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Co-occurrence Pixel-Block Background Model and its

Application to Robust Event Detection∗

Wenjun ZHOU

Abstract

As a basic approach utilized in many computer vision applications, foreground detection

plays an important role in various tasks like video surveillance, traffic monitoring, scene

background initialization and object tracking. One simple way to do background model

is to acquire a background image without any moving objects. However, foreground

detection is faced with many practical challenges, especially the background changes,

not least of which is related to illumination changes, e.g. variable sunlight or lights being

switched on and off indoors, and background motion, e.g. the swaying motion of the

trees, fleeting cloud and moving waves on the water. To handle such challenges, previous

statical methods have been proposed, in which the intensity of each pixel is independently

analyzed in the temporal domain and then the current frame is subtracted, such as the

Gaussian Mixture Model (GMM) to build a pixel-wise model for each pixel, however such

kind of methods is difficult to solve illumination changes with the intensity varies rapidly

and significantly. Recent many local feature based methods have been put forward for

background modeling such as Barnich et al. proposed ViBe, a method that involves

comparing each pixel with a set of previous values located the same or neighboring

positions to evaluate whether a pixel belongs to the background. However, such local

feature based background models are susceptible to be affected by the dynamic motion

of the background, thus losing the robustness.

To overcome above problems, this thesis presents a novel background subtraction

method called Co-occurrence Pixel-Block pairs (CPB) for detecting objects in dynamic

scenes. CPB is a “pixel to block” structural model, which is evolved from the Co-

occurrence Probability based Pixel Pairs (CP3) and it uses the correlation of multiple

co-occurrence pixel block pairs to detect objects in dynamic scenes. It offers robust

background subtraction against a dynamically changing background. We firstly propose

a correlation measure for co-occurrence pixel-block pairs to realize a robust background

model. We then introduce a novel evaluation strategy named correlation depended de-

cision function for accurate object detection with the correlation of co-occurrence pixel-

block pairs. Finally, CPB can estimate the foreground from a dynamic background with

a sensitive criterion. Furthermore, a Hypothesis on Degradation Modification (HoD)

∗Doctoral Thesis, Division of Systems Science and Informatics, Graduate School of Informa-
tion Science and Technology, Hokkaido University, SSI-DT000000, June 6, 2019.
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based on CPB is proposed to further resist background changes for foreground detec-

tion, such as illumination changes and background motion. HoD provides CPB with

a model update strategy that can be used for a long time. HoD further improves the

robustness of CPB, and stabilizes the efficiency of CPB over time.

Through the experimental comparisons with other existing foreground detection tech-

niques based on challenging datasets, we demonstrated the good performance of our

algorithms. In summary, CPB is sufficiently sensitive to detect foreground objects in

dynamic scenes and CPB performs robust detection in outdoor or indoor environments

with relatively low complexity. Furthermore, HoD provides a new and natural thought:

the structure of background model can be updated by the designed correlation weigh,

which is a new strategy can be utilized in the pixel-correlation based algorithms for the

background model update.

This thesis is organized into the following chapters:

Chapter 1 introduces the related works in foreground detection. Some general prob-

lems are involved and discussed. Furthermore, the motivations and contributions of this

study are described.

Chapter 2 introduces the Co-occurrence Pixel-Block Background Model (CPB) in

detail, including the basic concept and essential mechanism of CPB. As an extension

from the“pixel to pixel”structure that our previous work CP3, CPB proposes a“pixel-

block”structure for the background model. In this chapter, we describe how to construct

the“ pixel-block” structure for background model and explain the process of model

building in theory.

Chapter 3 discusses the application of CPB in the field of the foreground (event)

detection. We also introduce a novel evaluation strategy named correlation depended

decision function for accurate foreground detection and explain the theoretical meaning

of the evaluation strategy. Moreover, we do a comparison to present the performance of

CPB for foreground detection.

Chapter 4 focuses on the Hypothesis on Degradation Modification (HoD), which

is proposed based on CPB to further improve the robustness of CPB and stabilize the

efficiency of CPB over time. In this chapter, the basic knowledge and mechanism of HoD

are discussed in detail. Finally, we verify the ability of HoD with adequate experiments.

Chapter 5 introduces the experimental setup in detail. In this chapter, the compara-

tive experiments for CPB and CPB+HoD using several challenging datasets are designed

and through these experiments we measure the robustness and efficiency of our methods,

CPB and CPB+HoD in various indoor and outdoor challenges.

The final Chapter summarizes the main points of the study and discusses our algo-

rithms. Finally, the plan and concept of future work are presented.

Keywords: Co-occurrence pixel-block pairs (CPB),Hypothesis on degradation modifi-

cation (HoD), Foreground detection, Illumination changes, Background motion
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Chapter 1. Introduction

1.1 Research background

Foreground detection is a critical lower-level vision task in many computer vision ap-

plications that separates moving objects, called the foreground, from static information,

called the background, and classifies pixels as either foreground or background in the

scene [1]. All foreground detection techniques are based on modeling the background of

the image, by setting the background and detecting changes. Defining the background

can be difficult when it contains shapes, shadows, and moving objects. In defining the

background, it is assumed that stationary objects can vary in color and intensity over

time. A common classification method is background subtraction, in which each frame

in a video sequence is compared with a background model and pixels that deviate signif-

icantly from the background information are considered to be outliers and are identified

as the foreground [2].

Background subtraction is generally used for images that are part of a video stream

and it can provide an important cue for numerous applications in computer vision.

The method is used for pre-processing in many computer vision tasks, including video

surveillance [3, 4], traffic monitoring [5], understanding and describing human behavior

[6, 7], object tracking [8, 9], and scene background initialization [10, 11]. Foreground

is any change in a video sequence. Usually, the foreground comprises moving objects

that are of interest, including pedestrians, vehicles, and animals, while the background

consists of stationary objects that can vary in color and intensity under illumination

changes over time [12]. One common and simple method of background subtraction

is to acquire a background image with no moving objects and perform a difference

operation between the current frame and background image. In general, foreground and

background should be defined on the basis of the ground truth. However, foreground

detection may prove challenging in complicated scenes and remains a difficult task to

solve.

There are two particularly difficult challenges.

• Illumination changes: for example, changes in sunlight and lights being switched

on and off indoors

• Background motion: scenes with strong (parasitic) background motion, such as

trees moving in the wind, fleeting clouds, changing advertising boards, and waves

on a body of water.
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Typical examples of these challenges are shown in Fig. 1.1, and Fig. 1.2 shows two

typical results of background subtraction in the presence of illumination changes

and background motion.

To tackle these challenges, there are numerous background subtraction methods,most

of which follow a simple processing procedure consisting of the following four main steps

[2].

• (1) Pre-processing: the techniques like raw input frames denoising or gray-scale

transformation to provide efficient data;

• (2) Background modeling: to achieve the background information;

• (3) Foreground detection: to extract the moving objects from background;

• (4) Post-processing: which is utilized to eliminate the error of foreground de-

tection such as filtering.

Fig. 1.3 shows the flow diagram for background subtraction. Steps (2) and (3) are

the main processes in background subtraction.

• Background modeling: builds a mathematical model to describe the back-

ground information and represent the background characteristics; this step de-

termines the ability of the model to handle unimodal or multimodal backgrounds

• Foreground detection: classifies pixels as background or as foreground and

labels them; this step is a classification task

In this thesis, we brief introduce different approaches to the following modeling meth-

ods.

• Traditional background modeling: (1) general basic models that were the first

used in the field; (2) useful for solving specific cases; simple models; (3) underpin

many improved algorithms and (4) may have reached their full potential

• Recent background modeling: (1) more complex and can handle more chal-

lenges; (2) most need to be improved to cope with real-time requirements

Table 1.1 shows some typical modeling methods in these two categories. In Sections

1.2 and 1.3, we introduce these approaches.

2



Chapter 1. Introduction 1.2. Traditional background modeling

Figure 1.1: Typical challenges of severe scenes.

1.2 Traditional background modeling

1.2.1 Basic model

McFarlane et al. [13] developed an algorithm with a median background and a

Laplacian operator for segmenting and tracking piglets in surveillance video. In [14],
3
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Figure 1.2: The typical example results of illumination challenges and background mo-

tions by using the static frame difference approach, (a) Illumination changes: one se-

quence with the light intensity typically varies during day. (b) Background motions: one

sequence with the water rippling.

Figure 1.3: Flow diagram for background subtraction.

the background model is built through an average for extracting objects. Once the

background is modeled, pixels of the current frame are classified as foreground by using

a threshold to distinguish the difference between the background and foreground.

State =

{
d(It(x, y), Bt−1(x, y)) > T foreground

otherwise background
(1.1)

Here, T is a constant threshold and It(x, y) and Bt−1(x, y) are the current frame at time

t and the background at time t − 1, respectively. These models are easy to implement

and can handle some simpler environments; however, they cannot adapt to complex

situations, such as sudden illumination changes.
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Table 1.1: Typical modelings of traditional and recent background modelings

Background

modeling
Categories Approaches

Traditional

Basic model Median[13], Mean[14]

Statistical model GMM[15], KDE[16], PCA[17]

Clusters model Codebook[18], K-means[19]

Recent

Non parametric model ViBe[20], PBAS[21] SuBSENSE[22]

Co-occurrence model SRF[23], GAP[24], CP3[25]

Fuzzy model T2FMOG-UM[26], T2FMRF-UV[27], FCM[28]

1.2.2 Statistical model

Gaussian mixture model (GMM)

To handle dynamic backgrounds, such as waving trees, or algae floating atop gently

undulating water, a background model needs to cope with multiple background patterns.

The Gaussian mixture model (GMM) (also called the mixture of Gaussian model) [15]

has been used to adapt the dynamic background. Illumination in the real world can

change gradually (e.g., sunlight from dawn to dusk) or suddenly (e.g., lights switching

on or off indoors). Under these conditions, an object could be introduced to or removed

from the scene. To adapt to changes, a mixture of K Gaussian models is introduced

rather than relying on a single Gaussian model to cope with multiple types of background

information. Numerous improvements [29, 30, 31, 32, 33, 34, 35, 36, 37, 38] based on

GMM have been developed for robust object detection in the critical scene. For example,

an efficient adaptive algorithm using Gaussian mixture probability density, which can

select the required number of components per pixel automatically and is more adaptive

to the scene, has been reported [31]. Whereas, to build a proper number of Gaussian

distributions will not be accurate, GMM is sensitive to sudden changes in illumination. A

wide background distribution will result in poor foreground detection in a large intensity

range, which interferes with the real background information.

Kernel density estimation (KDE)

Elgammal et al. [16] used kernel density estimation (KDE), a non-parametric method

that can be used to detect objects in dynamic scenes to estimate background probabilities

at each pixel from many recent samples over time. In [16], the probability density

function of the background is defined as

P (Is,t) =
1

N

t−1∑
i=t−N

K(Is,t − IS,I) (1.2)

Here, K is the kernel and N is the number of previous frames. Several improvements

on the basic KDE method are described in [39, 40]. For example, Seki [41] proposed
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a method that involved estimating the co-occurrence correlation between neighboring

blocks through the KDE estimation. However, this mechanism is time-consuming and

has difficulty handling large, fast illumination changes because it is prone to interference

due to varying illumination. Various improvements [42, 43, 44, 45, 46, 47, 48, 49, 50,

51, 52, 53] have been developed for the background model, initialization, background

maintenance, and foreground detection.

Principal component analysis (PCA)

Oliver et al. [17] used spatial eigenvalues to model each background pixel with prin-

cipal component analysis (PCA), where N frames are used to build a background model;

that is, the first p-significant feature vector extracted from the PCA is represented by

the average frame and the projection matrix. Based on this method, foreground seg-

mentation is performed by calculating the difference between the input frames and the

reconstruction. To overcome the limitations of PCA, numerous improvements have been

proposed in recent years [54, 55, 56, 57, 58, 59].

