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Abstract

Histopathology is a standard means to diagnose the disease states of cells or tissues from

their morphological features, but it requires the expertise of histopathologists and is,

therefore, susceptible to human bias. Raman micro-spectroscopy can provide additional

biochemical information that is not available by morphological examination, and has

a large potential to assist histological inspection and to benefit diagnosis of disease as

objectively as possible in fluorescent label-free manner. Detailed analysis of Raman mi-

croscopic data is essential to detect the spectral changes originating from the underlying

biochemical changes in cells or tissues due to the progression of disease.

This thesis is concerned with the development of diagnostic tools by integrating Ra-

man microscopic imaging with methods of machine learning and information theory,

and the analysis of Raman hyper-spectral images of rat liver tissues comprising a di-

etary model of non-alcoholic fatty liver disease (NAFLD), with each liver tissue having

been histopathologically diagnosed as normal, non-alcoholic fatty liver (NAFL), or non-

alcoholic steatohepatitis (NASH).

In the first study, dimension reduction (manifold learning) and ensemble-learning-

based random forest classification are performed on the Raman spectra obtained from

the regular spatial grid averaging of Raman images for predicting different states (dietary

and histological). I identify a set of important Raman bands in differentiating the Raman

spectra arising from different states of tissues. Furthermore, I find that NAFL state is

distinguished into two pahses, namely, ‘slowly progressive NAFL’ (NAFL-α) and ‘rapidly

progressive NAFL’ (NAFL-β) in terms of Raman imaging, and main Raman shifts to

separate these two NAFL models are identified. This enhances the diagnostic capabilities

to distinguish the states of tissues at early stages of the disease.

In the second study, using the dietary model of NAFLD in rats, I apply machine learn-

ing and information theory to evaluate cellular-level information in liver tissue samples.

i



ii

The method first increases the signal-to-noise ratio while maintaining spatial and spectral

structures of Raman images as much as possible through extension of the simple linear

iterative clustering superpixel algorithm developed in the area of image analysis. Second,

using the unsupervised machine learning with rate distortion theory and the Poisson error

arising from photon counting, it identifies a set of characteristic spectra having distinct

Raman information across the tissues. I discover diverse chemical environments in the

liver tissues, allowing for the quantification of representative biochemical components

such as vitamin A, lipids, and cholesterols which can be very important insights into

the disease states of cells or tissues. Third, armed with microscopic information about

the biochemical composition of the liver tissues, I group tissues having similar chemical

composition using agglomerative hierarchical clustering, providing a novel “descriptor”

enabling us to infer tissue states, contributing valuable information to histological inspec-

tion. Excessive lipid deposition with the appearance of cholesterol signatures indicates

the severity of the disease state of the NAFLD tissues.

Raman microscopy coupled with the proposed techniques will offer new clinical tools

that will aid pathologists in more precise NAFLD diagnosis with molecular information

about the liver tissue, and enable us to predict the progression of disease at some early

stages where any morphological feature of diseases does not appear yet.

Key words: Raman Hyper-Spectral Imaging, Non-Alcoholic Fatty Liver Disease, Manifold

Learning, Machine Learning, Superpixel Segmentation, Rate-Distortion Theory.
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Chapter 1

Introduction

This thesis aims to develop analytical methods using the combination of techniques from

machine learning (ML) and information theory for the quantitative analysis, and in-

terpretation of Raman micro-spectroscopic image data of biological samples to enhance

diagnostic reliability of histopathology as objectively as possible. As an illustrative ve-

hichle, we apply our methods to the Raman hypersepctral images of non-alcoholic fatty

liver disease (NAFLD) [1,2] in rat livers.

NAFLD is a common liver condition that is associated with large lipid accumulation

inside hepatic tissue [3,4] with negligible evidences of alcohol consumption, and affects

20 − 30% of the total population worldwide [3]. NAFLD often co-occurs with various

metabolic abnormalities, such as diabetes, obesity, and dyslipidemia [2,5], and is divided

into two subcategories: non-alcoholic fatty liver (NAFL) and non-alcoholic steatohepati-

tis (NASH) [6]. NAFL is histopathologically indicated by the presence of lipid droplets

in hepatocytes without ballooning or fibrosis. In NASH, the presence of abundant hep-

atocellular lipid is accompanied by the appearance of inflammatory cells and hepatocyte

ballooning as the manifestation of liver injury; NASH often co-occurs with fibrosis [7].

While NAFL typically has stable and benign prognosis, NASH tends to have a poor prog-

nosis with increased risk of progression to liver cirrhosis or even hepatocellular carcinoma

[8]. Recent evidence has shown that the natural course of NAFLD is more variable than

previously expected. NAFL is a heterogeneous condition, partly due to the accumulation

of different types of lipids with different levels of cytotoxicity, and has the potential to

rapidly progress to NASH with advanced fibrosis and liver cirrhosis [9–12].

Diagnosis of various disease including NAFLD/NASH is primarily dependent on mor-

1



2 CHAPTER 1. INTRODUCTION

phological analysis of tissues by pathologists. Histopathologic diagnosis requires the ex-

pertise of pathologists to inspect morphological features of a biopsy or surgical specimen,

and can be affected by inter- and intra-observer variability resulting diagnostic variability

[13–16]. Recently, several criteria for the histologic grading/staging of NAFLD have been

developed, and are clinically useful [1,17–19]. However, uncertainty remains concerning

histopathology to fully predict future fibrosis (which is regarded to be a determining fac-

tor in the prognosis of NAFLD [20]) in NAFL, and to find rapid progressors in NAFL

patients [9,11,12]. Thus there is a strong need to develop diagnostic tools that assist

the pathologists to diagnose the disease (e.g., NAFLD) more reliably reducing the hu-

man bias, and provide objectivity and precision through recognition of the underlying

biochemical compositions of the samples.

Raman spectroscopy, widely used for label-free, direct identification of molecules in

biological specimens [21–27], is an emerging tool having the potential to provide biomolec-

ular fingerprint information for clinical diagnosis of various human diseases [28–31], and to

quantify the underlying molecular contents in the liver tissues. As Raman spectroscopic

measurement is a non-destructive method and does not necessitate any pretreatment,

fresh pathological specimens can be reused after the measurement for the subsequent

histological assessments [32]. Raman hyper-spectral imaging techniques (combining spec-

troscopy and imaging [33]) take into account structural and chemical information about

not only specific molecules but also many molecules including small molecules to which

fluorescent dye labelling is difficult. Differences among the states of cells or tissues, e.g.,

diseased or non-diseased, are expected to lead to significant Raman spectral differences.

Recent research indicates that Raman scattering light measurement can be applied for

diagnosis of various diseases [28,29]. For instance, Raman spectroscopy techniques have

been used to diagnose cervical cancer [34], skin cancer [35], and rapid fiber-optic Raman

spectroscopy have been used for detection of gastric intestinal disorder [36]. Furthermore,

these techniques have also been used to identify cell states, and to distinguish various

cell lines such as cancer or non-cancer [28,37–39], based on Raman spectral changes

originated from underlying biochemical changes in cells due to disease. Raman micro-

spectroscopy produces spatial distributions of biomolecules, e.g., cytochrome, lipids and

proteins, which can be very important insights into the disease states of cells or tissues.

Raman spectroscopy may provide a means to extract biochemical information to aid
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in predicting whether different states of NAFL will advance to NASH with fibrosis. Sev-

eral recent studies have also used Raman-spectroscopy-based techniques to investigate

NAFL and NASH. Pathological changes in the biochemical profiles of vitamin A and

lipids were investigated, and found to be potential biomarkers in liver tissue that provide

information concerning states of NAFLD [3,40,41]. More recently, chemometric analysis

of Raman spectra that were averaged across liver tissues was used to assess the diagnostic

applicability of Raman spectroscopy in the context of NAFLD [4]. Although these studies

are successful in their application of Raman spectroscopy to liver tissues, information is

only available on an averaged spatial scale. Considering that the histopathologist exam-

ines the tissue on a microscopic level, it is advantageous if the Raman spectra provide

information on smaller spatial scales. This is problematic, however, in that Raman scat-

tering is very weak, in that only about 1 in every 106−108 incident photons are scattered

inelastically [42], and are contaminated with detection noise, autofluorescence, etc. This

causes spectral differences from tissues in different states of NAFLD to be too subtle

for conventional analytical methods. It is therefore important to continue to develop

tools to efficiently analyze the Raman spectra at smaller spatial scales that will aid in

histopathological diagnosis.

Recently, various supervised learning techniques from the field of machine learning

have been applied for the quantitative analysis of Raman spectroscopic data to diagnose

and classify normal and malignant cells/tissues. For example, artificial neural networks

(ANN) have been used for the detection of brain cancer [43], support vector machines

(SVM) have been used for the screening of prostate cancer [44], for lymph node diag-

nostics [45], to analyze dengue infection [46], and to estimate the macrophage activation

state at single cell level [47]. More recently, Edgar et al. [48] used ANN and SVM with

Raman spectroscopy to classify diabetic and healthy patients, and Taylor, J. N. et al.

[49] employed unsupervised machine learning to investigate follicular thyroid carcinoma

(FTC-133) cells, a well-know thyroid cancer. Most of these machine learning methods

are used after projecting Raman spectra into low-dimensional space using principal com-

ponent analysis or any other dimensional reduction techniques. Thus, the major aim of

the present study is to develop theoretical tools to differentiate and predict the stage

of NAFLD in rats by referencing molecular fingerprints buried in the Raman signals.

Here, we demonstrate two strategies to analyze Raman hyperspectral images of dietary
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models of NAFLD as a means to investigate the different states of NAFLD that may aid

pathologists in more precise diagnosis.

In the first strategy, we employ dimensional reduction/manifold learning (ISOMAP)

[50] and ensemble-learning-based classification (random forest) [51,52] on the Raman

spectra obtained from the regular spatial grid averaging of Raman images for predicting

different states (dietary/ histological) of NAFLD. Dimensional reduction enables us to

explore the underlying structures of high-dimensional data in far fewer dimensions, and to

visualize the data in terms of different groups and subgroups that correspond to different

tissue states. Random forest classification predicts the disease state of a tissue sample

based on training from histopathological assignments, and provides the most relevant set

of spectral features corresponding to NAFLD state differentiation. We show that the

Raman hyper-spectral data can be used to aid in classification of the histopathological

states (judged by tests of fat deposition, ballooning degeneration, inflammation, and

fibrosis in tissues) of liver tissue as normal, NAFL, or NASH, and also to uncover larger

variability of spectral features in NAFL, reflecting larger variability in the corresponding

chemical environment as compared to normal tissue and NASH. Under the assumption

that diet is a determining factor for prognosis in the models used, and using spectral

distance relationships and dimensional reduction, the rats having NAFL histology can be

further classified into two subgroups. One indicates cases of NAFL that are not expected

to rapidly progress to NASH, while the other indicates those cases in which NASH may

be expected to rapidly develop. Random forest classification also extracts the relatively

important Raman shifts associated with this distinction, many of which are associated

with increased deposition of important compounds associated with NASH, such as fatty

acids and cholesterol.

In the second approach, we apply machine learning and information theory for Raman

microscopic histology of NAFLD with increased signal-to-noise ratio of Raman images

via superpixel [53] transformation. We use Raman micro-spectroscopic images of dietary

models of NAFLD as a means to reveal the variation in chemical components at cellular

spatial resolution. Here, we develop a diagnostic tool using Raman micro-spectroscopy

coupled with unsupervised machine learning techniques to produce distributions of vary-

ing biochemical content across the tissue samples with at spatial resolution (∼ 200 µm2)

that is on the order of single cells. First, as a major preprocessing scheme, we extend the
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idea of superpixel segmentation [53,54], namely, simple linear iterative clustering (SLIC),

a perceptual grouping of pixels having similar characteristics [55], to accommodate the

multi-channel measurements of Raman hyperspectral imaging, generating superpixels

that increase signal-to-noise ratio in comparison to the single-pixel spectra, and maintain

the spatial structure of the Raman images as much as possible. Next, we employ rate-

distortion theory, an unsupervised clustering method based in information theory [56,57],

which reveals the groups (clusters) of spectra having similar Raman information across all

the tissues. Using the Poisson error arising from photon counting as a guide, we identify

a minimal number of clusters that represent regions of the tissues having similar molec-

ular environment. We examine the distributions of those clusters across the tissues, and

assess how they capture the underlying chemical environment corresponding to different

dietary models or NAFLD states, as an aid in understanding the development of NAFLD.

Last, we classify the different groups of the tissues using the information obtained from

the cluster populations with agglomerative hierarchical clustering (AHC), allowing us

to compare groupings of tissues to histopathological NAFLD states and dietary models.

This provides a novel “descriptor” enabling us to infer tissue states, contributing valuable

information to histological inspection. Through this analysis of cellular level molecular

variation, we obtain a detailed representation of the diverse chemical environments across

the liver tissues, and discover that the groupings are most representative of dietary mod-

els. This suggests our approach may serve as an aid to pathologists in more precise

NAFLD diagnoses by providing detailed molecular information about the liver tissue at

a cellular spatial level.

An outline of the thesis is as follows: Chapter 2 briefly explains the overview of Ra-

man micro-spectrscopic imaging and non-alcoholic fatty liver disease. In chapter 3, after

short description on the experimental system and Raman microscopic data along with

histological result, we focus on the preprocessing of Raman image data. Then we explore

manifold learning, and ensemble-learning-based classification and feature selection tech-

niques. Finally, we discuss our results based on these techniques. Chapter 4 is concerned

with the Raman microscopic histology of NAFLD. First, the extended simple linear it-

erative clustering (SLIC) is explained to segment Raman hyperspectral images. Then,

we describe the clustering algorithm based on the rate determining theory (RDT), and

determine the most appropriate number of clusters of spectra by considering the Pois-
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son error (shot noise) originating from the Raman scattering and background photons.

The agglomerative hierarchical clustering (AHC) is introduced for the classification of

the state of tissues using the information obtained from the cluster populations. Based

on these techniques, we discuss our obtained results and compare with the histological

results. Chapter 5 sketches the summary and outlook of this work.



Chapter 2

Raman Microspectroscopy and

Non-Alcoholic Fatty Liver Disease:

Overview

Introduction

This chapter provides the background of Raman microspectropcopy and the overview of

non-alcoholic fatty liver disease.

2.1 Raman Spectroscopy

Raman spectroscopy is an optical technique based on the phenomenon of inelastic scat-

tering of laser light during its interaction with molecules, where emitted photon leaves

molecules with an altered energy to the incident photon.

2.1.1 Raman Scattering of Light (Raman Effect)

When monochromatic (laser) light is incident upon a substance, the incident photons on

the molecules of the substance can undergo two types of scattering: elastic (Rayleigh)

scattering and inelastic (Raman) scattering. The molecule gains energy during the inter-

action with an incident photon, and thus it is excited to a vibrational energy state before

a photon is emitted from this molecule. From here, there are three different possibili-

ties of this excited molecule in terms of energy levels which can be explained using the

7
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Jablonski energy diagram (Fig. 2.1) [58,59].

– In the first and most common case, the excited molecule elastically returns back

to the ground state emitting a photon in any direction (scattering) with the same

energy as the incident photon, and this process is called Rayleigh scattering. Here,

the emitted photon has the same energy as the light source (incident photon) which

can be expressed as E = hν, where ν is the frequency of the incident photon and h

is the Planck’s constant. In this case, the emitted photon has the same wavelength

as incident photon.

– Second, the excited molecule drops down to the vibrational state (real photon state)

from the virtual state releasing a photon with less energy (therefore longer wave-

length) than the incident photon; this process is known as Stokes Raman scattering.

Here, the energy of the scattered photon is equal to hν − ∆E, where ∆E is the

energy difference (loss of energy) between incident and emitted photon.

– In the third case, the incident photon interacts with a molecule which is already in

a vibrational energy state instead of ground state and raised the molecule to the

virtual state. The molecule returns back to the ground state emitting a scattered

photon having more energy (therefore shorter wavelength) than the incident photon;

this process is known as anti-Stokes Raman scattering [60]. Here the increased

energy of the scattered photon is equal to hν + ∆E.

Only a small part of incident photons, about 1 in every 106− 108 is scattered inelasti-

cally. Since at room temperature, most molecules stay at the ground energy state, more

photons undergo Stokes Raman scattering than anti-Stokes Raman scattering [60].

The inelastic scattering of light was first predicted theoretically by Adolf G. Smekel

in 1923 [61]. Raman effect was first observed in liquid experimentally by professor C. V.

Raman and K. S. Krishnan in 1928, and independently by G. Landsberg and Mandel-

staron [62,63], and C. V. Raman received the Noble prize in Physics for the discovery of

this Raman effect in 1930 [62,64].
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Figure 2.1: Jablonski energy diagram explaining three different types of photon scattering.

The frequency difference between incident photon and Raman scattered photon is

known as Raman shift, and is defined by

∆(cm−1) = 10−7
( 1

λi
− 1

λs

)
, (2.1)

where ∆ is the Raman shift or wavenumber (cm−1), (change in energy), λi is the wavenum-

ber (nm) of the incident photon and λs is the scattered photon. The Raman shift is

independent on the wavelength of the incident radiation, but Raman scattering depends

on incident wavelength (excitation source) [65]. A plot of the intensity of scattered light

versus Raman shift is known as Raman spectrum.

Raman spectroscopy uses Raman spectrometer which can detect three forms of scat-

tering and filter out the Rayleigh, Stokes or anti-Stokes scattering. The sample is irradi-

ated by a laser and the Raman scattering light is detected by the Raman spectrometer,

and a Raman spectrum is produced for the molecule in the samples using the energy

differences from initial to final state [66,67].

