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Order Quasisymmetric Functions
Distinguish Rooted Trees

Takahiro Hasebe∗and Shuhei Tsujie†

Richard P. Stanley conjectured that finite trees can be distinguished by their
chromatic symmetric functions. In this paper, we prove an analogous statement
for posets: Finite rooted trees can be distinguished by their order quasisym-
metric functions.

Keywords: rooted tree, P -partition, quasisymmetric function, overlapping shuffle, N-free
2010 MSC: 06A11; 06A07, 05A05, 05C15,

1 Introduction

Finding graph isomorphisms is known to be a hard problem. A typical mathematical way of
understanding isomorphisms between objects is to compute invariants, not only for graphs
but for other objects like manifolds and algebras. A well known invariant of graphs is the
chromatic polynomial which counts the number of homomorphisms from a graph into
the complete graph Kn on n vertices. More precisely, let G = (VG, EG) and H = (VH , EH)
be simple graphs. A homomorphism from G to H is a map f : VG → VH such that
{u, v} ∈ EG implies {f(u), f(v)} ∈ EH . Let Hom(G,H) denote the set of homomorphisms
from G to H. A homomorphism f ∈ Hom(G,Kn), also called a proper coloring of G, is
a map f : VG → {1, . . . , n} such that any neighboring two vertices of G are mapped to
different numbers (colors). The cardinality of such maps #Hom(G,Kn) turns out to be a
polynomial on n of degree #VG, meaning that there exists a (unique) polynomial χ(G, t)
of degree #VG such that χ(G,n) = #Hom(G,Kn) holds for all n ∈ N. This is called the
chromatic polynomial.
Given an invariant, a basic question is to what extent the invariant distinguishes the

objects of interest. For example, from the chromatic polynomial one can extract the
number of vertices, the number of edges and the number of connected components. On the
other hand, all trees on m vertices have the same chromatic polynomial t(t − 1)m−1, and
so, the chromatic polynomial cannot distinguish trees at all. The converse is also known:
if a finite simple graph has the chromatic polynomial t(t− 1)m−1 then the graph is a tree
on m vertices. These results can be found in the introductory article [16].
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Richard P. Stanley [20] introduced an invariant called the chromatic symmetric func-
tion, which is stronger than the chromatic polynomial. For a finite simple graph G, the
chromatic symmetric function X(G,x) of G is the formal power series

X(G,x) :=
∑

f∈Hom(G,KN)

∏
v∈VG

xf(v),

where x denotes countably many commutative indeterminates x1, x2, . . . and KN the com-
plete graph on positive integers N. The evaluation of X(G,x) at 1n = (1, . . . , 1︸ ︷︷ ︸

n times

, 0, . . . )

coincides with χ(G,n), the chromatic polynomial evaluated at n.
Stanley found two distinct simple graphs with the same chromatic symmetric function.

A natural problem is then to find a class of graphs which can be distinguished by the
chromatic symmetric function. Stanley posed a conjecture in this direction.

Conjecture 1.1 (Stanley [20]). Suppose that T1 and T2 are finite trees and X(T1,x) =
X(T2,x). Then T1 and T2 are isomorphic.

This conjecture is in contrast to the mentioned fact that trees on a fixed number of
vertices have the same chromatic polynomial. This conjecture has not been solved, while
several partial results are found in [1, 11, 15, 17].
From now on, we consider a poset version of the above problem. For posets P and Q,

two kinds of homomorphisms may be considered. A map f : P → Q is called a strict
(resp. weak) homomorphism if

u < v ⇒ f(u) < f(v) (resp. f(u) ≤ f(v)).

Let Hom<(P,Q) (resp. Hom≤(P,Q)) denotes the set of strict (resp. weak) homomor-
phisms from P to Q.

Definition 1.2. Let P be a finite poset. We define the strict (resp. weak) order qua-
sisymmetric function by

Γ<(P,x) :=
∑

f∈Hom<(P,N)

∏
v∈P

xf(v)resp. Γ≤(P,x) :=
∑

f∈Hom≤(P,N)

∏
v∈P

xf(v)

 .

Note that these functions are kinds of (P, ω)-partition generating functions introduced
by Stanley [19, p. 81] and studied by Gessel [5]. The evaluations Γ<(P, 1n) and Γ≤(P, 1n)
coincide with the order polynomials Ω(P, n) and Ω(P, n) defined by Stanley [18]. McNa-
mara and Ward [12] also proved many properties of (P, ω)-partition generating functions
as an invariant for finite labeled posets. In particular they gave two distinct finite posets
which have the same order quasisymmetric function (see also Section 6). Thus Γ<(P,x) is
not a complete invariant of the finite posets P . The reader is referred to [6] for a historical
survey.
A rooted tree is a tree with a distinguished vertex called the root. Every vertex of a

finite rooted tree R has a unique path from itself to the root. Hence R is equipped with
the natural order, i.e., u ≤ v if the unique path from v to the root passes through u. In
this paper, we regard a rooted tree as a poset with respect to this order.
Our main result is that the order quasisymmetric functions distinguish finite rooted

trees.
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Theorem 1.3. Let R1 and R2 be finite rooted trees. Then the following are equivalent.

