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The equilibrium structure of montmorillonite clay particles was calculated using Monte Carlo 

simulation to evaluate the long-term behavior of alteration for bentonite buffer materials in 

geological repositories of radioactive waste. It has been experimentally observed that the dissolution 

rate of montmorillonite strongly decreases as the density increases. One of the primary causes of this 

reduction in dissolution rate is the reduction in reactive surface area when the edges of particles are 

covered with other particles (physical masking). In this study, we proposed a geometrical model in 

which the masking area (the edge surface masked by other particles) is calculated from the 

edge-to-face distance of particles. The effective edge surface area (ESA) from the equilibrium 



structure obtained from Monte Carlo simulation was computed using the masking model. The 

numerical results of the effective ESA are in good agreement with the experimental measurements of 

the dissolution rate by atomic force microscopy in a wide range of density conditions. Moreover, we 

propose a prediction expression of the effective ESA of montmorillonite particles over a wide range 

of density conditions, which produces physically reasonable predictions. 
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1. Introduction 

Bentonite clay is known for its good barrier effects in terms of hydraulic, chemical, mechanical and 

transport processes. Therefore, it has been considered as a possible candidate for the engineered 

barrier systems of repositories such as geological disposal of radioactive waste. However, it has been 

observed that in the presence of alkaline groundwater, the barrier effect of bentonite buffer materials 

is reduced by dissolution, which may occur over a long period of time. This alkaline perturbation is 

expected to be caused by interaction between groundwater and the cementitious material used in 

constructing the repository. The degradation in properties is assumed to be dependent on the density 

of montmorillonite, which is the main component of bentonite buffer materials. It is thus necessary 

to increase understanding of the mechanisms and kinetics of montmorillonite dissolution.  

 A number of previous studies have been conducted involving montmorillonite dissolution 

experiments to provide the necessary evaluation of the bentonite endurance [1]. As a result, there are 

many kinetic equations explaining dissolution phenomena as a function of chemical affinity, 

temperature, pH and mineral surface area [2]. Among these, it is well known that the most intensive 

parameter is the surface area consisting of dissolution sites such as step edges [3]. Numerical models 

are becoming more widely used for the prediction of the long-term behavior of the alteration [4-8]. 

However, these models have not yet completely explained the mechanism of the alteration. One of 

the primary reasons for this is that the structure of montmorillonite particles cannot be observed in a 

compacted system (i.e., bentonite buffer materials). Therefore, it remains difficult to make a 

long-term analytical prediction for the dissolution rate of montmorillonite in a compacted state. 



However, experimental approaches have recently demonstrated that the dissolution rate of 

montmorillonite drastically decreases as a function of density [9]. This observed reduction may 

occur when the edge of particles is covered with the other particles and accordingly the reactive 

surface area is decreased. This mechanism is called physical masking [10]. It is therefore important 

to understand the thermodynamic equilibrium structure of montmorillonite particles to quantitatively 

evaluate the dissolution rate. 

 Several studies have been conducted to reproduce the structure of clay particles [11-13]. Dijkstra et 

al. performed Monte Carlo analysis of the equilibrium structures of disk-shaped particles in a 

dispersion system. In the analysis, they used the quadrupole potential, which models the 

inter-particle interaction of clay particles (e.g., Laponite particles). The quadrupole potential includes 

the effects of the charge in each particle and the surrounding electric double layer. However, this 

potential cannot be used to calculate the equilibrium structure at high density. 

 Some studies have been able to construct a potential that can be applied for high-density conditions 

of various clay particles [14-18]. In the case of montmorillonite in bentonite buffer materials, it is 

difficult to obtain an alternative potential that can be used for the high-density conditions. In general, 

clay particles have an anisotropic shape and the particle structures cannot be observed 

experimentally in a compacted system. It is assumed that the effect of the electric double layer 

around the particles may be extremely reduced in a compacted state at high density.  

The equilibrium state of anisotropic shaped particles has been studied in various fields. For 

example, Onsager explained that the disorder–order phase transition of a hard-rod system is caused 

by the effect of configurational entropy, which minimizes the excluded volume between molecules 

[19]. Furthermore, the equilibrium structure of many types of anisotropic particles (e.g., cut sphere, 

infinitely thin hard disk) have been investigated [20-27]. These studies showed that the phase 

transition of anisotropic particles greatly depends on the shape and the density conditions. 