Raman microspectroscopy is the combination of Raman spectrometer and a standard

optical microscope [60,68]. Raman spectroscopy combined with high resolution confocal

microscopy can be used to image a biological samples, and to microscopic analysis. It uses
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only light to probe a sample without the need of any foreign agent, and allows imaging of

the samples which contain spatial and spectral information of molecular vibrations that

are unique to specific cellular components [25].

Due to high resolution (< 1µm), Raman microspectroscopy provides the informa-

tion at cellular and sub-cellular levels producing the images of cellular organelles such

as nucleus, mitochondria, cytoplasm, lipid droplets. Raman microscopy also provides

hyperspectral images of samples where every pixel across the sample provides a Raman

spectrum, and therefore biological constituents and their spatial distributions along with

spectral information can be identified which may be useful to detect the disease state of

biological sample as diagnostic tools.

Figure 2.2: Raman hyperspectral imaging.

2.2 Non-Alcoholic Fatty Liver Disease

Non-alcoholic fatty liver disease (NAFLD) is a type of fatty liver disease having abnormal

lipid accumulation in the liver of more than 5% that is not associated to significant alcohol

consumption. NAFLD, a major public health problem, is one of the most common liver

disease that affects men, women and children (around 20 − 30% of the total population
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worldwide [3]), and is identified by large lipid accumulation inside hepatic tissue [3], [4].

There are two main types of NAFLD, ‘non-alcoholic fatty liver (NAFL)’ in which there is

lipid accumulation (simple steatosis) in the liver without liver cell damage (hepatocellular

ballooning) nor fibrosis [69], and ‘non-alcoholic steatohepatitis (NASH)’ where there is

lipid accumulation in the liver as well as inflammation and hepatocyte damage with or

without fibrosis [6,69]. Steatosis is regarded as the benign condition, while NASH may

lead to fibrosis, cirrhosis and/or hepatocellular carcinoma (HCC) [69,70].

Figure 2.3: Schematic representation of the various stages of nonalcoholic fatty liver disease
(NAFLD). The percentages below the arrows indicate the portions of patients progressing from
one stage to the next stage. NAFLD: Non-alcoholic fatty liver disease, NASH: nonalcoholic
steatohepatitis, HCC: hepatocellular carcinoma. This figure is adopted from [71].

As shown in Fig. 2.3, about 15–20% of NAFLD patients progress to NASH [71,72] and

30–40% of NASH patients progress to fibrosis [71]. About 15–20% of the patients having

fibrosis may develop to advanced fibrosis or cirrhosis [71], and 2–13% of NASH patients

having cirrhosis may lead to HCC [71]. Furthermore, NAFLD is remarkably associated

with the people having type 2 diabetes, high blood pressure (cardiovascular disease),

high levels of cholesterol and triglycerides, and specific metabolic abnormality including

metabolic syndrome [73,74]. Thus, it is crucial important to diagnose the early stage of

NAFLD, specifically to predict the early stage of NASH to improve the prevention of

NAFLD from its severe stage.
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Chapter 3

Machine Learning based Analysis of

Raman Images to Evaluate

Non-Alcoholic Fatty Liver Disease

In this chapter, after short description on the experimental system, Raman measurement1,

and Raman microscopic data along with histological results, we focus on the preprocessing

of Raman image data. Then, we explore manifold learning, and ensemble-learning-based

classification and feature selection techniques. Finally, we discuss our results based on

these techniques.

3.1 Materials and Methods

Histological and Raman microscopic analysis were performed for three groups of rats fed

with either a standard diet (SD), a high-fat diet (HFD), or a high-fat high-cholesterol

diet (HFHC). A total of 48 liver tissues were collected after 2, 4, 8, and 16 weeks from

16(= 4× 4) rats fed with each diet for histological and Raman spectroscopic analyses.

1The experiments were performed by professors Hideo Tanaka and Yoshinori Harada’s group at the
Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine, Kyoto, Japan.
Histopathological diagnosis was performed by professors Yoshinori Harada, and Akira Okajima, Depart-
ment of Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan.

13
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3.1.1 Animal Model and Sample Preparation

Adult Slc: Sprague-Dawley male rats (Shimizu Laboratory Supplies, Japan) at 8 weeks

old were maintained under 12-hour light/dark cycles with ad libitum access to food and

water. Rats were treated with standard diet (SD), high fat diet (HFD, 60% lard), or high

fat, high cholesterol (HFHC) diet (60% lard, 1.25% cholesterol, 0.5% cholic acid). All diets

were provided by Oriental Yeast Co., Tokyo. 4 animals from each group were euthanized

after 2-, 4-, 8-, and 16-week feeding periods. All procedures for animal experiments

were conducted under protocols approved by and in accordance with the guidelines from

the Committee for Animal Research of Kyoto Prefectural University of Medicine. The

liver organ of each rat was excised and dissected. A portion of the organ was sliced at

∼ 1 mm thickness using a handmade slicer, immediately transferred into 4◦C Krebs-

Henseleit buffer (KHB), and used within 2 hours. Slices were placed in glass-bottomed

dishes filled with KHB during measurement. Other liver portions were fixed with 10%

formalin (Wako Pure Chemical Industries, Ltd. Japan), paraffinized, sliced at 4 µm

thickness, then deparaffinized for hematoxylin and eosin staining. Stained samples were

evaluated by a pathologist and hepatologist conversant with liver histopathology, and

classified as normal tissue, NAFL, or NASH [17,18].

3.1.2 Raman Microscopic Measurement

Raman images were acquired using a confocal Raman microscope, Raman-11 (Nanopho-

ton, Japan). 532 nm excitation light was delivered through a 20x/0.75 dry-type objective

lens (Olympus, Japan). The mode of Raman data acquisition was point excitation, and

the illuminated light intensity was 68 mW/µm2 at the sample plane. The epi-detected

Raman signal was directed through the 50 µm entrance slit of a spectrometer and read

by a thermoelectrically cooled charge-coupled device (CCD) camera, Pixis 400BR, at

−70◦C (Princeton Instruments, USA). The sample image was projected onto the slit of

the spectrometer with the magnification of 18.4x when the objective lens of 20x is uti-

lized. Raman images having area 95 µm × 345 µm (20 × 70 pixels) were obtained via

point-by-point scanning with 5 µm step and 1 second exposure time. Samples were not

used more than once for the Raman measurement.
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3.1.3 Histological Staining of the Liver Tissues

Histological staining of the liver tissues from SD, HFD, and HFHC models after 2-, 4-,

8-, and 16-week feeding using HE and Sirius Red are depicted in Fig.3.1.

Figure 3.1: Histological staining of the liver tissues using HE and Sirius Red (A) after 2- and
16-week feeding, (B) after 4- and 8-week feeding.

Histological staining of liver tissues from SD, HFD, and HFHC models (after 4- and

8-week feeding) using HE and Sirius Red; SD: standard diet, HFD: high-fat diet, HFHC:

high-fat high-cholesterol diet, HE: hematoxylin and eosin; scale bar = 100 µm.
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3.1.4 Histological Evaluations of the Liver Tissues

Rats fed with HFD are reported to be a NAFLD model with slow fibrosis progression. In

the HFD group, only minimal fibrosis is observed after long-term feeding (36-50 weeks)

in some cases (30, 31). In contrast, rats fed with HFHC are known to be a NAFLD model

with rapid fibrosis progression (32-34).

Figure 3.2: Results of histological assessments of the stained liver sections based on the NAFLD
activity score (NAS) and Brunt stage criteria. Note the occurrence of NAFL in the HFD model
and NASH with fibrosis in the HFHC model after 16-week feeding. (scale bar = 100 µm).

The hematoxylin and eosin (HE) and Sirius Red-stained sections from paraffin-embedded

liver samples are depicted in Fig. 3.1. No accumulation of lipid droplets was observed

in any liver tissue from the SD group model. Distinct lipid accumulation was observed

in 16-week HFD as well as 2-, 4-, 8- and 16-weeks HFHC groups. Furthermore, the

HFHC group showed strong indication of fibrosis after 16-week feeding. The results of

NAFLD activity score (NAS) (25), which reflects the extent of steatosis, inflammation,

and ballooning degeneration of tissues, and histological fibrosis stage classified by Brunt’s

criteria (24, 35) are shown in Fig. 3.2 and Table 3.1.
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Table 3.1: Histological evaluation of the liver tissues. NAFLD activity score (NAS) and Brunt
staging of hematoxylin-eosin-stained liver tissue sections from SD, HFD, and HFHC models
(after 2-, 4-, 8- and 16-week feeding). Although NAS is reported as an indicator of disease
activity, not for diagnostic purposes, the relationship between NAS and NAFLD diagnosis is
reported as follows: biopsies with NAS of less than 3 were mostly considered to be NAFL;
by contrast, NAS of ≥ 5 is related to a diagnosis of NASH. Biopsies with NAS of 3 and 4
correlated with both NAFL and NASH (1 of supple). The 15 NAFL rats are further divided
into two groups, NAFL-α, and NAFL-β, by Raman data analysis (See the results and discussion
in section 3.2).

Sample Brunt staging
NAS

Diagnosis
Steatosis Inflammation Ballooning

SD
2W

1 0 0 0 0 Normal
2 0 0 0 0 Normal
3 0 0 0 0 Normal
4 0 0 0 0 Normal

HFD
2W

1 0 0 0 0 Normal
2 0 0 0 0 Normal
3 0 0 0 0 Normal
4 0 0 0 0 Normal

HFHC
2W

1 0 1 1 0 NAFL-β
2 0 2 0 0 NAFL-β
3 0 2 0 0 NAFL-β
4 0 2 0 0 NAFL-β

SD
4W

1 0 0 0 0 Normal
2 0 0 0 0 Normal
3 0 0 0 0 Normal
4 0 0 0 0 Normal

HFD
4W

1 1 0 0 0 Fibrosis, mild
2 0 0 0 0 Normal
3 0 0 0 0 Normal
4 0 1 0 0 NAFL-α

HFHC
4W

1 0 3 1 0 NAFL-β
2 0 3 2 0 NAFL-β
3 0 2 1 0 NAFL-β
4 0 3 0 0 NASH

SD
8W

1 0 0 0 0 Normal
2 0 0 0 0 Normal
3 0 0 0 0 Normal
4 0 0 0 0 Normal

HFD
8W

1 0 0 0 0 Normal
2 0 0 0 0 Normal
3 0 0 0 0 Normal
4 0 2 0 0 NAFL-α

HFHC
8W

1 1 3 3 1 NASH
2 0 2 1 0 NAFL-β
3 0 3 1 0 NAFL-β
4 0 2 1 0 NAFL-β

SD
16W

1 0 0 0 0 Normal
2 0 0 0 0 Normal
3 0 0 0 0 Normal
4 0 0 0 0 Normal

HFD
16W

1 0 1 0 0 NAFL-α
2 0 1 0 0 NAFL-α
3 0 2 0 0 NAFL-α
4 0 0 0 0 Normal

HFHC
16W

1 2 3 3 0 NASH
2 3 3 2 1 NASH
3 1 3 2 0 NASH
4 3 3 3 0 NASH
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In HFD model three rats were developed to NAFL after 16-weeks while only one rat

showed NAFL at 4- and 8-weeks feeding (i.e., HFD4w-4 and HFD8w-4). For rats on the

HFHC diet, NAFL occurred even after a 2-week feeding period, and NASH with fibrosis

was well-developed after 16 weeks of the HFHC diet.

As seen in Table 3.1, twenty-six rats were histologically diagnosed as normal: all SD

rats, all HFD 2-week rats, and some rats on HFD for longer than two weeks. Fifteen

and six rats were histologically diagnosed as having NAFL and NASH, respectively. Note

that all histological indices are scored in terms of morphological features of tissues. One

rat of the HFD 4 weeks model (HFD4w-1) showed a peculiar histology of the liver: while

it had mild fibrosis, no hepatic steatosis was observed.

3.1.5 Preprocessing of the Raman Image Data

The raw Raman data must be pre-processed before analysis to eliminate effects of un-

wanted signals from auto-fluorescence, detection noise, cosmic rays, signal from cell media

or glass substrate, etc., and to enhance subtle difference between different samples [75–

77]. Since pure spectral features are hidden underneath noise and contamination, we need

to extract the information relevant to the NAFLD states by reducing the effects of these

contamination and noise in the Raman image data. We extracted the spectral features by

performing some preprocessing schemes, e.g., by removing baseline drifts, reducing noise

and other contaminations before quantitative analysis of the Raman image data. This

section will give a detailed explanation of preprocessing of Raman microscopic data.

3.1.5.1 Bias and Baseline removal

Bias is estimated as the minimum intensity of a particular Raman tissue image, and

is subtracted from each spectrum of that particular image. The baseline (arising from

substrate and autofluorescence of the tissue) removal was carried out using recursive

polynomial fitting [78], [79]. Each single pixel spectrum sw is first fit to a polynomial

function pw (=
∑m

i=0 ciw
i (ci: coefficient)) of order m, and then a modified spectrum

s′w = min(sw, pw) is constructed as the minimum intensities of original spectrum sw and

the fitted polynomial pw. We counted the number of spectral points nb of sw below the

fitted polynomial pw, and continued the procedure until a terminative criterion holds. To

make the terminative criterion consistent for all the spectra in our application we iterated
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polynomial fitting until nb ≤ 0.01nw holds, where nw is the total number of wavenumbers.

Polynomial of order m = 8 was chosen for fitting the spectra with the above mentioned

stopping criterion. Finally, the baseline corrected spectrum was obtained by subtracting

the baseline from the original spectrum.

3.1.5.2 Noise Reduction

Instrumental and photon shot noise can degrade Raman images, making it difficult to

diagnose NAFLD tissues appropriately. Noise contribution in the Raman spectra has

been reduced using singular value decomposition (SVD)(7, 8), which truncates smaller

singular values that mostly represent noise in the data. Unfolding (unifying) the spatial

dimensions of the hyperspectral image data, we obtain a 2D data matrix, where each row

represents one spectrum. Applying SVD to this 2D data matrix, and reconstructing the

matrix retaining the top 10 singular values (so that the sum of squares of the retained

singular values captures at least 90% of the squares of all the singular values), and then

reforming the 3D matrix from this reconstructed 2D matrix, the influence of the noise in

the Raman spectra is reduced.

3.1.5.3 Segmentation Averaging (Regular Grid)

There are various kinds of cells, such as hepatocytes, hepatic stellate cells, and white

blood cells, composing the liver tissue. Since about 6 pixels × 6 pixels (30 µm× 30 µm)

is the typical size of a rat hepatocyte, we segmented the spatial dimension of Raman

images into 10 pixels × 10 pixels image patches and computed the averaged spectrum

over each patch. This minimizes the possibility to detect not hepatocytes but mainly the

other cells, and reduces possible contributions of cosmic rays and other contamination

covering 1 or 2 pixels.

3.1.5.4 Normalization of the Total Intensity (Area Normalization)

Due to the different concentration (variability of the amount of molecules) among the

tissue samples, the Raman signal intensity fluctuates from sample to sample due to

variable focus position producing intesity variation among the spectra. Therefore, each

Raman spetrum is normalized by the area under the curve. For i-th spectrum sw(i), the
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normalized spectrum s′w(i) is obtained by

s′w(i) =
sw(i)∑W
w=1 Iw(i)

. (3.1)

3.1.5.5 Cropping Silent Region

We collected 14 averaged spectra from each image and brought them (672 spectra) to-

gether in the form of matrix for the analysis. All the spectra were cropped by removing

the silent region (1801− 2800 cm−1), where there are no Raman signals from most of the

biomolecules in the tissue [25].

3.1.5.6 Distance Matrix Calculation

To quantify differences among the spectra, we computed Euclidean (L2) distance matrix

(EDM) D = (di,j) [80] by measuring pairwise distance di,j among the Raman spectra.

The L2 distance di,j between the spectra i and j is defined as

di,j =

(∑
w

[
sw(i)− sw(j)

]2)1/2

. (3.2)

Here, w denotes the wavenumber and the summation is taken from 679 cm−1 to 3057 cm−1,

excluding the silent region. The distance matrix provides information about which (sub-

sets of) spectra are similar to or different from other (subsets of) spectra.

3.1.6 Quantitative Analysis of the Raman Image Data

For the quantitative analysis of NAFLD data, we perform dimensional reduction and

ensemble-learning-based Random forest classification. This section will give a detailed

explanation of quantitative analysis of Raman microscopic data.

3.1.6.1 Dimensionality Reduction (DR)

The spectra of Raman images can be represented as vectors in a high-dimensional space,

for instance, in 738-dimensional space (from 679 cm−1 to 3057 cm−1 excluding the crop-

ping silent region 1801-2800 cm−1, with increments 1 or 2 cm−1) for our NAFLD data. Di-

mensionality reduction (DR) techniques are used as tools to construct a low-dimensional
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representation, capturing the spectral variability and similarity, and to visualize the un-

derlying hidden structures of the dataset in the low-dimensional embedded space. DR

methods are classes of algorithms which can provide a two- or three-dimensional map

representing the prominent structures of the data and give an embedded image of low-

dimensional structures hidden in the high-dimensional information. DR methods map the

high-dimensional data into a low-dimensional space that captures the geometric structure

of the data as much as possible. DR methods can be of two types: linear (under the as-

sumption that the data points lie on a linear subspace) and nonlinear (taking into account

the nonlinear relationship among the variables and preserving the curved manifold). From

the numerous linear DR methods, we apply classical multidimensional scaling (MDS) al-

gorithm [81–83] to project the original high-dimensional data to a low-dimensional (em-

bedded) space. But this linear method may not be appropriate for the analysis of the

data that lies in a nonlinear manifold (curvilinear surface). For validation of the robust-

ness of MDS, and to capture the high-dimensional nonlinear manifold appropriately, we

applied a nonlinear DR method called Isometric Feature Mapping (ISOMAP)[50].

