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1 Introduction

“Distributed knowledge” is a notion developed in the community of multi-agent epis-
temic logic [1, 8]. In [1, p. 3], the notion is explained informally as follows:

A group has distributed knowledge of a fact ϕ if the knowledge of ϕ is dis-
tributed among its members, so that by pooling their knowledge together the
members of the group can deduce ϕ, even though it may be the case that no
member of the group individually knows ϕ.

For example, a group consisting of a and b has distributed knowledge of a fact q, when
a knows p → q and b knows p. Formally, “A group G has distributed knowledge of
a fact ϕ.” is written as “DGϕ”, whose meaning is usually defined in a Kripke model.
Let W be a possibly countable set of states, Agt be a finite set of agents, (Ra)a∈Agt be
a family of binary relations on W , indexed by agents, and V be a valuation function
Prop→ P(W ), where Prop is a countable set of propositional variables. We call a tuple
M = (W, (Ra)a∈Agt, V ) a (Kripke) model. For a group G ⊆ Agt, satisfaction of DGϕ at
a state w in a model M is defined as follows:

M,w |= DGϕ⇐⇒ for all v, if (w, v) ∈
⋂
a∈G

Ra then M, v |= ϕ

It is clear from the definition that the operator D{a} behaves the same as Ka, a box-like
operator for an agent a, usually defined in multi-agent epistemic logic. Therefore, we
do not introduce Ka-like operator as a primitive one in this abstract.

The study of distributed knowledge so far is mainly model-theoretic [16, 13, 4, 15]
and proof-theoretic study has been not so active. As far as we know, existing sequent
calculi for logic with distributed knowledge are presented only in [6] and [5]. The
former contains a natural G3-style formalization, in which each formula has a label
and the latter contains Getzen-style and Kanger-style sequent calculus for logic with
distributed knowledge operator which is simpler than the one we are interested in, in
that the operator is not parameterized by group G.

We propose Gentzen-style sequent calculi (without label) for five kinds of multi-agent
epistemic propositional logics with distributed knowledge operators, parameterized by
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groups, which are reasonable generalization of sequent calculi for basic modal logic and
prove the cut elimination theorem for four of them. Using a method described in [7],
Craig’s interpolation theorem is also established for the four system, in which not only
condition of propositional variables but also that of agents is taken into account. This
is a new result for logic for distributed knowledge, as far as we know.

In the following, we briefly sketch our proof systems, and then state and comment
on the theorems we have on the systems.

2 Proof Systems

We denote a finte set of agents by Agt. We call a nonempty subset of Agt “group” and
denote it by G,H, etc. Let Prop be a countable set of propositional variables and Form
be the set of formulas defined inductively by the following clauses (∨ and ¬ are defined
in the same way as the classical propositional logic):

Form 3 ϕ ::= p ∈ Prop | ⊥ | > | ϕ ∧ ϕ | ϕ→ ϕ | DGϕ

First, we explain known Hilbert-style axiomatization for logics with DG operator
(for detail, refer to [1]). The following are axioms for the logics:

• (Taut) all instantiations of propositional tautology

• (Incl) DGϕ→ DHϕ (G ⊆ H)

• (K) DG(ϕ→ ψ)→ DGϕ→ DGψ

• (T) DGϕ→ ϕ

• (4) DGϕ→ DGDGϕ

• (5) ¬DGϕ→ DG¬DGϕ

An axiom system H(KD) (H(KTD),H(K4D), H(S4D), and H(S5D)) is a collection of
the inference rules of modus ponens (“from ϕ → ψ and ϕ infer ψ”) and necessitation
(“from ϕ infer DGϕ”), axioms (Taut) and (Incl) (common to all the five systems), and
(an) axiom(s) (K) ((K) and (T); (K) and (4); (K), (T), and (4); and (K), (T), and (5),
respectively).

We now propose our sequent calculi for the logics for distributed knowledge. To the
ordinary LK system [2, 3], we add some of the following rules for each logic:

ϕ1, · · · , ϕn ⇒ ψ (
⋃n

i=1Gi ⊆ G)

DG1ϕ1, · · · , DGnϕn ⇒ DGψ
(DG)

ϕ,Γ⇒ ∆
DGϕ,Γ⇒ ∆

(DG ⇒)
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ϕ1, · · · , ϕn, DG1ϕ1, · · · , DGnϕn ⇒ ψ (
⋃n

i=1Gi ⊆ G)

DG1ϕ1, · · · , DGnϕn ⇒ DGψ
(⇒ DG

K4D)

DG1ϕ1, · · · , DGnϕn ⇒ ψ (
⋃n

i=1Gi ⊆ G)

DG1ϕ1, · · · , DGnϕn ⇒ DGψ
(⇒ DG

S4D)

ϕ1, · · · , ϕn ⇒ ψ1, · · · , ψm, χ (
⋃n

i=1Gi ∪
⋃m

j=1Hj ⊆ G)

DG1ϕ1, · · · , DGnϕn ⇒ DH1ψ1, · · · , DHmψm, DGχ
(⇒ DG

S5D)

A sequent calculus G(KD) (G(KTD),G(K4D), G(S4D), and G(S5D)) is LK with the
rule(s) (DG) ((DG) and (DG ⇒); (⇒ DG

K4D); (DG ⇒) and (⇒ DG
S4D); and (DG ⇒)

and (⇒ DG
S5D), respectively).

The idea underlying the rule (DG) is similar to that of an inference rule called
“R12” described in [12, section 4]. Our calculi G(KTD),G(K4D), G(S4D), and G(S5D)
are constructed based on the known sequent calculus for KT,K4,S4, and S5 (surveyed
in [11, 14]).

We note that for any logic X of the logics described above, H(X) and G(X) are
equivalent in derivability of formulas, and hence that each system G(X) deserves its
own name.

Theorem 1 (Equivalence between Hilbert-style and Gentzen-style axiomatization)
Let X be any of KD, KTD, K4D, S4D, and S5D. Then, the following hold.

1. If `H(X) ϕ, then `G(X)⇒ ϕ

2. If `G(X) Γ⇒ ∆, then `H(X)

∧
Γ→

∨
∆

We have the cut elimination theorem for our sequent calculi, except for G(S5D).

Theorem 2 (Cut elimination) Let X be any of KD, KTD, K4D, and S4D. Then,
the following holds: If `G(X) Γ ⇒ ∆, then `G−(X) Γ ⇒ ∆, where G−(X) denotes a
system “G(X) minus cut rule”.

Flexibility of choice of groups occurring in the left side of the lower sequent in the rule
(DG) and the three (⇒ DG)-type rules is a key to the result. The reason why cut
elimination theorem does not hold for G(S5D) is that the sequent calculus for basic S5,
on which G(S5D) is based, is not cut-free [9].

As an application of the cut elimination theorem, Craig’s interpolation theorem can
be derived, using a method described in [7]. (Application of the method to basic modal
logic is also described in [10].)

Theorem 3 (Craig’s interpolation theorem) Let X be any of KD, KTD, K4D,
and S4D. Given that `G(X) ϕ ⇒ ψ, there exists a formula χ satisfying the following
conditions:

1. `G(X) ϕ⇒ χ and `G(X) χ⇒ ψ.
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2. V (χ) ⊆ V (ϕ)∩V (ψ), where V (ρ) denotes the set of propositional variables occuring
in formula ρ.

3. A(χ) ⊆ A(ϕ) ∩A(ψ), where A(ρ) denotes the set of agents occuring in formula ρ.

We note that not only the condition for propositional variables but also the condition
for agents can be satisfied.
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