1.2.3 Clusters model

Codebook

A pixel-wise method using a codebook model for background modeling was proposed

by Kim et al. [18]. The codebook, which consists of one or more codewords for each

pixel, is computed. Then, each pixel is clustered into a set of codewords with the color

distortion metrics and luminance boundaries. Due to the activity of pixels, the number

of codewords for each pixel is different. After a cluster represented by the codeword is

linked to a single Gaussian or other parameter distribution, a background model can be

encoded on a pixel-by-pixel basis. By calculating the difference of the current frame from

the background model with respect to color or brightness differences, the foreground can

be extracted.

K-means

Butler et al. [19] proposed an algorithm based on K-means that represents each

pixel in a frame with a group of clusters. These clusters are ordered by likelihood, and

then the background is modeled. This method can be adapted to handle background

and lighting variations. Incoming pixels are matched against the corresponding cluster

group, and are classified according to whether the matching cluster belongs to part of

the background or not.
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1.3 Recent background modeling

1.3.1 Non parametric models

Visual background extractor(ViBe)

The visual background extractor, ViBe, proposed by Barnich et al. [20], is a method

that compares each pixel with a set of previous values at the same or neighboring po-

sitions to evaluate whether a pixel belongs to the background. It is a simple algorithm

with a classification model based on a small number of correspondences between a can-

didate set and the corresponding background model for each pixel. ViBe provides a

random selection policy that supplies a smooth exponential decay that can be predicted

easily to construct the pixel models. Moreover, ViBe uses a fast spatial information

mechanism that randomly diffuses pixel values across neighboring pixels, which are set

as the supporting candidates. Consequently, ViBe can handle challenging conditions,

such as darker backgrounds, shadows, and frequent background changes and it also first

proposed a novel design for the large family of background subtraction algorithms.

Pixel-based adaptive segmenter (PBAS) (PBAS)

The pixel-based adaptive segmenter (PBAS) [21] developed by Hofmann et al. models

the background from recently observed pixel information. The foreground classification

depends on a decision threshold and the background update is based on a learning

parameter. PBAS introduced a feedback loop with two controllers for updating the

decision threshold and the learning parameter to adapt to dynamic background changes.

SuBSENSE

SuBSENSE [22], a recent method following ViBe’s strategy to build a nonparametric

background model with the local binary similarity patterns [60] features. By using pixel-

level feedback loops, SuBSENSE can adjust the internal parameters of the background

model dynamically with no manual settings; thus, it can handle complex surveillance

scenes and present many different challenges simultaneously.

However, all the above algorithms are local feature background models that are likely

to be affected by dynamic background motion, and thus are not robust.
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1.3.2 Co-occurrence models

Statistical reach feature (SRF)

The statistical reach feature (SRF) method [23] uses a set of statistical pair-wise

features to build a model of the local texture for each pixel against various disturbances

in the real world, including local or global variations of illumination, occlusions, and

noises. Through sign coding, the SRF method acquires the local texture feature for each

target pixel, P , comparing P with its neighboring pixels, Qn, by

srf(P ≻ Qn;TP ) =


1 I(P )− I(Qn) ≥ TP

0 I(P )− I(Qn) ≤ −TP

ϕ otherwise

(1.3)

Here, TP is the threshold of intensity difference. Multiple pixels Qn are used and the

resulting code string is used to calculate the local similarity of P . Fig. 1.4 shows an

example of the local coding for P . Based on the sign coding, the similarity comparison

between P and Qn is used to judge the state of P and determine whether it belongs to

the background.

Figure 1.4: Local coding for target pixel P : (a) Example of intensities of 3× 3 subregion

centered at the target pixel P ; (b) Values at each supporting Qn, TP = 15.

However, the SRF model is not sufficiently robust because its searching order is based

on the neighboring pixels on the edge of an image; thus, each direction of P that satisfies

the requirements is stored in the order, irrespective of its sign. In the case, to control

the global features but not the individual Qn with individual signs.
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Gray-scale arranging pairs (GAP)

Gray-scale arranging pairs (GAP) [24] is a co-occurrence model based on the SRF

model [61], and is defined as a set of statistical pair-wise features. First, GAP analyzes

the stability of intensity between point pairs. The intensity difference shows better

stability than the intensity, even in complex environments. Then, new selection rules

are created to choose appropriate point pairs that maintain a stable intensity difference

during changes in the global spatial domain [24]. For example, for each target pixel P ,

there are N positive supporting pixels that have higher intensity than P in the statistics,

and N negative supporting pixels have lower intensity than P in the statistics. Based

on this mechanism, a co-occurrence structure between target pixel P and its multiple

supporting pixels can be constructed as the background model. For the current frame,

P is calculated as the background when its intensity is steady; that is, lower than the

positive supporting pixels and higher than the negative supporting pixels. In contrast,

when the intensity of P is higher than the positive supporting pixels or lower than the

negative supporting pixels, this situation is set as an unsteady state and P is classified

as the foreground. GAP has been extended to object tracking [62], industrial defect

detection [63], and facial recognition [64].

Co-occurrence probability-based pixel pairs(CP3)

In our previous work [25, 65, 66], we proposed the co-occurrence probability-based

pixel pairs (CP3) method based on GAP [24] and SRF [23] for background modeling

using a pixel-to-pixel structure. The method involves building a background model of a

dynamic scene from pairs of pixels that have a high probability of spatial co-occurrence.

Instead of using single pixels, CP3 uses the stable relationships between the pixels in

co-occurring pairs; this is a more reliable method, especially for dramatically changing

environments [25]. First, target pixel p is selected and one or more supporting pixels Qp

that have high normalized correlations with the target pixel are determined. Objects

are detected by comparing the pixel pairs, (p, {Qp
k}k=1,2,...,K), in turn.

Although CP3 is effective at dealing with unstable backgrounds, it suffers from the

open problem of time consumption. For instance, for T sequence frames of size U×V , we

have U×V×T intensity values within the range [0, 255] of gray-scale levels. To determine

Qp for one target pixel, CP3 must compare the target pixel with all the other pixels in

the T sequence frames, and then acquire stable Qp. This is a time-consuming approach;

as the frame size increases, CP3 becomes computationally expensive. Practicality means

that the computational cost must be weighed against the benefits of the approach and

a more efficient strategy should be sought.
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1.3.3 Fuzzy model

Type-2 fuzzy mixture of Gaussians

Fida El Baf et al. proposed the type-2 fuzzy mixture of Gaussians model (T2FMOG-

UM) [26], which is used to build an uncertainties background model when there is a

dynamic background. They introduced the uncertainty over the mean into the algo-

rithm resulting in more robust adaptation than the simple GMM strategy [15]. Due

to the related uncertainty, T2FMOG-UM can extract the foreground under challenging

situations.

Type-2 fuzzy Markov random field model

Zhao et al. proposed a hybrid method for motion detection in dynamic backgrounds

based on a T2FMOG-UM and a Markov random field. The model introduces spatio-

temporal constraints into the T2FMOG-UM under a Bayesian framework to handle

dynamic backgrounds and detect shadow easily.

Feature clustering model

W. Kim and C. Kim[28] designed an adaptive clustering-based feature using the

fuzzy color histogram and such model can greatly attenuate color variations generated

by background motions while still highlighting moving objects. This model is a simple

way for background subtraction in dynamic scenes with sufficient texture and achieved

a better results than the MOG[15] under dynamic background.

1.4 Other approaches

Hybrid models are also commonly used for background subtraction. For example,

Ding et al. [67] proposed a mixture of a nonparametric regional model, KDE, with a

parametric pixel-wise model, GMM, to estimate the color distribution of the background.

The color distribution of the foreground can be extracted from neighboring pixels in the

previous frame, and then the local distributions of the background and foreground are

estimated by KDE. Independent multimodal background subtraction [68] is a real-time

algorithm for creating a robust mechanism with the multimodal background model,

which is sensitive to dynamic changes in background with good accuracy while main-

taining real-time performance. The algorithm is based on separating the foreground

and background in different domains. For example, Wren and Porikli [69] used fast

Fourier transform to estimate the background information by capturing the spectral sig-

natures of multimodal backgrounds, which are used to evaluate changes of scene when

the background information differs from the signatures.

Pattern classification based on convolutional neural networks (ConvNets) [70] is be-
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coming widespread in background subtraction. For example, Braham et al. [71] devel-

oped an algorithm based on spatial features learned with ConvNets for scene-specific

backgrounds. Zhang et al. [72] used deep learning techniques [70, 73] for the intrinsic

high-level structural learning of scene information based on a huge amount of generic

natural image patches, and then constructed a binary scene model for background sub-

traction. Sultana et al. [74] proposed a method called deep context prediction by using

a generative adversarial network and image in-painting, which is a context prediction

algorithm for foreground segmentation.

1.5 Introduction of the study

1.5.1 Challenges of background model

Background subtraction algorithms must overcome several challenges in real applica-

tions. According to the work of Brutzer et al. [75] and the classical definition by Toyama

et al. [76], the challenges can be classified as follows.

• Gradual illumination changes: the light intensity typically varies during the

day; for example, for outdoor images, the background model must adapt to the

gradual changes in the appearance of the environment

• Sudden illumination changes: suddenly switching a light on affects the ob-

servation of an object, leading to errors in detection; one-off changes cannot be

included in the background model

• Dynamic background (background motion): background motion includes

regular movement (e.g., rippling water) and sudden movement (e.g., changing ad-

vertising boards), which must be classified correctly as background

• Camouflage: some objects may appear similar to the background and may be

difficult to extract; for example, video surveillance in fog is particularly difficult

for background subtraction

• Shadows: in videos with many hard and soft shadows and intermittent light, shad-

ows may interfere with foreground extraction; in particular, overlapping shadows

in foreground regions hinder separation and classification

• Bootstrapping: if data free from foreground objects is not available, a bootstrap-

ping strategy should be used for background model initialization.
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• Video noise: generally, the video signal is superimposed by noise; background

subtraction methods must overcome such signals in degradation affected by noise

(e,g., the noise of sensor or video compression)

• Intermittent object motion: object detection is difficult for background ob-

jects moving away, abandoned objects, and objects stopping for a short time, and

then moving away; background subtraction has difficulty distinguishing changes in

objects from the background accurately

• Camera jitter: in video surveillance, camera jitter is a problem that must be

solved for background subtraction

This thesis focuses on illumination changes and dynamic backgrounds (background

motion), which present major challenges, such as implementing background subtraction

for real scenes with changeable backgrounds.

1.5.2 Motivation of the study

We discussed previous methods for overcoming the challenges in the background

model in Sections 1.2 and 1.3, and these methods can be classified as follows.

• Pixel-wise model: the intensity of each pixel is analyzed independently in the

temporal domain, and then the current frame is subtracted. For example, Pfinder

[15] reported a real-time method for analyzing the color information (Y/U/V) of

each pixel and building a pixel-wise model from the GMM [77]. Friedman et al.

[78] built a pixel-wise model for traffic surveillance by using three mixed Gaussian

functions. Elgammal et al. [16] used KDE, a non-parametric method that can be

used to detect objects in dynamic scenes. Despite being efficient, these various

methods have fallen out of use because they cannot effectively handle illumination

changes in the absence of contextual spatial information, and because they are

prone to interference due to varying illumination

• Spatial model: a background model is built by determining the spatial cor-

relations between pixels or blocks. Seki [41] proposed a method that involved

estimating the co-occurrence correlation between neighboring blocks. Matsuyama

[79] proposed a block-matching method called the normalized vector distance for

detecting objects in non-stationary scenes. Oliver et al. [17] used spatial eigen-

values to model each background pixel with PCA. Sheikh et al. [80] used range

information and the correlation between proximal pixels to build both foreground

and background KDE models for object detection. ViBe [20] is a method that

involves comparing each pixel with a set of previous values located at the same

or neighboring positions to evaluate whether a pixel belongs to the background.

