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[Artemov and Protopopescu, 2016] gave an intuitionistic epistemic logic based on a ver-
ification reading of the intuitionistic knowledge in terms of Brouwer-Heyting-Kolmogorov
interpretation. According to this interpretation, a proof of A ⊃ B is a construction such that
when a proof of A is given, a proof of B can be constructed. [Artemov and Protopopescu, 2016]
proposed that a proof of a formula KA (read “it is known that A”), is the conclusive verification
of the existence of a proof of A. Then A⊃ KA expresses that, when a proof of A is given, the
conclusive verification of the existence of the proof of A can be constructed. Since a proof of
A itself is the conclusive verification of the existence of a proof of A, they claim that A ⊃ KA
is valid. But KA ⊃ A (usually called factivity or reflection) is not valid, since the verification
does not always give a proof. They provided a Hilbert system of intuitionistic epistemic logic
IEL as the intuitionistic propositional logic plus the axioms schemes K(A ⊃ B) ⊃ KA ⊃ KB,
A ⊃ KA and ¬K⊥. Moreover they gave IEL the following Kripke semantics. We say that
M = (W,≤,R,V ) is a Kripke model for IEL if (W,≤,V ) is a Kripke model for intuitionistic
propositional logic and R is a binary relation such that R ⊆≤, ≤;R ⊆ R and R satisfies the
seriality. Then KA is true on a state w of M if and only if for any v, wRv implies A is true in
v of M. [Artemov and Protopopescu, 2016] also proved that their Hilbert system is sound and
complete.

The study of IEL also casts light on the study of the knowability paradox. The knowabil-
ity paradox, also known as the Fitch-Church paradox, states that, if we claim the knowability
principle: every truth is knowable (A ⊃ ♦KA), then we are forced to accept the omniscience
principle: every truth is known (A ⊃ KA) [Fitch, 1963]. This paradox is commonly recog-
nized as a threat to Dummett’s semantic anti-realism. It is because the semantic anti-realists
claim the knowability principle but they do not accept the omniscience principle. However,
as Dummett admitted that he had taken some of intuitionistic basic features as a model for an
anti-realist view [Dummett, 1978, p.164], it is reasonable to consider an intuitionistic logic as
a basis. In this sense, if we employ BHK-interpretation of KA as above to accept the IEL in
the study of the knowability paradox, A ⊃ KA becomes valid and the knowability paradox is
trivialized.

Proof-theoretical studies of IEL have been investigated. In Krupski and Yatmanov [2016],
the sequent calculus of IEL has been given, though an inference rule corresponding to KA ⊃
¬¬A in their system for IEL does not satisfy a desired syntactic property, i.e., the subformula
property. In Protopopescu [2015], a Gödel-McKinsey-Tarski translation from the intuitionistic
epistemic propositional logic to the bimodal expansion of the classical modal logic S4 has been
studied.

In this paper, we study the first-order expansion QIEL of intuitionistic epistemic logic
of IEL. Artemov and Protopopescu mentioned that the notion of the intuitionistic knowledge
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capture both mathematical knowledge and empirical knowledge. When we consider the math-
ematical knowledge, quantifiers become inevitable. Moreover when we are concerned with
the empirical knowledge, we recall that Hintikka had given arguments for first-order epistemic
logic in Hintikka [2005]. He mentioned that if we want to deal with the locutions like “knows
who,” “knows when,” “knows where,” we can translate these expressions into a language with
quantifiers. For example, about “who” we can have variables ranging over the human being,
about “where” over the location in space. In this sense, our first-order expansion can provide a
fundamental basis when we concern the intuitionistic mathematical and empirical knowledge.

We give the first-order expansion of IEL as QIEL. An expanded Kripke model M = (W,≤
,R,D, I) is obtained by adding D and I into the Kripke model for IEL. Here D is a function
which assigns a nonempty domain D(w) to w ∈W such that, for any w,v ∈W , if w ≤ v then
D(w) ⊆ D(v). Moreover I is an interpretation such that I(c) ∈ D(w) for all w ∈W for any
constant symbol c and I(P,w) ⊆ D(w)n for every w ∈W and every n-arity predicate P such
that if u≤ v then I(P,u)⊆ I(P,v) for all u,v ∈W .