3.1.6.1.1 Multidimensional Scaling (MDS) Classical multidimensional scaling

(MDS) maps the original high-dimensional data points X = [x1, x2, ..., xn]d×n, xi ∈ Rd

to data points Y = [y1, y2, ..., yn]p×n, yi ∈ Rp, y << d in a low-dimensional space

but preserves the relationship of pairwise distances as much as possible. It gives low-

dimensional Euclidean coordinates of points by minimizing a cost function E(X, Y ) as

the error between pairwise distances of the data points in original high-dimensional, and

the low-dimensional space. That is, MDS finds configuration points in Y , by minimizing

E(X, Y ) =
n∑
i=1

n∑
j=1

(d
(X)
ij − d

(Y )
ij )2, (3.3)

(S3) where d
(X)
ij = ‖xi − xj‖L2

and d
(Y )
ij = ‖yi − yj‖L2

are, respectively, the pairwise

distances between points i and j in high- and low-dimensional spaces. Given a distance

matrix DX , MDS tries to find n data points y1, y2, ..., yn in a low-dimensional space with

dimension p , such that DY is as close as possible to DX .

3.1.6.1.2 Isometric Feature Mapping (ISOMAP) MDS can reveal the low-dimensional

structure of the data as long as the data lie on a linear subspace. However, if the high-
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dimensional data in question lie on a smooth submanifold (e.g., curved surface), MDS

cannot always retain the structure of the underlying manifold properly, because it pre-

serves the Euclidean distance which cannot appropriately measure the interpoint dis-

tances between the two points lying on such manifold. ISOMAP solves this problem by

preserving the pairwise interpoint geodesic distance between two points constructing a

neighborhood graph [50]. The steps for ISOMAP can be described briefly as:

– Using the input Euclidean distances, count nearest neighbors of every data point

based either on fixed radius ε (ε-isomap) or number of nearest neighbors k, (k-

isomap), where ε-isomap picks up all data points whose distance from the chosen

point are within ε, and k-isomap picks up data points from the closest, to the k-th

closest data points from the chosen point;

– Construct a distance-weighted neighborhood graph G (i.e., edge includes the dis-

tance information) by connecting every point to its nearest neighbors;

– Compute the shortest path on the graph between all pairs of points using Floyd’s

shortest path algorithm [84] which is the approximation of true geodesic distance;

– Compute geodesic distance matrix DG = dG(i, j), where dG(i, j) = shortest path

distance (approximation of geodesic distance);

– Construct the low-dimensional space Y by applying classical MDS to DG.

ISOMAP has a single parameter ε or k, which needs to be tuned to find the optimal

solution. In this paper, we employed ε-isomap algorithm that minimizes the cost function

defined by

E(ε) = ‖DG(ε)−DY ‖L2 , (3.4)

where ‖A‖L2 is the matrix norm
√∑

ij A
2
ij. Choosing ε too large causes shortcut edges

while too small ε makes a disconnected (sparse) graph. To select the suitable neighbor-

hood size ε , we used the algorithm described by Samko et al. [85]. First, we determined

the range of possible values of ε, εopt ∈ [εmin, εmax] where εmin is the minimum value, with

which all the neighborhood graphs are fully connected in order to prevent any isolated

graph, and εmax is max(dX(i, j)), where dX(i, j) is the input matrix in the original high-

dimensional space. Second, we chose the embedding dimension of the low-dimensional
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space Y as two for visual clarity. Third, we calculated all the minima of the cost function

E(ε) with respect to ε , among which we obtained the optimal ε using the formula

εopt = arg
ε

min(1− ρ2
DG Dy

), (3.5)

where ρ2
DG Dy

is the standard linear correlation coefficient over entries of DG and DY ,

where the quantity 1−ρ2
DG Dy

is called residual variance; the smaller the residual variance,

the better the low-dimensional distance matrix DY captures the structure of geodesic

distance matrix DG over the smooth submanifold lying in the original high-dimensional

space.

3.1.6.2 Ensemble Learning Based Analysis

Raman spectral differences among different tissues are often very small, making it difficult

to diagnose the disease by analyzing these differences visually. Random forest (RF)

classifier, one of an ensemble-learning-based classifier, was used to classify the Raman

spectra from different groups of tissues, and we also explored the relevant set of features

(Raman shift) that are most important for that classification. Based on the difference in

intensities at different Raman shifts in the spectra, the RF classifies the data sets, and

also revealed the important Raman shift for discriminating the data set.

3.1.6.2.1 Classification and Feature Importance Extraction using Random

Forest Random forest (RF) [51,52] is a classification method in which many decision

trees are used as weak learners to classify the spectra based on their features (wavenum-

bers) by aggregating the class prediction of each tree using simple majority voting. In

addition to classification, RF provides the information about the importance of individual

variable for that classification. To estimate the relative importance of each wavenumber

in the classification of the Raman spectra, we use the Random Forest (RF) classifier

[51,52,86,87]. For classification purposes, RF uses information provided by a training

data set, whose members have been labeled a priori, to assign class labels to the mem-

bers of a test data set. The method utilizes decision trees as shown in Fig. 3.3 , i.e.,

hierarchical collections of decision nodes, each of which uses the values at a particular

feature, e.g., intensities at a particular wavenumber, as a means to produce a binary par-

titioning of the input data set, e.g., a set of Raman spectra. The aim of RF is to produce
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binary partitions that are of the highest possible purity; that is, RF aims to produce

two subsets from the input data, each of which contains a large population of one class

label and a small population of the other class label. We note that while the primary

aim of RF is to produce a binary partitioning of a test data set, a secondary output is

quantification of feature importance through estimation of the mean decrease in impurity

arising from each feature in the training data set. This mean decrease impurity (MDI) is

also known as the Gini importance, whose computation is described as follows.

Figure 3.3: The schematic of a simple decision tree for two wavenumbers (right) and the details
of partitioning (left and middle). Decision nodes are rectangular boxes in the decision tree.

During training, each decision tree is initialized through random selection of a sin-

gle feature from the feature vector w = {w1, w2, ..., wW}, which contains the set of W

wavenumbers at which measurements were taken. After a wavenumber wk has been ran-

domly selected, the input data set is divided into two groups through application of an

intensity threshold τ at the selected wavenumber. This procedure represents the root

node of the decision tree, producing two new nodes. Further subsets are then obtained

through repetition of feature selection and binary partitioning on the two resulting sub-

sets. Such repetition and production of new, branching nodes continues until all subsets

produced by the decision nodes contain spectra originating from only a single class label,

producing a single decision tree. Subsequent trees are initialized and propagated in the

same manner, producing a collection (or forest) of decision trees. The importance of each

wavenumber to a particular classification is assessed through a Gini importance that is



3.1 MATERIALS AND METHODS 25

aggregated across many decision trees.

Gini importance is computed through the decrease in purity produced at the decision

nodes. The purity of an arbitrary node t is assessed through the Gini impurity, which

is expressed in terms of the population of each class at the node. Given the class labels

of each of the Nt spectra in the (sub)set at node t, γ = {γ1, γ2, ..., γNt}, we obtain the

population pt(ci) of each class ci,

pt(ci) =
1

Nt

N∑
n=1

δ(γn, ci). (3.6)

Here, δ(γn, ci) is a Kronecker delta function. Considering only binary classification, we

then obtain the Gini impurity at node t,

g(t) =
2∑
i=1

p(ci)(1− p(ci)). (3.7)

After randomly choosing a wavenumber w
(t)
k for node t, the next task is to determine an

intensity threshold such that the two subsets resulting from the division of the (sub)set

at node t into child nodes tl and tr are as pure as possible. This is accomplished through

maximization of the decrease in Gini impurity resulting from the binary partitioning of

the (sub)set at node t. Given the (sub)set of spectral intensities at a randomly chosen

wavenumber w
(t)
k , Ik = {I(1)

k , I
(2)
k , ..., I

(Nt)
k } and arbitrary intensity threshold τ , we com-

pute the decrease in Gini impurity at node t, ∆gt(τ), to be the difference of the Gini

impurity at node t and the weighted sum of that produced at nodes tl and tr,

∆g(t) = max
min Ik <τ <max Ik

[
g(t)− Nl

Nt

g(tl, τ)− Nr

Nt

g(tr, τ)

]
. (3.8)

Here, Nl and Nr are the numbers of spectra assigned to nodes tl and tr, respectively. The

decrease in Gini impurity for a particular wavenumber wj with a particular decision tree

T is then the sum of the Gini impurity produced by that wavenumber over all nodes t in

the tree T ,

∆g(wj, T ) =
∑
t∈T

δ(wj, w
(t)
k )∆g(t). (3.9)

Note that δ(wj, w
(t)
k ) is a Kronecker delta function. Finally, we compute the mean Gini
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impurity over all trees to obtain the Gini importance for wavenumber wj,

∆g(wj) =
1

Ntrees

Ntrees∑
T

∆g(wj, T ). (3.10)

The second measure for feature importance we computed, permutation importance,

elucidates how each feature influences the accuracy of random forest using test data. For

each tree, the unused spectra (approximately 36%) , known as the out-of-bag (OOB)

data, were used to compute the permutation importance, or the OOB error [51]. To

measure the importance of each feature variable, new test data are made from the OOB

data by randomly shuffling the values of the particular feature variable in the OOB data,

while keeping the values of all other variables unchanged, and the prediction error of

this new test data is again calculated by the same tree. The importance of the feature

variable is computed from the difference between the two prediction errors. The score is

calculated for each tree of random forest, and averaged over all the trees in the random

forest [88].

3.2 Results and Discussions

3.2.1 Observations from the Distance Matrix.

How can Raman imaging identify the underlying state of NAFLD? We analyzed the

Raman data based on the histological assignments and scores. After applying data pre-

processing schemes (section 3.1.5), the Euclidean distances matrix D = (dij) is obtained

by the pairwise distances dij among the Raman spectra S(w) (w: wavenumber) averaged

over the typical size of hepatocytes in the liver tissue Raman images. Here the distance

dij is evaluated by Euclidean (L2) distance
√∑

w |S
′
i(w)− S ′

j(w)|2, where Si(w) is nor-

malized to S
′
i(w)

(
= Si(w)∑

w Si(w)

)
(see section 3.1.5 for details). The distance dij quantifies

dissimilarity between the normalized spectra S
′
i and S

′
j (see section 3.1.5 for details) ;

smaller distances indicate similarity in the (averaged) chemical environment at the size

of hepatocytes, while larger distances indicate different chemical environments.
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Figure 3.4: Distance matrix representing the pairwise distances among the spectra for all his-
tological states. The distance matrix representing pairwise Euclidean (L2) distance between the
area-normalized spectra and histological diagnosis. The bluer (redder) the color in the matrix
element, the more similar (different) the underlying chemical environment at the cell level. The
column and row are ordered by referencing the histological states in Table 3.1 from Normal to
“Fibrosis, mild (HFD 4w-1)”, NAFL-α, NAFL-β, and NASH. The detailed order is as follows:
Normal: SD2w-1, SD2w-2, SD2w-3, SD2w-4, HFD2w-1, HFD2w-2, HFD2w-3, HFD2w-4,
SD4w-1, SD4w-2, SD4w-3, SD4w-4, HFD4w-2, HFD2w-3, SD8w-1, SD8w-2, SD8w-3, SD8w-4,
HFD8w-1, HFD8w-2, HFD8w-3, SD16w-1, SD16w-2, SD16w-3, SD16w-4, HFD16w-4 (26 sam-
ples) Fibrosis, mild: HFD4w-1 (1 sample)
NAFL-α: HFD4w-4, HFD8w-4, HFD16w-1, HFD16w-2, HFD16w-3 (5 samples)
NAFL-β: HFHC2w-1, HFHC2w-2, HFHC2w-3, HFHC2w-4, HFHC4w-1, HFHC4w-2,
HFHC4w-3, HFHC8w-2, HFHC8w-3, HFHC8w-4 (10 samples)
NASH: HFHC4w-4, HFHC8w-1, HFHC16w-1, HFHC16w-2, HFHC16w-3, HFHC16w-4 (6 sam-
ples)
For example, HFD4w-1 denotes a set of Raman spectra averaged over the size of hepatocytes
(10 pixels × 10 pixels with 1 pixel being 5 µm) of the 1st rat among 4 individuals that were fed
a highfat diet for 4 weeks.

Fig. 3.4 indicates large distances between rats diagnosed as normal and those diag-

nosed as having NASH, while distances between those and the rats from the NAFL group
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show diverse behavior. The row and column of the distance matrix are ordered based

on histological results, i.e., Normal followed by “Fibrosis, mild (HFD4w-1)”, NAFL, and

NASH. The block-diagonal matrices indicated by red lines represent the groups of Normal,

“Fibrosis, mild (HFD 4w-1)”, NAFL, and NASH, respectively.

Figure 3.5: The distance matrix representing pairwise Euclidean (L2) distance between the
area-normalized spectra and histological diagnosis NAFL and NASH. For example, HFD8w-4
denotes a set of Raman spectra averaged over the size of hepatocytes (10 pixels × 10 pixels with
1 pixel being 5 µm) of the 4-th rat among 4 individuals that were fed high-fat diet for 8 weeks.
The bluer (redder) the color in the matrix element, the more similar (different) the underlying
chemical environment at the cell level.

Although histological analysis shows no clear distinction, Raman analysis indicates

that the rats diagnosed as having NAFL from the HFD group mostly have large L2 dis-

tances to those rats diagnosed as having NAFL from the HFHC diet group. Considering

that HFD shows slow and/or rare fibrosis progression in comparison to rapid fibrosis pro-

gression for HFHC diet [89–92], we term the HFD group of NAFL-diagnosed rats to be

NAFL-α, while NAFL-diagnosed HFHC rats are termed NAFL-β. Because the NAFL-β

group has, on average, smaller L2 distances to the histologically assigned NASH group

than does the NAFL-α group, the degree of similarity between NASH and NAFL-β is

larger than those between NASH and NAFL-α. It should be noted however, according to

the spectral similarity as measured by L2 distance, HFD 8w-4 (NAFL-α) and HFHC2w-1
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(NAFL-β) are close to each other, as compared to some of NAFL-α group and some of

NAFL-β group, respectively. Fig. 3.5 for the distance matrix among NAFL-α, NAFL-β,

and NASH confirms these results.

3.2.2 Dimensional Reduction.

To capture the underlying relationship among chemical environments of tissues (Raman

spectra) and the disease state, we map the spectra to a two-dimensional space by per-

forming a nonlinear isometric feature mapping (ISOMAP) [50,85] in Fig. 3.6 (details in

section 3.1.6.1). We have used optimal parameter for ISOMAP. IWe have also compared

the ISOMAP mapping with classical multidimensional scaling (MDS). The details of the

parameter selection for ISOMAP, and comparison between ISOMAP and MDS is given

in section 3.2.2.1. Each point in Fig. 3.6 corresponds to a single spectrum, and all spec-

tra are colored according to their pathological states. Distances between points in the

ISOMAP space are interpreted similarly to the L2-distance above, i.e., nearby points are

similar in chemical environment while distant points are less similar. One can see that

normal (blue) and NASH (red) spectra are clearly separated. NAFL spectra (green and

purple) are largely variable and overlapped with both the normal and NASH spectra,

which indicates heterogeneity in the characteristics of NAFL [8].
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Figure 3.6: Scatterplot of the spectra in two-dimensional ISOMAP space.

In Table 3.1, out of 15 NAFL rats, 5 rats are labeled as ‘NAFL-α’ group, whose
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total NAS score is 1 or 2, and 10 rats are labeled as ‘NAFL-β’, whose total NAS score

is 2-5. This indicates a certain consistency between the Raman data and histological

assignment, even though the former and the latter reflect different information concerning

the (microscopic cell level’s) chemical environments and morphological characteristics of

tissues. Although the HFD 4w-1 rat showed a unique histological score (zero NAS score

with mild fibrosis) of the liver, in Raman analysis its spectra overlap with the normal

histology group. It should be noted again that our assignment of two subgroups of

NAFL is not solely dependent on microscopic chemical environments of tissues (see, e.g.,

some NAFL-α is closer to NAFL-β and NASH in Raman spectral distance than the other

NAFL-α in Fig. 3.6) but also on the fact that HFD shows slower and/or more rare fibrosis

progression than that for HFHC diet [89–92]. In Fig. 3.7, we compared the standard

linear mapping, classical multidimensional scaling (MDS), and the nonlinear ISOMAP

for our data, showing that the two-dimensional classical MDS only qualitatively capture

Raman spectral feature relationship among different histological groups.

3.2.2.1 Comparison between ISOMAP and Conventional Multidimensional

Scaling (MDS) for NAFLD Data

In this Section, we compare our Isometric Feature Mapping (ISOMAP) to the conven-

tional Multidimensional Scaling (MDS) that projects high-dimensional spectral data into

a linear subspace of two dimensions.

Figure 3.7: Residual variance as function of neighborhood size. Here εopt = 0.0082.
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The linear mapping MDS corresponds to a two-dimensional projection by using two

principal components with the largest and the second largest variances if the distance

relationship is evaluated in terms of L2 distance. The optimal ISOMAP parameter se-

lection from our NAFLD data is illustrated in Fig. 3.7. From the possible interval

ε ∈ [0.0042, 0.036], εopt = 0.0082 is chosen as optimal to find the smallest residual vari-

ance projection of datasets most accurately.

