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CONFLUENT HYPERGEOMETRIC SYSTEMS
ASSOCIATED WITH PRINCIPAL NILPOTENT
p»-TUPLES

MUTSUMI SAITO AND HIROYASU TAKEDA

ABSTRACT. Kimura and Takano showed that taking limits of reg-
ular elements of gl(n) corresponds to the process of confluence of
Aomoto-Gel’'fand systems. We introduce a hypergeometric system
associated with a principal nilpotent p-tuple, and, by using the
principal nilpotent p-tuple, we directly deform a hypergeometric
system of Gauss type into that of Airy type. Moreover we explic-
itly describe the deformation.

Mathematics Subject Classification (2010): 33C70 (primary),
16S32, 17B20 (secondary).

Keywords: Hypergeometric systems, confluence, principal nilpo-
tent p-tuples.

1. INTRODUCTION

In this paper, we define and study a hypergeometric system associ-
ated with a principal nilpotent p-tuple. Its parameter space is the dual
space of the centralizer of the principal nilpotent p-tuple.

Aomoto [1] and Gel’fand [3] independently defined a hypergeometric

system of Gauss type, which is now called an Aomoto-Gel’fand system.
The parameter space of an Aomoto-Gel'fand system is the dual space
of a Cartan subalgebra of gl(n,C). In [5], Gel’fand-Retahk-Serganova
defined and studied a hypergeometric system of Airy type, which is a
confluent version of an Aomoto-Gel’'fand system. The parameter space
of this system is the dual space of the Lie algebra of a Jordan Lie group
(called a Jordan Lie subalgebra in [10]).

Inspired by the papers above, Kimura-Haraoka-Takano [7] intro-
duced hypergeometric systems associated with regular elements of gl(n, C).
Their parameter spaces are the dual spaces of the centralizers 341(n,c) (%)
of the regular elements. (Recall that x € gl(n, C) is regular if dim 3,0y (x) =
n.) These systems coincide with Aomoto-Gel'fand systems in the case
where the regular elements are semisimple, and Gel’fand-Retahk-Serganova’s
systems in the case where the regular elements are nilpotent. For the
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2 MUTSUMI SAITO AND HIROYASU TAKEDA

other regular elements, we obtain systems in-between. For example, we
obtain Gauss, Kummer, Bessel, Hermite-Weber, and Airy for n = 4.
Furthermore, in [9], Kimura-Takano explained the process of conflu-
ence between their hypergeometric systems by taking limits of regular
elements.

There exist many Lie subalgebras which are limits of Cartan sub-
algebras but not the centralizers of regular elements (cf. [10]). It is
natural to ask if the systems of differential equations associated with
these Lie subalgebras are obtained as the limits of systems of Gauss
type.

In this paper, we introduce principal nilpotent p-tuples. Principal
nilpotent 1-tuples are regular nilpotent elements, and principal nilpo-
tent 2-tuples (pairs) were introduced by Ginzburg [6]. He also classified
principal nilpotent pairs of type A,, by using Young diagrams. Principal
nilpotent pairs of the other classical types were classified by Elashvili-
Panyushev [2] and R. Yu [11]. The centralizer of a principal nilpotent
p-tuple is a limit of Cartan subalgebras as follows:

Lemma 1.1 (Lemma 5.1). Let (eq,...,e,) be a principal nilpotent p-
tuple, and let b be the Cartan subalgebra corresponding to (eq, ..., ep).
Sete:=e; + - +e, and e(7) := exp(*—e) € GL(n). Then we have

li Ad(e(7))b = 3anc) (€1 €5) = Noai(e)

In this paper, we take the limit of the action of e(7) to deform hy-
pergeometric systems of Gauss type into the system associated with
(€1,-..,€p), along with the corresponding integrands of integral repre-
sentations of solutions.

This paper is organized as follows. In Section 2 we construct hy-
pergeometric systems whose parameter spaces are n-dimension abelian
Lie subalgebra of gl(n) inspired by the definition of hypergeometric
systems defined by Gel’fand et al. In Section 3 we introduce principal
nilpotent p-tuples. In Section 4 we exhibit an integral representation of
a solution to a hypergeometric system associated with a principal nilpo-
tent p-tuple. In Section 5 we consider the deformation of integrands of
integral representations of solutions. In Section 6 we study the action
of the normalizer of the abelian subalgebra generated by a principal
nilpotent p-tuple, to specialize the parameters of the corresponding
hypergeometric systems, as in [8]. In Section 7, as one example of
the systems, we consider the hypergeometric system associated with a
principal nilpotent pair corresponding to the Young diagram (n—1,1).
We show that this system is generically holonomic, and the solutions
coincide with generalized Airy functions.
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2. HYPERGEOMETRIC SYSTEMS A LA GEL’FAND

Throughout this paper, set G = GL(n,C) (or GL(V)) and g =
gl(n,C) (or gl(V)), where V is complex n-dimensional vector space.

In this section, we recall the definitions of hypergeometric systems
of Gauss type [3] and of Airy type [5] defined by Gel’fand et al.

Let G = GL(n,C), and N = {{Ig B} €G|D e GL(n—m)}.

D
Then we have the morphism

G3g—yg {Ig} € G/N ={z € M, »(C) |rank(z) = m} =: Z.

Let ©4 denote the sheaf of vector fields on Z. Naturally we have a
Lie algebra homomorphism 0 : g = gl(n,C) 2 a — 0, € ©4(2),

@LE = G,

Let a be an n-dimensional abelian subalgebra of g. For a given
a € a*, we consider a hypergeometric system M, , defined on Z:

f(exp(—ta)z) (a€g, fe€Oy2z€2).

DZ/( Z Z Dz(ap,j1aq7j2 - 8P,j28q7j1)

p,q=1 j1,j2=1
(1) + > Dz(d 2iOhy + 0ij)
ij—=1 k=1
+ Z Dz(0, — ala)).
aca

When we take the Cartan subalgebra consisting of diagonal matrices
as a, the system M, , coincides with the Gel'fand’s hypergeometric
system [3]. When we take the Jordan Lie subalgebra as a:

(2) a=(e]i=0,1,...,n—1),

where e = " B4, and E; ; is the matrix with (4, j)-entry 1 and
with 0 for the other entries, the system M,, is the generalized Airy
system [5].

