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Antiparallel spin Hall current in a bilayer with skew scattering
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Division of Applied Physics, Graduate School and Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan

(Received 20 December 2018; revised manuscript received 7 August 2019; published 20 September 2019)

The spin Hall effect due to skew scattering is studied by solving the Boltzmann equation in a bilayer electron
system with attractive impurity potentials in one layer and repulsive ones in the other. In such an impurity
configuration, directions of the spin Hall current in two decoupled layers are antiparallel. An analytical formula
for the magnitude of the antiparallel spin Hall current is derived in the crossover from the decoupled bilayer
to the strongly coupled one with no spin Hall current with increasing �SAS, the energy separation between the
symmetric and antisymmetric states of the motion perpendicular to the layer. When the impurity potential is
short ranged and �SAS � εF, with εF being the Fermi energy, the normalized antiparallel spin Hall conductivity
is found to be [1 + (ωτp)2]−1, with ω = �SAS/h̄ and τp being the momentum relaxation time at εF. This formula
is explained by extending the dynamics for the Hanle effect, which was originally developed for spin, to the
pseudospin (layer) degree of freedom. The present finding suggests that the Hanle effect will be useful in
understanding the pseudospin dynamics as well as the spin dynamics.

DOI: 10.1103/PhysRevB.100.125307

I. INTRODUCTION

The spin Hall effect [1–3], the generation of the spin
current perpendicular to the electric field by the action of the
relativistic spin-orbit interaction (SOI), is one of the major
research fields in condensed-matter physics and is also tech-
nologically important in spintronics [4] because it provides
an efficient method for creating the spin current and the spin
polarization. The mechanism of the spin Hall effect is divided
into the intrinsic origin (band structure effect) [5,6] and the
extrinsic one (impurity effect) [7–13]. The extrinsic spin Hall
effect has the advantage in studying the dependence on the
dimensionality and the structure of the system since it has
been experimentally observed, including its inverse effect, in
a wide variety of systems [14,15] and materials [16–18]. In
fact, the observation of the extrinsic spin Hall effect, prior to
that of the intrinsic spin Hall effect [19], was first made in
three-dimensional electron systems [14] and subsequently in
two-dimensional electron systems formed in semiconductor
quantum-well structures [15]. Further development of the
research on the extrinsic spin Hall effect is expected in various
quantum-well structures. In this paper we theoretically study
the extrinsic spin Hall effect in a bilayer electron system
formed in double quantum wells.

Bilayer electron systems in double quantum wells have
been shown in the quantum Hall regime to exhibit rich phe-
nomena caused by the additional orbital degree of freedom
called the pseudospin [20–27]. In the pseudospin space, the
bonding (symmetric) and antibonding (antisymmetric) states
are formed and have energy separation �SAS in the case of
a symmetric bilayer (Fig. 1). It was shown experimentally
[28–31] and theoretically [32,33] that the bilayer system
makes a phase transition between the presence and absence
of the quantum Hall effect with changing �SAS when the
total Landau level filling factor ν is odd. This phase tran-
sition is caused by one role of �SAS: �SAS delocalizes the

electron wave function between two layers, competing with
the electron-electron interaction, which localizes it within one
layer.

Now we consider a crossover between the presence and
absence of the extrinsic spin Hall effect [34] with changing
�SAS in a bilayer electron system (a typical bilayer electron
system is a GaAs/AlGaAs heterostructure with two GaAs
quantum wells). If the bilayer has a tailored impurity con-
figuration in which attractive impurity potentials are in one
layer and repulsive ones are in the other (in a GaAs well layer,
Si and Be impurities have attractive and repulsive potentials,
respectively [35]), the crossover actually occurs between the
decoupled bilayer (negligible �SAS) with antiparallel spin
Hall current and the strongly coupled bilayer (large �SAS)
with no spin Hall current since it is known that the direction
of the spin Hall current due to the skew scattering [36–38]
is opposite between attractive and repulsive impurity poten-
tials [12,39]. However, there remains an important unsolved
problem: how the magnitude of the antiparallel spin Hall
current changes from full magnitude to zero with increasing
�SAS, in particular what determines the value of �SAS at
the crossover. The present system has several energy scales,
which can be of the same order of magnitude as �SAS, such
as kBT and the level broadening due to impurity scattering
and, in addition, has several timescale candidates to compete
with h̄/�SAS such as the momentum relaxation time τp, the
inverse of skew-scattering rate, and the pseudospin-dephasing
time. Suppose, for example, that the crossover occurs around
�SAS = kBT . This would mean that the crossover can be
driven by the change in the electron population in bonding
and antibonding states. In such a manner, we uncover one
mechanism of the crossover by identifying a quantity which
determines the �SAS value at the crossover.

In the present paper we theoretically investigate the
crossover between the decoupled bilayer with antiparallel
extrinsic spin Hall current and the strongly coupled bilayer
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decoupled coupled

FIG. 1. Coupled and decoupled double-quantum-well (DQW)
structures. Wave functions for the motion perpendicular to the
coupled symmetric DQW are the bonding (symmetric) |G〉 and
antibonding (antisymmetric) |E〉 states, each of which is composed
of wave functions in the left and right wells, |L〉 and |R〉. The energy
separation �SAS between |G〉 and |E〉 represents the strength of the
coupling between |L〉 and |R〉. The DQW considered in this paper is
assumed to have antiparallel extrinsic spin Hall current, jsL = − jsR,
when it is decoupled.

with vanishing spin Hall current as a function of �SAS in
order to clarify quantities determining the value of �SAS at
the crossover. In addition to the momentum relaxation time
and the skew-scattering rate included in the theory of the
extrinsic spin Hall effect, we take into account the pseudospin-
dephasing time and the nonzero temperature. Our calculation
does not account for the level broadening since the spin
current is calculated up to third order with respect to the
impurity potential.