Figure 3.8: Scatterplots using ISOMAP and MDS, and difference in distance matrix in the
projected space.

The two-dimensional scatterplots of the spectra using MDS and ISOMAP are given

in Figs. 3.8A and 3.8B, which provides a visual comparison. Although visually there is

no significant difference between the two projections in the perspective of spatial distri-

butions of the spectra, the subtle difference is seen. For instance, the distances among

the spectra are smaller in magnitude and more compact along the first component (hori-

zontal axis) of MDS compared to those of ISOMAP. The absolute difference between the

elements of distance matrix from two different projections is illustrated in Fig. 3.8C. The

differences within ‘normal’, ‘NAFL’ and ‘NASH’ groups shown in the diagonal blocks of

the distance matrix are very low indicating that MDS quantitatively captures the dis-

tance relationship by low-dimensional MDS space. In turn, most part of the off-diagonal

blocks shows that the difference in distances are relatively high indicating that distance
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relationship between the groups in ISOMAP is captured by the MDS only qualitatively.

As a consequence, two-dimensional classical MDS qualitatively capture Raman spec-

tral features of NAFLD of different histological groups of rats, even though one should

keep in mind that accuracy is dependent on which pair of Raman spectral features are

compared. These two projection methods can be versatile tools to analyze and explore

the high-dimensional data in order to prevent us from making a misleading interpretation

by a linear projection because there exists no a priori reason why the linear subspace em-

ployed by MDS can capture the underlying relationship among the spectra of NAFLD and

there may exist some possibility that our interpretation is due to the apparent projection

of high-dimensional spectral data into the linear subspace of two dimensions.

3.2.3 Time Development of Pathological State of NAFLD De-

pendent on Diets.

How does the pathological state of rat liver progress in the chemical space represented by

Raman data depending on diets? Note that the time from 2 to 16 weeks is not physical

time because four rats are sacrificed every two weeks. Here we assume that it indicates

the time progression of pathological states as an ensemble. In Fig. 3.9, a two-dimensional

spectral feature space represented by the 2-D ISOMAP where x and y best describe the

mutual relationship in a sense of L2 distance among Raman spectra, we show the joint

probability distributions for each diet across weeks to show the progression of the rat liver

in this chemical space (here, the least/most populous regions are blue/red). To explore

whether the distributions approach to some steady distributions, the progression of the

joint probability distributions are constructed as follows: from Raman data of 2 weeks

(at 2 weeks), 2 and 4 weeks (at 4 weeks), 2, 4, and 8 weeks (at 8 weeks), and all weeks

(at 16 weeks). To trace the time development of the pathological state of the rat livers,

the ISOMAP locations of the spectra, as they appear in Fig. 3.6, overlay the probability

distributions and indicates pathological indices (i.e., normal, NAFL-α, NAFL-β, NASH).

The spectra of the SD and HFHC diet models are less dispersed in this feature space

than are those of the HFD model, with SD and HFHC spectra being relatively localized

in largely distinctive regions, while those of the HFD model are scattered across a broader

region of the feature space. Looking into histological characteristics, one can see that the

livers histologically assigned as normal from the SD model and those assigned as normal
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from HFD model are located in different regions (e.g., see SD 2w, SD 4w, HFD 2w). This

suggests that, even though no morphological differences are present in the normal liver

tissues of the HFD model, the microscopic chemical environment is different for the two

different diets. That is, some chemical changes occurred due to high fat diet consumption.

The HFHC diet rats are clearly separated from the SD rats in this feature space and

are relatively localized after a small shift along the horizontal direction from two- to

four-weeks. Note here that the tissues assigned as NAFL-β that have been on the HFHC

diet for 4 weeks or longer and NASH tissues are located in almost identical regions of

this Raman feature space, consistent with the observation from the distance matrix of

Fig. 3.4). This indicates that the histopathological state of the liver cannot perfectly

be differentiated by Raman spectra. However, it is suggested that, once the chemical

environment of a liver tissue quantified by Raman image is transitioned to that region

in the space, the liver tissue keeps its chemical circumstance for some time duration,

and transitions to NASH. That is, Raman diagnosis is expected to predict the future

development of NAFL-β to NASH before morphological features of NASH emerge.
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Figure 3.9: The “time” propagation of pathological states in the two-diemensional Raman
spectral feature space dependent on diets superimposed with the contour plots of those points.
The joint probabilities were filtered with a 2D Gaussian smoothing kernel [93].

For the HFD diet model, the dispersion of the Raman spectra of the liver tissue is

larger as the “time” elapses, in comparison to the SD and HFHC diet models. This
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may suggest that the liver tissue observed in the first two weeks of HFD feeding is more

variable or unstable than those in the first two weeks of SD and HFHC feeding. Note

that NAFL-α and normal tissue cannot be well differentiated in the Raman feature space

but remain well separated from the NASH spectra (c.f., the distance matrix in Fig. 3.4).

Finally, let us comment on the progression of the joint probability distributions of

the rat liver in the chemical space from Raman image data. Disease progression is out

of equilibrium with input of different nutrition. At nonequilibrium steady state, the

movement on energy landscape (population landscape) are triggered by both the potential

of mean force and flux on that space at nonequilibrium steady state [94,95]. For the SD

and HFHC models, the distributions might be regarded as “being steady” compared

to that for HFD model at the timescale of sixteen weeks because the joint probability

distributions of the SD and HFHC models became quickly localized after exploration for

four weeks, while that of the HFD is still developing to bifurcate into two regimes. One

might infer population landscape relevant to energy landscapes at equilibrium [94–97] on

the fatty liver tissue states in terms of population taken over two to sixteen weeks at least

for SD and HFHC diet models.

3.2.4 Random Forest (RF) based Classification and Feature Im-

portance Extraction.

The success of the ISOMAP mapping suggests that only a few dimensions are needed

to differentiate and predict the histological states from the Raman images. Here, we

use the ensemble learning-based random forest (RF) classifier [51,52] to systematically

identify a set of important wavenumbers in the discrimination of histological stages such

as ‘NAFL-α’ versus ‘NAFL-β’. The details of random forest (RF) classifier is given in

section 3.1.6.2.

Briefly, RF is typically composed of a few hundred decision trees, each of which con-

tains nodes that associate a subset of the training data with a histological identification,

or label, such as normal, NAFL, or NASH. A node in the decision tree operates like an

“IF” function, e.g., “if the intensity of a specific Raman shift is greater than a certain

threshold.” Each node is accompanied by two edges, corresponding to “true” or “false”

outcomes in the application of the IF condition, along which the parent data set is split

into two daughter subsets. The wavenumbers and the thresholds used at the nodes are
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determined so as to split the parent data such that the daughter subsets contain either

of the labels as uniquely as possible. The importance of each wavenumber is evaluated

with reference to how often it was used over the few hundred decision trees, as well as by

how successful it was in providing the correct label for the training data set.

3.2.5 Heterogeneity of NAFL: NAFL-α versus NAFL-β.

Since NAFL has the possibility to progress to NASH with fibrosis, early prediction is

essential to prevent its progression to NASH, which may subsequently proceed to cirrhosis

[9,11]. Since it is difficult to forecast progression to NASH by classical histology [8], we

focus on the histologically-assigned NAFL state from which we extract the wavenumbers

(molecular information) that lead to the diversity of the NAFL state. Fig. 3.10 shows the

Figure 3.10: Averaged Raman spectra: NAFL-α (red-solid line); NAFL–β (green-solid line);
standard deviation NAFL-α (red patch); standard deviation NAFL-β (green patch); Gini im-
portance (blue-solid line). RF is comprised of 5,000 trees using full NAFL data as the training
set. The silent region 1801-2800 cm−1 is excluded for visual purpose. .

averaged Raman spectra of NAFL-α (red) and NAFL-β (green) with standard deviations

given by its shaded patches (enlarged figures are also given in Figs. 3.11A and 3.11B).

One can see that the mean spectra of NAFL-α and NAFL-β exhibit significant Raman

peaks at 750, 1127, 1441, 1591, 1655, and 2850-2950 cm−1. The larger Raman peaks

at 1441 and 2850-2950 cm−1 in NAFL-β than those in NAFL-α are considered to be
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associated to accumulation of various types and quantities of lipids [98]. In addition, the

Raman peak at 1591 cm−1, due to vitamin A [41,99], and those at 750 and 1127 cm−1,

due to cytochrome c in mitochondria [24], show opposite tendencies from that of lipid, in

that the relative intensities are suppressed in NAFL-β compared to NAFL-α.

The questions here are twofold. Which Raman shifts are essential in differentiation

of these two different NAFL groups? How well can the RF machinery identify Raman

images as the correct state of NAFL, i.e., either NAFL-α or NAFL-β?

RF analysis for the NAFL group was performed using 210 spectra from 15 rats. The

data were split into 15 disjoint sets of equal size (based on the number of rats) where

each set contains 14 spectra from each rat. One rat (14 spectra) was used for testing and

the remaining 14 rats (196 spectra) were used for training the RF using several different

numbers of trees (T=30, 50, 100, 200, 300). As shown in Table 3.2, the classification

results of our NAFL data using RF classifier are not sensitive with respect to the total

number of trees. It is observed that RF can classify NAFL-α and NAFL-β efficiently

with accuracy of 91%. A total of 20 of 210 spectra are falsely classified: 12 spectra (out

of 14) from the rat HFD 8w-4 and 6 spectra (out of 14) from the rat HFHC 2w-1. This

result agrees with the distance matrix shown in Figs. 3.4 and 3.5, in that the degree

of similarity of HFD 8w-4 rat to NAFL-β is higher (bluer) in comparison to NAFL-α.

Conversely, some HFHC 2w-1 spectra show higher similarity to the NAFL-α group. That

is, the classification of NAFL-α and NAFL-β by referring to diet model [89–92] shows

overall consistency with the Raman analysis with high accuracy, but there exists some

fuzziness in its classification of NAFL-α and NAFL-β.

Table 3.2: The performance of the RF classifier in predicting NAFL-α and NAFL-β.

Performance
Number of trees T

30 50 100 200 300

TN 60 60 59 59 59
FN 8 8 8 8 8
TP 132 132 132 132 132
FP 10 10 11 11 11

Accuracy 0.914 0.914 0.910 0.910 0.910

What chemical information can one learn from the RF classifier? The RF classifier

is composed of 5,000 decision trees (for elucidation of importance measures) in which
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each of the nodes has an IF function with respect to a specific Raman shift and some

threshold. The importance of Raman shifts is naturally evaluated by referring to how

often a Raman shift was employed in the decision trees, and by how uniquely it splits the

data set into NAFL-α and NAFL-β.

In Fig. 3.10 the importance (Gini importance) [86,87] of Raman shifts in separating

these two NAFL states is shown as a blue solid line (enlarged figures are also given in Figs.

3.11A and 3.11B). (We also confirmed that the importance analysis to our NAFLD data

was almost independent of the choice of the measures of importance by recomputing the

feature importance using permutation importance [52,86,87] (details in section 3.2.5.1)).

The important Raman shifts for the discrimination of NAFL-α and NAFL-β are

mainly associated with the six most important spectral regions: 2829-2838 cm−1, 2964-

2968 cm−1, 1079-1083 cm−1, 1307-1311 cm−1, 763-768 cm−1, 700-704 cm−1. The first two

Raman regions (2829-2838 cm−1, 2964-2968 cm−1) are found to have large importance

for the discrimination between NAFL-α and NAFL-β, appearing on the shoulders of the

Raman bands 2850-2950 cm-1, whose relative intensity averaged over NAFL-β group is

larger than that over NAFL-α group.

This is interpreted as follows: the standard deviations (shaded bands in Figs. 3.10

and 3.11A) are so large among each set of the spectra of NAFL-α and NAFL-β for this

region that the intensities of these Raman shifts are overlapped between NAFL-α and

NAFL-β. Although relative lipid accumulation is higher in NAFL-β than in NAFL-α

on average, the diversity of chemical environments corresponding to these Raman shifts

in NAFL-α and NAFL-β prevents us from differentiating NAFL-β and NAFL-α with

high accuracy. Instead, the shoulders 2830-2840 cm−1 and 2960-2970 cm−1 have smaller

standard deviations in each set of the spectra NAFL-α and NAFL-β that are found to

be more versatile in differentiating NAFL-α and NAFL-β with higher accuracy (3.11A).

Fig. 3.11 presents the Gini importance and permutation importance that quantify the

importance of Raman shifts in differentiating NAFL-α and NAFL-β at (A) high, and (B)

low wavenumber regions, with the averaged Raman shifts of NAFL-α and NAFL-β and

the standard deviations.
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Figure 3.11: The Gini importance and permutation importance that quantify the importance
of Raman shifts in differentiating NAFL-α and NAFL-β at (A) 2800-3000cm−1, and (B) 700-
1700 cm−1 regions, with the averaged Raman shifts of NAFL-α and NAFL-β and the standard
deviations.

The spectral ranges of 2829-2838 cm−1 and 2964-2968 cm−1 can be attributed to

Raman bands of the saturated fatty acids myristic acid and palmitic acid [98]. Myristic

acid and palmitic acid, having Raman peaks at 2832 cm−1 and 2967 cm−1, respectively,

are reported to be increased in NASH [100]. Myristic acid also has a Raman peak at

2869 cm−1, whose importance measures in Fig. 6 (see also Fig. S10) are relatively large

among those in the region from 2850 cm−1 to 2950 cm−1 (the overlap caused by standard

deviations ceases to exist at 2869 cm−1). The accumulation of the saturated fatty acids
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in the liver causes cell toxicity and plays important roles in NASH developing from NAFL

[8,101].

In the two mean spectra of NAFL-α and NAFL-β (Figs. 3.10 and 3.11), significant

Raman peaks exist at 750, 1127, 1441, 1591, 1655 cm−1, with different behavior for NAFL-

α and NAFL-β. For example, the Raman peaks at 1591 cm−1 (vitamin A), 750 cm−1,

and 1127 cm−1 (cytochrome c in mitochondria) are suppressed in NAFL-β compared to

NAFL-α. However, these Raman shifts are not classified as being relatively important

Raman shifts in differentiating NAFL-α and NAFL-β, because their intensity variation

overlaps between NAFL-α and NAFL-β (see Fig. 3.11).

Raman peaks at 700-704 cm−1, assigned to cholesterol [98], are also found to be

relatively important for the differentiation between NAFL-α and NAFL-β. The mean

intensity of the Raman peaks in NAFL-β is significantly larger than those in NAFL-α,

and, as shown in Fig. 3.11, intensity variations at these wavenumbers do not overlap

between NAFL-α and NAFL-β. This indicates that relative cholesterol presence is differ-

ent in NAFL-β and NAFL-α, so that this Raman shift can be utilized for differentiating

these NAFL groups. In NAFLD/ NASH patients, excess cholesterol intake influences

the progression of the disease state [102,103]. Intrahepatic cholesterol is more abundant

in NASH patients than healthy subjects [104]. Cholesterol is reported to be increased

in hepatocytes, Kupffer cells and hepatic stellate cells [105]. When the cholesterol con-

tent of the mitochondrial membrane increases, production of cytotoxic reactive oxygen

species is increased, leading to liver injury in NASH [106]. Thus, it is suggested that

cholesterol in the livers affects NASH development. Note that NAFL-β comes from the

HFHC diet group having higher lipid accumulation, and consequently the degree of sim-

ilarity between NAFL-β and NASH is higher (in terms of lipid accumulation) compared

to NAFL-α. Given the time course of the disease progression of the HFHC groups, the

NAFL-β was regarded to be a nascent state of NASH, although morphological features

have not yet emerged. In addition, note that the silent region 1801-2800 cm−1 was mostly

found to be irrelevant for the differentiation (Fig. 3.14), which manifests the validity of

this ensemble machine learning approach.

Fig. 3.12 visualized a plane made by the ISOMAP components from the five most

important Raman shifts of the spectra from NAFL groups. The Raman banda are at 2837

cm−1, 2833 cm−1, 2966 cm−1, 2835 cm−1 and 2838 cm−1. From this projected scatter
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plot of the spectra, we confirmed that NAFL-α and NAFL-β are well classified in terms

of a small number of Raman shifts.

Figure 3.12: Scatter plot of the first two ISOMAP components built from the five most impor-
tant Raman shifts of the spectra from NAFL groups.

The figures, from Figs. 3.13A to 3.13F, respectively, give the spatial intensity distribu-

tions of the of the 15 NAFL images at Raman shifts of 749 cm−1 , 1127 cm−1 (associated

with cytochrome c), 1591 cm−1 (associated with vitamin A), 2837 cm−1 (relatively most

important Raman shift), 2856 cm−1 (associated with lipid), and 2966 cm−1. We see in

Fig. 3.13D that the spatial intensity distribution of the NAFL-α images at 2837 cm−1 is

relatively bluer than those of NAFL-β, with some spatial variation, which indicates that

at these Raman shifts (associated with lipid), i.e., there is higher lipid accumulation in

NAFL-β compared to NAFL-α. In Fig.3.13F, we observe that at the Raman shift 2966

cm−1, the spatial intensity distribution of the NAFL-α images is also bluer than that of

NAFL-β. The relative contrast in intensity between NAFL-α images to NAFL-β images

are higher at the Raman shifts 2837 cm−1 and 2966 cm−1 compared to the relative con-

trast of these two groups of images at Raman shifts 749 cm−1, 1127 cm−1, 1591 cm−1,

and 2856 cm−1 (Figs. 3.13A, 3.13B, 3.13C, and 3.13E). This result validates the relative

importance of the Raman shift 2837 cm−1 as the most important features to distinguish

NAFL-α and NAFL-β. Furthermore, the Raman shifts 749 cm−1, 1127 cm−1 (associated

with cytochrome c), 1591 cm−1 (associated with vitamin A), and 2856 cm−1 are mea-

sured as less important by random forest, because, at those Raman shifts, there is no
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clear contrast between the two groups of images, and consequently, standard deviations

of all the averaged spectra from each 10 pixels × 10 pixels image patches overlaps to each

other.