(1) Γ<(R1,x) = Γ<(R2,x).

(2) Γ≤(R1,x) = Γ≤(R2,x).

(3) R1 and R2 are isomorphic.

In fact we prove the result for a larger class which is characterized by the absence of full
subposets “N” and “⋊⋉” (see Sections 4 and 5). The proof of our main theorem is based
on algebraic properties of the ring of quasisymmetric functions.
Our algebraic method may have potential applications to other invariants of posets,

graphs or other objects. A possible future work is to try to find other invariants which can
distinguish a class of graphs, posets or other objects, for instance the chromatic symmetric
function and Tutte polynomial for graphs, and the W polynomial for weighted graphs [14].
The reader can consult [3, 4] for these and other invariants.
The organization of this paper is as follows. In Section 2, we introduce the overlapping

shuffle algebra. In Section 3, we investigate properties of the strict order quasisymmetric
functions with the theory of (P, ω)-partitions. We prove a key lemma (Lemma 3.13) about
the irreducibility of Γ<(P,x). In Section 4, we introduce (N,⋊⋉)-free posets and give their
characterization. In Section 5, we give the proof of Theorem 1.3 for (N,⋊⋉)-free posets. In
Section 6, we propose some open problems.

2 The ring of quasisymmetric functions and the
overlapping shuffle algebra

A tuple (α1, . . . , αℓ) of positive integers is called a composition. Let N∗ denote the set
of compositions (including the empty composition ∅). A formal power series Q ∈ Z[[x]] is
said to be quasisymmetric if the following conditions hold:

(1) The degree of Q is finite;

(2) The coefficients of the two monomials xα1
1 · · · xαℓ

ℓ and xα1
i1

· · · xαℓ
iℓ

in Q are the same for
any strictly increasing indices i1 < · · · < iℓ and any composition (α1, . . . , αℓ).

The set of quasisymmetric functions forms a subring of Z[[x]] (see Proposition 2.1 below)
and is called the ring of quasisymmetric functions, which is denoted by QSym. For a
composition α = (α1, . . . , αℓ), we define the monomial quasisymmetric function Mα

by

Mα :=
∑

i1<···<iℓ

xα1
i1

· · · xαℓ
iℓ
, M∅ := 1.

It is easy to show that the monomial quasisymmetric functions Mα form a basis for QSym
as a module.
For a positive integer ℓ, let [ℓ] denote the totally ordered set {1, . . . , ℓ} endowed with

the usual order, and let [0] denote the empty set.
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Proposition 2.1 (Hazewinkel [8, p.350], Grinberg-Reiner [7, Proposition 5.3]). Let α =
(α1, . . . , αℓ) and β = (β1, . . . , βm) be compositions. Then

MαMβ =
∞∑
n=0

∑
(f,g)∈S(ℓ,m,n)

Mwtα,β(f,g),

where

S(ℓ,m, n) :=

{
(f, g)

∣∣∣∣ f : [ℓ] → [n] and g : [m] → [n] are strictly
order-preserving maps such that f([ℓ]) ∪ g([m]) = [n]

}
,

and wtα,β(f, g) = (γ1, . . . , γn) denotes the composition of length n defined by

γk :=
∑

i∈f−1(k)

αi +
∑

j∈g−1(k)

βj for each k ∈ [n].

Note that n actually runs from max{ℓ,m} to ℓ+m.

Example 2.2. We represent a pair (f, g) ∈ S(ℓ,m, n) as boxes arranged in 2 rows and n
columns with numbers placed in some boxes. When f(i) = k, we place i in the first row
and k-th column. Additionally, if g(j) = k, we place j in the second row and k-th column.
For instance,

1 2 3

1 2

denotes the pair (f, g) ∈ S(3, 2, 4), where f(1) = 1, f(2) = 3, f(3) = 4 and g(1) = 2, g(2) =
4. The corresponding composition wtα,β(f, g) is equal to (α1, β1, α2, α3 + β2).
We calculate M(α1,α2)M(β1) by using Proposition 2.1. We have

S(2, 1, 2) =

 1 2

1
, 1 2

1

 ,

S(2, 1, 3) =

 1 2

1
, 1 2

1
, 1 2

1

 .

Hence we obtain

M(α1,α2)M(β1) = M(α1+β1,α2) +M(α1,α2+β1) +M(α1,α2,β1) +M(α1,β1,α2) +M(β1,α1,α2).

