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Abstract

We study chimera states in the one-dimensional array of nonlocally coupled

phase oscillators. The chimera state is a stable state characterized by the

coexistence of coherent regions of synchronized oscillators and incoherent

regions of drifting oscillators.

Chimera states are surely stable in the continuum limit with infinitely

many oscillators. However, it is reported that in finitely discretized systems,

chimera states are chaotic transient and finally collapse into the completely

synchronous solution. In this thesis, we numerically study chimera states by

using the coupling function different from the previous studies and show that

chimera states can be stable even in the system composed of a small number

of oscillators.

In most previous works, chimera states in the continuum limit are as-

sumed to be stationary states. However, a few studies report the existence

of breathing (oscillating) chimera states. In this thesis, we focus on mul-

tichimera states with two coherent and incoherent regions and numerically

demonstrate that there can appear breathing multichimeras whose global or-

der parameter oscillates temporally. Then, we show that the system exhibits

a Hopf bifurcation from a stationary multichimera to a breathing one.

We also confirm that there appear another type of the breathing multi-

chimera, which has the second coherent regions with the different average

frequency in addition to the original coherent regions. Moreover, we show

that the second coherent regions appear by increasing the amplitude of the

breathing. Furthermore, we derive a new self-consistency equation extended

for breathing chimeras and numerically solve it.
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Chapter 1

Introduction

We study chimera states in nonlocally coupled phase oscillators. Chimera

states are symmetry breaking appearing in a large group of identical self-

sustained oscillators and are characterized by the coexistence of synchronized

and desynchronized oscillators. In this chapter, we qualitatively explain the

background of our studies and mention the purpose of this thesis in the last

section.

1.1 Self-sustained Oscillator

There often appear self-sustained rhythmic phenomena in various natural or

artificial dissipative systems [1,2]. For instance, the pendulum of a metronome

oscillates with a constant frequency as long as energy is supplied. An elec-

tronic oscillator as typified by a triode generator persistently produces a peri-

odically alternating current. The Belousov-Zhabotinsky reaction is a famous

oscillating chemical reaction characterized by oscillation of concentration of

the reactants. Others include neuronal firing, a circadian rhythm, light of

a glow-worm, and the list goes on. These systems consist of respective dif-

ferent components. However, the self-sustained oscillations have universal

properties and can be understood within a unified framework.

Self-sustained oscillators generally interact with one another. A many-

body system composed of interacting self-sustained oscillators is called the
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coupled oscillator system, which has been studied extensively in various sci-

entific fields, e.g. physics, mathematics, chemistry, biology, and so on, for

many years.

1.2 Limit Cycle

Self-sustained oscillators have their own rhythms and are maintained by in-

ternal energy sources. Therefore, even if an oscillator is separated from the

external environment, it continues to oscillate autonomously. Such oscilla-

tors can be described within a class of nonlinear dissipative systems, and

they are fundamentally different from harmonic oscillators in conservative

systems and forced oscillators in forced systems.

An individual self-sustained oscillation is often described as the periodic

motion on the limit cycle in the phase space. Note that some of self-sustained

oscillators, such as chaotic oscillators, are not described as limit cycle oscil-

lators, though we do not consider them in this thesis. The limit cycle is an

isolated closed trajectory that depends only on parameters of the dynamical

system and that does not depend on initial conditions. In contrast, the peri-

odic motion in a conservative system is described as a family of infinite closed

trajectories with respective different amplitudes, and one of them is practi-

cally chosen by an initial condition. Nonlinearity in the dynamical system is

essential for the realization of limit cycle oscillations. Let X(t) be a periodic

solution in a linear system such as a harmonic oscillator. Then, cX(t) is also

a periodic solution for any constant c. Therefore, all periodic solutions in

the linear system are not limit cycles, because X(t) is not “isolated”.