SuBSENSE [19], a method that follows ViBe’s strategy to build a nonparamet-

ric background model with local binary similarity pattern features [60]. However,
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most of these methods focus on the local spatial information of neighboring pix-

els or blocks and ignore global spatial information. Background models based on

local features are affected by the dynamic background motion, decreasing their

robustness.

In this thesis, a robust foreground detection method called the co-occurrence pixel-

block pairs (CPB) background model [81] for handling large background changes is pro-

posed to overcome these problems. To prevent background changes degrading foreground

detection, we introduce the Hypothesis on Degradation Modification (HoD; described

briefly in [82, 83, 84, 85]) into CPB. In our previous work [25], we proposed a pixel-

to-pixel structure strategy to estimate target pixel p with other pixels one by one and

select suitable supporting pixels for p. This strategy deals with background changes

effectively; however, it suffers from the open problem of time consumption. To overcome

this problem, we must find a strategy to avoid the problem with CP3 [25]; therefore,

approaches using super-pixels for cost reduction in follow-up processing and for image

matting [86, 87, 88] may be helpful. To reduce the processing cost, we propose the CPB

model, which is a background subtraction method for robust event detection in dynamic

scenes.

1.5.3 Contributions

The contributions of the CPB model described here are as follows.

• Robustness: we propose the CPB background model, which uses a pixel-block

pair structure for the background model in contrast with the methods discussed

above. CPB extracts the spatio-temporal information of each target pixel p through

multiple supporting blocks QB
k , not just focusing on the local or global features in

the scene, as in other approaches. The pixel-block structure of CPB is more stable

than the parameterized/non-parametrized model based on a single pixel and is not

sensitive to changes in the scene. This is because the structure of CPB maintains

a statistical correlation that is more stable for each target pixel and abandons the

prior assumption of local correlation. Furthermore, we propose the HoD based on

the CBP model to handle background changes. The HoD provides the CPB model

with a model update strategy that can be used for a long time. The HoD improves

the robustness and stabilizes the efficiency of the CPB model over time.

• High precision: we introduce an evaluation strategy called the correlation-

dependent decision function for accurate object detection with the correlation of

CBP pairs. In contrast to the binary function with a global threshold for fore-

ground detection, the correlation-dependent decision function uses a weighting

factor based on the correlation between target pixel p and supporting blocks QB
k ,

which allows a calculable threshold for detecting the foreground to be set instead
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of an empirical global threshold. This method can determine the state of the pixel

with high precision and apply different data more generally.

• Low training cost: ConvNets approaches [70, 71] require a substantial amount

of labeled data with teaching signals or ground truths for training, which is costly

and may be unavailable [89]. In contrast, collecting the training data for CPB

is cheap and requires no teaching signals. A limited selection of training samples

according to the type of data is made, and then the background is modeled directly

during the training stage.

• Strategy for updating background models: the new HoD strategy for updat-

ing the background model is applied to the CPB model and can also be applied to

other pixel-correlation algorithms, such as ViBe [20] based on random neighbor-

ing pixels, SuBSENSE [22] based on local binary similarity patterns features, or

CP3 [25]. HoD is intuitive because the structure of the background model can be

updated by the designed correlation weight.

1.5.4 Overview

In Chapter 1, we gave an overview of foreground detection and stressed the challenges

in background subtraction in real applications. We discussed previous studies in the field

of background subtraction, including traditional and recent background modeling. We

also introduced the CPB model for robust foreground detection, which can cope with

the two main challenges of illumination changes and background motion. Furthermore,

we also highlighted the advantages of the CBP model as being a robust, high-precision

model with low training cost that provides a new strategy for updating background

models.

The remainder of the thesis is organized as follows:

• In Chapter 2, the CPB model is introduced in detail, including the concept and

essential mechanism. As an extension of the pixel-to-pixel structure in our previous

CP3 method, the CPB model has a pixel-block structure for the background model.

In this chapter, the construction of the pixel-block structure for the background

model is described and the processing of the model building is explained.

• In Chapter 3, the application of CPB in the field of foreground (event) detection is

discussed. An evaluation method called the correlation-dependent decision func-

tion for accurate foreground detection is introduced and the theoretical meaning

of the evaluation strategy is explained. A comparison of the performance of CPB

for foreground detection is presented.

• In Chapter 4, the HoD method, which is based on CPB to improve the robustness of

CPB further and stabilize the efficiency of CPB over time, is described. The basic
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concept and mechanism of HoD are discussed in detail. Finally, the performance

of HoD is verified experimentally.

• In Chapter 5, the experimental setup is introduced in detail. Comparative exper-

iments for CPB and CPB+HoD using several challenging datasets (PETS2001−
camera1, AIST−Indoor, SceneBackgroundModeling.NET and Change−detection

dataset) are designed and used to measure the robustness and efficiency of the CPB

and CPB+HoD methods for various indoor and outdoor challenges. The measure

metrics Precision, Recall, F −measure, and PSNR (peak signal-to-noise ratio)

for quantitative evaluation are described in detail.

• In Chapter 6, the main points of the study are summarized and the algorithms are

discussed. Finally, plans for future work are presented.
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Chapter 2. Co-occurrence Pixel-Block

Background Model

(CPB)

2.1 Basic concept of CPB

In our previous work[25], we proposed one “pixel to pixel” structure strategy to

estimate the target pixel p with other pixels one by one and then to select the suitable

supporting pixels for the target pixel p, and this strategy is quite effective at dealing with

background changes, however it suffers from the open problem of time consumption. In

order to handle this problem, we need to find a strategy to avoid the defect of CP3[25],

therefore the approaches using super-pixels for cost reduction in follow-up processing

and for image matting[86, 87, 88] could be helpful. As an extension of “pixel to pixel”

structure, in CPB we design a “pixel to block” structure to reduce the time computing

and the proposed CPB includes two processes: training process and detecting process

as shown in Fig. 2.1. As discussed in chapter1.3, we seek to build on our previous

work and develop a method that can reduce the computational time required for model

building. To solve this problem at the training stage, we decided to group the reference

pixels as a whole and then compute the correlation between the target pixels and the

new reference pixels. Therefore, we propose comparing target pixel p with reference

block QB, defining ref {QB
k }k=1,2,...,K = {QB

1 , Q
B
2 , ..., Q

B
K} as a reference block set for

target pixel p. Fig. 2.1, which illustrates the two processes of CPB: training process and

detecting process. In this work, we compare the target pixel p with the QB as block,

and define {QB
k }k=1,2,...,K = {QB

1 , Q
B
2 , ..., Q

B
K} to denote a supporting block set for the

target pixel p. We divide each frame (of size U×V ) into blocks QB of size m×n. Hence,

each block QB consists of m×n pixels:

QB =


Q11 Q12 . . . Q1n

Q21 Q22 . . . Q2n

...
...

...
...

Qm1 Qm2 . . . Qmn

 . (2.1)

As shown in Fig. 2.2, the number of blocks is M×N (Um = M, Vn = N), where the

size of each block QB is m×n. Thus, the training time can be reduced further than is

theoretically possible for CP3.

As with CP3, a reference pixel Qp in CPB maintains an intensity difference relative
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Figure 2.1: Overview of working mechanism of CPB.

to target pixel p. Hence, it is natural to assume that each pixel Qmn that belongs to

reference block QB is correlated with target pixel p. As a result, we expect one or more

blocks QB to possess a stable intensity difference Ip − ĪQ throughout the whole training

frames (ĪQ is the average intensity of block QB), even though pixel p and block QB can

be at quite dissimilar positions, as shown in Fig. 2.3, in which the size of QB is set to

5×5. In theory, since a large part of computation cost can be reduced in the training

process , CPB is expected mn times faster in the training than CP3[25]. When such

relation maintains steady as time goes by, the deviation between the target pixel p and

its supporting block QB would be follow a single Gaussian distribution. This relation is

called as “Co-occurrence between intensity” as shown in Fig.2.3 (b) and we can utilize

this knowledge to design the background model for the characteristics in background

pixels.
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Figure 2.2: Dividing each frame into blocks.

2.2 Advantages of CPB

The two factors of object occupation and illumination change can influence the cur-

rent intensity of target pixel p when we detect objects in a dynamic scene. Hence, it is

quite natural that block QB, being strongly correlated with target pixel p, can be used

to determine the state of the latter. Target pixel p can be introduced as a reference to

estimate its current intensity in the detecting frame, that is, a correlation between pixel

p and block QB: Ip = ĪQ +∆k (ĪQ is the average intensity of block QB in the current

detecting frame). When the illumination intensity changes at target pixel p and these is

no occlusion by objects, Ip changes concurrently with ĪQ, and consequently target pixel

p is deemed to be a background pixel. Otherwise, if target pixel p is occupied by an

object, the current intensity Ip ceases to be correlated with the current intensity ĪQ, and

target pixel p is classified as a foreground pixel. At the same time, because the reference

for target pixel p is the block QB, the following situation may arise: block QB contains

pixel Qmn that comes from two or more regions in the frame (e.g., one part of the pixel

is a road and another part is grass). In this case, however, by comparing the intensity

Ip of target pixel p with the average intensity ĪQ of block QB, the foreground detection

is not affected appreciably.

As Fig.2.4 indicates, target pixel p will maintain a relevant association with blocks

{QB
k } under the illumination changes over time, among them, target pixel p shares a

significant correlation with some blocks. Based on this knowledge, we can evaluate the

supporting blocks for target pixel p, that will be discussed in Section2.3.1 in detail.
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Figure 2.3: Basic structure of co-occurrence pixel to block pair. (a) Co-occurrence pixel-

block pair structure. (b) Correlation of pixel-block pair (p,QB
1 ). (c) Statistical model of

pixel-block pair (p,QB
1 ).

In practice, CPB possesses two strengths compared with our previous CP3. One is

its computational complexity: CPB can accelerate the training stage when computing

the correlation between target and reference. In the CP3 method, we need to compute
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Figure 2.4: The intensity change of target pixel p and four random blocks. (a) Location

of the target pixel p and four random blocks S, B, G, R at the sky, building, grass and

road. (b) The intensity change of p and S. (c) The intensity change of p and B. (d)

The intensity change of p and G. (e) The intensity change of p and R.

the correlation pixel by pixel and then select reference pixels for the target pixel; the

computational complexity of CP3 can be defined as O1(UV ) + O2, where O1 is the

training time and O2 is the detecting time. Because O1(UV ) >> O2, the computational

complexity of CP3 can be taken as O1(UV ). In the CPB method, we select the reference

21



Co-occurrence Pixel-Block Background Model and its Application to Robust Event

Detection Wenjun ZHOU

block for each target pixel block by block; the computational complexity is based on the

size of block: O1(
UV
mn )+O2(mn) = 1

mnO(UV )+mnO2. Given that 1
mnO(UV ) >> mnO2,

we can take the computational complexity of CPB to be 1
mnO(UV ). Hence, it is clear in

theory that CPB offers a greatly improved computational complexity compared to CP3,

a fact that we demonstrate in the end of the Chapter 2.

Another advantage of CPB is its superiority over CP3 in actual object-detection tests.

The fact that CP3 selects pixels with strong co-occurrence probability with the target

pixel as the supporting references may lead to an concentrated distribution of supporting

pixels . This could lead in turn to the target pixel being exposed in the frame whereas

the majority of supporting pixels are occluded by objects. This type of situation can

easily cause the state of the target pixel to be estimated erroneously. By using blocks

as the supporting references of the target pixel in CPB, their distribution over a large

and dispersed region avoids the occlusion by objects. In this way, CPB can reduce the

likelihood of erroneous detection and lead to more reliable and robust object detection,

which is why we adopt this new improved “pixel to block” structure. The results of

doing so are discussed in next chapter.

