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Lattice Boltzmann Method (LBM), newly developing technique of computational fluid dynamics, is 
coupled with solute and energy conservation equations to develop a macrosegregation simulation model 
(LBM-coupled model) with high computational efficiency. LBM does not require time-consuming calcula-
tions for correction of velocity and pressure of fluid in contrast to methods directly solving Navier-Stokes 
(NS) equation and, therefore, LBM is computationally efficient. In this study, the accuracy of the LBM-
coupled model is investigated by calculating the steady state flows and by comparing the results with 
those of analytical solutions and a conventional model based on the NS equation. The results between 
them are almost identical with each other and it indicates that the accuracy of the LBM-coupled model is 
sufficiently high. Moreover, a macrosegregation simulation is carried out for a simple case where the 
macrosegregation emerges only by natural convection, by means of the LBM-coupled and conventional 
models. The LBM-coupled model yields almost the same result with the one of NS-based model. Impor-
tantly, however, the simulation of LBM-coupled model is about five times faster than the one of NS-based 
model.

KEY WORDS: macrosegregation; simulation; lattice Boltzmann method; casting; solidification.

1. Introduction

Prediction and elimination of macrosegregation have 
been important issues in continuous casting and ingot cast-
ing processes.1–4) Macrosegregation is non-uniform distribu-
tion of alloying elements over spatial scales ranging to ingot 
scales. It is caused by long-range advections of alloying 
elements due to flows of segregated liquid and motion of 
solid. It is not straightforward to understand and control 
macrosegregation behavior in detail because several differ-
ent mechanisms are involved in occurrence of the advection 
of alloying elements such as thermosolutal convection, a 
flow due to solidification shrinkage, forced flows due to 
pouring, rotation, bending of cast and so on. Computational 
approaches have played an important role in this field as 
well as experimental and theoretical approaches.1–4)

Several models have been developed for numerical 
simulations of formation processes of macrosegregation, 
for instance, so-called single domain models based on a 
mixture theory5) or volume averaging,6–8) two-phase model 
which accounts for relative movement of solid and liquid, 
and multi-phase models9–11) where mesoscopic details such 
as the interdendritic liquid, the columnar and equiaxed 
dendrites are separately modelled. The simulation models 
have been gradually sophisticated and have been widely 

applied to a variety of complicated and realistic processes. 
However, there is a longstanding problem in practical use of 
these models, i.e., high computational cost.4) It restricts the 
computational system to a small size and/or it forces one to 
use coarse mesh size, often hampering accurate description 
of macrosegregation behavior.4) Hence, it is important to 
develop a simulation model with high computational effi-
ciency. The simulation models for macrosegregation consist 
of a set of momentum, mass, energy and solute conservation 
equations2) and the momentum conservation is described by 
the Navier-Stokes (hereafter abbreviated as NS) equation 
for fluid flows. Although several numerical methods were 
developed for solving the NS equation such as MAC12) 
and SIMPLE methods,13) a time-consuming calculation is 
required for correction of the velocity and pressure in these 
methods. The computational burden for solving NS equation 
is generally high and it occupies a large part of the compu-
tational cost of macrosegregation simulations. Hence, a key 
to acceleration of the macrosegregation simulations lies in 
the calculation of fluid flow.

Lattice Boltzmann Method (LBM) has been attracting a 
great deal of attention as a promising method for efficiently 
computing the fluid dynamics.14–20) It is a newly developing 
technique of computational fluid dynamics. LBM describes 
the time evolution of particle distribution function, from 
which one can calculate the macroscopic quantities such 
as the density, velocity and pressure of fluid. Importantly, 
an asymptotic analysis called Chapman-Enskog analysis 
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shows that LBM recovers the NS equation at macroscopic 
scale by appropriately modeling the equilibrium distribu-
tion function. One of the advantages of LBM is that it does 
not require the time-consuming calculation for correction 
of velocity and pressure and, therefore, LBM is in general 
computationally more efficient than the methods directly 
solving the NS equation. In addition, LBM is suitable for 
parallel computing, which is a notable advantage in the light 
of recent rapid development of parallel computing tech-
nique. LBM has been increasingly utilized for simulations 
in a lot of important systems such as hydrodynamic systems, 
magnetohydrodynamic systems and also multiphase and 
multicomponent fluids.15,16,18) Furthermore, it was recently 
coupled with a phase-field method to simulate solidification 
microstructures under fluid flows.21)