In this study, the equilibrium structure of the compacted montmorillonite in bentonite buffer 

materials at different densities was simulated using Monte Carlo analysis. The quadrupole potential 

was used to calculate the equilibrium structure at low density. In addition, the equilibrium structures 



were calculated using the rigid-body potential under high-density conditions. In low- to 

medium-density cases, the analysis using the quadrupole potential is more realistic than the 

rigid-body potential in a dispersion system. However, the analysis by rigid-body potential becomes 

more reasonable at high density because of the limitation of the possible particle configuration. In 

order to examine the consistency between the analysis using the quadrupole potential and the 

rigid-body potential, the Monte Carlo analysis by the rigid-body potential was expanded to the low 

to medium density in this study. 

As previously discussed, one of the primary reasons of the dissolution rate reduction for 

montmorillonite is the physical masking. In this study, the effective edge surface area (ESA) was 

calculated from the equilibrium structure of disk-shaped particles obtained by Monte Carlo 

simulation. We estimated the edge surface of particles masked by other particles using a geometric 

model and calculated the effective ESA, which is the ratio of the unmasked edge surface area to the 

total ESA. Furthermore, a comparison was made between the experimental results of dissolution rate 

for montmorillonite and the analytical results of the effective ESA to determine the mechanism of 

the drastic reduction in the montmorillonite dissolution rate. Based on these results, we propose a 

expression which gives physically reasonable predictions of the effective ESA of montmorillonite 

particles. 

 

2. Calculation method 

2.1 Monte Carlo analysis 

The Monte Carlo method was used to compute thermodynamic equilibrium structures of 

disk-shaped particles, which model montmorillonite particles. We assumed a monodispersed system 

of infinitely thin disk particles. The calculation region was cubic and the periodic boundary 

conditions were applied in all directions. For the initial configuration, the disk-shaped particles were 

arranged by setting the position and the normal vector using a random number. We checked the 

intersection of each particle by geometric calculation and overlap of particles was not allowed. For 

dense conditions, the particles cannot be arranged uniformly in the calculation region by the 



excluded volume effect. Therefore, we set a limit for the angle of the normal vector in dense cases. 

The equilibrium structure of particles was determined from several different initial configurations by 

changing the limiting angle. A Monte Carlo move was performed by changing the position and 

orientation of each particle based on the Metropolis method [28]. We set the maximum displacement 

per a translation r = 0.02 (disk diameter) and the maximum variation for each normal vector 

component v = 0.02. 

For low- to medium-density conditions, a fixed number of particles N (N = 400) was assumed and 

the volume of calculation region V was changed. In the high-density analysis, the size of calculation 

region was fixed and N changed depending on the desired density conditions. This was in 

consideration of the influence of the particle structure in the size of the calculation region. From the 

results of preliminary calculation, the side length of the calculation region was three times larger 

than the particle diameter  

 

2.2 Inter-particle potential 

Two different potentials were used to calculate the equilibrium structures of montmorillonite 

particles. For the analysis of particles in a dispersion system under low-density conditions, we used 

the quadrupole potential proposed by Dijkstra et al. [11] to model anisotropic inter-particle 

interaction. The quadrupole potential included effects of the charge of disk-shaped particle and the 

surrounding electric double layer. The potential between two disk-shaped particles was calculated as 

follows [11]: 
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where Rij (Ri Rj) is the relative position vector (Ri, Rj : the position vector at the center of particle 

i and j), ni and nj is the unit normal vector of each particle, is a dielectric constant and Q is the 

quadrupole moment. Q is meant to the strength of the potential included the influence of each 

particle and the surrounding electric double layer.  ji  ,Φ  is the rotational invariant of particle i and 

j and is defined as follows [29]: 
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where ii   ,  and jj   , are the polar angles where the polar axis is chosen as Rij as shown in Fig. 

1(a). 