Stability of the amplitude with respect to small perturbations also dis-

tinguishes between self-sustained oscillators and harmonic oscillators. The

amplitude of a limit cycle oscillation is stable. Therefore, points in the neigh-

borhood of the limit cycle trajectory gradually approach it. On the other

hand, that of a harmonic oscillation is neutral. If the perturbation is added

to a point on a periodic trajectory of the harmonic oscillation, it would forget

the original trajectory and maintain the new trajectory.
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(a) (b)

Figure 1.1: Schematic diagrams of (a) the limit cycle oscillator and (b) the
harmonic oscillator in the phase space. In the nonlinear dissipative system,
points in the neighborhood of the limit cycle trajectory gradually approach
it. In contrast, each harmonic oscillator in the linear conservative system has
a respective different amplitude.

The phase on a limit cycle is another important quantity. For simplicity,

we consider the limit cycle of a quasilinear oscillator X(t) = A sin(ωt + θ0).

Then, the constant A is the amplitude, and the quantity θ(t) := ωt+θ0 is the

phase. The phase on a limit cycle depends on the initial conditions, and limit

cycle oscillations with any initial phase θ0 are equivalently realized. This

neutrality of the phase distinguishes self-sustained oscillators from forced

oscillators in forced systems. The phase of a forced oscillation is not free,

because it depends on the phase of the external force.

1.3 Synchronization & Chimera State

Synchronization is a typical collective motion of self-sustained oscillators.

It was first discovered by Christiaan Huygens in the 17th century [2]. He

observed that oscillations of two pendulum clocks hanging from a common

wooden beam were gradually synchronized with each other and finally co-

incided perfectly. Furthermore, he found that weak interaction caused by

the motion of the beam adjusted rhythms of clocks. At the present day, it

is reported that synchronization is encountered in various systems. More-

over, it plays an important part in understanding a wide variety of scientific
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phenomena.

Recently, a strange phenomenon called the chimera state has attracted

great interest. The chimera state is a stable state appearing in a large group

of coupled identical oscillators. Surprisingly, despite the system composed of

identical oscillators, it has the spatiotemporal pattern characterized by the

coexistence of synchronized and desynchronized oscillators. Such a pattern

was first discovered by Kuramoto and Battogtokh [3]. Later Abrams and

Strogatz named this phenomenon the chimera state inspired by the Greek

mythological creature [4, 5].

Chimera states have been actively studied since the first discovery. One

of the most basic models where chimera states appear is the one-dimensional

array of nonlocally coupled phase oscillators [3–24], which was used also in

the first discovery of the chimera state. Chimera states can also appear in the

phase oscillator systems with different coupling topologies, e.g. two dimen-

sions [25, 26], interacting populations of globally coupled oscillators [27–29],

and the complex network [30]. Similar spatiotemporal patterns have been

found in other oscillator systems, e.g. Logistic maps [31, 32], Rössler sys-

tems [31,32], Lorenz systems [32], FitzHugh-Nagumo oscillators [33], complex

Ginzburg-Landau equations [3,34–36], Van der Pol oscillators [37], and Brus-

selators [38]. Furthermore, the appearance of chimera states is also reported

experimentally [39–42].

1.4 Purpose of Thesis

In this thesis, we study chimera states in the one-dimensional array of non-

locally coupled phase oscillators. Chimera states in the one-dimensional sys-

tems are surely stable in the continuum limit N → ∞, where N is the

number of oscillators, while they are considered unstable in the finitely dis-

cretized systems [8–10]. Moreover, chimera states in the continuum limit are

assumed to be stationary states in most analytical studies [3–6,11,13,18,23].

Our studies deal with two simple questions: (a) whether there exist persis-

tent chimera states that are stable even in the finitely discretized systems,
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and (b) whether there exist non-stationary chimera states in the continuum

limit. We present the answers to these questions.

The contents of this thesis are as follows. In Chapters 2 and 3, we re-

view the previous works of phase oscillators and chimera states, respectively.

Then, we especially focus on the analytical theory. In Chapter 4, we con-

sider the system with the coupling function different from the previous works

and numerically demonstrate that there can appear persistent chimera states

that are stable even in the system composed of a small number of oscillators.