We introduce the current carrying both the spin and the
pseudospin, which is defined in Eq. (59) by the statistical
average of the operator product of the spin, the pseudospin,
and the velocity. The antiparallel component of the spin
Hall current corresponds to the current carrying the spin
perpendicular to the bilayer and the third component of the
pseudospin. We calculate such a spin-pseudospin current by
analytically solving the Boltzmann equation. In the collision
term of the equation we apply the assumption made in the
Dyakonov-Perel spin-relaxation theory [40–42] to the case
of pseudospin; that is, we neglect the interlayer tunneling
described by �SAS in the collision term and interlayer matrix
elements of the impurity potential.

We find, in the case when the Fermi energy is large com-
pared to kBT and �SAS, that the momentum relaxation time
τp and the pseudospin-dephasing time are relevant in deter-
mining the crossover value of �SAS, while the skew-scattering
rate and kBT are irrelevant. The derived antiparallel spin Hall
conductivity, normalized by the value at �SAS = 0, is [1 +
(ωτp)2]−1, with ω = �SAS/h̄, when the pseudospin dephasing
is absent and the impurity potential is short ranged. This
formula indicates that the crossover is driven by the compe-
tition between the two timescales, the pseudospin-precession
period h/�SAS and the momentum relaxation time τp. The
reduction by the pseudospin precession ω of the obtained
spin Hall conductivity suggests that the present crossover can
be regarded as the Hanle effect [43–45] in the pseudospin
degree of freedom. In fact, the equation of motion for three
pseudospin components of the spin-pseudospin current has

the same form as that for three spin components in the Hanle
effect [45]. Because the quantity we consider is the current
carrying the pseudospin (and the spin), it relaxes via the
momentum relaxation as well as the pseudospin dephasing.

The organization of this paper is as follows. Section II
describes our Hamiltonian and introduces pseudospin opera-
tors and basis vectors, while Sec. III explains the assumptions
and approximations which are employed in the following
calculation. Section IV derives the Boltzmann equation for the
distribution function, the operator in the pseudospin space, in
our bilayer system, which includes the skew-scattering com-
ponent of the collision term and the pseudospin-precession
term. Then we rewrite the derived Boltzmann equation using
pseudospin components of the distribution operator, each of
which is the statistical average of the corresponding pseu-
dospin operator. The solution for the distribution operator in
the linear response to the applied in-plane electric field, which
is obtained in Sec. V, is employed to obtain the analytical for-
mula for pseudospin components of the spin Hall conductivity
in Sec. VI. In this section we show that the third pseudospin
component of the spin Hall conductivity exhibits a decrease
with increasing pseudospin-precession frequency and that this
reduction is explained by the pseudospin-current analog of
the Hanle effect. We also propose a possible experiment to
confirm the reduction of the third component due to the pseu-
dospin precession by introducing the potential offset between
two layers. In Sec. VII, conclusions are given.

II. HAMILTONIAN

Our system is a double-quantum-well structure with trans-
lational symmetry in the xy plane. We consider conduction-
band electron states within the effective-mass approximation
(see [46] for the effective-mass formalism including the SOI
at impurities and [47,48] for that in heterostructures) and
describe the motion along the z direction by the pseudospin
degree of freedom, that is, by a linear combination of |L〉 and
|R〉, the lowest-energy state in the left well and that in the
right, respectively (Fig. 1).

Our Hamiltonian is

H = HW + eE · r + Vimp(r) + H so
imp, (1)

with

HW = p̂2
x + p̂2

y

2m
+ H⊥, H⊥ = p̂2

z

2m
+ Vwell(z),

H so
imp = −h̄−1ησ̂ · (∇Vimp × p̂

)
, (2)

where p̂ is the momentum operator, p̂ = ( p̂x, p̂y, p̂z ) =
−ih̄∇ = −ih̄(∇x,∇y,∇z ), σ̂ is the Pauli spin operator, σ̂ =
(σ̂x, σ̂y, σ̂z ), m is the effective mass of the conduction band,
and η is the effective coupling constant of the SOI for an
electron in the conduction band. H⊥ describes the motion
perpendicular to the well with the potential Vwell(z), which
is induced by the band offset between the well and barrier
materials, the gate voltage, the dopant charge distribution, and
the electron-electron interaction in the Hartree approximation.
E = (Ex, Ey, 0) is the in-plane electric field, e > 0 is the
absolute value of the electronic charge, and Vimp(r), with
r = (x, y, z), is the potential due to impurities, We consider the
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SOI induced by Vimp(r), H so
imp, while we neglect the SOI due

to Vwell(z) [49–51] and the Dresselhaus SOI [42,52] because
we focus on the extrinsic spin Hall effect.