Due to the model limitation, the quadrupole potential cannot be used under dense conditions in 

which the interference of electric double layers occurs. In this study, the analysis by the quadrupole 

potential was performed under density conditions less than the nondimensional density N3/V = 5.5, 

which corresponds to the dry density of montmorillonite particle b ~ 0.02 Mg/m3. In the Monte 

Carlo analysis, the quadrupole potential Q is set as the nondimensional potential Q2 /kBT5. We set 

the nondimensional potential Q2 /kBT5 = 0.1. This value is close to that in the previous analysis by 

Dijkstra et al. [11] in which they assumed Laponite particles (= 25 nm) dispersed in water for 

about 10−4 M salt concentration.  

In contrast, the structural analysis by the rigid-body potential was conducted for the high-density 

conditions as compacted states. The analysis by the rigid-body potential is equivalent to the 

condition of Q2 /kBT5 = 0 in the analysis by the quadrupole potential. Hence, this analysis could be 

regarded to represent high-temperature conditions (large kBT) in terms of the inter-particle potential. 

In fact, the inter-particle potential may be reduced effectively because of the overlapping of the 

electric double layer in the compacted states. As mentioned above, the analysis using the quadrupole 

potential can only be performed under dilute conditions. The analysis by the rigid-body potential 

was also performed from low- to medium-density conditions and consistency was checked between 

the two sets of results. 

In the Monte Carlo analysis with the rigid-body potential, the intersection of each particle was 

checked by a geometric calculation. If the particles were overlapped, excessive potential energy was 

given. For the analysis of the quadrupole potential, the equilibrium structure of the disk-shaped 

particles was determined whether the total potential energy of the system reached a constant value. 

However, we could not monitor the total potential energy of the rigid body. Therefore, we quantified 



the pore structure inside the particle and the equilibrium structure was determined whether the pore 

characteristics (number, size and shape) reached a constant value. 

  

2.3 Masking model 

 A geometric masking model was proposed for the estimation of the effective ESA. In the model, 

the edge area masked by other particles determined whether or not the vertical distance from the 

edge point to the surface of other particle was less than the arbitrary value (masking parameter ).  

As shown in Fig. 1(b), we consider two disks where p = (px, py, pz) and q = (qx, qy, qz) are the 

central position vector, m = (mx, my, mz) and n = (nx, ny, nz) are the normal vector of each disk, 

respectively. The equation of a plane including each disk is described as follows: 

 zzyyxxzyx pmpmpmzmymxm    (3)

 zzyyxxzyx qnqnqnznynxn    (4)

The arbitrary vector k = (kx, ky, kz) is defined from the center of the disk p to the edge. For example, 

if x component of k is set to 0, k is expressed using the position vector m = (mx, my, mz) as follows:  
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Furthermore, the vector k was rotated by small angle  on the edge of disk p. When the rotation 

angle reaches , the rotated vector u = (ux, uy, uz) is expressed as follows: 
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The position vector of a foot of a perpendicular lowered from the edge point to the plane n = (nx, ny, 

nz) is represented by w = (wx, wy, wz) described as:  

  zzyyxxzzyyxxxxx unununqnqnqnnuw    (9)



  zzyyxxzzyyxxyyy unununqnqnqnnuw    (10)

  zzyyxxzzyyxxzzz unununqnqnqnnuw    (11)

If the distance between the position w and the center of disk q is smaller than the radius of the disk 

2, a foot of perpendicular line exists on the surface of disk q. In this case, the vertical distance 

from the edge point to the surface of disk (thick line in Fig. 1(b)) is calculated. If the distance is less 

than the masking parameter , the edge point is determined to be masked by other particles.  

 In this study, the total ESA, which is not masked by other particles per unit mass, was defined as 

the effective ESA. As mentioned previously, the Monte Carlo simulation was performed using 

infinitely thin disk-shaped particles, while actual montmorillonite particles have a finite thickness. 

Therefore, the effective ESA was calculated from simulation results under the assumption of finite 

thickness of particles d = 1 nm. Similarly, the dry density of montmorillonite was calculated from 

the nondimensional density N3/V under the assumption that each particle had a thickness d = 1 nm. 