The main objective of this study is to develop a mac-
rosegregation model coupled with LBM with a view to 
accelerating the macrosegregation simulation. In this study, 
the LBM-coupled model is constructed by combining LBM 
for fluid flow with energy and solute conservation equa-
tions. We investigate the accuracy of the LBM-coupled 
model by comparing the results of the steady state flows 
with the results of analytical solutions and a conventional 
model based on the NS equation. Moreover, we carry out 
the macrosegregation simulation for a simple case, where 
the macrosegregation emerges only by natural convection, 
by means of the LBM-coupled and conventional models to 
compare their computational speeds. This paper is organized 
as follows. The conventional macrosegregation model based 
on the NS equation is first explained in the next section. 
LBM and the LBM-coupled model are described in section 
3, followed by the results and discussion in section 4. The 
conclusions are given in the last section.

2. Conventional Simulation Model Based on the 
Navier-Stokes Equation

The focus of this study is acceleration of the macrose-
gregation simulation. It is tackled by coupling LBM with 
a solidification model, more precisely, energy and solute 
conservation equations. The present modeling rests on a 
solidification model in a NS-based macrosegregation model 
developed by Sawada et al.22,23) which was chosen in the 
light of usability and ease of numerical implementation 
in this study. This model is hereafter called the NS-based 
model and it is briefly explained below.

In the NS-based model, the incompressible fluid flow 
is calculated by the NS equation within the Boussinesq 
approximation with addition of the Darcy’s flow term, 
which is given by,

 ∂
∂
+ ⋅∇ = −

∇
+ ∇ − +
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u u u u g
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ρ δρ
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2 ....... (1)

where u is the velocity vector of fluid, p is the pressure, ρ is 
the density at a reference state, ν is the kinematic viscosity, 
K is the permeability, δρ represents the density difference 
due to the changes of temperature and concentration and g 
is the gravitational acceleration. u satisfies the following 
continuity equation,

 ∇⋅ =u 0  ................................... (2)

where the solidification shrinkage is assumed negligible. 
Equations (1) and (2) are coupled with the energy conser-
vation and solute conservation equations that are given by,

 ∂
∂

+ ⋅∇ = ∇ −
∂
∂

T

t
T a T

H

C

f

t
T

p

su 2 ∆  ................. (3)

 ∂
∂

+ ⋅∇ =
∂
∂

−( )
−

c

t
c

f

t

k c

f
l

l
s l

s

u
1

1
 .................... (4)

where T is the temperature, aT is the thermal diffusivity, Cp 
is the specific heat capacity, ΔH is the latent heat, fs is the 
solid fraction, cl is the solute concentration in liquid and k is 
the equilibrium partition coefficient. In the solute conserva-
tion Eq. (4), the diffusion term is omitted and the reaction 
term, i.e., the microsegregation behavior on the right-hand 
side is described by Scheil model.

Several numerical algorithms can be employed for solv-
ing this model especially Eqs. (1) and (2). For instance, the 
simulation of channel segregation in a Sn–Bi alloy23) was 
carried out based on the SOLA (HSMAC) method with a 
semi-implicit algorithm developed for stabilization of cal-
culation of Darcy’ term.22) Also, the SIMPLE method was 
employed in the simulation of center-line segregation in 
steel.24) Note that the time-consuming calculation for correc-
tion of u and p is necessary in these methods. The accelera-
tion of the simulation requires improvement in calculation 
efficiency for u, which is tackled by coupling LBM with this 
model as detailed in the next section.

In this study, the numerical simulation of above-men-
tioned NS-based model was carried out to investigate the 
accuracy of the LBM-coupled model. All calculations in this 
study were conducted in two-dimensional systems. Accord-
ing to the previous work,22) the fluid flow was calculated 
based on the SOLA method with the semi-implicit algorithm 
which improves the numerical stability associated with the 
Darcy’s term. Equations (3) and (4) were discretized based 
on second-order finite difference formulas with a square grid 
spacing of δx. The time evolutions of T and cl were solved 
using a simple first-order Euler scheme. The temperature 
recovery method was employed for Eq. (3). The time change 
of fs was calculated based on an approach described in Ref. 
25) which employs an approximation that the temperature 
in the mushy zone is close to the liquidus temperature for a 
given concentration. As for the discretization of the advec-
tion terms, we examined the accuracy of the second-order 
and the third-order upwind schemes and found almost no 
significant difference between these schemes in the pres-
ent cases which will be discussed in section 4. Hence, the 
results based on the second-order upwind scheme will be 
shown in this paper.

