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BINARY DIFFERENTIAL EQUATIONS AT PARABOLIC AND
UMBILICAL POINTS FOR 2-PARAMETER FAMILIES OF

SURFACES

YUTARO KABATA, JORGE LUIZ DEOLINDO SILVA, AND TORU OHMOTO

Abstract. We determine local topological types of binary differential equations of
asymptotic curves at parabolic and flat umbilical points for generic 2-parameter fam-
ilies of surfaces in P3 by comparing our projective classification of Monge forms and
classification of general BDE obtained by Tari and Oliver. In particular, generic bi-
furcations of the parabolic curve are classified. The flecnodal curve is also examined
by direct computations, and we present new bifurcation diagrams in typical examples.

1. Introduction

Binary differential equations (BDE) widely appear in several geometric problems. A
BDE in two variables x, y has the form

(1) a(x, y) dy2 + 2b(x, y) dxdy + c(x, y) dx2 = 0

with smooth functions a, b, c of x, y. It is regarded as a smooth map R2 → R3 assigning
(x, y) 7→ (a, b, c) and consider the C∞-topology on the mapping space. Put δ(x, y) :=
b(x, y)2 − a(x, y)c(x, y). If δ > 0, the BDE locally defines two foliations which are
transverse to each other. The discriminant curve is given by δ = 0, at which the integral
curve of BDE generically has a cusp. Two germs of BDEs F and G are equivalent if
there is a local diffeomorphism in the xy-plane sending the integral curves of F to
those of G. Also the topological equivalence is defined. There have been known several
classification results for germs of (families of) BDE [2, 3, 4, 5, 6, 7, 8, 17, 18]. As a
specific geometric setting, consider a surface locally given by z = f(x, y); asymptotic
curves are integral curves of the BDE

(2) fyy dy
2 + 2fxy dxdy + fxx dx

2 = 0

(called an asymptotic BDE, for short). Asymptotic BDEs form a thin subset of the
space of general BDEs. The discriminant curve coincides with the parabolic curve in
the surface theory; denote it by P . Note that the above equivalence relation of BDE
preserves the discriminant, but loses any information about inflection of integral curves,
thus the theory of general BDE is really useful for analyzing parabolic curves but not
for flecnodal curves at all.

In this paper, we are interested in bifurcation phenomena of asymptotic BDE. In
[16], we studied generic 1 and 2-parameter families of surfaces in real projective 3-space
P3 and presented a classification of Monge forms under projective transformations in
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Figure 1. BDE of type (3) in [11] (left) and degenerate flat point (D5)

of type Πf
2 in [16] (right).

accordance with equisingularity types of central projection; indeed it is a natural exten-
sion of a well-known classification of jets of a generic surface given by Arnold-Platonova
(cf. [1, 14, 10]) and is related to a work of Uribe-Vargas on 1-parameter bifurcations of
parabolic and flecnodal curves [19]. There are in total 20 normal forms of parabolic and
flat Monge forms up to codimension 4 (Table 1 in §2). For each normal form, we will
carefully check the criteria in topological classification of general BDE due to Davydov,
Bruce and Tari [2, 3, 4, 7, 8, 17, 18], that determines the diffeomorphic/topological type
of our asymptotic BDEs (Propositions 3.1, 3.4 and 3.5). It then turns out that asymp-
totic BDEs at parabolic points arising in generic 2-parameter families of surfaces realize
any generic types of IDE (implicit differential equation) of codimension 2 classified in
Tari [17]. The BDE at flat umbilical points is more remarkable; While our degenerate

flat umbilic class Πf
2 generically appears in 2-parameter family, its asymptotic BDE is

not equivalent to any type of BDE of codimension 2 with (a(0), b(0), c(0)) = (0, 0, 0)
classified in Tari [18], but it is equivalent to the normal form

(3) xdy2 + 2ydxdy + x2dx2 = 0,

which is actually one of types of codimension 3 in the space of (general) BDEs obtained
by Oliver [11] (Remark 3.6).

Next, we find out the bifurcation diagrams for generic 2-parameter families of sur-
faces. We show that obtained families of asymptotic BDEs are topologically versal (as

families of general BDEs) in the sense of Tari [17], except for the class Πf
2 mentioned

above. Then, bifurcations of the parabolic curve are read off from the bifurcation di-
agrams depicted in [17]. However, this is not useful for analyzing the flecnodal curve;
for instance, unlike general BDE, the A3-transition of asymptotic BDE at a point of
type Πp

v,1 creates a ‘figure-eight’ flecnodal curve, as it was firstly observed by F. Aicardi
(Trieste, 1997) and A. Ortiz-Rodŕıguez (Paris, 1999) through computer experiments (cf.
[19]). Therefore, by direct computations, we examine the bifurcation of the flecnodal

curve explicitly in examples. Also we present the bifurcation diagram of type Πf
2 , which

would completely be new in literature.

Acknowledgement. The first and second authors thank organizers of the 14th Work-
shop on Real and Complex Singularities for giving them a nice opportunity to work
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Figure 2. Central projection: Parabolic points are characterized as
points at which the projection has the lips/beaks singularity or worse.

together. The first author is supported by JSPS grant no.16J02200. The third author
is partly supported by JSPS grants no.24340007 and 15K13452.

