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Abstract We study here properties of free Generalized Inverse Gaussian distributions
(fGIG) in free probability. We show that in many cases the fGIG shares similar prop-
erties with the classical GIG distribution. In particular we prove that fGIG is freely
infinitely divisible, free regular and unimodal, and moreover we determine which dis-
tributions in this class are freely selfdecomposable. In the second part of the paper we
prove that for free random variables X,Y where Y has a free Poisson distribution one

has X
d= 1

X+Y if and only if X has fGIG distribution for special choice of parameters.
We also point out that the free GIG distribution maximizes the same free entropy
functional as the classical GIG does for the classical entropy.

1 Introduction

Free probability was introduced by Voiculescu [35] as a non-commutative probability
theorywhere one defines a new notion of independence, so called freeness or free inde-
pendence. Non-commutative probability is a counterpart of the classical probability
theory where one allows random variables to be non-commutative objects. Instead of
defining a probability space as a triplet (�,F ,P) we switch to a pair (A, ϕ) whereA
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is an algebra of random variables and ϕ : A → C is a linear functional, in the classical
situation ϕ = E. It is natural then to consider algebras A where random variables
do not commute (for example C∗ or W ∗-algebras). For bounded random variables
independence can be equivalently understood as a rule of calculating mixed moments.
It turns out that while for commuting random variables only one such rule leads to
a meaningful notion of independence, the non-commutative setting is richer and one
can consider several notions of independence. Free independence seems to be the one
which is the most important. The precise definition of freeness is stated in Sect. 2
below.

Free probability emerged from questions related to operator algebras however the
development of this theory showed that it is surprisingly closely related with the
classical probability theory. First evidence of such relations appearedwithVoiculescu’s
results about asymptotic freeness of random matrices. Asymptotic freeness roughly
speaking states that (classically) independent, unitarily invariant random matrices,
when size goes to infinity, become free.

Another link between free and classical probability goes via infinite divisibility.
With a notion of independence in hand one can consider a convolution of probability
measures related to this notion. For free independence such operation is called free
convolution and it is denoted by �. More precisely for free random variables X,Y
with respective distributions μ, ν the distribution of the sum X + Y is called the free
convolution of μ and ν and is denoted by μ � ν. The next natural step is to ask which
probability measures are infinitely divisible with respect to this convolution. We say
that μ is freely infinitely divisible if for any n ≥ 1 there exists a probability measure
μn such that

μ = μn � · · · � μn
︸ ︷︷ ︸

n times

.

Here we come across another striking relation between free and classical probabil-
ity: there exists a bijection between classically and freely infinitely divisible probability
measures, this bijection was found in [7] and it is called Bercovici–Pata (BP) bijection.
This bijection has number of interesting properties, for example measures in bijec-
tion have the same domains of attraction. In free probability literature it is standard
approach to look for the free counterpart of a classical distribution via BP bijection. For
example Wigner’s semicircle law plays the role of the Gaussian law in free analogue
of Central Limit Theorem, the Marchenko–Pastur distribution appears in the limit of
free version of Poisson limit theorem and is often called the free Poisson distribution.

While BP bijection proved to be a powerful tool, it does not preserve all good
properties of distributions. Consider for example Lukacs theorem which says that for
classically independent randomvariables X,Y randomvariables X+Y and X/(X+Y )

are independent if and only if X,Y have Gamma distribution with the same scale
parameter [23]. One can consider similar problem in free probability and gets the
following result (see [32,33]) for free random variables X,Y random variables X +Y
and (X + Y )−1/2X (X + Y )−1/2 are free if and only if X,Y have Marchenko–Pastur
(free Poisson) distribution with the same rate. From this example one can see our
point—it is not the image under BP bijection of the Gamma distribution (studied in
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[13,27]), which has the Lukacs independence property in free probability, but in this
context the free Poisson distribution plays the role of the classical Gamma distribution.

In [34] another free independence property was studied—a free version of so called
Matsumoto–Yor property (see [22,24]). In classical probability this property says
that for independent X,Y random variables 1/(X + Y ) and 1/X − 1/(X + Y ) are
independent if and only if X has aGeneralized InverseGaussian (GIG) distribution and
Y has a Gamma distribution. In the free version of this theorem (i.e. the theoremwhere
one replaces classical independence assumptions by free independence) it turns out
that the role of the Gamma distribution is taken again by the free Poisson distribution
and the role of the GIG distribution plays a probability measure which appeared for
the first time in [12]. We will refer to this measure as the free Generalized Inverse
Gaussian distribution or fGIG for short. We give the definition of this distribution in
Sect. 2.

Themainmotivation of this paper is to study further properties of fGIG distribution.
The results from [34] suggest that in some sense (but not by means of the BP bijection)
this distribution is the free probability analogue of the classical GIG distribution. It
is natural then to ask if fGIG distribution shares more properties with its classical
counterpart. It is known that the classical GIG distribution is infinitely divisible (see
[4]) and selfdecomposable (see [14,31]). In [21] theGIGdistributionwas characterized
in terms of an equality in distribution, namely if we take X,Y1,Y2 independent and
such that Y1 and Y2 haveGamma distributions with suitable parameters andwe assume
that

X
d= 1

Y2 + 1
Y1+X

(1.1)

then X necessarily has a GIG distribution. A simpler version of this theorem charac-
terizes smaller class of fGIG distributions by equality

X
d= 1

Y1 + X
(1.2)

for X and Y1 as described above.
The overall result of this paper is that the two distributions GIG and fGIG indeed

havemany similarities.We show that fGIG distribution is freely infinitely divisible and
evenmore that it is free regular.Moreover fGIGdistribution can be characterized by the
equality in distribution (1.2), where one has to replace the independence assumption by
freeness and assume that Y1 has free Poisson distributions.While there are only several
examples of freely selfdecomposable distributions it is interesting to askwhether fGIG
has this property. It turns out that selfdecomposability is the point where the symmetry
between GIG and fGIG partially breaks down: not all fGIG distributions are freely
selfdecomposable.We find conditions on the parameters of fGIG family for which this
distributions are freely selfdecomposable. Except from the results mentioned above
we prove that fGIG distribution is unimodal. We also point out that in [12] it was
proved that fGIG maximizes a certain free entropy functional. An easy application
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of Gibbs’ inequality shows that the classical GIG maximizes the same functional of
classical entropy.

The paper is organized as follows: in Sect. 2 we shortly recall basics of free prob-
ability and next we study some properties of fGIG distributions. Section 3 is devoted
to the study of free infinite divisibility, free regularity, free selfdecomposability and
unimodality of the fGIG distribution. In Sect. 4 we show that the free counterpart of
the characterization of GIG distribution by (1.2) holds true, and we discuss entropy
analogies between GIG and fGIG.