Let M :=
⊕

α∈N∗ Zα. The map M : M → QSym, defined by the linear extension of
α 7→ Mα, is an isomorphism of modules. We introduce two products on M. One is the
noncommutative product ∗ called the concatenation, which is the linear extension of
concatenation of compositions α ∗ β := (α1, . . . , αℓ, β1, . . . , βm) for α = (α1, . . . , αℓ), β =
(β1, . . . , βm) ∈ N∗. The algebra (M, ∗) is isomorphic to the free algebra Z⟨N⟩. The other
is a commutative product defined so that the map M becomes an isomorphism of algebras
from M to QSym. This product is called the overlapping shuffle product and denoted
by . The algebra (M, ) is called the overlapping shuffle algebra. It has the unit
given by the empty composition. The module isomorphism M : M → QSym also induces
the concatenation product ∗ on QSym, which is the linear extension of Mα ∗Mβ := Mα∗β.
The algebra (QSym, ∗) is noncommutative.
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Theorem 2.3 (Hazewinkel [9, Theorem 8.1]). The ring of quasisymmetric functions QSym
and the overlapping shuffle algebra (M, ) are free commutative algebras.

Note that Hazewinkel gave explicit generators for (M, ) but we only require the fol-
lowing corollary in this paper.

Corollary 2.4. The ring of quasisymmetric functions QSym is a unique factorization
domain.

Before Hazewinkel proved Theorem 2.3, Malvenuto [10, Corollary 4.19] proved that the
algebra QSym⊗ZQ is a free commutative algebra. For our purpose, we may adopt this
weaker theorem.
There is a recurrence formula for the overlapping shuffle product, which is useful for

computing and investigating it.

Proposition 2.5. For non-empty compositions α = (α1, . . . , αℓ) and β = (β1, . . . , βm), we
have that

α β = (α1) ∗ (α′ β) + (β1) ∗ (α β′) + (α1 + β1) ∗ (α′ β′),

where α′, β′ are the compositions satisfying α = (α1) ∗ α′ and β = (β1) ∗ β′.

Proof. From Proposition 2.1, we have that

α β =
∞∑
n=0

∑
(f,g)∈S(ℓ,m,n)

wtα,β(f, g).

Define subsets of S(ℓ,m, n) by

S1 := { (f, g) ∈ S(ℓ,m, n) | f(1) = 1 and g(1) > 1 } ,
S2 := { (f, g) ∈ S(ℓ,m, n) | f(1) > 1 and g(1) = 1 } ,
S3 := { (f, g) ∈ S(ℓ,m, n) | f(1) = 1 and g(1) = 1 } .

Then S(ℓ,m, n) = S1 ⊔ S2 ⊔ S3. For each pair (f, g) ∈ S1, define a pair (f ′, g′) ∈ S(ℓ −
1,m, n− 1) by

f ′(i) := f(i+ 1)− 1 for i ∈ [ℓ− 1] and g′(j) := g(j)− 1 for j ∈ [m].

This correspondence is bijective and we have that wtα,β(f, g) = (α1) ∗wtα′,β(f
′, g′). Hence

∞∑
n=0

∑
(f,g)∈S1

wtα,β(f, g) =
∞∑
n=0

∑
(f ′,g′)∈S(ℓ−1,m,n−1)

(α1) ∗ wtα′,β(f
′, g′) = (α1) ∗ (α′ β).

A similar discussion yields that

∞∑
n=0

∑
(f,g)∈S2

wtα,β(f, g) = (β1) ∗ (α β′) and
∞∑
n=0

∑
(f,g)∈S3

wtα,β(f, g) = (α1 + β1) ∗ (α′ β′).

Therefore the assertion holds.
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Example 2.6. Proposition 2.5 shows that

(α1) (β1) = (α1, β1) + (β1, α1) + (α1 + β1),

(α1, α2) (β1) = (α1) ∗ ((α2) (β1)) + (β1) ∗ (α1, α2) + (α1 + β1) ∗ (α2)

= (α1, α2, β1) + (α1, β1, α2) + (α1, α2 + β1) + (β1, α1, α2) + (α1 + β1, α2).

Definition 2.7. We introduce the lexicographical order ≤ on N∗, i.e., for compositions
α = (α1, . . . , αℓ), β = (β1, . . . , βm), we denote by α < β if one of the following conditions
holds.

(1) α = ∅ and β ̸= ∅.

(2) There exists i ∈ { 1, . . . ,max{ℓ,m} } such that α1 = β1, . . . , αi−1 = βi−1 and αi < βi.

(3) ℓ < m and α1 = β1, . . . , αℓ = βℓ.

Definition 2.8. The leading term LT(q) of an element q ∈ M is the term which contains
the greatest composition with respect to the lexicographical order.

Definition 2.9. For compositions α = (α1, . . . , αℓ) and β = (β1, . . . , βm), we define a
composition α∔ β by the coordinatewise sum, i.e.,

α∔ β :=

{
(α1 + β1, . . . , αℓ + βℓ, βℓ+1, . . . , βm) if ℓ ≤ m,

(α1 + β1, . . . , αm + βm, αm+1, . . . , αℓ) if ℓ ≥ m.