In Chapter 5, we numerically demonstrate that there can appear breathing

(non-stationary) chimera states. Moreover, we show that the system exhibits

a Hopf bifurcation from a stationary chimera to a breathing one by the lin-

ear stability analysis for the stationary chimera. In Chapter 6, we observe

two types of breathing chimeras and show that the appearance of them is

switched by increasing the amplitude of the breathing. Furthermore, we

derive a new self-consistency equation extended for breathing chimeras and

numerically solve it.
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Chapter 2

Review: Phase Oscillator

First of all, we must understand the phase oscillator. If the external force

is applied to a oscillator is sufficiently weak, the limit cycle oscillator can be

transformed into the phase oscillator by the phase reduction method. In this

chapter, we review the phase reduction method and analyze synchronization

of phase oscillators. For all our numerical simulations of this thesis, we used

the fourth-order Runge-Kutta method with time interval ∆t = 0.01.

2.1 Examples of Dynamical Models

In this section, we introduce some mathematical models of self-sustained os-

cillators. A nonlinear dissipative system is often described as the n-dimensional

dynamical system obeying the first-order ordinary differential equation

Ẋ(t) = F (X), (2.1)

where X = [X1, X2, · · · , Xn]
T ∈ Rn and F is a real function of X. A point

X(t) in the phase space corresponds to the state of the system at time t. If

Eq. (2.1) has a stable solution, appropriate initial conditions X(0) converge

on it after a sufficiently long transient time. One of the typical solutions

is the fixed point Xfp(t) such that F (Xfp) = 0. Moreover, the limit cycle

Xlc(t) is also a typical solution. Since Xlc(t) is a periodic solution, there

exists some τ > 0 such that Xlc(t+τ) = Xlc(t) for all t. The minimum value
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of τ is a period of Xlc(t). The following examples are some of dynamical

models with the stable limit cycle solution.

The Van der Pol oscillator [43] is an oscillator model with nonlinear damp-

ing and obeys the evolution equation

Ẍ = ϵ(1−X2)Ẋ −X, (2.2)

where ϵ denotes the strength of nonlinear damping. This model was originally

proposed as a mathematical model to describe stable oscillations in a triode

circuit. When ϵ < 0, Eq. (2.2) has a stable fixed point X = 0, but it does

not have limit cycles. On the other hand, when ϵ > 0, a stable limit cycle

appears. For ϵ ≃ 0, this limit cycle is quasilinear as shown in Fig. 2.1. As

ϵ is increased, it becomes distorted and changes its form to the relaxation

oscillator as shown in Fig. 2.2. Note that when ϵ = 0, Eq. (2.2) is identical

with a harmonic oscillator.

The FitzHugh-Nagumo oscillator [44,45]

Ẋ = c(X −X3/3 + Y ),

Ẏ = −(X − a+ bY )/c,
(2.3)

describes the action potential of an electrically excitable cell such as a neuron.

The FitzHugh-Nagumo model is derived by simplifying the Hodgkin-Huxley

model [46], which is famous for describing action potentials in the squid giant

axon. Eq. (2.3) has a stable limit cycle solution that is the typical relaxation

oscillator corresponding to the spike of neuronal firing, as shown in Fig. 2.3.

When a = b = 0, Eq. (2.3) is identical with Eq. (2.2).

The Belousov-Zhabotinsky reaction is a well-known example of the self-

sustained oscillation. The Brusselator [47]

Ẋ = a− (b+ 1)X +X2Y,

Ẏ = bX −X2Y,
(2.4)

is one of the mathematical models describing such a oscillating chemical

reaction. Eq. (2.4) has a stable fixed point (X,Y ) = (a, b/a) for b < 1 + a2.
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Figure 2.1: Limit cycle of the Van der Pol oscillator with ϵ = 0.1. The
variable v in the figure is the same as the variable X in Eq. (2.2) [43].

Figure 2.2: Limit cycle of the Van der Pol oscillator with ϵ = 1 [43].
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Figure 2.3: Limit cycle of the FitzHugh-Nagumo oscillator with a = 0.7,
b = 0.8, and c = 3.0 [44].