2 Free GIG Distributions

In this section we recall the definition of free GIG distribution and study basic prop-
erties of this distribution. In particular we study in detail the R-transform of fGIG
distribution. Some of the properties established in this section will be crucial in the
subsequent sections where we study free infinite divisibility of the free GIG distri-
bution and characterization of the free GIG distribution. The free GIG distribution
appeared for the first time (not under the name free GIG) as the almost sure weak limit
of empirical spectral distributions of GIG matrices (see [12]).

2.1 Basics of Free Probability

This paper deals mainly with properties of free GIG distribution related to free prob-
ability and in particular to free convolution. Therefore in this section we introduce
notions and tools that we need in this paper. The introduction is far from being detailed,
reader not familiar with free probabilitymay find a very good introduction to the theory
in [25,26,38].

1o A C∗-probability space is a pair (A, ϕ), whereA is a unital C∗-algebra and ϕ is a
linear functional ϕ : A → C, such that ϕ(1A) = 1 and ϕ(aa∗) ≥ 0. Here by 1A
we understand the unit of A.

2o Let I be an index set. Subalgebras (Ai )i∈I are called free if ϕ(X1 · · · Xn) = 0
whenever ai ∈ A ji , j1 �= j2 �= · · · �= jn and ϕ(Xi ) = 0 for all i = 1, . . . , n
and n = 1, 2, . . .. Similarly, self-adjoint random variables X, Y ∈ A are free
(freely independent) when subalgebras generated by (X, 1A) and (Y, 1A) are
freely independent.

3o The distribution of a self-adjoint random variable is identified via moments, that
is for a random variable X we say that a probability measure μ is the distribution
of X if

ϕ(Xn) =
∫

tn dμ(t), for all n = 1, 2, . . .

Note that since we assume that our algebraA is aC∗-algebra, all random variables
are bounded, thus the sequence ofmoments indeed determines a unique probability
measure.
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4o The distribution of the sum X + Y for free random variables X,Y with respective
distributions μ and ν is called the free convolution of μ and ν, and is denoted by
μ � ν.

2.2 Free GIG Distribution

In this paper we are concerned with a specific family of probability measures which
we will refer to as free GIG (fGIG) distributions.

Definition 2.1 The freeGeneralized InverseGaussian (fGIG) distribution is ameasure
μ = μ(α, β, λ), where λ ∈ R and α, β > 0 which is compactly supported on the
interval [a, b] with the density

μ(dx) = 1

2π

√

(x − a)(b − x)

(

α

x
+ β√

abx2

)

dx,

where 0 < a < b are the solution of

1 − λ + α
√
ab − β

a + b

2ab
= 0 (2.1)

1 + λ + β√
ab

− α
a + b

2
= 0. (2.2)

Observe that the system of equations for coefficients for fixed λ ∈ R and α, β > 0
has a unique solution 0 < a < b. We can easily get the following

Remark 2.2 Let λ ∈ R. Given α, β > 0, the system of Eqs. (2.1) and (2.2) has a
unique solution (a, b) such that

0 < a < b, |λ|
(√

a − √
b√

a + √
b

)2

< 1. (2.3)

Conversely, given (a, b) satisfying (2.3), the set of Eqs. (2.1)–(2.2) has a unique
solution (α, β), which is given by

α = 2
(√

a − √
b
)2

⎛

⎝1 + λ

(√
a − √

b√
a + √

b

)2
⎞

⎠ > 0, (2.4)

β = 2ab
(√

a − √
b
)2

⎛

⎝1 − λ

(√
a − √

b√
a + √

b

)2
⎞

⎠ > 0. (2.5)

Thus wemay parametrize fGIG distribution using parameters (a, b, λ) satisfying (2.3)
instead of (α, β, λ). We will make it clear whenever we will use a parametrization
different than (α, β, λ).
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Remark 2.3 It is useful to introduce another parameterization to describe the distri-
bution μ(α, β, λ). Define

A =
(√

b − √
a
)2

, B =
(√

a + √
b
)2

, (2.6)

observe that we have then

α = 2

A

(

1 + λ
A

B

)

> 0, β = (B − A)2

8A

(

1 − λ
A

B

)

> 0,

a =
(√

B − √
A

2

)2

, b =
(√

A + √
B

2

)2

.

The condition (2.3) is equivalent to

0 < max{1, |λ|}A < B. (2.7)

Thus one can describe any measure μ(α, β, λ) in terms of λ, A, B.

2.3 R-Transform of fGIG Distribution

The R-transform of the measure μ(α, β, λ) was calculated in [34]. Since the R-
transform will play a crucial role in the paper we devote this section for a detailed
study of its properties. We also point out some properties of fGIG distribution which
are derived from properties of the R-transform.

Before we present the R-transform of fGIG distribution let us briefly recall how
the R-transform is defined and stress its importance for free probability.

Remark 2.4 1o For a probability measure μ one defines its Cauchy transform via

Gμ(z) =
∫

1

z − x
dμ(x).

It is an analytic function on the upper-half planewith values in the lower half-plane.
The Cauchy transform determines uniquely the measure and there is an inversion
formula called Stieltjes inversion formula, namely for hε(t) = − 1

π
ImGμ(t + iε)

one has

dμ(t) = lim
ε→0+ hε(t) dt,

where the limit is taken in the weak topology.
2o For a compactly supported measure μ one can define in a neighbourhood of the

origin so called R-transform by

Rμ(z) = G〈−1〉
μ (z) − 1

z
,
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where by G〈−1〉
μ we denote the inverse under composition of the Cauchy transform

of μ.
The relevance of the R-transform for free probability comes form the fact that it
linearizes free convolution, that is Rμ�ν = Rμ + Rν in a neighbourhood of zero.

The R-transform of fGIG distribution is given by

rα,β,λ(z) = −α + (λ + 1)z + √

fα,β,λ(z)

2z(α − z)
(2.8)

in a neighbourhood of 0, where the square root is the principal value,

fα,β,λ(z) = (α + (λ − 1)z)2 − 4βz(z − α)(z − γ ), (2.9)

and

γ =
α2ab + β2

ab − 2αβ
(

a+b√
ab

− 1
)

− (λ − 1)2

4β
.

Note that z = 0 is a removable singular point of rα,β,λ. Observe that in terms of A, B
defined by (2.6) we have

γ = 2
λA2 + AB − 2B2

B(B − A)2
.

It is straightforward to observe that (2.7) implies A(λA+ B) < 2AB < 2B2, thus we
have γ < 0.

The following remark was used in [34, Remark 2.1] without a proof. We give a
proof here.

Remark 2.5 We have fα,β,λ(z) = fα,β,−λ(z), where α, β > 0, λ ∈ R.

