

# HOKKAIDO UNIVERSITY

| Title            | Assessment of the timing and degree of smolt development in southern populations of masu salmon Oncorhynchus masou                                                                                                                                                                                                                                                                                                                                                                             |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Author(s)        | Inatani, Yu; Ineno, Toshinao; Sone, Shiori; Matsumoto, Naoto; Uchida, Katsuhisa; Shimizu, Munetaka                                                                                                                                                                                                                                                                                                                                                                                             |
| Citation         | Journal of fish biology, 93(3), 490-500<br>https://doi.org/10.1111/jfb.13647                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Issue Date       | 2018-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Doc URL          | http://hdl.handle.net/2115/75360                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Rights           | This is the peer reviewed version of the following article: Inatani Y, Ineno T, Sone S, Matsumoto N, Uchida K, Shimizu M. Assessment of the timing and degree of smolt development in southern populations of masu salmon Oncorhynchus masou. J Fish Biol. 2018;93:490–500, which has been published in final form at https://doi.org/10.1111/jfb.13647. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. |
| Туре             | article (author version)                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| File Information | Fish Biol93_490-500.pdf                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |



| 1  | Assessment of the timing and degree of smolt development in southern populations                         |
|----|----------------------------------------------------------------------------------------------------------|
| 2  | of masu salmon                                                                                           |
| 3  |                                                                                                          |
| 4  | Y. INATANI*, T. INENO <sup>‡</sup> , S. SONE*, N. MATSUMOTO <sup>§</sup> , K. UCHIDA <sup>§</sup> AND M. |
| 5  | SHIMIZU*†                                                                                                |
| 6  |                                                                                                          |
| 7  | *Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate,                             |
| 8  | Hokkaido 041-8611, Japan, ‡Kobayashi Branch, Miyazaki Prefectural Fisheries                              |
| 9  | Research Institute, 1091 Minaminishikata, Kobayashi, Miyazaki 886-0005, Japan,                           |
| 10 | §Faculty of Agriculture, University of Miyazaki, 1-1 Kibanadai-nishi, Miyazaki                           |
| 11 | 889-2192, Japan                                                                                          |
| 12 |                                                                                                          |
| 13 | Running headline: PARTIAL SMOLTING OF MASU SALMON                                                        |
| 14 |                                                                                                          |
| 15 | †Author to whom correspondence should be addressed. Tel.: +81 138 40 8897; e-mail:                       |
| 16 | mune@fish.hokudai.ac.jp                                                                                  |
| 17 |                                                                                                          |

| 18 | The present study assessed whether non-anadromous masu salmon Oncorhynchus                                 |
|----|------------------------------------------------------------------------------------------------------------|
| 19 | masou in Miyazaki, southern Japan, smoltify, and if so at what time of the year. Yearling                  |
| 20 | O. masou of Miyazaki and an anadromous population from Hokkaido, northern Japan,                           |
| 21 | were reared in hatcheries in their respective regions and sampled monthly from                             |
| 22 | February to June to examine the spring smoltification period. The Hokkaido population                      |
| 23 | showed a peak of gill Na <sup>+</sup> /K <sup>+</sup> -ATPase (NKA) activity in May, which was accompanied |
| 24 | with an increase in mRNA levels of the seawater (SW)-type NKA alpha subunit, nka                           |
| 25 | $\alpha lb$ . Increases in gill NKA activity and <i>nka alb</i> levels were not seen in Miyazaki           |
| 26 | populations. Transferring yearling Miyazaki population to 70% SW (salinity of 23) in                       |
| 27 | mid-April resulted in an increased serum osmolality over four days. These results                          |
| 28 | suggest that they do not smoltify in their second spring. Next, profiles of gill NKA                       |
| 29 | activity and its subunit mRNA levels in under-yearling Miyazaki population in the                          |
| 30 | autumn were examined. Two phenotypes differing in body color during this period were                       |
| 31 | categorized as parr and smolt-like fish. Smolt-like fish had higher gill NKA activity                      |
| 32 | than parr in December while there was no significant difference in gill $nka \ \alpha lb$ levels.          |
| 33 | Smolt-like fish acclimated to 70% SW better than parr as judged by lower serum                             |

| 34 | osmolality. However, serum osmolality in smolt-like fish did not return to the basal      |
|----|-------------------------------------------------------------------------------------------|
| 35 | level seven days after transfer to 70% SW, suggesting that their hypo-osmoregulatory      |
| 36 | ability was not fully developed to a level comparable to anadromous populations of this   |
| 37 | species. The present study suggests that, if O. masou in Miyazaki go though a             |
| 38 | smoltification process, it occurs in its first autumn instead of the second spring and is |
| 39 | less pronounced compared to anadromous populations.                                       |

41 Key words: masu salmon; smoltification; Miyazaki Prefecture; Na<sup>+</sup>/K<sup>+</sup>-ATPase;
42 osmolality; autumn

## **INTRODUCTION**

| 44 | Masu salmon Oncorhynchus masou (Brevoot 1856) is one of the eight Pacific salmon          |
|----|-------------------------------------------------------------------------------------------|
| 45 | species distributed in the Asian side of Pacific Ocean. Their distribution is more        |
| 46 | southerly than other Pacific salmon but spans most of Japan from Hokkaido to Kyushu       |
| 47 | (Kato, 1991). The southern limit of their distribution in Japan is Miyazaki (32°N) but a  |
| 48 | land-locked strain is found even further south in Taiwan (Kato, 1991; Kimura, 1989).      |
| 49 | Anadromy of O. masou declines with latitude (Malyutina et al., 2009; Morita               |
| 50 | & Nagasawa, 2010) as is the case for other salmonids (Dodson et al., 2013; Morita et al., |
| 51 | 2014). In Hokkaido (42°N), the latitudinal middle of their distribution, the majority of  |
| 52 | females and minority of males are anadromous, going through parr-smolt                    |
| 53 | transformation (smoltification) in the second spring of their life (Kubo, 1980).          |
| 54 | Smoltification is a series of pre-adaptive changes in morphology, behavior and            |
| 55 | physiology by which river-dwelling parr become ocean-type smolt (Wedemeyer et al.,        |
| 56 | 1980; Hoar, 1988; Stefansson et al., 2008; Björnsson et al., 2011; McCormick, 2009,       |
| 57 | 2013). In one rearing experiment using O. masou of Hokkaido, 62% of females and           |
| 58 | 26% of males became yearling smolts when they were fed twice a ration at 1-2%/body        |

| 59 | mass and reared between 5-12°C (Sano and Ozaki, 1969). In Miyazaki, on the other         |
|----|------------------------------------------------------------------------------------------|
| 60 | hand, both females and males are believed to be non-anadromous (Kimura, 1989) due to     |
| 61 | the warm Kuroshio Current running along the Miyazaki coast which reaches 30°C            |
| 62 | during summer. This lethally high water temperature during the summer is a physical      |
| 63 | barrier setting them in a unique situation like "seasonal landlocking".                  |
| 64 | During the last glacial period, however, O. masou in Miyazaki were                       |
| 65 | presumably anadromous since a landlocked strain of this species exists in the high       |
| 66 | altitude of the far south Taiwan Island (24°N). Increases in water temperature along the |
| 67 | Miyazaki coast after the end of the last glacial period should have a negative impact on |
| 68 | seaward migration of O. masou for thousands of years and reduced selection on            |
| 69 | anadromous lifestyle over many generations. However, it is not known whether they        |
| 70 | abandoned the intrinsic rhythm of smoltification or if they smoltify in the spring or at |
| 71 | another time of the year.                                                                |
| 72 | O. masou may undergo smoltification in the autumn. In fact, a subspecies of              |
| 73 | O. masou, amago salmon O. masou ishikawae (Jordan and McGregor 1925), smoltify           |
| 74 | and migrate to the ocean in the autumn to avoid warm seawater influenced by the          |