Proposition 2.10. Let α and β be compositions. Then the leading term of α β is α∔β.

Proof. When α or β is empty, then the assertion is obvious. Suppose that both α and β
are non-empty. By Proposition 2.5, we have that

LT(α β) = (α1 + β1) ∗ LT(α′ β′),

where α′, β′ denote compositions satisfying α = (α1) ∗ α′, β = (β1) ∗ β′. Using induction,
we have that LT(α′ β′) = α′ ∔ β′. Hence LT(α β) = (α1 + β1) ∗ (α′ ∔ β′) = α∔ β.

Proposition 2.11. Let p, q ∈ M and LT(p) = cα,LT(q) = dβ. Then LT(p q) =
cd(α∔ β).

Proof. Write p =
∑

γ≤α cγγ, q =
∑

δ≤β dδδ, and p q =
∑

γ≤α
δ≤β

cγdδ(γ δ). If γ < α or

δ < β, then γ ∔ δ < α ∔ β. From Proposition 2.10, the composition α ∔ β is the greatest
composition in p q. Therefore the assertion holds.

Definition 2.12. For a composition α = (α1, . . . , αℓ), we define the reverse of α by
αr := (αℓ, . . . , α1). Define an involution ρ on M by the linear extension of the reverse.

Proposition 2.13. The map ρ is compatible with the overlapping shuffle product, i.e.,
ρ(α β) = αr βr.

Proof. For each pair (f, g) ∈ S(ℓ,m, n), define a pair (f ′, g′) ∈ S(ℓ,m, n) by

f ′(i) := n+ 1− f(ℓ+ 1− i), where i, ℓ+ 1− i ∈ [ℓ],

and g′(j) := n+ 1− g(m+ 1− j), where j,m+ 1− j ∈ [m].
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This correspondence is bijective and we have that wtα,β(f, g)
r = wtαr,βr(f ′, g′). Hence, by

Proposition 2.1,

(α β)r =
∞∑
n=0

∑
(f,g)∈S(ℓ,m,n)

wtα,β(f, g)
r =

∞∑
n=0

∑
(f ′,g′)∈S(ℓ,m,n)

wtαr,βr(f ′, g′) = αr βr.

Definition 2.14. An element in M is said to be primitive if the greatest common divisor
of its coefficients is 1.

Lemma 2.15. Let q ∈ M be a primitive nonzero element. Then (1) ∗ q and q ∗ (1) are
irreducible with respect to the overlapping shuffle product.

Proof. By Proposition 2.13, it suffices to show irreducibility of (1)∗q. Assume that (1)∗q is
reducible. Since (1) ∗ q is primitive, there exist non-constant elements p, p′ ∈ M such that
(1) ∗ q = p p′. When LT(p) = cα,LT(p′) = dβ, the leading term of p p′ is cd(α∔ β) by
Proposition 2.11. Since α and β are non-empty, the first component of α∔β is greater than
1. However, the first component of each term of (1) ∗ q is 1, which is a contradiction.

3 Labeled posets and their quasisymmetric generating
functions

A labeling of a finite poset P is a bijection ω : P → [|P |], where |P | denotes its cardinality.
The pair (P, ω) is called a labeled poset. A labeling ω is said to be strict (resp. natural)
if

u < v ⇒ ω(u) > ω(v)

(resp. u < v ⇒ ω(u) < ω(v)).

A (P, ω)-partition is a map f : P → N satisfying the following two conditions:

(1) u ≤ v implies f(u) ≤ f(v);

(2) u ≤ v and ω(u) > ω(v) imply f(u) < f(v).

Let A(P, ω) denote the set of (P, ω)-partitions. Note that if ω is strict (resp. natural) then
A(P, ω) coincides with Hom<(P,N) (resp. Hom≤(P,N)).

Definition 3.1. For a labeled poset (P, ω), the (P, ω)-partition generating function is
the formal power series

Γ(P, ω,x) :=
∑

f∈A(P,ω)

∏
v∈P

xf(v).

It is easy to show that Γ(P, ω,x) is a quasisymmetric function (see also Proposition
3.5). Note that if the labeling ω is strict (resp. natural) then Γ(P, ω,x) coincides with
Γ<(P,x) (resp. Γ≤(P,x)). The one-point poset [1] has the (P, ω)-partition generating
function Γ([1], ω,x) = M(1). See Example 3.6 for other examples. A complementary
labeling ω of ω is defined by ω(v) := |P | + 1− ω(v). If ω is strict (resp. natural) then ω
is natural (resp. strict).

7



Proposition 3.2 (McNamara-Ward [12, Proposition 3.7]). Let (P, ω) and (Q, τ) be labeled
posets. Then Γ(P, ω,x) = Γ(Q, τ,x) if and only if Γ(P, ω,x) = Γ(Q, τ,x). In particular,
Γ<(P,x) = Γ<(Q,x) if and only if Γ≤(P,x) = Γ≤(Q,x).