2. Monge forms at parabolic and flat points

We briefly recall our classification of Monge forms via projective transformations
obtained in [16]. Take an affine chart R3 = {[x : y : z : 1]} ⊂ P3, and consider germs
of surfaces in R3 at the origin given by Monge forms z = f(x, y) with f(0) = 0 and
df(0) = 0. We say that two germs or jets of surfaces are projectively equivalent if there is
a projective transformation on P3 sending one to the other. Projective transformations
preserving the origin and the xy-plane form a 10-dimensional subgroup of PGL(4), and
it acts on the space J = m2

x,y/m
k+1
x,y of k-jets of Monge forms in a canonical way. In

[13, 14] (cf. [1, 10]), Platonova studied a projectively invariant stratification of J with
codimension ≤ 2, and it has recently been extended by Kabata [9] systematically up
to codimension 4 so that each stratum is characterized by singularity types of central
projections which the surface-germ possesses. Here, the central projection of a surface
M from a viewpoint q ∈ P3 means the restriction to M of a canonical projection
πq : P3 − {q} → P2; at each point p ∈ M , the projection is locally described as
a map-germ R2, 0 → R2, 0 in local coordinates centered at p ∈ M and πq(p) ∈ P2,
respectively, and consider its singularity type (the class up to A-equivalence, i.e., the
equivalence relation of map-germs via natural actions of diffeomorphism-germs of the
source and the target). The singularity type measures how the line contacts with M :
from a point on non-asymptotic line, the projection is of type fold II2 : (y, x

2) (2-point
contact), and from a point of an asymptotic line, it is of cusp II3 : (y, x

3+xy) in general
(3-point contact), and a plenty of degenerate types of map-germs appear, which are not
determined only by the contact order, e.g. the parabolic curve P is formed by points
at which the projection has the beaks/lips singularity I2 : (y, x

3±x2y) or worse (Figure
2).

The normal forms of parabolic and flat umbilical Monge forms are listed in Table
1 below ([16, 14]), where k is the order of jets, cod is the codimension of strata, and
the last column proj. means singularity types of central projection of the surface at the
origin from viewpoints on the asymptotic line (the type in bracket indicates a more
degenerate singularity type of projection from some isolated viewpoint specially chosen
on the line).

Let M ⊂ P3 be a non-singular surface. Suppose that an open subset U ⊂ M ∩ R3 is
parametrized by a graph z = f(x, y) of a function. Since we are working in projective
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geometry, we may define the Monge form at p by the k-jet of f at p off the linear term
j1f(p). Then the Monge-Taylor map θ : U → J is locally defined with respect to this
affine chart. Take an open cover of M by such affine charts so that M is locally given
by graphs of functions. By a standard transversality argument, we easily see that any
class Π∗

∗,∗ with codimension ≤ 2 appears for a generic embedding M → P3 ([13]), and

any class with cod = k > 2 appears in a generic family of embeddings M × V → P3

(V ⊂ Rk−2).

class normal form k cod proj.

Πp
I,1 y2 + x3 + xy3 + αx4 4 1 I2 (I3)

Πp
I,2 y2 + x3 ± xy4 + αx4 + βy5 + x2φ3 5 2 I2 (I4)

Πp
c,1 y2 + x2y + αx4 (α 6= 0, 1

4
) 4 2 III2 (III3)

Πp
c,2 y2 + x2y + 1

4
x4 + αx5 + yφ4 (α 6= 0) 5 3 III2

Πp
c,4 y2 + x2y + x5 + yφ4 5 3 IV1

Πp
I,3 y2 + x3 + xy5 + αx4 + φ 6 3 I2 (I5)

Πp
v,1 y2 ± x4 + αx3y + βx2y2 (β 6= ±3

8
α2) 4 3 V1 (VI)

Πf
1 xy2 ± x3 + αx3y + βy4 4 3 I±2 , I3(I4)

Πp
c,3 y2 + x2y + 1

4
x4 + yφ4 5 4 III3 (III4)

Πp
c,5 y2 + x2y ± x6 + y(φ4 + φ5) 6 4 IV2

Πp
I,4 y2 + x3 + αx4 + φ 6 4 I2 (I6)

Πp
v,2 y2 ± x4 + αx3y ± 3

8
α2x2y2 4 4 V1 (VI1)

Πp
v,3 y2 + x5 + y(φ3 + φ4) 5 4 V2 (VI2)

Πf
2 xy2 + x4 ± y4 + αx3y 4 4 I−2 (III)

Table 1. Monge forms at parabolic and flat points are obtained in [1, 14, 10]
for cod = 1, 2 and [16] for cod = 3, 4. In the list, α, β, · · · are leading moduli
parameters, φr denotes generic homogeneous polynomials of degree r and φ =
βy5 + γy6 + x2(φ3 + φ4). Double-sign ± corresponds in same order for each of
Πp

v,1 or Πp
v,2.

3. Binary differential equations

3.1. General BDE. One can separate BDE (1) into two cases. The first case occurs
when the functions a, b, c do not vanish at the origin at once, then the BDE is just an
implicit differential equation (IDE). The second case is that all the coefficients of BDE
vanish at the origin. Stable topological models of BDEs belong to the first case; it arises
when the discriminant is smooth (or empty). If the unique direction at any point of the
discriminant is transverse to it (i.e. integral curves form a family of cusps), then the
BDE is stable and smoothly equivalent to dy2 + xdx2 = 0, that was classically known
in Cibrario [5] and also Dara [6]. If the unique direction is tangent to the discriminant,
then the BDE is stable and smoothly equivalent to dy2 + (−y + λx2)dx2 = 0 with
λ 6= 0, 1

16
, that was shown in Davydov [7, 8]; the corresponding point in the plane is

called a folded singularity – more precisely, a folded saddle if λ < 0, a folded node if
0 < λ < 1

16
and a folded focus if 1

16
< λ, see Figure 3.
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Figure 3. Folded singularities: saddle (left), node (center) and focus (right)

In both cases, the topological classification of generic 1 and 2-parameter families of
BDEs have been established in Bruce-Fletcher-Tari [2, 4] and Tari [17, 18], respectively.
We will use those results later. Besides, we need a generic 3-parameter family of BDE
studied in Oliver [11].