75Kuroshio Current during the spring and summer (Kato, 1991). They spend a half-year in 76 coastal waters and return to the rivers around May before the seawater temperature rises. 77Thus, it is possible that O. masou in Miyazaki have shifted their timing of smoltification 78from the spring to the autumn. 79Acquisition of hypo-osmoregulatory ability is one of the most important 80 physiological changes during smoltification. The gills are a key organ responsible for 81 extruding sodium and chloride ions, using  $Na^+/K^+$ -ATPase (NKA; the sodium pump) as 82 a driving force (Evans, 2008; Hiroi & McCormick, 2012; Hwang et al., 2011; Takei et 83 al., 2014). The activity of gill NKA is often used as an indicator of 84 hypo-osmoregulatory ability. NKA is composed of two essential subunits,  $\alpha$  and  $\beta$ , and one regulatory 85 86 subunit, y (Blanco & Mercer, 1998; Mobasheri et al., 2000; Geering, 2006, 2008). 87 Multiple isoforms of NKA  $\alpha$  and  $\beta$  subunits have been found in vertebrates (Blanco & 88 Mercer, 1998; Geering, 2008), and teleosts possess additional isoforms due to an extra 89 round of whole genome duplication (Rajarao et al., 2001; Serluca et al., 2001; Dalziel et 90 al., 2014). There are five isoforms of NKA  $\alpha$  subunits in salmonids, of which an

| 91  | isoform named $\alpha$ 1b is considered as seawater type while $\alpha$ 1a is a freshwater type based            |
|-----|------------------------------------------------------------------------------------------------------------------|
| 92  | on their responses to salinity increases (Richards et al., 2003; Bystriansky et al., 2006;                       |
| 93  | Madsen et al., 2009; McCormick et al., 2009). Gill NKA alb both at mRNA and                                      |
| 94  | protein levels increase during smoltification of Atlantic salmon Salmo salar (L. 1758)                           |
| 95  | together with gill NKA activity (Nilsen et al., 2003, 2007; McCormick et al., 2013).                             |
| 96  | Much less is known about profiles of NKA $\beta$ subunit isoforms during                                         |
| 97  | smoltification. NKA $\beta$ subunit localizes the catalytic $\alpha$ subunit on the cell membrane                |
| 98  | and increases the translation efficiency of the $\alpha$ subunit (Blanco & Mercer, 1998;                         |
| 99  | Rajasekaran <i>et al.</i> , 2004; Geering, 2008). Four isoforms of NKA $\beta$ subunit ( $\beta$ 1a, $\beta$ 1b, |
| 100 | $\beta$ 3a and $\beta$ 3b) have been identified in rainbow trout <i>O. mykiss</i> (Walbaum 1792) and <i>S.</i>   |
| 101 | salar (Gharbi et al., 2004, 2005). A few studies dealt with changes in gill $nka \beta l$ subunit                |
| 102 | during smoltification of S. salar and reported it increased in parallel with $nka \alpha$ subunit                |
| 103 | and increased NKA abundance during that period (Seidelin et al., 2001; Nilsen et al.,                            |
| 104 | 2007). However, there are at present no studies measuring isoforms of $nka \beta l$ subunits                     |
| 105 | during smoltification.                                                                                           |

Based on their osmoregulatory role during smoltification and seawater

| 107 | acclimation, comparing profiles of gill NKA activity and its subunits between              |
|-----|--------------------------------------------------------------------------------------------|
| 108 | anadromous and non-anadromous population is a useful tool to reveal the degree of          |
| 109 | smoltification in O. masou in Miyazaki. The aims of the present study were to examine      |
| 110 | whether these fish undergo smoltification in their second spring or the first fall and, if |
| 111 | so, evaluate the degree of smoltification in terms of their hypo-osmoregulatory ability.   |
| 112 |                                                                                            |
| 113 |                                                                                            |
| 114 | MATERIALS AND METHODS                                                                      |
| 115 | FISH REARING                                                                               |
| 116 | Yearling O. masou in Hokkaido                                                              |
| 117 | O. masou of Hokkaido population were obtained from the hatchery of the South Branch        |
| 118 | of the Salmon and Freshwater Fisheries Institute, Hokkaido Research Organization           |
| 119 | (42°N; Futami-gun, Hokkaido, Japan). Eggs were collected from returning adults that        |
| 120 | were released from the hatchery as smolts and returned from the ocean. Alevin were         |
| 121 | maintained in indoor raceways under dark and fry were moved to outdoor ponds (24.6 x       |
| 122 | 3.5 m) run through river water in the spring. Fish were maintained in the same outdoor     |

123 ponds throughout the sampling period from February to June 2011 (water temperature

124 range: 4 - 14°C) and fed twice or three times a day on a commercial diet (Nippon

125 Formula Feed, Kanagawa, Japan) with standard rations at 0.4-1.9% per body weight.

126

127 Yearling O. masou in Miyazaki

128Yearling O. masou of Miyazaki populations were obtained from a local fish farm at 129 Gokase (33°N; Nishiusuki-gun, Miyazaki, Japan) from April to June 2014 (water 130 temperature range:9-13°C) and Kobayashi Branch, Miyazaki Prefectural Fisheries 131 Research Institute (32°N; Kobayashi, Miyazaki, Japan) from February to April 2015 132(water temperature range:8-15°C). Fish at the local farm were a captive broodstock and 133 were maintained in the river water in outdoor ponds (4 x 20 m) and fed five times a 134week on a commercial diet (Scientific Feed Laboratory, Tokyo, Japan) at 1.3%/body 135 weight. Fish at Kobayashi Branch were also a captive broodstock and reared in indoor 136 tanks with a standard ration (1.3%/body weight) until use. In February 2015, they were 137 moved to a 500-1 circular fibre-reinforced plastic (FRP) tank and reared until April 2015 138 in cooled water simulating the local river water temperatures (8-15°C).

| 140 | Under-year | ling O. 1 | masou in | Miyazaki |
|-----|------------|-----------|----------|----------|
|-----|------------|-----------|----------|----------|

141 Under-yearling *O. masou* were also reared at the local fish farm in Gokase, Miyazaki as
142 described above. Two phenotypes (parr and smolt-like fish) were sorted based on the
143 silvery color and visibility of parr marks on the body and sampled from September to
144 December 2014.

145

#### 146 SEASONAL SAMPLING

147Experiments and samplings were carried out in accordance with the 148guidelines of Hokkaido University Animal Care and Use Committees (#17-0064). 149 Seven to eight fish were sampled from each month, region and phenotype. Fish were 150anesthetized by 3.3% 2-phenoxyethanol (Kanto Chemical, Tokyo, Japan) and measured 151for fork length  $(L_F)$  and body wet mass  $(M_W)$ . Condition factor (K) was calculated as follows:  $M_W L_F^{-3}x$  100. Gill arches were excised and a block of gill filaments was 152153immediately frozen on dry ice and stored at -80°C until analyzed for NKA activity. 154Another block of gill filaments was immersed in RNAlater (Ambion Inc., Austin, TX,

155 U.S.A.) and stored overnight at 4°C, then frozen and stored in RNAlater at -30°C until

156 laboratory processing for quantification of mRNA.

157

- 158 SEAWATER CHALLENGE TEST
- 159 Yearling O. masou in Miyazaki
- 160 On 14 April 2015, yearling *O. masou* of Miyazaki were transferred to 70%, recirculated

161 artificial seawater (70% SW; salinity of 23) (Napqo, Tokyo, Japan) in four 100-1 tanks

- 162 installed with a portable filter system (PowerBox 55, Kotobuki, Nara, Japan) in
- 163 Kobayashi Branch. Water temperature was maintained at 13.5°C by placing the
- 164 experimental tanks in a larger tank run through cooled water. Food was withheld during
- 165 the experimental period. Fish were sampled 0, 1, 2 and 4 days after transfer as described
- above. Blood was collected using syringe, transferred to a 1.5 ml centrifuge tube and
- 167 kept overnight at 4°C. After centrifuging at 8,000 g for 10 min at 4°C, serum was
- 168 collected and stored at -80°C until analysis for osmolality.