Proposition 3.2 shows the equivalence between (1) and (2) in Theorem 1.3. Hence we
may focus on the strict order quasisymmetric function Γ<(P,x).

Proposition 3.3 (McNamara-Ward [12, Proposition 3.7 and Corollary 4.3]). Let P and
Q be finite posets such that Γ<(P,x) = Γ<(Q,x). Then P and Q have the same number
of minimal elements, and the same number of maximal elements.

Definition 3.4. A stable ordered partition of a labeled poset (P, ω) is a tuple Π =
(π1, . . . , πℓ) consisting of non-empty subsets of P which satisfy the following conditions:

(1) P = ⊔ℓ
i=1πi;

(2) u ∈ πi, v ∈ πj and u ≤ v imply i ≤ j;

(3) u ∈ πi, v ∈ πj, u < v and ω(u) > ω(v) imply i < j.

Let St(P, ω) denote the set of the stable ordered partitions of (P, ω). The type of a stable
ordered partition Π = (π1, . . . , πℓ) is the composition (|π1|, . . . , |πℓ|) and is denoted by
type(Π). The set of stable ordered partitions of type α is denoted by Stα(P, ω). When
the labeling ω is strict, the sets St(P, ω) and Stα(P, ω) are denoted by St<(P ) and St<α (P ),
respectively. Note that St<α (P ) = ∅ unless

∑ℓ
i=1 αi = |P | when α = (α1, . . . , αℓ).

The expansion of (P, ω)-partition generating functions pointed out by McNamara and
Ward [12, p.493] reads as follows in terms of stable ordered partitions.

Proposition 3.5. Let (P, ω) be a labeled poset. Then

Γ(P, ω,x) =
∑
α∈N∗

| Stα(P, ω)|Mα.

In particular,

Γ<(P,x) =
∑
α∈N∗

| St<α (P )|Mα.

Proof. For each f ∈ A(P, ω) there is a sequence of increasing indices i1 < · · · < iℓ such that
{i1, . . . , iℓ} = { i ∈ N | f−1(i) ̸= ∅ }. Define a stable ordered partition corresponding to f
by Πf := (f−1(i1), . . . , f

−1(iℓ)). The map A(P, ω) → St(P, ω); f 7→ Πf is surjective. We
define an equivalence relation f ∼ g on A(P, ω) by Πf = Πg. Then for each f ∈ A(P, ω),
we have that ∑

g∼f

∏
v∈P

xg(v) = Mtype(Πf ).

Therefore the desired result follows.

Example 3.6. Let ∨ = {a, b, c} be the poset with the two relations a < b and a < c in Fig.
1, and let ω be the strict labeling. Then the second condition in Definition 3.4 is contained
in the third, and the conditions become “u ∈ πi, v ∈ πj, u < v imply i < j”. The ordered
stable partitions are listed below:

({a}, {b}, {c}), ({a}, {c}, {b}), ({a}, {b, c}).
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....

Figure 1: Hasse diagram of ∨ = {a, b, c}

Then Proposition 3.5 tells us that

Γ<(P,x) =
∑
i<j
i<k

xixjxk = 2M(1,1,1) +M(1,2).

Another example is the same poset ∨ = {a, b, c} with the different labeling ω′(a) =
2, ω′(b) = 1, ω′(c) = 3. In this case the third condition in Definition 3.4 forbids the
elements a and b to belong to the same block. The ordered stable partitions are given by

({a}, {b}, {c}), ({a}, {c}, {b}), ({a}, {b, c}), ({a, c}, {b})

and so
Γ(P, ω′,x) =

∑
i<j
i≤k

xixjxk = 2M(1,1,1) +M(1,2) +M(2,1).

For elements u, v in a poset P , we say that v covers u if u < v and there are no elements
w ∈ P such that u < w < v. If v covers u then the pair (u, v) is an edge of the Hasse
diagram of P . For a labeled poset (P, ω), we say that (u, v) is a strict edge if v covers u
and ω(u) > ω(v).

Definition 3.7. The jump of an element v in a labeled poset (P, ω) is the maximum num-
ber of strict edges in saturated chains from v down to a minimal element in P . The jump
sequence of P , denoted by jump(P, ω), is a composition (j0, . . . , jℓ), where ji denotes the
number of elements with jump i.

We introduce the lexicographical order on the monomial quasisymmetric functions Mα,
i.e., Mα ≤ Mβ ⇔ α ≤ β. Then the leading term of a quasisymmetric function Q =∑

α∈N∗ cαMα is the term cαMα, where Mα is the maximum monomial quasisymmetric
function in Q with cα ̸= 0. In this case cα is called the leading coefficient.

