Altitude-dependent variation in biomass and wood production of subalpine Abies spectabilis forest in eastern Himalaya

TIWARI Ravi M.1,2, AKUTSU Kosuke,3 SHRESTHA Bharat B.2 and KOHYAMA Takashi S.3

1 Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810, Japan
2 Central Department of Botany, Tribhuvan University, Kirtipur, Kathmandu 44618, Nepal
3 Faculty of Environmental Earth Science, Hokkaido University, Sapporo 060-0810, Japan

Abstract
Himalayan subalpine forests with a wide altitudinal range of distribution are ideal target for quantifying the change in biomass dynamics along altitude. We estimated aboveground biomass and coarse wood production rate of subalpine Abies spectabilis forest on a north-facing slope in Langtang National Park, Nepal, over the entire altitudinal range from 3170 to 3820 m a.s.l. We established 36 plots (3251 m² in total) for closed-canopy stands, and additional sapling plots in open-canopy sites (772 m²) in October 2015. We recorded stem diameter at breast height D and top height H for all trees (H ≥ 2.0 m) and saplings (2.0 >H ≥ 0.2 m). We measured recent five-year radial growth in D for all canopy trees in the plots from stem-core samples and recorded recent three-year height growth of all saplings by annual bud scars on leader shoot. We quantified altitude-dependent change in D-H relationship, by extended allometric equation with asymptotic H. We estimated aboveground biomass (AGB) using an allometric equation between D²H and aboveground tree biomass W. For canopy trees with past D estimates in 2010, we estimated past H from D-H allometry, and past W as well. Based on the change in W, we estimated aboveground coarse wood production rate (CWP) as the annualized increment of AGB for surviving trees. Tree height H of Abies spectabilis at any given D decreased with altitude. Relative growth rate (RGR) of W decreased with W and altitude. RGR of sapling height increased with altitude for taller saplings (> 0.5 m), whereas it decreased with altitude for shorter ones. AGB of Abies trees in 36 plots was 489 Mg ha⁻¹ and CWP was 4.88 Mg ha⁻¹ year⁻¹, indicating relatively slow biomass turnover rate by tree growth (CWP/AGB) at 1% per year. AGB and CWP decreased with altitude. CWP relative to AGB also decreased with altitude. Altitude-dependent decline in canopy height, AGB and CWP/AGB suggests adaptation to ambient conditions for the maintenance of forest structure.

Key words: allometry, coarse wood production, height, stem diameter.

Introduction
In subtropical mountains, intra-annual thermal variation is small compared to those in temperate regions (Ohsawa 1990, 1993; Cogbill and White 1991). Therefore, in Himalayas, there occurs no summer-green deciduous broadleaf forest, and evergreen broadleaf forests are replaced with altitude by evergreen coniferous forests. On moist north-facing slopes, Abies spectabilis forest is superseded by deciduous Betula utilis forest near the forest line. In contrast, on the southern slopes, subalpine zone is usually dominated by Juniperus recurva, suggesting that Abies spectabilis is less tolerant to drought than Juniperus recurva. Dwarf scrub of Rhododendron spp. are dominant in alpine zone (Stainton 1972).

Coniferous forests in the high elevation are strongly influenced by climatic conditions changing with altitude (Wang et al. 2006; Dang et al. 2007; Liang et al. 2010). The climatic conditions of Himalayan subalpine forests are harsh due to low temperature, cold wind and snow deposition. Ground surface of subalpine forests receive low light resource under dense canopy cover, whereas tree density and canopy closure tend to decrease with altitude (Liu 1997). Tree architecture and height distribution of saplings in Himalayan forests are variable and change with altitude. In mountains, tree shapes quantified by tree height and stem diameter vary with altitude (Aiba and Kitayama 1999; Wang et al. 2006; Miyajima and Takahashi 2007; Liang et al. 2010). Biomass increment rate is low in higher elevation due to cool conditions (Yoda 1968; Tadaki et al. 1970).

In this study, we examined the variation in aboveground biomass and coarse wood production rate along elevational gradient in Abies spectabilis forest in eastern Himalaya. Coarse wood production rate is defined to be annual biomass growth of survived trees and biomass gain by recruited trees, and it is the part of aboveground wood production rate together with the production of high-turnover components of leaves, twigs and reproductive organs (Kira and Shidei 1967; Clark et al. 2001).