Figure 3.13: The spatial intensity distribution of the 15 NAFL images (NAFL-α and NAFL-
β) at the Raman shifts, (A) 749 cm−1, (B) 1127 cm−1, (C) 1591 cm−1, (D) 2837 cm−1, (E)
2856 cm−1 and (F) 2966cm−1. Colors denote the intensity of each pixel at these wavenumbers.
Here, the first row from the left to the right: HFHC4w-2, HFHC4w-3, HFHC8w-2, HFHC8w-3,
HFHC8w-4 and the second row from the left to the right: HFHC2w-1, HFHC2w-2, HFHC2w-3,
HFHC2w-4, HFHC4w-1 (all assigned as NAFL-β), and the third row from the left to the right:
HFD4w-4, HFD8w-4, HFD16w-1, HFD16w-2, HFD16w-3 (all assigned as NAFL-α).
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3.2.5.1 Assessments of Insensitivity of the Methods of Feature Importance,

Irrelevancy of Silent Region and Appropriateness of Relative Impor-

tances of Raman Shifts

In this paper, we have quantified the important wavenumbers in differentiating NAFL-

α and NAFL-β from the Raman data by using two measures, i.e., Gini importance and

permutation importance, both derived from ensemble machine learning random forest. In

this section, we compare the results of these two measures and confirm that our important

wavenumbers were insensitive irrespective of which measure we employed. Furthermore,

we visualize the scatter plot in a space spanned by the top two important wavenumbers

with the corresponding Raman images. Fig. 3.14 shows the Gini and permutation feature

importances in differentiating NAFL-α and NAFL-β, where the blue solid line represents

the Gini importance and the red dashed line represents the permutation importance. The

sets of relatively important Raman shifts are mostly the same in the two measures. Note

also that the silent region 1801-2800 cm−1 was almost irrelevant for the differentiation

in both importance measures, indicating the validity of this ensemble machine learning

approach for feature selection.

Figure 3.14: The feature importances for NAFL-α vs NAFL-β by two measures of impor-
tance: Gini importance (blue solid line); permutation importance (red dashed line): In order
to compare the extents of the two different feature importances, the total extents of the feature
importances over the wavenumbers are normalized.

The scatter plot of the Gini and permutation feature importances is shown in Fig 3.15,

which shows a strong correlation (the Pearson correlation coefficient is 0.968). Especially
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in both importance measures, the first and second important Raman shifts, 2837 cm−1

and 2833 cm−1 (arising from lipid), seem to be more important than the others in the

degree of the importance.

Figure 3.15: The scatter plot of the two feature importances: correlation coefficient = 0.9678.

3.2.5.2 Quantification of Spectral Variations in Raman Images.

There are various kinds of cells, such as hepatocytes, hepatic stellate cells, and white blood

cells, composing the liver tissue. In our analysis, we segmented the Raman images into

10 pixels × 10 pixels patches (1 pixel is 5 µm), and computed the averaged spectrum over

each patch. This is aimed at not only reflecting the difference of chemical environment

at the typical size of hepatocytes and reducing the fluctuation in Raman spectra arising

from other cells smaller than hepatocytes, but also reducing contributions of cosmic rays,

shot noise, and other contaminations by the spatial averaging. To know how variable are

the spectra acquired from each rat liver within each Raman image, and how does the

internal spectral variation differ from that of other rats histologically assigned as normal

or NAFL, and NASH, we computed the internal and external variation of NAFL images.

We calculated the internal spectral variation dint(I) as the median of all pairwise

Euclidean distances among the spectra belonging to a particular image I, and the external

spectral variation dext(I) from the image I to the other images in its histologically assigned

same group, i.e., either normal, NAFL, or NASH, as the median of all the pairwise
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Euclidean distances among all the spectra in the image to all the spectra from the other

images. We also calculate the 68% confidence interval of both dint(I) and dext(I) (we

simply omit the argument I hereinafter). The two-dimensional points (dint(I), dext(I))

provide information about variable spectral behavior within a particular image of an

individual versus variable spectral behavior in the same group.

Figure 3.16: Scatter plot of the spectral variation of Raman images (dint(I), dext(I)) from
normal (blue dots); NAFL (green dots) and NASH (red dots), with the 68% confidence in-
tervals of the corresponding median (bars with the same color). Magenta dashed line repre-
sents the locations where the internal, and external spectral variations are equal to each other,
i.e.,(dint(I) = dext(I)

Fig. 3.16 shows the 2D scatter plot of (dint(I), dext(I)) for each image from the three

histological groups: normal; NAFL and NASH, with the 68% confidence intervals. As

the overall trend, the internal variation dext(I) of each image is smaller than its external

variation dext(I) to all other images of the corresponding group. This indicates that for

all histological states the internal spectral variations within each image of an individual

rat (that may arise from fluctuation of microchemical environment including cells smaller

than hepatocytes, the size of image patches, etc.) are smaller on average than the external

spectral variation arising from different individuals in the same group. This implies that

internal spectra variations are less significant compared to those from rat-to-rat variation

over the individual rats.

Among these three histological states, NASH group has smaller external spectral
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variations compared to normal and NAFL groups. The NASH group shows the smallest

rat to rat variation, followed by the normal and NAFL groups. Likewise, the internal

spectral variations of NASH are also relatively small compared to the other states. These

are all consistent with Fig. 2 in which the distance among the group of NASH tends

to be uniformly smaller than those among the other group (much bluer in the figure).

On the contrary, of these quantities, normal tissue and NAFL have the large rat to rat

variation, partially reflecting the observed heterogeneity of the NAFL condition [8].

3.3 Concluding Remarks

The diagnostic approach ‘Raman imaging along with machine learning techniques’, pre-

sented in this chapter, can differentiate the states of NAFLD in rats. Our approach split

NAFL groups into two subgroups NAFL-α and NAFL-β, and it well distinguished NAFL-

β from NAFL-α; it predicted the appearance of NASH after only two weeks feeding on a

high-fat, high-cholesterol diet before histological signatures emerge, identifying a nascent

state of NASH. Furthermore, the random forest classifier extracted the most relevant set

of spectral features which led to the discrimination of NAFL-α and NAFL-β efficiently

with high accuracy.
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Chapter 4

Raman Microscopic Histology using

Unsupervised Machine Learning

This chapter is concerned with the Raman microscopic histology of NAFLD using a com-

bination of methods from machine learning and information theory. First, the extended

simple linear iterative clustering (SLIC) is explained to segment Raman hyperspectral

images. Then, we describe the clustering algorithm based on the rate determining the-

ory (RDT), and determine the most appropriate number of the clusters of spectra by

considering the Poisson error (shot noise) originating from the Raman scattering and

background photons. The agglomerative hierarchical clustering (AHC) is introduced for

the classification of the state of tissues using the information obtained from the cluster

populations. Based on these techniques, we discuss our obtained results, and compare

with the histological assessments.

4.1 Materials and Methods

As described in section 3.1 in chapter 3, a total of 48 liver tissues were collected after 2,

4, 8, and 16 weeks from 16(= 4× 4) rats fed with each diet (standard diet (SD), high-fat

diet (HFD), and a high-fat high-cholesterol diet (HFHC)) for histological and Raman

spectroscopic analyses. Animal model and sample preparation, Raman spectroscopic

measurement, histological staining and evaluations of liver tissues including histological

results are described in section 3.1 in chapter 3.

47
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4.1.1 Preprocessing the Raman Image Data of NAFLD

In this study, after bias and baseline (background and autofluorescence contamination)

correction using the methods described in section 3.1.5.1 in chapter 3, to further increase

the signal to noise ratio in the spectra without degrading the spatial feature of the

Raman images, we extended the ideas of simple linear iterative clustering (SLIC) [53,54],

a superpixel segmentation algorithm designed for three channel images, to accomodate

Raman hyper-spectral images having any number of channels (wavenumbers). Details of

extended SLIC algorithm are explained in the next section.

Tissue Segmentation using Superpixel Approach

After bias and baseline correction, we segmented the Raman tissue images into super-

pixels (comprise of pixels having similar characteristics [55]) to further reduce possible

remaining contributions of noise (superpixels reduce the susceptibility to noise and out-

liers, capturing image redundancy [112,113], to speed up the analysis.

A superpixel is a group of contiguous pixels having similar properties which forms

irregularly shaped grids in 2D image. Achanta et. al. [53,54] presented Simple Linear

Iterative Clustering (SLIC) algorithm to create superpixels in 2D images by iteratively

performing local k-means clustering of pixels starting from regular grids based on gradient

ascent method until some convergence criteria is satisfied. Instead of considering only

spatial proximity as in regular griding, here the pixels are grouped in consideration of

both the spatial proximity and color similarity. SLIC performs a local grouping of pixels

in the 5-D space: three values L, a, b from CIELAB color space for color similarity and

two values x, y from pixel coordinates of the image for spatial proximity [53].

Inspired by the approach of Achanta et al. [53], we have extended SLIC algorithm to

generate superpixels in Raman hyper-spectral images. Instead of using only 5-D space as

in SLIC, we use (W + 2)-dimensional space defined by Raman intensities {Iw(i)} in the

spectral dimensions, and pixel positions xi and yi in the spatial dimensions, i.e., the i-th

pixel in hyperspectral image γi is represented by γi = [I1(i), I2(i), . . . , Iw(i), . . . , IW (i), xi, yi]

where w(= 1, 2, . . . ,W ) denotes the w-th wavenumber measured.

We calculate the set of superpixels Γ = {Γk} (k = 1, 2, ..., Nsp) by first fixing the

number of superpixels per image Nsp, then grouping the N pixels in the image to form
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approximately equal size superpixels through iteration of a local k-means clustering of

pixels in (W + 2)-D space, starting from initial guess of superpixels {Γ(0)
k } sampled on

a regular spatial grid of size S pixels × S pixels. Here the grid step S is defined as

(N/Nsp)1/2 which corresponds to the division of a square N1/2 × N1/2 into a set of Nsp

smaller squares S × S.

The center of each superpixel Γ
(l)
k at the l-th iteration, Γ̂

(l)
k , is defined by

Γ̂
(l)
k =

[
Î

(l)
1 (k), Î

(l)
2 (k), ..., Î

(l)
W (k), x̂(l)(k), ŷ(l)(k)] =

1

N
(l)
k

N
(l)
k∑

j=1

[
I1(j), I2(j), ..., IW (j), x(j), y(j)]

(4.1)

as the mean vector of all pixels belonging to corresponding superpixel Γ
(l)
k , where N

(l)
k

is the number of pixels belonging to the superpixel centered at Γ̂
(l)
k , and is initialized as

S×S for all k. We then estimate the closeness of each pixel γi to each superpixel Γ
(l)
k by

defining the following distance;

D(γi; Γ̂
(l)
k ) =


 dspectral(γi; Γ̂

(l)
k )

max
Γ
(l)
k ∈Γ(l)

[
max
γi∈Γ

(l)
k

dspectral(γi; Γ̂
(l)
k )
]


2

+

 dspatial(γi; Γ̂
(l)
k )

max
Γ
(l)
k ∈Γ(l)

[
max
γi∈Γ

(l)
k

dspatial(γi; Γ̂
(l)
k )
]


2
1/2

,

(4.2)

where the spectral distance dspectral(γi; Γ̂
(l)
k ) and the spatial distance dspatial(γi; Γ̂

(l)
k ) be-

tween the pixel γi and the superpixel center Γ̂
(l)
k are given, respectively, by

dspectral(γi; Γ̂
(l)
k ) =

(
W∑
w=1

(
Iw(i)− Î(l)

w (k)
)2
)1/2

, (4.3)

and

dspatial(γi; Γ̂
(l)
k ) =

((
xi − x̂(l)

k

)2

+
(
yi − ŷ(l)

k

)2
)1/2

. (4.4)

As written above, we start by placing initial guess of superpixel as regular grids of size

S × S, and define a search region as 2S pixels × 2S pixels around the center of each

superpixel. We measure the distance between superpixel centers to each of the pixel γi

lying in the search region around that center by the distance metric defined in Eq. 4.2,

and then each pixel γi is assigned to its nearest superpixel center. Note that the search

region also includes all γi within S × S initial guess, and if the closest superpixel center

from the γi in the sense of Eq. 4.2 is not that of the initial guess, those γi will belong to
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the other superpixel. After all the isolated γi are assigned into the closest superpixels,

i.e., one iteration is finished, we update the set of each superpixel, the number of pixels

within each k-th superpixel N
(l)
k , and recalculate the superpixel centers by Eq. 4.1.

We then compute the residual error E as the Euclidean distance between the locations

of current and previous superpixel centers. We iterate the SLIC algorithm 20 times

or until the locations of superpixels converge within a 1% tolerance, whichever occurs

first. We reassign some disconnected pixels (which appeared mostly in cases in which

iteration was terminated without convergence) to the largest neighboring superpixels. In

this paper, number of superpixels Nsp was chosen so that S = 3, i.e., each superpixel

contains approximately 9 individual pixels (one pixel size is 5 µm). We also note that

this procedure may not be appropriate for very large W , as differences among the spectral

distances obtained from Eq. 4.3 would converge in a very high dimension.

Using this extended SLIC algorithm, we generated superpixels containing an average

of 9 idividual pixels. We chose SLIC instead of a rectangular gridding scheme to better

preserve spatial features in the Raman images, as illustrated in Fig. 4.1A; 2-dimensional

image frames representing the mean intensities at each pixel over all wavenumbers are

shown for an original Raman image (left), averaged 3×3-pixel rectangular grid (middle),

and extended SLIC superpixel segmentation (right). Visual inspection demonstrates

that, extended SLIC superpixel segmentation preserves the structural features of the

original image better than regular gridding. Fig. 4.1B represents the average Poisson

error (from all the Raman images) vs. wavenumber; single-pixel case (red) and after

superpixel segmentation (blue). We see that extended SLIC reduced the average error in

the spectral dimension by a factor of approximately 3 when compared to the single-pixel

case, as shown in Fig 4.1B.
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Figure 4.1: (A) 2-dimensional images representing the mean intensities at each pixel over all
wavenumbers for an original Raman image (left), averaged3×3-pixel rectangular grid (middle),
and extended SLIC superpixel segmentation (right). (B) Average Poisson error (from all the
Raman images) vs. wavenumber; single-pixel case (red) and after superpixel segmentation
(blue).

4.2 Clustering the NAFLD data

After performing the preprocessing schemes described in section 4.1.1, we obtained a total

of 7728 superpixel spectra in the 48 images, with each superpixel spectrum corresponding

to the averaged spectrum over the individual pixels assigned to the superpixel. Before

performing the clustering algorithm, each superpixel spectrum was area normalized (see

section 3.1.5.4 in chapter 3); note that intensity in the silent region, 1801 − 2800 cm−1,

in which there is no Raman signal from biomolecules, was excluded from all analyses. To
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identify groups of spectra having similar Raman information, thus similar biochemical

environment in the Raman images, we performed unsupervised clustering of the spectra

with rate-distortion theory (RDT) [56,57], which has demonstrated good performance in

situations involving detection noise and overlap among clusters [95,114]. The details of

RDT clustering are explained in the following section

4.2.1 Rate-Distortion Theory (RDT) based Clustering

Clustering [115,116] is an unsupervised learning algorithm which divides the data (spec-

tra) into groups (clusters) having the spectra with similar characteristics (similar Raman

information) quantified by, e.g., L2 distance between spectra. Since clustering method

reduces the spectra into smaller number of representative sets (clusters), it compresses

and distorts the information of the original data that results compression and distortion

[114,117,118]. In this work, we employed an information theory ([56,57]) based clustering

by using rate distortion theory (RDT) which classifies the spectra into different groups

having similar Raman characteristics. RDT [56,57] mainly addresses this phenomenon

“compressing the data keeping an acceptable level of distortion”. Suppose that the set of

N spectra is given by S = {sw(1), sw(2), ..., sw(N)} and the set of Nc clusters is given by

C = {C1, C2, ..., CNc}. The RDT clustering algorithm clusters the sets of spectra S into

set of clusters C through the minimization of the functional F [p(Ck|sw(i))] with respect

to the conditional probability p(Ck|sw(i)) [95,114,117,119–121] defined by

F [p(Ck|sw(i))] = I(C; S) + β 〈D(C,S)〉, (4.5)

where the compression I(C; S) known as rate is the average amount of information needed

to specify the spectra sw(i) within the set of clusters C [114,117] which is defined as

I(C; S) =
Nc∑
k=1

N∑
i=1

p(Ck|sw(i))p(sw(i)) log
p(Ck|sw(i))

p(Ck)
, (4.6)

where p(Ck|sw(i)) is the conditional probability of belonging the spectrum sw(i) to the

cluster Ck, p(sw(i)) is the probability of occurring the spectra sw(i), and p(Ck) is the

marginal probability of the cluster Ck; 〈D(C,S)〉 is the mean distortion among the spectra

defined as the mean of the pairwise distance between all pairs of spectra within the set
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of clusters C, averaged over all clusters, which is expressed as [95,117,122]

〈D(C,S)〉 =
Nc∑
k=1

p(Ck)

[ N∑
i,j=1

p(sw(i)|Ck)p(sw(j)|Ck)di,j
]

(4.7)

and the parameter β controls the softness of the clustering as a trade-off between the rate

and distortion.