Lemma 2.1. For a = [a;j] € g = gl(n,C),
aa = - Z ak,szs,lak,l~

k,l,s

In particular, fori,j <n,

m
8Ei,j - Z 2j10;-
=1
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Proof.

@12 = 5 fep(-t)2)

— Z(jtlt_o[exp(—ta)Z]k,z)ak,lﬂZ)

k.l

= Z(;ilt:o[z —taZ + OtH)|k1) O f(Z)

k.l

= = [aZ];0uf(2)
k,l
= — Z ak;7gzs,lak:,lf(Z)'

k,l,s

3. PRINCIPAL NILPOTENT p-TUPLES

In this section, we introduce principal nilpotent p-tuples, which were
defined by Ginzburg [6] for p = 2.
Let h be a Cartan subalgebra of g. From now on, we suppose that
there exist hy,...,h, € hand eq,..., ¢, € g satistying
(1) [hi ] = 053¢ (1 <i,j <p),
(2) [ei,e5] =0 (1<id,j<p),
(3) Let a:= (e |1 € NP), where e = [[_, el for L = (Iy,...,1,) €
NP. Then the centralizer 34(a) equals a, and dima = n.
We say such p-tuple (e, ..., e,) to be principal (cf. [6] (p = 2 case)).
Clearly each e; is nilpotent, and

(3) [hl, 6l] = liel.
Put

L:={leNr|e #0}.
Then {e!|1 € L} forms a basis of a.

The following lemma can be proved in the same way as in the proof
of [6, Theorem 1.2 (ii)].

Lemma 3.1. 34(h1,...,hy) = M_134(h;) = b.

Example 3.2. Let p = 1. Let e be a regular nilpotent element. Since
there exists a semisimple element H with [H, e] = 2e, putting h = $ H,
we see that h and e satisfy the above conditions. For example, we
can take h = Y iF; ;e = Z?:_ll Eii1;. Then a is the Jordan Lie
subalgebra (2).
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Since hy, ..., h, are commuting semisimple elements, they are simul-
taneously diagonalizable. Let A = {a = (a1,...,a,)} be the set of
joint eigenvalues, and let {v, | @ € A} be a basis of V' consisting of

joint eigenvectors:
hivg = ave (i=1,...,p; a € A).
Multiplying v, by some constants if necessary, we may suppose that
g =ven (a,a+l€ A 1el)
by (3). Throughout this paper, we suppose that there exists a(0) € A
such that
A=a(0)+ L.
With respect to the basis {v,}, h; and e; are represented by

(4) Z aiEa,a> Z Ea-i-li,a?

acA a+1;,acA
respectively. More generally h! and e! are respectively represented by

(5) Z alEa,aa Z EaJrl,aa

acA a+l,acA

where h! = h{' - hlr and @' = alt -+ -aly for U= (Iy,...,1,).

Example 3.3. Let n =4, p =2, and let

0000 0000
1000 0000
T 101007 27100 0 o]
00 0 0 1000
0 0 0 0] 0000
0100 0000
=10 020 ™=|0 00 ol
00 0 0 000 1

Then (eq, e9) is a principal nilpotent pair,

A=L={(0,0), (10), (2,0), (0,1)} = CULI0

(0,1)

and
a= <]4, e, 6%, 62).

Remark 3.4. Asin Example 3.3, we can associate L with a p-dimensional
Young diagram of size n. For example, L in Example 3.2 is associated
with [T T[]

In [7], for a Young diagram \, Kimura, Haraoka and Takano con-
sidered a confluent hypergeometric system of type A\. Note that the
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subalgebra associated with Young diagram \ in this paper is different
from the one in [7]. For example, with Young diagram [ ], as in

Example 3.3 we associate the subalgebra

c 0 0 O
610000

& e co 0 | coy...,c5€Ch,
C3 0 O Co

but the subalgebra
c 0 0 O
C1 Cp 0 0
& o e 0 | coy...,c3€C
0 0 0 c3

is associated in [7].
Lemma 3.5. The matriz [a')icr, aca is non-singular.

Proof. The set of rows is L, and the set of columns is A = a(0) + L.
Put

D(a(0) + L) i= det([alhier aca) )

When p =1,

D(a(0) + L) = [[((a(0) +1) = (a(0) + k)) = [T £( — k) #0
k<l k<l
by Vandermonde.

Now we consider the general case. In the matrix [a!], we add —a(0),-
times of the I-th row to the I + 1,-th row. Then the (I, a)-component
becomes a' — a(0),a'~'* = a'~'»(a, — a(0),) for [, > 0; remains a' for
l, = 0. In particular, the columns a with a, = a(0), have components
0 in the rows I with [, > 0. Hence

D(a(0)+ L) = D(a(0)+ L")D(a(0) + 1, + L") IT  (ay,—a(0),),
a=a(0)+1;l,>0
where
L' = {leL|l,=0}
L" = {t-1,|teL,1,>0}.
Then by repeating the similar discussion for D(a(0)+1,+ L"), we have
D(a(0) + L) =[[ D(a(0) +il,+ L)) [[  (ap—a(0),)"
i a=a(0)+1;1,>0

where L, = {l —il,|l € L, I, = i}. Hence by the induction we have
proved D(a(0) + L) # 0. O
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Corollary 3.6. (h'|l € L) =5.