3.2. BDE of asymptotic curves. We are concerned with (degenerate) parabolic
points and flat umbilic points of a surface. In fact, asymptotic BDE is intimately
related to the singularity type of the Monge form. The parabolic curve can be seen
as the locus where the Monge form has A≥2-singularities; when the Monge form has
a A±

3 -singularity, the surface has a cusp of Gauss, which corresponds to the class Πp
c,1

– in this case the asymptotic BDE has a folded saddle singularity (resp. a folded
node or focus singularity) if the Monge form has a singularity of type A−

3 (resp. A+
3 ).

The transitions in 1-parameter families occur generically in three ways at the follow-
ing singularities of the Monge form: non-versal A3, A4 and D4 (flat umbilic) [4]. For
2-parameter families, A3, A4, A5 and D5 singularities of the Monge form generically
appear. Below, the Monge form is written by

f(x, y) =
∑
2≤i+j

cij x
iyj,

and the k-jet jkf(0) is assumed to coincide with the normal form as in Table 1 for each
class.

Proposition 3.1. The following classes in Table 1 correspond to structurally stable
types of BDE given in [5, 6, 7].

(Πp
I,k) (1 ≤ k ≤ 4). The parabolic curve is smooth and the unique direction defined by

δ = 0 is transverse to the curve; the asymptotic BDE is smoothly equivalent to

dy2 + x dx2 = 0.

(Πp
c,k) (k = 1, 4, 5). The parabolic curve is smooth and the unique direction defined by

δ = 0 is tangent to the curve; the asymptotic BDE is smoothly equivalent to

dy2 + (−y + λx2)dx2 = 0

with λ = 6(c40 − 1
4
) 6= 0, where c40 is the coefficient of x4 in the normal form.

Proof : The results follow from the comments in §3.1 above. In second case, i.e.,
j4f = y2 + x2y + c40x

4, the 2-jet of the asymptotic BDE is transformed to the above
form via x = x̄ and y = −1

2
x̄2 − ȳ. �

Remark 3.2. As c40 = 0 in the normal forms of classes Πp
c,4 and Πp

c,5, we see λ =

−3
2

< 0, thus the asymptotic BDE has a folded saddle at the origin. The folded
saddle-node bifurcation (cf. Fig.2 in [17]) occurs at λ = 0. That is the case of c40 =
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1
4
, that corresponds to the classes Πp

c,k (k = 2, 3) dealt below. Notice that another

exceptional value λ = 1
16

does not relate to our classification of Monge forms given
by projection-types (Table 1). That is, the folded node-focus bifurcation of asymptotic
BDE occurs within the same class Πp

c,1 (cf. Fig.3 in [17]) and λ = 1
16

makes a condition
on coefficients of order greater than 4 of the normal form, that is independent from
the geometry of central projection of the surface. We should remark that Πp

c,4 and Πp
c,5

cause 1 and 2-parameter bifurcations of the flecnodal curve, respectively. For instance,
during a 1-parameter bifurcation of type Πp

c,4, a butterfly point moves on the flecnodal
curve and passes through this degenerate cusp of Gauss at the bifurcation moment, see
[16, §4] and [19].

Remark 3.3. At elliptic points in an smooth surface in R3 there is a unique pair of
conjugate directions for which the included angle (i.e the angle between these directions)
is minimal. These directions are called characteristic directions and are determined in
terms of the coefficients of the first and second fundamental forms. Theses directions are
not preserved via projective transformations, but at a cusp of Gauss, Oliver in [12] shows
that the characteristic directions are invariant under projective transformations. We
can use the normal form Πp

c,1 to obtain the BDE associated to characteristic directions;

it is indeed smoothly equivalent to dy2 + (−y + λx2)dx2 = 0 with λ = −6c40 +
3
2
6= 0.

The configurations of asymptotic and characteristic curves at a cusp of Gauss are given
in [12].

Proposition 3.4. The following classes correspond to some topological types of BDE
with codimension 1.

(Πp
v,1) The Monge form has an A3-singularity at the origin, at which the parabolic curve

has a Morse singularity; the asymptotic BDE is topologically equivalent to the
non-versal A±

3 -transitions with Morse type 1 in [4]

dy2 + (±x2 ± y2)dx2 = 0.

(Πp
c,2) The Monge form has an A4-singularity at the origin, at which the parabolic

curve is smooth; the asymptotic BDE is topologically equivalent to the well-folded
saddle-node type in [4, 8]

dy2 + (−y + x3)dx2 = 0,

provided the coefficient of x5 in the normal form c50 6= 0.
(Πf

1) The Monge form has a D±
4 -singularity at the origin, at which the parabolic curve

has a Morse singularity; the asymptotic BDE is topologically equivalent to the
bifurcation of star/1-saddle types in [2]

D+
4 : ydy2 − 2xdxdy − ydx2 = 0 (star);

D−
4 : ydy2 + 2xdxdy + ydx2 = 0 (1-saddle).