However, when b > 1 + a2, the fixed point becomes unstable, and a stable

limit cycle appears by a Hopf bifurcation.

Each oscillator model has the oscillator’s character that is important to

describe the specific phenomenon. However, it may be obstructive to under-

standing the properties common to all limit cycle oscillators.

2.2 Phase Reduction Method

In this section, we derive the phase oscillator. The description of the limit

cycle oscillator generally require at least two variables, namely, the amplitude

and the phase. However, the phase oscillator expresses the limit cycle oscil-

lation in only the motion of the phase. The method for deriving the phase

oscillator from an original oscillator is called the phase reduction method.

2.2.1 Phase of Limit Cycle

First, we define the phase on a limit cycle. Let C be the stable limit cycle

trajectory of Eq. (2.1).

Definition. The phase θ(t) on the limit cycle C is defined as

θ̇(t) = ω, (2.5)
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where ω is a real constant. The constant ω is called the natural frequency

and defined as

ω =
2π

T
, (2.6)

where T is a period of the limit cycle solution Xlc(t).

The phase θ(t) increases at a constant velocity along C and by 2π per

period. Then, θ and θ + 2mπ for any m ∈ Z correspond to the same point,

and any point on C can be set to the origin θ = 0. Note that any limit cycle

solution does not always rotate on C at a constant velocity. However, we

can obtain the phase θ(t) defined as Eq. (2.5) with respect to any limit cycle

solution because any angular variable ϕ(t) is transformed into θ(t) by

θ(t) = ω

∫ θ(t)

0

dϕ

[
dϕ

dt

]−1

. (2.7)

Next, we define the phase in the neighborhood of the limit cycle. The new

phase must be identical with Eq. (2.5) on C. A point XS(t) in the neighbor-

hood of C asymptotically approaches C with time and finally overlaps with

a point XP (t) rotating on C. Then, the point XP (t) is uniquely determined

since Eq. (2.1) is deterministic. Therefore, the phase in the neighborhood of

C can be defined as follows.

Definition. Let S be a subspace of the phase space that consists of the whole

of initial conditions asymptotically approaching the limit cycle C with time.

Now, there exists some point XP (t) on C for any point XS(t) ∈ S such that

XS(t) is identical with XP (t) in t → ∞. Then, the phase θ(t) of XS(t) is

defined as the same quantity to that of XP (t) given as Eq. (2.5).

The phase θ(t) uniformly rotate in the neighborhood of the limit cycle.

Therefore, the phase is constant under the Poincaré map

X(t) → X(t+ T ), (2.8)

in the neighborhood of C. The map (2.8) has a stable fixed point Xlc on C,

and all points around Xlc on the Poincaré section converge on it in t → ∞.
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The whole of points converging onXlc forms a (n−1)-dimensional hyperplane

called the isochrone. Because the phase is constant on the isochrone, we

can also define the phase as “all points on the isochrone have an identical

phase given as Eq. (2.5)”. The phase is the smooth function of X in the

neighborhood of C. Substituting Eq. (2.1) and Eq. (2.5) into the identity

θ̇ = ∇Xθ · Ẋ, (2.9)

we have

ω = ∇Xθ · F (X). (2.10)

If the point X(t) is always in the neighborhood of the limit cycle, the

behavior of this limit cycle oscillator is described by only the motion of the

phase θ(t) very well. Therefore, we can consider Eq. (2.5) to be an oscillator,

which is called the phase oscillator.