Proof. Since h acts as diag(a' : a € A), the n elements h' (I € L) are
linearly independent by Lemma 3.5. Hence the assertion holds. U

Let (e1,...,e,) be a principal nilpotent p-tuple. Take B C A with
|B| = m, and let Vp = @®acpCuq. Set
G = GL(V), g=gl(V)=End(V),
N = Np={9€CG|gv, =idv,}, Z=G/Np.
Let B = {by,...,b,}, and we write j for b;. Then, by Lemma 2.1,

for a = (e!|l € L) and o € a* the system M,, (1) is rewritten as
follows:

(6)(8 0 o 0

820 J1 azb j2 aza,]é 8Zb,jl

) =0 (a,beA;1<ji,j <m),

(7) Z’Z‘Ula _'_5]132)(1):0 (1 < J1,J2 Sm)u

acA “a,j2
)
8 (> Zza]— +aldNd=0 (lel).
a,a+leA j=1 Oza+1j

Remark 3.7. A different L defines a different subalgebra a, hence a
different system. A system in [5] corresponds to the Jordan Lie subal-
gebra (2) (cf. Example 3.2). Systems M, , which are also systems in [7]
are only the systems in [5], since the semisimple part of our subalgebra
a=(e' |1 € L) is 1-dimensional as in Remark 3.4.

4. INTEGRAL REPRESENTATIONS

In this section, after recalling an integral representation of a solution
to the system for b, we exhibit an integral reprensentation of a solution
to the system associated with a principal nilpotent p-tuple.

Set

dt =S (1) My dty A AdE A - Adiy.
Proposition 4.1 ([3]).

/H ZZGJ )% d

acA j=1

is a solution to the system My _,, where o € h* is defined by a(Eq q) =
aq (a € A).
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Proof. Let g € GL(m). Then

¢(047 Zg) = / H (i f: kagk,jtj)a“ dt

Put
Tk = ngvjtj'
j=1

Then t; = 37 1 (971);£Tk and dt = det(g)'dT. Hence

Y(a, zg) = det(g /H Zzaka )% dT = det(g) (o, 2),

acA k=1
and v satisfies (7).
We have
a o a = «
8z (11 Zzaj = IO zasty) E)T(Zzb,jtj) *)
bk acA j a#b j=1 bk =
= ol H(Z Za jtj Zzby )
a#b j=1
Hence
o 0 0

(11 Zzaj )) =0,

(9zb,k &zcl 8zbl é)zck acA j—1

and

(TLC zat)®™) = ap TL(S 2asty)”

acA j=1 acA j=1

Zzbka ok

Hence v is a solution to the system Mj _,.

As in [5], we introduce the polynomials 0g; let
(9) douT =exp( D> Ox(b)T),
leNe keNr\{0}
where by = 1.
Lemma 4.2.
l
= a- 8b 0 (k#1).

Proof. By definition, in C[b, (I € N?\ {O})|[[T, ... T}]]

ieNp keNP\ {0}
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By executing BT we have

(Zz‘zo biTz) k>0 8b
Hence -
Ti— - Z %T'“ .
(Xiz0 b:T") k>0 9b; ’
and .l
S>>0 17~ 00k, g 3
l="==" = bi_ T
(Niso bsT?) g%; T
Therefore we have the assertion. O

Proposition 4.3. Forl € L, let by = Y°7° | 24(0)41,5tj, b = bi/bo, and
(10) ¢a, z,t) =g exp( Y arbi(V')),

k€L+
where Ly = L\ {0}. Then

0

D) RN Lig 0= o
i>l j=1 “a(0)+4i,j
Proof. Let I # 0. Then
UL 0 i 0 ,
Za(0)+i7l,'7¢ = Za(0)+i—1, 1 akieka))
;; $Dzao)+iy ;; ’ kezL:+ 0Za(0)+i,j
i 9
= > Y Zati-1j® D, Qo
il j=1 ! keL+ 8()
= 0> oy b l =
keLy 1>l
by Lemma 4.2. Clearly ¢(a, e"z,t) = e*7¢(q, z, t). Hence we have the
equation for I = 0. O

Proposition 4.4 ([5] for p = 1).

z) = /gb(a,z,t)dt

is a solution to the system M, o, where a = (e'|l € L), and a € a* is
defined by a(e!) = oy (1 € L).

Proof. By Proposition 4.3, 1 satisfies (8). As in the proof of Proposition
4.1, it is easy to see

U(a, zg) = det(g) (a, 2),
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and 1) satisfies (7).
We have, for z # 0,
0 0

—¢ = ¢ ——( arbh)
3Za(0)+i,j aZa(O)JriJ zk:

00,
= ¢ Zakaza

= ¢ ;ak%tj

0)+4,j

We also have

0 004
= aoby'tjd+¢-> «a
0za(0). oo Lo+ zk: *0za0)
_ 00y, b;
= Oloboltjﬁb —¢- ;ak v, %tj
00
= b tgbao—Zakb 8bk
From the above equations,
92
¢
02a(0)+i1.51 0%a(0)+i2.js
0 004
= —_—— ¢ . o t2>
8Za 0)+141,j1 ( % k&bw J

00, aek 0?01,
= r— L tj,
o ((%: ay, Db;. )(Xk: O"“ab,2 + Z k@bzlﬁbw)
for ’1:17 ’1:2 7é 0, 7:1 7£ ’1:2, jl 7é jg, and
82
¢

8Za 0) jlaza 0)+i2,j2

B 8za <¢ 20 k&b >

00y aek 0%,
= < Zayb ®) Z k@bw %akbiabiﬁbiz> it
for 25 # 0, 71 # J2. Then we see that
82
¢

0Z2a(0)+i1,1 0Za(0)+i2.j
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is symmetric in j; and js. Hence
0? 0?
(

0Za(0)+i1,10%a(0)+isgs  0Za(0)+i1,720%a(0)+iz.j1

)6 =0

5. DEFORMATION

In the previous section, we saw an integral representation of a solu-
tion to My _, (Proposition 4.1) and that to M, _, (Proposition 4.4).
In this section, we naturally deform the integrand of the former to that
of the latter (Theorem 5.6), which is the main theorem of this paper.

