

HOKKAIDO UNIVERSITY

Title	A Sequent Calculus for K-restricted Common Sense Modal Predicate Logic
Author(s)	Sawasaki, Takahiro
Citation	Pages: 002-005
Issue Date	2019
Doc URL	http://hdl.handle.net/2115/76687
Туре	proceedings
Note	5th International Workshop On Philosophy and Logic of Social Reality. 15-17 November 2019.Hokkaido University, Sapporo, Japan
File Information	3_Takahiro Sawasaki.pdf

A Sequent Calculus for K-restricted Common Sense Modal Predicate Logic

Takahiro Sawasaki Graduate School of Letters, Hokkaido University Sapporo, Hokkaido, Japan taka.sawasaki562@gmail.com

November 15-17, 2019

Abstract

In recent years, Common sense Modal Predicate Calculus (CMPC) has been proposed by J. van Benthem in [4, pp. 120–121] and further developed by J. Seligman in [1, 3, 2]. It allows us to 'take \exists to mean just "exists" while denying the Constant Domain thesis' [1, p. 8].¹ This is done in terms of *talking about only things in each world in which they exist*. From a proof-theoretical view, the Hilbert-style system for CMPC given by Seligman is a system for modal predicate logic S5 *which has the following axiom* K_{inv} *instead of axiom* K:

 $\Box(\varphi \supset \psi) \supset (\Box \varphi \supset \Box \psi) \quad \text{provided that all free variables in } \varphi \text{ are free variables in } \psi.$

It is quite interesting because it might make a clean sweep of all philosophical discussions on possible world semantics between actualists and possibilists. However, neither van Benthem nor Seligman have developed K-restricted CMPC and expansions of the logic with some well known axioms. Moreover, proof-theoretic studies for such logics have not been done yet.

In this talk, I shall propose a sequent calculus for K-restricted CMPC. The main mathematical contributions of this talk are the completeness result (Theorem 1) and cut elimination theorem (Theorem 2) for the calculus. If time allows I shall also introduce sequent calculi for K-restricted CMPC with T axiom and D-like axioms. In what follows, I will outline the contents of this talk.

The language \mathcal{L} of K-restricted Common sense Modal Predicate Calculus **CK** consists of a countably infinite set Var = {x, y, ...} of variables, a countably infinite set Pred = {P, Q, ...} of predicate symbols each of which has a fixed finite

 $^{^{1}}$ The Constant Domain thesis is a thesis that '[e]very possible world has exactly the same objects as every other possible world.' [1, p. 5]

arity, and logical symbols, \bot , \supset , \Box , \forall . The set Form of formulas of \mathcal{L} is defined recursively as follows:

Form
$$\ni \varphi ::= Px_1 \dots x_n \mid \bot \mid (\varphi \supset \varphi) \mid \forall x \varphi \mid \Box \varphi$$

where *P* is a predicate symbol with arity *n* and *x*, x_1, \ldots, x_n are variables. The other connectives are defined as usual. We also define the sets $FV(\varphi)$ and $FV(\Gamma)$ of free variables in a formula φ and a set Γ of formulas, respectively, as usual.

Semantics for CK is given as follows. A frame is a tuple (W, R, D), where W is a nonempty set; R is a binary relation on W; D is a W-indexed family $\{D_w\}_{w \in W}$ of nonempty sets. Thus R does not need to satisfy the *inclusion requirement*: if wRv then $D_w \subseteq D_v$. A model is a tuple (F, V), where F is a frame and V is a valuation that maps each world w and each predicate P to a subset $V_w(P)$ of D_w . An assignment α is a partial function from variables to entities and $\alpha(x|d)$ stands for the same assignment as α except for assigning d to x. In addition to these notions, we follow [1, p. 15] and say that a formula φ is an α_w -formula if $\alpha(x) \in D_w$ for any variable $x \in FV(\varphi)$. Then, similarly as in [1, pp. 15–16], the satisfaction relation and validity are defined as follows.

Definition 1 (Satisfaction relation). Let *M* be a model, α be an assignment, and *w* be a world in *W*. The *satisfation relation* $M, \alpha, w \models \varphi$ between M, α, w and an α_w -formula φ is defined as follows:

 $\begin{array}{ll} M, \alpha, w \models Px_1 \dots x_n & \text{iff} & (\alpha(x_1), \dots, \alpha(x_n)) \in V_w(P) \\ M, \alpha, w \not\models \bot \\ M, \alpha, w \models \psi \supset \gamma & \text{iff} & M, \alpha, w \models \psi \text{ implies } M, \alpha, w \models \gamma \\ M, \alpha, w \models \forall x \psi & \text{iff} & M, \alpha(x|d), w \models \psi & \text{for any } d \in D_w \\ M, \alpha, w \models \Box \psi & \text{iff} & M, \alpha, v \models \psi \\ & \text{for any } v \text{ such that } wRv \text{ and } \psi \text{ is an } \alpha_v \text{-formula} \end{array}$

Definition 2 (Validity). Let $\Gamma \cup \{\varphi\}$ be a set of formulas. We say that φ is valid *in a frame* if for any model *M* based on the frame, assignment α and world *w* such that φ is an α_w -formula, $M, \alpha, w \models \varphi$. We also say that φ *is valid in a class of frames* if φ is valid in all frames in the class.

The following propositions that Seligman proves in [1, pp. 16–17] are note-worthy².

Proposition 3 (Converse Barcan formula). A formula $\Box \forall x \varphi \supset \forall x \Box \varphi$ is valid in the class of all frames.