169

170 Under-yearling O. masou in Miyazaki

| 171 | On 24 November 2016, parr and smolt-like fish of under-yearling O. masou reared at         |
|-----|--------------------------------------------------------------------------------------------|
| 172 | the local fish farm at Gokase were transferred by a truck installed with a freshwater tank |
| 173 | with oxygenation to Nobeoka Marine Experimental Station (Nobeoka, Miyazaki, Japan)         |
| 174 | and placed in 70% artificial, recirculated SW in 500-1 tanks with filter system. Water     |
| 175 | temperature was maintained at 10°C by a water chiller. Fish were sampled 0, 1, 2, 4 and    |
| 176 | 7 days after transfer as described above. Fish were not fed throughout the experimental    |
| 177 | period and sampled as described above.                                                     |
| 178 |                                                                                            |
| 179 | NA <sup>+</sup> /K <sup>+</sup> -ATPASE ACITIVITY ASSAY                                    |
| 180 | Gill NKA activity was measured according to Quabius et al. (1997) with minor               |
| 181 | modification (i.e. correction of a wrong concentration of sulfuric acid). Protein          |

- 182concentration was measured by using BCA (bicinchoninic acid) Protein Assay Kit
- (Thermo Scientific, IL, U.S.A.). The activity was expressed as Pi ( $\mu$ mol) per protein 183

184(mg) per time (h).

185

#### 186 RNA EXTRACTION AND CDNA SYNTHESIS

| 187 | Total RNA was extracted from the gills using ISOGEN (Nippon gene; Tokyo, Japan)       |
|-----|---------------------------------------------------------------------------------------|
| 188 | according to the manufacturer's instruction. One and half micrograms of RNA was       |
| 189 | reverse-transcribed using SuperScript VILO cDNA Synthesis kit (Invitrogen, Carlsbad,  |
| 190 | CA, U.S.A.) in a 10-µl reaction according to the manufacturer's instruction. cDNA was |
| 191 | stored at -30°C until use.                                                            |

### 193 REAL-TIME QUANTITATIVE PCR (QPCR)

194 Sequences of primers for qPCR of *nka*  $\alpha la$ , *nka*  $\alpha lb$  and *ef-la* were the same as

- 195 described in Nakajima *et al.* (2014) (Table 1). Primers for qPCR of *nka*  $\beta la$  and *nka*  $\beta lb$
- 196 were designed based on their sequences in O. mykiss (Genbank accession #CA374089
- and #CB492131; Gharbi et al., 2004) (Table I). Reverse transcribed-PCRs using these
- 198 primers were performed to prepare assay standards for O. masou. PCR products run on
- 199 1.5% agarose gel were excised and purified using QIAEX II Gel Extraction Kit (Qiagen,
- 200 Valencia, CA, U.S.A.). Copy numbers of the purified amplicon were calculated from the
- 201 molecular weight of the amplion and concentration. The standard cDNA were serially
- 202 diluted from  $1 \times 10^7$  to  $3 \times 10^2$  copies.

| 203 | qPCR was set up using Power SYBR Green PCR Master Mix (Applied                                 |
|-----|------------------------------------------------------------------------------------------------|
| 204 | Biosystems, Carlsbad, CA, U.S.A.) in a reaction volume of 20 $\mu l$ with primer               |
| 205 | concentration of 100 nM. qPCR was run on a 7300 Sequence Detector (Applied                     |
| 206 | Biosystems) using the manufacturer's recommended cycling conditions: 50°C for 2 min,           |
| 207 | 95°C for 10 min followed by 40 cycles at 95°C for 15 s and 60°C for 1 min. Measured            |
| 208 | values were expressed as relative to those of <i>ef-1a</i> . Performance of qPCR was evaluated |
| 209 | by confirming a single peak of the dissociation curve in each assay and calculating the        |
| 210 | amplification efficiencies of the standard curves, which were within the range of              |
| 211 | 97-100%. Coefficients of determination of the standard curves were also between                |
| 212 | 0.99-1.00.                                                                                     |
| 213 |                                                                                                |
| 214 | SERUM OSMOLALITY MEASUREMENT                                                                   |
| 215 | Osmolality in serum was measured by using a vapor pressure osmometer (Wescor 5500;             |
| 216 | Logan, UT, U.S.A.). Ten microliters of serum was used for the measurement.                     |
| 217 |                                                                                                |

## 218 STATISTICAL ANALYSIS

| 219                                    | Results on yearling O. masou in Hokkaido and Miyazaki were analyzed by one-way                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 220                                    | ANOVA using the JMP program (SAS Institute Inc., Cary, NC, U.S.A.) followed by the                                                                                                                                                                                                                                                                                                                                                                                                                |
| 221                                    | Fisher's protected least significant difference (PLSD) test. Results on under-yearling O.                                                                                                                                                                                                                                                                                                                                                                                                         |
| 222                                    | masou in Miyazaki were first analyzed by two-way ANOVA (phenotype x time). When                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 223                                    | significant effects were found, differences were further identified by one-way ANOVA                                                                                                                                                                                                                                                                                                                                                                                                              |
| 224                                    | followed by the Fisher's PLSD test. Differences among groups were considered to be                                                                                                                                                                                                                                                                                                                                                                                                                |
| 225                                    | significant at $P < 0.05$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 226                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 227                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 228                                    | RESULTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 228<br>229                             | <b>RESULTS</b><br>Body size ( $L_F$ and $M_w$ ) of yearling <i>O. masou</i> in Miyazaki was larger than that of                                                                                                                                                                                                                                                                                                                                                                                   |
| 228<br>229<br>230                      | <b>RESULTS</b><br>Body size ( $L_F$ and $M_w$ ) of yearling <i>O. masou</i> in Miyazaki was larger than that of<br>Hokkaido salmon throughout the sampling period (from February to June) [ $L_F$ : two-way                                                                                                                                                                                                                                                                                       |
| 228<br>229<br>230<br>231               | <b>RESULTS</b><br>Body size ( $L_F$ and $M_w$ ) of yearling <i>O. masou</i> in Miyazaki was larger than that of<br>Hokkaido salmon throughout the sampling period (from February to June) [ $L_F$ : two-way<br>ANOVA, $F_{1,70} = 343.11$ , <i>P</i> <0.001; $M_w$ : two-way ANOVA, $F_{1,70} = 245.34$ , <i>P</i> <0.001;                                                                                                                                                                        |
| 228<br>229<br>230<br>231<br>232        | <b>RESULTS</b><br>Body size ( $L_F$ and $M_w$ ) of yearling <i>O. masou</i> in Miyazaki was larger than that of<br>Hokkaido salmon throughout the sampling period (from February to June) [ $L_F$ : two-way<br>ANOVA, $F_{1, 70} = 343.11$ , $P < 0.001$ ; $M_w$ : two-way ANOVA, $F_{1,70} = 245.34$ , $P < 0.001$ ;<br>Fig. 1]. In both groups, average <i>K</i> values were the lowest in May followed by                                                                                      |
| 228<br>229<br>230<br>231<br>232<br>233 | <b>RESULTS</b><br>Body size ( $L_F$ and $M_w$ ) of yearling <i>O. masou</i> in Miyazaki was larger than that of<br>Hokkaido salmon throughout the sampling period (from February to June) [ $L_F$ : two-way<br>ANOVA, $F_{1,70} = 343.11$ , $P < 0.001$ ; $M_w$ : two-way ANOVA, $F_{1,70} = 245.34$ , $P < 0.001$ ;<br>Fig. 1]. In both groups, average <i>K</i> values were the lowest in May followed by<br>significant increases in June [Hokkaido: Fisher's PLSD ANOVA, $F_{4,30} = 12.10$ , |