Recall that e; is represented by

Z Ea+1i,aa

a+1l;,acA

and e is represented by

Z Ea+l,a-

a+tl,acA

Recall that for h = (h!) the system M, _,, where o € h* is defined
by a(Eqa) = aq (a € A), is the following:

(1) o 0 o 0

(?za,z- 821,7]- @ZQJ‘ 82[,71'

(12) (> zay 0

GEA azanj

) =0 (a,becA;1<i,j<m)

(13) O kai —ag)P=0 (a€A).
k=1 aza,k

Let
a =) aa,.
acA
The equations (13) are equivalent to

m

(14) (Z a za,ki —a)®=0 (lel),
1 8za,k

acA k=

since h! corresponds to

Z a,lEa,a.

acA
The equation (14) can be rewritten as

(15) (O +a)® =0 (leL)
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Set € := €1+ - +¢,, and consider e(7) := exp(*=te) € G = GL(n).
Then e(1) = 1.
Lemma 5.1. (1) lim,_,0 Ad(e(7))(th)™ = M for all M € NP,
(2) lim, o Ad(e(7))h = a.
Proof. Since [e, h;] = —e;, we have
1—7

Le)(hi) = hi + e;.

T

Ad(e(r))(h:) = expad(——

Since Ad(e(7)) is an automorphism of an associative algebra,

P

Ad(e(1))((th)") = H(Thi + (1 = 7)ey).

=1

Hence we see the assertion (1), and hence (2). O
We have the left multiplication map Le(;) on Z = G/N. In general,
Lg oQ, o0 L;l = 8Ad(9)a (g c G, a e g)

Lemma 5.2.
1 1—7
Le(r)Zay = 2 37(———

)* 20k
k>0 T

Proof. By an abuse of notation, we denote a general matrix in Z by Z
again. By definition,

(Le(r)-2a,j)(Z) = zaj(e(T) "' Z).

We have
IZ ‘k:| kZ
,g) k' 7
Hence
1 1—7
—1 k
(e(7) Z)a,j kg%k'(T)l ‘Za—k,j'

Corollary 5.3.

1 7 —1\
LE(T).aa’j == Z (b _ a)' < ) 31,,]-.

Proof. We have

(Ler)-0a)f)(Z) = ((Ler) © a0 Loiy)f)(Z)
= Le(r)-(0a,;(f(e(T)2))).
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By Lemma 5.2,

0(e(T) 2 _ { P (T — 1>|b_a| (b—a>0)

2Y]
. (b—a)! T
0%a.; 0 (otherwise).
Hence
dle(r)Z i
0us((e(r)2)) = Y (00, (e(r)2) XA
(byi) .
5 1 (r—1\"
= fle(T)Z ( ) ,
SOy (7
and the assertion holds. 0
Corollary 5.4.
1 1—71
Le(r)-(é L ) 0 1k,5) = Day-
Proof. Clear from Corollary 5.3. U

We consider the system Maq(e(r))p,—a(r), Where (1) € (Ad(e(7))h)"
is defined by (a(7))(Ad(e(7))h') = S. Hence the equations (15) be-
come

o
(16) (Ond(e(ryn + TTZ)Q’ =0 (lel).

Put
or(a,2) = [ (Le(r)-ba—a(o)) ™

acA

Then ¢ («, z) coincides with the integrand in Proposition 4.1. We have

Ond(ernndr(,2) = Le(r) © O o Liyé-(a, 2)
= Le(ry 0 Opd(a, 2)
= _Le(T) Z al@a¢(a7 Z)

acA

= =Y dagd.(a,2).

acA

Let [8Y] be the inverse of [@!]. Then for ag = 37 fLay /7!

87/
Ord(e(ryn@-(a, 2) = —m@(@, z).

Hence we have the following proposition:
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Proposition 5.5. Let [5L] be the inverse of [a'], and let
ag /T
or(er,2) = [T(T] (Letr)-ba-a(0) ) /7"
leL acA
Then
[ oo,z at
satisfies the system Madie(r))p,—a(r)-
g 0 o 0
024, 02b;  0%q; O%p,;
0

(Z Za,ia "

acA

)JP=0 (a,be A;i,jeB)

7]
ay
(Oad(e(rym + m)‘b =0 (lel),
where the compatibility condition is cg = —m.

Proof. The compatibility condition is

Z g = —M.

acA
We have
Z Qg = Z Zﬁflal/Tll‘
acA acAlel
(17) = 3> Y a®BLay/ M
lcL acA

= /7 = ap.

Since Yaea a®Bhay /T = 61000, we have

{ (HaeA(Le(T)'b:lfa(o))ﬂé)al/q—m (L #0)

Loiy.baa Beyeu /T _ 5 o
(11 (Fetr)baa0))™) bo™ (Taca(Letr) Hy_aio)®)% (1= 0).

acA

Hence
—-m Lyag/ritl
dr(, 2) = bg™ TT(TT (Ze(r) by—a(o) )"
leL acA
Note that ¢, = Le(r).¢1. Put

o 0 9 0
Ta:= - beA 1<i<j< _
. <8Za,,i Ozb;  0%aj 0% a, ,1<i<i< m>

Since T4¢; = 0, we have
(Le(r) Ta)br = (Le(r) © Ta 0 Lolr))(Lerd)
= (LetryoTa)(¢1) = 0.
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By Corollary 5.4, we have Le(ry. T4 D T4, and hence ¢, satisfies (17).
O

Put
-

)2acacela=sON T ((a — a(0))) ™ r (v, 2).

acA

prl@,2) = (-

Then [ ¢, (a,z2) is also a solution of the system Maq(e(r))p,—a(r)- The
following theorem corresponds to [9, Theorem 6.3].

Theorem 5.6.
or(a, z) = bg™exp(d_ ailby (V) = o, 2,t) (1 —0).
lel

Proof. By definition,

pr(az) = b™ [T(IT (X (a—lj(O))!ﬁi )/ OHY, _ggyi) )

IEL acA k>0 T

= b JT(T]¢ )2

leL acA a(0

(a—a(0)!, 7

a Loy /it
(@ d) (1_T)Id (0)\5&%(0))60) /T

<a

For k' < k, define ¢}, € C by

0<k'<k
Note that ¢g g = 1. Then for a(0) < d < a

(a—a(0)! _

k/
(@a—d) Z Ck' d—a(0)d -

0<k’'<d—a(0)

Hence

— l
)id-aOlly, P

H( Z (a—a(0)!, 7

(
acA a(0)<d<a (a’ - d)!

