay effects, which system has the different type of the delay effects from the system (6.1).

\[
\begin{align*}
x'(t) &= x(t)\left(K_1 - x(t - \tau_1)\right) - px(t)y(t), \\
y'(t) &= y(t)\left(K_2 - y(t - \tau_2)\right) + qx(t)y(t),
\end{align*}
\]

(6.3)

where \(K_1, K_2, p, q, \tau_1\) and \(\tau_2\) are positive constants. The real-valued unknown functions \(x(t)\) and \(y(t)\) denote the population of prey and predator, respectively. The system (6.3) has the unique equilibrium point
\[
(x^*, y^*) = \left(\frac{K_1 - pK_2}{pq + 1}, \frac{qK_1 + K_2}{pq + 1}\right).
\]

We linearize the system (6.3) around \((x^*, y^*)\), obtaining
\[
\begin{align*}
x'(t) &= -x^*x(t - \tau_1) - px^*y(t), \\
y'(t) &= qy^*x(t) - y^*y(t - \tau_2).
\end{align*}
\]

(6.4)

Then the system (6.4) is also rewritten as (1.3) with \(u(t) = (x(t), y(t))^T\) and
\[
A = \begin{pmatrix} 0 & px^* \\ -qy^* & 0 \end{pmatrix}, \quad B = \begin{pmatrix} x^* & 0 \\ 0 & y^* \end{pmatrix},
\]

(6.5)

and \(\tau_{11} = \tau_1, \tau_{22} = \tau_2, \tau_{12} = \tau_{21} = 0\). The coefficient matrices (6.5) tell us that Theorem 3.1 is not applicable for this system. Therefore, we try to apply Theorem 4.1 to the linearized system (6.4), and obtain the following result.

Corollary 6.3. If the coefficients of the system (6.3) satisfy the following conditions:
\[
0 < \tau_1 < \frac{pq + 1}{2(K_1 - pK_2)}, \quad 0 < \tau_2 < \frac{pq + 1}{2(qK_1 + K_2)}
\]

and
\[
\left(1 - \frac{2(K_1 - pK_2)\tau_1}{pq + 1}\right)\left(1 - \frac{2(qK_1 + K_2)\tau_2}{pq + 1}\right) > pq,
\]
then the equilibrium point \((x^*, y^*)\) of (6.3) is conditionally stable.
For example, let $K_1 = K_2 = 1$ and $p = q = 1/2$ for (6.4). The equilibrium point is $(x^*, y^*) = (2/5, 6/5)$. Then the conditions in Corollary 6.3 are reduced to

$$0 < \tau_1 < \frac{5}{4}, \quad 0 < \tau_2 < \frac{5}{12}, \quad \left(1 - \frac{4}{5} \tau_1 \right) \left(1 - \frac{12}{5} \tau_2 \right) > \frac{1}{4}.$$

Especially, $\tau_1 = \tau_2 = 5/24$ satisfies the above inequalities. This fact tells us that the equilibrium point is conditionally stable.

Acknowledgments

The authors would like to express their sincere gratitude to Professor Hideo Kubo for his feedback and valuable advices.

The work of the first author is partially supported by MEXT through Program for Leading Graduate Schools (Hokkaido University “Ambitious Leader’s Program”). The work of the fourth author is partially supported by Grant-in-Aid for Scientific Research (C) No. 18K03369 from Japan Society for the Promotion of Science.

References

Ikki Fukuda
Department of Mathematics, Hokkaido University, Sapporo 060-0810, Japan
E-mail: i.fukuda@math.sci.hokudai.ac.jp

Yuya Kiri
Graduate School of Maritime Sciences, Kobe University, Kobe 658-0022, Japan
E-mail: 167w304w@stu.kobe-u.ac.jp

Wataru Saito
Department of Mathematics, Hokkaido University, Sapporo 060-0810, Japan
E-mail: s173012math@frontier.hokudai.ac.jp

Yoshihiro Ueda
Faculty of Maritime Sciences, Kobe University, Kobe 658-0022, Japan
E-mail: ueda@maritime.kobe-u.ac.jp