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INTRODUCTION

The family Capitellidae Grube, 1862 consists of free-
living, benthic, earthworm-like annelids and contains about 
190 species (Rouse and Pleijel, 2001; Read, 2010). It 
includes Capitella teleta Blake, Grassle & Eckelbarger, 
2009, formerly known as “Capitella sp. I” (Grassle and 
Grassle, 1976), which is now used as a model annelid in the 
field of evolutionary developmental biology, and for which 
the complete genome has been sequenced (e.g., Ferrier, 
2012; Seaver et al., 2012; Lauri et al., 2014; Seaver, 2016). 
Furthermore, some other species in the genus Capitella 
have been used as bioremediators of organically enriched 
sediments (e.g., Tsutsumi et al., 2005; Kinoshita et al., 2008) 
or environmental bioindicators of disturbed habitats (e.g., 
Reish, 1955; Grassle and Grassle, 1976; reviewed in Dean, 
2008). While all capitellids are similar in external morphol-
ogy, they have successfully colonized diverse environments. 
Although most species inhabit bottom substrata such as pol-
luted sediments (e.g., Tsutsumi, 1987; Ahn et al., 1995; 
Méndez et al., 2001; Dean, 2008; Croquer et al., 2016), 
sandy beaches (e.g., Delgado et al., 2003; Incera et al., 
2006; Papageorgiou et al., 2006; García-Garza and De 
León-González, 2011; Tomioka et al., 2012), and seagrass 
beds (e.g., Nakaoka et al., 2002; Omena and Creed, 2004; 
Eklöf et al., 2005; Tanner, 2005; Tomioka et al., 2013), some 
dwell among squid egg masses (e.g., Hartman, 1947), or 
burrow into molluscan shells (Blake, 1969) or whale bones 
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(e.g., Fujiwara et al., 2007; Amon et al., 2013; Silva et al., 
2016; Sumida et al., 2016). Capitellidae is one of the few 
metazoan groups where some species exhibit poecilogony 
(e.g., Chia et al., 1996; Tsutsumi, 2005), or polymorphism in 
larval development, which has been reported only in some 
other polychaete groups (e.g., cirratulids, Petersen, 1999; 
spionids, David et al., 2014) and gastropod molluscs (e.g., 
Vedetti et al., 2012; McDonald et al., 2014). While capitellids 
are thus evolutionarily interesting, their phylogenetic rela-
tionships have scarcely been studied.

Since Eisig’s (1887) extensive monograph on 
Capitellidae, this family has remained a taxonomically well-
defined group (e.g., Hartman, 1947; Fauchald, 1977; 
Hutchings, 2000). In both morphology-based cladistic analy-
ses (Rouse and Fauchald, 1997) and subsequent molecular 
analyses of annelid phylogeny (Bleidorn et al., 2003; Struck 
and Purschke, 2005; Rousset et al., 2007; Struck et al., 
2007; Goto et al., 2013), Capitellidae has nearly always 
emerged as a monophyletic group (Fig. 1A–E). On the other 
hand, some 19th century naturalists (Carus, 1863; Malmgren, 
1865; Haeckel, 1866; Quatrefages, 1866) did not regard 
Capitellidae as a group, and in Goto’s (2016) multi-locus 
analysis of Echiura, the putative sister taxon to Capitellidae 
(Weigert et al., 2014), the four capitellid species included as 
outgroup taxa did not comprise a monophyletic group (Fig. 
1F), although the author himself suggested that this might 
have been the result of poor taxon sampling of capitellids. 
The monophyly of capitellids thus requires further testing 
with increased taxon sampling.