Note that the accuracy and the computational burden are 
determined by the criterion of convergence in the iterative 
calculation for correction of velocity and pressure in the 
SOLA method. The criterion is given by a parameter α as 
α<∇·u and it was set to α =  1.0 ×  10 −6 in all the simula-
tions of the NS-based model.

3. Lattice Boltzmann Method (LBM)-coupled Model

LBM can be viewed as a discrete version of the 
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Boltzmann equation. It is a direct extension of the lattice 
gas cellular automaton (Boolean type model), a special kind 
of cellular automaton for fluid simulation.15) LBM is a rela-
tively new technique of computational fluid dynamics and 
it has attracted considerable attention in a variety of fields. 
Moreover, LBM has been extended to describe a reaction 
diffusion equation with advection term such as Eqs. (3) and 
(4).26) Therefore, the NS-based model explained in section 2 
can be fully recast into the LBM framework. However, our 
particular attention in this study is directed at the accelera-
tion of the computation of fluid flow. Therefore, LBM for 
incompressible fluid flow is coupled with the solidification 
model described by Eqs. (3) and (4) in this study.

In LBM, the fluid consists of fictive and microscopic par-
ticles moving at specified (discrete) velocities in specified 
(discrete) directions on a lattice and their collective behavior 
determines the macroscopic quantities of fluids such as the 
density, velocity and pressure. More specifically, a particle 
distribution function for the discrete velocity vector is cal-
culated by the following lattice Boltzmann equation,

f t t t f t f t f ti i i i i
eqx c x x x+ +( ) − ( ) = − ( ) − ( ) δ δ

τ
, , , ,

1 ... (5)

where fi represents the distribution function for the particle 
moving at a discrete velocity ci in ith discrete direction, x is 
the lattice coordinate, δt is the time step, τ is the relaxation 
time and fi

eq is the equilibrium distribution function. In Eq. 
(5), the collision process between particles, which is char-
acterized by the single relaxation time τ, is approximated 
by the Bhatnagar–Gross–Krook (BGK) model as usual. The 
fluid density ρ and the velocity u are defined as
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where Q is the number of discrete velocities. The accuracy 
of LBM depends on the lattice geometry and a set of dis-
crete velocity vectors considered in the simulation. In this 
study, the simulation is carried out in two-dimensional sys-
tem and the two-dimensional nine-velocity (D2Q9) model is 
used. In this model, the discrete velocity vectors are defined 
on the two-dimensional square lattice space as follows,
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where c =  δx/δt with the lattice spacing δx. In LBM, the 
time evolutions of ρ and u defined in Eqs. (6) and (7) are 
entirely determined by the forms of fi

eq. The incompressible 
fluid flow can be described by the following function,

 
f w

c

c

c
i
eq

i
i

s

i i s

s

= +
⋅

+
−( )













ρ 1
2

2

4

c u uu c c I:
 .......... (9)

where cs = c 3, I is the identity matrix and wi is the weight 
as given by
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Accordingly, τ is given by

 τ ν
δ
δ

= +0 5 3
2

.
t

x
........................... (11)

where ν is the kinematic viscosity identical to the one in 
Eq. (1). The macroscopic behavior described by LBM, i.e., 
the behavior of ρ and u can be understood by performing 
the asymptotic expansion of this model with small Knudsen 
number (or equivalently low Mach number) which is called 
the Chapman-Enskog expansion.15) This analysis demon-
strated that the above-mentioned model is consistent with 
Eqs. (1) and (2) without the Darcy’s flow and buoyancy 
terms. To be accurate, Eqs. (9)–(11) are formulated based 
on the Chapman-Enskog analysis so that LBM recovers the 
NS equation and the continuity equation.