The obtained results of the effective ESA on various density conditions were compared with those 

obtained from the experimental results of the montmorillonite dissolution rate by atomic force 

microscopy (AFM). 

 

3. Results and discussion  

3.1 Equilibrium structure by quadrupole potential and rigid-body potential 

Figure 2 shows the equilibrium structure of infinitely thin disk-shaped particles, which models 

montmorillonite particles in a wide range of nondimensional density N3/V obtained from the 

Monte Carlo simulation. Figure 2(a) shows the numerical results using the quadrupole potential for 

the nondimensional density N3/V = 0.255.0. The quadrupole potential expresses the anisotropic 

interaction of disk-shaped particles, which includes the effect of the electric double layer and the 

charge of each particle. In contrast, Fig. 2(b) shows the results using the rigid-body potential in a 

wide density range (N3/V = 0.25170). 



Figure 3 also shows the close-up images of equilibrium structure by the quadrupole potential and 

the rigid-body potential under low-density conditions (we put the thickness of disk particles in the 

images, whereas infinitely-thin particles are assumed in the simulation). As can be seen in Fig. 3, the 

particles with the quadrupole potential make aggregates with the edge-to-face structure (“house of 

cards” structure), which is typically observed in clay soil [11]. In contrast, the particles are 

distributed isotropically in the equilibrium structure with rigid-body potential under very low-density 

conditions (N3/V = 0.25). 

However, under moderate-density conditions (N3/V = 5.0), the particles are aligned in one 

direction and the qualitative difference of structure cannot be observed in both results. This is 

because the possible state of disk-shaped particles is limited because of the configurational limitation 

with the increase of the density. As shown in Fig. 2, in the equilibrium structure with rigid-body 

potential for N3/V = 30, almost all of the particles are aligned in one direction. Under such dense 

conditions, the possible states of the particles would be extremely decreased regardless of the type of 

inter-particle potential. 

 

3.2 Phase transition of disk-shaped particles 

It is well-known that the structural changes of anisotropic-shaped particles with the density increase 

are caused by the configurational limitation of particles. The pioneer work on the phase transition of 

non-spherical hard molecules was done by Onsager [19], in which disorder-order phase transition 

was explained from the excluded volume effect. Furthermore, many studies have been conducted on 

the phase transition of various-shaped particles [20-27,30-32]. For example, Eppenga and Frenkel 

investigated the phase transition of infinitely thin disk-particles, which is similar to our study [20].  

In order to understand how the structures with the quadrupole potential are close to those with the 

rigid-body potential with the increase of the density, we examined both structural changes 

quantitatively. Figure 4 shows the nematic order parameter S of the equilibrium structures with both 

potentials, which is calculated as follows: 
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where n is the nematic director and  is the orientation angle of each particle. S = 1 indicates that all 

particles are aligned in one direction (nematic phase), while S = 0 if the particles are randomly 

oriented (isotropic phase). 

Nevertheless, the equilibrium structures with the quadrupole and the rigid-body potentials were 

significantly different (see Fig. 3) and the nematic order parameters with both potentials are almost 

zero from low to medium density conditions N3/V < 4.0. This is because the structures with 

rigid-body potential were almost uniform and isotropic, whereas the structures with quadrupole 

potential made aggregates and the orientation of particles was locally isotropic in each “house of 

cards” aggregate. 

From the nondimensional density N3/V ~ 4.0, the nematic order parameter S with both potentials 

suddenly increased. This is known as the transition from isotropic to nematic phase (IN transition), 

i.e., the aligned structure of particles is entropically favored with increasing the density. Eppenga and 

Frenkel reported that IN transition of infinitely thin disk particles occurs at nondimensional density 

N3/V ~ 4.0 [20]. Our results using rigid-body potential agree with their results.  

As mentioned above, the quadrupole potential cannot be used under dense conditions because of 

the limitations of the model and therefore we only examined the equilibrium structure for the 

nondimensional density less than N3/V ~ 5.0. As shown in Fig. 4, the structures with quadrupole 

potential showed a similar tendency to those with rigid-body potential and the nematic order 

parameter suddenly increased around N3/V ~ 4.0. This implies that the aggregates no longer make 

the “house of cards” structures and the particles form a chain of the edge-to-face structures as the 

density increases. The nematic order parameter of both potentials had almost the same values for the 

nondimensional density N3/V > 5.0. Therefore, the structures were almost the same regardless of 

the inter-particle potential when the density was larger than that in the IN transition. 