| 235 | Gill NKA activity in yearling O. masou in Hokkaido showed an increase from                                           |
|-----|----------------------------------------------------------------------------------------------------------------------|
| 236 | March to April, peaked in May and decreased to near the basal level in June [Fisher's                                |
| 237 | PLSD ANOVA, $F_{4,30} = 8.93$ , $P < 0.001$ , Fig. 2(a)]. O. masou in Miyazaki also tended to                        |
| 238 | increase in gill NKA activity from March to May, but its highest values were only about                              |
| 239 | half of those in Hokkaido [Fig. 2(b)].                                                                               |
| 240 | Gill <i>nka</i> $\alpha la$ mRNA levels were unchanged during spring both in yearling <i>O</i> .                     |
| 241 | masou in Hokkaido and Miyazaki and their levels were similar between the two groups                                  |
| 242 | [Fig. 3(a), (b)]. On the other hand, yearling O. masou in Hokkaido showed a sharp peak                               |
| 243 | of gill <i>nka</i> $\alpha lb$ levels in May [Fisher's PLSD ANOVA, $F_{4,30} = 18.72$ , $P < 0.001$ ; Fig.           |
| 244 | 3(c)] while that in Miyazaki salmon was remained at the basal level [Fig. 3(d)]. Both                                |
| 245 | gill <i>nka</i> $\beta la$ and $\beta lb$ levels in fish in Hokkaido also showed peaks in May [ $\beta la$ :Fisher's |
| 246 | PLSD ANOVA, $F_{4,29} = 10.00$ , $P < 0.001$ ; $\beta Ib$ : Fisher's PLSD ANOVA, $F_{4,30} = 12.52$ , $P$            |
| 247 | <0.001; Fig. 4(a), (b)]. There was a significant increase in gill <i>nka</i> $\beta la$ levels from                  |
| 248 | February to April in fish in Miyazaki [Fisher's PLSD ANOVA, $F_{2,18} = 6.03$ , $P < 0.01$ ;                         |
| 249 | Fig. 4(c)] whereas gill <i>nka</i> $\beta lb$ levels remained constant during that period [Fig. 4(d)].               |
| 250 | Transferring yearling O. masou in Miyazaki from freshwater to 70% SW                                                 |

252which it gradually decreased until day 4 after transfer but still significantly higher than 253those of the initial controls in freshwater [Fisher's PLSD ANOVA,  $F_{3,25} = 11.87$ , P 254<0.001; Fig. 5(a)]. Gill NKA activity tended to increase, but not significantly, until 4 255days after transfer [Fig. 5(b)]. 256Body size and K were compared between under-yearling parr and smolt-like 257fish in Miyazaki during fall [Fig. 6]. L<sub>F</sub> was not significantly different between the two 258groups except in November, when smolt-like fish were larger than parr [two-way 259ANOVA, ,  $F_{1,55} = 8.14$ , P < 0.001; Fig. 6(a)].  $M_w$  was also similar between the two 260groups except in October, when parr was larger than smolt-like fish [two-way ANOVA, 261 $F_{1,55} = 4.66, P < 0.01$ ; Fig. 6(b)]. Overall, both phenotypes decreased K during the 262autumn and smolt-fish had lower K than parr [phenotype: two-way ANOVA,  $F_{1,55}$  = 16.36, P < 0.001; month: two-way ANOVA,  $F_{3,55} = 4.66$ , P < 0.001; Fig. 6(c)]. 263264There was an overall effect of phenotype on gill NKA activity, which was 265higher in smolt-like fish (two-way ANOVA,  $F_{1,56} = 6.48$ , P < 0.05). The activity was

(salinity of 23) in mid-April resulted in an increase in serum osmolality on day 1, after

251

266 similar in parr and smolt-like fish during September and October, but smolt-like fish

267 exhibited significantly higher NKA activity than part in November and December 268 [Fisher's PLSD ANOVA,  $F_{1,56} = 2.81$ , P < 0.05; Fig. 7].

| 269 | Overall, gill <i>nka</i> $\alpha la$ mRNA levels were higher in parr [two-way ANOVA,                     |
|-----|----------------------------------------------------------------------------------------------------------|
| 270 | $F_{1,55} = 4.16$ , $P < 0.05$ ; Fig. 8(a)] but $\alpha lb$ mRNA levels were not significantly different |
| 271 | between phenotypes and remained relatively constant during September and December                        |
| 272 | [Fig. 8(b)]. Gill <i>nka</i> $\beta la$ showed an increase in October in both phenotypes (two-way        |
| 273 | ANOVA, $F_{1,55} = 13.66$ , $P < 0.001$ ), but it remained constant thereafter and no significant        |
| 274 | difference was seen between parr and smolt-like fish [Fig. 8(c)]. Gill nka $\beta lb$ in both            |
| 275 | phenotypes showed a gradual increase from September to December (two-way ANOVA,                          |
| 276 | $F_{3,55} = 6.74$ , $P < 0.001$ ) and did not differ between parr and smolt-like fish [Fig. 8(c)].       |
| 277 | When parr and smolt-like fish were transferred from freshwater to 70% SW,                                |
| 278 | there were overall effects of phenotype and time and their interaction on serum                          |
| 279 | osmolality (phenotype: two-way ANOVA, $F_{1,70} = 61.13$ , $P < 0.001$ ; time: two-way                   |
| 280 | ANOVA, $F_{4,70} = 38.47$ , $P < 0.001$ ; interaction: two-way ANOVA, $F_{1,70} = 10.11$ , $P$           |
| 281 | <0.001). The degree of increase in serum osmolality on day 1 after transfer was lower in                 |
| 282 | smolt-like fish than in parr [Fisher's PLSD ANOVA, $F_{9,70} = 26.74$ , $P < 0.001$ ; Fig. 9(a)].        |

| 283 | Serum osmolality in parr remained relatively high for 7 days. Serum osmolality in          |
|-----|--------------------------------------------------------------------------------------------|
| 284 | smolt-like fish increased over 7 days as compared to the level in initial freshwater       |
| 285 | controls. Gill NKA activity in smolt-like fish was higher than that in parr throughout the |
| 286 | experimental period [two-way ANOVA, $F_{1,70} = 68.30$ , $P < 0.001$ ; Fig. 9(b)].         |
| 287 |                                                                                            |

- 288
- 289 DISCUSSION
- *O. masou* in Miyazaki may have been prevented from spring migration by warm
  seawater temperature, but they still may have opportunities to migrate to the ocean
  during the autumn and/or winter. Such a migratory strategy may have lead to increased
  ability of Miyazaki *O. masou* to tolerate seawater in autumn. In order to test this
  hypothesis, the present study evaluated their smoltification status in the spring and
  autumn.
- 2003; Björnsson *et al.*, 2012), one of the characteristic changes during smoltification is 2008 an increase in gill NKA activity. Since the activity is generally correlated with

299whole-body hypo-osmoregulatory ability, it is often used as an index of smoltification. 300 Moreover, recent findings showed that one of NKA  $\alpha$ 1 isoforms,  $\alpha$ 1b, is responsible for 301 branchial NKA function in salmon in seawater and also increases during smoltification. 302 Other parameters commonly used as indices of smoltifiation are silvering of body color 303 and a reduction of condition factor. 304 The results of the present study suggest that O. masou in Miyazaki do not 305 increase hypo-osmoregulatory ability in their second spring, which contrast with O. 306 masou in Hokkaido which show clear evidence of smolt development in spring (Kubo, 307 1980). Gill NKA activity in Hokkaido population showed a clear peak in May, 308 corresponding to their active migration period. This increase in gill NKA was 309 accompanied with increases in *nka* alb as reported in a previous study (Nakajima et al., 310 2014). In addition, *nka*  $\beta la$  and  $\beta lb$  subunits, which were measured separately for the 311 first time, also peaked in May. Parallel increases in  $\alpha lb$  and  $\beta l$  subunits are in good 312agreement with the findings in S. salar (Nilsen et al., 2007). The present study suggests 313 that both NKA  $\beta$ 1 subunits play a similar role in enhancing the localization of NKA  $\alpha$ 1b 314 subunit to the cell membrane and thus promoting the development of

| 315 | hypo-osmoregulatory ability during smoltification. Although there was a peak in gill                                 |
|-----|----------------------------------------------------------------------------------------------------------------------|
| 316 | NKA activity in Miyazaki population in May, its level was as low as that of parr in                                  |
| 317 | Hokkaido and they had no increases in gill <i>nka</i> $\alpha lb$ , $\beta la$ and $\beta lb$ subunits. In addition, |
| 318 | their hypo-osmoregulatory ability was not high enough to restore serum osmolality                                    |
| 319 | down to the basal level 4 days after transfer to 70% SW (salinity of 23). Although a                                 |
| 320 | direct comparison cannot be made, smolts of Hokkaido population were capable of                                      |
| 321 | restoring increased serum sodium ion levels within 24 h after full-strength SW (Ban et                               |
| 322 | al., 1987). Based on these findings, they unlikely go through a smoltification process in                            |
| 323 | their second spring.                                                                                                 |
| 324 | Exact mechanisms for why O. masou in Miyazaki do not smoltify in the                                                 |
| 325 | spring are not known, but one reason may be due to a conflict between smolting and                                   |
| 326 | maturation. Initiation of maturation in freshwater is known to inhibit smolting (Thorpe,                             |
| 327 | 1986, 1994). High water temperature in Miyazaki accelerates growth, which in turn                                    |
| 328 | promotes maturation in freshwater and inhibits smoltification in the second spring.                                  |
| 329 | When body size was compared between Miyazaki and Hokkaiod populations, the                                           |
|     |                                                                                                                      |