Proof To see this one has to insert the definition of γ into (2.9) to obtain

fα,β,λ(z) = αzλ2 +
((

abα2 − 2αβ
a + b√

ab
+ β2

ab
+ 2αβ

)

z − 4βz2 − α

)

(z − α),

where a = a(α, β, λ) and b = b(α, β, λ). Thus it suffices to show that the quan-

tity g(α, β, λ) := abα2 − 2αβ a+b√
ab

+ β2

ab does not depend on the sign of λ. To see

this, observe from the system of Eqs. (2.1) and (2.2) that a(α, β,−λ) = β
αb(α,β,λ)

and b(α, β,−λ) = β
αa(α,β,λ)

. It is then straightforward to check that g(α, β,−λ) =
g(α, β, λ). 
�
Proposition 2.6 The R-transform of the measure μ(α, β, λ) can be extended to a
function (still denoted by rα,β,λ) which is analytic on C

− and continuous on (C− ∪
R)\{α}.
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Proof A direct calculation shows that using parameters A, B defined by (2.6) the
polynomial fα,β,λ under the square root factors as

fα,β,λ(z) = (B − A)2(B − λA)

2AB

[

z + 2(B + λA)

B(B − A)

]2 [

2B

A(B − λA)
− z

]

.

Thus we can write
fα,β,λ(z) = 4β(z − δ)2(η − z), (2.10)

where

δ = −2(B + λA)

B(B − A)
< 0, (2.11)

η = 2B

A(B − λA)
> 0. (2.12)

It is straightforward to verify that (2.7) implies η ≥ α with equality valid only when
λ = 0.
Calculating fα,β,λ(0) using first (2.9) and then (2.10) we get 4βηδ2 = α2, since η ≥ α

we see that δ ≥ −√
α/(4β) with equality only when λ = 0.

Since all roots of fα,β,λ are real, the square root
√

fα,β,λ(z) may be defined con-
tinuously on C

− ∪ R so that
√

fα,β,λ(0) = α. As noted above δ < 0, and continuity
of fα,β,λ implies that we have

√

fα,β,λ(z) = 2(z − δ)
√

β(η − z), (2.13)

where we take the principal value of the square root in the expression
√
4β(η − z).

Thus finally we arrive at the following form of the R-transform

rα,β,λ(z) = −α + (λ + 1)z + 2(z − δ)
√

β(η − z)

2z(α − z)
(2.14)

which is analytic in C− and continuous in (C− ∪ R)\{α} as required. 
�
Next we describe the behaviour of the R-transform around the singular point z = α.

Proposition 2.7 If λ > 0 then

rα,β,λ(z) = λ

α − z
− 1

2α

(

1 + λ +
√

β(2η − 3α + δ)√
η − α

)

+ o(1), as z → α.

(2.15)
If λ < 0 then

rα,β,λ(z) = − 1

2α

(

1 + λ +
√

β(2η − 3α + δ)√
η − α

)

+ o(1), as z → α. (2.16)
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In the remaining case λ = 0 one has

rα,β,0(z) = −α + z + 2(z − δ)
√

β(α − z)

2z(α − z)
= − 1

2z
+

√
β(z − δ)

z
√

α − z
. (2.17)

Proof By the definition we have fα,β,λ(α) = (λα)2, substituting this in the expression
(2.13) we obtain that α|λ| = 2(α−δ)

√
β(η − α). Taking the Taylor expansion around

z = α for λ �= 0 we obtain

√

fα,β,λ(z) = α|λ| +
√

β(2η − 3α + δ)√
η − α

(z − α) + o(|z − α|), as z → α. (2.18)

This implies (2.15) and (2.16).
The case λ = 0 follows from the fact that in this case we have η = α. 
�

Corollary 2.8 In the case λ < 0 one can extend rα,β,λ to an analytic function in C
−

and continuous in C− ∪ R.

2.4 Some Properties of fGIG Distribution

We study here further properties of the free GIG distributions. Some of them motivate
Sect. 4 where we will characterize fGIG distribution in a way analogous to classical
GIG distribution.

The next remark recalls the definition and some basic facts about free Poisson
distribution, which will play an important role in this paper.

Remark 2.9 1o Marchenko–Pastur (or free-Poisson) distribution ν = ν(γ, λ) is
defined by the formula

ν = max{0, 1 − λ} δ0 + ν̃,

where γ, λ > 0 and the measure ν̃, supported on the interval (γ (1−√
λ)2, γ (1+√

λ)2), has the density (with respect to the Lebesgue measure)

ν̃(dx) = 1

2πγ x

√

4λγ 2 − (x − γ (1 + λ))2 dx .

2o The R-transform of the free Poisson distribution ν(γ, λ) is of the form

rν(γ,λ)(z) = γ λ

1 − γ z
.

The next proposition was proved in [34, Remark 2.1] which is the free counterpart
of a convolution property of classical Gamma and GIG distribution. The proof is a
straightforward calculation of the R-transform with the help of Remark 2.5.
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Proposition 2.10 Let X and Y be free, X free GIG distributed μ(α, β,−λ) and Y
free Poisson distributed ν(1/α, λ) respectively, for α, β, λ > 0. Then X + Y is free
GIG distributed μ(α, β, λ).

We also quote another result from [34, Remark 2.2] which is again the free analogue
of a property of classical GIG distribution. The proof is a simple calculation of the
density.

Proposition 2.11 If X has the free GIG distribution μ(α, β, λ) then X−1 has the free
GIG distribution μ(β, α,−λ).

The two propositions above imply some distributional properties of fGIG distribu-
tion. In the Sect. 4 we will study characterization of the fGIG distribution related to
these properties.

Remark 2.12 1o Fix λ, α > 0. If X has fGIG distribution μ(α, α,−λ) and Y has the

free Poisson distribution ν(1/α, λ) and X,Y are free then X
d= (X + Y )−1.

Indeed by Proposition 2.10 we get that X+Y has fGIG distributionμ(α, α, λ) and
now Proposition 2.11 implies that (X + Y )−1 has the distribution μ(α, α,−λ).

2o One can easily generalize the above observation. Take α, β, λ > 0, and X,Y1,Y2
free, such that X has fGIG distribution μ(α, β,−λ), Y1 is free Poisson distributed

ν(1/β, λ) and Y2 is distributed ν(1/α, λ), then X
d= (Y1 + (Y2 + X)−1)−1.

Similarly as before we have that X + Y2 has distribution μ(α, β, λ), then by
Proposition 2.11 we get that (X + Y2)−1 has distribution μ(β, α,−λ). Then we
have that Y1 + (Y2 + X)−1 has the distribution μ(β, α, λ) and finally we get
(Y1 + (Y2 + X)−1)−1 has the desired distribution μ(α, β,−λ).