 As previously mentioned, the nondimensional potential Q2 /kBT5 = 0.1 was assumed for the 

analysis by quadrupole potential, where Q expresses the strength of inter-particle force and T is the 

absolute temperature. Conversely, the analysis by the rigid-body potential was equivalent to the 

condition of the nondimensional potential Q2 /kBT5 = 0. In other words, the analysis by the 

rigid-body potential and the quadrupole potential can be regarded as the high and low temperature 

conditions, respectively. As described above, under the conditions for the nondimensional density 

N3/V = 04.0, the qualitative difference of structure can be observed in both analytical results (Fig. 

3). Hence, the equilibrium structure of particles from low to medium density (before IN transition) 

depends on the temperature. However, from medium to high density (after IN transition), the 

difference of the equilibrium structure between the two potentials was not significant. Therefore, the 

equilibrium structure of particles for high density was mostly determined by density conditions 

regardless of the temperature. The above results suggest that the equilibrium structure of 

montmorillonite particles under high density conditions can be roughly evaluated by the Monte 

Carlo analysis using the rigid-body potential. 

 

3.3 Evaluation of masking area 

 We evaluated the effective ESA from the equilibrium structure of particles obtained by Monte 

Carlo analysis using the quadrupole potential and the rigid-body potential. In the calculation of the 

effective ESA, we identified the masking areas using the masking model described in Section 2.3. 

The masking parameter  was normalized by particle diameter . In this study, we set / = 0.01, 

0.02, 0.04 and 0.08. These values are equivalent to the vertical distance from edge to surface of 

particles 4.5, 9, 18 and 36 nm respectively, which are converted by physical properties of the 

montmorillonite particle ( = 450nm).  

 Figure 5 shows the visualized results of masking areas of the equilibrium structure of disk-shaped 

particles obtained from Monte Carlo analysis with masking parameter / = 0.04. In the figure, the 

masking areas are indicated by the red lines. Under very low-density conditions (N3/V = 0.25 or 

1.0), there are few masking areas in the structure based on the rigid-body potential, whereas several 



masking areas can be seen in the structure from the quadrupole potential. This is because 

edge-to-face aggregates are made in the quadrupole analysis, whereas the particles with rigid-body 

potential are distributed uniformly. 

 The masking area of both structures increase with the density and there is no difference between the 

two under medium-density conditions (N
3
/V = 5.0). This is because the particle structures by both 

potentials were similar because of the configurational limitation by the excluded volume effect as 

previously described. Furthermore, almost all of the edge area is identified as masking area in the 

structures with rigid-body potential at higher density (N3/V = 30280). These results are 

qualitatively consistent with a rapid decrease of dissolution rate in the packing state of 

montmorillonite particles. 

  

3.4 Effective ESA 

The effective ESA, which is unmasking edge area per unit mass, was calculated from the results on 

masking area shown above. Basically, the masking area vanishes under very dilute conditions since 

the particles do not interfere with each other. Hence, the effective ESA at a dilution limit can be 

described as follows: 
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where N is the number of particles, p is the particle density and d is the thickness of the particle. By 

substituting the physical property of the montmorillonite particle (p = 2400 kg/m3,  = 450 nm, d = 

1 nm) into Eq. (13), the theoretical value of the effective ESA at a dilution limit was obtained as 3.7 

m2/g. 

 Figure 6 shows the relationship between the b and the effective ESA with various nondimensional 

masking parameters . The figure shows the effective ESA calculated from both structures by the 

quadrupole and rigid-body potentials. However, the results by the quadrupole potential are only 

plotted at dilute conditions (b < 0.02Mg/m3) because of the limitation of the potential. 



 It is found from Fig. 6 that the effective ESA drastically decreases with the increase of b especially 

in the case of a large . This is due to increase in the edge area masked by other particles. Fig. 