| 331 | populations from March to May, some fish of both sexes had developing gonads (data                          |
|-----|-------------------------------------------------------------------------------------------------------------|
| 332 | not shown), suggesting sexual maturation had already begun in this group. In support of                     |
| 333 | this suggestion, Morita & Nagasawa (2010) revealed by a combination of field survey                         |
| 334 | and modeling that warmer water temperature increased freshwater residency of O.                             |
| 335 | masou populations in northern Japan through improving early growth conditions.                              |
| 336 | Next, the possibility that they smoltify in their first autumn was assessed.                                |
| 337 | When comparing parr and smolt-like fish, smolt-like fish had higher gill NKA activity                       |
| 338 | than parr in December. However, the higher gill NKA activity was not accompanied                            |
| 339 | with higher gill <i>nka</i> $\alpha lb$ or $\beta l$ subunits. These results suggest that the degree of the |
| 340 | acquisition of hypo-osmoregulatory ability in smolt-like fish in Miyazaki was not as                        |
| 341 | high as that of smolts in Hokkaido and that their preparatory changes for marine life                       |
| 342 | were not complete. This assumption was supported by the result of 70% SW transfer                           |
| 343 | experiment. Smolt-like fish had serum osmolality lower than that in parr throughout the                     |
| 344 | experimental period for 7 days. However, serum osmolality in smolt-like fish continued                      |
| 345 | to increase from 2 to 7 days after transfer to a diluted SW (70%).                                          |
|     |                                                                                                             |

It is of note that no/little increase in gill *nka*  $\alpha lb$  and  $\beta l$  subunits in smolt-like

| 347 | Miyazaki population may be characteristics of autumn smoltification. The patterns                     |
|-----|-------------------------------------------------------------------------------------------------------|
| 348 | observed in the present study were similar to those in O. masou ishikawae (Nakajima et                |
| 349 | al., 2014), where increased NKA activity was not accompanied with $nka \ alb$ change.                 |
| 350 | Thus, decreasing water temperature or/and photoperiod during the autumn might cause                   |
| 351 | such discordant profiles of NKA activity and $nka \ alb$ . Our unpublished data showed                |
| 352 | that gill <i>nka</i> $\alpha lb$ levels in smolt-like fish in the autumn increased following seawater |
| 353 | transfer (Uchida et al., unpublished data), suggesting that this phenotype does not                   |
| 354 | increase gill $\alpha lb$ mRNA levels until they are actually exposed to seawater.                    |
| 355 | Smolting in the autumn has been reported in Chinook salmon O. tshawytscha                             |
| 356 | (Walbaum 1792) (Ewing et al., 1979; Youngson et al., 1983; Healey, 1991; Beckman &                    |
| 357 | Dickhoff, 1998; Schroeder et al., 2016). Autumn smolts in this species had increased                  |
| 358 | gill NKA activity and down migrated the rivers and entered the ocean (Beckman and                     |
| 359 | Dickhoff, 1998; Schroeder et al., 2016). In the case of S. salar in sourthern England,                |
| 360 | about 25% of juveniles become autumn migrants but they were not sufficiently                          |
| 361 | physiologically adapted to permit permanent or early, entry into the marine environment               |
| 362 | (Riley et al., 2008). Profiles of smolt-related characters of O. masou in Miyazaki may                |

| 363 | be comparable to that of S. salar in sourthern England in terms of limited ability to   |
|-----|-----------------------------------------------------------------------------------------|
| 364 | hypo-osmoregulate. Thus, it is not known if smolt-like fish in Miyazaki actually down   |
| 365 | migrate the river and enter the ocean.                                                  |
| 366 | The present study was unable to examine an interaction between genetic and              |
| 367 | environmental factors since O. masou populations with different genetic backgrounds     |
| 368 | were reared at different environments (i.e. in Hokkaido and Miyazaki). O. masou in      |
| 369 | Miyazaki were reared at higher water temperatures with enough feed throughout the       |
| 370 | sampling period resulting in larger body size compared to the age-matched Hokkaido      |
| 371 | population. Thus, the life-history patterns of Miyazaki population described in the     |
| 372 | present study might be simply environmental responses without genetic difference. It is |
| 373 | possible that autumn smoltification might be driven by accelerated growth and           |
| 374 | consequently spring smoltification might be blocked by the initiation of maturation in  |
| 375 | freshwater. A common garden experiment using both O. masou populations from             |
| 376 | Hokkaido and Miyazaki should disentangle environmental effect from genetic              |
| 377 | influence.                                                                              |
|     |                                                                                         |

The results of the present study are relevant to aquaculture in Miyazaki. There

| 379 | is a growing interest in sea cage aquaculture for <i>O. masou</i> in this region as a local brand. |
|-----|----------------------------------------------------------------------------------------------------|
| 380 | However, a challenge is that fish farmers need to transfer fish to seawater in the winter          |
| 381 | due to lethally high warm seawater temperatures during the summer. A direct transfer of            |
| 382 | under-yearling fish in the winter resulted in a high rate of mortality (approximately              |
| 383 | 70%) (Uchida et al., unpublished data). Thus, unraveling the degree of their                       |
| 384 | smoltification and adopting rearing strategy to stimulate the development of                       |
| 385 | hypo-osmoregulatory ability will be important for for the success of sea cage                      |
| 386 | aquaculture in this region. In O. tshawytscha, accelerated growth through the                      |
| 387 | summer-fall stimulated the development of smolt characters (Beckman et al., 2003).                 |
| 388 | In summary, the present study suggests that if O. masou in Miyazaki go                             |
| 389 | through the smoltification process, it is the first autumn instead of the second spring.           |
| 390 | However, it is presumably an incomplete process compared to the robust development                 |
| 391 | of salinity tolerance that occurs in anadromous <i>O. masou.</i> The life-history patterns of      |
| 392 | O. masou in Miyazaki provide a unique opportunity to understand how life-history                   |
| 393 | pathways are regulated and evolved.                                                                |

| 395 | The authors thank two anonymous referees for improving the manuscript. This work  |
|-----|-----------------------------------------------------------------------------------|
| 396 | was supported by JSPS Bilateral Joint Research Projects/Seminars and JSPS KAKENHI |
| 397 | Grant Number JP16H04966. The current address of Toshinao Ineno is at Aquaculture  |
| 398 | Research Institute, Kindai University, 1330 Takada, Shingu, Wakayama 647-1101,    |
| 399 | Japan.                                                                            |
| 400 |                                                                                   |
| 401 |                                                                                   |
| 402 | References                                                                        |
| 403 | Ban, M., Kasahara, N. & Yamauchi, K. (1987) Physiological changes in the          |
| 404 | hatchery-reared yearling masu salmon (Oncorhynchus masou) during                  |
| 405 | smoltification. Scientific Reports of the Hokkaido Fish Hatchery 42, 27-35. (In   |
| 406 | Japanese with English abstract)                                                   |
| 407 | Beckman, R.R. & Dickhoff, W.W. (1998) Plasticity of smolting in spring chinook    |
| 408 | salmon: relation to growth and insulin-like growth factor-I. Journal of Fish      |
| 409 | Biology <b>53</b> , 808-826. doi: 10.1111/j.1095-8649.1998.tb01834.x              |
| 410 | Beckman, B.R., Larsen, D.A. & Dickhoff, W.W. (2003). Life history plasticity in   |