Proof : In [16, 9], the class Πp
v,1 is explicitly described as follows. Let z0 = y2+ c20x

2+∑
i+j≥3 cijx

iyj ∈ J . Then, z0 is projectively equivalent to Πp
v,1 if and only if

c20 = c30 = c21 = 0, c40 6= 0, S := 3c231 + 8c40(c
2
12 − c22) 6= 0.

In fact, exactly the same condition appears in [4, p.501, Case 1] as the condition for
A±

3 -transition: S 6= 0 means the 2-jet j2δ(0) is non-degenrate (ibid), thus the normal
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form follows from Theorem 2.7 (and Prop. 4.1) in [4]. For the class Πp
c,2, z0 (of the

above form) is projectively equivalent to Πp
c,2 if and only if

c20 = c30 = B = 0, c40 6= 0, A 6= 0,

with B := c221c40 − 4c240 and A := c221c50 + 4c12c
2
40 − 2c21c31c40. This condition is the

same as the one for A4-transition in [4, p.502, Case 2], and then the normal form of

BDE is obtained ([4, Prop. 4.2], also see [8]). For the class Πf
1 , the asymptotic BDE

is given in [2, Cor. 5.3]: indeed, for our normal form of Πf
1 , the parabolic curve is

defined by 3x2 − y2 + 18βxy2 + · · · = 0, hence it has a node at the origin for arbitrary
c31 = α, c04 = β. �

Proposition 3.5. The following classes correspond to some topological types of BDE
with codimension ≥ 2.

(Πp
v,2) The Monge form has an A3-singularity at the origin, at which the parabolic

curve has a cusp singularity; the asymptotic BDE is topologically equivalent to
the cusp type in [17]

dy2 + (±x2 + y3)dx2 = 0,

provided C1 := ∓5c50c
3
31 + 12c41c

2
31 ∓ 24c32c31 + 32c23 6= 0.

(Πp
v,3) The Monge form has an A4-singularity at the origin, at which the parabolic curve

has a Morse singularity; the asymptotic BDE is topologically equivalent to the
non-transversal Morse type in [17]

dy2 + (xy + x3)dx2 = 0

provided C2 := c31 6= 0.
(Πp

c,3) The Monge form has an A5-singularity at the origin, at which the parabolic
curve is smooth; the asymptotic BDE is topologically equivalent to the folded
degenerate elementary type in [17]

dy2 + (−y ± x4)dx2 = 0,

provided C3 := c60 − 1
2
c41 6= 0.

(Πf
2) The Monge form has a D5-singularity at the origin, at which the parabolic curve

has a cusp singularity; the asymptotic BDE is topologically equivalent to a cusp
type 2 in [11]

xdy2 + 2ydxdy + x2dx2 = 0.

Proof : For each of the first three classes, the claim follows from Proposition 4.1 and
Theorem 1.1 of Tari [17]. Let S,A,B be as in the proof of Proposition 3.4. As shown
in [16], the condition of z0 = y2 + c20x

2 + o(2) to be equivalent to Πp
v,2 is given by

c20 = c30 = c21 = S = 0, c40 6= 0

which is entirely the same as the condition of (iii) in [17, p.156] (C1 is given by C in
the bottom of that page). Also the condition for Πp

v,3 is given by

c20 = c30 = c21 = c40 = 0,

and that for Πp
c,3 is given by

c20 = c30 = B = A = 0.
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The same conditions can be found in (ii) and (i) in [17, p.156] respectively (C2, C3 are
given by c3 in (ii) and A in (i) in ibid.). Hence, those asymptotic BDEs are equivalent

to the normal forms presented in Theorem 1.1 in [17]. For the last class Πf
2 , the 1-jet

of the asymptotic BDE is given by j1(a, b, c)(0) = (2x, 2y, 0) and the parabolic curve
is defined by −4y2 + 24x3 + · · · = 0, namely it has a cusp at the origin. Thus the
corresponding BDE is equivalent to one of types described in Theorem 3.4 of [11]. �

Remark 3.6. In Tari [18] and Oliver [11], BDE with the discriminant having a cusp are

classified. Notice that the BDE for Πf
2 in Proposition 3.5 is equivalent to one of ‘type 2’

in Oliver’s classification [11] which appears in a generic 3-parameter family of general
BDE’s, while the type appears in a generic 2-parameter family of asymptotic BDE by
our classification of Monge forms [16]. This is not surprising, for asymptotic BDEs form
a thin subset of the space of all BDEs. In fact, it is shown in [18, Prop.2.1(2)] that
for general BDE with a cusp, the 1-jet is reduced by linear changes of coordinates and
multiplication by non-zero constants to j1(a, b, c)(0) = (x,±y + αx, 0) (α ∈ R), while
in our case it is reduced to the particular form j1(a, b, c)(0) = (x, y, 0) as seen in the
proof of Proposition 3.5. This infers the gap of codimensions caused by two different
classifications. It would be interesting to find a deeper understanding of the geometry
of asymptotic BDE at a flat umbilic point.

Remark 3.7. In [16, 9], our classification of Monge forms has been achieved in ac-
cordance with singularity types of central projections, or say almost equivalently, the
contact of the surface with lines, while Tari [17] described types of asymptotic BDEs
in terms of singularities of height functions and singularities of parabolic curves, that
reflects the contact of the surface with planes. These two different approaches lead
to the same conditions C1, C2, C3 6= 0. That should be explained by using a duality
between the contact of lines and the contact of planes.