= H( Z Z Ck:’,d—a(O)a’kl(l

acA a(0)<d<a 0<k’'<d—a(0)

We have by Lemma 5.7 below

1—7

T l

a

— T)‘d_a(o)‘bizfa(o))

’ T
Z Ck:’,ka’k (ﬁ)'klb%

0<k'<k<a—a(0)

= exp( X Oal{ewstDat ()",

0<k/<k
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where in the statement of Lemma 5.7 we put S; = = fori =1,2,...p.
Hence

(a— a(O))!( T
(a —d)!

— 1
jd-alyy, oy

e >

acA a(0)<d<a

= e X ealleostihat (1))

1—71

ach  ocwck
= (2 O<kz<kﬁ 0wk ({ew sl Pa¥ () M)
= exp 0<§<k£ﬁ’a ({0 (7—)™)
= exp(Y bua(fewr sl ) () ™).
Hence -
prlan) = b" Tl buallew bl = ) e
= 0" [ e m;kelk{cs/sb DE™).

Henceas 7 — 0
o-(a,2) — by™ H eXP(O‘lel,l({CS’,sb/s}))

lel

— b5 [T explanbu({H,}),

leL
where the last equation follows from Lemma 5.7. Therefore

@r(, 2) = by exp(D by (b)) (t —0).
leL

Lemma 5.7. Let
Z Ck’,kb;ch,Sk = eXp( Z ek’,k<{03’7sb/s})Tk,Sk)a
0<k'<k 0<k' k

where cooby = 1. Then Oy p, = 0 unless k' < k. Moreover, if ¢y = 1

for all k, then
Ore({corsbi}) = Ok ({VL})-

Proof. The first statement is clear from the Taylor expansion of log(1+
U):

© (—1 n—1

log(1+U) =) =0

n=1

u".

n
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We have
log( > cw s bf, T %)
0<k'<k
Put U :=T5S. Then
log( Z Ck/’kb;cUk/Sk_k/>
0<k/<k
Let S = 0. Then

log( Z Ck/,k'b;c’Uk/)

o<k’

Since ¢ g = 1 for all K,

log( > b, U

o<k’

which means

(-1

> (> cpabl,T% Sk
n=1

n

0<Kk'<k
ngk({csgsb's})Tk/Sk.
0<K' k
© (1 n—1 , ,
Z ( ) ( Z ck’,kb;gUk Sk—k )n
n=1 n 0<k'<k
ek“k({CS/’Sb;})Uk/Skik/.
o<k k
- (__1)n71 / Tk
Z (Z Ck',k:/b /U )n
n=1 n o<k’
> O ({ea U HUY.
o<k’
- (_1)n_1 ;77K
> (> b U*)"
n=1 n o<k’
> O i ({cor b, HUX,
o<k’

O e ({eosle}) = O ({.}) (V).

6. THE NORMALIZER OF a AND ITS ACTION

In this section, we consider the normalizer Ng(a) of a and its action
following [8]. Using the results in this section, we specialize parameters
of hypergeometric systems associated with principal nilpotent p-tuples

in the next section.

Put L, := L\ {0} and a, := (' |l € L,). Note that Ng(expa) =

Ne(expay) 2 Ng(ar) = Ne(a).

The action of Ng(a) on Z/GL(m)

induces that of Ng(a) on exp(a)\Z/GL(m).
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Let x. denote the (multivalued) character of exp a whose differential
is equal to o = Sy aoy(e!)* € a*. Then we have the following commuta-
tive diagram:

b € exp(a) Xe, ¢

exp’[ [exp

0(b) = > 01(b)el € a — C.
Namely we have
Xa(b) = exp(a(0(D))).
Lemma 6.1. 0(gbg™") = Ad(g)(6(b)) for g € Ng(a),b € expa.
Proof. We have
gbg™' = gexp( (b)g™" = exp(gf(b)g~") = exp(Ad(g)(0(b))).
Hence 0(gbg™") = Ad(g)(6(b)). 0

Lemma 6.2. x,(9bg™") = xada*(9)a(b) for g € Ng(a),b € expa, where
Ad™* is the coadjoint action.

Proof. By Lemma 6.1,

Xalgbg™") = exp(a(f(gbg™"))) = exp(c(Ad(g)(0(b))))
= exp((Ad*(g)())(8(D))) = Xada*(g)a(D)-

O

Lemma 6.3. Let b= Y, bl € expa. Then
b=boexp(d_ Ok (t))e),
k>0
where by = by /bg. Hence
Xa(b) = bg° exp( > arbi(V')).
k>0

Proof. This is clear, since b = by 37 bjel. U

We denote by ¢ the isomorphism a > Y€t — [¢]; € CF, and
by ¢* its dual isomorphism: C¥ — a*. For g € Ng(a), let M(g)
denote the matrix representation of Ad(g) on a with respect to the
basis {e! |l € L}.

Then by the definitions
(18)  Ad(g)(v " (h)) =" (M(g)h), Ad™(g)(t"(h)) = " ("M(g)h)
for h € CF.

Proposition 6.4. ¢(a, M(g)z,t) = ¢(Ad*(g)a, 2,t) for g € Ng(a).
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Proof. Recall the definition of ¢(«, z,t) in Proposition 4.3;

¢(a, z,t) = Xa Zble (o)
by Lemma 6.3, where b; = (2t);. Hence by (18) we have

pla, M(9)z,t) = Xxa(tT ([(M(9)2t)ilt)) = xa(Ad(g)e™ ([(2t)]1))
= Xaa (@t ([(2t)) = ¢(Ad*(g)a, 2, 1).

Corollary 6.5. (o, M(g)z) = ¥(Ad*(g)a, 2) for g € Ng(a).

To describe the matrix representation of Ad(g) (¢ € Ng(a)), we
introduce some notation.