The input parameters for RDT algorithm is both the number of class Nc and β. We

choose β so that RDT provides a hard clsutering producing all the conditional probabil-

ities p(Ck|sw(i)) approaching 0 or 1. For a fixed β, minimizing the functional F in Eq.

4.5 at different values of Nc, we can obtain a set of possible models to describe the data,

i.e., 〈D(C,S)〉 and I(C,S) can be used as the model selection tools to choose the number

of clusters Nc [117].

4.2.2 Error Propagation and Model Selection

Selection of an appropriate number of groups/clusters is a difficult part of any cluster

analysis. Akaike information criterion [123], Bayesian information criterion [124], mini-

mum description length principle [125], and other model selection approaches [95,114] are

frequently used to find an appropriate model. Here we use a procedure analogous to the

procedure described in [95,114], with which we find the smallest number of clusters de-

scribing the data with goodness-of-fit that is within a tolerance of the maximum allowed

by measurement error.

4.2.2.1 Estimated Error of the Data

Taking the mean distortion, i.e., the average intracluster distance across all clusters in

the model, returned by RDT (Eq. 4.7) to be a goodness-of-fit parameter, then the

model returning the maximum achievable goodness-of-fit (minimum distortion) has each

spectrum in its own cluster. For this model, if the data contains no error then the

distortion is zero. On the other hand, if the data contain errors, nonzero distortion will

arise from the errors, as there is uncertainty in the measured spectra. We estimate the

Poisson errors in the single-pixel Raman measurements with a normal approximation,

and use error propagation for sums of normally distributed random variables [126–128]
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to obtain errors in the single-pixel spectra, and subsequently in the superpixel spectra.

After bias correction each pixel in the image frame at particular wavenumber contains

a photon count I0, which is the sum of two independent Poisson processes: Raman signal

from the tissue Iw, and background contamination Bw, which is estimated from the raw

Raman spectra by recursive polynomial fitting, as described in section 3.1.5.1 in chapter

3. Therefore, the observed intensity I0 of each pixel at a particular wavenumber w can be

expressed as the sum of these independent component processes, i.e., I0 = Iw+Bw. After

estimating Bw, we estimate Iw as Iw = I0 − Bw. We are interested in the uncertainty of

our estimation of Iw, ∆Iw. Using normal error propagation we obtain,

∆I2
w =

(
∂Iw
∂I0

)2

∆I2
0 +

(
∂Iw
∂Bw

)2

∆B2
w

= ∆I2
0 + ∆B2

w,

where ∆Iw, ∆I0, and ∆Bw are, respectively, the uncertainty of Iw, I0, and Bw. Since

I0 and Bw are Poisson variables, ∆I2
0 = I0 and ∆B2

w = Bw. So the error (propagation

uncertainty) of the Raman signal Iw is estimated as

∆Iw = (I0 +Bw)1/2. (4.8)

The superpixel intensity at wavenumber w is the mean of the single-pixel intensities,

sw = 1
m

∑m
i=1 Iw(i), where m is the number of pixels inside a superpixel. Therefore, the

error ∆sw in a superpixel (arising from Poisson noise) at the wavenumber w is calculated

by

∆sw =
1

m

( m∑
i=1

∆I2
w(i)

)1/2

. (4.9)

4.2.2.2 Exploring the Optimal Model using Distortion Cut-off

We select an appropriate number of clusters by defining ‘distortion cutoff’, which in our

case is the amount of distortion arising from photon counting error. As discussed above,

if the data is error-free, then the best fitting model has equivalent numbers of clusters

and spectra, and the distortion vanishes; however, if there is uncertainty in the data then

a nonzero distortion arises.
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We estimate this distortion arising from error through incorporation of the uncer-

tainties as calculated from Eqs. 4.8 and 4.9 as a normal approximation to a Poisson

process, where for each Raman signal sw (the mean intensity of a superpixel at a particu-

lar wavenumber w), a new signal is sampled from a normal distribution N (sw,∆sw). By

randomly sampling at all wavenumbers, we generate a new spectral realization s1
w(i) (‘1’

denotes the first realization) for the original i-th superpixel spectrum sw(i). This new

spectrum is a possible realization of the original spectrum considering uncertainty due to

Poisson error.

Mean distortions

C
o
u
n
t 

 d-cut

A

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of clusters

D
is

to
rt

io
n

 <
D

>

d-cut

B

Figure 4.2: A) Distribution of mean distortion due to error; B) Mean distortion 〈D〉 due to
clustering versus the number of cluster. Dashed red line (red) represents distortion cut-off.

Repeating this procedure generates another possible realization of the original spec-

trum s2
w(i), and we then calculate the pairwise Euclidean distance (Eq. 3.2 in chapter

3) denoted by di, thereby generating a distance for the i-th superpixel spectrum that

may arise from the effects of Poisson error. Performing the same procedure for all N

superpixel spectra, we generate the distances di, i = 1, 2, ..., N , and estimate the mean

distortion arising from error over all superpixel spectra as 〈d〉1 =
∑N

i=1 p(i) di, where

p(i) is weight of i-th superpixel spectrum defined by mi/M where mi, and M denote the

number of pixels within i-th superpixel and the total pixels of the image, respectively.

The entire is then repeated a number of times (nb) to obtain 〈d〉1, 〈d〉2, ..., 〈d〉nb, thus

generating a distribution of mean distortions due to Poisson error, which is shown in

Fig. 4.2A. We chose the 95% upper confidence bound on the distribution to be the

‘distortion cutoff’ at which the quality of the best fitting model cannot be separated from

the distortion arising from the error. The distortion cutoff is displayed as a red dashed
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line in Figs. 4.2A and 4.2B.

In the RDT framework, with a given parameter β, the number of clusters is determined

within the allowed error in the data (see section 4.2.1 for details). Here β was chosen

so that RDT produces a hard clustering; we performed RDT for different numbers of

clusters, and computed the mean distortion 〈D〉 (defined in Eq. 4.7) due to clustering of

the data. The plot of the mean distortion versus the number of clusters is shown in Fig.

4.2B. The model having the largest mean distortion 〈D〉 that is less than the distortion

cutoff is chosen for further analysis, as it is the simplest model that achieves goodness-

of-fit within the range of that allowed by Poisson error. This model has 7 clusters and

is marked with a green circle in Fig. 4.2B, each of the clusters contains similar Raman

characteristics with significant differences among clusters that are larger than those that

may arise from Poisson error in a sense of L2 distance.

4.3 Agglomerative Hierarchical Clustering (AHC)

AHC is a bottom-up clustering algorithm [129] which starts by assigning each data point

(cluster population per tissue in our case) initially as individual singleton cluster, and

then recursively combines (agglomerate) the closest pair of clusters by defining some

proximity criteria until all data points belong to a single cluster. The results of AHC are

visualized graphically by a multilevel hierarchy of clusters as a tree which is also called

dendrogram. Starting from the bottom layer having each data point as individual cluster,

the two clusters having the smallest pairwise distance are merged, and is represented by

a horizontal line (binary tree) in the dendrogram. Likewise, treating the merged cluster

as new singleton cluster, a new merge is obtained from these two clusters having smallest

pairwise distances. This procedure repeats until all the data points lie into one cluster.

In the dendrogram, each of horizontal bar represents individual merging, and y-

coordinates of those bars represent the distance between two clusters that were merged,

and the data points are viewed as singleton clusters along x-axis (at the leaves of the den-

drogram). By cutting the dendrogram at some threshold points, we can obtain different

disjoint clusters. AHC is informative for displaying the data into different clusters and

the dendrogram visualizes the hierarchical structure inside the cluster by reconstructing

the history of the merges in the clustering.
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In our data we choose average linkage technique to define the cluster proximity which

measures the distance between two clusters as the average pairwise distance among all

pairs of data points in two different clusters:

d12 =
1

n1n2

n1∑
i=1

n2∑
j=1

dist(xi, yj) (4.10)

where x1, x2, ..., xn1 are the data points from cluster 1 and y1, y2, ..., yn2 are the data points

from cluster 2 and dist(xi, yj) is the L1 distance between the points xi and yj.

Silhouette Coefficient

As stated in the main text, we measured the cluster average silhouette [130] to find

the quality of grouping obtained by AHC on cluster population distribution. For a

fixed number of groups of the data points (tissues), obtained by AHC, cluster average

silhouette of all the points of that data set can evaluate the degree/strength of separation

between groups which eventually give the suggestion about how appropriate the number

of groups is. Comparing the cluster average silhouette obtained by different number of

tissue groups, we can choose the model giving the highest average silhouette.

Silhouette coefficient for any point p in the data set is computed by the following

equation:

sil(p) =
dext(p)− dint(p)

max(dint(p), dext(p))
, (4.11)

where dint(p) is the average L1 distance of p from all the data points in the same cluster

(internal distance/cohesion); where dext(p) is the average L1 distance of p from all the data

points in the nearest cluster (external distance/separation). The values of silhouettes can

vary from −1 to 1, where the value 1 indicates that the point p is far from the nearest

cluster, the value 0 indicates that the point p is very close to the nearest cluster. The

average cluster silhouette is computed by taking the overall average of all silhouette

coefficients obtained from all the data points.
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4.4 Results and Discussions

4.4.1 Clusters are Distributed across the Tissues

We have extracted 7 clusters, each of which contains a set of similar superpixel spectra

that corresponds to different parts/regions within the liver tissue images having similar

biochemical environments.

SD2w-1 (normal) SD2w-2 (normal) SD2w-3 (normal) SD2w-4 (normal) SD4w-1 (normal) SD4w-2 (normal) SD4w-3 (normal) SD4w-4 (normal)

SD8w-1 (normal) SD8w-2 (normal) SD8w-3 (normal) SD8w-4 (normal) SD16w-1 (normal) SD16w-2 (normal) SD16w-3 (normal) SD16w-4 (normal)

HFD2w-1 (normal) HFD2w-2 (normal) HFD2w-3 (normal) HFD2w-4 (normal) HFD4w-1 (strange) HFD4w-2 (normal) HFD4w-3 (normal) HFD8w-1 (normal)

HFD8w-2 (normal) HFD8w-3 (normal) HFD16w-4 (normal) HFD4w-4 (NAFL) HFD8w-4 (NAFL) HFD16w-1 (NAFL) HFD16w-2 (NAFL) HFD16w-3 (NAFL)

HFHC2w-1 (NAFL) HFHC2w-2 (NAFL) HFHC2w-3 (NAFL) HFHC2w-4 (NAFL) HFHC4w-1 (NAFL) HFHC4w-2 (NAFL) HFHC4w-3 (NAFL) HFHC8w-2 (NAFL)

HFHC8w-3 (NAFL) HFHC8w-4 (NAFL) HFHC4w-4 (NASH) HFHC8w-1 (NASH) HFHC16w-1 (NASH) HFHC16w-2 (NASH) HFHC16w-3 (NASH) HFHC16w-4 (NASH)

(A) Cluster maps

SD2w-1 (normal) SD2w-2 (normal) SD2w-3 (normal) SD2w-4 (normal) SD4w-1 (normal) SD4w-2 (normal) SD4w-3 (normal) SD4w-4 (normal)

SD8w-1 (normal) SD8w-2 (normal) SD8w-3 (normal) SD8w-4 (normal) SD16w-1 (normal) SD16w-2 (normal) SD16w-3 (normal) SD16w-4 (normal)

HFD2w-1 (normal) HFD2w-2 (normal) HFD2w-3 (normal) HFD2w-4 (normal) HFD4w-1 (strange) HFD4w-2 (normal) HFD4w-3 (normal) HFD8w-1 (normal)

HFD8w-2 (normal) HFD8w-3 (normal) HFD16w-4 (normal) HFD4w-4 (NAFL) HFD8w-4 (NAFL) HFD16w-1 (NAFL) HFD16w-2 (NAFL) HFD16w-3 (NAFL)

HFHC2w-1 (NAFL) HFHC2w-2 (NAFL) HFHC2w-3 (NAFL) HFHC2w-4 (NAFL) HFHC4w-1 (NAFL) HFHC4w-2 (NAFL) HFHC4w-3 (NAFL) HFHC8w-2 (NAFL)

HFHC8w-3 (NAFL) HFHC8w-4 (NAFL) HFHC4w-4 (NASH) HFHC8w-1 (NASH) HFHC16w-1 (NASH) HFHC16w-2 (NASH) HFHC16w-3 (NASH) HFHC16w-4 (NASH)

(B) Cluster population

Figure 4.3: (A) Cluster maps of 7 clusters across all the images. Each of two consecutive rows
at the bottom, middle and top are, respectively, from SD, HFD, and HFHC diet model. The
diet (SD, HFD, HFC) and histological (normal, NAFL, NASH) states of each of the images are
labeled at the top of each image; (B) The population distributions of 7 clusters in each of the
images. The images are arranged in similar order as cluster maps and the clusters are ordered
from left to right according to increasing order of lipid content as described in Fig. 4.4a below.

The spatial distributions of these 7 clusters across the tissue images, termed as ‘cluster
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maps’ hereinafter, are shown in Fig. 4.3A with 7 colors, each corresponding to a different

cluster. The cluster maps visualize the distributions of the 7 clusters representing the

underlying chemical environments across the images.

Fig. 4.3B shows the population distributions of each of the clusters within each of the

Raman tissue images. The clusters are ordered from left to right according to increasing

relative lipid intensities in the corresponding cluster mean spectra (shown in Fig. 4.4A

below), and the colors correspond to those used in the cluster maps in Fig. 4.3A. Visual

inspection of Fig. 4.3A shows that most clusters are not unique to a single diet or

histologically assigned group, but are allocated across different diets and histological

states. Additionally, Fig. 4.3B shows that, although the clusters are distributed across

multiple diet/histological states, the population distributions vary from state to state.

From Figs. 4.3A and 4.3B, we can observe that, on average, purple and cyan clusters

(‘cluster 7’ and ‘cluster 6’) are highly populous in the HFHC diet model, while red, black

and orange clusters (‘cluster 3’, ‘cluster 2’, and ‘cluster 1’) are more populous in the

SD model. Though the green (‘cluster 4’) and pink (‘cluster 5’) clusters are the most

populous groups, all clusters possess nonzero populations in the HFD diet model. This is

in contrast to the SD and HFHC diet models, indicating a larger degree of microchemical

diversity in the HFD dietary model of liver tissue.

The average spectra of the individual 7 clusters are shown in Fig. 4.4A, where the

solid lines (with colors corresponding to those used in Fig. 4.3) represent the mean

spectra of the clusters, and the shaded areas corresponding to ± one standard deviation.

As described above, the clusters are labeled as ‘cluster 1’ to ‘cluster 7’ according to the

increasing order of relative intensity in the corresponding mean spectra at the integrated

lipid-rich wavenumnber bands 1425 − 1473 cm−1 and 2801 − 2971 cm−1, corresponding

to CH2 moieties [98]. We note that an identical ordering is found if we arrange the

clusters according to decreasing relative intensity of vitamin A regions (1591−1600 cm−1,

1156−1160 cm−1 and 1195−1200 cm−1 [40]). That is, the cluster containing the highest

intensity in the mean spectrum at lipid-rich regions is numbered as ‘cluster 7’ (purple

color) while the cluster containing the lowest intensity in the mean spectrum at lipid

regions is labeled ‘cluster 1’ (orange color). The other clusters, black, red, green, pink,

cyan, are respectively labeled ‘cluster 2’ to ‘cluster 6’ according to ascending order of

lipid intensity.
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Figure 4.4: (A) Mean spectra of 7 clusters with ±one standard deviations (shades patch). The
spectra colored as orange, black, red, green, pink, cyan and purple are, respectively, numbered
from 1 to 7 according to the increasing order of relative intensity at the integrated lipid-rich
bands (integration of the wavenumbers 1425 − 1473 cm−1 and 2801 − 2971 cm−1); (B) Gini
importance for each of the cluster relative to all other clusters (each of the 7 solid lines correspond
to distinctive features of one cluster to all others). We used completely randomized features
in decision trees of random forest to reduce bias in feature importances. The small gaps along
wavenumber axes represent the silent regions (1801− 2800 cm−1) which were cropped from the
spectra.
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The detailed view of the mean cluster spectra (each in one subplot) is shown in Fig.

4.5.
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Figure 4.5: Detailed of mean cluster spectra shown in Fig. 4.4 with ±one standard deviations
(shades patch). The colors correspond to the 7 clusters. Due to very high intense peak at
vitamin A (∼ 1591 cm−1), the difference spectra for cluster 1 (orange) is scaled (multiplied) by
1/2 for visual clarity. The small gaps along wavenumber axes represent the silent regions. The
significant Raman peaks are labeled with chemical assignments details of which are shown in
Table 4.1.