4. Families of Monge forms and BDEs

In Propositions 3.4 and 3.5, we have compared our Monge forms in [16] and types in
classification of general BDE given by Tari [17]. In this section, we compare families of
Monge forms and families of BDE. Given an s-parameter family f(x, y, λ) (= fλ(x, y)) :
U × Rs → R (U ⊂ R2), we define a family of Monge-Taylor maps

θ : U × Rs → J, θ(p,u) := jkfλ(p).

Below, for each class in Table 1, we take a family of Monge forms whose Monge-Talyor
map θ is transverse to the corresponding stratum in the jet space J (Table 2). We show
that the associated family of asymptotic BDEs is topologically versal in the sense of
Tari [17].

4.1. Transverse families of Monge forms. For instance, recall the cases of Πp
v,k as

in Propositions 3.4 and 3.5. Write z =
∑

2≤i+j≤k cijx
iyj ∈ J as before, and regard cij as

coordinates of J . The locus of parabolic Monge forms in J is defined by c20c02−c211 = 0,
thus the tangent space to the locus at z0 = y2 + o(2) is defined by the 1-form dc20 = 0
in Tz0J = J .
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class family

Πp
c,2 y2 + x2y + 1

4
x4 + αx5 + tx3 (α 6= 0)

Πp
c,3(±) y2 + x2y + 1

4
x4 + γx4y + tx3 + ux4 (γ ≶ 0)

Πp
v,1(±,+) y2 + x4 + αx3y + βx2y2 + tx2 (β > 3

8
α2)

Πp
v,1(±,−) y2 − x4 + αx3y + βx2y2 + tx2 (β < 3

8
α2)

Πp
v,2(±) y2 ± x4 + αx3y ± 3

8
α2x2y2 + γx2y3 + tx2 + ux2y (γ 6= 0)

Πp
v,3 y2 + x5 + γx3y + tx2 + ux2y (γ 6= 0)

Πf
1(±) xy2 ± x3 + αx3y + βy4 + tx2

Πf
2(±) xy2 + x4 ± y4 + αx3y + tx2 + ux3

Table 2. Examples of families of Monge forms (with parameters t, u) whose
Monge-Taylor maps are transverse to the strata.

Let z0 = y2 + o(2) be of type Πp
v,1. By the local defining equation of the stratum, its

tangent space at z0 is given by linear equations

dc20 = dc30 = dc21 = 0 on Tz0J.

In particular, take z0 = y2 ± x4 + αx3y + βx2y2 + o(4) with S(z0) = 3α2 − 8β 6= 0
and f : U → R a representative of it; z0 = j4f(0). The Monge-Taylor map θ : U → J
sends p 7→ j4f(p) off the linear term. Then, the image dθ(T0U) and ∂/∂c20 span the
normal space (i.e the quotient of Tz0J via the tangent space of the stratum) and thus
the 1-parameter family f(x, y, t) = f(x, y)+tx2 induces a family of Monge-Taylor maps
θ : U × R → J being transverse to the stratum at the origin (0, 0).

For the class Πp
v,2, let

f(x, y) = y2 ± x4 + αx3y ± 3
8
α2x2y2 +

∑
i+j=5 cijx

iyj + o(5).

Then the tangent space of the stratum at z0 = j4f(0) is defined by

dc20 = dc30 = dc21 = dS = 0 on Tz0J.

Since dS = 6c31dc31 +8(c212 − c22)dc40 +16c12c40dc12 − 8c40dc22, we have dS = 6αdc31 ∓
3α2dc40 − 8dc22 at z0. Then the condition that

rank [ dc20, dc30, dc21, dS ]T
[
dθ( ∂

∂x
) dθ( ∂

∂y
)
]
= 2

is written down as

C1 := ∓5c50c
3
31 + 12c41c

2
31 ∓ 24c32c31 + 32c23 6= 0,

that is exactly the same condition required in Proposition 3.5 ([17, p.156]). Then we
can easily find a desired 2-parameter deformation of f ; for instance, when c23 6= 0 and
other c50 = · · · = c05 = 0 (then C1 6= 0), we may take f(x, u, t, u) = f(x, y)+tx2+ux2y.

Also for other cases in Table 1, any representative f(x, y) of the normal form (k-jet
of Monge form) admits a deformation whose Monge-Taylor map is transverse to the
stratum, provided Taylor coefficients of f of higher order (> k) are chosen to be appro-
priately generic, if necessary.

In Table 2, we collect examples of such families of Monge forms deforming the normal
forms in Table 1. Here we omit the stable case dealt in Proposition 3.1.
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4.2. Versal families of BDE. As a general theory, the germ of BDE (1) with a(0) 6= 0
is canonically transformed to the germ of an IDE

p2 +
a(x, y)c(x, y)− b(x, y)2

a(x, y)2
= 0

(
p =

dy

dx

)
by a simple coordinate change x̄ = x and ȳ = y+

∫ x

0
b(s,y)
a(s,y)

ds. For an IDE, p2+ϕ(x, y) =

0, moreover for a family of IDEs, p2 + ϕ(x, y, t, u) = 0, there are known useful criteria
for detecting its genericity, by which generic classifications of IDE and that of families
of IDEs have been achieved, see Tari [17] for the detail (also [4]). Given a deformation
of a parabolic Monge form y2 + o(2), we obtain a family of IDEs of asymptotic curves,
and apply Tari’s criteria to it.

