Prevention of fatty liver by dietary intervention via regulation of 12α-hydroxylated bile acid metabolism: Studies on oligosaccharide and dairy products in rats [an abstract of dissertation and a summary of dissertation review]

Author(s): 李, 東根

Citation: 北海道大学/博士/農学/甲第13761号

Issue Date: 2019-09-25

Doc URL: http://hdl.handle.net/2115/75810

Rights(URL): https://creativecommons.org/licenses/by/4.0/

Type: theses (doctoral - abstract and summary of review)

Additional Information: There are other files related to this item in HUSCAP. Check the above URL.

File Information: Dong_Geun_Lee_abstract.pdf (論文内容の要旨)
There is a growing concern about fatty liver worldwide. Excessive energy consumption increases biosynthesis of fatty acid or sterols in the liver. In this condition, biosynthesis of 12α-hydroxylated BAs (12αOH-BAs) is also enhanced in the liver. Such alteration of BA metabolism is successfully mimicked in rats by a supplementation of cholic acid (CA) to diet, without any change in the proportion of lipids or carbohydrate contents in the diet. Moreover, the CA diet induces some symptoms that observed in fatty liver, such as liver steatosis or leaky gut. It is suggested that an increase in 12αOH-BAs is one of the risk factors that induce fatty liver. Some studies have already shown that oligosaccharides or dairy products mitigate fatty liver, but such preventive effects seem diverse depending on those types and almost no information is available not only in BA metabolism but also the mechanisms underlying. The purpose of the study is to investigate relationship between hepatic steatosis and 12αOH-BA metabolism in those dietary interventions.

1. Ingestion of difructose anhydride III partially suppresses the deconjugation and 7α-dehydroxylation of BAs in rats fed with a CA-supplemented diet

Difructose anhydride III (DFAIII) is an indigestible oligosaccharide and prebiotic involved in the reduction of secondary BAs. After acclimation, the rats were fed with a control diet or a diet supplemented with DFAIII. Each group of the rats was further divided into two groups and fed diet with or without CA supplementation. As a result, DFAIII ingestion reduced the fecal deoxycholic acid (DCA) concentration via partial suppression of BA deconjugation and 7α-dehydroxylation. However, no amelioration was observed of the CA-induced hepatic steatosis in the rats fed DFAIII. These results suggest that reduction in DCA production is not necessarily involved in amelioration of hepatic steatosis in a 12αOH-BA rich condition.
2. Ingestion of dairy products partially recovers the CA-induced disorders accompanied by modulation of BA metabolism

There are some reports showing that consumption of ripened cheese or fermented milk reduces hepatic lipid contents. In the following experiments, the involvement of 12αOH-BA was investigated in the reduction of liver lipids by consumption of dairy products in the CA-induced fatty liver model.

2-1. Cheese

A skimmed milk cheese was prepared and the ground sample was added to diet as protein source. The cheese diet partially ameliorated the CA-induced symptoms such as hepatic lipid accumulation and leaky gut. Also, the cheese diet improved plasma level of adiponectin. In BA metabolism, a significant increase of CA was observed in feces. There was a massive reduction in unconjugated 12αOH-BA excretion in aortic plasma and feces of rats fed the cheese diet. A significant decrease was observed in the expression of liver Srebp2, a transcription factor that regulate cholesterol synthesis, in the rats fed the cheese diet on the CA-supplementation. A positive correlation was found between the expression of liver Srebp2 and fecal DCA concentration. 12αOH-BA in aorta and feces are able to be a predictive biomarker for fatty liver development.

2-2. Fermented milk powder (FMP)

The ingestion of FMP mitigated liver steatosis and leaky gut, accompanied by a partial reduction of serum aminotransferase activities. A decrease in food intake by FMP resulted in decrease of body weight and there was a negative correlation between relative weights of cecal contents and hepatic lipid concentration. A reduction of fecal DCA concentration by FMP might contribute to alleviate leaky gut. Although 12αOH-BA remains at high level in the enterohepatic circulation there is an improvement in hepatic steatosis and leaky gut by the FMP ingestion.

Taken together, significant relationships were observed between the symptoms in fatty liver and 12αOH-BA metabolism. Dietary intervention that regulates 12αOH-BA metabolism especially in the organs related with enterohepatic circulation is possible to ameliorate fatty liver and related symptoms.