The mean spectra (Fig. 4.4A and 4.5) provide valuable information in understanding

the chemical features of the clustering results. Significant Raman peaks are located at dis-
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tinct wavenumber ranges associated to different chemical assignments such as cytochrome

c, vitamin A, proteins, cholesterol, and different types of lipids. Representative peaks are

located at the following wavenumber ranges: 700−705 cm−1 (cholesterol), 740−760 cm−1

(cytochrome c/heme), 997− 1007 cm−1 (phenylalanine; symmetrical ring breathing [4]),

1123− 1133 cm−1 (cytochrome c/heme), around 1156cm−1 and 1200 cm−1 (vitamin A),

1300 − 1311 cm−1 (cytochrome c/heme), 1429 − 1460 cm−1 (lipid), 1583 − 1590 cm−1

(cytochrome c), 1591− 1600 cm−1 (vitamin A), 1653− 1662 cm−1 (C=C , amide-I), and

2833−2970 cm−1 (lipids and proteins) [4,40,41,98,131]. See Table 4.1 for detailed assign-

ment and tabulation of prominent peaks in the mean cluster spectra shown in Fig. 4.4A

and 4.5 [4,40,41,98,131]:

Raman band locations (cm−1) Chemical assignments
700− 705 Cholesterol
740− 760 Cytochrome/heme
∼ 1015 Vitamin A

1123− 1133 Cytochrome/heme
∼ 1160 Vitamin A
∼ 1200 Vitamin A
∼ 1275 Vitamin A

1429− 1460 Lipids
∼ 1550 Amide-II

1583− 1590 Cytochrome/heme
1591− 1600 Vitamin A
1653− 1662 amide-I
∼ 2856 CH2

∼ 2872 CH2

∼ 2898 CH3

∼ 2932 CH3

∼ 3014 CH

Table 4.1: Wavenumber ranges for the prominent Raman peaks observed in the cluster
mean spectra (Figs. 4.4A and 4.5).

To understand which wavenumber regions have significant contributions to the dis-

tinction of a particular cluster from other clusters, we estimated the importance of each

wavenumber with the ensemble-learning-based random forest (RF) classifier [51,52] (see

section 3.1.6.2 in chapter 3 for details). The estimation of feature importance was formu-

lated as a post hoc classification in which the cluster labels for each spectrum output by

RDT are input to a random forest classification as training labels. The random forest is

then trained with the labeled spectra, and two different measures of feature importance,



4.4 RESULTS AND DISCUSSIONS 63

the Gini and permutation importance measures [86,87] (see section 3.1.6.2 in chapter 3)

are estimated in a post hoc manner.

Additionally, due to variation among the populations of the clusters, we note that the

raw Gini importance measures have been rescaled such that the maximum importance,

resulting from perfect classification at a single wavenumber, is unity. That is, to make

the Gini importance measures as computed for the distinction of one particular cluster

directly comparable to those generated for the distinction of other clusters, each measure

is scaled according to the maximum possible value it can take for that particular cluster.

The Gini importance spectra, i.e., the Gini importance measures as a function of all

wavenumbers, associated with all spectral clusters are shown in order of increasing lipid

contribution from top to bottom in the subplots of Fig. 4.4B. To quantify differences in

chemical contributions among the clusters, and to reinforce the results of feature impor-

tance estimation, we include the mean difference spectrum of each cluster as Fig. 4.6.

Details of the calculation are provided in section 4.4.1.1. The shaded envelope in each of

the subplots of Fig. 4.6 correspond to 68% confidence intervals around mean difference

spectra. Positive and negative differences, respectively, represent increased and decreased

Raman intensity of the chemical constituents associated to particular wavenumbers in the

spectra assigned to the cluster.

The solid lines represent the cluster mean difference spectra while the shaded envelops

correspond to the 68% upper and lower confidence bounds around mean difference spectra

(colors of the lines correspond to the clusters used in Fig. 4.4A).
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Figure 4.6: Cluster mean difference spectra with 68% lower and upper confidence bound
(shaded envelop). Due to very high intense peak at vitamin A (∼ 1591 cm−1), the differ-
ence spectra for cluster 1 (orange) is scaled (multiplied) by 1/2 for visual clarity. The small
gaps along wavenumber axis represent the silent regions (1800− 2800 cm−1).

Recent studies of liver tissue using Raman imaging have found that lipid profiles and

vitamin A distributions in the liver tissue are two main features (biomarkers) in the
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distinction of healthy and diseased tissue [40]. Accumulation of lipids due to high fat

consumption is the first step in the pathogenesis of NAFLD [4]. The extent of the accu-

mulation of triacylglycerols (TAGs) has been the basis for the quantification of severity

of NAFLD [4,8]. Using information from these studies along with observations from Figs.

4.4, 4.3a and supporting Fig. S2, we may interpret the most likely associations between

regions of the liver tissues and the spectral clusters.

Relative to those of other clusters, the mean spectra (Figs. 4.4A and 4.5) of clus-

ter 1 (orange) and cluster 2 (black) possess remarkably high intensities in the 1590-

1600 cm−1 wavenumber region associated with vitamin A [40]. Similarly high mag-

nitude is observed in the same region of the Gini importance spectra (Fig 4.4B) cor-

responding to these two clusters, along with additional vitamin A contributions near

1015, 1160, 1200, and 1275 cm−1, strongly suggesting that vitamin A is important to the

distinction of these two clusters. Because Vitamin A is known to be mostly stored inside

hepatic stellate cells (HSCs) in healthy tissue [40,41], we deduce that the regions of the

tissue containing these two clusters are most likely associated with the quiescent HSCs.

Considering the extremely high vitamin A intensities, regions of the tissues associated

with cluster 1 (orange) most likely contain (regions of) HSCs with high concentrations of

vitamin A while the regions associated with cluster 2 (black) may indicate (regions of)

HSCs with less concentrated vitamin A.

We note that, while clusters 1 and 2 show small, disconnected regions of spatial conti-

guity in the cluster maps (Fig. 4.3A), clusters 3 through 7 show different behavior, having

large regions of spatial contiguity that can span entire tissue samples. The Gini impor-

tance spectra of these clusters (3 to 7) are similar in shape and have large magnitudes in

the wavenumber regions associated with lipids (1425− 1475, 2800− 2900 cm−1), though

significant contributions across the entire spectral range are also observed. As shown in

Fig. 4.4A, the mean spectra of clusters 3 through 7 of similar shape but are marked

by successive increases in intensity at wavenumbers associated with lipids accompanied

by successive decrease in vitamin A and cytochrome (745 − 755, 1125 − 1135, 1300 −

1315, 1580 − 1590 cm−1) regions. This trend is clearer in the difference spectra (Fig.

4.6), in which difference intensities are negative at wavenumbers associated with lipids

for the clusters 3 (red) and 4 (green) and successively more positive for clusters 5 (pink),

6 (cyan), and 7 (purple). Oppositely, difference intensities at wavenumbers associated
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with cytochrome are positive for clusters 3 and 4, near zero for cluster 5, and negative

for clusters 6 and 7. These trends indicate increases in relative lipid contributions and

decreases in relative cytochrome contributions, respectively, from cluster 3 to cluster 7.

Also observed in cluster 7 is a slight positive contribution at ∼ 702 cm−1, suggesting an

increase in cholesterol contribution in this cluster. Finally, each of clusters 3 through

7 exhibits zero or negative vitamin A intensity, which, when considered in concert with

the large degree of spatial contiguity, suggests that these clusters represent regions of the

tissues containing hepatocytes having various levels of lipid deposition.

Because cluster 3 (red) is most populous in SD and normal histological tissues, and is

accompanied by numerous vitamin A rich (orange and black) regions, it most likely rep-

resents tissue regions containing healthy hepatocytes. Clusters 4 (green) and 5 (pink)

are more populous in HFD and NAFL tissues, suggesting that they represent hepato-

cytes with increase lipid accumulation. Finally, clusters 6 (cyan) and 7 (purple) are most

populous in tissues from the HFHC dietary group, containing both NAFL and NASH

diagnoses, indicating that these clusters most likely represent hepatocytes having rel-

atively high level of lipid accumulation. In the case of cluster 7, this accumulation is

accompanied by an observable increase in cholesterol contribution and marked reduction

of vitamin A, which has been attributed to significant growth in the number and size of

lipid droplets in the progression of NAFLD [4].

4.4.1.1 Derivation of Cluster Mean Difference Spectra

The cluster mean difference spectra are obtained according to the following procedures: at

a particular wavenumber w, the mean difference in intensities δk(w) between the spectra

from cluster k to all the spectra from other clusters is obtained by the expression

δk(w) =
1

Nk(N −Nk)

∑
i∈ck

∑
j∈cck

(sw(i)− sw(j))

where ck is the set of all the superpixel spectra from cluster k, cck is the set all spectra

not belong cluster k; Nk is the total number of spectra in cluster k, and N is the total

number of spectra in all the clusters. We have also computed 68% upper and lower

confidence bounds around the mean difference spectrum obtained as piled from all the

pairwise difference spectra.
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4.4.2 Classifying the Liver Tissues based on Cluster Population

Because each of the 7 clusters represents a different underlying chemical environment,

the cluster maps and populations shown in Fig. 4.3 indicate differences in biological and

chemical compositions across the liver tissues and populations of clusters are not unique

to a particular dietary model or histologically assigned group, suggesting that the cluster

populations may be useful as a ‘descriptor’ of tissue state in distinguishing groups of

tissues having different diets or different states of NAFLD. We use this information to

investigate how the clustering results can be used to identify the groups of tissues in

terms of statistical distances among population distributions of the 48 Raman images.

Through the application of agglomerative hierarchical clustering (AHC) with average

linkage algorithm [129] using the L1 distance metric, we investigate the tissues and identify

which of them are closest in terms of cluster population distributions. See section 4.3 for

full details of AHC.
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Figure 4.7: Dendrogram resulting from AHC for tissue classification in terms cluster population.
The images are numbered from 1 to 48 based on the diet order, i.e., SD images are labeled from
1 to 16, HFD images are labeled from 17 to 32, and HFHC images are labeled from 33 to 48.
Diet and histological assignments are labeled at bottom of the leaf nodes. Here normal, NAFL
and NASH histology are, respectively, represented by ‘nr’, ‘nf’ and ‘ns’ while standard diet, high
fat diet and high fat high cholesterol diets are, respectively, represented by ‘sd’, ‘hf’ and ‘hc’,
each of which followed by a numerical index representing the feeding weeks and rat’s number
(in last index), e.g., sd164 represents standard diet 16 week 4th rat etc. One tissue (HFD4w-1)
with strange histology having mild fibrosis is represented by ‘st’. We note that group 2R is
nearly equidistant from groups 2L and 3L.
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The AHC results for the grouping of 48 tissues are presented in Fig. 4.7 as a dendro-

gram. An AHC dendrogram visualizes the results by showing how the individual tissues

merge into groups. Single liver tissues (48 data points), viewed as initial singleton groups,

are represented by nodes along the horizontal axis with corresponding indices, and diet

and histological labels. Groupings among tissues are represented by horizontal connec-

tions on the vertical axis. The vertical positions of the horizontal connections represent

the average L1 distances (Eq. 4.10) at which two tissues or groups are merged to form a

larger group.

Although AHC does not require a pre-specified number of groups, as the hierarchical

behavior of AHC is adequately represented in the dendrogram, it is useful to analyze

the properties of merged groups of tissues. Tissue groupings of various sizes and gran-

ularity can be obtained by merging the connected (groups of) nodes below a specified

L1 distance threshold, below which further branching is ignored. Fig. 4.7 indicates four

such thresholds as dashed horizontal lines. To assess the quality of various numbers of

groups we use the average cluster silhouette [130], a measure that compares the similar-

ity within tissue groups to the similarity between adjacent tissue groups. Details of the

cluster silhouette are discussed in section 4.3, and the values of the cluster silhouette as

the number of tissue groups is increased is shown in Fig. 4.8; here the plot of the average

cluster silhouette versus the number of tissue groups ranging from 2 to 8 obtained by

AHC is shown.
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Figure 4.8: The average cluster silhouette as a function of the number of tissue groups ranging
from 2 to 8 by AHC.
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Though Fig. 4.8 indicates that five tissue groups produce the largest cluster silhou-

ette, in our case it is advantageous to analyze multiple groupings as a means to better

understand the hierarchical nature of the set of tissue samples. For the convenience, each

of the 5 tissue groups is labeled as ‘1’, ‘2L’, ‘2R’, ‘3L’ and ‘3R’ in Fig. 4.7.

Defining Threshold 1 to be ∼ 1.8 L1 distance units, the dendrogram splits into two

main branches, producing 2 groups of tissues. The group to the left contains all 16 SD

tissues and 14/16 HFD tissues (red and blue labels), while the group to the right contains

all 16 HFHC tissues and 2 HFD tissues. This result strongly suggests the presence of a

distinct change in the Raman images of the liver tissues of the rats on the HFHC diet,

relative to SD rats, and, to a lesser extent, HFD rats. It should be noted that, while the

AHC results track nicely with diet, histological assignments are less precisely represented,

with the group to the left containing tissues diagnosed as normal and NAFL, while the

group to the right contains tissues diagnosed mostly as NAFL and NASH, but also one

that was diagnosed as normal tissue.

Upon decreasing the L1 distance threshold to ∼ 1.4L1 distance units (Threshold

2), the dendrogram splits into three main branches, yielding the blue, red and green

groups, labeled as group 1, group 2, and group 3, respectively. As indicated in the

labels corresponding to diet along the horizontal axis, this AHC results closely match the

grouping by dietary models, with group 1 (blue), group 2 (red), and group 3 (green) each

containing tissues belonging mostly to SD, HFD, and HFHC diet, respectively. Using

the dietary models as a ground truth for AHC classification, we obtain 16/16 correct

assignments for the SD model, 12/16 for the HFD model, and 16/16 for the HFHC

diet model, yielding a classification accuracy by diet of 44/48 tissues, or 91.7%. In

contrast, while all tissues in group 1 (blue) were histologically assigned to be normal liver

tissue, groups 2 (red) and 3 (green) both contain relatively equal mixtures of histological

assignments, with group 2 containing tissues assigned to be normal and NAFL, while

group 3 contains mostly NAFL and NASH assignments.

The average population distributions of each of the 7 clusters of spectra (obtained

by RDT clustering) with the 3-group AHC results, the dietary models, and histologi-

cal states, are shown in Figs. 4.9A, 4.9B, and 4.9C, respectively. The clusters in Fig.

4.9 are arranged from left to right according to increasing lipid content. The error bars

indicate the minimum and maximum population of a particular cluster within that par-
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Figure 4.9: Average population distribution of each cluster within each: (A) 3-group AHC; (B)
diet states; (C) histological sates. Error bar indicates the minimum and maximum population
of a particular cluster within that state/AHC group.

ticular state/AHC group, and colors of clusters correspond to those used in Fig. 4.3.

Visual comparison of the average population distributions in Figs. 4.9A, 4.9B, and 4.9C

confirms that 3-group AHC results show good alignment with dietary models, with the

cluster populations of group 1 (blue) and SD, group (red) 2 and HFD, and group 3

(green) and HFHC, being comparable to one another. Again in contrast to the dietary

model, the cluster populations of the histological model do not align with 3-group AHC

results, suggesting that the AHC results are more indicative of dietary behavior than

of histologically assigned NAFLD state. To further corroborate these results, we also

compare cluster populations through a similarity score, which reflects the similarity of

a particular tissue to a particular ground truth state, such as the SD dietary state. See

section 4.4.3 for complete details. We find that the AHC results are mostly consistent

with those obtained by the similarity score plot shown in supporting Fig. 4.13.

We note that in the 3-group AHC results, the group 2R is nearly equidistant from

groups 2L and 3L. This is reflected in the next decrease of the AHC threshold to ∼ 1.2L1

distance units (Threshold 3), producing 4 groups in which group 2 (red) has further

divided into two subgroups, group 2L and group 2R, while group 1 and 3 remain un-

changed. As suggested above in the discussion of the cluster maps of Fig. 4.3A, this

result is further indicative of a larger degree of diversity in group 2, and thus the HFD
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dietary model, considering group 2 is fully composed of HFD tissues. Groups 2L and

2R contain 8 and 4 tissues, respectively, with 6/8 group 2L tissues having been assigned

normal histology while 3/4 group 2R tissues were diagnosed as NAFL. This result sug-

gests a loose association with histological assignments, however no firm conclusions can

be drawn owing to the small sample size.
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Figure 4.10: (A) Average population distribution of RDT clusters within each 5-group AHC,
error bar indicates the minimum and maximum population of a particular cluster within a
particular 5-group AHC; (B) Gini importance for each pair of adjacent clusters from cluster 3
(red) to cluster 7 (purple).

For the final grouping having the maximum cluster silhouette, we produce five tissue

groups according to Threshold 4, with group 3 (green) being further divided into two

subgroups: groups 3L and 3R. The results of the 5-group AHC model are summarized

in Fig. 4.10. As shown in Fig. 4.10A, the average population distributions for each of

the 5 tissue groups display a notable progression in their shapes, with the population

centers beginning to the left of the figure with group 1, and moving incrementally to the

right for groups 2L, 2R, 3L, and 3R, toward clusters having higher lipid contributions.

In tracking the progression of the most populous spectral cluster in each tissue group,

we observe a sequential progression, as cluster 3 (red) is the most populous in group 1,

cluster 4 (green) in group 2L, cluster 5 (pink) in group 2R, cluster 6 (cyan) in group 3L,
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and cluster 7 (purple) in group 3R. As discussed in section 4.4.1, spectral clusters 3 to 7

are most likely hepatocytes of containing progressively increased lipid, and, in the case

of clusters 6 and 7, cholesterol accumulation. This result suggests then, that each tissue

group in the 5-group AHC is a coarse-grained region in the progression of healthy liver

tissue to more diseased states like NAFL and eventually NASH.

To better understand the biochemical features underlying this sequential behavior,

we computed the Gini importance spectra for each pair of adjacent spectral clusters from

cluster 3 (red) to cluster 7 (purple), shown in Fig. 4.10B. Accompanying Fig. 4.10B is Fig.

4.11, which displays the mean difference spectra between the adjacent pairs of spectral

clusters, and Fig. 4.12, in which adjacent pairwise difference spectra are superimposed

to highlight changes in the progression from cluster 3 to cluster 7.