Proposition 3.8 (McNamara-Ward [12, Proposition 4.2]). For a labeled poset (P, ω), the
leading term of Γ(P, ω,x) is Mjump(P,ω). In particular, the leading coefficient of Γ(P, ω,x)
is 1 and Γ(P, ω,x) is primitive.

Definition 3.9. For posets P and Q, the disjoint union P⊔Q is a poset whose underlying
set is the disjoint union of P and Q and the order ≤ is defined in such a way that u ≤ v if
and only if

(1) u, v ∈ P and u ≤P v, or

(2) u, v ∈ Q and u ≤Q v.

Remark. The disjoint union is also called the parallel composition.

Definition 3.10. For posets P and Q, the ordinal sum P⊕Q is a poset whose underlying
set is the disjoint union of P and Q, and the order ≤ is defined in such a way that u ≤ v
if and only if

9



(1) u, v ∈ P and u ≤P v, or

(2) u, v ∈ Q and u ≤Q v, or

(3) u ∈ P and v ∈ Q.

Remark. The ordinal sum is also called the series composition or the linear sum.

Proposition 3.11. Let P and Q be finite posets. Then the map ϕ : St<(P ) × St<(Q) →
St<(P ⊕ Q) defined by ϕ(Π,Π′) := (Π,Π′) is a bijection. In particular, it induces the
bijection ∪

α,β∈N∗

α∗β=γ

(
St<α (P )× St<β (Q)

)
≃ St<γ (P ⊕Q)

for any composition γ.

Proof. The injectivity is clear. To show the surjectivity, take Π̃ = (π1, . . . , πℓ) ∈ St<(P ⊕
Q). Suppose that u ∈ P, v ∈ Q and u ∈ πi, v ∈ πj. By the definition of the ordinal sum, we
have that u < v. The definition of a stable ordered partition implies that i < j. Therefore
there exists an index k such that P = ⊔k

i=1πi and Q = ⊔ℓ
i=k+1πi. Taking Π := (π1, . . . , πk)

and Π′ := (πk+1, . . . , πℓ), the surjectivity of ϕ follows. The last identity holds since the
index k runs over [ℓ] depending on Π̃ ∈ St<γ (P ⊕Q).

Recall that the concatenation ∗ on QSym is the linear extension of Mα ∗ Mβ = Mα∗β
(see Theorem 2.3).

Proposition 3.12. Let P and Q be finite posets. Then the following assertions hold.

(a) Γ<(P ⊔Q,x) = Γ<(P,x)Γ<(Q,x).

(b) Γ<(P ⊕Q,x) = Γ<(P,x) ∗ Γ(Q,x).

Proof. (a) is due to Malvenuto [10, Proposition 4.6] or McNamara and Ward [12, Propo-
sition 3.4].
(b) By Proposition 3.5 and Proposition 3.11, we have that

Γ<(P ⊕Q,x) =
∑
γ∈N∗

| St<γ (P ⊕Q)|Mγ

=
∑
γ∈N∗

∑
α,β∈N∗

α∗β=γ

| St<α (P )|| St<β (Q)|Mα ∗Mβ

=
∑

α,β∈N∗

| St<α (P )|| St<β (Q)|Mα ∗Mβ

=

(∑
α∈N∗

| St<α (P )|Mα

)
∗

(∑
β∈N∗

| St<β (Q)|Mβ

)
= Γ<(P,x) ∗ Γ<(Q,x),

the conclusion.

We prove the irreducibility of strict order quasisymmetric functions, which is a crucial
ingredient in the proof of the main theorem (see Theorem 5.1).
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..... .....

Figure 2: Hasse diagrams of N and ⋊⋉

Lemma 3.13. Suppose that a finite poset P has a unique minimal or maximal element.
Then the strict order quasisymmetric function Γ<(P,x) is irreducible in QSym.

Proof. By assumption, P is of the form [1]⊕P ′ or P ′⊕[1]. By Proposition 3.12 (b), we have
that Γ<(P,x) is equal to M(1) ∗Γ<(P ′,x) or Γ<(P ′,x) ∗M(1), respectively. By Proposition
3.8, Γ<(P ′,x) is primitive. Hence Lemma 2.15 forces Γ<(P,x) to be irreducible in QSym
in both cases.

4 (N,⋊⋉)-free posets

This section introduces a concept of (N,⋊⋉)-free posets, which is the class to be considered
in our main theorem (see Theorem 5.1). A full subposet (or an induced subposet) of a
poset P is a subset of the underlying set of P equipped with the induced order. Let N be the
poset consisting of four elements a, b, c, d endowed with the three relations a < b > c < d
(see Fig. 2). A poset is N-free if it does not contain a full subposet that is isomorphic to
N.

Remark. Some authors use the term “N-free” with different meanings. Our use follows the
book [2], not [13].

Let ⋊⋉ be the poset consisting four elements a, b, c, d with the four relations a < b > c < d
and a < d (see Fig. 2).