Yoda (1967, 1968) estimated biomass and net primary production rate along altitudinal gradient from tropical to subalpine forest zones in East Asian subtropical region including Nepal Himalaya and reported extremely high coverage in basal area and...
biomass storage, as compared to montane and subalpine forests in cool-temperate regions. So far, change in net production rate along elevation gradient is not yet fully demonstrated in high altitude Himalayan forests with large biomass storage. Tadaki et al. (1967, 1970) reported total biomass and primary production rate of Abies veitchii forest in the subalpine zone of Mt. Fuji, central Japan. Although there are many studies of stand-level biomass (Yoda 1968; Tadaki et al. 1970; Adhikari et al. 1995; Aiba and Kitayama 1999; Binkley et al. 2003), only a few studies mention about the change in biomass and turnover rate along altitudinal gradients in subalpine forests (Tadaki et al. 1970).

The purpose of this article is to examine the variation of Abies spectabilis forest in the Langtang National Park in tree architecture, growth rate of trees and saplings, stand-level above-ground biomass and coarse wood production rate along altitudinal gradient. This study was designed to address the following questions. (1) How does tree architecture in stem diameter-height allometry changes with altitude? (2) How is the change in aboveground biomass and coarse wood production rate with altitude in relation to tree architectural change? (3) How does regeneration from sapling pool change with altitude? To answer these questions, we developed a simple assessment procedure using radial growth data (by stem core samples) and sapling height growth (by annual bud scars) for survivors at single-time census, with an appropriate allometric equation for biomass estimation and statistical models for testing questions.

Study Area
The study was carried out in Langtang National Park, Nepal Himalaya (85°15’–86°00’E, 28°00’–28°20’N, 3100–3900 m a.s.l.) (Figure 1). Forest limit was around 3900 m a.s.l., above which Abies forest is replaced by Rhododendron scrubs. Below around 3100 m a.s.l. was covered by mixed evergreen forest dominated by Quercus semecarpifolia. Based on the data of the nearest weather station, Dhunche, at 1982 m a.s.l., the mean annual rainfall for 1999-2008 was 2038 mm, mean annual temperature was 15.5 °C with highest monthly mean temperature in July at 20.2 °C and lowest in January at 8.8 °C (Tiwari et al. 2017). Further description of the study area is in Tiwari et al. (2017).

Figure 1. Vegetation distribution and sampling plot locations in Langtang National Park, eastern Himalaya. Filled squares for forest stands established in 2008; filled circles for those in 2015; crosses (with circles) for tree and sapling plots in 2015; triangles for sapling plots in open canopy stand margins in 2015. Vegetation classification by Stainton (1972) with the satellite image from Google Map (RgoogleMaps) (http://www.jstatsoft.org/v63/i04), Esri World Imagery and SRTM 1 Arc-Second Global elevation data using ArcGIS 10.2 for Desktop.
Methods

Field census

During 1 and 13 October 2015, we established 36 plots of 10-by-10 m in slope surface area on
canopy-closed forest stands that scatter over the entire
altitudinal range of *Abies spectabilis* forest (Figure 1;
filled circles). In these plots we recorded all trees with
stem diameter at breast height, D, to be 1.0 cm or larger.
Because saplings of *Abies spectabilis* (with $D < 1$ cm
and top height $H \geq 0.20$ m) were only sparsely
distributed in closed-canopy plots and they were often
abundant in forest edges, we monitored saplings in only
four out of these 36 closed-canopy plots (circles-with-cross in Figure 1), and additionally set
nine stand-edge plots for sapling sampling (triangles in
Figure 1). Besides our 2015 census data, we also used
Abies tree records in 80 plots set in 2008 (Tiwari
et al. 2017) to predict aboveground biomass (Figure 1, filled
squares). Using average slope inclination of each plot,
we estimated horizontal area of each plot for density
calculation. For trees ($H \geq 2.0$ m), stem girth was
measured to the nearest 0.1 cm at 1.3 m above the
ground surface, from which we obtained stem diameter
at breast height, D (cm). We measured tree height with
a measurement pole for trees with
$D \geq 2.0$ cm. We measured tree height
against stem diameter D (cm). We measured tree height with
a measurement pole for trees with $H \leq 15$ m, and Vertex
IV (Haglöf Sweden AB) for those taller than 15 m. We
sampled wood cores using a core borer (Haglöf
Sweden). Using annual rings, we recorded radial
increment in the recent five years, 2010–2015 to
the nearest 0.01 mm with a digital caliper, for all canopy
trees ($H \geq 10$ m) in 36 plots (1 to 7 canopy tree(s) per
plot). For saplings, we measured their top height in 2015
and that three-years ago (in 2012), judged by scars of winter buds on the leader shoot. We used
shorter period for sapling shoot elongation than
tree-stem radial growth to avoid the influence of size
dependence for small-sized saplings, while to keep
measurement accuracy for the period longer than one
year.