In the CPB method, ∆k is modeled at the training stage as a single Gaussian

model whose unique mean and variance are then evaluated. We define {QB
k }k=1,2,...,K =

{QB
1 , Q

B
2 , ..., Q

B
K} as the supporting blocks for target pixel p. We design two steps to

distinguish between foreground and background pixels at the detecting stage: (1) iden-

tify whether a co-occurrence pair (p,QB
k ) can be well described by the single Gaussian

model at the detecting frame; (2) from a total of K pairs, record the unsteady state of

pairs (p, {QB
k }) that do not accord with the single Gaussian model. If the probability of

an unsteady state is high, the target pixel p should be a foreground pixel. We explain

the steps of object detection in Chapter 3.

2.3 Training stage in CPB

2.3.1 Supporting blocks selection

In this section, we present an original measurement for selecting the supporting blocks

{QB
k } for each target pixel p. The procedures are summarized as follows.

1. Define the location of block QB. We divide each frame into blocks QB, the location

of which is QB(u′, v′).

2. Select the supporting blocks {QB
k }. We utilize Pearson’s product-moment cor-

relation coefficient to estimate the linear correlation between target pixel p and block

QB
k :

γ(p,QB
k ) =

Cp,Q̄k

σp · σQ̄k

(2.2)

and

−1 ≤ γ(p,QB
k ) ≤ 1. (2.3)
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The covariance of pair (p,QB
k ) can be defined as

CQ
p =

1

T

T∑
t=1

[Ip(t)− ε(Ip(t))][ĪQ(t)− ε(ĪQ(t))], (2.4)

and the variances as

σ2
p =

1

T

T∑
t=1

[Ip(t)− ε(Ip(t))]
2 (2.5)

and

σ2
Q̄k

=
1

T

T∑
t=1

[ĪQ(t)− ε(ĪQ(t))]
2. (2.6)

The expectation values of p and QB
k are

ε(Ip(t)) =
1

T

T∑
t=1

Ip(t), (2.7)

ε(ĪQ(t)) =
1

T

T∑
t=1

ĪQ(t), (2.8)

where

• T is the sequence of frames, the size of each is U×V ;

• the size of one block QB
k is m×n(m < M,n < N);

• each block consists of m×n pixels;

• Ip(t) is the intensity of target pixel p in frame t; ĪQ(t) is the average intensity of

block QB
k in frame t.

For each target pixel p(u, v) with M×N−1 values of γ(p(u, v), QB
k (u

′, v′)) need to be

calculated. Block QB
k (u

′, v′), having a high value of γ(p,QB
k ) with target pixel p(u, v),

can be selected as the reference block QB
n . Collectively, the reference blocks that satisfy

the requirement of having the highest K components in the array {γ(p,QB)} can be

nominated as the candidate blocks. Taking the candidates QB
1 , Q

B
2 ∈ QB

n by way of

example, we order them so that QB
1 > QB

2 if γ(p,QB
1 ) > γ(p,QB

2 ).

The supporting block set {QB
k }k=1,2,...,K is defined as follows:

{QB
k }k=1,2,...,K = {QB|γ(p,QB

k )is the highest K components}andγ(p,QB
k ) > 0. (2.9)

In general, we can expect that if the pixel-block pair (p,QB
k ) keeps a high correlation

coefficient, then the supporting block Qk can provide some reliability to estimate the

current state of the target pixel p. Fig. 2.5 shows example layouts of the supporting

blocks using PETS2001 − dataset3 − camera1 and the target pixels are selected from

the four representative regions: “Grass,” “Road,” “Building,” “Sky,” respectively. Here,

K=10, and the size of each block is 5× 5.
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Figure 2.5: Example layouts of pixel-block pairs for different position pixels p1(256, 483),

p2(551, 432), p3(481, 168) and p4(250, 41), respectively, where K = 5 and the size of each

block is 5×5, and examples of the correlation of pairs at different position, respectively.

2.3.2 Background modeling

In this section, we discuss how to build the background model by using a single

Gaussian model.

In Section 2.3.1, we introduce how to select supporting blocks {QB
k }k=1,2,...,K for each

target pixel p. To ensure robustness and computational efficiency, we set the number of

supporting blocks to K = 20. Each supporting block QB
k retains a differential increment

with target pixel p:

∆k ∼ N(bk, σ
2
k) ∆k = Ip − ĪQk

, (2.10)

where Ip is the intensity of the pixel p at t frame, ĪQk
is the average intensity of the block

QB
k at t frame and σ2

k be considered as the noise ε, which follows a normalized distribution

k ∼ N(0, σ2
ε). From our previous work [25], we know that a single Gaussian model works

well with the selected pixel block pairs, which tolerate noise by maintaining a favorably

steady relationship. In CPB, each pixel-block pair(p,QB
k ) owns an unique Gaussian and

we record two parameters that the differential increment bk and the standard deviation

σk as model as Fig.2.1 shows.
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(CPB) 2.3. Training stage in CPB

Algorithm 1 Background model building

Input:

T training frames;

Output:

a list of {QB
k }k=1,2,...,K consisting of [uk, vk, σk, bk];

for each pixel p do

1. Compute γ(p,QB
k ) based on Eq. 2.2.

2. Select{QB
k } = {γ(p,QB

k ) is the highest K components, γ(p,QB
k ) > 0}.

3. Compute and record [uk, vk, σk, bk].

return [uk, vk, σk, bk]

end for

Where, bk is defined as the following expression:

bk =
1

T

T∑
t=1

∆k (2.11)

and the variance estimation is defined as follows:

σ2
k =

1

T

T∑
t=1

(∆k − bk)
2, (2.12)

where T is the sequence of frames. Through the training process, the parameters σk

and bk are recorded as a model description for the next detecting stage and then the

background model is built as a list consisting of [uk, vk, bk, σk] for supporting block set

{QB
k }k=1,2,...,K , where (uk, vk) is the coordinate of supporting block.

In summary, the pseudo-code of background model building of CPB method is shown

in Algorithm 1.

2.3.3 Robust against complex scenes

The CPB model can deal well with complex scenes such as illumination changes or

background motion. It is also robust to some extreme scenes, including camera jitter, in-

termittent object motion, and dynamic background (sudden background motion). These

extreme scenes are explained in detail in this chapter and the experimental verification

is discussed in Chapter 3.

• Camera jitter: in video surveillance, camera jitter is a problem that must be

solved for background subtraction. Camera jitter, which is movement of the cam-

era, may introduce motion blur, and thus limit resolution quality [90]. Conse-

quently, accurate object detection in the presence of camera jitter is challenging

[91, 92]. However, CPB still achieves good performance in the presence of camera

jitter by using the co-occurrence background model. This is because camera jitter
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is a regular movement and this kind of motion information can be learned by CPB

during training, thereby avoiding interference in the detection of the current frame.

• Intermittent object motion: is a difficult challenge for object detection and

includes background objects moving away, abandoned objects, and objects stop-

ping for a short while before moving away. It is difficult for background subtrac-

tion to detect the actual changes in objects from the background. CPB acquires

the feature information from the initial background, which does not suffer from

interference by object motion, and thus obtains the object motion information

accurately.

• Dynamic background (sudden background motion): includes the follow-

ing kinds of changes in background: regular movement (e.g., rippling water) and

sudden movement (e.g., changing advertising boards). These movements in the

scene are regarded as background motion. Here, sudden background motion is

discussed, which is a different challenge than distinguishing foreground from back-

ground. CPB learns background information, and this information can also be

the spatio-temporal context [93], which is stable against the interference of object

movement. By obtaining the background spatio-temporal context, CPB is robust

for object detection with dynamic backgrounds.

2.3.4 Computation time in training

We compare the computation times between CPB and our previous CP3. Here, we

use AIST-Indoor for the test, which is facilitated by the 300 frames in the dataset that

are provided specifically for training. In CP3, the author also offers an accelerated

method for CP3, which we include in the experiment by way of competition. Table 2.1

gives the average processing speeds on the same platform (2.3 GHz Core i7CPU; 8 GB

of RAM; MATLAB).

From the results, CPB can greatly reduce the computation time for model building in

comparison with our previous work, CP3. This may contribute to the real applications,

especially for the real-time application. In addition, the computation time of CPB in

training is based on the setting of supporting block size, In theory, the larger supporting

block will lead less training time, however, the size of supporting block is limited by

the original size of the input data, and we also have to consider the balance between

supporting block size and the accuracy foreground detection. In this thesis, because the

data size of all experiments is 320×240, we set the block size as 8×8, which is also an

experimental-based empirical value that satisfies the balance between training time and

detection accuracy.
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Table 2.1: Comparison of computation times

Method Average computing time (sec.)

CP3 126.33

Accelerated CP3 5.02

CPB 2.15

2.3.5 Training data selection

In this section, we want give some comments on how to select the training data as

an important step in our CPB’s mechanism. We need an enough set of suitable data

for training, and then CPB may train itself properly to detect excepted foreground

pixels. It has been a common and important problem in the algorithms that need any

training data, such like IMBS[68] or SuBSENSE[22] as Fig. 4.7 in Section 4.2.2 to do

this preparation. In this paper, since we use many databases that have their own ground

truth frames and therefore we can see some types of the expected foreground pixels, such

as walking peoples or vehicles, it is possible to select some frames as the training data,

which do not include any excessive foreground pixels. But in any real tasks in which it

is not reality to take high cost for making effective ground truth data, one may have to

make the training data or frames through implicit definition of foreground pixels and

selecting the proper frames. Therefore, in our experimental demonstration, we prudently

select the frames for training to avoid the emergence of adversarial data.

2.4 Summary

In Chapter 2, we presented a detailed introduction of the Co-occurrence Pixel-Block

Background Model (CPB), which is a novel “pixel to block” structure for background

model based on our previous work, CP3. Then, we explained the procedure of CPB in

training to build the background model. Compared with CP3, CPB significantly reduces

the computational complexity in training, which is proved in Table 2.1. Moreover,

with the dispersed distribution in structure CPB can reduce the likelihood of erroneous

detection and lead to more reliable and robust results in foreground detection, this will

be verified in next chapter.
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The proposed methods establish a competitive binary classification mode for object

detection [2]. We encompass this mode in our CPB by calculating the pixel block pairs

(p, {QB
k }k=1,2,...,K) in turn. This includes two procedures: (1) estimating the steady or

unsteady state of each co-occurrence pixel block pair (p,QB
k ); (2) estimating whether

pixel p is a foreground or background pixel.

3.1 Pixel-block pair state

Based on the co-occurrence background model built above, CPB can acquire the

spatial-temporal information of target pixel p and then compare the difference between

target pixel p and supporting block QB
k to judge the state of target pixel p as shown

in Fig.3.1. Once the co-occurrence relation appears an outlier, such situation would

be regarded as an unsteady state of pixel-block pair(p,QB
k ) at current frame, thereby

we could estimate target pixel p as foreground. This knowledge can be realized as the

following: the state F (unsteady) means p may be occluded by any foreground object,

while the state B (steady) means that p may be exposed to the camera as it has been

in the statistical training frames. In order to obtain any difference between these two

states, for each pixel p, we introduce an index value as a “penalty” for violating the

relationships authorized at the statistical training process. In other words, if the state

F is associated with pixel p and the pixel value may also be changed, therefore we can

utilize statistical tests in which the difference may belong to the registered distribution

or be rejected as a value outside of the distribution.
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Figure 3.1: Co-occurrence intensity changes between target pixel p and supporting block

QB overtime.

For each pair (p,QB
k ), a binary function for identifying its steady or unsteady state

can be defined as follows:

ωk =

1 if |(Ip − IQmn)− bk| ≥ η · σk
0 otherwise

, (3.1)

where Ip is the intensity value of pixel p at the current frame, IQmn is the intensity value

of pixel Qmn (as in equation 2.1), block QB consists of m×n pixels, Qmn is a pixel that

belongs to blockQB, and η is a constant. If all the pixelsQmn : |(Ip − IQmn)− bk| ≥ η·σk,
then ωk = 1 and the pair (p,QB

k ) is an unsteady state.