We assume that Vimp(r) is the sum of the potentials of each
impurity:

Vimp(r) =
N∑

i=1

ui(r − ri ), (3)

where N is the number of impurities and ri = (xi, yi, zi ) is the
position vector of the ith impurity. In addition we assume that
the potential of the ith impurity ui is attractive for zi in the left
well but repulsive for zi in the right well:

ui(r − ri ) = −u(r − ri ) < 0 (zi in L),

ui(r − ri ) = u(r − ri ) > 0 (zi in R). (4)

We here neglect interlayer matrix elements of ui(r − ri ) (i =
1, . . . , N ), that is,

ui(r − ri ) = |L〉〈L|ui(r − ri )|L〉〈L| + |R〉〈R|ui(r − ri )|R〉〈R|,
(5)

which is satisfied when ui(r − ri ) = 0 (i = 1, . . . , N ) in the
barrier region where 〈R|z〉 × 〈z|L〉 is non-negligible. We also
use later, for i = 1, . . . , N ,

〈L|ui(r − ri )|L〉〈R|ui(r − ri )|R〉 = 0. (6)

We introduce the Pauli operators for pseudospin τ̂γ (γ =
1, 2, and 3) and the identity operator τ̂0, defined by

τ̂0 = |L〉〈L| + |R〉〈R|,
τ̂1 = |R〉〈L| + |L〉〈R|,
τ̂2 = i|R〉〈L| − i|L〉〈R|,
τ̂3 = |L〉〈L| − |R〉〈R|,

(7)

in terms of which we express H⊥ by

H⊥ = − h̄ω

2
τ̂1 + h̄ωV

2
τ̂3, (8)

where ω = �SAS/h̄ and ωV represent the interlayer tunneling
and the potential offset between two wells, respectively. Here
we choose ω > 0 so that (|L〉 + |R〉)/

√
2 is the ground state

at ωV = 0. The ground- and excited-state vectors are denoted
by |G〉 and |E〉, respectively:

H⊥|n〉 = εn|n〉 (n = G, E ), (9)

where

εG = − 1
2 h̄ω1, εE = 1

2 h̄ω1, (10)

with

ω1 =
√

ω2 + ω2
V . (11)

Eigenvectors of HW are constructed with use of |n〉 (n =
G, E ):

HW|nkσ 〉 = εnk|nkσ 〉, (12)

where k = (kx, ky ), k =
√

k2
x + k2

y ,

p̂x|k〉 = h̄kx|k〉, p̂y|k〉 = h̄ky|k〉,
σ̂z|σ 〉 = σ |σ 〉, σ = ±1 (σ =↑,↓),

εnk = εn + εk, εk = h̄2k2

2m
. (13)

III. ASSUMPTIONS AND APPROXIMATIONS

We calculate the spin Hall current in the first order of
the SOI. Therefore, we neglect spin-flip terms with σ̂x and
σ̂y of H so

imp in Eq. (1), which give contributions of, at least,
the second order in the SOI to the statistical average of the
physical quantity Â, tr(ρ̂Â), with the density operator ρ̂ [53].

The extrinsic spin Hall effect has two contributions, the
skew scattering [36–38] and the side jump [54–57] (see
[46,58] for a review). Since in this paper we consider samples
with long momentum relaxation time in which the skew-
scattering contribution is dominant [12], we neglect the side-
jump contribution.

In addition to the absence of interlayer scattering,
〈Rk′|Vimp|Lk〉 = 0, derived from Eq. (5), we assume the ab-
sence of the interlayer tunneling described by �SAS within
the collision term of the Boltzmann equation; that is, we
neglect the combined action of �SAS and Vimp. These two
assumptions on pseudospin, which correspond to those on
spin employed in the Dyakonov-Perel spin-relaxation theory
[40–42], simplify our problem in that the interlayer transition
occurs by the action of �SAS alone. The effect of ω = �SAS/h̄
is negligible during the collision if ωτcoll � 1, with τcoll being
the collision time. Since we investigate the crossover region
of ωτp ∼ 1, ωτcoll � 1 is satisfied in the case of τcoll � τp.
The condition τcoll � τp can be restated as having a potential
range of each impurity and a Fermi wavelength that are both
much shorter than vF τp, with vF being the Fermi velocity.

We restrict our discussion to the transport which does not
depend on individual configurations of impurities randomly
distributed in the xy plane. Therefore, we take the average over
in-plane configurations of each product of 〈�k′|Vimp|�k〉 (� =
L, R), which is defined, for A(x1, y1, . . . , xN , yN ), by

A ≡ 1

S

∫
S
· · · 1

S

∫
S

A dx1dy1 · · · dxN dyN , (14)

where S is the area of the bilayer. Then, in the first order of
Vimp, we obtain

〈
�k′∣∣Vimp

∣∣�k
〉 = 0 (k′ = k). (15)

On the other hand, when k′ = k, we assume that

〈�k|Vimp|�k〉 = 0, (16)

which is always satisfied by subtracting the potential V0(z) ≡
S−1

∫
S Vimp(r)dxdy from Vimp(r) while adding V0(z) to Vwell(z)

in order to keep the Hamiltonian unchanged. Therefore, all
terms of the first order in Vimp vanish. In the second order of
Vimp, we have

〈�′k′′|Vimp|�′k′〉〈�k′|Vimp|�k〉 = 0 (17)
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only when �′ = � and k′′ = k, where we used Eq. (6). We
additionally assume that the averaged impurity distribution
has the inversion symmetry with respect to the plane between
the L and R wells so that

〈Lk|Vimp|Lk′〉〈Lk′|Vimp|Lk〉 = 〈Rk|Vimp|Rk′〉〈Rk′|Vimp|Rk〉 .
(18)

Similarly, in the third order of Vimp, we have

〈�′′k′′′|Vimp|�′′k′′〉〈�′k′′|Vimp|�′k′〉〈�k′|Vimp|�k〉 = 0 (19)

only when �′′ = �′ = � and k′′′ = k.