The above-mentioned model is one of the standard LBMs 
employed for analyses on fluid dynamics. To construct the 
LBM-coupled model for macrosegregation, influences of 
solid fraction, Darcy’s flow and thermosolutal convection 
must be taken into account. For this, we utilize a model 
proposed for isothermal incompressible flow in porous 
media27) and slightly modify this model to make it suitable 
for coupling with the solidification model in section 2. In 
the present LBM, the force term is included in the lattice 
Boltzmann equation and Eq. (5) is accordingly redefined as 
follows,

f t t t f t f t f t F ti i i i i
eq
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where Fi the force term as defined by
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fi
eq is now given as
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Accordingly, u is redefined as
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By performing the Chapman-Enskog expansion of this 
model which is almost identical to the one reported in Ref. 
27) and is not repeated here, one can find the macroscopic 
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equations equivalent to Eqs. (1) and (2). Hence, Eq. (12) is 
coupled with Eqs. (3) and (4) in the LBM-coupled model.

Note that it is not necessary to carry out the time-
consuming calculation for correction of u and p in solving 
LBM, in contrast to the conventional numerical schemes for 
the NS equation. The lattice Boltzmann Eq. (12) exhibits 
the discretized form and therefore it is directly solved by 
the numerical calculation in a simple explicit manner. In 
this regards, the numerical implementation of this model is 
basically not complicated. Furthermore, although it is not 
the focus of this study, this model is suitable for parallel 
computing.

Let us explain some points about numerical simulations 
of the LBM-coupled model. First as mentioned above, the 
present model is based on D2Q9 model in two-dimensional 
square lattice with the lattice spacing δx. In the numerical 
calculation of the LBM-coupled model, all the quantities, 
i.e., fi and thereby u and ρ as well as T and cl are defined 
and calculated at each lattice point, which is different from 
the SOLA method of the NS-based model where the stag-
gered grid is employed. Note that the time evolutions of 
T and cl in the LBM-coupled model are calculated in the 
same manner as in the NS-based model. Hence, the differ-
ence between these models is only in the calculation of the 
fluid flow. Next, the numerical stability of LBM is closely 
related to the value of τ which should be larger than 0.5. 
The numerical simulation of LBM often becomes unstable 
when τ is very close to 0.5. Since τ is related to ν, δx and 
δt as given by Eq. (11), δx and δt should be chosen in terms 
of the numerical stability for a given value of ν. In addition, 
there is another restriction in the LBM-coupled model. δx 
and δt should be determined based on the numerical stability 
of energy conservation Eq. (3). In this study, we employed 
a simple Euler method, which requires the following condi-
tion to be satisfied;

 δ
δ
β

t
x

aT
≤

2

 ................................ (18)

where β =  4 in the two-dimensional case. By combining 
Eqs. (11) and (18), one finds,

 Pr .≥ −( )β
τ

3
0 5  ........................... (19)

where Pr =  ν/aT is the Prandtl number. Hence, in the present 
model, the Prandtl number is restricted due to the numeri-
cal stability. For instance, τ =  0.65 is employed, Pr should 
be larger than 0.2 which is about one order of magnitude 
larger than typical values in metallic systems. This problem 
can be avoided when an implicit scheme is employed for 
solving Eq. (3) which does not require the condition, Eq. 
(18). However, in this first attempt to develop the LBM-
coupled model, the simple explicit method is employed for 
the numerical calculation of Eq. (3) for the sake of simplic-
ity. Hence, a fluid with high viscosity is considered in the 
simulations discussed in the next section.

4. Results and Discussion

4.1. Accuracy of LBM-coupled Model for Steady State 
Flow

We investigate the accuracy of the LBM-coupled model, 

focusing on the contributions to the steady state flow one 
by one. We first focus on the steady state flow between 
parallel planes (Poiseuille flow) in a fluid system where the 
calculation accuracy of viscous flow can be examined. Then, 
we calculate the steady state flow between parallel planes in 
a solid and liquid two-phase system (equivalent to porous 
media) where the Darcy’s term plays an important role. In 
addition, we examine natural convention in a fluid system 
driven by the temperature difference, where the contribution 
of buoyancy term becomes important. These are discussed 
in this subsection. The accuracy and computational effi-
ciency for the macrosegregation simulations are described 
in the next subsection. As described in section 2, all the 
simulations of NS-based model were carried out based on 
the SOLA method.

The analytical solution of the NS equation can be 
obtained for the steady state flow between parallel planes in 
a fluid system. The fluid velocity in x-direction ux between 
two planes parallel in x-direction is given by

 u
y

L y
dp

dx
x y= − −( )

2ρν
 ..................... (20)

where Ly is the distance between the two planes in 
y-direction. This is the solution of the NS equation without 
the Darcy’s and the buoyancy terms. This flow is calculated 
by Eq. (12) with Fi =  0 in LBM. The result of LBM is com-
pared with Eq. (20) to check the calculation accuracy of the 
viscous flow in LBM.