Put
file,T) = > 201  (i=1,2,...,p)
acnNP
l F v
flx,T) = HfszT Z_Z@’ )T
=1 I'eNp
for I € NP.
1 (l’ =0)

Lemma 6.6. (1) ¢y o(x) = {

(2) ¢l/,l( ) ZZP Z L ag =l Hz 1T 1111 gy

(3) dwa(z) =0 for |I] > |U].
(4) Orart (T) = Yk ko=t Ohy 1(T) Ppey 1 ()

Proof. (1) follows from f(x,T)% = 1.

Since we have

fae)t = TIOT afre)

0 (otherwzse)
(i

7

we obtain (2).

Since |37, Zé”a a;;| > |l], (3) follows from (2).

The equation f(x, T)"*Y = f(z, T) f(z, T)" leads to (4). O
Corollary 6.7. Suppose that |[I| = |I'|. Then any term of ¢y is a
product ofxl (i,j =1,2,...,p).

Proof. This is clear from Lemma 6.6 (2). O
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Corollary 6.8. Let Ly be a subset of N{ :={l e NP ||l| =k} (k> 0).
Suppose that C' = [Cg?]lgm'gp € GL(p) satisfies ¢y ,(C) = 0 for all
IIEL]C, l GNg\Lk

Then det([dy ]y ier,) # O

Proof. First note that for I',1 € N}, the notation ¢y ;(C) is justified by
Corollary 6.7.

Let U = &?_,Cu;, and let Si(U) be the space of symmetric product
of degree k. Then there exists a natural representation

pr: GL(U) — GL(Sp(U)).

With respect to the basis {u' |l € Ni}, p(C) is represented by [¢y (C)]y e -
Hence

0 # det([r(C)]yienr)
= det([ov 1 (O ier,,) det([@w 1 (O 1enr 1)

by the assumption. Hence we have det([¢y ] 1er, ) 7 0. O

Proposition 6.9. Let g € Ng(a), and let

= 3 % = fi({d"}, ).

leLy
Then
= X ana{e e’ = F({e’}. 0"
VeLy
Proof. This is immediate from Ad(g)e! = [Tr_;(Ad(g)e;)". O

For g € Ng(a), let M(g) denote the matrix representation of Ad(g)
on a with respect to the basis {¢! |l € L}.

Corollary 6.10. Put ¢g; = do;. Then

M(g) = [m(g)vdrer = [bra{ei Dwer,
where cl(i) are those in Proposition 6.9.
Proof. Since Ad(g)e! is nilpotent, we have m(g)o; = 0o O

Definition 6.11. (1) @ € L is called an inner corner of L, if a +
1, ¢ Lforanyi=1,2,....p
(2) a € NP ig called an outer corner of L, if a ¢ L, and for every
i=1,2,...,pwehavea—1; ¢ NP or a — 1; € L.
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Example 6.12. Let p = 2. Then L can be given by a Young diagram
(see Remark 3.4). Suppose that L corresponds to the Young diagram
(5,5,3,2,1).

(19) m

[]o

o

Then in (19) - indicates an inner corner, and o an outer corner.

Lemma 6.13. Let g € Ng(a), and let Ad(g)e; = S ier, c;i)el.
(1) Let a be an inner corner. Then JT—y (Y ier, Cgi)el)ai £0.

(2) Let a be an outer corner. Then [Ti—1 (Sier. cl(’)e‘)ai =0.

Proof. Note that

P

(20) fle,e)® = Ad(g)e® = T[S ety

i=1 leL,

Hence the assertions are immediate, since an inner corner belongs to L
and an outer corner does not. O

Remark 6.14. Let g € Ng(a), and let Ad(g)e; = Sier, cl(i)el. Suppose
that I is an outer corner of L. Then, by Lemma 6.6 (4),

0 = ¢k,l<c): Z ]_2‘[¢ki7li1i(c)

kit tkp=k i=1

= Z ﬁ ]j ¢kijvli(c)

f:l Zé‘i=1 kij=k =15=1
p U )
SR I 1 1
Py ki =k I
for k € L. These equations are equivalent to Lemma 6.13.
Example 6.15. Let p = 1, and L ={0,1,...,n —1}. Then n — 1 is
the inner corner and n is the outer corner. We have
n—1 n—1
- eyt £, ")y =o0.
=1 =1
We obtain ¢; # 0 from the first equation.

Example 6.16. Let p =2, and L = {(4,0) |0 <i<n—2} U{(1,0)}.
Then the inner corners are (n — 2,0) and (0,1). The outer corners are
(n -1 0)7 (]-7 1)7 and (07 2)
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Then we have

n—2
1 1 e
(Z CEZ,%))BII + Cgo?1)€2) 20,
ZC 61 +Co1)€2) # 0,
Z C 61 _|_ C )62)n_1 - 0,
IR SO )
(Z 01+ Conye2) (D cioer T conez) =0,
=1

From these equations, we obtain c 3& 0, c =0forl <n-—3.
Put
(21) Lp:={leL,||l|] =k}

Lemma 6.17. Let g € Ng(a), and let Ad(g)e; = Yier, cg Vel For any
k,
detloro({ek Dever, #0.

Proof. Since Ad(g)a* = a* for any k, we have Ad(g)(a*/a**!) = a¥/aF*L.
Hence the assertion holds. U
Example 6.18. Let p =2, and L = {(4,0) |0 <i <n—2} U{(1,0)}.
Then L; ={(1,0),(0,1)}. Hence
D,

o,1) (0 1)

For2 <k <n-2, L, ={(k,0)}. Hence
0 # 6(1,0)60)(€) = b(1.0),10)(€)" = (c{i)p))"-

Hence 08)0) # 0, which is the inner corner condition.

Proposition 6.19. Let g € Ng(a), and let Ad(g)e; = Yier, cl(i)el.
Suppose that A = «(0) + L. Put w = va@0)p = €a). Define
GeGLV) by

Juy =Y oy (c)uy.