3o Both identities above can be iterated finitely many times, so that one obtains that

X
d= (

Y1 + (Y2 + · · · )−1)−1
, where Y1,Y2, . . . are free, for k odd Yk has the free

Poisson distribution ν(1/β, λ) and for k even Yk has the distribution ν(1/α, λ).
For the case described in 1o one simply has to take α = β. We are not sure if
infinite continued fractions can be defined.

Next we study limits of the fGIG measure μ(α, β, λ) when α → 0 and β → 0.
This was stated with some mistake in [34, Remark 2.3].

Proposition 2.13 As β ↓ 0 we have the following weak limits of the fGIG distribution

lim
β↓0 μ(α, β, λ) =

⎧

⎪
⎨

⎪
⎩

ν(1/α, λ), λ ≥ 1,
1−λ
2 δ0 + 1+λ

2 ν
( 1+λ

2α , 1
)

, |λ| < 1,

δ0, λ ≤ −1.

(2.19)

Taking into account Proposition 2.11 one can also describe limits when α ↓ 0 for
λ ≥ 1.

Remark 2.14 This result reflects the fact that GIG matrix generalizes the Wishart
matrix for λ ≥ 1, but not for λ < 1 (see [12] for GIG matrix and [19] for the Wishart
matrix).
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Proof We will find the limit by calculating limits of the R-transform, since conver-
gence of the R-transform implies weak convergence. Observe that from Remark 2.5
we can consider only λ ≥ 0, however we decided to present all cases, as the consid-
eration will give asymptotic behaviour of support of fGIG measure. In view of (2.9),
the only non-trivial part is the limit of βγ when β → 0. Observe that if we define
F(a, b, α, β, λ) by

(

1 − λ + α
√
ab − β

a + b

2ab
, 1 + λ + β√

ab
− α

a + b

2

)T

= ( f (a, b, α, β, λ), g((a, b, α, β, λ)))T

= F(a, b, α, β, λ),

then the solution for the system (2.1), (2.2) are functions (a(α, β, λ), b(α, β, λ)),
such that F(a(α, β, λ), b(α, β, λ), α, β, λ) = (0, 0). We use Implicit Function Theo-
rem, we calculate the Jacobian with respect to (a, b), and observe that a(α, β, λ) and
b(α, β, λ) are continuous (even differentiable) functions of α, β > 0 and λ ∈ R.

Case 1. λ > 1
Observe if we take β = 0 then a real solution 0 < a < b for the system (2.1), (2.2)

1 − λ + α
√
ab = 0 (2.20)

1 + λ − α
a + b

2
= 0 (2.21)

still exists. Moreover, because at β = 0 Jacobian is non-zero, Implicit Function The-
orem says that solutions are continuous at β = 0. Thus using (2.20) we get

βγ =
α2ab + β2

ab − 2αβ
(

a+b√
ab

− 1
)

− (λ − 1)2

4
=

β2

ab − 2αβ
(

a+b√
ab

− 1
)

4
.

The above implies that βγ → 0 when β → 0 since a, b have finite and non-zero limit
when β → 0, as explained above.

Case 2. λ < −1
In that case we see that setting β = 0 in (2.1) leads to an equation with no real solution
for (a, b). In this case the part β a+b

2ab has non-zero limit when β → 0. To be precise
substitute a = βa′ and b = βb′ in (2.1), (2.2), and then we get

1 − λ + αβ
√
a′b′ − a′ + b′

2a′b′ = 0

1 + λ + 1√
a′b′ − αβ

a′ + b′

2
= 0.

The above system is equivalent to the system (2.1), (2.2) with α := αβ and β := 1. If
we set β = 0 as in Case 1 we get
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1 − λ − a′ + b′

2a′b′ = 0 (2.22)

1 + λ + 1√
a′b′ = 0. (2.23)

The above system has solution 0 < a′ < b′ for λ < −1. Calculating the Jacobian we
see that it is non-zero at β = 0, so Implicit Function Theorem implies that a′ and b′
are continuous functions at β = 0 in the case λ < −1.

This implies that in the case λ < −1 the solutions of (2.1), (2.2) are a(β) =
βa′ + o(β) and b(β) = βb′ + o(β). Thus we have

lim
β→0

βγ =
α2ab + β2

ab − 2αβ( a+b√
ab

− 1) − (λ − 1)2

4

=
1

a′b′ − (λ − 1)2

4
= (λ + 1)2 − (λ − 1)2

4
= λ,

where in the equation one before the last we used (2.23).

Case 3. |λ| < 1
Observe that neither (2.20) nor (2.23) has a real solution in the case |λ| < 1. This is
because in this case asymptotically a(β) = a′β +o(β) and b has a finite positive limit
as β → 0. Similarly as in Case 2 let us substitute a = βa′ in (2.1), (2.2), which gives

1 − λ + α
√

βa′b − βa′ + b

2a′b
= 0

1 + λ +
√

β

a′b
− α

βa′ + b

2
= 0.

If we set β = 0 we get

1 − λ − 1

2a′ = 0, (2.24)

1 + λ − α
b

2
= 0, (2.25)

which obviously has positive solution (a′, b) when |λ| < 1. As before the Jacobian is
non-zero at β = 0, so a′ and b are continuous at β = 0.

Now we go back to the limit limβ→0 βγ . We have a(β) = βa′ + o(β), thus

lim
β→0

βγ = lim
β→0

α2ab + β2

ab − 2αβ
(

a+b√
ab

− 1
)

− (λ − 1)2

4
= − (λ − 1)2

4
.

Case 4. |λ| = 1
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An analysis similar to the above cases shows that in the case λ = 1 we have a(β) =
a′β2/3 + o(β2/3) and b has positive limit when β → 0. In the case λ = −1 one gets
a(β) = a′β + o(β) and b(β) = b′β1/3 + o(β1/3) as β → 0.

Thus we can calculate the limit of fα,β,λ as β → 0,

lim
β↓0 fα,β,λ(z) =

⎧

⎪
⎨

⎪
⎩

(α + (λ − 1)z)2, λ > 1,

α2 + (λ2 − 1)αz, |λ| ≤ 1,

(α − (λ + 1)z)2, λ < −1.

(2.26)

The above allows us to calculate limiting R-transform and hence the Cauchy transform
which implies (2.19). 
�
Corollary 2.15 Considering the continuous dependence of roots on parameters we
get the following asymptotic behaviour of the double root δ < 0 and the simple root
η ≥ α.

(i) If |λ| > 1 then δ → α/(1 − |λ|) and η → +∞ as β ↓ 0.
(ii) If |λ| < 1 then δ → −∞ and η → α/(1 − λ2) as β ↓ 0.
(iii) If λ = ±1 then δ → −∞ and η → +∞ as β ↓ 0.