Capitellidae presently includes 44 genera (Fauchald, 
1977; Piltz, 1977; McCammon and Stull, 1978; Rullier and 
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Amoureux, 1979; Amaral, 1980; Ewing, 1982; Amoureux, 
1983; Kirkegaard, 1983; Brown, 1987; Garwood and Bamber, 
1988; Warren, 1991; Capaccioni-Azzati and Martín, 1992; 
Warren and Parker, 1994; Blake, 2000; Buzhinskaja and 
Smirnov, 2000; Green, 2002; Magalhães and Bailey-Brock, 
2012), most of which are likely not monophyletic, and among 
which phylogenetic relationships remain uninvestigated. 
Rouse and Pleijel (2001: p. 44) remarked, “the taxonomy of 
Capitellidae is in serious need of revision”, because genera 
were, and still are, defined in a way that does not reflect 
phylogeny. Genera have been diagnosed based on unique 
combinations of morphological characters, such as the 
shape of the head, number of thoracic segments, arrange-
ment/type of chaetae, presence or absence of branchiae, 
and shape of the pygidium (Fauchald, 1977; Blake et al., 
2009). This ‘unique combination’ approach itself is unlikely 
to lead to monophyletic taxa (Sundberg, 1993; Sundberg 
and Pleijel, 1994), and one diagnostic character, the arrange-
ment of chaetae, is known to change ontogenetically within 
individuals (Ewing, 1982; Fredette, 1982; George, 1984).

In this study, we conducted a molecular phylogenetic 
analysis of capitellid worms from Japanese waters to test the 
monophyly of Capitellidae and some of its constituent gen-
era. This allowed us to also examine whether some of the 
generic diagnostic characters mentioned above are concor-
dant with phylogenetic relationships.

MATERIALS AND METHODS

Sampling and identification
About 400 specimens of capitellid polychaetes were collected 

at 29 localities around Japan from 2012 to 2016. The anterior por-
tions of specimens were fixed in 10% formalin–seawater and later 
transferred into 70% ethanol for morphological observation; the 
posterior or middle portions were preserved in 99% ethanol for 
DNA extraction. DNA was extracted from a few individuals from 
each locality, and then molecularly barcoded using the genes H3 
(nuclear histone H3), 18S (nuclear 18S ribosomal RNA), and COI 
(mitochondrial cytochrome c oxidase subunit I). From 42 speci-
mens from which a sequence was obtained for at least one of these 
markers, 31 were selected to represent putative species (opera-
tional taxonomic units, or OTUs) to be included in analyses (Table 
1). As outgroup taxa, one individual each of the maldanid 
Nicomache personata Johnson, 1901 (partially sequenced by 
Kajihara et al., 2014) and the naidid oligochaete Tubifex tubifex 
(Müller, 1774) (cultured by Professor Takashi Shimizu, Hokkaido 
University) were sequenced (Table 1). All specimens not destroyed 
for DNA extraction have been deposited in the Invertebrate 
Collection of the Hokkaido University Museum (ICHUM), Sapporo 
(Table 1).

Capitellid specimens were identified to the genus level based 
on combinations of the following five characters: i) width of the head 
relative to the first segment (Type A, head half the width of the first 
segment; Type B, head same width as first segment) (Fig. 2A, B); ii) 
number of thoracic segments; iii) arrangement/type of chaetae; iv) 
presence or absence of branchiae; and v) shape of the pygidium. 
The 31 specimens selected for analysis, each representing a sin-
gle, putative species, were identified as representing eight genera 
(Table 2). Because most specimens were missing the posterior por-
tion of the body upon collection, characters iv) and v) were not 
included in the character-state analysis. The first character (head 
type) was consistent irrespective of the state of the proboscis (i.e., 
whether it was extruded or retracted) or the degree of body contrac-
tion (ST pers. obs.).

Fig. 1. (A–F) Partial tree topologies from selected, previous molec-
ular studies that included more than two OTUs from Capitellidae. 
Nodes with open circles are supported with a bootstrap value (BS) 
greater than 90% in maximum-parsimony analyses and a posterior 
probability (PP) of 1.00 from Bayesian inference (BI). Nodes with 
solid circles are supported with a BS greater than 90% in maxi-
mum-likelihood analyses and 1.00 PP from BI. Nodes with solid 
squares are supported by a jackknife value greater than 90%.
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Table 1. List of specimens used in this study, with species name, sampling locality or source, habitat, DDBJ/ENA/GenBank accession 
numbers for 18S, 28S, H3, and COI sequences, the museum catalogue number (ICHUM), and references.