Then g € Ng(a) and M(g) =g = M(g).
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Proof. We know that M(g) = [¢y,(c)] is invertible. Let [ty ;] be its
inverse. Then

gy = Z¢l/,lul'-
l/
Hence by Lemma 6.6 (4)
geFg ey = Z¢l',l§ul’+k
l/
= Z Yy 1Oy iy
l/7l//

= Z ¢l',l¢ll,l’¢l2,kul1+lz

Ulylo

= Z 511,l¢12,kul1+l2

ly,l2

= Y b rti, = Y b,k
l2 l2

Hence

~ k~—1 l
g5 = i, ne®.
lo

We have thus proved § € Ng(a) and M(g) = g = M(g). O

Corollary 6.20. Let cgi) (1 <i<p,leLy) satisfy the conditions

(1) det([oy()]iwer,) # 0.
(2) ¢y a(c) =0 for every l ¢ L.l eL,.

Then g = [¢y1(c)liver € Ne(a) and M(g) = g.
Proof. This is clear from the proof of Proposition 6.19. U

Lemma 6.21. The following two conditions are equivalent:
(1) =1 Crer. cgi)el,)li = 0 for all outer corners L.
(2) dra(c) =0 for everyl ¢ Ly, l' € L.
Proof. The condition (2) is equivalent to the condition
flc,e) =0foralll ¢ L.,
which is equivalent to the condition
f(c,e)t =0 for all outer corners I,

which is exactly the condition (1). O

Proposition 6.22. Each element of Ng(ay)/Za(ay) is uniquely writ-
ten as [¢p 1(c)|yger, with ¢ = (cf) 1 <i<p;le L) satisfying

(1) det[c{]1<ij<p # 0.
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(2) f(c,e)t =0 for all outer corners L.

Proof. The condition (1) in Corollary 6.20 is equivalent to the condition

(22) det([¢ri()]irer,) #0  (VE>0)
by Lemma 6.6 (3). Then by Corollary 6.8 we see that the conditions

det([¢wi(c)iper,) #0 (k>1)

are derived from the other conditions. O

7. TYPE (n —1,1)

As stated in the paragraph just above Lemma 2.1, when a is associ-
ated with L = {0,1,2,...,n — 1} = {(,0)[0 < < n — 1}, which we
may call type (n), the system M,, is the generalized Airy system [5].

In this section, we consider the system M, , of type (n—1,1), which
we also denote by M(,_1,1). Namely let L = {(1,0)|0 <1 <n —2} U
{(0,1)} and a = (€'|l € L);

L=M0

Then the system M,, with a parameter vector a@ € a’} =~ Cl+ is
Dy /Jaa, where the left ideal J, , is generated by the following:

o 0 o 0

aza WJ1 azb jz aza;jz azb,jl

(24) Z Za]la + 5]1]2 (1 S j17j2 S m)a

(23)

(a’>b € La 1 Sjl?j? S m)7

acl Za,j
n—k—2 i 8
(25) Zzo)’jai—l—a(ho) (k: 1,...,71—2),
=0 j=1 Z(i+k,0).
Ui 0
(26) Z + o)
j=1 (0,1),]

Note that by (24) we have

n—2 m o
z_;)z_: (3,0),

921,005

Ui 0
+> 00ig, +m =0,
j=1 2(0,1),j

and thus o) is always equal to m; hence we consider a € a’ ~ Cl+.

In this section, we prove that Mg, _11). is generically holonomic
(Theorem 7.2), and is reduced to M,_1)3, when ag,_20) # 0 (Propo-
sition 7.5, Theorem 7.6).
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Lemma 7.1. Let a = ()ier, € C*+ be a parameter vector. Then

P e
forallj=1,....m

Proof. Since

; 2(0,0),1827:10” (n—2,0)s ; 2(0 il),l — 0,1

belong to the ideal J,_,, we see by (23) that

0 0
000 V20
0 UL 0
~ Dz, <z§ O s a(n_2’0)>
0 UL 0

0220, (;ZOO "0z0ma a(0’1)>

belongs to J, _q.

25

O

Theorem 7.2. Let o = (qq)icr, € Cl+ satisfy Qn—20) # 0. Then

M, _, s generically holonomic.

Proof. Let (z,€) belong to the characteristic variety of M, _,. For a

generic z, we show & = 0. We follow the proof of [4, Lemma 6].
By (23), we may put &; = a;b; for all L, j.

By (24),
0=> zjaby, =by ) aja
lel lel
for all ji, jo < m.

Suppose that £ # 0. Then a # 0 and b # 0. Hence
Zzl,kal =0 (k? = 1,...,m).

leL
Put I, := {l € L|a; # 0}. Then
(27) Zzl,kal =0 (k: 1,...,m).
lely

Since z is generic, we see
(28) || > m.

By (25), we have for 1 <k <n—2
n—k—2 m n—k—2

k—
(29) Z QA(i4-k, 0 Z QA (i4+k,0)C(4,0) 5

1=0 ]:1 i=0
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where we put

(30) Ci,0) = Z 2(1,0),70;j -

m
j=1

Put

‘[i = {(k:70)|k = 07 sy 27 Q(k,0) 7£ O} = IL \ {(07 1)}
and let ko := max{k|(k,0) € I} }.

Then we claim

Claim 7.3.
co) =0 for all k < k.

Proof. It kg = 0, then there exists nothing to prove.

Let kg > 0. We prove the assertion by induction on k. Plugging
k = ko in (29), we have a(x,,0)c(0,0) = 0. Hence () = 0.

Now we suppose that c(0) = 0 for all k <1 < ko. Plugging k = ko—1
in (29), we have ag, 0)cq0) = 0. Hence ¢ = 0. We have thus proved
the claim. O

By Lemma 7.1, (z,&) satisfies

An—2,0)0(0,1)05 = @(0,1)A(n—2,0)b;

for all 1 < 7 < m, and hence we have

(31) A (n-2,0)0(0,.1) = (0,1)(n-2,0)-

We first treat the case when oo 1) # 0.

Suppose that kg = n — 2. Then a(,—2) # 0, and hence a1 # 0, i.
e. (0,1) € I, by (31). Then by (27) and (31) we have |I;|+1 > m+1,
otherwise we have a = 0, which is a contradiction. Hence n > m + 1
orn—2>m—1.