IV. BOLTZMANN EQUATION

In this paper we derive the formula for the spin Hall current
by solving the Boltzmann equation for the density operator
ρ̂ [53]. Since off-diagonal matrix elements 〈n′kσ |ρ̂|nkσ 〉
(n′ = n) are nonzero in the presence of the phase coherence
in the pseudospin degree of freedom, it is convenient to
introduce an operator in the pseudospin space,

ρ̂kσ = 〈kσ |ρ̂|kσ 〉. (20)

We call ρ̂kσ the distribution operator because it is reminiscent
of the distribution function for a state with wave vector k and
spin σ . In uniform steady states, the distribution operator ρ̂kσ

satisfies the following Boltzmann equation:

F
h̄

· ∂ρ̂kσ

∂k
=

(
∂ρ̂kσ

∂t

)
p+c

+
(
∂ρ̂kσ

∂t

)
d

, (21)

with F = (−e)E. On the left-hand side of this equation, the
force term is expressed by the derivative of the operator
ρ̂kσ with respect to k [59]. On the right-hand side, the first
term describes the precession of pseudospin and the collision
with impurities, while the second describes the dephasing of
pseudospin.

To derive the first term on the right-hand side of Eq. (21),
we start with

d ρ̂

dt
= 1

ih̄
[H, ρ̂], (22)

where the term eE · r is removed from H . We divide H into
two parts,

H = HW + V, V = Vimp(r) + H so
imp, (23)

and employ the interaction representation:

ρ̂I (t ) = U †(t )ρ̂(t )U (t ), VI (t ) = U †(t )V (t )U (t ), (24)

with

U (t ) = exp

(
1

ih̄
HWt

)
, (25)

to obtain, from Eq. (22),

d ρ̂I

dt
= 1

ih̄
[VI , ρ̂I ]. (26)

We turn on the interaction V at t0 and solve for the density
operator ρ̂ at t after a long enough time interval t − t0. By
integrating both sides of Eq. (26) from t0 to t , we have

ρ̂I (t ) = ρ̂I (t0) + (ih̄)−1
∫ t

t0
dt ′[VI (t ′), ρ̂I (t ′)]. Substituting this

into Eq. (26), we obtain, up to third order in V ,

d ρ̂I

dt
= J1(t ) + J2(t ) + J3(t ), (27)

with

J1(t ) = 1

ih̄
[VI (t ), ρ̂I (t0)],

J2(t ) = 1

(ih̄)2

∫ t

t0

dt ′P[VI (t ), [VI (t ′), ρ̂I (t0)]],

J3(t ) = 1

(ih̄)3

∫ t

t0

dt ′
∫ t ′

t0

dt ′′[VI (t ), [VI (t ′), [VI (t ′′), ρ̂I (t0)]]],

(28)

where we replace ρ̂I (t0) with ρ̂I (t ) by considering that the
relaxation time of the distribution operator τp is much longer
than the collision time τcoll. Writing ρ̂I (t ) on the left-hand side
of Eq. (27) in terms of ρ̂(t ), we obtain

d ρ̂

dt
= 1

ih̄
[HW, ρ̂] + J̃1(t ) + J̃2(t ) + J̃3(t ), (29)

with

J̃n(t ) = U (t )Jn(t )U †(t ) (n = 1, 2, 3). (30)

The first term on the right-hand side of Eq. (29) describes the
pseudospin precession, while J̃1(t ), J̃2(t ), and J̃3(t ) are due to
the impurity scattering.

Since, for � = L, R,

〈�k′σ |V |�kσ 〉 = [1 − iησ (k′×k)z]〈�k′|Vimp|�k〉, (31)

with (k′×k)z ≡ k′
xky − k′

ykx, each matrix element of Jn(t ) is
expressed by products of 〈�k′|Vimp|�k〉, which are replaced by
the average over in-plane impurity configurations according
to Eq. (14) to obtain the averaged Boltzmann equation for the
distribution operator.

We describe the dephasing of pseudospin according to the
widely used dephasing model for a two-level system [60] with
a constant dephasing time τps:(

∂ρ̂kσ

∂t

)
d

= − 1

τps
(|G〉〈G|ρ̂kσ |E〉〈E |+|E〉〈E |ρ̂kσ |G〉〈G|).