Proof. Fix any model M, assignment α , world w such that $\Box \forall x \varphi \supset \forall x \Box \varphi$ is an α_w -formula. Suppose $M, \alpha, w \models \Box \forall x \varphi$ and fix any element $d \in D_w$, any world v such that wRv and φ is an $\alpha(x|d)_v$ -formula. We show $M, \alpha(x|d), v \models \varphi$. Since

²Strictly speaking, he considers the dual formulas of those in Proposition 3,4.

 $FV(\forall x \varphi) \subseteq FV(\varphi)$ and φ is an $\alpha(x|d)_{\upsilon}$ -formula, we have that $\forall x \varphi$ is an $\alpha(x|d)_{\upsilon}$ -formula and thus that $\forall x \varphi$ is an α_{υ} -formula. Hence we get $M, \alpha, \upsilon \models \forall x \varphi$ so $M, \alpha(x|d), \upsilon \models \varphi$.

Proposition 4. A formula $\forall x \Box \varphi \supset \Box \forall x \varphi$ is not valid in the class \mathbb{F} of all frames F = (W, R, D) such that *R* is an equivalence relation.

Proof. Consider a model M = (W, R, D, V), where $W = \{0, 1\}$; $R = W \times W$; $D_0 = \{a\}$ and $D_1 = \{b\}$; $V_0(P) = \{a\}$ and $V_1(P) = \emptyset$ for some predicate symbol P with arity 1, and $V_i(Q) = \emptyset$ for the other predicate symbols Q with arity n. Then, we can establish $M, \alpha, 0 \models \forall x \Box P x$ but $M, \alpha, 0 \not\models \Box \forall x P x$. Therefore, $\forall x \Box \varphi \supset \Box \forall x \varphi$ is not valid in \mathbb{F} .

Given finite multisets Γ , Δ of formulas, we call an expression $\Gamma \Rightarrow \Delta$ a sequent. Then a sequent calculus G(CK) for CK is given in Table 1. The rule \Box_{inv} in it plays roles of axiom K_{inv} and the necessitation rule in the Hilbert-style system for CMPC given by Seligman. The notion of a derivation in G(CK) is defined as usual.

Initial Sequents			
$\varphi \Rightarrow \varphi$	$\perp \Rightarrow$		
Structural Rules			
$\frac{\Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta, \varphi} \Rightarrow w$	$\frac{\Gamma \Longrightarrow \Delta}{\varphi, \Gamma \Longrightarrow \Delta} w \Longrightarrow$		
$\frac{\Gamma \Rightarrow \Delta, \varphi, \varphi}{\Gamma \Rightarrow \Delta, \varphi} \Rightarrow c$	$\frac{\varphi, \varphi \Gamma \Longrightarrow \Delta}{\varphi, \Gamma \Longrightarrow \Delta} \ c \Longrightarrow$		
$\frac{\Gamma \Rightarrow \Delta, \varphi \qquad \varphi, \Theta \Rightarrow \Sigma}{\Gamma, \Theta \Rightarrow \Delta, \Sigma} Cut$			
Logical Rules			
$\frac{\varphi, \Gamma \Rightarrow \Delta, \psi}{\Gamma \Rightarrow \Delta, \varphi \supset \psi} \Rightarrow \supset$ $\Gamma \Rightarrow \Delta, \varphi \supset \psi$	$\frac{\Gamma \Rightarrow \Delta, \varphi \qquad \psi, \Theta \Rightarrow \Sigma}{\varphi \supset \psi, \Gamma, \Theta \Rightarrow \Delta, \Sigma} \supset \Rightarrow$ $\frac{\varphi \supset \psi, \Gamma, \Theta \Rightarrow \Delta, \Sigma}{\varphi(t/x), \Gamma \Rightarrow \Lambda}$		
$\frac{\Gamma \Rightarrow \Delta, \varphi(y/x)}{\Gamma \Rightarrow \Delta, \forall x \varphi} \Rightarrow \forall^{\dagger}$	$\frac{\varphi(t/x), \Gamma \Longrightarrow \Delta}{\forall x \varphi, \Gamma \Longrightarrow \Delta} \forall \Rightarrow$		
$\frac{\Gamma \Rightarrow \varphi}{\Box \Gamma \Rightarrow \Box \varphi} \ \Box_{inv}^{\ddagger}$			

Table 1: A Sequent Calculus G(CK) for CK

We also say that a sequent $\Gamma \Rightarrow \Delta$ is valid if $(\gamma_1 \land \cdots \land \gamma_m) \supset (\delta_1 \lor \cdots \lor \delta_n)$ is valid, where $\Gamma = \{\gamma_1, \ldots, \gamma_m\}$ and $\Delta = \{\delta_1, \ldots, \delta_n\}$. Then, the following theorems hold under the settings above. **Theorem 1** (Completeness). Let $\Gamma \cup \{\varphi\}$ be a set of formulas. If $\Gamma \Rightarrow \varphi$ is valid in the class of all frames, then $\Gamma \Rightarrow \varphi$ is derivable in G(CK).

Theorem 2 (Cut elimination). Let Γ , Δ be finite multisets of formulas. If $\Gamma \Rightarrow \Delta$ is derivable in G(CK), then it is also derivable in G(CK) without any application of *Cut*.

References

- Jeremy Seligman. Common Sense Modal Predicate Logic. 1st draft, October 2016.
- [2] Jeremy Seligman. Common Sense Modal Predicate Logic. Presentation, 2017. Non-classical Modal and Predicate Logics: The 9th International Workshop on Logic and Cognition, Guangzhou, China (4th Dec. 2017).
- [3] Jeremy Seligman. Common Sense Modal Predicate Logic. 2nd draft, November 2017.
- [4] Johan van Benthem. *Modal Logic for Open Minds*. CSLI Publication, Stanford, 2010.