3 Regularity of fGIG Distribution Under Free Convolution

In this section we study in detail regularity properties of the fGIG distribution related
to the operation of free additive convolution. In the next theorem we collect all the
results proved in this section. The theorem contains several statements about free GIG
distributions. Each subsection of the present section proves a part of the theorem.

Theorem 3.1 The following holds for the free GIG measure μ(α, β, λ):

1o It is freely infinitely divisible for any α, β > 0 and λ ∈ R.

2o The free Levy measure is of the form

τα,β,λ(dx) = max{λ, 0}δ1/α(dx) + (1 − δx)
√

β(1 − ηx)

πx3/2(1 − αx)
1(0,1/η)(x) dx . (3.1)

3o It is free regular with zero drift for all α, β > 0 and λ ∈ R.

4o It is freely self-decomposable for λ ≤ − B
3
2

A
√
9B−8A

.

5o It is unimodal.

3.1 Free Infinite Divisibility and Free Lévy Measure

As wementioned before, having the operation of free convolution defined, it is natural
to study infinite divisibilitywith respect to�.We say thatμ is freely infinitely divisible
if for any n ≥ 1 there exists a probability measure μn such that

μ = μn � · · · � μn
︸ ︷︷ ︸

n times

.
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It turns out that free infinite divisibility of compactly supported measures can by
described in terms of analytic properties of the R-transform. In particular it was proved
in [36, Theorem 4.3] that the free infinite divisibility is equivalent to the inequality
Im(rα,β,λ(z)) ≤ 0 for all z ∈ C

−.
As in the classical case, for freely infinitely divisible probability measures, one

can represent its free cumulant transform with a Lévy–Khintchine type formula. For
a probability measure μ on R, the free cumulant transform is defined by

C�
μ (z) = zrμ(z). (3.2)

Then μ is FID if and only if C�
μ can be analytically extended to C− via the formula

C�
μ (z) = ξ z + ζ z2 +

∫

R

(

1

1 − zx
− 1 − zx 1[−1,1](x)

)

τ(dx), z ∈ C
−, (3.3)

where ξ ∈ R, ζ ≥ 0 and τ is a measure on R such that

τ({0}) = 0,
∫

R

min
{

1, x2
}

τ(dx) < ∞. (3.4)

The triplet (ξ, ζ, τ ) is called the free characteristic triplet ofμ, and τ is called the free
Lévy measure of μ. The formula (3.3) is called the free Lévy–Khintchine formula.

Remark 3.2 The above form of free Lévy–Khintchine formula was obtained by
Barndorff-Nielsen and Thorbjørnsen [6] and it has a probabilistic interpretation (see
[30]). Another form was obtained by Bercovici and Voiculescu [8], which is more
suitable for limit theorems.

In order to prove that all fGIG distributions are freely infinitely divisible we will
use the following lemma.

Lemma 3.3 Let f : (C− ∪ R)\{x0} → C be a continuous function, where x0 ∈ R.
Suppose that f is analytic inC−, f (z) → 0 uniformly with z → ∞ and Im( f (x)) ≤ 0
for x ∈ R\{x0}. Suppose moreover that Im( f (z)) ≤ 0 for Im(z) ≤ 0 in a neighbour-
hood of x0 then Im( f (z)) ≤ 0 for all z ∈ C

−.

Proof Since f is analytic the function Im f is harmonic and thus satisfies themaximum
principle. Fix ε > 0. Since f (z) → 0 uniformly with z → ∞, let R > 0 be such that
Im f (z) < ε. Consider a domain Dε with the boundary

∂Dε = [−R, x0 − ε] ∪ {x0 + εeiθ : θ ∈ [−π, 0]} ∪ [x0 + ε, R] ∪ {Reiθ : θ ∈ [−π, 0]}

Observe that on ∂Dε Im f (z) < ε by assumptions, and hence by the maximum prin-
ciple we have Im f (z) < ε on whole Dε. Letting ε → 0 we get that Im f (z) ≤ 0 on
C

−. 
�
Next we proceed with the proof of free infinite divisibility of fGIG distributions.
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Proof of Theorem 3.1 1o Case 1. λ > 0.
Observe that we have

Im(rα,β,λ(x)) ≤ 0, x ∈ R\{α}. (3.5)

From (2.14) we see that Im(rα,β,λ(x)) = 0 for x ∈ (−∞, α) ∪ (α, η], and

Im(rα,β,λ(x)) = (x − δ)
√

β(x − η)

x(α − x)
< 0, x > η (3.6)

since η > α > 0 > δ.
Moreover observe that by (2.15) for ε > 0 small enough we have Im(rα,β,λ(α +
εeiθ )) < 0, for θ ∈ [−π, 0]. Now Lemma 3.3 implies that free GIG distribution is
freely ID in the case λ > 0.

Case 2 λ < 0.
In this case similar argument shows that μ(α, β, λ) is FID. Moreover by (2.16) point
z = α is a removable singularity and rα,β,λ extends to a continuous function onC−∪R.
Thus one does not need to take care of the behaviour around z = α.

Case 3 λ = 0.
For λ = 0 one can adopt a similar argumentation using (2.17). It also follows from the
fact that free GIG familyμ(α, β, λ) is weakly continuous with respect to λ. Since free
infinite divisibility is preserved by weak limits, then the case λ = 0 may be deduced
from the previous two cases. 
�

Next we will determine the free Lévy measure of free GIG distribution μ(α, β, λ).

Proof of Theorem 3.1 2o Let (ξα,β,λ, ζα,β,λ, τα,β,λ) be the free characteristic triplet of
the free GIG distribution μ(α, β, λ). By the Stieltjes inversion formula mentioned in
Remark 2.4, the absolutely continuous part of the free Lévy measure has the density

− lim
ε→0

1

πx2
Im(rα,β,λ(x

−1 + iε)), x �= 0, (3.7)

atoms are at points 1/p (p �= 0), such that the weight given by

τα,β,λ({1/p}) = lim
z→p

(p − z)rα,β,λ(z), (3.8)

is non-zero, where z tends to p non-tangentially from C
−. In our case the free Lévy

measure does not have a singular continuous part since rα,β,λ is continuous on C
− ∪

R\{α}. Considering (2.15)–(2.17) and (3.6) we obtain the free Lévy measure

τα,β,λ(dx) = max{λ, 0}δ1/α(dx) + (1 − δx)
√

β(1 − ηx)

πx3/2(1 − αx)
1(0,1/η)(x) dx . (3.9)

Recall that η ≥ α > 0 > δ holds, and η = α if and only if λ = 0. The other two
parameters ξα,β,λ and ζα,β,λ in the free characteristic triplet will be determined in
Sect. 3.2. 
�
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3.2 Free Regularity

In this subsection we will deal with a property stronger than free infinite divisibility,
so called free regularity.