Now we check criteria of asymptotic IDE and BDE for the following four examples
of families of Monge forms in Table 2:

(Πp
v,2) p2 ± 6x2 + γy3 + uy + t − 3

2
u2x2 − 3γtx2y = 0 (γ 6= 0) (we set α = 0 for

simplicity). It is just an IDE of cusp type in the sense of [17]. Check a criterion
in Proposition 3.5 (ii) of [17]:∣∣∣∣ ϕt(0) ϕty(0)

ϕu(0) ϕuy(0)

∣∣∣∣ = −1 6= 0,

thus, by Theorem 3.6 of [17], our family of asymptotic BDE is fiber topologically
equivalent to

dy2 + (±x2 + y3 + uy + t)dx2 = 0.

(Πp
v,3) p2 + 3γxy + 10x3 + t+ uy − 3

2
u2x2 − 5γux3 = 0 (γ 6= 0). It is of non-transverse

Morse singularity type. Check a criterion in Proposition 3.3 (ii) of [17]:∣∣∣∣∣∣
0 1 6

ϕt(0) ϕty(0) ϕtxx(0)
ϕu(0) ϕuy(0) ϕuxx(0)

∣∣∣∣∣∣ = −6 6= 0,

thus, by Theorem 3.4 of [17], our family is fiber topologically equivalent to

dy2 + (xy + x3 + ux2 + t)dx2 = 0.

(Πp
c,3) p2 + y ∓ 15

2
γx4 + 3tx + 6ux2 ± 6γx2y = 0 (γ 6= 0). It is of folded degenerate

elementary singularity type. Check a criterion in Proposition 3.1 (ii) of [17]:∣∣∣∣ ϕtx(0) ϕtxx(0)
ϕux(0) ϕuxx(0)

∣∣∣∣ = −36 6= 0,

thus, by Theorem 3.2 of [17], our family is fiber topologically equivalent to

dy2 + (−y ± x4 + ux2 + tx)dx2 = 0.

(Πp
f,1) This is not the case of IDE and indeed it is a 1-parameter family of BDE, thus

we refer to Example 4.1 in [3]. Consider F = (12βy2 +2x)p2 +2(3αx2 +2y)p+
(6αxy+2t+6x) = 0. In this case the linear part of F provides all the topological
information about the family of BDEs ([2, 3]). Check a versality criterion in



ASYMPTOTIC BINARY DIFFERENTIAL EQUATIONS ON SURFACES 11

Proposition 2.1 of [3]: ∣∣∣∣∣∣
2 0 0
0 2 0
6 0 2

∣∣∣∣∣∣ = 8 6= 0,

thus we can reduce the 1-jet of the BDE to the form (y + t)dy2 ± 2xdxdy ±
ydx2 = 0. Combining Theorem 3.5 and Example 4.1 in [3] with φ(p) = (Fx +
pFy)(0, 0, 0, p) = 6p2 + 6, our family is fiber topologically equivalent to

(y + t)dy2 − 2xdxdy − ydx2 = 0,

(y + t)dy2 + 2xdxdy + ydx2 = 0.

Also for families of Monge forms of type Πp
v,1, Π

p
c,2, in Table 2, it can be seen that

the families of asymptotic BDE are respectively equivalent to

dy2 + (±x2 +±y2 + t)dx2 = 0, (see [4])

dy2 + (−y + x3 + tx)dx2 = 0 (see [17]).

Bifurcation diagrams of generic 2-parameter families of IDEs have clearly been de-
picted in Tari [17, 18]. Therefore, we can deduce from those figures the bifurcation
diagrams of parabolic curves for generic 2-parameter families of parabolic Monge forms.
In the next section, we compute the bifurcation of flecnodal curve at parabolic and flat
umbilical points.

5. Bifurcation diagrams for 2-parameter families of surfaces

5.1. Flecnodal curve. A point of a surface in P3 is flecnodal if an asymptotic line at
that point has more than 3-point contact with the surface. The closure of the set of such
points is called the flecnodal curve, denoted by S, which is an important characteristic
of the surface; S lies on the hyperbolic domain and meets the parabolic curve P at
(ordinary or degenerate) cusps of Gauss Πp

c,∗. A flecnodal point is characterized as
the point at which the projection along an asymptotic line is of type the swallowtail
singularity II4 : (y, x4 + yx) or worse. From this fact, a local defining equation of S
is obtained in a very neat way [15, 9]. Suppose that the origin 0 ∈ R3 is a flecnodal
point of a surface z = f(x, y) such that the x-axis is the asymptotic line at 0. For
deforming the line, one has 2-dimensional freedom, thus the projection along the x-axis,
(x, y) 7→ (y, f(x, y)), has a 2-parameter deformation

Fv,w(x, y) = (y − vx, f(x, y)− wx).

Let λ = 0 be the equation defining the singular point set (contour generator) of Fv,w

and η be a vector field on a neighborhood of the origin in R2 which spans ker dFv,w

where λ = 0, i.e.

λ(x, y, v, w) := det dFv,w(x, y) and η(x, y, v, w) := ∂
∂x

+ v ∂
∂y
.

Then the swallowtail singularity of Fv,w, and thus the curve S, is characterized by three
equations

λ = ηλ = ηηλ = 0.