(32)
Here the projection operators |G〉〈G| and |E〉〈E | are expressed
by H⊥:

|G〉〈G| = 1

2
− H⊥

h̄ω1
, |E〉〈E | = 1

2
+ H⊥

h̄ω1
. (33)

By substituting Eqs. (29) and (32) into Eq. (21), the Boltz-
mann equation for the distribution operator becomes

F
h̄

· ∂ρ̂kσ

∂k
= 1

ih̄
[H⊥, ρ̂kσ ] + Ĉ(2) + Ĉ(3) +

(
∂ρ̂kσ

∂t

)
d

, (34)

with

Ĉ(2) =
∑

k′
W (2)

k′k

(−ρ̂kσ + |L〉ρLL
k′σ 〈L| + |R〉ρRR

k′σ 〈R|), (35)

Ĉ(3) =
∑

k′
W (3)ss

kk′σ

(|L〉ρLL
k′σ 〈L| − |R〉ρRR

k′σ 〈R|), (36)
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and ρLL
kσ = 〈L|ρ̂kσ |L〉. The transition rate in the second order

of V , W (2)
k′k , is defined by

W (2)
k′k ≡ W (2)

Lk′Lk
= W (2)

Rk′Rk
, (37)

with

W (2)
Lk′Lk

= 2π

h̄
δ(εk′ − εk )|〈Lk′|Vimp|Lk〉|2 , (38)

and gives the momentum relaxation. On the other hand, the
third-order transition rate W (3)ss

kk′σ is defined by

W (3)ss
kk′σ ≡ W σ (3)ss

LkLk′ = −W σ (3)ss
RkRk′ , (39)

where

W σ (3)ss
LkLk′ = first-order-in-η terms of W σ (3)

LkLk′ (40)

and

W σ (3)
Lk′Lk

= 2π

h̄
δ(εk′ − εk )

∑
k′′

[
(Lkk′k′′kσ )

εk − εk′′ + iδ
+ c.c.

]
,

(Lkk′k′′kσ ) = 〈Lkσ |V |Lk′σ 〉〈Lk′σ |V |Lk′′σ 〉〈Lk′′σ |V |Lkσ 〉.
(41)

The third-order transition rates W σ (3)ss
LkLk′ and W σ (3)ss

RkRk′ , which
represent the skew scattering in the lowest order, are opposite
in sign because the sign of the impurity potential is opposite
between L and R [Eq. (4)].

Here we find it convenient to decompose the distribution
operator ρ̂kσ into a linear combination of the pseudospin op-
erator τ̂γ and to rewrite the Boltzmann equation (34) in terms
of the corresponding component, according to the similar
decomposition for the spin degree of freedom [61–63],

ρ̂kσ = 1

2

3∑
γ=0

τγ kσ τ̂γ , (42)

where τγ kσ , twice the γ component of ρ̂kσ , is given by the
statistical average of τ̂γ in a state with momentum k and spin
σ ,

τγ kσ = trτ (ρ̂kσ τ̂γ ) ≡
∑

�

〈�|ρ̂kσ τ̂γ |�〉. (43)

Using τγ kσ , the Boltzmann equation is written as follows:

F
h̄

· ∂τ0kσ

∂k
=

∑
k′

[
W (2)

k′k (−τ0kσ + τ0k′σ ) + W (3)ss
kk′σ τ3k′σ

]
,

F
h̄

· ∂τ1kσ

∂k
= −ωV τ2kσ − τ−1

l τ1kσ +
(
∂τ1kσ

∂t

)
d

,

F
h̄

· ∂τ2kσ

∂k
= ωτ3kσ + ωV τ1kσ − τ−1

l τ2kσ +
(
∂τ2kσ

∂t

)
d

,

F
h̄

· ∂τ3kσ

∂k
= −ωτ2kσ +

∑
k′

[
W (2)

k′k (−τ3kσ + τ3k′σ )

+ W (3)ss
kk′σ τ0k′σ

] +
(
∂τ3kσ

∂t

)
d

,

(44)

where

τ−1
l ≡

∑
k′

W (2)
k′k ,

(
∂τ1kσ

∂t

)
d

= −τ−1
ps

(
s 2
ω τ1kσ + sωcωτ3kσ

)
,

(45)(
∂τ2kσ

∂t

)
d

= −τ−1
ps τ2kσ ,

(
∂τ3kσ

∂t

)
d

= −τ−1
ps

(
sωcωτ1kσ + c2

ωτ3kσ

)
,

with

sω = ωV

ω1
, cω = ω

ω1
, s 2

ω + c 2
ω = 1. (46)

V. DISTRIBUTION OPERATOR

A. Distribution operator in the absence of the in-plane
electric field

We can choose, as the density operator of the zeroth order
in E = |E|,

ρ̂ (0) = f0(HW), f0(ε) =
[

exp

(
ε − μ

kBT

)
+ 1

]−1

, (47)

where f0(ε) is the Fermi-Dirac distribution function with
chemical potential μ and temperature T . Since

ρ̂
(0)
kσ

=
∑

n=G,E

|n〉 f0(εnk )〈n|, (48)

we obtain τ
(0)
γ kσ

, the γ component of 2ρ̂
(0)
kσ

, as follows:

τ
(0)
0kσ

= f0(εGk ) + f0(εEk ),

τ
(0)
1kσ

= cω[ f0(εGk ) − f0(εEk )],

τ
(0)
2kσ

= 0,

τ
(0)
3kσ

= sω[− f0(εGk ) + f0(εEk )].