| 411 | chinook salmon: relation of size and growth rate to autumn smolting.                           |
|-----|------------------------------------------------------------------------------------------------|
| 412 | Aquaculture 222, 149-165. doi: 10.1016/S0044-8486(03)00108-X                                   |
| 413 | Björnsson, B.T., Einarsdottir, I.E. & Power, D. (2012) Is salmon smoltification an             |
| 414 | example of vertebrate metamorphosis? Lessons learnt from work on flatfish                      |
| 415 | larval development. Aquaculture <b>362-363</b> , 264-272. doi:                                 |
| 416 | 10.1016/j.aquaculture.2011.03.002                                                              |
| 417 | Björnsson, B.T., Stefansson, S.O. & McCormick. S.D. (2011). Environmental                      |
| 418 | endocrinology of salmon smoltification. General and Compaprative                               |
| 419 | Endocrinology <b>170,</b> 290-298.                                                             |
| 420 | Blanco, G & Mercer, R.W. (1998). Isozymes of the Na-K-ATPase: heterogeneity in                 |
| 421 | structure, diversity in function. American Journal of Physiology 275, F633-650.                |
| 422 | Bystriansky, J.S., Richards, J.G., Schulte, P.M. & Ballantyne, J.S. (2006). Reciprocal         |
| 423 | expression of gill Na+/K+-ATPase $\alpha$ -subunit isoforms $\alpha$ 1a and $\alpha$ 1b during |
| 424 | seawater acclimation of three salmonid fishes that vary in their salinity                      |
| 425 | tolerance. Journal of Experimental Biology 209, 1848-1858.                                     |
| 426 | Dalziel, A.C., Bittman, J., Mandic, M., Ou, M. & Schulte, P.M. (2014). Origins and             |

| 427 | functional diversification of salinity-responsive Na <sup>+</sup> , $K^+$ ATPase $\alpha 1$ paralogs in |
|-----|---------------------------------------------------------------------------------------------------------|
| 428 | salmonids. <i>Molecular Ecology</i> <b>23</b> , 3483-3503. doi: 10.1111/mec.12828                       |
| 429 | Dodson, J.J., Aubin-Horth, N., Thériault, V. & Páez, D.J. (2013). The evolutionary                      |
| 430 | ecology of alternative migratory tactics in salmonid fishes. Biological Reviews                         |
| 431 | 1-24. doi: 10.1111/brv.12019                                                                            |
| 432 | Evans, D.H. (2008). Teleost fish osmoregulation: what have we learned since August                      |
| 433 | Krogh, Homer Smith, and Ancel Keys. American Journal of Physiology                                      |
| 434 | Regulatory, Integrative and Comparative Physiology 295, R704-713.                                       |
| 435 | Ewing, R.D., Johnson, S.L., Pribble, H.J. & Lichatowich, J.A. (1979). Temperature and                   |
| 436 | photoperiod effects on gill (Na+ K+)-ATPase activity in chinook salmon                                  |
| 437 | (Oncorhynchus tshawytscha). Journal of Fisheries Research Boad of Canada                                |
| 438 | <b>36,</b> 1347-1353.                                                                                   |
| 439 | Geering, K. (2006). FXYD proteins: new regulators of Na-K-ATPase. American                              |
| 440 | Journal of Physiology Renal Physiology 290, F241-F250. doi:                                             |
| 441 | 10.1152/ajprenal.00125.2005                                                                             |
| 442 | Geering, K. (2008). Functional roles of Na,K-ATPase subunits. Current Opinion in                        |

| 443 | Nephrology and Hypertension 17, 526-532.                                                |
|-----|-----------------------------------------------------------------------------------------|
| 444 | Gharbi, K., Semple, J.W., Ferguson, M.M., Schulte, P.M. & Danzmann, R.G. (2004).        |
| 445 | Linkage arrangement of Na,K-ATPase genes in tetraploid-derived genome of                |
| 446 | the rainbow trout (Oncorhynchus mykiss). International Society for Animal               |
| 447 | Genetics <b>35</b> , 321-325.                                                           |
| 448 | Gharbi, K., Ferguson, M.M. & Danzmann, R.G. (2005). Characterization of Na,             |
| 449 | K-ATPase genes in Atlantic salmon(Salmo salar) and comparative genomic                  |
| 450 | organization with rainbow trout (Oncorhynchus mykiss). Molecular Genetics               |
| 451 | and Genomics 273, 474-483.                                                              |
| 452 | Healey, M.C. (1991). Life history of Chinook salmon (Oncorhynchus tshawytscha). In:     |
| 453 | Pacific Salmon Life Histories (Groot, C. & Margolis, L., eds), pp. 313-393.             |
| 454 | Vancouver, BC: University of British Columbia Press.                                    |
| 455 | Hiroi, J. & McCormick, S.D. (2012). New insights into gill ionocyte and ion transporter |
| 456 | function in euryhaline and diadromous fish. Respiratory Physiology and                  |
| 457 | Neurobiology <b>184,</b> 257-268.                                                       |
| 458 | Hoar, W.S. (1988). The physiology of smolting salmonids. In: Fish Physiology 11B        |

| 459 | (Hoar, W.S. & Randall, D., eds), pp. 274-343. Orland, FL: Academic Press.                             |
|-----|-------------------------------------------------------------------------------------------------------|
| 460 | Hwang, P.P., Lee, T.H. & Lin, L.Y. (2011). Ion regulation in fish gills: recent progress in           |
| 461 | the cellular and molecular mechanisms. American Journal of Physiolgy                                  |
| 462 | Regulatory, Integrative and Comparative Physiology <b>301</b> , R28-47.                               |
| 463 | Kato, F. (1991). Life history of masu and amago salmon (Oncorhynchus masou and                        |
| 464 | Oncorhynchus rhodurus). In: Pacific Salmon Life Histories (Groot, C. &                                |
| 465 | Margolis, L., eds), pp. 449-520. Vancouver, BC: University of British Columbia                        |
| 466 | Press.                                                                                                |
| 467 | Kimura, S., 1989. The yamame, land-locked masu salmon of Kyushu island, Japan.                        |
| 468 | Physiology and Ecology Japan 1, 77-92.                                                                |
| 469 | Kubo, T. (1980) Studies on the life history of the "masu" salmon. Scientific Reports of               |
| 470 | the Hokkaido Salmon Hatchery 34, 1-95. (In Japanese with English abstract)                            |
| 471 | Madsen, S.S., Kiilerich, P. & Tipsmark CK. (2009). Multiplicity of expression of                      |
| 472 | $Na^+, K^+$ -ATPase $\alpha$ -subunit isoforms in the gill of Atlantic salmon ( <i>Salmo salar</i> ): |
| 473 | cellular localisation and absolute quantification in response to salinity change.                     |
| 474 | Journal of Experimental Biology 212, 78-88.                                                           |

| 476 | Malyutina, A.M., Savvaitova, K.A., Kuzishchin, K.V., Gruzdeva, M.A. & Pavlov, D.S.                      |
|-----|---------------------------------------------------------------------------------------------------------|
| 477 | (2009) Population structure of the masu salmon Oncorhynchus masou from the                              |
| 478 | Kol River (western Kamchatka) and geographic variation in the species area.                             |
| 479 | Journal of Ichthyology 49, 390-402. doi: 10.1134/S0032945209050051                                      |
| 480 | McCormick, S.D. (2009) Evolution of the hormonal control of animal performance:                         |
| 481 | Insights from the seaward migration of salmon. Integrative and Comparative                              |
| 482 | <i>Biology</i> <b>49,</b> 408-422.                                                                      |
| 483 | McCormick, S.D. (2013). Smolt physiology and endocrinology. In: Euryhaline Fishes                       |
| 484 | (McCormick, S.D., Farrell, A.P. & Brauner, C.J., eds), pp. 199-251. Oxford,                             |
| 485 | UK: Academic Press.                                                                                     |
| 486 | McCormick, S.D., Regish, A.M. & Christensen, A.K. (2009). Distinct freshwater and                       |
| 487 | seawater isoforms of Na <sup>+</sup> /K <sup>+</sup> -ATPase in gill chloride cells of Atlantic salmon. |
| 488 | Journal of Experimental Biology 212, 3994-4001.                                                         |
| 489 | McCormick, S.D., Regish, A.M., Christensen, A.K. & Björnsson BT. (2013).                                |
| 490 | Differential regulation of sodium-potassium pump isoforms during smolt                                  |