2.2.2 Phase Equation

When an oscillator obeying Eq. (2.1) is affected by the external force or the

interaction with other oscillators, the evolution equation for the phase θ(t)

changes from Eq. (2.5). Now, we consider the dynamical system of weakly

coupled oscillator as

Ẋ(t) = F (X) + P (t), (2.11)

where P (t) is the small perturbation and denotes the external force. For

instance, when P (t) = D̂∇2X with the diffusion coefficient matrix D̂,

Eq. (2.11) is the reaction-diffusion system. From Eq. (2.10), we have

θ̇ = ∇Xθ · Ẋ

= ∇Xθ · [F (X) + P (t)]

= ω +∇Xθ · P (t). (2.12)

The trajectory of X(t) generally gets out of the limit cycle C by the pertur-

bation. However, when P (t) is sufficiently small, the gap between them is
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also small. Therefore, because it is permitted to replace∇X to∇Xlc
=: Z(θ),

we finally obtain the phase equation

θ̇ = ω +Z(θ) · P (t). (2.13)

This equation is the self-contained equation for θ(t).

When oscillators are weakly coupled, the sum of interactions with other

oscillators can be considered as one small perturbation. Now, we consider

coupled two oscillators

Ẋ1 = F (X1) + δf1(X1) + g12(X1,X2),

Ẋ2 = F (X2) + δf2(X2) + g21(X1,X2),
(2.14)

where δf denotes the slight difference of individual oscillators and g denotes

the interaction. Let θ(t) = ωt be the phase of the standard oscillator obeying

Eq. (2.1), and let θ1(t) and θ2(t) be the phase of each oscillator obeying

Eq. (2.14), respectively. From Eq. (2.13), the evolution equation for θ1(t) is

obtained as

θ̇1 = ω +Z(θ1) · [δf1(X1) + g12(X1,X2)]. (2.15)

Because δf and g are small perturbations, the variables X1(t) and X2(t) can

be replaced toXlc(θ1) andXlc(θ2) on the limit cycle of Eq. (2.1), respectively.

Therefore, we have

θ̇1 = ω +Z(θ1) · [δf1(θ1) + g12(θ1, θ2)]. (2.16)

To simplify notation, we change the arguments of δf and g from Xlc(θ) to

θ. Putting ϕ1,2(t) := θ1,2(t)− ωt, Eq. (2.16) is rewritten as

ϕ̇1 = Z(ωt+ ϕ1) · [δf1(ωt+ ϕ1) + g12(ωt+ ϕ1, ωt+ ϕ2)]. (2.17)

This equation means that the variable ϕ1(t) changes much more slowly than

ωt, and ϕ2(t) is also similar. Therefore, considering ϕ1,2 to be the constant
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and temporally averaging Eq. (2.17) over the period T = 2π/ω, we have

ϕ̇1 = δω1 + Γ12(ϕ1 − ϕ2), (2.18)

δω1 :=
1

2π

∫ 2π

0

dθZ(θ + ϕ1) · δf1(θ + ϕ1), (2.19)

Γ12(ϕ1 − ϕ2) :=
1

2π

∫ 2π

0

dθZ(θ + ϕ1) · g12(θ + ϕ1, θ + ϕ2), (2.20)

where δω1 is constant not depending on ϕ1(t) and Γ12 is a smooth 2π-periodic

function of the phase difference. Obviously, ϕ2(t) also obeys the similar

equations. Putting ω1,2 := ω + δω1,2, we finally obtain the phase equations

θ̇1 = ω1 + Γ12(θ1 − θ2),

θ̇2 = ω2 + Γ21(θ2 − θ1).
(2.21)

Eq. (2.21) brings a physical picture such that two phase oscillators with dif-

ferent natural frequencies ω1 and ω2 interact with each other by the coupling

function Γ.

In the case of the N -body system, we can also obtain the similar phase

equations

θ̇j = ωj +
1

N

N∑
k=1

Γjk(θj − θk), (2.22)

with j = 1, · · · , N . The coefficient 1/N is inserted in order to prevent the

divergence of the interaction term in N → ∞. The coupling function Γ is a

smooth 2π-periodic function. For instance, when we choose

Γjk(ϕ) = −K sin(ϕ), (2.23)

where K > 0 denotes the coupling strength, Eq. (2.22) becomes the Ku-

ramoto model [1]

θ̇j = ωj −
K

N

N∑
k=1

sin(θj − θk), (2.24)

which is famous for describing the synchronization of self-sustained oscilla-
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tors.