Definition 4.1. A poset is (N,⋊⋉)-free if it does not contain a full subposet that is iso-
morphic to N or ⋊⋉.

Proposition 4.2. Every finite rooted tree is (N,⋊⋉)-free.

Proof. Let R be a finite rooted tree and r its root. Assume that R contains a full subposet
which is isomorphic to N or ⋊⋉. Then there exist three elements a, b, c ∈ R such that
a < b > c and the two elements a, c are incomparable. Let p be a unique path from b to
r. The relation a < b > c implies that p contains a and c, which forces a < c or a > c, a
contradiction.

The class of (N,⋊⋉)-free posets is obviously contained in the class of N-free posets. The
latter class has a recursive characterization. The class of series-parallel posets is the
smallest class of finite posets (up to isomorphism) which contains the one-point poset [1]
and is closed under the disjoint union and the ordinal sum. A finite poset is N-free if and
only if it is series-parallel [13, Appendix, Theorem 22].
We prove below that the class of (N,⋊⋉)-free posets has a similar characterization. We

define a class C as the smallest class of finite posets (up to isomorphism) which satisfies
the following conditions:

(1) [1] ∈ C;

(2) If P,Q ∈ C then P ⊔Q ∈ C;

11
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= (

...

) ⊕

.
Figure 3: The poset ∧ = ([1] ⊔ [1])⊕ [1]

.......

=

...

⊔

...
Figure 4: The poset [2] ⊔ ∧

(3) If P ∈ C then [1]⊕ P ∈ C and P ⊕ [1] ∈ C.

These conditions, allowing repeated use of the same poset, give a recursive definition of
posets in the class C: starting from [1], we build [1] ⊔ [1] which is just the poset of two
elements with no relation, [1]⊕ [1] which is [2], and so on. Two more examples are shown
in Figs. 3 and 4. In this way we obtain all posets in C.
The main theorem of this section is the following.

Theorem 4.3. Let P be a finite poset. Then

P ∈ C ⇐⇒ P is (N,⋊⋉)-free.

To prove the theorem, we need an intermediate lemma. We say that a finite poset is
connected if its Hasse diagram is connected.

Lemma 4.4. A finite connected (N,⋊⋉)-free poset has a unique minimal or maximal ele-
ment.

Proof. Let P denote our poset, and consider a minimal element u and a maximal element
v. Since P is connected there exists a shortest sequence u < p1 > p2 < · · · > p2k < v
connecting u and v, where p1, . . . , p2k ∈ P . Then the N-freeness of P forces k = 0. This
shows that u < v for every minimal element u and every maximal element v. If P has two
maximal elements and two minimal elements, then they form a full subposet of the form
⋊⋉, a contradiction. Therefore, P must have a unique minimal or maximal element.

Proof of Theorem 4.3. (⇒) The proof is based on induction on |P |. If P ∈ C is not
connected then P is of the form P ′⊔P ′′ for some P ′, P ′′ ∈ C. By the induction hypothesis,
P ′, P ′′ are (N,⋊⋉)-free, and so is P . If P is connected then, by the definition of C, P is
of the form [1] ⊕ P ′ or P ′ ⊕ [1] for some P ′ ∈ C. We may thus assume without loss of
generality that P is of the form P ′ ⊕ [1] for some P ′ ∈ C. The induction hypothesis shows
that P ′ is (N,⋊⋉)-free. This implies P is (N,⋊⋉)-free too; otherwise we would find three
elements a, b, c in P ′ such that the full subposet ({1, a, b, c},≤P ) is isomorphic to N or ⋊⋉,
but this is a contradiction since N and ⋊⋉ do not have a unique maximal element.
(⇐) The proof is again based on induction on |P |. If a finite (N,⋊⋉)-free poset P is not

connected then P is of the form P ′⊔P ′′ for some non-empty (N,⋊⋉)-free posets P ′ and P ′′.
Induction hypothesis shows that P ′ and P ′′ are in C, and so is P . If P is connected then,
by Lemma 4.4, we may assume without loss of generality that P is of the form P ′ ⊕ [1]
for some poset P ′. Since P ′ is a full subposet of P , it is (N,⋊⋉)-free and then induction
hypothesis shows that P ′ is in C, and so is P .

5 The proof of Theorem 1.3

We prove Theorem 1.3 in a generalized form. Recall that every rooted tree is (N,⋊⋉)-free
by Proposition 4.2.
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Theorem 5.1. Let P,Q be (N,⋊⋉)-free posets. Then the following are equivalent.

(1) Γ<(P,x) = Γ<(Q,x).

(2) Γ≤(P,x) = Γ≤(Q,x).

(3) P and Q are isomorphic.