By Claim 7.3, we have

C0,0) =+ = Cn—3,0) = 0.
By (30), we have n — 2 < m, otherwise we have b = 0, which is a
contradiction. Hence m — 1 < n — 2 < m, which is impossible.
Next suppose that ky < n — 2. Then ag,—209) = aq,1) = 0 by (31).
By (28), we have |I}| > m, and hence ko + 1 > m.
By Claim 7.3, we have

C(O,O) — e e e — c(ko*l,o) g O
By (30), we have kg < m. Hence m — 1 < ky < m, which is impossible.
We next treat the case when o) = 0. Then by (31) we have
a@,) = 0. By (28) and the definition of I7, we have [I7| > m, and
hence kg + 1 > m.
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By Claim 7.3, we have

C(O,O) —_ ... = C(k‘o*l,o) —= 0

By (30), we have kg < m. Hence m — 1 < ky < m, which is impossible.
]

Proposition 6.22 implies the form of g € Ng(a).
Proposition 7.4.

Ng(a)/Zg(a) = {[éﬁl',l(c)]l',lem | CEZ?O) —0 (1<k<n-23) } '

Proof. Let g € Ng(a)/Zg(a). Then by Proposition 6.22 we have
9= [bvi(S)vicr,
where ¢ = (cl(i) ci=1,2;1€e Ly).
We have already seen 0830) # 0 and 0220) =0(1 <k<n-3)

in Example 6.16, and 0830)0831) # 0 in Example 6.18. These are the

necessary and sufficient conditions by Proposition 6.22. U

Proposition 7.5. Let ®(z; ) be a solution to My .. We assume that
a parameter vector

o = t(Oé(Lo), < O (n—2,0), 04(0,1)) € CH

of ®(z; ) satisfies am—20) # 0. Then there exists g € Ng(a) such that
the change of coordinates z — z' = gz transforms ®(z; «) into ®(2'; )
with the parameter vector

o =%0,...,0,1,1).
Proof. By Lemma 6.6, we have

daoon(c) = ciy (L<i<n—2),
0 (j>2)

P0,1),.0)(c) = { 1 .

0.0,6:0)() D G=1)

¢(0,1),(0,1)(C) = C ?)-

2
(0,1
Then by Proposition 7.4, g € Ng(a) has the form

[¢(i’0)’(170)(c)]léi,j§n72

(1) 2
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with respect to the order (1,0),...,(n —2,0),(0,1), where 68,)0) # 0,
2 1 1 —

02031) #0 and ¢ = (CEI,)O)’ o >an)—2,0)) e C 2,
By (18), we have

n—2
1

(32) Ay = ('90)0) = D a0bi(€) + dna o),

=1

2 2
(33) Aoy = ('90)01) = AUn-20¢(1) + U0 C(0h):
Firstly we consider (32) for 2 < i < mn — 2. Similarly to [8, Corollary
5.4|, noting that ay,_2¢ 0, we can choose W ,...,c(ll so that
(n—2,0) (1,0) (n—3,0)

0/(270), . »O/(n—3,0) become all zero and O/(n—Z,O) =1.

Secondly we consider (32) for i =1, i.e.,

(1) (1) (1)
A1,0)C10) T T Xn-2,0)Crn_2,0) T X0,1) 1)

Using the condition o ,—20) # 0, we can determine 0&)7270)

Lastly we consider (33). Noting that a,_20) 7# 0, we can determine

and CEé?n SO

622)7270) and cgg?l), so that 0‘/(0,1) =1. O
Yo1 T Yom
Let Y = : : , and define f: Z — Y by
Yn—21 " Yn—-2m
2(0,0),1 T 2(0,0),m
34)  f(2)=
2(n—3,0),1 te Z(n—3,0),m
Z(n-2,0),1 T 200,1),1 "  Z(n-2,0),m T 20,1),m

Theorem 7.6. Let o =%(0,...,0,1,1) €e C* ' and 8 =%(0,...,0,1) €
C"2. Then
M1y = Mmn-11)a-

Proof. Let
2(0,0),1 T 2(0,0),m
14
A Z(n—3,0),1 e Z(n—3,0),m
Z(n—-2,0)1 T 200,1),1 " Z(n-20),m T 20,1),m
2(0,1),1 Tt 2(0,1),m

Then f = p,_10 f', where f/(Z) = Z' and p,_; is the projection on
the first n — 1 rows.
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Since p,—; is the projection, we easily see p},_ M1y = Dz /J',
where J' is generated by

0 0 0 0
Oy 0151 Oha0)de OHk0,0),52 Okos0).n
(0 <kiks <n—2; 1< j1, 5o <m),
n—2 a
/ . .
Z Z(ivo),jlali + (sjle (1 < J1,02 < m),
=0 “(0.0).42
n—k—2 m a
/
Z:kaw5744*+&m)(k:L”wn—m,
=0 j=1 (i+k,0),j
0
(J=1,...,m)
82’(071)]

By the change f’ of coordinates

/

a0 = 2605 (0=0,1,...n=3)

ZEn—Q,O),j = Z(n-20); T 2(0,1).j

ZEO,l),j = A0,1)5>
we have

0 0

52 = 3 (i=0,1,...n—2)

2(i,0),j ~(i,0),3

0 B 0 0

aZéo,l),j 9z(0,1);  0%m-20)

Taking into account that we have

0 _ 0
0220y 020,14
by Lemma 7.1, we see f*M(n,l),g = f/*p;_lM(n,l)”g = M(nfl,l),a- D
Corollary 7.7. Leta = %(0,...,0,1,1) € C" ! and 8 =1(0,...,0,1) €

C"2. Then we have a bijection between the space of solutions to
Mn-1,1),a and that to M, _1)z.

€ J(n—l,l),a

Proof. Let f be (34). By Theorem 7.6, we have an isomorphism
f ' Homp, (Mg,-1)5,0y) ~ Homp, (f*Mu-1),, [ Oy)
= HOHIDY (M(n—l,l),aa Oz)-

More explicitly, ®(f(Z)) is a solution to M,_11). for a solution ®
to M(,—1),3. Conversely any solution to M,_11) is of this form. [
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