2.3 Synchronization

In this section, we consider coupled identical phase oscillators and analyze

synchronization of them. The word “identical” means that the dynamics of

each oscillator is described as the identical evolution equation. Therefore, the

natural frequency ωj and the coupling function Γjk do not depend on indexes

of oscillators. As the coupling function, we choose the sine coupling [48]

Γ(ϕ) = −K sin(ϕ+ α), (2.25)

with the phase lag parameter α ∈ [−π, π). The sine coupling consists of only

the fundamental component of the coupling function. Phase oscillators with

the sine coupling have been heavily used in many studies.

2.3.1 Two-Body System

We consider coupled two phase oscillators with the sine coupling

θ̇1(t) = ω −K sin[θ1(t)− θ2(t) + α],

θ̇2(t) = ω −K sin[θ2(t)− θ1(t) + α],
(2.26)

with 2π-periodic phase θ(t) ∈ [−π, π). Eq. (2.26) has two synchronous solu-

tions such that θ̇1 = θ̇2. Putting ∆θ(t) := θ2(t)−θ1(t), the evolution equation

for ∆θ(t) is obtained as

d

dt
[∆θ(t)] = −K[sin(∆θ(t) + α)− sin(−∆θ(t) + α)]

= −2K cosα sin[∆θ(t)]. (2.27)

Then, we can set ∆θ(t) ∈ [0, 2π) without loss of generality. Synchronous

solutions for Eq. (2.26) correspond to fixed points for Eq. (2.27), namely,
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∆θ = 0 and ∆θ = π. Therefore, two synchronous solutions for Eq. (2.26) are

θ1 = θ2, (2.28)

θ1 = θ2 + π. (2.29)

Eq. (2.28) denotes in-phase synchronization where two oscillators completely

coincide and are synchronized with a frequency ω − K sinα. On the other

hand, Eq. (2.29) denotes anti-phase synchronization where oscillators are

separated from each other by the phase π though they are synchronized with

an identical frequency ω+K sinα. By the way, when synchronization was first

discovered by Christian Huygens, he observed anti-phase synchronization of

two pendulum clocks [2].

Eq. (2.26) always has in-phase and anti-phase synchronous solutions.

However, when either one is stable, the other is unstable. This can be shown

by the linear stability analysis for each solution. Before actually studying the

stability of Eq. (2.28) and Eq. (2.29), we explain the general linear stability

analysis. As the easiest case, we consider a fixed point Xfp of Eq. (2.1).

Substituting Xfp +V (t) with a small perturbation V (t) ∈ Rn into Eq. (2.1)

and linearizing it, we obtain a linear evolution equation for V (t) as

V̇ (t) = F (Xfp + V )− F (Xfp)

≃ L̂(Xfp)V (t), (2.30)

where L̂ is the Jacobian matrix of F at a point Xfp:

L̂(Xfp) =
∂F

∂X
(Xfp). (2.31)

It is clear that the stability of Xfp is determined by eigenvalues of L̂. When

the real parts of all eigenvalues are negative, V (t) decreases with time and

finally becomes zero. Therefore, Xfp is stable. On the other hand, when

any one of eigenvalues has the positive real part, V (t) diverges in t → ∞,

that is, Xfp is unstable. Also, when the maximum value of the real parts of

eigenvalues is zero, Xfp is neutral or neutrally stable.
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0 ≤ |α| < π/2 π/2 < |α| ≤ π
in-phase stable unstable
anti-phase unstable stable

Table 2.1: Stability regions of two synchronous solutions to Eq. (2.26).