Let μ be a FID distribution with the free characteristic triplet (ξ, ζ, τ ). When the
semicircular part ζ is zero and the free Lévymeasure τ satisfies a stronger integrability
property

∫

R
min{1, |x |}τ(dx) < ∞, then the free Lévy–Khintchine representation

reduces to

C�
μ (z) = ξ ′z +

∫

R

(

1

1 − zx
− 1

)

τ(dx), z ∈ C
−, (3.10)

where ξ ′ = ξ − ∫

[−1,1] x τ(dx) ∈ R is called a drift. The distribution μ is said to
be free regular [28] if ξ ′ ≥ 0 and τ is supported on (0,∞). A probability measure
μ on R is free regular if and only if the free convolution power μ�t is supported
on [0,∞) for every t > 0, see [3]. Examples of free regular distributions include
positive free stable distributions, free Poisson distributions and powers of free Poisson
distributions [16]. A general criterion in [3, Theorem 4.6] shows that some boolean
stable distributions [1] and many probability distributions [2,3,15] are free regular.
A recent result of Ejsmont and Lehner [11, Proposition 4.13] and its proof provide a
wide class of examples: given a nonnegative definite complex matrix {ai j }ni, j=1 and
free selfadjoint elements X1, . . . , Xn which have symmetric FID distributions, the
polynomial

∑n
i, j=1 ai j Xi X j has a free regular distribution.

Proof of Theorem 3.1 3o For the free GIG distributions, the semicircular part can be
found by ζα,β,λ = lim

z→∞ z−1rα,β,λ(z) = 0. The free Lévy measure (3.1) satisfies

supp(τα,β,λ) ⊂ (0,∞),

∫ ∞

0
min{1, x}τα,β,λ(dx) < ∞ (3.11)

and so we have the reduced formula (3.10). The drift is given by ξ ′
α,β,λ =

limu→−∞ rα,β,λ(u) = 0. 
�

3.3 Free Selfdecomposability

Classical GIG distribution is selfdecomposable [14,31] (more strongly, hyperbolically
completely monotone [10, p. 74]), and hence it is natural to ask whether free GIG
distribution is freely selfdecomposable.

A distributionμ is said to be freely selfdecomposable (FSD) [5] if for any c ∈ (0, 1)
there exists a probability measure μc such that μ = (Dcμ) � μc, where Dcμ is the
dilation of μ, namely (Dcμ)(B) = μ(c−1B) for Borel sets B ⊂ R. A distribution is
FSD if and only if it is FID and its free Lévy measure is of the form

k(x)

|x | dx, (3.12)
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where k : R → [0,∞) is non-decreasing on (−∞, 0) and non-increasing on (0,∞).
Unlike the free regular distributions, there are only a few known examples of FSD dis-
tributions: the free stable distributions, some free Meixner distributions, the classical
normal distributions and a few other distributions (see [17, Example 1.2, Corollary
3.4]). The free Poisson distribution is not FSD.

Proof of Theorem 3.1 4o In view of (3.1), the free GIG distribution μ(α, β, λ) is not
FSD if λ > 0. Suppose λ ≤ 0, then μ(α, β, λ) is FSD if and only if the function

kα,β,λ(x) = (1 − δx)
√

β(1 − ηx)

π
√
x(1 − αx)

(3.13)

is non-increasing on (0, 1/η). The derivative is

k′
α,β,λ(x) = −

√
β[1 + (δ − 3α)x + (2αη − 2ηδ + αδ)x2]

2πx3/2(1 − αx)2
√
1 − ηx

. (3.14)

Hence FSD is equivalent to

g(x) := 1 + (δ − 3α)x + (2αη − 2ηδ + αδ)x2 ≥ 0, 0 ≤ x ≤ 1/η. (3.15)

Using η ≥ α > 0 > δ, one can show that 2αη − 2ηδ + αδ > 0, a straightforward
calculation shows that the function g takes a minimum at a point in (0, 1/η). Thus
FSD is equivalent to

D := (δ − 3α)2 − 4(2αη − 2ηδ + αδ) ≤ 0. (3.16)

In order to determine when the above inequality holds, it is convenient to switch to
parameters A, B defined by (2.6). Using formulas derived in Sect. 2.3 we obtain

D = 4(B + λA)(8λ2A3 − 9λ2A2B + B3)

A2B(A − B)2(B − λA)
. (3.17)

Calculating λ for which D is non-positive we obtain that

λ ≤ − B
3
2

A
√
9B − 8A

.


�

Corollary 3.4 One can easily find that the maximum of the function − B
3
2

A
√
9B−8A

over

A, B ≥ 0 equals− 4
9

√
3. Thus the set of parameters (A, B) that give FSDdistributions

is nonempty if and only if λ ≤ − 4
9

√
3.

In the critical case λ = − 4
9

√
3 only the pairs (A, 4

3 A), A > 0 give FSD distribu-

tions. If one puts A = 12t, B = 16t then a = (2−√
3)2t, b = (2+√

3)2t , α = 3−√
3

18t ,
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β = 3+√
3

18 t, δ = − 3−√
3

6t = −2η. One can easily show that μ(α, β,−1) is FSD if and

only if (0 < A <) B ≤ −1+√
33

2 A.
Finally note that the above result is in contrast to the fact that classical GIG

distributions are all selfdecomposable.

3.4 Unimodality

Since relations of unimodality with free infinite divisibility and free self decompos-
ability were studied in the literature, we decided to determine whether measures from
the free GIG family are unimodal.

A measure μ is said to be unimodal if for some c ∈ R

μ(dx) = μ({c})δc(dx) + f (x) dx, (3.18)

where f : R → [0,∞) is non-decreasing on (−∞, c) and non-increasing on (c,∞).
In this case c is called the mode. Hasebe and Thorbjørnsen [18] proved that FSD
distributions are unimodal. Since some free GIG distributions are not FSD, the result
from [18] does not apply. However it turns out that free GIG measures are unimodal.

Proof of Theorem 3.1 5o Calculating the derivative of the density of μ(α, β, λ) one
obtains

x(a + b − 2x)(xα + β√
ab

) − 2(b − x)(x − a)(xα + 2β√
ab

)

2x3
√

(b − x)(x − a)
(3.19)

Denoting by f (x) the quadratic polynomial in the numerator, one can easily see from
the shape of the density that f (a) > 0 > f (b) and hence the derivative vanishes at a
unique point in (a, b) (since f is quadratic). 
�

4 Characterizations the Free GIG Distribution

In this section we show that the fGIG distribution can be characterized similarly as
classical GIG distribution. In [34] fGIG was characterized in terms of free indepen-
dence property, the classical probability analogue of this result characterizes classical
GIG distribution. In this section we find two more instances where such analogy holds
true, one is a characterization by some distributional properties related with continued
fractions, the other is maximization of free entropy.