6(b) shows an enlarged view of the effective ESA from low to medium density conditions. At a 

low-density limit, the effective ESA by the rigid-body potential smoothly approaches to the 

theoretical value 3.7 m2/g given in Eq. (13), while the results by the quadrupole potential show 

discontinuous change. This is because the particles make aggregates with edge-to-face structures 

even in the dilute case. However, as the density increases, the effective ESA by the quadrupole and 

rigid-body potential are almost consistent and are connected smoothly at b = 0.020.03 Mg/m3 

under all conditions of the . These results are consistent for equilibrium structures of both 

potentials for the low to medium density conditions shown in Fig. 2. Therefore, the Monte Carlo 

analysis using the rigid-body potential under the high-density conditions seems to be reasonable, at 

least for the purpose of the evaluation of the effective ESA. 

 

3.5 Comparison with analytical and experimental results  

It is generally observed that montmorillonite dissolution occurs at edge faces. Therefore, the 

dissolution rate can be obtained by the size decreases from the starting materials (i.e., the difference 

in particle diameter). We carried out a dissolution experiment of montmorillonite (Kunipia P, 

Kunimine Industry Co.) under various gel densities from b of 0.005 to 0.205 Mg/m3. Particle 

measurement was performed on mono-dispersed montmorillonite mounted on mica substrates with 

AFM (Bulker, Dimension 3100). Obtained images over two hundred counts were analyzed to be 

statistical data of the particle size distributions giving representative sizes as the median values. The 

dissolution rate (mol/m2/s) was obtained from the volume change (m3) from the initial 

montmorillonite divided by the molar volume (2.728 × 10−6 m3/mol) and reaction time (s). Moreover, 

the nondimensional dissolution rate was calculated by normalizing the dissolution rate for each 

density to the measured value for the most diluted condition (the details of experimental conditions 

are given in the supplementary table).  



The nondimensional dissolution rate corresponds to the reactive surface area ratio ESA/ESA0. The 

effective ESA was calculated by multiplying ESA/ESA0 and the theoretical value of the effective 

ESA for dilute limit (3.7 m2/g). 

Figure 7 shows the relationship between the numerical results of the effective ESA and normalized 

results obtained from the experimental measurements of dissolution rate and theoretical formula of 

the effective ESA, which is described later. It is found from Fig.7 that the numerical results of the 

effective ESA are quantitatively in good agreement with those obtained from the experimental 

measurement. The experimental results show that the effective ESA decreased drastically under 

dilute conditions b < 0.1 Mg/m3. These density conditions are equivalent to nondimensional density 

N3/V < 30 in the Monte Carlo analysis. The particles in these conditions were aligned in one 

direction, which causes the masking of other particles.  

Figure 7(b) shows a close-up plot of the effective ESA from low- to medium-density conditions. 

The effective ESA obtained from the experiment is close to the analytical results using the masking 

parameter = . This value is equivalent to the masking distance  = 36nm for montmorillonite 

particles (= 450 nm) and it seems to be large from a physical point of view. The cause of such a 

large masking distance remains unclear. However, the numerical results of the effective ESA 

computed from equilibrium structure obtained by Monte Carlo analysis represent well the change in 

reactive surface area obtained from the AFM experiment. Therefore, the major reason for dissolution 

rate reduction is that the edges of particles are covered with the other particles and consequently the 

reactive surface area is reduced (physical masking). 

 

3.6 Formulation of the effective ESA 

We have provided a physical explanation on the rapid decrease of the effective ESA under 

high-density conditions. The increase of masking area results from the approach of each particle 

with density increase. Paineau et al. experimentally indicated that the change in the inter-particle 

distance of clay particles [33]. The relationship between the average inter-particle distance of clay 

and the dry density can be explained by a simple model considering the occupancy volume of 



particles. As shown in Fig. 3, the particle structure changes with increasing the density (IN 

transition). Therefore, the size of the occupancy volume of each particle may change under dilute 

and dense conditions. 

Under the low-density conditions, the particle distributes isotropically without any constraint of 

other particles. In this case, the occupancy volume is roughly illustrated as a cube with the 

inter-particle distance lc. As a result, the number density of particle n (= N/V) is proportional to lc
−3. 