Species
Sampling locality or 

source
Habitat

Accession number Catalogue 
number

Reference
18S 28S H3 COI

Ingroup

Barantolla sp. 1
Muroran, Hokkaido 

(42.3049°N, 140.9885°E)
seagrass bed LC208025 LC208055 LC208087 LC208116 5397 this study

Barantolla sp. 2
Oura Bay, Okinawa 

(26.5540°N, 128.0416°E)
tidal mud flat LC208026 LC208056 LC208088 LC208117 5398 this study

Capitella teleta Blake, 
Grassle & Eckelbarger, 
2009 (1)

Ainan, Ehime
(32.9206°N, 132.5189°E)

muddy sediments 
beneath aquaculture 

rafts
LC208027 LC208057 LC208089 LC120636 5167

Tomioka et al. 
(2016), this study

Capitella teleta 2 GenBank – JF509728 – JF509713 – – Andrade et al. (2011)

Capitella aff. teleta
Gamo, Miyagi 

(38.2578°N, 141.0144°E)
tidal mud flat LC208028 LC208058 LC208090 LC120642 5130

Tomioka et al. 
(2016), this study

Capitella sp. 1
Monbetsu, Hokkaido 

(44.3645°N, 143.3546°E)
seagrass bed LC208029 LC208059 LC208091 LC120651 5399

Tomioka et al. 
(2016), this study

Capitella sp. 2
Akkeshi, Hokkaido 

(43.0185°N, 144.8346°E)
seagrass bed – LC208060 – LC208118 5400 this study

Capitella sp. 3
Onosato River, Osaka 

(34.3765°N, 135.2509°E)
tidal mud flat LC208030 LC208061 LC208092 LC012038 5401 this study

Capitella sp. 4
Manko-Higata, Okinawa 
(26.1941°N, 127.6836°E)

tidal mud flat LC208031 LC208062 LC208093 – 5402 this study

Capitella sp. 5
Hatsukaichi, Hiroshima 

(34.2756°N, 132.2669°E)
tidal mud flat LC208032 LC208063 LC208094 – 5403 this study

Decamastus sp. 1
Hachi-Higata, Hiroshima 
(34.3260°N, 132.8979°E)

tidal mud flat LC208033 LC208064 LC208095 – 5404 this study

Decamastus sp. 2
off Manabe Island 

(34.3772°N, 133.6162°E)

unknown [a biological 
dredge from the TR/V 

Toyoshio-maru 
(Hiroshima University)]

LC208034 LC208065 LC208096 LC208119 5405 this study

Heteromastus sp. 1
Akkeshi Lake, Hokkaido 
(43.0515°N, 144.8568°E)

tidal mud flat LC208035 LC208066 LC208097 LC208120 5406 this study

Heteromastus sp. 2
Hachi-Higata, Hiroshima 
(34.3260°N, 132.8979°E)

tidal mud flat LC208036 LC208067 LC208098 LC208121 5407 this study

Heteromastus sp. 3
Nagura-Amparu, 

Ishigaki Island, Okinawa 
(24.4007°N, 124.1407°E)

tidal mud flat LC208037 LC208068 LC208099 LC208122 5408 this study

Heteromastus sp. 4
Sone-Higata, Fukuoka 

(33.8243°N, 130.9663°E)
tidal mud flat LC208038 LC208069 LC208100 LC208123 5409 this study

Heteromastus sp. 5
Fushino River, Yamaguchi 
(34.0215°N, 131.4154°E)

tidal mud flat LC208039 LC208070 LC208101 LC208124 5410 this study

Heteromastus sp. 6
Edo River, Tokyo 

(35.7007°N, 139.9252°E)
tidal mud flat – LC208071 LC208102 LC208125 5411 this study

Heteromastus sp. 7
Manose River, Kagoshima 
(31.4487°N, 130.2949°E)

tidal mud flat LC208040 LC208072 LC208103 LC208126 5412 this study

Heteromastus sp. 8
Koajiro-Higata, Kanagawa 
(35.1635°N, 139.6296°E)

tidal mud flat LC208041 LC208073 – LC208127 5413 this study

Heteromastus filiformis 
(Claparède, 1864)

GenBank – DQ790081 DQ790038 – – – Struck et al. (2007)

Leiohrides sp. 1
Hachi-Higata, Hiroshima 
(34.3260°N, 132.8979°E)

tidal mud flat LC208042 LC208074 LC208104 LC208128 5414 this study

Leiohrides sp. 2
Koajiro-Higata, Kanagawa 
(35.1635°N, 139.6296°E)

tidal mud flat LC208043 LC208075 LC208105 – 5415 this study
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Table 1. Continued.