Proof. (1) and (2) are equivalent by Proposition 3.2. The implication (3) ⇒ (1) is trivial.
For the implication (1) ⇒ (3) we use induction on |P |. When |P | = 1, the degrees of the
functions Γ<(P,x) and Γ<(Q,x) are 1. Hence |Q| = 1. Thus P and Q are isomorphic.
Assume that |P | ≥ 2. Decompose P and Q into P = ⊔n

i=1Pi and Q = ⊔m
i=1Qi, where

Pi, Qi are non-empty connected subposets, which are (N,⋊⋉)-free since Pi and Qi are full
subposets of P and Q, respectively. By Lemma 4.4, Pi and Qi have unique minimal
or maximal elements, and hence Lemma 3.13 shows that Γ<(Pi,x) and Γ<(Qi,x) are
irreducible. We obtain from Proposition 3.12(a) the identity

n∏
i=1

Γ<(Pi,x) =
m∏
i=1

Γ<(Qi,x).

By Corollary 2.4 and Proposition 3.8, we have n = m and Γ<(Pi,x) = Γ<(Qi,x) for all i
after a suitable renumbering. When n ≥ 2, we have that |Pi|, |Qi| < |P | and hence Pi and
Qi are isomorphic for every i by induction hypothesis. Hence P and Q are also isomorphic.
Suppose that n = 1, i.e., P and Q are connected. By Lemma 4.4, P has a unique minimal
or maximal element. If P has a unique minimal element, then Q also has a unique minimal
element by Proposition 3.3. Then we may express P = [1]⊕ P ′ and Q = [1]⊕Q′ for some
posets P ′, Q′. Since P ′, Q′ are full subposets of P,Q, respectively, they are also (N,⋊⋉)-free.
Proposition 3.12(b) shows that M(1) ∗ Γ<(P ′,x) = M(1) ∗ Γ<(Q′,x). It is then easy to
see that the left factor M(1) may be cancelled out, so that Γ<(P ′,x) = Γ<(Q′,x). By the
induction hypothesis, P ′ and Q′ are isomorphic. Therefore P and Q are also isomorphic.
The case in which P has a unique maximal element is similar.

6 Open problems

McNamara and Ward [12, Figure 8] raised two finite posets which have the same strict
order quasisymmetric function.

........ ........

Figure 5: Two posets which have the same strict order quasisymmetric function.

Using Proposition 3.5, one may compute the common strict order quasisymmetric func-
tion of posets in Fig. 5:

M232 + 2M2311 + 3M2221 + 3M2212 + 9M22111 +M2131 + 3M2122 + 8M21211

+ 7M21121 + 6M21112 + 20M211111 +M1321 +M1312 + 3M13111 +M1231 + 3M1222

+ 8M12211 + 8M12121 + 7M12112 + 23M121111 + 2M1132 + 4M11311 + 8M11221 + 8M11212

+ 24M112111 + 3M11131 + 9M11122 + 24M111211 + 23M111121 + 20M111112 + 66M1111111,
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where the notation of compositions is simplified. We have shown that the strict order
quasisymmetric functions distinguish rooted trees (Theorem 1.3), and more generally, (N,⋊⋉
)-free posets (Theorem 5.1). We propose two other natural classes, each of which does not
contain the other.

Problem 6.1. An oriented tree is a tree whose edges have orientations. An oriented
tree is an acyclic digraph and hence has the natural poset structure, namely the relation
u < v holds if and only if there is a path from u to v along the orientation. Does the strict
order quasisymmetric function distinguish oriented trees? How about series-parallel posets
(namely, N-free posets)?

The former and the latter problems generalize Theorems 1.3 and 5.1 respectively. Note
that the two posets in Fig. 5 are neither oriented trees nor series-parallel posets, so they
do not give a counterexample to the above problems.
Another direction is to extend our result to labeled posets.

Problem 6.2. Extend the class of (N,⋊⋉)-free posets to labeled posets and prove that
Γ(P, ω,x) distinguishes the labeled posets in that class.

McNamara and Ward proposed a problem about irreducibility of (P, ω)-partition gener-
ating functions.

Problem 6.3 (McNamara-Ward [12, Question 7.2]). Let (P, ω) be a connected labeled
poset. Is Γ(P, ω,x) irreducible in QSym?

Irreducibility was very important in distinguishing finite rooted trees. We proved the
irreducibility in the special case (Lemma 3.13) in which the poset has a unique minimal or
maximal element and the labeling is strict.

Problem 6.4. The sequence of the number of (N,⋊⋉)-free posets with n elements is
1, 2, 5, 14, 40,121, 373, 1184 up to n = 8. Does this sequence have any other interesting
combinatorial interpretations?

Finally, we expect that our method based on algebraic properties (of the ring of qua-
sisymmetric functions, in our case) has applications to other invariants for a variety of
mathematical objects.
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New York, 2011, pp. 219–255.

[4] J. A. Ellis-Monaghan and C. Merino, Graph polynomials and their applications
II: Interrelations and interpretations, in Structural analysis of complex networks ,
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