It is important to note that in our CPB method, we use |(Ip − IQmn)− bk| ≥ η · σk
to estimate the unsteady state of each pair (p,QB

k ) and we record the unsteady state as

ωk = 1. This is different to our previous CP3 method, in which we record the steady

state of a pixel pair, for which the difference ∆k still follows the Gaussian distribution

at the current frame. In contrast, in the CPB method we record the unsteady state of

each pair, for which the difference ∆k fails to accord with the Gaussian model, meaning

the correlation between pixel p and block QB
k is changed at the current frame. This is a
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very important transformation in CPB, which will be confirmed in the next subsection.

3.2 Correlation dependent decision

In CP3, the decision of the state of the target pixel was based on the number of

changes of co-occurrence pairs: when the number of changes reached a certain value,

we determined the target pixel as being in the foreground. However, there is a problem

with such a judgment: we need to set a global threshold for it, and usually this global

threshold is an empirical value learned from experiments based on datasets. Note that

this selection policy may be prone to an error and lacks generality for other datasets

To deal with this problem, we introduce a novel evaluation strategy named correlation

depended decision function for accurate object detection based on the correlation of co-

occurrence pixel-block pairs as follows. In Section 3.3, we present a comparison to verify

our evaluation strategy.

At the statistical training stage of CPB, for each pixel p of the whole frame, a set of

supporting blocks {QB
k }k=1,2,...,K may be expected to have high co-occurrence probabil-

ities and high values of γk (γ(p,QB
k ) is aliased as γk). As an instance, Fig. 3.2 illustrates

a set of distributions that shows multiple pairwise relationships between the target pixel

and each supporting block.

Figure 3.2: Correlation coefficient of pixel block pair (p,QB
k ).
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After identifying the steady or unsteady state of each pair (p,QB
k ), K components

of ωk are produced for the following decision of each pixel p. To record the state of

pixel p, we introduce another weighting factor into the above definition described in

section 3.1. Obviously, each pixel p has multiple supporting blocks {QB
k }k=1,2,...,K with

corresponding γk. We propose that a higher γk may have more of an effect on the state

of pixel p, which is then realized by using γk values as weighting factors as follows:

Γ =
K∑
k=1

ωk · γk. (3.2)

with two following significances: first, Γ could count up the unsteady pairs; second, the

maximum value of Γ could be possibly obtained in the case that all of K elemental pairs

are in the unsteady state and it is also a relative value with respect to the target pixel.

Furthermore, Γ would not miss to count any high γk in the summation to lead a wrong

decision. To realize relative decision making on Γ , we can have the following possible

maximum value of it.

According to Eq. 3.2, Γ records the state of pixel p fromK pixel-block pairs (p, {QB
k }).

In our CPB method, Γ has two roles. Firstly, Γ calculates the number of pairs (p, {QB
k })

that are in the unsteady state. Secondly, Γ indicates the unsteady state of pairs

(p, {QB
k }) that have high co-occurrence probabilities. In other words, when the value of

Γ is high, the majority of pairs are in unsteady state, and a large number of pairs that

previously had high co-occurrence probabilities have been converted to the unsteady

state at the current frame. Therefore, it is highly likely that pixel p is a foreground

pixel.

To classify whether pixel p is a foreground or background pixel, the evaluation crite-

rion is defined as follows:

if Γ > λ · Γall, then

p is foreground

else

p is background, where

Γall =

K∑
k=1

γk (3.3)

and Γall records the values {γk}k=1,2,...,K from K pixel-block pairs (p, {QB
k }k=1,2,...,K).

Contacting Eq. 3.2 with Eq. 3.3, it is natural to estimate the state of pixel p through a

comparative analysis between the values of Γ and Γall.

As shown in Fig. 3.3, if the value of Γ is high, it is highly likely that pixel p is a

foreground pixel. In our CPB, we set the threshold for Γ as λ · Γall, 0 ≤ λ ≤ 1, that

is, when Γ > λ · Γall, then pixel p should be in the foreground. The pseudo-code of the

algorithm for detecting objects is presented in Algorithm 2.
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Figure 3.3: Relationship between Γ and Γall.

3.3 Performance verification

In this section, we select four challenging datasets including indoor an outdoor scenes

to verify the performance of CPB, that come from the Change Detection Challenge [94],

the PETS2001 public dataset (dataset 3, camera 2, testing; the ground-truth comes

from the Department of Advanced Information Technology, Kyushu University) and

the AIST-Indoor dataset provided by the National Institute of Advanced Industrial

Science and Technology in Japan. The datasets: (1) PETS2001 -camera 2 with gradual

illumination changes; (2) pedestrians, outdoor in high contrast; (3) PETS2006, indoor

in low contrast; and (4) AIST-Indoor with sudden illumination changes.

Here, we analyze our method by comparing its results with those of four other ap-

proaches: GMM [15], KDE [16], Oliver’s SL-PCA [17], the state of the art technique

IMBS[68], and our previous algorithm CP3 [25].

Figures 3.5–3.8 show examples of foreground detection for a typical frame from each

dataset sequence, the results of all four scenes from PETS2001, baseline-pedestrians,

baseline-PETS2006, and AIST-Indoor. The sequences are challenging in relation to

high or low contrast, moving trees, sunlight, and sudden changes in illumination condi-

tions, respectively. Table 3.1 lists the results of our CPB compared with the other four

methods for all four challenging datasets. Figure 3.9 shows an example of the perfor-

mance between CPB and the other four methods over time in an outdoor scene with

high brightness.

3.3.1 Performance of correlation depended decision function

In order to verify the performance of our novel evaluation strategy, correlation de-

pended decision function for foreground detection, we designed an experimental compe-

tition. We compare the performance between two evaluation strategies: our correlation

depended decision function introduced in Section 3.2, and the previous binary classifi-

cation strategy [25]. We set a threshold of T = 10 for the previous binary classification
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Algorithm 2 Correlation dependent decision

Input:

Testing frame; Parameters: η and λ ;

Output:

The state of pixel p;

for each pixel p do

1. Load [µk, vk, bk, σk] for each pair (p,QB
k );

2. Estimate the state of each pair;

for k = 1, 2, . . . ,K do

if all the pixels Qmn : |(Ip − IQmn)− bk| ≥ η · σk then

ωk = 1

else

ωk = 0

end if

end for

3. Foreground detection

Compute Γ

if Γ > λ · Γall, where Γall =
∑K

k=1 γk then

p is foreground

else

p is background

end if

return the state of pixel p

end for

strategy, which means the target pixel should be in the foreground if more than half the

pairs are in the unsteady state. In this competition, we select different number of frames

from the baseline-pedestrians dataset for training (from 100 frames to 750 frames, with

an interval of 50 frames) in order to compare the efficiency of both strategies.

From the results in Fig. 3.4, we note that our CPB with the correlation depended

decision function performs better than CPB with the previous binary-classification strat-

egy. Meanwhile, CPB with the novel evaluation strategy also leads to high precision with

a small number of training data. Hence, the correlation depended decision function is

associated with good performance and may reduce the required the training data. This

means that this novel evaluation strategy could be applied more effectively in real-world

situations.
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Table 3.1: Comparison of CPB with other methods

Methods Accuracy Precision Recall F-measure

GMM 0.9891 0.4819 0.8886 0.6249

KDE 0.9034 0.2740 0.8209 0.4109

SL-PCA 0.9178 0.2970 0.9257 0.4497

IMBS 0.9835 0.4828 0.8632 0.6192

CP3 0.9850 0.3733 0.7611 0.5009

Our CPB 0.9938 0.8441 0.5157 0.6402100 200 300 400 500 600 700 80000.20.40.60.81
Training frames

P
re
ci
si
o
n

novel strategyprevious strategy
Figure 3.4: Comparison between novel evaluation strategy and previous binary classifi-

cation strategy.
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3.3.2 Discussion

Figs. 3.5–3.8 show that the performance of CPB is good compared with other meth-

ods. In particular, in Fig. 3.8, CPB is robust under sudden indoor illumination changes

and the target pedestrian is extracted accurately. Moreover, CPB effectively restrains

noise extraction at low or high contrast (Figs. 3.5 and 3.6), achieving an accurate result.

This is also demonstrated in Figure 3.9(a), where CPB retains high precision under high

brightness outdoors conditions over time. The high precision confirms that CPB resists

noise.

CPB can achieve the first F −measure level in the comprehensive comparison, which

highlights the effectiveness of CPB for foreground detection in challenging scenes (3.1).

In addition, the Recall of CPB is relatively low because, in real testing, CPB may cause

some errors in the results called holes, which are incorrect pixels in the foreground. This

is a particular problem if a foreground object’s color is similar to that of the background,

which may cause holes in the detected foreground [95]. After converting an image to a

gray-scale equivalent, dark colors in the foreground and background may have similar

intensities [25], which may cause holes in the foreground.

Generally, high precision is more important to us , especially because high-precision

detection can greatly reduce errors in object tracking or traffic monitoring. Although

real-world applications require high-precision detection, low Recall can be tolerated

under certain circumstances. This problem is addressed by modifying CPB with a new

strategy called the HoD, which will be discussed in the next section.
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3.4 Summary

Chapter 3 proposed how to do the foreground detection by using CPB feature. First,

we introduced a novel evaluation strategy named correlation depended decision function

for accurate foreground detection, which is a weight based method using the correlation

coefficient γk. And then, we also proved the performance of CPB in different scenes

with high or low contrast, moving trees, sunlight, and sudden changes in illumination

conditions, respectively. The resuls from Fig. 3.5–3.8 and 3.1 shows the interest of our

CPB.
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Figure 3.5: Comparative maps of five different background-subtraction methods for a

frame taken from PETS2001 : (a) Input frame; (b) Ground truth; (c) CPB; (d) GMM;

(e) KDE; (f) SL-PCA; (g) IMBS; (h) CP3.

38



Chapter 3. Foreground Detection 3.4. Summary

Figure 3.6: Comparative maps of five different background-subtraction for a frame taken

from baseline-pedestrians: (a) Input frame; (b) Ground truth; (c) CPB; (d) GMM; (e)

KDE; (f) SL-PCA; (g) IMBS; (h) CP3.
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Figure 3.7: Comparative maps of five different background-subtraction methods for a

frame taken from baseline-PETS2006 : (a) Input frame; (b) Ground truth; (c) CPB; (d)

GMM; (e) KDE; (f) SL-PCA; (g) IMBS; (h) CP3.
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Figure 3.8: Comparative maps of five different background-subtraction methods for a

frame taken from AIST-Indoor : (a) Input frame; (b) Ground truth; (c) CPB; (d) GMM;

(e) KDE; (f) SL-PCA; (g) IMBS; (h) CP3.

41



Co-occurrence Pixel-Block Background Model and its Application to Robust Event

Detection Wenjun ZHOU

Figure 3.9: Comparison in outdoor scene for CPB, CP3, GMM, KDE, SL-PCA and

IMBS for a frame over time taken from pedestrians: (a) precision; (b) recall; (c) F-

measure.
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Chapter 4. Hypothesis on Degradation

Modification

(HoD)

In Chapter 2 and 3, we have introduced the basic CPB algorithm for robust background

subtraction, however, where the data for training and detecting are prepared in advance

of the operations. In this work, we define two types of problems open-set (generalization

problem), which is shown in Fig. 4.1 (a), where the data in training are known in

advance but the data for detecting are unknown, continuable, and different from the

training data. Open-set is different from the type closed-set (classification problem),

where the detecting data can be selected from the same set of the training data and the

also can be known in advance as shown in Fig. 4.1 (b). We may have some mechanism

to modify the model to fix some errors which may be observed in open-set condition.