Species
Sampling locality or 

source
Habitat

Accession number Catalogue 
number

Reference
18S 28S H3 COI

Leiohrides sp. 3
Komi, Iriomote Island, 

Okinawa  
(24.3511°N, 123.9381°E)

dead-coral debris 
sediment on tidal flat

LC208044 LC208076 – – 5416 this study

Mastobranchus sp. 1
Komi, Iriomote Island, 

Okinawa 
(24.3511°N, 123.9381°E)

dead-coral debris 
sediment on tidal flat

LC208045 – LC208106 LC208020 5417 this study

Mediomastus 
opertaculeus Tomioka, 
Hiruta & Kajihara, 2013

Abashiri, Hokkaido 
(44.0493°N, 144.2596°E)

seagrass bed LC208046 LC208077 LC208107 AB794985 4372
Tomioka et al. 

(2013), 
this study

Notomastus sp. 1
Tama River, Tokyo 

(35.5411°N, 139.4401°E)
tidal mud flat LC208047 LC208078 LC208108 LC208129 5424 this study

Notomastus sp. 2
Yagachi Island, Okinawa 
(26.6507°N, 128.0091°E)

tidal mud flat LC208048 LC208079 LC208109 LC208130 5425 this study

Notomastus sp. 3
off Owase 

(34.1611°N, 136.8436°E)

unknown [a biological 
dredge from the TR/V 

Seisui-maru 
(Mie University)]

LC208049 LC208080 LC208110 – 5426 this study

Notomastus sp. 4
Suou-Nada 

(33.7475°N, 131.5810°E)

unknown [a biological 
dredge from the TR/V 

Toyoshio-maru 
(Hiroshima University)]

LC208050 LC208081 LC208111 – 5427 this study

Notomastus sp. 5
Torinoe-Higata, Okayama 
(34.4734°N, 133.5296°E)

tidal mud flat LC208051 LC208082 LC208112 LC208131 5428 this study

Notomastus sp. 6
Takahashi River, 

Okayama 
(34.5427°N, 133.7025°E)

tidal mud flat LC208052 LC208083 LC208113 LC208132 5429 this study

Notomastus sp. 7
Fukiage Beach, 

Kagoshima 
(31.4416°N, 130.2832°E)

open sandy beach LC208053 LC208084 LC208114 – 5430 this study

Notomastus hemipodus 
Hartman, 1945

GenBank 
(Bamfield, Canada)

– HM746728 – HM746759 – – Paul et al. (2010)

Notomastus latericeus 
Sars, 1851

GenBank 
(Bohuslän, Sweden)

– AY040697 – DQ779747 – –
Siddall et al. (2001), 
Rousett et al. (2007)

Notomastus tenuis 
Moore, 1909

GenBank – DQ790084 DQ790044 – – – Struck et al. (2007)

Outgroup

Arhynchite hayaoi 
Tanaka & Nishikawa, 
2013

GenBank – AB771462 AB771474 AB771487 AB771495 – Goto et al. (2013)

Bonellia sp. GenBank – AB771463 AB771475 AB771488 AB771496 – Goto (2016)

Ikedosoma 
gogoshimense Ikeda, 
1904

GenBank – AB967989 AB968002 AB968013 AB968026 – Tanaka et al. (2014)

Listriolobus sorbillans 
(Lampert, 1883)

GenBank – AB967995 AB968006 AB968019 AB968032 – Tanaka et al. (2014)

Lumbricus polyphemus 
(Fitzinger, 1833)

GenBank – HQ728904 HQ728938 – – –
James and Davidson 

(2012)