4.1 Continued Fraction Characterization

In this section we study a characterization of fGIG distribution which is analogous
to the characterization of GIG distribution proved in [21]. Our strategy is different
from the one used in [21]. We will not deal with continued fractions, but we will take
advantage of subordination for free convolutions, which allows us to prove the simpler
version of “continued fraction” characterization of fGIG distribution.
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Theorem 4.1 Let Y have the free Poisson distribution ν(1/α, λ) and let X be free
from Y , where α, λ > 0 and X > 0, then we have

X
d= (X + Y )−1 (4.1)

if and only if X has free GIG distribution μ(α, α,−λ).

Remark 4.2 Observe that the “if” part of the above theorem is contained in the
Remark 2.12. We only have to show that if (4.1) holds where Y has free Poisson
distribution ν(1/α, λ), then X has the free GIG distribution μ(α, α,−λ).

As mentioned above our proof of the above theorem uses subordination of free
convolution. This property of free convolution was first observed by Voiculescu [37]
and then generalized byBiane [9]. Let us shortly recall what wemean by subordination
of free additive convolution.

Remark 4.3 Subordination of free convolution states that for probability measures
μ, ν, there exists an analytic function defined on C\R with the property F(z) = F(z)
such that for z ∈ C

+ we have ImF(z) > Imz and

Gμ�ν(z) = Gμ(ω(z)).

Now if we denote byω1 andω2 subordination functions such thatGμ�ν = Gμ(ω1)

and Gμ�ν = Gν(ω2), then ω1(z) + ω2(z) = 1/Gμ�ν(z) + z.

Next we proceed with the proof of Theorem 4.1 which is the main result of this
section.

Proof First note that (4.1) is equivalent to

1

X
d= X + Y,

Which may be equivalently stated in terms of Cauchy transforms of both sides as

GX−1(z) = GX+Y (z). (4.2)

Subordination allows as to write the Cauchy transform of X + Y in two ways

GX+Y (z) = GX (ωX (z)), (4.3)

GX+Y (z) = GY (ωY (z)). (4.4)

Moreover ωX and ωY satisfy

ωX (z) + ωY (z) = 1/GX+Y (z) + z.
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From the above we get

ωX (z) = 1/GX+Y (z) + z − ωY (z), (4.5)

this together with (4.2) and (4.3) gives

GX−1(z) = GX

(

1

GX−1
(z) + z − ωY (z)

)

.

Since we know that Y has free Poisson distribution ν(λ, 1/α) we can calculate ωY in
terms ofGX−1 using (4.4). To do this one has to use the identityG〈−1〉

Z (z) = rZ (z)+1/z
for any self-adjoint random variable Z and the form of the R-transform of free Poisson
distribution recalled in Remark 2.9.

ωY (z) = λ

α − GX−1(z)
+ 1

GX−1(z)
(4.6)

Now we can use (4.3), where we substitute GX+Y (z) = GX−1(z) to obtain

GX−1(z) = GX

(

λ

GX−1(z) − α
+ z

)

. (4.7)

Next we observe that we have

GX−1(z) = 1

z

(

−1

z
GX

(

1

z

)

+ 1

)

, (4.8)

which allows to transform (4.7) to an equation for GX . It is enough to show that this
equation has a unique solution. Indeed from Remark 2.12 we know that free GIG
distribution μ(α, α, λ) has the desired property, which in particular means that for X
distributed μ(α, α, λ) Eq. (4.7) is satisfied. Thus if there is a unique solution it has to
be the Cauchy transform of the free GIG distribution.

To prove uniqueness of the Cauchy transform of X , we will prove that coefficients
of the expansion of GX at a special “good” point, are uniquely determined by α and
λ.

First we will determine the point at which we will expand the function. Observe
that with our assumptions GX−1 is well defined on the negative half-line, moreover
GX−1(x) < 0 for any x < 0, and we have GX−1(x) → 0 with x → −∞. On the
other hand the function f (x) = 1/x − x is decreasing on the negative half-line, and
negative for x ∈ (−1, 0). Thus there exist a unique point c ∈ (−1, 0) such that

1

c
= λ

GX−1(c) − α
+ c. (4.9)

Let us denote

M(z) := GX

(

1

z

)



On Free Generalized Inverse Gaussian Distributions 3111

and

N (z) :=
(

λ

GX−1(z) − α
+ z

)−1

= −z + αz2 + M(z)

−(1 + λ)z2 + αz3 + zM(z)
, (4.10)

where the last equality follows from (4.8).
One has N (c) = c, and our functional Eq. (4.7) may be rewritten (with the help of

(4.8)) as
− M(z) + z = z2M(N (z)). (4.11)

Functions M and N are analytic around any x < 0. Consider the expansions

M(z) =
∞
∑

n=0

αn(z − c)n,

N (z) =
∞
∑

n=0

βn(z − c)n .

Observe that β0 = c since N (c) = c. Differentiating (4.10) we observe that any
βn, n ≥ 1 is a rational function of α, λ, c, α0, α1, . . . , αn . Moreover any βn, n ≥ 1
is a degree one polynomial in αn . We have

βn = −λ

[α0 − (1 + λ)c + αc2]2 αn + Rn, (4.12)

where Rn is a rational functionofn+3variables evaluated at (α, λ, c, α0, α1, . . . , αn−1),
which does not depend on the distribution of X . For example β1 is given by

β1 = N ′(c) =
( −z + αz2 + M(z)

−(1 + λ)z2 + αz3 + zM(z)

)′∣∣
∣

∣

∣

z=c

= −λc2α1 + c2(−1 − λ + 2αc − α2c2) + 2c(1 + λ − αc)α0 − α2
0

c2[α0 − (1 + λ)c + αc2]2 .

(4.13)

Next we investigate some properties of c, α0 and α1. Evaluating both sides of (4.11)
at z = c yields

−M(c) + c = c2M(N (c)) = c2M(c),

since M(c) = α0 we get

α0 = c

1 + c2
. (4.14)

Observe that α0 = M(c) = GX (1/c) and α1 = M ′(c) = −c−2G ′
X (1/c) hence we

have
1

1 + c2
=

∫ ∞

0

1

1 − cx
dμX (x), α1 =

∫ ∞

0

1

(1 − cx)2
dμX (x),
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where μX is the distribution of X . Using the Schwarz inequality for the first estimate
and a simple observation that 0 ≤ 1/(1 − cx) ≤ 1 for x > 0, for the latter estimate
we obtain

1

(1 + c2)2
=

(∫ ∞

0

1

1 − cx
μX (dx)

)2

≤
∫ ∞

0

1

(1 − cx)2
μX (dx) = α1 ≤ 1

1 + c2
.