(49)

B. Distribution operator in the linear response
to the in-plane electric field

The Boltzmann equation in the first order of E is obtained
by substituting τ

(0)
γ kσ

into the force term and τ
(1)
γ kσ

into other

terms. We seek the solution for τ
(1)
γ kσ

of the form

τ
(1)
γ kσ

= aγ kσ · h̄k. (50)

Then the Boltzmann equation gives the following coupled
equations for aγ kσ :

F
m

( f ′
G + f ′

E ) = −τ−1
p a0kσ + τ−1

ss σ (ez × a3kσ ),

F
m

cω( f ′
G − f ′

E ) = −ωV a2kσ − τ−1
l a1kσ

− τ−1
ps

(
s 2
ω a1kσ + sωcωa3kσ

)
,

0 = ωa3kσ + ωV a1kσ − (
τ−1

l + τ−1
ps

)
a2kσ ,

F
m

sω(− f ′
G + f ′

E ) = −ωa2kσ − τ−1
p a3kσ + τ−1

ss σ (ez × a0kσ )

− τ−1
ps

(
sωcωa1kσ + c2

ωa3kσ

)
, (51)
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with

ez × a ≡ (−ay, ax ), a = (ax, ay),

f ′
n ≡ ∂ f0

∂ε
(εnk ),

τ−1
p ≡

∑
k′

W (2)
k′k (1 − cos θ ),

τ−1
ss ≡

∑
k′

W (3)ss
k′k↑ sin θ,

(52)

where θ is the angle of k′ relative to that of k.
We divide aγ kσ into zeroth-order and first-order terms with

respect to the SOI:

aγ kσ = a[0]
γ kσ

+ a[1]
γ kσ

. (53)

Then the solution for a[0]
γ kσ

and a[1]
γ kσ

(γ = 0, 3) is found to be

a[0]
0kσ

= (− f ′
G − f ′

E )
τpF
m

,

a[0]
3kσ

= (γk + 1)sω

γkτpτ
−1
l + 1

( f ′
G − f ′

E )
τpF
m

,

a[1]
0kσ

= gk (γk + 1)sω( f ′
G − f ′

E )σ (ez × F ),

a[1]
3kσ

= gk (− f ′
G − f ′

E )σ (ez × F ),

(54)

where

gk = 1

γkτpτ
−1
l + 1

τ 2
p

mτss
, γk = ω2 + νlϕτ−1

ps c2
ω

ω2
V + νs

lϕνlϕ
, (55)

with

νlϕ = τ−1
l + τ−1

ps , νs
lϕ = τ−1

l + τ−1
ps s 2

ω , (56)

while that for γ = 1, 2 is obtained from

a1kσ = α1

β0
a3kσ − τ−1

p νlϕcω

β0
( f ′

G − f ′
E )

τpF
m

,

a2kσ = α2

β0
a3kσ − τ−1

p ωV cω

β0
( f ′

G − f ′
E )

τpF
m

,

(57)

with

α1 = −νlϕτ−1
ps sωcω − ωV ω,

α2 = ωνs
lϕ − ωV τ−1

ps sωcω,

β0 = νlϕνs
lϕ + ω2

V .

(58)

VI. SPIN HALL CURRENT

A. Spin Hall conductivity

Here we introduce the number current density (electron
flux density) carrying the z component of spin and the γ

component of pseudospin in the direction μ = x, y, which is
defined by

jsγ
μ ≡ 1

2S
tr

(
ρ̂σ̂zτ̂γ

p̂μ

m

)
= 1

2S

∑
kσ

στγ kσ

h̄kμ

m
. (59)

Such spin-pseudospin current, jsγ = ( jsγ
x , jsγ

y ), is given in the
first order of the SOI by

jsγ = 1

2S

∑
k

εk
(
a[1]

γ k↑ − a[1]
γ k↓

) = 1

S

∑
k

εka[1]
γ k↑. (60)

We define the spin Hall conductivity in the γ component σ
sγ
yx

by

jsγ
y = σ sγ

yx Ex. (61)

Substituting the formula of a[1]
γ kσ

in Eqs. (54) and (57) into
Eq. (60), we obtain the following formula for the spin Hall
conductivity:

σ s0
yx = − e

S

∑
k

εkgk (γk + 1)sω( f ′
G − f ′

E ),

σ s1
yx = − e

S

∑
k

εkgk
α1

β0
(− f ′

G − f ′
E ),

σ s2
yx = − e

S

∑
k

εkgk
α2

β0
(− f ′

G − f ′
E ),

σ s3
yx = − e

S

∑
k

εkgk (− f ′
G − f ′

E ).

(62)

Here we consider the case where kBT � εF, �SAS � εF, and
h̄ωV � εF, with εF = h̄2k2

F/2m being the Fermi energy. Then,
by replacing τp(ε), τl (ε), and τss(ε), which are slowly varying
functions of ε, with their value at εF, we obtain

σ s0
yx = 0, (63)

σ s3
yx

σ sH
0

= 1

γkτpτ
−1
l + 1

, (64)

with

σ sH
0 = −2Neeτ 2

p

mτss
, (65)

where Ne is the areal electron density per spin per layer,
τl = τl (εF), τp = τp(εF), and τss = τss(εF).