The computational system for this analysis is schemati-
cally shown in Fig. 1. It consists of 128 and 16 lattice points 
in x- and y-directions, respectively, which is sandwiched 
between two planes parallel in x-direction. A non-slip 
boundary condition was applied to both planes (i.e., at 
y =  0 and y =  16δx) based on the bounce-back bound-
ary scheme.28) For the sake of convenience, all quantities 
are normalized by cs (or c) δt and ρ. The dimensionless 
kinematic viscosity ν* =  ν/(cs

2δt) was set to ν* =  0.15 and 
then τ is calculated to be 0.65. The dimensionless pressure 
p* =  p/(ρcs

2) at x =  0 and x =  128δx was set to 1.1 and 
1.0, respectively. The simulations started from the uniform 
pressure of p*=1.0 except for the edge of x =  0 and then it 
was continued until the steady state of u field was realized. 
The result is shown in Fig. 2 which represents the profile 
of ux in y-direction at x =  64δx. The result of LBM is indi-
cated by the filled circle, while the analytical solution, Eq. 
(20), is shown by the solid line. For reference, moreover, 
the numerical solution of the NS equation is shown in Fig. 
2 by the open triangle, y position of which is off by 1/2δx 
because the staggered grid was employed for the NS equa-
tion. The good agreement between all the results is observed 
in Fig. 2. It supports the validity of LBM for calculation of 
viscous fluids.

Next, we focus on the steady state flow between parallel 

Fig. 1. Schematic illustration of two-dimensional system for 
steady-state flow in a fluid between two parallel planes.
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planes in a solid and liquid two-phase system. In this case, 
the Darcy’s term is considered in the NS equation. The 
analytical solution of this problem is given as22)

 u
dp

dx

K
e e e e e

x

y K y K y K L K L Ky y

=

− −( ) −( )







 −( )− −1

1 1
ρ ν

  ........................................ (21)

This problem is calculated by Eq. (12) with Fi term. In this 
study, the permeability K is given by the Kozeny-Carman 
model as K =  K0 (1− fs)3/fs

2 with K0 =  λs
2/180 where λs is 

the dendrite arm spacing23) and λs/δx =1.7 was employed 
in the present calculation. Although the value of λs was 
arbitrary chosen in this case, the conclusion of this part is 
not affected by the difference in λs. fs was set to fs =  0.5. 
The other conditions are the same as those employed in the 
calculation of Fig. 2. The calculated result is shown in Fig. 
3 where the analytical solution of Eq. (21) and the numeri-
cal solution of the NS equation are also presented. The 
good agreement between them is observed. Therefore, it is 
confirmed that the Darcy’s flow can be accurately described 
in the present LBM.

Also, we investigate the steady state flow in a fluid system 
under a temperature gradient where the accuracy associated 
with the buoyancy term can be discussed. δρ in Eq. (14) 
(also in Eq. (1)) was given by δρ/ρ =  1 −βT(T−T0) where 
βT is the volume expansion coefficient due to the tempera-
ture change and T0 is the reference temperature. Equations 
(12) and (3) were solved simultaneously in this case. The 
computational system is schematically shown in Fig. 4 
where the fluid is surrounded by the wall. The non-slip 
boundary condition was applied to all the walls. The temper-
atures on the left and right-hand side boundaries were kept 
to be 0.98T0 and T0, respectively, while adiabatic condition 
was applied at the upper and lower walls. We employed 
ν* =  ν/(cs

2δt) =  0.15 (τ =  0.65), aT
* =  aT /(cs

2δt) =  0.036 
and βTT0 =  1×10 −2. T and u were initially set to T =  T0 
and u =  0 and the simulation was continued until the steady 
state was achieved. The same simulation was performed 
by means of the NS-based model. The results of the LBM-

coupled and NS-based models are shown in Figs. 5(a) and 
5(b), respectively. The temperature distribution is indicated 
by the gray scale and it is also represented by the contour 
lines at T/T0 =  0.002 interval. The fluid velocity is shown 
by the arrow, the length of which represents its magnitude. 
In both results, the natural convection driven by temperature 
gradient is anti-clockwise. The temperature on the upper-
right side is higher than that on the lower-left side. Both 
models show the almost identical results, which indicates 
that the accuracy of the present LBM is as high as the one 
of the NS-based model for calculation of the natural con-
vection.