(4.15)
The Eq. (4.9) together with (4.8) gives

1

c
= λc2

−α0 + c − αc2
+ c. (4.16)

Substituting (4.14) to (4.16) after simple calculations we get

αc4 − (1 + λ)c3 + (1 − λ)c − α = 0. (4.17)

We start by showing that α0 is determined only by α and λ. We will show that c,
which we showed before is a unique number, depends only on α and λ and thus (4.14)
shows that α0 is determined by α and λ.

Since the polynomial c4 − (1 + λ)c3 is non-negative for c < 0 and has a root at
c = 0, and the polynomial (λ − 1)c + α equals α > 0 at c = 0 it follows that there is
only one negative c, such that the two polynomials are equal and thus the number c is
uniquely determined by (α, λ). From (4.14) we see that α0 is also uniquely determined
by (α, λ).

Next we will prove that α1 only depends on α and λ. Differentiating (4.11) and
evaluating at z = c we obtain

1 − α1 = 2cα0 + c2α1β1. (4.18)

Substituting α0 and λ from the Eqs. (4.14) and (4.17) we simplify (4.13) and we get

β1 = (1 − c4)α1 − 1 + 2c2 − αc3 − αc5

c(α − c + αc2)

and then Eq. (4.18) may be expressed in the form

c(1 + c2)2α2
1 + (α(1 + c2)2 − 2c)(1 + c2)α1 − (α − c + αc2) = 0. (4.19)

The above is a degree 2 polynomial in α1, denote this polynomial by f , we have then

f (0) < 0, f

(

1

1 + c2

)

= αc2(1 + c2) > 0.

Where the first inequality follows from the fact that c < 0. Since the coefficient
c(1 + c2)2 is negative we conclude that f has one root in the interval (0, 1/(1 + c2))
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and the other in (1/(1 + c2),∞). The inequality (4.15) implies that α1 is the smaller
root of f , which is a function of α and c and hence of α and λ.

In order to prove that αn depends only on (α, λ) for n ≥ 2, first we estimate β1.
Note that (4.18) and (4.14) imply that

β1 = 1 − c2

α1c2(1 + c2)
− 1

c2
. (4.20)

Combining this with the inequality (4.15) we easily get that

− 1 ≤ β1 ≤ −c2. (4.21)

Now we prove by induction on n that αn only depends on α and λ. For n ≥ 2
differentiating n-times (4.11) and evaluating at z = c we arrive at

− αn = c2(αnβ
n
1 + α1βn) + Qn, (4.22)

where Qn is a universal polynomial (whichmeans that the polynomial does not depend
on the distributionof X ) in 2n+1variables evaluated at (α, λ, c, α1, . . . , αn−1, β1, . . . ,

βn−1). According to the inductive hypothesis, the polynomials Rn and Qn depend only
on α and λ. We also have that βn = pαn + Rn , where

p := −λ

[α0 − (1 + λ)c + αc2]2 = 1 − c4

c(α − c + αc2)
.

The last formula is obtained by substituting α0 and λ from (4.14) and (4.17). The Eq.
(4.22) then becomes

(1 + c2βn
1 + c2 pα1)αn + c2α1Rn + Qn = 0.

The inequalities (4.15) and (4.21) show that

1 + c2βn
1 + c2 pα1 ≥ 1 − c2 + c2(1 − c4)

c(α − c + αc2)(1 + c2)
= α(1 − c4)

α − c + αc2
> 0,

thus 1+ c2βn
1 + c2 pα1 is non-zero. Therefore, the number αn is uniquely determined

by α and λ.
Thus we have shown that, if a random variable X > 0 satisfies the functional Eq.

(4.7) for fixed α > 0 and λ > 0, then the point c and all the coefficients α0, α1, α2, . . .

of the series expansion of M(z) at z = c are determined only by α and λ. By analytic
continuation, the Cauchy transform GX is determined uniquely by α and λ, so there
is only one distribution of X for which this equation is satisfied. 
�
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4.2 Remarks on Free Entropy Characterization

Féral [12] proved that fGIG μ(α, β, λ) is a unique probability measure which maxi-
mizes the following free entropy functional with potential

Iα,β,λ(μ) =
∫∫

log |x − y| dμ(x)dμ(y) −
∫

Vα,β,λ(x) dμ(x),

among all compactly supported probability measures μ on (0,∞), where α, β > 0
and λ ∈ R are fixed constants, and

Vα,β,λ(x) = (1 − λ) log x + αx + β

x
.

Here we point out the classical analogue. The (classical) GIG distribution is the
probability measure on (0,∞) with the density

(α/β)λ/2

2Kλ(2
√

αβ)
xλ−1e−(αx+β/x), α, β > 0, λ ∈ R, (4.23)

where Kλ is the modified Bessel function of the second kind. Note that this density
is proportional to exp(−Vα,β,λ(x)). Kawamura and Iwase [20] proved that the GIG
distribution is a unique probability measure which maximizes the classical entropy
with the same potential

Hα,β,λ(p) = −
∫

p(x) log p(x) dx −
∫

Vα,β,λ(x)p(x) dx

among all probability density functions p on (0,∞). This statement is slightly different
from the original one [20, Theorem 2], and for the reader’s convenience a short proof
is given below. The proof is a straightforward application of the Gibbs’ inequality

−
∫

p(x) log p(x) dx ≤ −
∫

p(x) log q(x) dx, (4.24)

for all probability density functions p and q, say on (0,∞). Taking q to be the den-
sity (4.23) of the classical GIG distribution and computing log q(x), we obtain the
inequality

Hα,β,λ(p) ≤ − log
(α/β)λ/2

2Kλ(2
√

αβ)
. (4.25)

Since the Gibbs inequality (4.24) becomes equality if and only if p = q, the equality
in (4.25) holds if and only if p = q, as well.

Remark 4.4 From the above observation, it is tempting to investigate the map

Ce−V (x) dx �→ the maximizer μV of the free entropy functional IV with potential V,
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where C > 0 is a normalizing constant. Under some assumption on V , the free
entropy functional IV is known to have a unique maximizer (see [29]) and so the
above map is well defined. Note that the density function Ce−V (x) is the maximizer
of the classical entropy functional with potential V , which follows from the same
arguments as above. This map sends Gaussian law to Semicircle law, Gamma law to
free Poisson distribution (when λ ≥ 1), and GIG distribution to fGIG distribution.
More examples can be found in [29].
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