By λ = 0, w is always solved. Eliminating v by the last two equations, we obtain
an equation of variables x, y or parametrizations x = x(v), y = y(v), which defines S
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around (x, y) = (0, 0). Furthermore, there generically appear some isolated points in
the curve S at which an asymptotic line has 4-point contact with the surface, i.e. the
projection Fv,w admits the butterfly singularity II5 : (y, x

5+yx), so we call such a point
a butterfly point for short. It is defined by an additional equation ηηηλ = 0 on S.

The parabolic curve P is obtained as the locus of points where the singular point set
of the projection Fv,w is not smooth, i.e.,

λ = ∂λ
∂x

= ∂λ
∂y

= 0.

In Figures below, P is drawn in black and S is in gray.

5.2. 1-parameter bifurcations. For three classes of codimension 1 in Proposition 3.4,
we confirm bifurcations of curves P and S as depicted in [19] by direct computations
using families of Monge forms in Table 2. In [19] bifurcations of S at hyperbolic points
are also classified and positive/negative flecnodal points are considered. We do not
enter the full scope of the classification of hyperbolic points, since we focus mainly on
bifurcations at parabolic and flat umbilical points.

• (Πp
v,1(±,±)) As seen in Proposition 3.4, at a point of type Πp

v,1, non-versalA
±
3 -transition

of BDE occurs (cf. [16]). According to sign difference of coefficients in the normal form,
there are four types. Among them, there are two types so that the flecnodal curve is
created/canceled when passing through the point. Unexpectedly, the flecnodal curve
has the form of ‘figure-eight’, as mentioned in Introduction. Obviously, the Proposition
3.4 does not help anything for understanding the appearance of the figure eight curve,
because the equivalence of BDE does not preserve inflections of integral curves. Let us
confirm this fact by a direct computation using the normal form of Πp

v,1. Let

f(x, y, t) = y2 + x4 + x2y2 + tx2.

Solving equations λ = ηλ = ηηλ = 0, we have

(x, y) =
(
∓ v(2+v2)

√
−t−v2√

2(−2+v2)
√
2+v2−v4

,± (2+v2)
√
−t−v2√

2(2+v2−v4)

)
with t ≤ −v2 and |v| � 1, which parametrizes part of the flecnodal curve S sitting in
the half planes, y ≥ 0 and y ≤ 0. The parabolic curve P is given by t + (6 + t)x2 +
y2 + 6x4 − 3x2y2 = 0. As t varies, an elliptic Morse bifurcation of the parabolic curve
occurs and the created flecnodal curve has the form of figure-eight as depicted in (+,+),
Figure 4. No butterfly point appears on S, since ηηηλ 6= 0 for (x, y) near the origin.

Also for the form f(x, y, t, u) = y2 − x4 + x2y2 + tx2, it has a hyperbolic Morse
bifurcation of the parabolic curve and the figure-eight flecnodal curve also arises as
depicted in (−,+). In the other two cases, f(x, y, t, u) = y2 ± x4 − x2y2 + tx2, the
curves bifurcate as depicted in (±,−).

• (Πp
c,2) In this case, A4-transition of asymptotic BDE occurs; during this process, a

pair of cusps of Gauss (tangential points of P and S) is created/canceled. Take
f(x, y, t) = y2 + x2y + 1

4
x4 + x5 + tx3

and project it along the x-axis. Then P is a cubic curve: 2y+20x3+x2+6tx = 0, and
S is given by y + 100x4 + 10x3 + (1

2
+ 20t)x2 + 3tx+ t2 = 0.
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• (Πf
1(±)) Take

f±(x, y, t) = xy2 ± x3 + x3y + tx2.

As a test, we consider the projection along the x-axis (and y-axis). In case of f+, P is
given by 12x2 − 9x4 − 4y2 +4tx = 0, and S is given by x = 0. In case of f−, P is given
by 12x2 + 9x4 + 4y2 − 4tx = 0, and S has three branches consisting of the y-axis and
two smooth curves having an intersection point moving along the x-axis.

5.3. 2-parameter bifurcations. For each of four classes of codimension 2 in Propo-
sition 3.5, we draw a new picture of the bifurcation diagram using the family in Table
2. The bifurcation of P can be indeed read off from Figure 8, Figure 6 and Figure 4 in
Tari [17], respectively. We compute the curve S and add some new branches to Tari’s
figures.

• (Πp
v,3) Consider the family of Monge forms

f(x, y, t, u) = y2 + x5 + x3y + tx2 + ux2y,

and then we have Figure 5 below (cf. Figure 8 in [17]). The parabolic curve P is given
by the equation p(x, y, t, u) = 12xy+40x3− 9x4+4t+4uy− 4u2x2− 12ux3 = 0. When
(t, u) = (0, 0), P consists of the y-axis and the smooth curve y = −10