In this subsection, we investigated the accuracy of the 
LBM-coupled model, focusing on the contributions to the 
steady state flow one by one. This investigation shows that 
the accuracy of the LBM-coupled model is sufficiently 
high. Since the main concern of this subsection was the 
accuracy of the present LBM, the computational speed was 
not discussed. Actually, the calculation of LBM-coupled 
model was always faster than the one of NS-based model 
in all three cases discussed above. However, the calculation 
times for the steady state flow were quite short and they are 
not suitable for accurate assessment of the computational 

Fig. 2. Calculated results of steady-state velocity in a fluid 
between two parallel planes. The results of LBM, NS and 
Eq. (20) are represented by filled circle, open triangle and 
solid line, respectively.

Fig. 3. Calculated results of steady-state velocity in a fluid and 
solid two-phase ( fs =  0.5) between two parallel planes. 
The results of LBM, NS and Eq. (21) are represented by 
filled circle, open triangle and solid line, respectively.

Fig. 4. Schematic illustration of two-dimensional system for 
steady-state flow under temperature gradient.
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efficiency of the present LBM. In the next subsection, we 
focus on the macrosegregation simulations and discuss the 
computational speed as well as the accuracy.

4.2. Macrosegregation Simulation
We have carried out the macrosegregation simulations 

using the LBM-coupled and NS-based models to assess the 
computational speed and the accuracy of the former model. 
In these calculations, the permeability was given by the 
Kozeny-Carman model as described in the previous sec-
tion. The density change in the buoyancy term was given 
as (ρ +  δρ)/ρ ≈ 1−βc(cl−c0) −βT(T−T0) where c0 and T0 
are the liquidus concentration and temperature, respectively, 
βc and βT are coefficients of volume expansion due to the 
differences of concentration and temperature, respectively. 
These approximations were employed in both LBM-coupled 
and NS-based models.

For the sake of convenience, we focus on a model 
alloy system consisting of A and B atoms. The param-
eters employed in the simulation are shown in Table 1. 
Typical values in metallic alloy systems were assigned to 
most of parameters and some values such as ΔH, βT and 
λs were taken from the early study on macrosegregation in 
a Si–Bi alloy.23) Note that the value of kinematic viscosity 
employed in this study is about one order of magnitude 
higher than typical values in metallic alloy systems. This 
is because of the numerical stability of the LBM-coupled 
model and it can be avoided by using an implicit scheme 
for Eq. (3) as described in section 3. The two-dimensional 
system employed in this simulation is similar to the one 
shown in Fig. 4, while 60×50 lattice points were employed 
in this simulation. Although we call this simulation the 
macrosegregation simulation, the system size is quite small. 
The choice of the small system size is also related to the 
numerical stability of LBM and this point will be discussed 
later. The non-slip boundary condition was applied to all the 
boundaries. The wall temperature on the left-hand side was 
decreased at a constant rate of 5 K/min and the temperature 
in melt at the left-hand side boundary was calculated based 
on heat transfer between the melt and the left-hand side 
wall with the heat transfer coefficient shown in Table 1. 

The temperature on the right-hand side was kept to be the 
initial temperature. The initial temperature and fluid veloc-
ity were set to T =  500 K and u =  0, respectively, over the 
whole system. To save the computational time especially 
for the NS-based model, the simulation was stopped when 
fs becomes higher than 0.85 in the whole system.

The result of the LBM-coupled model is shown in Fig. 6. 
These snapshots represent the distributions of temperature, 
solid fraction and fluid velocity at t =  150, 160 and 170 s. 
The temperature is represented by the gray scale and the 
solid fraction is shown by the contour line at intervals of 
0.01. The fluid velocity is indicated by the arrow, the length 
of which represents its magnitude. Since the partition coef-
ficient is less than 1 in this alloy, the solute atom (B atom) 
is gradually enriched in the liquid as the solidification pro-
ceeds. Then, the downward flow of B-rich liquid occurs, 
because the density of this alloy increases with increase in 

Fig. 5. Results of temperature distribution and the fluid velocity during steady-state in a fluid system under the tem-
perature gradient, calculated by (a) the LBM-coupled model and (b) NS-based model. The temperature distribu-
tion is represented by the gray scale and the contour line at 0.002 T/T0 interval. The velocity vector is indicated 
by the arrow, the length of which represents the magnitude of the velocity.