In general, hypothesis of this paper follows two significances: (1) we assume that some

“noise” may arise in detecting process due to a long time usage of initial CPB background

model and we can not confirm such “noise” is true or not without any ground truth for

verification in real applications; (2) second, we assume that after a prolonged using, the

initial “Pixel to Block”structure can no longer adapt to the current, then resulting in

errors. Then, based on the above assumptions, in this section, we intend to introduce

a simple mechanism named Hypothesis on Degradation Modification (HoD) extended

from CPB to adapt the background changes and reinforce the robustness of CPB to

resist the “noise” in real applications.
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Figure 4.1: Descriptions of open-set and closed-set conditions.

4.1 Hypothesis on degradation modification

We have introduced the basic CPB algorithm for robust background subtraction,

however, where the data for training and detecting are prepared in advance of the oper-

ations. In this work, we define two types of problems open-set (generalization problem),

which is shown in Fig. 4.1 (a), where the data in training are known in advance but

the data for detecting are unknown, continuable, and different from the training data.

Open-set is different from the type closed-set (classification problem), where the detect-

ing data can be selected from the same set of the training data and the also can be

known in advance as shown in Fig. 4.1 (b). We may have some mechanism to modify

the model to fix some errors which may be observed in open-set condition. In general,

hypothesis of this paper follows two significances: (1) we assume that some “noise” may

arise in detecting process due to a long time usage of initial CPB background model

and we can not confirm such “noise” is true or not without any ground truth for ver-
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ification in real applications; (2) second, we assume that after a prolonged using, the

initial “Pixel to Block”structure can no longer adapt to the current, then resulting in

errors. Then, based on the above assumptions, in this section, we intend to introduce

a simple mechanism named Hypothesis on Degradation Modification (HoD) extended

from CPB to adapt the background changes and reinforce the robustness of CPB to

resist the “noise” in real applications.

4.1.1 Hypothesis on degradation

In practice, after a long time utilization of initial CPB background model in an un-

learned sequence, the expected relative relation of the pixel-block pair might be broken.

In other words, initial CPB model might generate a degradation with the passage of time,

then some “noise” might arise in detecting process. Here, we define such assumption as

“Hypothesis on Degradation” and name the “noise ” in detecting process as “hypotheti-

cal noise”: (1) the hole surrounded by the detected foreground pixels, which is estimated

as the background and we named it ‘NaB’; (2) the dot surrounded by the non-detected

pixels, which is estimated as the event and we named it ‘NaE’. Fig. 4.2 shows an ex-

ample of the hypothetical noise using copyMachine from CDW-2012 dataset[94]. To

reinforce the merits of CPB background model, we introduce a tactic named Hypothesis

on degradation modification (HoD) into the CPB structure to remove the hypothetical

noise.

Fig. 4.3 describes an overview of the proposed HoD. Note that HoD is not one post-

processing technique, in this study, HoD is an update approach of model structure to

reinforce the robustness of CPB, and it is also a feasible on-line mode of CPB structure

in future. Moreover, we also can clearly notice that HoD is a self-checking mode, which

is completely different from the retraining mode. In HoD mode, it costs less time and

consumes less data cost over a period of usage, and is more efficient than the retraining

mode.

Figure 4.2: Description of hypothesized noise.
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Figure 4.3: Overview of HoD Modification.

4.1.2 Broken pixel-block pairs detection

As shown in Fig. 4.3, first we need to detect the broken elemental pairs in pixel-block

structure of the hypothetical noise. In this study, we assume that the larger γ (mentioned

in Section 3.2) could hold a higher weight in the trained pixel-block structure and such

pair would be more likely to affect the state of pixels. Thus it is obvious that the pairs

with large γ in unsteady state might cause a decision on NaE, whereas the pairs with

large γ in steady state might cause a decision on NaB. With the above assumption, we

propose a weight-based decision function to detect the broken pair:

if γm ≥ γ̄, then (p,QB
m) is broken (4.1)

where (p,QB
m) is the pair, which is in unsteady state of NaE or steady state of NaB.

Depending on the noise is NaE or NaB, the threshold γ̄ owns different definition. In

the case of NaE, it is defined by use of the total number of unsteady pairs M =
∑K

k=1 ωk

as follows:

γ̄ =
1

M

K∑
k=1

γk · ωk =
1

M
Γ. (4.2)
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In the other hand, for NaB case, it is defined as follows:

γ̄ =
1

K −M

K∑
k=1

γk · (1− ωk) =
1

K −M
(Γall − Γ ) . (4.3)

There is a slight difference in the above definitions, and then we record these broken

pairs for the next process. This process is shown in pseudo-code in Algorithm 2.

Algorithm 3 Broken pixel-block pairs detection

Input: Initial model structure of the hypothetical noise p;

Output: Broken pixel-block pairs

Detect the broken pixel-block pairs;

for each pair (p,QB
m) do

if γm ≥ γ̄ then

(p,QB
m) is broken pair

else

(p,QB
m) is stable pair

end if

return the state of pair (p,QB
m)

end for

Record the broken pixel-block pairs.

4.1.3 Structure modification

Then, we try to exchange the broken pair by new one which is kept as a spare pair in

the training process and remove the hypothesized noise by using the modified pixel-block

structure as shown in Fig. 4.3. First, we remove the broken pixel-block pairs and re-

place by the new pairs from candidate supporting blocks set {QB
1 , Q

B
2 , ..., Q

B
K , QB

K+1, ...}
(update in order). At last, a modified structure can be constructed and then we use the

modified structure to modify the “hypothetical noise” to get a modified result.

As we discussed at first, HoD is a new strategy for the background model update.

It is not only applied on the top of CPB, but also can be applicable to the other pixel-

correlation based algorithms (such as ViBe[20] based on random neighboring pixels,

SuBSENSE[22] based on local binary similarity patterns features or our previous work

CP3[25]), HoD provides a new and natural thought: the structure of background model

can be updated by the designed correlation weight, which is discussed in details in

Section 3.2 and the validity of HoD is proved in Section 4.2 and 4.3.
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4.2 Ability of HoD

4.2.1 Verification of HoD’s performance

In this section, in order to verify the HoD’s performance under open-set condition,

we compare the results of CPB and CPB+HoD in the sequence canoe, which is a typical

scene with rippling water [94]. In this experiment, we select the first 300 frames for

training and then at detecting process, the frame #845 to #930 with the continuous

movement of the canoe, a total of 86 frames are selected as the testing frames. Fig.4.4

shows the typical results of CPB and CPB+HoD and Fig. 4.5 illustrates the F-measure

and False Positives comparison between CPB and CPB+HoD in the sequence canoe

overtime. From Fig. 4.4 and Fig. 4.5, it is clear that with the help of HoD, CPB+HoD has

a significant improvement over CPB and further restrained the noise in scene. Table.5.2

illustrates a change in False Positives of ♯860 and ♯900 between CPB and CPB+HoD,

from the table, we can note that HoD greatly restrains the noise in dynamic scene, in

which as one example, the FalsePositives in #860 drastically dropped from 320 to 1.

These results suggest that HoD can effectively suppress the degradation in CPB with

the passage of time.

Table 4.1: A change in False Positives of ♯860 and ♯900

Methods
The number of False Positives

♯860 ♯900

CPB 320 350

CPB+HoD 1 33
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Figure 4.4: Typical results for CPB and CPB+HoD in the sequence canoe.
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Figure 4.5: Comparison of CPB and CPB+HoD in the sequence canoe overtime.

As we introduced, with the help of HoD, CPB can update the pixel-block structure

to further restrain the noise in background and adapt the changes overtime. This is the

reason that CPB+HoD can lead a better result than CPB.

4.2.2 Ability of HoD under adversarial data

To get an idea of what adversarial looks like, consider one demo from “Explaining

and Harnessing Adversarial Examples”[96]: inputting a panda image, and adding some

perturbation that has been evaluated to make the image be recognized as a gibbon with

high confidence. Similarly, we can define the following training data as the adversarial

data:

• training data includes a high-density crowd or large-scale object;
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• foreground information is mixed with or even covers background.

Fig. 4.6 shows a typical example of adversarial data, which is from the sequence

fall with swaying branches in the CDW-2012 dataset[94]. The giant truck passes the

background and covers half of the background information. The typical results under

adversarial training are shown in Fig. 4.7. In this case, the training data includes 150

frames (#2460-#2609, selected from the sequence fall): (a) 120 frames without any

large-scale objects (#2460-#2579); (b) 30 frames with a giant truck (#2580-#2609)

and the interference rate is 20 %, we define the interference rate as the percentage of

adversarial frames to total frames.

As mentioned in Section 2.3.5, CPB is not good at the adversarial data. However,

HoD can help CPB to resist the interference from the adversarial data and we design

the experiments to verify the ability of HoD and the details are presented in Table. 4.2.

Fig. 4.9 shows the typical results of CPB and CPB+HoD and Fig. 4.8 shows the F-

measure comparison between CPB and CPB+HoD in the six different cases.

Figure 4.6: A typical example of adversarial data: giant truck passes the background.

Table 4.2: Experimental design under the adversarial training data from the sequence

fall
Case Interference rate Frames without any large-scale objects Frames with a giant truck Total number of frames

1 5% #2010-#2579 (570 frames)

#2580-#2609 (30 frames)

600 frames

2 10% #2310-#2579 (270 frames) 300 frames

3 15% #2410-#2579 (170 frames) 200 frames

4 20% #2460-#2579 (120 frames) 150 frames

5 25% #2490-#2579 (90 frames) 120 frames

6 30% #2510-#2579 (70 frames) 100 frames

We note that CPB will lose the efficiency as the interference increases. However,

HoD can help CPB to resist the interference, which is demonstrated in Fig. 4.9 and

Fig. 4.8, because HoD can repair and stabilize the initial model structure of CPB by

selecting new pixel-block pairs from the candidate supporting block set as described in

Section 4.1. The results demonstrate the ability of HoD under the adversarial data.
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Figure 4.7: Influence of adversarial data on the detection.

4.2.3 Discussion

The HoD prevents the degradation of the CPB model over time (Figs. 4.4 and 4.5).

The HoD allows the CPB model to adapt to background changes to better resist noise

generation and maintain its robustness. In addition, the HoD has better adaptability

to adversarial data (Figs. 4.9 and 4.8). Under certain circumstances, CPB+HoD can

achieve better results without being affected by the adversarial data.

Because the HoD can provide a new update strategy for the CPB model with the

modified background model structure to replace the broken pairs, this strategy stabilizes

the robust structure of the model and enables the CPB model to maintain efficiency over

long-term use.

In general, the HoD provides a new, intuitive strategy for the pixel-correlation algo-

rithms of the background model to update to maintain the robustness of algorithms to

background changes after prolonged use.
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4.3 Summary

Chapter 4.1 proposed the Hypothesis on degradation modification (HoD) . First, we

introduced the mechanism of HoD in detail including three steps: (1) ‘broken pairs’

detection; (2) ‘broken pairs’ modification; (3) update with modified model. Then, we

verified the performance of HoD with the reliable experiments. Moreover, we proved the

ability of HoD under the adversarial data.
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Figure 4.8: Comparison of CPB and CPB+HoD in six interference cases.
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Figure 4.9: Typical results of CPB and CPB+HoD in different interference cases.
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In this chapter, we would like to introduce the evaluation of experiments for our methods

including five main contents: (1) Analysis measurements; (2) Experimental setup; (3)

Experimental comparison: (4) Parameter discussion and (5) Computational cost. In the

end, the discussion will be presented to have a summary of the experimental results for

our methods CPB and CPB+HoD.