Consequently, the relationship between the b and the average inter-particle distance lc at low density 

can be described as follows: 

 3/13/1~   bc nl  .  (14)

 In contrast, the particles are aligned in one direction at high density as shown in Fig. 2. In this case, 

the occupancy volume should be assumed as a cylindrical column with diameter  and the height lc 

(inter-particle distance). As a result, the relationship between the b and the inter-particle distance lc 

in the high density can be described as:  
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2

4
~   bc nl 


  (15)

In summary, the average inter-particle distance of disk-shaped particles is proportional to a b
−1/3 at 

low density and b
−1 at high density, respectively. 

 If we assume that the dependence of effective ESA on the density is similar to that of inter-particle 

distance, we can express the relationship between the effective ESA and the b as the following 

expression: 
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(16)

where ESA0 is the effective ESA for a limiting dilution condition, b is the dry density and b
* is the 

parameter which determines a change point of slope of the effective ESA. 

 The parameter b
* should be decided in conjunction with structural change of particles. As 

discussed in Section 3.2, the phase transition from isotropic to nematic phase (IN transition) for the 

equilibrium structure of disk-shaped particles may occur around the nondimensional density N3/V 



= 4.0. It is reasonable to assume that b
* is the density at which IN transition occurs (b

* = 0.0168 

Mg/m3, which is calculated from the physical properties of montmorillonite particles). 

Figure 7 shows the comparison of the model results of effective ESA calculated from Eq. (16) with 

the numerical and experimental results. The model results of the effective ESA exceed the theoretical 

dilution limit described in Eq. (13) and it goes to infinity as b approaches 0. Therefore, we set the 

effective ESA as ESA0 = 3.7 m2/g if it exceeds ESA0. Figure 7 indicates that the model results show 

good agreement with the numerical results using the Monte Carlo method (= ) and 

experimental results by AFM. 

In summary, we propose the following expression for the relationship between the effective ESA 

and the dry density of disk-shaped particles. 
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(17)

where b is the dry density, b
* is the dry density at which the IN transition occurs, ESA0 is the 

effective ESA for a dilution limit and b0 is a lower-limit density of the model. Using the physical 

properties of montmorillonite particles, the parameters in Eq. (17) are b
* = 0.0168 Mg/m3, ESA0 = 

3.7 m2/g and b0 = 0.00534 Mg/m3, respectively. 

 

4. Summary and conclusion  

In order to examine the mechanisms behind the dissolution rate reduction of montmorillonite with 

the increase of the density, Monte Carlo analysis of infinitely thin disk-shaped particle was 

performed using two different inter-particle potentials. The equilibrium structure of the particles was 

calculated for a wide range of density conditions. The quadrupole potential was used for 

inter-particle interaction in a dispersion system at low density, whereas the rigid-body potential was 

used from low- to high-density conditions. We examined the particle structures obtained by both 



potentials qualitatively and quantitatively and checked the consistency of these structures under 

medium-density conditions. 

The Monte Carlo analysis results show that the equilibrium structures of particles were different for 

the two potentials at low density. The particles with the rigid-body potential were distributed 

uniformly and isotropically, while the particles with quadrupole potential made aggregates with 

edge-to-face structure. However, under moderate-density conditions in which the excluded volume 

of particles overlap each other, the difference of particle structures could not be seen in both results. 

This was caused by the phase transition from isotropic phase to nematic phase (IN transition) and the 

particle structures with both potentials were gradually aligned in one direction after IN transition. 

The equilibrium structure obtained from Monte Carlo analysis using the different potentials 

indicated that the masking area (the ESA of particles masked by the other particles) could be 

identified by a geometric masking model and the effective ESA (unmasking edge area per unit mass) 

was calculated. Although the effective ESA using the rigid-body potential did not coincide with the 

quadrupole potential at low density, both results connected smoothly under the moderate-density 

condition. The results of the effective ESA are quantitatively in good agreement with those evaluated 

from experimental results of the dissolution rate of clay particles. These results imply that the 

primary reason for the dissolution rate reduction of montmorillonite particle at high density is 

physical masking, i.e., the edge of particles is covered with the other particles and the reactive 

surface area is reduced.  