Table 1. Parameters employed for macrosegregation simulations.

Parameters Value

Lattice spacing, δx [m] 1.0×10 − 4

Time step, δ t [s] 1.0×10 − 4

Reference density, ρ [kg/m3] 8 200

Alloy composition, c0 [mass fraction] 0.1

Liquidus temperature, T0 [K] 480

Latent heat, ΔH [J/kg] 60 000

Heat capacity [J/(kg K)], Cp 1 000

Equilibrium partition coefficient, k [–] 0.2

Kinematic viscosity, v [m2/s] 5.0×10 − 6

Thermal diffusivity, aT [m2/s] 1.2×10 − 6

Coefficient of volume expansion due to 
temperature difference, βT [1/K] 1.0×10 − 4

Coefficient of volume expansion due to 
concentration difference, βc [–] −0.244

Dendrite arm spacing, λs [m] 1.7×10 − 4

Heat transfer coefficient, h [W/(m2 K)] 10 000
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the concentration of B. The anti-clockwise flow is observed. 
It washes away the B-rich liquid from the upper region 
and the solidification in upper region accordingly proceeds 

faster than the lower region. Figure 7 shows the result of 
NS-based model. Although very slight differences appear 
between Figs. 6 and 7, the result of LBM-coupled model 

Fig. 6. Result of macrosegregation simulation by the LBM-
coupled model. The snapshots (a), (b) and (c) correspond to 
the results at t =150, 160 and 170 s, respectively. In each 
figure, the temperature is represented by gray scale and 
the solid fraction is shown by the contour line at intervals 
of Δfs =  0.01. The maximum and minimum values for the 
contour lines are indicated. The fluid velocity is shown by 
the arrow, the length of which indicates the magnitude of 
the velocity.

Fig. 7. Result of macrosegregation simulation by the NS-based 
model. The snapshots (a), (b) and (c) correspond to the 
results at t =  150, 160 and 170 s, respectively. In each fig-
ure, the temperature is represented by gray scale and the 
solid fraction is shown by the contour line at intervals of 
Δfs =  0.01. The maximum and minimum values for the 
contour lines are indicated. The fluid velocity is shown by 
the arrow, the length of which indicates the magnitude of 
the velocity.
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agrees well with the one of NS-based model.
Figure 8 shows the results of the distribution of segre-

gation ratio in the end of each simulation. In this study, 
the segregation ratio is defined as the local concentration 
divided by the average concentration. The contour line 
for the segregation ratio is shown at intervals of 0.01. The 
results of the LBM-coupled and NS-based models yield 
almost identical results where the negative and the positive 
segregations form in the upper and lower regions, respec-
tively. From a closer look at Fig. 8, one can find slight 
differences in contour lines between both models. The mini-
mum and maximum values of segregation ratio are 0.969 
and 1.071, respectively, in the LBM-coupled model, while 
those are 0.962 and 1.093 in the NS-based model. Note that 
the time evolutions of T and cl were calculated in the same 
manner in both models. Hence, the slight differences in the 
segregation ratio in Fig. 8 originate only from the accuracy 
of numerical calculation of fluid flow in both approaches. In 
principle, complete agreement between both models cannot 
be expected because the numerical scheme of NS equation 
as well as LBM basically provides not a rigorous solution 
but an approximate solution, each of which suffers from 
different kinds of errors in numerical calculations. Although 
such small difference exists between these results, it can be 
concluded that the accuracy of the LBM-coupled model is 
as high as the one of NS-based model.

The main purpose of the present study is the acceleration 
of macrosegregation simulation as described in the introduc-
tion. In this study, all the calculations were carried out with 
CPU of Xenon W5590 3.33 GHz. The computational times 
for the macrosegregation simulation shown in Figs. 6–8 
were 48 and 245 min in the LBM-coupled and NS-based 
models, respectively. Hence, the LBM-coupled model is 
about five times faster than the NS-based model and the 
acceleration is successfully achieved. Note that the compu-
tational cost of the NS-based model mainly originates from 
the iterative calculation for correction of u and p. Hence, 
the computational cost of NS-based model can be lowered 
by relaxing the convergence criterion, i.e., increasing the 
value of α. However, it causes low accuracy of the NS-
based model. Also, in general, once the solidification starts 

in local region of an ingot, the computational burden for the 
iterative calculation in the NS-based model increases due 
to the contribution of the Darcy’s term. Hence, when both 
models are applied to the simulations of solidification for a 
longer time in larger ingot than the present case, the differ-
ence in the computational time between these models should 
be remarkably increased. In addition, LBM is suitable for 
parallel computing and it is basically straightforward to 
achieve good performance of parallel scaling.29) Therefore, 
the advantage of the LBM-coupled model over the NS-
based model becomes more salient in parallel computation.