We also propose the sequent calculus for QIEL. The sequent calculus for IEL has been
given by Krupski and Yatmanov [2016]. Their sequent calculus is obtained from the propo-
sitional part of Gentzen’s sequent calculus LJ (with structural rules of weakening and con-
traction) for the intuitionistic logic plus the following two inference rules on the knowledge
operator:

Γ1,Γ2⇒ A
(KI)

Γ1,KΓ2⇒ KA
Γ⇒ K⊥

(U)
Γ⇒ F.

where a sequent Γ⇒ A (where Γ is a finite multiset of formulas) can be read as “if all of Γ hold
then A holds.” They established the cut-elimination theorem of the calculus, i.e., a derivable
sequent in their system is derivable without any application of the following cut rule:

Γ⇒ B B,Σ⇒ ∆

Γ,Σ⇒ ∆
(Cut)

,

where ∆ contains at most one formula. It is remarked, however, that this system does not enjoy
the subformula property. That is, in the rule of (U), we have a formula K⊥ which might not
be a subformula of a formula in the lower sequent of the rule (U).

This talk gives a new cut-free and analytic sequent calculus G (QIEL) of the first-order
intuitionistic epistemic logic, which is obtained from adding the following rule (KIEL) into
Gentzen’s LJ with quantifiers:

Γ1,Γ2⇒ ∆
(KIEL)

Γ1,KΓ2⇒ K∆

where ∆ contains at most one formula. This rule is equivalent to the rules from Krupski and
Yatmanov [2016] in a propositional setting. Moreover it is easy to see that (KIEL) satisfies the
subformula property.

Let G −(QIEL) be the system G (QIEL) without the cut rule. By the standard syntactic
argument, we can establish the following fundamental proof-theoretic result.

Theorem 1 (Cut-Elimination) If G (QIEL) ` Γ⇒ ∆ then G −(QIEL) ` Γ⇒ ∆.

Corollary 1 (Disjunction Property, Existence Property, Craig Interpolation Theorem) As
a corollary of cut-elimination theorem we have:

1. If⇒ A∨B is derivable in G (QIEL), then either⇒ A or⇒ B is derivable in G (QIEL).
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2. For any formula of the form ∃xA, if⇒∃xA is derivable in G (QIEL) then there exists a
term t such that⇒ A(t/x) is derivable in G (QIEL).

3. If⇒ A⊃ B is derivable in G (QIEL), then there exists a formula C such that⇒ A⊃ C
and⇒C ⊃ B are also derivable in G (QIEL), and all free variables, predicate symbols
and constant symbols of C are shared by both A and B.

Given a sequent Γ⇒ ∆, Γ∗ denotes the conjunction of all formulas in Γ (Γ∗ ≡ > if Γ is
empty) and ∆∗ denotes the unique formula in ∆ if ∆ is non-empty; it denotes ⊥ otherwise. We
say that a sequent Γ⇒ ∆ is valid in a class M of models (denoted by M |= Γ⇒ ∆), if Γ∗ ⊃ ∆∗

is satisfied in any states of any Kripke models.

Theorem 2 (Soundness of G (QIEL)) Let Γ⇒ ∆ be any sequent. If G (QIEL) ` Γ⇒ ∆ then
M |= Γ⇒ ∆.

With the method from Hermant [2005], we prove the following:

Theorem 3 (Completeness of G −(QIEL)) Let Γ⇒ ∆ be a sequent. If M |= Γ⇒ ∆ then
G −(QIEL) ` Γ⇒ ∆.

Corollary 2 The following are all equivalent.

1. M |= A, 2. G (QIEL) `⇒ A, 3. G −(QIEL) `⇒ A,

In particular, we can also prove the cut elimination theorems semantically by Theorem 2
and Theorem 3.
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