When ωV = 0, we have sω = 0 and γk = ω2τlν
−1
lϕ + τlτ

−1
ps

and obtain

σ s3
yx

σ sH
0

=
(
1 + τpτ

−1
ps

)−1

1 + ω2
[(

τ−1
p + τ−1

ps

)(
τ−1

l + τ−1
ps

)]−1 . (66)

When τ−1
ps = 0, we have γk = ω2/(ω 2

V + τ−2
l ) and obtain

σ s3
yx

σ sH
0

= ω 2
V τ 2

l + 1

1 + (
ω2τpτ

−1
l + ω 2

V

)
τ 2

l

. (67)

When ωV = 0 and τ−1
ps = 0, we obtain

σ s3
yx

σ sH
0

= 1

1 + ω2τpτl
, (68)

which is further simplified to τl = τp and

σ s3
yx

σ sH
0

= 1

1 + ω2τ 2
p

(69)

125307-6



ANTIPARALLEL SPIN HALL CURRENT IN A BILAYER … PHYSICAL REVIEW B 100, 125307 (2019)

1

0.8

0.6

0.4

0.2

0
0 1 2 3 4 5

0

1

0.8

0.6

0.4

0.2

-10 -5 5 100

FIG. 2. Normalized antiparallel spin Hall conductivity σ s3
yx /σ sH

0 .
(a) The dependence on the pseudospin-precession frequency, ω =
�SAS/h̄ [Eq. (69)], which shows that the momentum relaxation time
τp determines the crossover position. (b) The dependence on the
potential offset between the L and R layers h̄ωV [Eq. (67) at τl = τp].

when the potential range of each impurity is much shorter than
the Fermi wavelength. Equations (67) and (69) are plotted in
Fig. 2.

On the other hand, σ s1
yx and σ s2

yx become nonzero at ω = 0:

σ s1
yx

σ s3
yx

= α1

β0
,

σ s2
yx

σ s3
yx

= α2

β0
. (70)

In particular, when ωV = 0, τ−1
ps = 0, and τl = τp, we obtain

σ s1
yx = 0, σ s2

yx = ωτpσ
s3
yx , (71)

which leads to an interesting relation:

σ s3
yx (ω) + iσ s2

yx (ω) = σ sH
0

1 − iωτp
. (72)

B. Hanle effect of the pseudospin current

In this section we show that the reduction by the pseu-
dospin precession ω of the pseudospin components of the spin
Hall conductivity, σ s2

yx (ω) and σ s3
yx (ω), in the case where ωV =

0, kBT � εF, and �SAS � εF [Eq. (72)] can be regarded as
the Hanle effect for the pseudospin current. For this purpose
we go back to the Boltzmann equation [Eq. (44)] and take
only terms first order in |E| and up to first order in η, as we
have done in Sec. V B. We further neglect the potential offset
ωV as in Eq. (72) and restore the time-derivative term, which

actually vanishes in steady states. Then we obtain

∂τ
(1)
0kσ

∂t
+ F

h̄
· ∂τ

(0)
0kσ

∂k
= −τ−1

p τ
(1)
0kσ

,

∂τ
(1)
1kσ

∂t
+ F

h̄
· ∂τ

(0)
1kσ

∂k
= −τ−1

l τ
(1)
1kσ

,

∂τ
(1)
2kσ

∂t
+ F

h̄
· ∂τ

(0)
2kσ

∂k
= ωτ

(1)
3kσ

− (
τ−1

l + τ−1
ps

)
τ

(1)
2kσ

,

∂τ
(1)
3kσ

∂t
+ F

h̄
· ∂τ

(0)
3kσ

∂k
= −ωτ

(1)
2kσ

− (
τ−1

p + τ−1
ps

)
τ

(1)
3kσ

− FsH

h̄
· ∂τ

(0)
0kσ

∂k
,

(73)

where

FsH = τ−1
ss τpσ (ez × F ) (74)

can be thought of as a force generating the spin Hall current.
We find that τ−1

ss represents the strength of this force, while
τp, τl , and τps determine the relaxation time for τ

(1)
γ kσ

.
We derive the equation of motion for jsγ

y from Eq. (73).
By again employing the approximation made in Sec. VI A,
where τp(ε) ≈ τp(εF), τl (ε) ≈ τl (εF), and τss(ε) ≈ τss(εF),
we obtain the following equations:

d js0
y

dt
= −τ−1

p js0
y ,

d js1
y

dt
= −τ−1

l js1
y ,

(75)
d js2

y

dt
= ω js3

y − (
τ−1

l + τ−1
ps

)
js2
y ,

d js3
y

dt
= −ω js2

y − (
τ−1

p + τ−1
ps

)
js3
y + τ−1

p σ sH
0 Ex.

The first equation gives js0
y = 0 (σ s0

yx = 0) in steady states. The
rest of the equations describe the dynamics of the pseudospin
current. The pseudospin precesses with frequency ω around
“axis 1.” The pseudospin current relaxes by the action of the
pseudospin dephasing τ−1

ps and the momentum relaxation, the
latter of which is anisotropic with respect to the pseudospin
direction: τl for the first and second pseudospin components
and τp for the third. The term proportional to Ex describes
the generation of the spin Hall current which carries the third
component of pseudospin together with the z component of
spin. The last three equations in Eq. (75), when simplified by
assuming τ−1

ps = 0 and τl = τp, reproduce the reduction by
ω of the second and third components [Eq. (72)]. Since the
present reduction is found to be based on the equation which
is the same in form as that leading to the Hanle effect [45], it
can be regarded as the Hanle effect for the pseudospin current.