Allometry between stem diameter and tree height

We employed the extended allometric equation
(Ogawa et al. 1965) to fit asymptotic tree height H
against stem diameter D (cm):

$$h = h_{max} AD^b/(AD^b + h_{max}),$$ \hspace{1cm} (1)

where h (m) is H minus 1.3 (the breast height), b
is allometric coefficient, A (cm$^{-1}$) is allometric constant,
and h_{max} (m) is asymptotic height minus 1.3 for infinite
D. To estimate three parameters of eqn (1), we took
logarithm of eqn (1) such that

$$\ln h = \ln h_{max} + \ln A + b \ln D - \ln (AD^b + h_{max}).$$ \hspace{1cm} (2)

We examined whether allometric coefficient $b = 1$ (H
is proportional to D for small trees) or $b \neq 1$, and whether
each of parameters (A, b, h_{max}) are dependent on the
altitude of plots or not. We used NLS on R (R core
team 2013) for non-linear regression of parameter
estimation (Bates and Watts 1988). To select the best
model, we compared all possible models by means of
AICc using R package MuMIn (Burnham and
Anderson 2002).

Estimation of aboveground biomass

We estimated oven-dry aboveground biomass of a
tree, W (kg), from D^2H (cm2 m) of the tree based on the
tree biomass data of *Abies spectabilis* by Yoda (1968)
taken in Tumbu District and southern foot of Mt.
Numbur, East Nepal:

$$W = \exp(-3.11) (D^2H)^{0.906}$$ \hspace{1cm} (3)

Yoda (1968) provided allometric equations that
estimate biomass of main stem, branches, and leaves
separately. However, we added all of them to estimate
aboveground tree biomass to reduce uncertainty in
biomass estimation. We summed up W for all trees
within each plot and obtained the estimate of
aboveground biomass per stand area, AGB (kg m$^{-2}$).

Estimation of biomass gain

We recorded stem radial increment from core
samples but not tree height increment. To estimate
biomass gain by tree growth, we need to estimate
height growth from stem radial growth. We developed
a novel procedure to estimate past height and height
growth by stem growth and diameter-height
relationship. As we measured five-year radial increment
of stem wood at breast height, Δr (cm), for all canopy
trees, we obtained stem diameter in 2010 to be
$D_{2010} = D_{2015} - 2\Delta r$ (cm), assuming that the bark thickness did
not change during the recent five years. Relative growth rate of stem diameter, RGR_D (year$^{-1}$), during 2010 and
2015 can be defined as

$$RGR_D = (\ln D_{2015} - \ln D_{2010})/5.$$ \hspace{1cm} (4)

To estimate the top height of a tree in 2010 (H_{2010})
from the measured height of that tree in 2015 (H_{2015}), we
employed the assumption that the D-H allometry in
2015 is also held in 2010. By differentiating the both
sides of eqn (2) with respect to time t, we have

$$\frac{dh}{dt} = \frac{[bh_{max}(AD^b + h_{max})](dD/dt)/D}{AD^b + h_{max}}$$ \hspace{1cm} (5)

or, by denoting the relative growth rate of h ($= H - 1.3$
rs as RGR_h (year$^{-1}$),

$$RGR_h/RGR_D = b h_{max}(AD^b + h_{max}).$$ \hspace{1cm} (6)