Before closing this section, let us point out an important 
issue about numerical stability of LBM. As mentioned in 
section 3, there is a restriction in the Prandtl number in the 
LBM-coupled model as given by Eq. (19). Hence, a high 
value was assigned to ν in this study. This problem arises 
because the explicit scheme was utilized for solving Eq. (3) 
and it can be avoided using an implicit scheme. However, 
the implicit scheme is time-consuming in some cases. More-
over, the explicit scheme is rather preferable when the paral-
lel computing is considered. Also, there is another problem 
in the present LBM-coupled model. Except for inclusion 
of Darcy’s term and buoyancy term in a two-phase sys-
tem (porous media), LBM that the present modeling relies 
upon corresponds to the standard LBM based on the BGK 
approximation. It is well-known that the BGK-based model 
exhibits the numerical instability at high Reynolds number 
Re. This problem causes a limitation in the application range 
of LBM.30) In fact, we employed small system size to avoid 
this problem in the present macrosegregation simulation. In 
this regard, new LBMs that are stable even at high Re have 
recently been developed such as the multi-relaxation time 
(MRT) collision model31) and the modified BGK collision 
model.30) In these models, moreover, the numerical simula-
tion can be made stable even when τ is very close to 0.5, 
which enables the calculation for low value of ν. Therefore, 
when one of these models is utilized, it is possible to remove 
the limitations of the present LBM-coupled model (i.e., high 
v and low Re). Although computational burdens of these 
models are generally higher than the one of the present 
LBM, they do not require the time-consuming calculation 

Fig. 8. Distribution of segregation ratio in the end of simulations by (a) LBM-coupled model and (b) NS-based model. 
The contour line for segregation ratio is drawn at intervals of 0.01. The maximum and minimum values for the 
contour line are indicated.
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for correction of velocity and pressure. Therefore, one can 
expect that a LBM-coupled model based on one of these 
new LBMs should be computationally more efficient than 
the conventional method based on the NS equation. This 
improvement remains to be tackled in a future work.

5. Conclusions

Computational approaches offer effective way to analyze 
and predict the macrosegregation behavior in casting. One 
of the common drawbacks in simulation models for mac-
rosegregation is high computational cost associated with 
the calculation of fluid flow. Instead of directly solving the 
Navier-Stokes (NS) equation, one can calculate the fluid 
flow by solving the simple finite difference equation for dis-
tribution function of fictive particles in the lattice Boltzmann 
method (LBM). In order to develop a macrosegregation 
simulation model with high computational efficiency, in 
this study, we coupled LBM including the Darcy’s flow and 
buoyancy flow in a solid-liquid two-phase system with the 
energy and solute conservation equations. The accuracy of 
this model (LBM-coupled model) was investigated in detail 
by performing the simulations for three types of steady state 
flows and by comparing the results with those of analytical 
solutions and the conventional model (NS-based model). 
The results between them are almost identical with each 
other, demonstrating that the accuracy of the LBM-coupled 
model is sufficiently high.

The LBM-coupled model was applied to a simulation 
of macrosegregation in ingot of a binary alloy. The result 
is consistent with the one of NS-based model and this fact 
also supports the accuracy of the LBM-coupled model. 
Importantly, the simulation of LBM-coupled model is about 
five times faster than the one of NS-based model and the 
acceleration of macrosegregation simulation was success-
fully achieved. This advantage of the LBM-coupled over 
NS-based models should become more significant when a 
more realistic case, i.e., solidification for a longer time in a 
larger ingot is considered and when parallel computational 
technique is utilized. However, the numerical stability of 
LBM restricts the application range of the present LBM-
coupled model. More specifically, this model cannot be 
applied to flows at high Reynolds number in a fluid with 

low kinematic viscosity. In this regard, the improvement of 
the model based on recently developed LBM remain as an 
important work.
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