492*Experimental Biology* **216,** 1142-1151. 493 Mobasheri, A., Avila. J., Cozar-Castellano, I., Brownleader, M.D., Trevan, M., Francis, 494 M.J.O., Lamb, J.F. & Martin-Vasallo, P. (2000). Na<sup>+</sup>, K<sup>+</sup>-ATPase isozyme diversity; Comparative biochemistry and physiological implications of novel 495496 functional interactions. Bioscience Report 20, 51-91. 497 Morita, K. & Nagasawa, T. (2010). Latitudinal variation in the growth and maturation of 498 masu salmon (Oncorhynchus masou) parr. Canadian Journal of Fisheries and 499 Aquatic Sciences 67, 955-965. doi: 10.1139/F10-028 500Morita, K., Tamate, T., Kuroki, M. & Nagasawa, T. (2014) Temperature-dependent 501variation in alternative migratory tactics and its implications for fitness and 502population dynamics in a salmonid fish. Journal of Animal Ecology 83, 5031268-1278. doi: 10.1111/1365-2656.12240 504Nakajima, T., Shimura, H., Yamazaki, M., Fujioka, Y., Ura, Kazuhiro., Hara, A. & 505Shimizu, M. (2014). Lack of hormonal stimulation prevents the landlocked 506 Biwa salmon (Oncorhynchus masou subspecies) from adapting to seawater.

development and seawater exposure of Atlantic salmon. Journal of

491

| 507 | American Journal of Physiology Regulatory, Integrative and Comparative                                                                      |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------|
| 508 | <i>Physiology</i> <b>307,</b> 414-425.                                                                                                      |
| 509 | Nilsen, T.O., Ebbesson, L.O.E., Madsen, S.S., McCormick, S.D., Andersson, E.,                                                               |
| 510 | Björnsson. B.T., Prunet, P. & Stefansson, S.O. (2007). Differential expression of                                                           |
| 511 | gill Na <sup>+</sup> ,K <sup>+</sup> -ATPase $\alpha$ - and $\beta$ -subunits, Na <sup>+</sup> ,K <sup>+</sup> ,2Cl- cotransporter and CFTR |
| 512 | anion channel in juvenile anadromous and landlocked Atlantic salmon Salmo                                                                   |
| 513 | salar. Journal of Experimental Biology <b>210,</b> 2885-2896.                                                                               |
| 514 | Nilsen, T.O., Ebbesson, L.O.E. & Stefansson, S.O. (2003). Smolting in anadromous and                                                        |
| 515 | landlocked strains of Atlantic salmon (Salmo salar). Aquaculture 222, 71-82.                                                                |
| 516 | Quabius, E.S., Balm, P.H.M. & Bonga S.E.W. (1997). Interrenal stress responsiveness                                                         |
| 517 | of tilapia (Oreochromis mossambicus) is impaired by dietary exposure to PCB                                                                 |
| 518 | 126. General and Comparative Endocrinolgy 108, 472-482.                                                                                     |
| 519 | Rajarao, S.J.R., Canfield, V.A., Mohideen, M.A.P.K., Yan, Y.L., Postlethwait, J.H.,                                                         |
| 520 | Cheng, K.C. & Levenson, R. (2001). The repertoire of Na,K-ATPase $\alpha$ and $\beta$                                                       |
| 521 | subunit genes expressed in the zebrafish, Danio rerio. Genome Research 11,                                                                  |
| 522 | 1211-1220.                                                                                                                                  |

| 523 | Rajasekaran, S.A., Gopal, J., Willis, D., Espineda, C., Twiss, J.L. & Rajasekaran, A.K.                         |
|-----|-----------------------------------------------------------------------------------------------------------------|
| 524 | (2004). Na,K-ATPase b1-subunit increases the translation efficiency of the                                      |
| 525 | a1-subunit in MSV-MDCK cells. Molecular Biology of the Cell 15, 3224-3232.                                      |
| 526 | doi: 10.1091/mbc.E04-03-0222                                                                                    |
| 527 | Richards, J.G., Semple, J.W., Bystriansky, J.S. & Schulte, P.M. (2003). Na <sup>+</sup> /K <sup>+</sup> -ATPase |
| 528 | alpha-isoform switching in gills of rainbow trout (Oncorhynchus mykiss) during                                  |
| 529 | salinity transfer. Journal of Experimental Biology 206, 4475-4486.                                              |
| 530 | Riley, W.D., Ibbotson, A.T., Lower, N., Cook, A.C., Moor, A., Mizuno, S., Pinder, A.C.,                         |
| 531 | Beaumont, W.R.C. & Privitera, L. (2008). Physiological seawater adaptation in                                   |
| 532 | juvenile Atlantic salmon (Salmo salar) autumn migrants. Freshwater Biology 53,                                  |
| 533 | 745-755. doi: 10.1111/j.1365-2427.2007.01933.x                                                                  |
| 534 | Sano, S. & Ozaki, Y. (1969). An ecological study of the masou salmon, (Oncorhynchus                             |
| 535 | masou (Brevoort)). Artificial rearing and marking of masou smolt. Scientific                                    |
| 536 | Reports of the Hokkaido Salmon Hatchery 23, 1-8. (In Japanese with English                                      |
| 537 | abstract)                                                                                                       |

538 Schroeder, R.K., Whitman, L.D., Cannon, B. & Olmsted, P. (2016) Juvenile life-history

| 539 | diversity and poulation stability of spring Chinook salmon in the Willamette                                                  |
|-----|-------------------------------------------------------------------------------------------------------------------------------|
| 540 | River basin, Oregon. Canadian Journal of Fisheries and Aquatic Sciences 73,                                                   |
| 541 | 921-934. dx.doi.org/10.1139/cjfas-2015-0314                                                                                   |
| 542 | Seidelin, M., Madsen, S.S., Cutler, C.P. & Cramb, G. (2001) Expression of gill                                                |
| 543 | vacuolar-type H <sup>+</sup> -ATPase B subunit, and Na <sup>+</sup> , K <sup>+</sup> -ATPase $\alpha_1$ and $\beta_1$ subunit |
| 544 | messenger RNAs in smolting Salmo salar. Zoological Science 18, 315-324.                                                       |
| 545 | Serluca, F.C., Sidow, A., Mably, J.D. & Fishman, MC. (2001). Partitioning of tissue                                           |
| 546 | expression accompanies multiple duplications of the Na+/K+ ATPase $\alpha$ subunit                                            |
| 547 | gene. Genome Research 11, 1625-1631.                                                                                          |
| 548 | Stefansson, S.O., McGinnity, P., Björnsson, B.T., Schreck, C.B. & McCormick, S.D.                                             |
| 549 | (2003) The importance of smolt development to salmon conservation, culture,                                                   |
| 550 | and management: perspectives from the 6th International Workshop on                                                           |
| 551 | Salmonid Smoltification. Aquaculture 222, 1-14. doi:                                                                          |
| 552 | 10.1016/S0044-8486(03)00098-X                                                                                                 |
| 553 | Stefansson, S.O., Björnsson, B.T., Ebbesson, L.O.E. & McCormick, S.D. (2008).                                                 |
| 554 | Smoltification. In: Fish Larval Physiology (Finn, R.N. & Kapoor, B.G., eds), pp.                                              |

| 555 639-681. Enfield, NH: Science P | ublishers. |
|-------------------------------------|------------|
|-------------------------------------|------------|

- 556 Takei, Y., Hiroi, J., Takahashi, H. & Sakamoto, T., 2014. Diverse mechanisms for body
- 557 fluid regulation in telesost fishes. *American Journal of Physiology Regulatory*,
- 558 Integrative and Comparative Physiology **307**, 778-792.
- 559 Thorpe, J.E. (1986) Age at first maturity in Atlantic salmon (Salmo salar): freshwater
- 560 period influences and conflicts with smolting. *Canadian Special Publication of*
- 561 *Fisheries and Aquatic Sciences* **89**, 7-14.
- Thorpe, J.E. (1994). An alternative view of smolting in salmonids. Aquaculture 121,
  105-113.
- 564 Wedemeyer, G.A., Saunders, R.L. & Clarke, W.C. (1980). Environmental Factors
- affecting smoltification and early marine survival of anadromous salmonids. *Marine Fisheries Review* 42, 1-14.
- 567 Youngson, A.F., Buck, R.J.G., Simpson, T.H. & Hay, D.W. (1983). The autumn and
- 568 spring emigrations of juvenile Atlantic salmon, Salmo salar L., from the
- 569 Girnock Burn, Aberdeenshire, Scotlant: environmental release of migration.
- 570 *Journal of Fish Biology* **23**, 625-639.