Assuming that the height h of a tree changed on the
In h/ln D slope of allometry at its diameter in 2015, D_{2015},
and that $RGR_h = (\ln h_{2015} - \ln h_{2010})/5$, we have

$$\ln h_{2015} - \ln h_{2010} = b h_{max}/(AD_{2015}^b + h_{max}).$$ \hspace{1cm} (7)

(cf. eqn (1)). Therefore, we estimated the past height,
$H_{2010} = h_{2010} + 1.3$ (m), using the equation

$$\ln h_{2010} = \ln h_{2015} - (\ln D_{2015} - \ln D_{2010}) b h_{max}/(AD_{2015}^b + h_{max}).$$ \hspace{1cm} (8)
By using eqn (3) with D_{2010} and H_{2010}, we obtained total aboveground tree biomass, W_{2010} (kg) for every canopy tree.

Tree and sapling growth dependence on altitude

We calculated RGR (year$^{-1}$) in tree biomass W by,

$$RGR_w = (\ln W_{2015} - \ln W_{2010})/5. \tag{9}$$

We examined altitude dependence of RGR$_w$ by using log-linear regression model (Chambers 1992): ln RGR$_w$ ~ alt \ast ln W, using glm of R, where ‘alt’ is the plot altitude minus 3.5 (km) as the reference midpoint of the observed altitudinal range. For saplings, we obtained relative growth rate of top height from 3-year elongation record as

$$RGR_h = (\ln H_{2015} - \ln H_{2012})/3, \tag{10}$$

and examined RGR$_h$ dependence on sapling height and altitude by using the model: ln RGR$_h$ ~ alt \ast ln H_{2015}. We used gamma distribution for RGR error distributions. In best models, size and altitude dependence was judged using AICc.

Estimation of coarse wood production rate

Increment rate of aboveground biomass for survivors (year$^{-1}$), sometimes called ‘coarse wood production rate’ (CWP) (Malhi et al. 2004), is obtained to be the sum of biomass increment of all stems survived during the census period standardized by the period length and target plot area. The coarse wood production rate plus the production rate of short-lived components (foliage leaves, twigs and reproductive organs) gives an estimate of aboveground net primary production rate (ANPP); CWP contributes to roughly 40% of ANPP (e.g. Malhi et al. 2004; Takyu et al. 2005).

We estimated annual rate of tree biomass increment, based on canopy-tree biomass W in 2010 and 2015. We employed the procedure of estimating annual increment rate from longer census interval by Sheil (1999), which is originally proposed for estimating per-capita recruitment rate of population size. Let W_t be total aboveground biomass of a given tree at year t. Annual time-step approximation of tree biomass increment can be

$$1 - (\delta)W_{t+1} = W_t, \tag{11}$$

where δ (year$^{-1}$) is specific annual growth rate based on the final tree mass at $t+1$ (Sheil 1999). To solve equation (11) over the period 2010–2015,

$$\delta = 1 - (W_{2010}/W_{2015})^{1/5}, \tag{12}$$

and annual rate of aboveground coarse wood production of the tree is δW_{2015} (kg year$^{-1}$). We calculated δW_{2015} for every canopy tree, and obtained the plot-level coarse wood production rate, CWP (kg m$^{-2}$ year$^{-1}$), by summing up each canopy tree in each plot with plot-level aboveground biomass, AGB, in 2015 (kg m$^{-2}$) for all stems including those without radial-growth records:

$$CWP = AGB_{2015} \Sigma(\delta W_{2015})/\Sigma W_{2015}, \tag{13}$$

Where CWP is defined for the period 2014–2015. Because there is difference in δ among trees within a plot, the present tree-based estimation of annual CWP is recommended. Otherwise if we sum up biomass at two times first and employ eqn (11) for total biomass, we have underestimation of CWP, as is known for cases of demographic rate estimation in heterogeneous populations (Sheil and May 1996).

We examined how CWP was related to AGB across plots by the model: ln CWP = alt \ast ln AGB with glm on R, as tree/sapling growth analysis.