5.1 Analysis measurements

In our CPB, we use the correlation between co-occurrence pixel-block pairs to detect

objects. This can lead to more sensitive pixel detection than the coarse block detection

of co-occurrence-based block-correlation methods [41, 97]. To analyze the quality of our

method, we utilize four common analysis measurements: Accuracy, Precision, Recall,

and F-measure. These metrics are widely used to estimate performance in pattern

recognition and binary classifiers[98, 99, 100], as well being used to evaluate the quality

of background subtraction methods [75, 101]. Here, Acc(i), Prec(i), and Rec(i) for test

frame i are defined as

Acc(i) =
TP (i) + TN(i)

TP (i) + TN(i) + FP (i) + FN(i)
, (5.1)

Prec(i) =
TP (i)

TP (i) + FP (i)
, (5.2)

Rec(i) =
TP (i)

TP (i) + FN(i)
, (5.3)

where

• TP (i) is the number of true positive pixels in frame i;

• FP (i) is the number of false positive pixels in frame i;

• TN(i) is the number of true negative pixels in frame i;

• FN(i) is the number of false negative pixels in frame i.

True positive, false positive, true negative and false negative are four possible out-

comes in an instance. If the instance is positive and it will be classified as positive, it is

counted as a true positive; if it is classified as negative, it is counted as a false negative.

If the instance is negative and it will be classified as negative, it is counted as a true
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negative; if it is classified as positive, it is counted as a false positive. Fig. 5.1 shows

an abridged general view of the analysis measurements: Accuracy, Precision and Recall

that can be calculated from it. Through Fig. 5.1, Accuracy can be seen as the proximity

of measurement results to the ground truth, Precision can be seen as a measure of ex-

actness for foreground extraction and Recall can be seen as a measure of completeness

of detection.

Figure 5.1: Abridged general view of the analysis measurements: Accuracy, Precision

and Recall.

The Accuracy is defined by:

Accuracy =
1

I

I∑
i=1

Acc(i). (5.4)

The Precision is defined as:

Precision =
1

I

I∑
i=1

Prec(i). (5.5)

The Recall is defined as:

Recall =
1

I

I∑
i=1

Rec(i). (5.6)

Accuracy, Precision, and Recall are calculated as average value for the test frames.

The F −measure is defined as

F −measure =
2Precision ·Recall

Precision+Recall
. (5.7)
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F−measure is calculated as an average value for the test frames, which is a computing

score of Precision and Recall as a weighted harmonic mean value; I is the test frame

sequence.

For further evaluating our CPB and CPB+HoD, we introduce the peak signal-to-

noise ratio (PSNR) as our metric[102, 103], which can be used o measure the quality

of the estimated resulted compared with the background truth[104]. The definition of

PSNR is calculated as follows:

PSNR = 10 · log10
(

2552

MSE

)
, (5.8)

where MSE is the mean square error.

5.2 Experimental setup

Considering the several challenges of video surveillance for background subtraction

algorithm[75]. We consider the following datasets to evaluate the proposed methods:

• PETS2001 dataset[105]: one typical sequence of gradual illumination changes.

• AIST-Indoor dataset: the sequence with sudden illumination change, which

contains the strong sudden light changes when the auto-door opening, in such

moment it is difficult to detect true foreground from the scene. AIST-Indoor

dataset is provided by the National Institute of Advanced Industrial Science and

Technology in Japan.

• SBMnet dataset[11]: one sequence advertisementBoard with strong background

motion is selected from SBMnet dataset for testing, and this sequence contains an

ever-changing advertising board in the scene.

• CDW-2012 dataset[94]: one typical sequence canoe with water rippling is se-

lected from the CDW-2012 dataset, the sofa sequence with objects stopping for a

short while and then moving away and the sidewalk sequence under camera jitter

condition.

Above these datasets, we use six difficult challenges which are the issues that need

to be solved for background subtraction for the evaluation of our methods:

• Gradual Illumination Changes: the light intensity typically varies during day.

• Sudden Illumination Changes: for example the sudden switch of light, strongly

affects the observation of object to lead a fault for detection.

• Sudden Background Motion: sudden changes in background.

• Regular Background Motion: regular movement e.g. swaying tree, waving

water.
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• Intermittent Object Motion: abandoned objects and objects stopping for a

short while and then moving away.

• Camera Jitter: scene is unstable due to the camera is not fixed.

Experimental comparisons are discussed in Section 5.3. In the thesis, we mainly

focus on gradual illumination changes, sudden illumination changes, regular background

motion and sudden background motion. Major experiments will be presented around

these four challenges as discussed in Section 5.3 in detail.

We compare the proposed CPB and CPB+HoD with six different foreground detec-

tion techniques: GMM[15] and KDE[16], which are two well-known traditional algo-

rithms, and four state of the art techniques IMBS[68], T2FMRF-UV[27],ViBe[20] and

SuBSENSE[22].

At first, GMM[15] and KDE[16] are two main basic standard techniques that are often

used to make the basic comparison[106, 20, 107, 108]. Second, the state of the art tech-

niques IMBS[68] and T2FMRF-UV[27] are the foreground extraction techniques specifi-

cally for dynamic background. And then, ViBe[20] and SuBSENSE[22], which are two of

the leading unsupervised techniques for foreground detection, especially SuBSENSE[22]

is one of the top-ranked techniques in CDW-2012 dataset at present. Based on the above

reasons, we select these six different techniques for comparative experiments.

In contrast to the methods with complex strategies[68, 27, 22], CPB is a low-complexity

algorithm that is more easily realized. The parameters for GMM, KDE, IMBS, T2FMRF-

UV, ViBe and SuBSENSE were set by using the tool bgslibrary[109]. In experiments,

we set each block as 8×8 pixels for CPB, the parameters are shown in Table. 5.1, here

we set η as 2.5 based on our previpus work[25] and another important threshold λ has

been discussed in 5.3 how to decide.

Table 5.1: Parameters setting of CPB

Number of supporting blocks K 20

Gaussian model threshold η 2.5

Correlation dependent decision threshold λ 0.5
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Figure 5.2: Foreground detection results in different challenging sequences.
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Table 5.2: Comparison in different challenging categories
Method Measure Category

Gradual illumination Sudden illumination Dynamic Intermittent object Camera

changes changes background motion jitter

GMM Precision 0.6465 0.6523 0.5151 0.8462 0.4150

Recall 0.9508 0.9207 0.5196 0.6876 0.4811

F-measure 0.7697 0.7636 0.5174 0.7587 0.4456

PSNR 39.46 40.57 26.92 36.11 31.79

KDE Precision 0.5181 0.5896 0.4962 0.7361 0.5640

Recall 0.8836 0.6944 0.4856 0.7820 0.5167

F-measure 0.6532 0.6377 0.4909 0.7583 0.5393

PSNR 17.77 38.16 21.67 25.99 33.68

IMBS Precision 0.5162 0.5760 0.5095 0.8353 0.4457

Recall 0.8841 0.6923 0.5118 0.7298 0.4879

F-measure 0.6518 0.6288 0.5107 0.7790 0.4658

PSNR 16.20 36.36 30.09 28.21 32.10

SuBSENSE Precision 0.9008 0.5864 0.5018 0.9556 0.5966

Recall 0.8840 0.7047 0.5033 0.7803 0.5079

F-measure 0.8923 0.6401 0.5025 0.8591 0.5487

PSNR 54.11 37.14 27.62 32.29 34.92

CPB Precision 0.9566 0.8651 0.7653 0.8928 0.6365

Recall 0.7517 0.8181 0.5118 0.8691 0.5051

F-measure 0.8418 0.8409 0.6133 0.8808 0.5633

PSNR 56.05 53.14 36.64 32.04 34.22

CPB+HoD Precision 0.9652 0.8668 0.7973 0.9079 0.6384

Recall 0.7562 0.8227 0.5214 0.8750 0.5055

F-measure 0.8480 0.8442 0.6305 0.8912 0.5642

PSNR 56.39 53.31 37.39 32.69 34.28
* Note that red entries indicate the best in F −measure, and blue entries indicate the second best.

5.3 Experimental comparison

Fig. 5.2 shows examples of foreground detection for a typical frame from each dataset

sequence. Table 5.2 lists the results of the performance measurements of CPB and

CPB+HoD with other methods from all the categories, respectively. Compared with

above foreground detection results, the proposed algorithms outperform the methods

GMM, KDE , IMBS and SuBSENSE in most testing sequences. Meanwhile, CPB+HoD

is quite efficient in extracting foreground from sequences that suffers from sudden illu-

mination changes and dynamic background. Furthermore, it is should be noted that

CPB and CPB+HoD can lead high Precision and PSNR in most testing sequences

as the results shown in Table 5.2, that means our algorithm is robust against noise for

detecting foreground in severe scenes.

Based on co-occurrence pixel-block pairs, CPB can build one prospective background

model from a scene, such background model contains spatial and temporal information

of each pixel in sequence, and then CPB can analyze the current sate of each pixel

effectively with these information. In other words, at training process, CPB can learn

the information of scene, whether the scene is dynamic or static, our model can acquire

the regularity of scene. Then, at detecting process, when any object enters into the

scene and the information of this object is out of range of our model, so we can extract
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the object from the scene efficiently.

For that reason, CPB does well in above scenes. On the basis of this, we introduce a

HoD into CPB to adapt dynamic changes in scenes and reinforce robustness in real con-

ditions. Through the results of above experiments, CPB+HoD leads a good performance

in various scenes.

Table 5.3: Performance evaluation for foreground detection during illumination changes
Datasets PETS 2001 AIST

Methods Precision Recall F-measure PSNR Precision Recall F-measure PSNR

GMM[15] 0.6465 0.9508 0.7697 39.46 0.6523 0.9207 0.7636 40.57

KDE[16] 0.5181 0.8836 0.6531 17.77 0.5896 0.6944 0.6377 38.16

IMBS[68] 0.5162 0.8841 0.6518 16.20 0.5760 0.6923 0.6288 36.36

T2FMRF-UV[27] 0.5818 0.8365 0.6863 34.94 0.6382 0.5818 0.6087 45.65

ViBe[20] 0.7059 0.8821 0.7842 43.42 0.5005 0.5146 0.5074 9.11

SuBSENSE[22] 0.9008 0.8840 0.8923 54.11 0.5864 0.7047 0.6401 37.14

CPB 0.9566 0.7517 0.8418 56.05 0.8651 0.8181 0.8409 53.14

CPB+HoD 0.9652 0.7562 0.8480 56.39 0.8668 0.8227 0.8442 53.31
* Note that red entries indicate the best in measurement, and blue entries indicate the second best.

Table 5.4: Performance evaluation for foreground detection during background motion
Datasets SBMnet CDW-2012

Methods Precision Recall F-measure PSNR Precision Recall F-measure PSNR

GMM[15] 0.5151 0.5196 0.5174 26.92 0.6748 0.7024 0.6883 21.71

KDE[16] 0.4962 0.4856 0.4909 21.67 0.6584 0.8630 0.7468 17.22

IMBS[68] 0.5095 0.5118 0.5107 30.09 0.7315 0.8911 0.8035 21.60

T2FMRF-UV[27] 0.5508 0.5179 0.5338 35.38 0.6797 0.6114 0.6438 23.49

ViBe[20] 0.6427 0.5368 0.5850 35.16 0.8114 0.7821 0.7965 28.02

SuBSENSE[22] 0.5018 0.5033 0.5025 27.62 0.9766 0.7649 0.8573 30.80

CPB 0.7653 0.5118 0.6133 36.64 0.9283 0.7730 0.8436 32.61

CPB+HoD 0.7973 0.5214 0.6350 37.39 0.9809 0.7830 0.8708 34.16
* Note that red entries indicate the best in measurement, and blue entries indicate the second best.

We also do more experiments in the main challenges: Illumination changes and

Background motion. Fig. 5.3 shows the typical results on the two challenges and

more experimental results of the foreground detection are presented in Fig. 5.4 and 5.5.

Table 5.3 and Table 5.4 list the evaluation of these approaches in pixel level. F-measure

is the comprehensive evaluation for foreground detection in pixel level and it should be

as large as possible.