Nicomache personata 
Johnson, 1901

Oshoro Bay, Hokkaido 
(43.3639°N, 141.4317°E)

seagrass bed LC006051 LC208085 LC005496 LC006052 –
Kajihara et al. (2014), 

this study

Ophelina acuminata 
Örsted, 1843

GenBank – DQ790085 DQ790045 HM746761 – – Struck et al. (2007)

Tubifex tubifex 
(Müller, 1774)

Cultured by Professor 
Takashi Shimizu

soft mud in a vat LC208054 LC208086 LC208115 LC208133 5431 this study
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DNA extraction, PCR amplification, and sequencing
Total DNA was extracted from the middle or posterior portion of 

worms with a DNeasy Blood & Tissue Kit (Qiagen, Germany). Four 
regions [18S, 28S (nuclear 28S rRNA), H3, and COI] were 
sequenced for the 31 capitellid and two outgroup species. Primers 
used for PCR amplification and sequencing are listed in Table 3. 
Based on the sequence of Mediomastus opertaculeus Tomioka, 
Hiruta & Kajihara, 2013, a specific primer (Mastus_COI_F) was 
designed by using Primer3Plus (Rozen and Skaletsky, 2000). 
PCRs were performed with an iCycler thermal cycler (BioRad, USA) 
in 10-μl reaction volumes each containing 1 μl of total DNA tem-
plate, 1 μl of 10×  Ex Taq buffer (TaKaRa Bio, Japan), 2 mM each 
dNTP, 1 μM each primer, and 0.25 U of TaKaRa Ex Taq DNA poly-
merase (5 U/μl; TaKaRa Bio) in deionized water. PCR conditions 
were 95°C for 90 s; 35 cycles of 95°C for 30 s, 50°C for 30 s, and 
72°C for 1 min (COI, H3) or 2 min (18S, 28S); and 72°C for 7 min. 
PCR products were purified following the method of Boom et al. 
(1990) with some modifications (Kobayashi et al., 2009). Terminator 
reactions were done with a BigDye Terminator ver. 3.1 Cycle 
Sequencing Kit (Life Technologies, USA) following the manufac-
turer’s protocol. Sequencing was performed with a 3730 DNA 
Analyzer (Applied Biosystems, USA). Sequences were checked 
and assembled by using MEGA ver. 5.2.2 (Tamura et al., 2011). 
They have been deposited in the DDBJ/ENA/GenBank databases 
under accession numbers LC012038 and LC208025–LC208133. In 
addition, our dataset contained 37 sequences downloaded from 
public databases (Table 1).

Phylogenetic tree construction
To reconstruct phylogeny, we analyzed a combined dataset 

(18S, 28S, H3, and COI) using maximum likelihood (ML) and 
Bayesian inference (BI). The outgroup, augmented with additional 
taxa chosen by reference to recent annelid phylogenomic studies 
(Struck et al., 2011, 2015; Weigert et al., 2014), contained eight spe-
cies representing Sedentaria. Sequences were aligned by using 
MAFFT ver. 7 (Katoh and Standley, 2013) under the options E-INS-
i for 18S and 28S, and Auto for H3 and COI. trimAl ver. 1.2 (Capella-
Gutiérrez et al., 2009) was used to remove poorly aligned regions 
(18S, 693 bases including indels; 28S, 441 bases including indels; 
COI, six bases including indels; H3, five bases) with the strict 
option. The aligned dataset of 44 species (36 ingroup capitellids 
and 8 outgroup taxa) comprised 18S (1250 bases including indels), 
28S (576 bases including indels), H3 (317 
bases without indels), and COI (529 bases 
including indels).

For the ML analysis, the partition method 
implemented in RAxML ver. 8.0 (Stamatakis, 
2014) was used with the GTR +  G substitu-
tion model; nodal support values were 
obtained through ML analyses of 1000 boot-
strap pseudoreplicates (Felsenstein, 1985; 
Tavaré, 1986). For the BI analysis, MrBayes 
ver. 3.1.2 (Ronquist and Huelsenbeck, 2003) 
was used with the following substitution 
models selected by PartitionFinder ver. 1.1.1 
(Lanfear et al., 2012) for the partitions: K80 + 
I +  G for 18S and H3 (first and third codon 
positions); GTR +  G for 28S; HKY +  I +  G for 
H3 (second codon position) and COI (first 
and second codon positions); and GTR +  I + 
G for COI (third codon position). A Markov 
chain Monte Carlo analysis (MCMC) was 
simulated for 10 million generations and 
sampled every 100 generations. The first 
25% of the trees were discarded as burn-in. 
The trace files generated by the MCMC runs 
were inspected in Tracer ver. 1.6.0 (Rambaut 