We illustrated the change in AGB and CWP with altitude, by dividing 36 plots into six altitude classes, for the ease of capturing average aggregative pattern (otherwise, unit plot size of 10-by-10 m with 1 to 7 canopy trees was small). We also estimated AGB for 80 plots set in 2008 (Tiwari et al. 2017) using the altitude-dependent D-H allometry (eqn (1)) and D^2-H-W allometry (eqn (3)). For them, we have divided 80 plots into 10 altitude classes to illustrate altitudinal change in basal area and AGB in those plots. We defined biomass turnover rate to be CWP/AGB (year$^{-1}$). Meantime, we illustrate altitude dependence of plot basal area and aboveground biomass for census plots in 2008 and in 2015 without aggregating plots in altitude classes.

Results

Alloymetry between stem diameter and tree height

Based on the allometric equation between stem diameter and tree height by eqn (2), the best allometric model was that $b \neq 1$ and that A, b and h_{max} were all dependent on altitude of the plot. Estimated parameters are

$$b = 1.22 + 1.83 \text{alt}, \quad A = \exp(-0.75 - 4.95 \text{alt}), \quad h_{max} = \exp(3.95 - 3.23 \text{alt}). \tag{14}$$

Tree height of *Abies spectabilis* at any given stem diameter decreased with altitude (Figure 2).

Growth rate dependence on tree size and altitude

Relative biomass growth rate, RGR$_w$, showed dependence on altitude and biomass of canopy trees. RGR$_w$ decreased with increase in altitude (Figure 3):

$$\ln RGR_w = -1.34 + 2.73 \text{alt} - 0.481 \ln W - 0.469 \text{alt} (\ln W). \tag{15}$$

Relative height growth rate of saplings was dependent on height and altitude as

$$\ln RGR_h = 0.103 - 3.16 \text{alt} - 0.524 \ln H + 0.788 \text{alt} (\ln H). \tag{16}$$

For taller saplings ($H$$>$ca. 50 cm), RGR$_h$ increased with altitude, whereas for shorter saplings, those decreased with altitude (Figure 4).
Figure 2. Tree height versus stem diameter relationship for *Abies spectabilis* trees in forest stand plots. Extended allometric equations with asymptotic height (eqn (2)) with altitude-dependent allometric parameters (eqn (14)). Trees are classified into three altitude classes of plots (by gray scales).

Figure 3. Relative biomass growth rate of trees over aboveground biomass of canopy trees of *Abies spectabilis*. Trees are classified into three altitude classes of plots (by gray scales).
Altitude dependence of biomass and wood production

The basal area of trees for plots set in 2015 was 97.6 cm² m⁻². The basal area is fairly high as compared to those in other subalpine forests in Himalayas (Table 1). The tree basal area for plots in 2008, 74.9 cm² m⁻². Tree basal area for 2008 plots showed decrease with altitude (ln BA₀₈ = 4.29 – 0.701 alt), whereas basal area for 2015 plots showed no clear altitude dependence (ln BA₁₅ = 4.58 + 0.00029 alt) (Figure 5). Up to mid-elevation (<3500 m), basal area did not show clear change with altitude, while above 3500 m a.s.l., it showed sharp decline (Figure 5).

The total aboveground biomass, AGB, estimated for the year 2015 was 48.9 kg m⁻² (= 489 Mg ha⁻¹) as the average of 36 plots. AGB showed sharp decline in higher elevation with both 2008 and 2015 data (log AGB₀₈ = 3.57 – 1.37 alt; log AGB₁₅ = 3.88 – 0.48 alt) (Figure 5). In contrast, the aboveground biomass estimates for plots in 2008 was 37.1 kg m⁻² as the average of 80 plots. Relatively higher estimates of both basal area and aboveground biomass for 2015 plots can be caused by the fact that we established plots in 2015 in well closed-canopy stands with larger biomass, meantime plots in 2008 were set in quasi-even spatial intervals without sampling bias towards closed stands.