The top panel of Fig. 4.10B, showing the Gini importance spectrum for the cluster

3 : cluster 4 adjacent pair, indicates that the main contributions to the distinction of

these two spectral clusters are in wavenumber regions corresponding to lipid contributions

(1425−1475 cm−1, 2800−2900 cm−1). The corresponding difference spectrum (Fig. 4.11)

indicates an increase in intensity in these regions, suggesting an increase in relative lipid

concentration in moving from cluster 3 to 4. Similar behavior is observed in moving from

cluster 4 to cluster 5, with the additional observation of decreased cytochrome intensity.

Although similar behavior is again observed in moving from cluster 5 to cluster 6, in that

increased lipid and decreased cytochrome contributions are again observed, there are

distinct changes in the shapes of the Gini importance and mean difference spectra. Most

notably, peaks appearing in the Gini importance spectrum at 702, 1671, and 2958 cm−1

and having positive intensity in the mean difference spectrum indicate an increase in

contribution of cholesterol and/or cholesterol esters in moving from cluster 5 to cluster 6.

Additional peaks appears near 2870 and 2932 cm−1, indicating increased presence of either

fatty acids or triacylglycerols. This distinctive behavior is most obvious in supporting

Fig. 4.12, in which the difference spectra in question are superimposed in the same axes.

Lastly, moving from cluster 6 to cluster 7 displays similar behavior intensity, indicating

similar chemical characteristics at further increased relative concentrations [98].
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Figure 4.11: The mean difference spectra of 5 adjacent clusters (cluster 3 (red) to cluster 5
(purple))
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The superimposed plot of the mean difference spectra of 5 adjacent spectral clusters

(cluster 3 (red) to cluster 5 (purple)) are shown in following Fig. 4.12:
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Figure 4.12: The superimposed plot of mean difference spectra of 5 adjacent spectral clusters
(cluster 3 (red) to cluster 5 (purple))

Based on these observations, group 1, containing mostly SD and histologically normal

tissues, and having population distributions indicating healthy hepatocytes and large

presence of vitamin A in HSCs, most likely represent healthy liver tissue. Tissues in

groups 2L and 2R, which are dominated by clusters 4 and 5, respectively, indicate in-

creased lipid contribution and decreased vitamin A and cytochrome contributions without

notable changes in lipid composition, which may suggest an early stage of NAFLD [4]. In

contrast, groups 3L and 3R are dominated by clusters 6 and 7 in which notable changes in

the spectral profile in regions associated with lipids are observed. This may indicate both
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an increase in lipid accumulation and a reorganization of lipid composition, which, along

with the appearance of cholesterol, cholesterol esters, and triacylglycerols and reduction

in vitamin A contribution (vitamin A is absent in pathological states [40,41,132,133]), has

been associated with more severe states of NAFLD [4,40]. To summarize, the 5 groups of

tissues obtained by AHC may be coarse-grained reflections of different states of the liver

tissues, with group 1 being a healthy state, and the progression through groups 2L, 2R,

3L, and 3R being different states of NAFLD ranging sequentially from mild to severe.

4.4.3 Analogy between Diet/Histological States and Raman As-

signment

To know how the diet/histological assignment (disease states of NAFLD) for each of the

tissue correlate with their Raman characteristics, we use the information of the cluster

population distributions (shown in Fig. 4.3B) and mean population distributions in

diet/histological state shown in Fig. 4.9B and 4.9C. The average population distribution

is the mean characteristics of each histological/diet states, which provides the average

behavior of the three histological/states expressed in terms of 7 clusters. These average

population distributions are used as references to classify each tissue (rat) by measuring

the degree of similarity of cluster population of individual rat (shown in Fig. 4.3B) to

the mean population distribution. First, we calculate the L1 distance of the population

vectors of each rat from the average population distribution in a particular state g as

d(i, g) =
7∑

k=1

∣∣P i
k − P̄

g
k

∣∣, i = 1, 2, .., 48 (no. of images); g = 1, ..., 3 (no. of states),

where P i
k is the population of the spectral cluster k in the image i and P̄ g

k is the average

population of cluster k in the state g. Then, the similarity of the cluster population of

each rat to average population distribution is computed as

sm(i, g) = max(d)− d(i, g), where d = {d(i, g)}, i = 1, 2, ..., 48.

Finally, the similarity score of each of individual rat to the average population distribution

is computed by

sc(i, g) = 100× sm(i, g)∑3
g=1 sm(i, g)

.
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The similarity score plot is shown in Fig. 4.13.
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Figure 4.13: Left column: The similarity score plot of individual image to each of the histolog-
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The similarity score provides the information about each of the images: how their

Raman characteristics match with histological (/or diet based) assignment (i.e., disease

state of tissue).

In case of dietary model, we see that SD and HFHC tissues are accurately classified

while 4 HFD (HFD: 2w-4, 4w-3, 8w-3, 8w-4) tissues are misclassified which harmonizes

with the results obtained by 3-group AHC results in Fig. 5; suggesting that Raman

information can accurately classify the tissue states of dietary model (ground truth).

In case of histological assignments, we have found that, out of 26 normal rats, one (HFD

8w-3) is classified as NAFL. Rat with peculiar histology (mild fibrosis) (HFD 4w-1) is

similar to normal. Out of 15 NAFL rats, two rats are classified as normal: HFD 4w-4

and HFD 16w-2, and six NAFL rats are classified as NASH: HFHC 4w-1, HFHC 4w-2,

HFHC 4w-3, HFHC 8w-2, HFHC 8w-3, and HFHC 8w-4. Finally, out of six NASH, one

is similar to NAFL: HFHC 4w-4.

Thus, we see that normal and NASH states are mostly in agreement with the Raman

assignment. But in case of NAFL, the histological assignment and Raman characteristics

are quite different, which may indicate that there is some uncertainty in the histological

diagnosis for NAFL due to its heterogeneous nature, which can be extracted by Raman

micro-spectroscopy.

4.5 Concluding Remarks

The approach presented in this chapter provided a scheme for Raman image-based his-

tology in which low signal-to-noise ratio (SNR) inherent to Raman measurements are

taken into account in terms of superpixel segmentation of the images based on spatial

and spectral proximity. The superpixel segmentation algorithm, which can be used to

segment any type of hyper-spectral image, produced a visually superior image (reducing

noise while preserving spatial features as much as possible) in comparison to traditional

rectangular griding. Cluster maps allowed for the visualization of the molecular distri-

butions across the liver tissues, elucidating possible chemical components that have vital

roles in the progression of the diseases. In agreement with previous studies [3], [4], [41],

we observed that the progression of NAFLD is most likely associated to deposition of

fats in the liver along with the reduction of vitamin A and cytochrome presence. We
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also found that Raman information can extract the diversity in the different diet and

histological states, and help to categorize each rat in terms of severity.



Chapter 5

Conclusions and Outlook

The main goal of this work was the systematic analysis of Raman hyperspectral image

data to increase diagnostic reliability of histopathology using the combination of ana-

lytical tools from machine learning and information theory. Using a dietary model of

non-alcoholic fatty liver disease in rats, we have coupled Raman imaging with methods

of machine learning and information theory to assist histological inspection that benefit

disease diagnosis. This work was divided into two parts. In the first study, through

dimensional reduction and ensemble-learning-based random forest classification of the

spectra within the Raman images, we have found good agreement with the classification

of the spectra and the histological assignments of livers judged by morphological changes.

Furthermore, we have found enhancement of diagnostic capabilities in the distinction of

the states of tissues in the early stages of disease in which histological characteristics had

not yet been observed. Our approach well distinguished the two phases of non-alcoholic

fatty liver (NAFL), ‘slowly progressive NAFL’ (NAFL-α) and ‘rapidly progressive NAFL’

(NAFL-β), whilst the histological test could not. It has predicted the appearance of

NASH after only two weeks feeding on a high-fat, high-cholesterol diet before histological

signatures emerge, identifying a nascent state of NASH. Furthermore, the random forest

classifier explored the most relevant set of spectral features which led to the discrimi-

nation of NAFL-α and NAFL-β efficiently with high accuracy which may accelerate the

Raman diagnosis.

In the second approach, we have developed a scheme for Raman image-based histology

in which low signal-to-noise ratio (SNR) inherent to Raman measurements are taken into

account in terms of superpixel segmentation of the images based on spatial and spectral

79
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proximity. Low SNR was also considered in the extraction of chemically distinct micro-

environments (clusters) distance among Raman spectra through the determination of the

number of clusters with the quantification of Poisson noise in the Raman signals. This su-

perpixel segmentation algorithm, which can be used to segment any type of hyper-spectral

image, produced a visually superior image in comparison to traditional rectangular grid-

ding. In this application, we chose 9 pixels per superpixel so the superpixels were roughly

cellular in size, but one can also choose the size of superpixels with respect to a particular

aim such as prediction accuracy. Rate-distortion theory, as an unsupervised clustering

algorithm, identified a minimal number of spectral clusters as determined by the magni-

tude of the Poisson error arising from photon counting. Each cluster was a representation

of regions of the tissue containing distinct biochemical composition, allowing for the ex-

ploration of the biochemical structures composing the liver tissues. Mapping spectral

clusters to their locations in the tissues also allowed for the visualization of the molecu-

lar distributions across the liver tissues, elucidating possible chemical components that

have vital roles in the progression of the diseases. In agreement with previous studies

[3], [4], [41], we have observed that the progression of NAFLD is most likely associated

to deposition of fats in the liver along with the reduction of vitamin A and cytochrome

presence. We have also found that Raman information can extract the diversity in the

different diet and histological states, and help to categorize each rat in terms of severity.

We note that a point-detection method was employed with relatively large single pixels

(∼ 25 µm2). Future considerations involve the use of nanometer-resolution Raman imag-

ing of the liver tissues. In combination with the proposed machine learning framework,

we expect even finer-scale insights into the biochemical distribution at cellular level inside

the liver tissues.

Finally, we aimed that our analysis to be a diagnostic aid to histopathologists, as-

sisting in NAFLD diagnosis, and even discerning molecular origins through the detection

of subtle Raman spectral changes due to the disease-related changes in chemical con-

stituents.
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raman spectra for reliable and stable models?,” Analytica chimica acta, vol. 704,

no. 1-2, pp. 47–56, 2011.

77. G. Srinivasan, Vibrational spectroscopic imaging for biomedical applications. Mc-

Graw Hill Professional, 2010.

78. C. A. Lieber and A. Mahadevan-Jansen, “Automated method for subtraction of

fluorescence from biological raman spectra,” Applied spectroscopy, vol. 57, no. 11,

pp. 1363–1367, 2003.

79. S. Lohumi, S. Lee, H. Lee, M. S. Kim, W.-H. Lee, and B.-K. Cho, “Application

of hyperspectral imaging for characterization of intramuscular fat distribution in

beef,” Infrared Physics & Technology, vol. 74, pp. 1–10, 2016.

80. I. Dokmanic, R. Parhizkar, J. Ranieri, and M. Vetterli, “Euclidean distance matrices:

essential theory, algorithms, and applications,” IEEE Signal Processing Magazine,

vol. 32, no. 6, pp. 12–30, 2015.

81. J. B. Kruskal and M. Wish, “Multidimensional scaling. 1978,” Beverly Hills, CA,

1978.

82. T. F. Cox and M. A. Cox, Multidimensional scaling. Chapman and hall/CRC, 2000.

83. I. Borg and P. Groenen, “Springer series in statistics,” Modern multidimensional

scaling: Theory and applications (2nd ed.). New York, NY, US: Springer Science+

Business Media, 2005.

84. R. W. Floyd, “Algorithm 97: shortest path,” Communications of the ACM, vol. 5,

no. 6, p. 345, 1962.

85. O. Samko, A. D. Marshall, and P. L. Rosin, “Selection of the optimal parameter

value for the isomap algorithm,” Pattern Recognition Letters, vol. 27, no. 9, pp. 968–

979, 2006.



90 BIBLIOGRAPHY

86. C. Strobl, A.-L. Boulesteix, A. Zeileis, and T. Hothorn, “Bias in random forest

variable importance measures: Illustrations, sources and a solution,” BMC bioin-

formatics, vol. 8, no. 1, p. 25, 2007.

87. G. Louppe, L. Wehenkel, A. Sutera, and P. Geurts, “Understanding variable impor-

tances in forests of randomized trees,” in Advances in neural information processing

systems, pp. 431–439, 2013.

88. T. Shaikhina, D. Lowe, S. Daga, D. Briggs, R. Higgins, and N. Khovanova, “Decision

tree and random forest models for outcome prediction in antibody incompatible

kidney transplantation,” Biomedical Signal Processing and Control, 2017.

89. M. Van Herck, L. Vonghia, and S. Francque, “Animal models of nonalcoholic fatty

liver disease—a starter’s guide,” Nutrients, vol. 9, no. 10, p. 1072, 2017.

90. K. Omagari, S. Kato, K. Tsuneyama, C. Inohara, Y. Kuroda, H. Tsukuda,

E. Fukazawa, K. Shiraishi, and M. Mune, “Effects of a long-term high-fat diet and

switching from a high-fat to low-fat, standard diet on hepatic fat accumulation in

sprague-dawley rats,” Digestive diseases and sciences, vol. 53, no. 12, p. 3206, 2008.

91. Y. Okada, K. Yamaguchi, T. Nakajima, T. Nishikawa, M. Jo, Y. Mitsumoto,

H. Kimura, T. Nishimura, N. Tochiki, K. Yasui, H. Mitsuyoshi, M. Minami, K. Ka-

gawa, T. Okanoue, and Y. Itoh, “Rosuvastatin ameliorates high-fat and high-

cholesterol diet-induced nonalcoholic steatohepatitis in rats.,” Liver international

: official journal of the International Association for the Study of the Liver, vol. 33,

pp. 301–11, Feb 2013.

92. M. Ichimura, M. Kawase, M. Masuzumi, M. Sakaki, Y. Nagata, K. Tanaka, K. Su-

ruga, S. Tamaru, S. Kato, K. Tsuneyama, et al., “High-fat and high-cholesterol

diet rapidly induces non-alcoholic steatohepatitis with advanced fibrosis in sprague-

dawley rats,” Hepatology Research, vol. 45, no. 4, pp. 458–469, 2015.

93. M. K. Chung, “Gaussian kernel smoothing,” Lecture notes, pp. 1–10, 2012.

94. C.-B. Li, H. Yang, and T. Komatsuzaki, “Multiscale complex network of protein

conformational fluctuations in single-molecule time series,” Proceedings of the Na-

tional Academy of Sciences, vol. 105, no. 2, pp. 536–541, 2008.



BIBLIOGRAPHY 91

95. J. N. Taylor, C.-B. Li, D. R. Cooper, C. F. Landes, and T. Komatsuzaki, “Error-

based extraction of states and energy landscapes from experimental single-molecule

time-series,” Scientific reports, vol. 5, p. 9174, 2015.

96. D. Wales, Energy landscapes: Applications to clusters, biomolecules and glasses.

Cambridge University Press, 2003.

97. A. Baba and T. Komatsuzaki, “Construction of effective free energy landscape from

single-molecule time series.,” Proceedings of the National Academy of Sciences of

the United States of America, vol. 104, pp. 19297–302, Dec 2007.

98. K. Czamara, K. Majzner, M. Pacia, K. Kochan, A. Kaczor, and M. Baranska,

“Raman spectroscopy of lipids: a review,” Journal of Raman Spectroscopy, vol. 46,

no. 1, pp. 4–20, 2015.

99. N. Failloux, I. Bonnet, M.-H. Baron, and E. Perrier, “Quantitative analysis of vi-

tamin a degradation by raman spectroscopy,” Applied spectroscopy, vol. 57, no. 9,

pp. 1117–1122, 2003.

100. F. Chiappini, A. Coilly, H. Kadar, P. Gual, A. Tran, C. Desterke, D. Samuel, J.-C.

Duclos-Vallée, D. Touboul, J. Bertrand-Michel, et al., “Metabolism dysregulation

induces a specific lipid signature of nonalcoholic steatohepatitis in patients,” Scien-

tific reports, vol. 7, p. 46658, 2017.

101. F. Marra and G. Svegliati-Baroni, “Lipotoxicity and the gut-liver axis in nash patho-

genesis,” Journal of hepatology, vol. 68, no. 2, pp. 280–295, 2018.

102. K. Yasutake, M. Kohjima, K. Kotoh, M. Nakashima, M. Nakamuta, and M. En-

joji, “Dietary habits and behaviors associated with nonalcoholic fatty liver disease,”

World Journal of Gastroenterology: WJG, vol. 20, no. 7, p. 1756, 2014.

103. K. Yasutake, M. Nakamuta, Y. Shima, A. Ohyama, K. Masuda, N. Haruta, T. Fu-

jino, Y. Aoyagi, K. Fukuizumi, T. Yoshimoto, et al., “Nutritional investigation of

non-obese patients with non-alcoholic fatty liver disease: the significance of dietary

cholesterol,” Scandinavian journal of gastroenterology, vol. 44, no. 4, pp. 471–477,

2009.



92 BIBLIOGRAPHY

104. P. Puri, R. A. Baillie, M. M. Wiest, F. Mirshahi, J. Choudhury, O. Cheung,

C. Sargeant, M. J. Contos, and A. J. Sanyal, “A lipidomic analysis of nonalcoholic

fatty liver disease,” Hepatology, vol. 46, no. 4, pp. 1081–1090, 2007.

105. G. Arguello, E. Balboa, M. Arrese, and S. Zanlungo, “Recent insights on the role

of cholesterol in non-alcoholic fatty liver disease,” Biochimica Et Biophysica Acta

(BBA)-Molecular Basis of Disease, vol. 1852, no. 9, pp. 1765–1778, 2015.
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