| Target  | Direction | Primer sequence (5'-3')   | Product size (bp) |
|---------|-----------|---------------------------|-------------------|
| nka ala | Forward   | CTTCGCTGCTGTTGTGATTGC     | 134               |
|         | Reverse   | GAGCCAGGGCGGATTCTGA       |                   |
| nka a1b | Forward   | GGTACATTTCAACCAACAACATT   | 77                |
|         | Reverse   | CCATCACAGTGTTCATTGGAT     |                   |
| nka β1a | Forward   | CTGGAGATGTACGATGAGGAGAGG  | 86                |
|         | Reverse   | CCACGGTCCCTGTACGATT       |                   |
| nka β1b | Forward   | CTCCCCAACCATTTCTCAAAAGTAA | 140               |
|         | Reverse   | GATGAAGTGTCGTCCCGTATG     |                   |
| ef-1α   | Forward   | GAATCGGCCATGCCCGGTGAC     | 142               |
|         | Reverse   | GGATGATGACCTGAGCGGTG      |                   |

Table I. Primer sequences used for real-time PCR

## **Figure captions**

| 2  | Fig. 1. Mean fork length ( $L_F$ ; a,b), body mass ( $M_w$ ; c,d) and condition factor ( $K$ ; e,f) of |
|----|--------------------------------------------------------------------------------------------------------|
| 3  | yearling Oncorhynchus masou in Hokkaido (a,c,e) and Miyazaki (b,d,f). O. masou in                      |
| 4  | Hokkaido were sampled from February to June in 2011 at Kumaishi (circle) and those                     |
| 5  | in Miyazaki were sampled from February to April in 2015 at Gokase (square) and from                    |
| 6  | April to June in 2014 at Kobayashi (triangle). Values are expressed as mean $\pm$ S.E.                 |
| 7  | (n=7-8). Symbols sharing the same letters within a group are not significantly different               |
| 8  | from each other (one-way ANOVA followed by Fisher's PLSD test, $P < 0.05$ ). Note that                 |
| 9  | the results of statistical analyses of the data on O. masou of Miyazaki from different                 |
| 10 | locations/years are expressed in lower and upper letters.                                              |
| 11 |                                                                                                        |
| 12 | Fig. 2. Changes in gill NKA activity in yearling Oncorhynchus masou in Hokkaido (a)                    |
| 13 | and Miyazaki (b) during the spring. O. masou in Hokkaido were sampled from February                    |
| 14 | to June in 2011 at Kumaishi (circle) and those in Miyazaki were sampled from February                  |
| 15 | to April in 2015 at Gokase (square) and from April to June in 2014 at Kobayashi                        |
| 16 | (triangle). Values are expressed as mean $\pm$ S.E. (n=7-8). Symbols sharing the same                  |

17letters within a group are not significantly different from each other (one-way ANOVA 18 followed by Fisher's PLSD test, P < 0.05). Note that the results of statistical analyses of 19the data on O. masou of Miyazaki from different locations/years are expressed in lower 20and upper letters.

21

22Fig. 3. Changes in gill *nka*  $\alpha la$  (a,b) and  $\alpha lb$  (c,d) mRNA levels in yearling 23Oncorhynchus masou in Hokkaido (a,c) and Miyazaki (b,d) during the spring. O. masou 24in Hokkaido were sampled from February to June in 2011 at Kumaishi (circle) and 25those in Miyazaki were sampled from February to April in 2015 at Gokase (square) and 26from April to June in 2014 at Kobayashi (triangle). Values are expressed as mean  $\pm$  S.E. 27(n=7-8). Symbols sharing the same letters within a group are not significantly different 28from each other (one-way ANOVA followed by Fisher's PLSD test, P < 0.05). Note that the results of statistical analyses of the data on O. masou of Miyazaki from different 2930 locations/years are expressed in lower and upper letters.

31

32Fig. 4. Changes in gill *nka*  $\beta la$  (a,b) and  $\beta lb$  (c,d) mRNA levels in yearling

 $\mathbf{2}$ 

| 33 | Oncorhynchus masou in Hokkaido (a,c) and Miyazaki (b,d) during the spring. O. masou         |
|----|---------------------------------------------------------------------------------------------|
| 34 | in Hokkaido were sampled from February to June in 2011 at Kumaishi (circle) and             |
| 35 | those in Miyazaki were sampled from February to April in 2015 at Gokase (square) and        |
| 36 | from April to June in 2014 at Kobayashi (triangle). Values are expressed as mean $\pm$ S.E. |
| 37 | (n=7-8). Symbols sharing the same letters are not significantly different from each other   |
| 38 | (one-way ANOVA followed by Fisher's PLSD test, $P < 0.05$ ).                                |
| 39 |                                                                                             |
| 40 | Fig. 5. Changes in serum osmolality (a) and gill NKA activity (b) in yearling               |
| 41 | Oncorhynchus masou in Miyazaki after transfer to 70% seawater (70% SW; salinity of          |
| 42 | 23). Values are expressed as mean $\pm$ S.E. (n=5-8). Symbols sharing the same letters are  |
| 43 | not significantly different from each other (one-way ANOVA followed by Fisher's             |
| 44 | PLSD test, <i>P</i> < 0.05).                                                                |
|    |                                                                                             |

45

Fig. 6. Changes in fork length ( $L_F$ ; a), body mass ( $M_w$ ; b) and condition factor (K; c) in 4647under-yearling Oncorhynchus masou in Miyazaki during the autumn. Fish were categorized as parr (open circule) or smolt-like fish (closed circule) based on the body 48

| 49        | color. Values are expressed as mean $\pm$ S.E. (n=8). Overall and interactive effects were                             |
|-----------|------------------------------------------------------------------------------------------------------------------------|
| 50        | indicated by asterisks. Symbols sharing the same letters are not significantly different                               |
| 51        | from each other (one-way ANOVA followed by Fisher's PLSD test, $P < 0.05$ ).                                           |
| 52        |                                                                                                                        |
| 53        | Fig. 7. Changes in gill NKA activity in under-yearling Oncorhynchus masou in                                           |
| <b>54</b> | Miyazaki during autumn. Fish were categorized as parr (open circule) or smolt-like                                     |
| 55        | (closed circule) based on the body color. Values are expressed as mean $\pm$ S.E. (n=8). An                            |
| 56        | interactive effects were indicated by an asterisk. (two-way ANOVA, $P < 0.05$ ).                                       |
| 57        |                                                                                                                        |
| 58        | Fig. 8. Changes in gill <i>nka</i> $\alpha la$ , $\alpha lb$ , $\beta la$ and $\beta lb$ mRNA levels in under-yearling |
| 59        | Oncorhynchus masou in Miyazaki during the autumn. Fish were categorized as parr                                        |
| 60        | (open circule) or smolt-like (closed circule) based on the body color. Values are                                      |
| 61        | expressed as mean $\pm$ S.E. (n=8). Symbols sharing the same letters are not significantly                             |
| 62        | different from each other (one-way ANOVA followed by Fisher's PLSD test, $P < 0.05$ ).                                 |
| 63        |                                                                                                                        |

64 Fig. 9. Changes in serum osmolality (a) and gill NKA activity (b) in under-yearling

65 *Oncorhynchus masou* in Miyazaki after transfer to 70% seawater (70% SW; salinity of 66 23). Fish were categorized as parr (open circle) or smolt-like (closed circule) based on 67 the body color. Values are expressed as mean  $\pm$  S.E. (n=5-8). Symbols sharing the same 68 letters are not significantly different from each other (one-way ANOVA followed by 69 Fisher's PLSD test, *P* < 0.05).

