Estimated annual rate of coarse wood production (CWP) for 2014–2015 was 0.488 kg m⁻² year⁻¹ (= 4.88 Mg ha⁻¹ year⁻¹) as the average of 36 plots. The coarse wood production rate varied from 0.228 to 1.41 kg m⁻² year⁻¹.
Figure 5. Altitude dependence of stand basal area and aboveground biomass of *Abies spectabilis* forest. Gray circles and bars for 80 forest plots in 2008 divided into 10 altitude groups (8 plots each); black circles and bars for 36 plots in 2015 divided into 6 groups (6 plots each). Dashed lines (3330 m and 3520 m) show boundaries of three altitude classes indicated in Figs. 2-4, 6 and 7.

Figure 6. Distribution of biomass turnover rate (% year\(^{-1}\)), i.e. coarse wood production rate divided by aboveground biomass of *Abies spectabilis* in each of 36 plots set in 2015. Plots are classified into three altitude classes (by gray scales).

Figure 7. Coarse wood production rate against aboveground biomass in *Abies spectabilis* forest plots in 2015, and of which dependence on altitude. Plots are classified into three altitude classes (by gray scales).
Biomass turnover rate, defined here by CWP/AGB, varied, and was 1.1% year\(^{-1}\) in average (Figure 6). Biomass turnover rate decreased with altitude (Figure 7) as

\[
\ln \text{CWP} = -2.51 + 3.44 \text{ alt} + 0.450 \ln \text{AGB} - 1.09 \text{alt (ln AGB)}. \tag{17}
\]

Discussion

The present study estimated aboveground biomass of 48.9 kg m\(^{-2}\), a higher end of those reported across subalpine forests in the Northern Hemisphere (Table 1). Adhikari et al. (1995) reported high aboveground biomass > 40 kg m\(^{-2}\) in a high-altitude mixed *Abies pindrow* forest in central Indian Himalaya. These are similar to the present study. Yoda (1968) reported aboveground biomass around 40 kg m\(^{-2}\) for *Abies spectabilis* forests in eastern Nepal. These are the largest biomass records as compared with other subalpine *Abies* forests (Table 1). It should be noted that we set plots with small size of 10 by 10 m in fully closed stands, which may cause overestimation of biomass storage. For 80 plots in 2008 census, estimated biomass was 37 kg m\(^{-2}\), which is still comparable to the upper end of records (Table 1).

Our estimate of aboveground coarse wood production of about 0.5 kg m\(^{-2}\) year\(^{-1}\) is relatively low for the aboveground biomass of 50 kg m\(^{-2}\) (cf. Kimura 1963; Tadaki et al. 1970). Low rates of net primary production and coarse wood production relative to aboveground biomass were also recorded by Grier et al. (1981) in a mature *Abies* forest of Rocky Mountains. Meantime, higher coarse wood production rate was reported by Tadaki et al. (1970) in subalpine *Abies veitchii* forests on Mount Fuji, central Japan. It would reflect that the stage of stand maturation in stand development is associated with the high biomass storage and slow turnover, due to the decline of assimilative leaf mass relative to supportive woody mass.

The allometry between tree height and stem diameter, and biomass turnover of subalpine forests of Himalayas are expected to be influenced by environmental conditions (Yoda 1967,1968; Aiba and Kitayama 1999; Wang et al. 2006; Liang et al. 2010). The tree architecture and growth rates are variable because in higher elevation trees are mostly damaged due to environmental factors (Miyajima and Takahashi 2007). It is therefore, in the present study, we examined how *Abies spectabilis* forest on a north-facing mountain slope in the Langtang National Park showed variation in tree architecture, growth rate of trees and saplings, stand-level above-ground biomass and coarse wood production rate along altitudinal gradient. We found that the height of canopy trees decreased with altitude, in accordance with earlier studies (Yoda 1968; Wang et al. 2006; Miyajima and Takahashi 2007; Liang et. al. 2010), and so did the aboveground biomass (Yoda 1968) and coarse wood production rate.

Altitude is linked with temperature and precipitation: temperature decreases, and precipitation increases with altitude in subalpine zone (Cierjacks et al. 2008). There are several studies targeting on subalpine forests, which show growth of trees was mainly reduced by low temperature in high altitude (Wang et al. 2005; Liang et al. 2010; Zhang et al. 2010). *Abies spectabilis* population in the studied forest showed altitude dependence, where trees became less slender with altitude, which is in accordance with studies elsewhere (Yoda 1968; Aiba and Kitayama 1999; Wang et al. 2006; Miyajima and Takahashi 2007; Takahashi et al. 2012). Miyajima and Takahashi (2007) reported that tree growth rate was slower at higher elevation due to reduction in air temperature and increasing wind speed in a temperate forest in central Japan.