Fig. 2. SEM images showing the two types of head in Capitellidae, 
with the boundary between the head and first segment labeled. (A) 
Capitella teleta (Type A). (B) Mediomastus opertaculeus (Type B); 
the width ratio between the head and first segment is constant even 
when the proboscis is retracted. Scale bars: 1 mm.

Table 2. List of selected morphological character states of capitellid genera in this study. 
For shape of the head: A, head half the width of first segment; B, head same width as first 
segment. Asterisk (*) indicates abdominal segments with some pairs of fascicles including 
both capillary chaetae and hooded hooks on dorsal side.

Genus
Number of 

thoracic 
segments

Number of 
segments with 

capillary chaetae

Presence or 
absence of 
branchiae

Shape of the 
pygidium

Shape of 
the head

Barantolla 11 6 unknown unknown B

Capitella 9 7 or 9
absent or 
unknown

without 
appendages 
or unknown

A

Decamastus 10 10 unknown unknown B

Heteromastus 11 5 unknown unknown B

Leiochrides 12 12 present unknown B

Mastobranchus 11 11* unknown unknown B

Mediomastus 10 4 absent
with a caudal 

cirrus
B

Notomastus 11 11 unknown unknown B
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Table 3. List of PCR and cycle sequencing primers used in this study with genes, primer names, 
sequences, and references.

Gene Primer name Sequence (5′ to 3′) Reference

18S F1 TACCTGGTTGATCCTGCCAG Yamaguchi and Endo (2003)

F2 CCTGAGAAACGGCTRCCACAT Yamaguchi and Endo (2003)

F4 GGTCTGTGATGCCCTYAGATGT Yamaguchi and Endo (2003)

R6 TYTCTCRKGCTBCCTCTCC Yamaguchi and Endo (2003)

R8 ACATCTRAGGGCATCACAGACC Yamaguchi and Endo (2003)

R9 GATCCTTCCGCAGGTTCACCTAC Yamaguchi and Endo (2003)

28S LSU5 ACCCGCTGAAYTTAAGCA Littlewood (1994)

LSU3 TCCTGAGGGAAACTTCGG Littlewood (1994)

D2f CTTTGAAGAGAGAGTTC Littlewood (1994)

28Z CTTGGTCCGTGTTTCAAGAC Hillis and Dixon (1991)

H3 aF ATGGCTCGTACCAAGCAGAC Colgan et al. (1998)

aR ATATCCTTRGGCATRATRGTGAC Colgan et al. (1998)

COI LCO 1490 GGTCAACAAATCATAAAGATATTGG Folmer et al. (1994)

HCO 2198 TAAACTTCAGGGTGACCAAAAAATCA Folmer et al. (1994)

polyLCO GAYTATWTTCAACAAATCATAAAGATATTGG Carr et al. (2011)

polyHCO TAMACTTCWGGGTGACCAAARAATCA Carr et al. (2011)

Cap_COI_F GGAATTTGAGGTGGGCTTGT Tomioka et al. (2016)

Cap_COI_R CACCACCACCAGTATTATCA Tomioka et al. (2016)

Mastus_COI_R AAGTACGGGGTCTCCWCCWC this study

Fig. 3. Maximum-likelihood tree based on a combined dataset of 18S, 28S, H3, and COI gene sequences. Numbers near nodes indicate 
the maximum-likelihood bootstrap support value in percent and posterior probability from Bayesian inference. Clades with both values shown 
at the basal node were congruent between the ML and BI trees. Clades with only the bootstrap value were not congruent between the two 
analyses. The number of thoracic segments is indicated by symbols (see the key at right), and the number of segments with capillary chaetae 
is indicated by roman numerals.

et al., 2014) to check whether the 
number of sampling generations 
and effective sample sizes (ESS) 
were large enough for reliable 
parameter estimates.