C. Possible experiments using the potential offset

As a possible experiment to observe the antiparallel spin
Hall current, we first propose extending (to the present bilayer
system) the nonlocal detection in the H-shaped geometry
of the spin Hall current which was proposed [64] and ex-
perimentally demonstrated [65] in a single quantum well
where the applied electric field along the left arm of the
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H creates the spin Hall current from the left to the right
arm and the spin Hall current in turn generates the detected
electric field in the right arm. In the present bilayer of the
H-shaped geometry, the applied electric field along the left
arm creates the antiparallel spin Hall current from the left to
the right arm, and the antiparallel spin Hall current in turn
generates the detected electric field in the right arm, which
shows the different directions between two configurations
of the antiparallel spin Hall current, ↑↓ and ↓↑, in two
layers (the proposed nonlocal detection of the antiparallel
spin Hall current has an essential aspect in common with a
readout method of the antiferromagnetic memory which was
recently demonstrated experimentally [66,67]). The long spin
diffusion length necessary for such nonlocal measurement
was experimentally realized (see, for example, Refs. [68,69]),
and even longer spin diffusion lengths will be made possible
by choosing appropriate materials [70].

Another possible method to detect the antiparallel spin
Hall current is to use the dynamic nuclear polarization (DNP)
which is generated by nonequilibrium electron spin accumula-
tion through the hyperfine interaction. Such a DNP, generated
by the current-induced electron spin polarization in an InGaAs
epilayer [71], was successfully observed, in addition to that
created by spin-polarized electrons injected from a metallic
ferromagnet into a GaAs quantum well [72]. In order to detect
the electron spin accumulation induced by the antiparallel
spin Hall current, which appears at a sample edge and is
opposite in direction between two electron layers, we first
deplete one electron layer by applying a gate voltage and then
observe the DNP in the other layer (occupied by electrons)
through the local electrical detection [73–75]. The temporal
decay of the DNP is negligible during such a procedure
with the gate-voltage application and the electrical detection
since the nuclear spin has a long relaxation time of the order
of 1000 s.

Now we discuss a measurement procedure to confirm the
competition between the pseudospin precession ω and the
momentum relaxation τ−1

p . Since it is difficult to change ω

and τ−1
p in a single sample (in experiments [28,31], the tunnel

coupling h̄ω was changed by varying the Al concentration
and the width of the barrier between two layers), we propose
to measure the antiparallel spin Hall conductivity σ s3

yx as a
function of the potential offset h̄ωV between two layers by
means of the gate voltage. From Eq. (67), we obtain(

σ sH
0

σ s3
yx

− 1

)−1

= τl

ω2τp

(
ω 2

V + τ−2
l

)
. (76)

When we plot the observed value of the left-hand side as a
function of ω 2

V = ω 2
1 − ω2, the plot should be, according to

this formula, a straight line which has a slope of τl/ω
2τp and

intersects the horizontal axis at −τ−2
l . Observing such ωV de-

pendence shows that the competition between the pseudospin
precession and the momentum relaxation is relevant to the
present crossover [76].

VII. CONCLUSIONS

We have theoretically investigated the crossover between
the decoupled bilayer with antiparallel extrinsic spin Hall

current and the strongly coupled bilayer with no spin Hall
current as a function of �SAS, the energy separation between
the symmetric and antisymmetric states of the motion per-
pendicular to the layer, and found that the crossover occurs
around ω (≡ �SAS/h̄) = τ−1

p via the competition between the
pseudospin precession with frequency ω and the momentum
relaxation with rate τ−1

p . We have successfully explained the
present suppression of the antiparallel extrinsic spin Hall cur-
rent with the increase of �SAS by extending the Hanle effect
dynamics, which was originally written for spin components,
to pseudospin components of the spin Hall current. In the
pseudospin Hanle effect occurring with the extrinsic spin Hall
effect of this bilayer, the momentum relaxation in addition
to the pseudospin dephasing plays a role in damping the
precession in the pseudospin space of the spin Hall current.
Such damping caused by the momentum relaxation is a feature
which is absent in the direct pseudospin analog of the Hanle
effect.

Although in this paper we have derived the equation de-
scribing the pseudospin Hanle effect in a tailor-made double
quantum well with the antiparallel extrinsic spin Hall cur-
rent, the concept of the pseudospin Hanle effect proposed
in this paper may generally be applicable to any electron
system with the pseudospin degree of freedom, which in-
cludes graphene and transition-metal dichalcogenides with the
sublattice [77–79] and the valley degree of freedom [78–80],
as well as their bilayers with the layer degree of freedom
[77,79,80]. Then the Hanle effect of the pseudospin may
appear in a wide range of phenomena brought by various
pseudospins which include many phenomena other than the
bilayer spin Hall effect. Thus, we expect that viewing the
dynamics involving pseudospin as the Hanle effect will be
useful in exploring and explaining many pseudospin-related
phenomena as well as in their applications to pseudospin-
tronics [77,81,82] since the Hanle effect for spin has been
playing an important role in spin physics and spintronics (see
Ref. [4] for a review and [14,15,83–88] for examples of recent
achievements).

As mentioned above, the pseudospin Hanle effect of the
system studied in this paper has the feature that the mo-
mentum relaxation contributes to the damping of the preces-
sion in the pseudospin space of the current considered. We
expect that such damping due to the momentum relaxation
will frequently appear in the dynamics of spin (pseudospin)
combined with momentum since the current is used in each
process of spintronics (pseudospintronics), such as genera-
tion, manipulation, storage, and transport. More precisely,
when the Bloch equation is employed for a variable involving
both spin (pseudospin) and momentum, it will have a damping
term due to the momentum relaxation, in addition to the spin
(pseudospin) precession term, which gives rise to the Hanle
effect determined by the product of the momentum relaxation
time and the spin- (pseudospin-) precession frequency.
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