We proposed an expression for predicting the effective ESA of disk-shaped particles at any density 

condition. From the analogy of the dependence of inter-particle distance of disk-shaped particles on 

the density, we formulated the relationship between the effective ESA and b. The proposed 

expression can express the effective ESA for a wide range of densities. The results of this study can 

contribute to long-term prediction of the performance of bentonite buffer materials in geological 

disposal systems. 
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Fig. 1 (a) Positional relation between two disk-shaped particles. (b) Settings of the masking parameter   to calculate the areas that are masked by other 

particles (masking area). The masking area is defined if the vertical distance from the edge to surface of particles is less than . 

 

 

 

 

 

 



 

 

 

 

 

(a) quadrupole potential 

 

 

(b) rigid-body potential 

 

Fig. 2 Equilibrium structure of infinitely thin disk-shaped particles which model montmorillonite particles by the Monte Carlo method using different 

potentials. 
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Fig. 3 Comparison of equilibrium structure based on quadrupole potential and rigid-body potential. 
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Fig. 4 Evaluation of nematic order parameter S of equilibrium structure of platelet particles by quadrupole potential and rigid-body potential for various density 

conditions. 

 

 

 

 

 

 



 

 

(a) quadrupole potential 

 

 

(b) rigid-body potential 

 

Fig. 5 Visualization of masking area (red area) of the equilibrium structure of platelet particles calculated by the masking model (masking parameter /= 

0.04). 
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                   (a) Effective ESA in a wide range of dry densities               (b) Effective ESA from low to medium density 

 

Fig. 6 Effective ESA calculated from the masking model with various masking parameters / 
 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       

                   (a) Effective ESA in a wide range of dry densities               (b) Effective ESA from low to medium density 

 

Fig. 7 Comparison of numerical results of effective ESA, experimental results of dissolution rate and theoretical model under various density conditions. 

 

 

 

 

 

 

 

 

 

 



Supplementary Table 
 

 

Table 1 Results of the dissolution experiment of montmorillonite by AFM 

Sample 0 1 2 3 4 5 6 7 2007-c1 2007-c2 

Solution H2O 
0.3 M 

NaOH 

0.3 M 

NaOH 

0.3 M 

NaOH 

0.3 M 

NaOH 

0.3 M 

NaOH 

0.3 M 

NaOH 

0.3 M 

NaOH 

0.3 M 

NaOH 

0.3 M 

NaOH 

Volume [ml] 6.0  7.0  5.0  6.0  5.0  4.0  4.0  4.0  

KP [mg] 1.00  34.78  55.80  118.05  174.49  200.75  691.17  965.25  

Gel volume [ml] 6.00  6.76  4.84  5.98  4.71  3.91  4.50  4.70  

Density calc. [g/ml] 0.00017  0.005  0.011  0.020  0.035  0.050  0.173  0.241  

Density obs. [g/ml] 0.00017  0.005  0.012  0.020  0.037  0.051  0.154  0.205  0.1  0.2  

Temperature [°C] 25  70  70  70  70  70  70  70  70  70  

Duration [min] 0  925  925  925  925  925  990  990  

ESA [nm2] 773.636  652.746  581.801  566.981  689.376  738.859  756.619  759.926  

BSA [nm2] 68176.270  45593.262 40039.062 39916.992 57128.906 54504.395 67260.742 68054.199 

TSA [nm2] 68948.615 46221.931 40693.226 40498.769 57872.221 55286.785 67580.734 68828.243 

Diameter [nm] 208.331 170.367 159.655 159.411 190.708 186.275 206.929 208.145 

Size median [nm] 225.481 184.735 169.713 169.295 198.665 200.414 221.11 218.778 

Volume [nm3] 3.238E+10 2.166E+10 1.902E+10 1.896E+10 2.714E+10 2.589E+10 3.195E+10 3.233E+10 

Rate [mol/m2/s] 0.000E+00 1.085E−09 1.517E−09 1.564E−09 5.027E−10 5.805E−10 3.547E−11 4.708E−12 3.160E−11 1.000E−11 

 

 

 

 
 