RESULTS

Phylogenetic analyses
The ML and BI trees 

were identical, with some dif-
ferences at poorly supported 
terminal nodes; only the ML 
tree is shown here (Fig. 3). In 
the trees, Capitellidae is 
monophyletic, with nodal 
support of 98/1.00 (BS/PP), 
and forms the sister group to 
echiurans (93/1.00) (Fig. 3). 
Within Capitellidae, four 
clades appeared in both 
trees and had relatively high 
nodal support (greater than 
95% BS and 1.00 PP). Clade 
1 (100/1.00) includes all 
OTUs identified as Capitella 
and is separated from the 
sister clade by a long 
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branch; Clade 2 (100/1.00) contains Heteromastus spp. 1, 
6, and 7; Clade 3 (95/1.00) consists of Barantolla sp. 
2 and Notomastus sp. 1; and Clade 4 (99/1.00) 
contains Notomastus tenuis Moore, 1909, Notomastus 
hemipodus Hartman, 1945, and Notomastus sp. 3. Other 
nodes in Capitellidae were poorly supported, with values 
lower than 90% BP and 0.99 PP (Fig. 3).

Distribution of diagnostic characters
Figure 3 shows the distribution on the ML tree of the 

states of three key characters that have been used to diag-
nose capitellid genera: i) head shape, ii) number of thoracic 
segments; and iii) arrangement/type of chaetae. Clade 1 
(exclusively comprising Capitella) is clearly distinct in that all 
the constituent members uniquely have the Type-A head 
and nine thoracic segments; the number of segments with 
capillary chaetae is either seven or nine, states not found in 
other capitellid OTUs included in the analysis.

No character states were found to be unique to or spe-
cific for the rest of the clades, all of which, however, have the 
Type-B head. The OTUs in Clades 2 and 4 share the same 
states for the three characters, but, again, these are not 
clade-specific. Barantolla sp. 2 and Notomastus sp. 1 in 
Clade 3 both have 11 thoracic segments, but this character 
state also occurs in many other OTUs included in the 
analysis.

DISCUSSION

The expanded taxon sampling in our study supports the 
monophyly of Capitellidae, in agreement with several previ-
ous phylogenetic studies (e.g., Bleidorn et al., 2003; Struck 
and Purschke, 2005). The non-monophyly of Capitellidae in 
Goto (2016) may be attributable to inadequate taxon sam-
pling (e.g., Hillis, 1998; Zwickl and Hillis, 2002) of Capitellidae 
or by different gene markers having been used in the 
analyses.

Most nodes except Clade 1 in our trees were weakly 
supported, and a better-supported tree might show a higher 
degree of OTUs forming clades by genus. However, a well-
supported clade (Clade 3, Fig. 3) contained OTUs repre-
senting different genera, indicating that at least the genera 
Barantolla and Notomastus (and possibly also Heteromastus) 
are not monophyletic as currently diagnosed. Except for 
Capitella, three of the morphological characters traditionally 
used in defining capitellid genera (head type; number of tho-
racic segments; number of segments with capillary chaetae) 
are not informative for the purpose of delineating genera as 
natural groups.

Our results suggest that Capitella is monophyletic 
(Clade 1, Fig. 3). The implication of the monophyly of 
Capitella is that it should form the basis for research to illus-
trate evolutionary histories of habitat expansion [e.g., sand 
interstices (Green, 2002), whale bones (Silva et al., 2016), 
and squid mass egg (Hartman, 1947)], diversification of lar-
val developmental forms [lecithotrophy, planktotrophy (Blake 
et al., 2009), and poecilogony (e.g., Chia et al., 1996; 
Tsutsumi, 2005)], and other interesting features found in this 
genus.

To better resolve relationships within Capitellidae, 
broader taxon sampling and additional genetic markers will 
both be necessary. If there is to be any hope of identifying 

capitellid genera as natural groups based on morphology, 
the morphological characters traditionally used in defining 
genera will require a fine-scale reexamination, and new 
characters must be sought. In addition, future analyses 
including species showing specialized features as men-
tioned above will illustrate character evolution in Capitella.
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