• Illumination changes: Fig. 5.4 shows the illumination change challenges, which

are gradual illumination changes (global illumination changes) and sudden illu-

mination changes (local illumination changes). The results demonstrate that our

methods work well during illumination changes, especially sudden illumination

changes. Here, we explain the difference in our model. For example, ViBe[20]

is based on an assumption that the correlation of pixels, that is depended on

the distance in spatial between them (e.g. the LBP feature in SuBSENSE[22],
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where the target pixel has a high correlation with its neighboring pixels). How-

ever, this mechanism ignores the localized relation between each pixel, and the

detection is insensitive and cannot adapt to local illumination changes as shown in

Fig. 4.5. In CPB, due to the multiple supporting blocks for each target pixel, the

co-occurrence pixel-block pairs build a multiple and spatial structure; thus, this

structure maintains a stable statistical correlation more steadily for each target

pixel and abandons the prior assumption of local correlation. This is why, CPB

can extract the foreground sensitively under both global and local illumination

changes as shown in Table 5.3.

• Background motion: Fig. 5.5 also shows two background motion challenges,

which are sudden changes in background like a continuously changing advertising

board in the scene and regular movement like rippling water. Video sequences

contain the temporal context information and our CPB model can learn this infor-

mation from the training data to avoid interference from background information

such as background motion, during the detection process, and then accurately

extract the current foreground information (object). This is different from the ap-

proaches based on local features (e.g., SuBSENSE [22] or ViBe[20]), which cannot

adapt in non-ideal cases, for example, where textures are missing or there is a

dynamic background. Based on this knowledge, our model can handle both of the

changes well, and outperforms other methods significantly for sudden background

motion as shown in Table 5.4.

Based on the results of Fig. 5.4 and Fig. 5.5, Table 5.5 groups the ability of our

methods and others to deal with Illumination changes and Background motion.

The suitable type of secen for each method is also indicated at Table 5.5 in third column.

Table 5.5: Performance evaluation on illumination changes and background motion

Methods Illumination changes Background motion Outdoor/ Indoor

GMM[15] Slow changes - Outdoor

KDE[16] - Slow movement Outdoor

IMBS[68] Slow changes - Outdoor

T2FMRF-UV[27] Slow changes Slow movement Outdoor

ViBe[20] Slow changes Slow movement Outdoor

SuBSENSE[22] Yes Yes Outdoor & Indoor

CPB Yes Yes Outdoor & Indoor

CPB+HoD Yes Yes Outdoor & Indoor

5.4 Parameter discussion

The proposed method involves a significant parameter λ. Next, we discuss how to

select a suitable value for λ. As discussed in Section 3.2, λ is a way to identify the
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state of pixel p. In this case, we utilize the AIST-Indoor for the test and select three

random frames #1653, #2184, and #2945 in order to estimate the results. We test the

distribution of pixels for which Γ
Γall

> 0 in the frame, and the distribution of pixels in

the foreground. Figure 4.4 illustrates an example of the distribution graphs.

Through analyzing the results shown in Fig. 5.6, we find that Γ
Γall

follows the normal-

ized distribution Γ
Γall

∼ N(µ, σ2). In other words, when Γ
Γall

> µ− σ, pixel p is likely to

be in the foreground. Consequently, we can estimate the value of λ through the value of

µ− σ. We compute the values of µ as 0.7457, 0.6116, and 0.8089 from test frames #1653,

#2184, and #2945, respectively; the corresponding values of σ are 0.1140, 0.1849 and

0.2753, respectively. From the calculation, the value of µ− σ is approximately 0.5307.

From the analysis of pixel distribution based on most of our databases, we define an

approximate value of 0.5 as a suitable value for µ− σ. As a result, the value of λ is 0.5

here.

In order to assess the performance of λ = 0.5, we set an interval of [0.05,1] for λ

for reference as a comparison. In this case, we use the sequences from the AIST-Indoor

dataset for the test. We select 10 random test frames based on the ground truth to

calculate the average metrics Precision, Recall, and F-measure. Figure 5.7 illustrates

the results.

As shown in Fig. 5.7, when λ = 0.5, the F-measure has the highest value, and leads to

the best performance considering both the Precision and Recall. Thus, we select λ = 0.5

as a suitable value for our CPB.

5.5 Computational cost

This section, we compare the processing time of our proposed methods with others

in terms of fps. We evaluate the time required in foreground detection with the tool

in the MATLAB platform (Intel E3 3.5GHZ and 16G) and utilize the testing frames

from canoe[94] (frame size: 320×240). From the above results in Table. 5.6, observing

that our methods lead an intermediate level in the detection process. CPB does not

dominate in detecting time as illustrated in the Table. 3.1. Because of the multiple

“pixel to block” structure of CPB, it takes some time to estimate the current state of

the target pixel p as discussed in [81]. For each pair (p,QB), we define all the pixels

Qmn of block QB follow the equation 3.1, then we can estimate the current state of the

pair (p,QB) as described in Section 3.2. Based on this mechanism, it takes time on

detection. To solve this problem, on the one hand, we can appropriately reduce the size

of block to achieve the reduction in detecting time. On the other hand, we would like to

introduce the parallel processing implement into our detection, which is also employed

in[110]. For example, we can divide the current input frame into N non-overlapping

regions based on the number of available CPU cores. Then, detecting the foreground

pixels of each individual region instead of the full scene detection. We would like to

optimize the program to further reduce the processing time on detection in the future.
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Table 5.6: Processing time comparison in FPS

Methods Processing speed

GMM 81

KDE 69

IMBS 33

T2FMRF-UV 60

ViBe 149

SuBSENSE 14

CPB 30

CPB+HoD 27

5.6 Discussion

Compared with the classification algorithms based on ConvNets, training data prepa-

ration for the CPB model is simple. CPB is a statistical model based on the extraction

of background information to distinguish the outliers (i.e., foreground) from the back-

ground. In contrast to ConvNets algorithms, CPB does not need labeled data (separate

background and foreground data) for training. Hence, the cost of training data prepa-

ration for CPB is lower. However, CPB has its own disadvantages for training data

selection. For instance, CPB cannot handle adversarial data well if the training data

includes a high-density crowd or large-scale object, as described in Section 4.2.2. This is

because CPB learns the background information to build the initial background model,

which is a single Gaussian model based on the training data. If the foreground informa-

tion severely interferes with the background, this produces a faulty background model;

therefore, the training data for CPB must be selected carefully.

To reinforce the robustness of CPB, a HoD is proposed here, and the experimental

results demonstrate the performance of the HoD. The HoD can be introduced at any

time to repair or fix broken models. In general, the timing can be predicted by checking

the amount of detected noise in the frames and comparing it with the normal detection

frequency. However, the HoD may lose its effectiveness in some specific applications, such

as small object detection. For example, in detecting and tracking honeybees [111], using

the HoD to modify the initial result may remove the true target (honeybees) and lead

to an erroneous modification. Because small objects are too similar to the hypothesized

noise, as defined in Section 4.1, the HoD may detect the foreground as the hypothesized

noise and lead to an erroneous modification. Thus, the HoD may not be suitable for this

type of application.

5.7 Summary

In the chapter, we first introduced the design of experiments in detail and then we

proved the performance of CPB and CPB+HoD on illumination changes and background
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motion. It can be concluded that CPB and CPB+HoD can deal well with these two

challenges, in particular, our methods perform well at sudden changes challenges (ei-

ther sudden illumination changes or sudden background motion). Moreover, we also

discussed the parameter setting in the CPB and compared the time consumption with

other methods for foreground detection.
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Figure 5.3: Typical results of each method on illumination changes and background

motion.
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Figure 5.4: Representative results from the illumination change challenges: (a) illumi-

nation becomes stronger in daylight; (b) illumination becomes lower in daylight; (c)

automatic door suddenly opens and the light changes; (d) person suddenly enters the

scene, and the light switches on automatically.
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Figure 5.5: Representative results from background motion challenges: (a) advertisement

board starts to change; (b) advertisement board stops changing; (c) canoe enters the

scene; (d) canoe continues to move.
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Figure 5.6: (a) distribution of pixels on #1653; (b) distribution of pixels on #2184; (c)

distribution of pixels on #2945.
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Figure 5.7: Efficiency of different value of λ.
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works

6.1 Conclusions

A prospective background model based on the CPB model for foreground detection

against dynamic scenes was developed. Because the CPB model is a pixel-block struc-

ture model with a correlation-dependent decision function, CPB is more reliable for

foreground detection with background changes. By using a correlation-dependent deci-

sion mechanism, we created a non-parametrized model for CPB. As a spatio-temporal

model, CPB consists of both local and global features for each pixel and achieves accu-

rate detection, even under extreme environments, such as sudden illumination changes

or sudden background motion. Moreover, compared with our previous model, CP3,

CPB can greatly reduce the time consumed for training, making it suitable for real

applications.

Furthermore, based on the CPB model, an HoD was proposed for foreground detec-

tion under dynamic scenes. The HoD was designed to handle the problem of strong

background changes. The HoD improved the robustness of CPB and stabilized its effec-

tiveness over long-term use. Furthermore, the HoD also helped CPB to resist interference

under adversarial data. Experimental results from different challenges show the promise

of proposed method.

In summary, the correlation between co-occurrence pixels and block pairs was verified.

The correlation was more stable in intricate scenes than using the intensity of single

pixels, and hence was used for background modeling. Secondly, a new selection strategy

called the correlation-dependent decision function was introduced for accurate detection

based on the correlation of the CPB model; this led to better performance than that of

the previous binary classification. Finally, the CPB model allowed more efficient model

building than the CP3 model. The HoD based on the CPB model was introduced to resist

dynamic background changes, such as illumination changes and background motion.

The HoD provides a new, intuitive concept: the structure of the background model can

be updated by the designed correlation weight, which can be used in pixel-correlation

algorithms for updating the background model. Experimental comparisons with other

background-subtraction techniques based on challenging datasets demonstrated that the

performance of the method was good.
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6.2 future works

The HoD provided a new strategy for updating models, and in future work we would

like to develop an online mode of the CPB structure by using the HoD to adapt to

practical applications. At present, the block size is determined experimentally, although

a general form should be found for this.

Moreover, CPB should be integrated into other fields, such as scene background

initialization, object tracking, or defect detection.

Scene background initialization

Scene background initialization, which provides an initial background model that

describes the scene with no foreground objects, is a prerequisite for many applications,

including video surveillance, video segmentation, privacy protection for videos, and com-

putational photography. The CPB model is a robust foreground detection method with

a spatio-temporal background model. This background model can effectively learn the

background information and features from training data without the effect of foreground

objects; thus, the CPB model can effectively initialize the scene with the background

model. We would like to apply the CPB model to scene background initialization.

Object tracking

Object tracking has great practical importance, and it is a difficult problem in various

application scenarios, such as traffic monitoring, security monitoring of public scenes,

and pedestrian volume analysis in complex scenes. Because existing algorithms are based

on the single features, such as color, edges, or contours, in complex scenes, such algo-

rithms lose their robustness and fail. Due to the merits of the CPB model in background

modeling and foreground detection, we would like to consider using the CPB model for

object tracking, and consequently to integrate the robust features of CPB to overcome

the challenges in complex scenes for object tracking. The work presented in this the-

sis demonstrates that CPB and CPB+HoD can be effective for foreground detection in

extreme scenes, such as those with illumination changes or background motion.

Defect detection

Defect detection is critical for industrial workpiece inspection. Using an image al-

gorithm for detection is limited by insufficient numbers of samples and the effect of

the workpiece material on the robustness of the algorithm. The CPB model provides a

new strategy for defect detection. Defects can be detected as the foreground, whereas

defect-free areas can be assigned as the background, similar to the foreground detection

problem. The CPB model is resistant to changes in illumination and dramatic changes
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in scene, and it does not require a large number of samples and can build a model from a

small number of samples without learning the defects. These advantages can be adapted

to actual production environments. In the future, we would like to apply the CPB model

to defect detection applications to expand its practicality and applications.
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