Taking into account that trees were shorter at the same stem diameter in higher elevation (Figure 2), growth rate in height and that in tree biomass are decreased with elevation. Takahashi et al. (2012) found increased growth rates for *Abies mariesii* in higher elevation, in a subalpine forest in central Japan. We found that relative growth rate of tree aboveground biomass, RGR\(_{W}\), decreased with tree biomass W, and the degree of W-dependent decrease of RGR\(_{W}\) was larger in higher altitude (Figure 3). This shows that growth rate of *Abies spectabilis* in high altitude subalpine forests may be not only affected by reduction in temperature but also by precipitation, mechanical damage due to strong wind and snow deposition. Thus, tall trees may fail gaining their height at higher elevation, which results in decreasing canopy height with altitude (Figure 2).

Generally, plants grow slower at higher altitude since the environmental stress is severer at high altitude (Jobbagy and Jackson 2000). However, the growth rate in top height H of saplings of *A. spectabilis* did not simply decrease with altitude: relative growth rate in H for tall saplings increased with altitude, while that for short saplings decreased with altitude, at a given H (Figure 4). The height-dependent shift of growth response to altitude suggests that (1) depression in height gain as expected from the stem-shape change with altitude for trees is also the case for tall saplings, and meantime (2) relatively less crowded conditions in high-altitude stands may be favorable for height gain of tall saplings rather than in dense stands at lower elevation (Cunningham et al. 2006). Tiwari et al. (2017) showed that seedling/sapling density of *Abies spectabilis* in the same forest increased in higher elevation. Less shaded, under-canopy shelter of high-altitude stands would provide favorable conditions for *Abies* regeneration.

The basal area and aboveground biomass showed decreasing pattern from lower to higher altitude, which is comparable with Yoda (1968) who examined the biomass change from around 2000 to 4000 m in the eastern Nepalese Himalayas and found the maximum biomass at the lower boundary of subalpine forest at 2900–3100 m and it decreased towards higher altitude. The coarse wood production rate (CWP) in our studied plots decreased towards higher elevation. At the same aboveground biomass, CWP was smaller in higher elevation (Figure 7), suggesting slower biomass
turnover rate at higher elevation.

We have recorded low biomass turnover rate (1.1%, year\(^{-1}\)) in subalpine \textit{A. spectabilis} forest (Figure 6), as compared to other studies on subalpine forests (Tadaki \textit{et al.} 1970; Binkley \textit{et al.} 2003). Biomass turnover rate of any forested ecosystem is regulated by environmental conditions and developmental stages of forest stands. Subalpine coniferous forests experience short growing season due to low temperature (Wang \textit{et al.} 2006; Liang \textit{et al.} 2010; Zhang \textit{et al.} 2010). Reduced temperature at higher altitude can primarily be responsible to slow biomass turnover rate.

Subalpine \textit{Abies} forest in high elevation Himalaya is strongly influenced by altitude in its structure and biomass storage. The present results indicate that \textit{Abies spectabilis} forest has high coverage in stand basal area and aboveground biomass, even though studied plots are taken in closed-canopy stands, as compared to other subalpine forest ecosystems. Stem architecture showed clear change with altitude and so did above-ground biomass and its turnover rate. Aboveground biomass, particularly in higher altitude, is maintained by slow turnover rate relative to the usual forest ecosystems, which would be a key property of maintaining forest ecosystem near forest line in the highest elevation worldwide.

Acknowledgments
We thank Bishnu Acharya for assisting in fieldwork, Lea Vegg for preparing vegetation map, and Junichi Fujunuma for helping data analysis. We express our thanks to the Department of National Parks and Wildlife Conservations (DNPWC) and Langtang National Park, Rasuwa, for giving us permissions to undertake this study.

References

Ogawa, H., Yoda, K., Ogino, K. and Kira, T. (1965) Comparative ecological studies on three main types