To study the stability of Eq. (2.28) and Eq. (2.29) more easily, we use

Eq. (2.27) again. Because L̂ of Eq. (2.27) at a fixed point ∆θfp is obtained

as

L̂(∆θfp) = −2K cosα cos(∆θfp), (2.32)

we have

L̂(0) = −2K cosα, (2.33)

L̂(π) = 2K cosα, (2.34)

for in-phase synchronization (∆θfp = 0) and anti-phase synchronization (∆θfp =

π), respectively. Tab. 2.1 shows the stability regions of the in-phase and

anti-phase synchronous solutions. Here, for |α| = π/2, both of solutions are

neutral. Fig. 2.4 shows the time evolution of θ1(t) and θ2(t) obtained by the

numerical simulation of Eq. (2.26). There appear in-phase synchronization

for α = 0 and anti-phase synchronization for α = π. These results are in

good agreement with Tab. 2.1. Note that the natural frequency ω and the

coupling strength K do not affect the appearance of solutions essentially.

2.3.2 Globally Coupled Phase Oscillators

Next, we consider coupled N identical phase oscillators

θ̇j(t) = ω − K

N

N∑
k=1

sin[θj(t)− θk(t) + α], (2.35)

with j = 1, · · · , N . In this system, all oscillators are coupled with the uniform

coupling strength. Such a system is called the globally coupled system. Here,

the natural frequency ω can be set to zero without loss of generality because
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Figure 2.4: Time evolution of phase oscillators for Eq. (2.26) with ω = 2π
and K = 1. The blue and red lines denote θ1(t) and θ2(t), respectively.
There appear (a) in-phase synchronization for α = 0 and (b) anti-phase
synchronization for α = π.
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Eq. (2.35) with ω = 0 can be also obtained by redefining all phases as θ(t)−
ωt → θ(t). This is the same as setting the frequency of the rotating frame

to ω. Similarly, we can set K = 1 because the appearance of solutions to

Eq. (2.35) are not affected by rescaling the time as Kt → t. These are in

agreement with the results in the previous section.

To study the collective motion of phase oscillators, we define the global

order parameter

Z(t) :=
1

N

N∑
j=1

eiθj(t). (2.36)

|Z(t)| denotes the synchronization degree of oscillators, that is, all oscillators

are completely synchronized in phase for |Z(t)| = 1 and otherwise for 0 ≤
|Z(t)| < 1. The global order parameter Z(t) also plays an role as the mean

field. From Eq. (2.36), Eq. (2.35) is rewritten as

θ̇j(t) = ω −K Im[eiαeiθj(t)Z∗(t)], (2.37)

where the symbol ∗ denotes the complex conjugate. Eq. (2.37) brings a

physical picture such that each independent phase oscillator is driven under

the common mean field Z(t).

Eq. (2.35) also has two synchronous solutions similar to Eq. (2.26). For

0 ≤ |α| < π/2, all oscillators completely synchronized in phase with a fre-

quency ω −K sinα, that is,

θ1(t) = θ2(t) = · · · = θN(t), (2.38)

for |Z(t)| = 1, as shown in Fig. 2.5(a). On the other hand, for π/2 < |α| ≤
π, oscillators converge on |Z(t)| = 0, as shown in Fig. 2.5(b). Then, all

oscillators are uniformly distributed from −π to π. The stability of these

solutions can be studied by calculating eigenvalues of the N × N Jacobian

matrix of Eq. (2.35). However, we study it more easily by another method

in Section 2.3.5.
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Figure 2.5: Snapshot of the phase θj(t) for the globally coupled phase oscil-
lators described as Eq. (2.35) with N = 100. (a) For α = 0, all oscillators
are completely synchronized in phase for |Z(t)| = 1. (b) For α = π, they
converge on |Z(t)| = 0. We use the initial conditions selected uniformly at
random.

2.3.3 Watanabe-Strogatz approach

To describe the collective motion of phase oscillators, it may not always be

necessary to observe the behavior of all oscillators. By using the Watanabe-

Strogatz approach [49], the population of phase oscillators can be described

as the dynamics of three dynamical variables and constants determined by

initial conditions.