3
x2 + 3

4
x3; hence,

P has a node at the origin. Solving p = px = py = 0, we see that a hyperbolic Morse
bifurcation of P occurs at a point of type Πp

v,1 when the parameter comes across a

smooth curve t = 1
27
u3(10 + 3

4
u) (no.2 and 8 in Figure 5). The A4-transition at which

two cusps of Gauss are created/canceled appears along a smooth curve on ut-space, that
is the Πp

c,2-locus (no.4 and 12). On the other hand, solving equations λ = ηλ = ηηλ = 0
for y, S is expressed by two branches

y = −1
2
(u3 + 7u2x+ 20x2 + 18ux2 + 18x3 ± (u+ 3x)h(x, y, t, u))

where h =
√

−4t+ u4 + 8u3x+ (40u+ 28u2)x2 + (80 + 48u)x3 + 36x4. In particular,
the defining equation is written as y2 + 100x4 + 20x2y + 18x3y + u3y + t(u + 3x)2 +
u2(−10x3 +7xy)− 6u(5x4 − 3x2y) = 0. If (t, u) = (0, 0), S has a 5/2-cusp at the origin
which is tangent to the x-axis. By ηηηλ = 0, one can find some points of S at which
the butterfly singularity appears in the projection; such isolated butterfly points are
traced in Figure 5. Two dotted branches between no.12 and 13 indicate the bifurcation
of class Πh

4,5 : xy+x4+y5+αxy3+βx3y+xφ4 in [16, §5], where a butterfly point passes
through a double point of S, and a dotted curve between no.3 and 4 corresponds to the
class Πp

c,4 as noted in Remark 3.2, where a butterfly point passes through a degenerate
cusp of Gauss. A lengthy computation shows that the butterfly point degenerates into
the class Πh

3,5 : xy + x3 + y5 + αxy3 + xφ4 with α = 0 in [16, §4], when the parameter

(t, u) lies on a smooth curve t = 1
4
u4 + o(4); an elliptic Morse bifurcation of S appears

on one half branch (no.6), and a hyperbolic Morse bifurcation appears on the other
branch (no.10).

• (Πp
v,2(±)) Let

f(x, y, t, u) = y2 ± x4 + x2y3 + tx2 + ux2y.
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Figure 4. 1-parameter bifurcations of Πp
v,1, Π

p
c,2 and Πf

1 ([19], [16]).
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Figure 5. Bifurcation of Πp
v,3. The diagram consists of branches named

by Πp
v,1 (no.2, 8), Π

p
c,2 (no.4, 12), Π

h
3,5 (no.6, 10), Π

h
4,5 (between no.12-13)

and Πp
c,4 (between no.3-4).

In entirely the same way, we have Figures 6 and 7 (cf. Figure 6 in [17]). When (t, u) =
(0, 0), P is defined by x2± 1

6
y3+3x4y∓x2y4 = 0, and S is 16x2+9y7∓66x2y4+o(7) = 0.

No butterfly point occurs for ηηηλ 6= 0.

• (Πp
c,3(±)) Consider the family of Monge forms

f(x, y, t, u) = y2 + x2y + 1
4
x4 ± x4y + tx3 + ux4.

In entirely the same way, we have Figures 8 and 9 (cf. Figure 4 in [17]). When (t, u) =
(0, 0), P and S are y = −1

2
x2 ± 7x4 − 38x6 + o(6) and y = −1

2
x2 ± 7x4 − 138x6 + o(6),

respectively. No butterfly point occurs for ηηηλ 6= 0.

• (Πf
2(±)) This case must be new, since it is not versal as a family of BDE. Take

f(x, y, t, u) = xy2 + x4 ± y4 + tx2 + ux3.

First, consider the case (+) here (the coefficient of y4 is +1). Any tangent line is
asymptotic, so choose as a test the projection along the y-axis and its deformation:
(x, y) 7→ (x− vy, f(x, y)−wy). The result is as follows; see Figure 10 below. It is easy
to find the equation of P : p(x, y, t, u) = 6x3−y2+tx+3ux2+6ty2+18uxy2+36x2y2 = 0.
Hence, when (t, u) = (0, 0), P has an ordinary cusp at the origin. Solve p = px = py = 0,
then we have an equation, t(32t − 12u2) = 0, that defines the locus of (t, u) where P
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Figure 6. Bifurcations of Πp
v,2(+).

Figure 7. Bifurcations of Πp
v,2(−).

has a singularity at some (x, y). When one comes across the component t = 0 (no.6

and 9 in Figure 10) the bifurcation of type Πf
1 occurs, and around the curve 32t = 12u2

(no.4 and 11) the bifurcation of type Πp
v,1 appears. Solving λ = ηλ = ηηλ = 0,

x, y can be parametrized by v, and then we can draw the curve S (we remark that
v may go to ∞, that means that the asymptotic line at such a point of S is close
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Figure 8. Bifurcations of Πp
c,3(+).

Figure 9. Bifurcations of Πp
c,3(−).

to the x-axis; then it is better for analyzing S to switch to the projection along the
x-axis). In case of (t, u) = (0, 0), S has an ordinary cusp together with two smooth
components passing through the origin. The bifurcation of S occurs as follows: At no.3,
a tacnode bifurcation (self-tangency of two branches) appears (that class is denoted by
Πh

4,4 : xy + x4 ± y4 + αxy3 + βx3y in [16]). Also between no.7 and 8 (also between
no.13 and 2), two tacnode bifurcations arise successively, and from no.12 to no.13, there
appear two events of type Πp

c,2, at each of which an A4-transition appears, i.e. two cusps
of Gauss (at which P and S are tangent) are canceled. There must be two branches
between no.7-8 (also no.13-2, no.12-13) when taking general coefficients of order 5 in
the normal form f (for the above particular form, it is observed by the symmetry of
y ↔ −y that these two branches duplicate). No butterfly point occurs for ηηηλ 6= 0

near the origin. The case Πf
2(−) is slightly simpler than Πf

2(+) (Figure 11).
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