Watanabe-Strogatz approach. The dynamics of N (≥ 3) phase oscilla-

tors described as

θ̇j(t) = p(t)− Im[eiθj(t)q∗(t)], (2.39)

where p(t) is a real function and q(t) is a complex function, is reduced to that

of three real variables ρ(t), Φ(t), and Ψ(t) via the transformation

tan

[
θj(t)− Φ(t)

2

]
=

1− ρ(t)

1 + ρ(t)
tan

[
ψj −Ψ(t)

2

]
, (2.40)

where the constants ψj are determined from initial conditions θj(0) and sat-

isfy the additional condition, for instance,

N∑
j=1

eiψj = 0. (2.41)
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Putting η(t) := ρ(t)eiΦ(t) and ζ(t) := Φ(t) − Ψ(t), we finally obtain the

evolution equation

η̇(t) = ip(t)η(t) +
1

2
q(t)− 1

2
η(t)2q∗(t), (2.42)

ζ̇(t) = p(t)− Im[η(t)q∗(t)]. (2.43)

Then, the time evolution of θj(t) is completely described as that of η(t) and

ζ(t) governed by Eqs. (2.42)-(2.43).

We omit the details of the Watanabe-Strogatz approach, but we actu-

ally derive Eqs. (2.42)-(2.43) for globally coupled phase oscillators. As the

more generalized system, we consider M interacting populations of globally

coupled N phase oscillators

θ̇aj (t) = ωa −
1

N

M∑
b=1

N∑
k=1

Kab sin[θ
a
j (t)− θbk(t) + α], (2.44)

with j = 1, · · · , N and a = 1, · · · ,M . The variable θaj (t) denotes the phase

of oscillator j in population a, and the constant Kab denotes the coupling

strength between populations a and b. Of course, for M = 1, Eq. (2.44) is

identical with Eq. (2.35). We define the global order parameter of population

a as

Za(t) :=
1

N

N∑
j=1

eiθ
a
j (t), (2.45)

and the mean field acting the oscillators in population a as

Ya(t) :=
M∑
b=1

KabZb(t). (2.46)

Then, since Eq. (2.44) is rewritten as

θ̇aj (t) = ωa − Im[eiαeiθ
a
j (t)Y ∗

a (t)], (2.47)

the Watanabe-Strogatz approach can be applied to each population [28].
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From pa(t) = ωa and qa(t) = e−iαYa(t), Eqs. (2.42)-(2.43) become

η̇a(t) = iωaηa(t) +
1

2
e−iαYa(t)−

1

2
eiαηa(t)

2Y ∗
a (t), (2.48)

ζ̇a(t) = ωa − Im[eiαηa(t)Y
∗
a (t)]. (2.49)

New variables has the following physical meaning. The dynamics of the

complex variable ηa(t) composed of ρa(t) and Φa(t) corresponds to the motion

of the bunch of oscillators in population a. In particular, ηa(t) is identical

with the global order parameter Za(t) in the continuum limit N → ∞ [28].

Therefore, in N → ∞, Eqs. (2.48)-(2.49) become

Ża(t) = iωaZa(t) +
1

2
e−iαYa(t)−

1

2
eiαZa(t)

2Y ∗
a (t), (2.50)

ζ̇a(t) = ωa − Im[eiαZa(t)Y
∗
a (t)]. (2.51)

Then, Eq. (2.50) is the self-contained equation for Za(t). Another variable

Ψa(t) corresponds to the shift of individual oscillators with respect to the

bunch. Therefore, the variable ζa(t) means the phase difference between the

bunch and individual oscillators.

2.3.4 Ott-Antonsen ansatz

The Ott-Antonsen ansatz [50,51] is another well-known reduction method to

the lower-dimensional system. We consider the system described as Eq. (2.47)

for large N again. Let fa(θ, t) be the probability density function of the phase

θ in population a at time t. Then, the continuity equation is

∂

∂t
fa(θ, t) = − ∂

∂θ

[{
ωa − Im[eiαeiθY ∗

a (t)]
}
fa(θ, t)

]
. (2.52)

When N is sufficiently large, the global order parameter Za(t) given as

Eq. (2.45) is also obtained as

Za(t) =
1

2π

∫ π

−π
dθfa(θ, t)e

iθ. (2.53)
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The Ott-Antonsen ansatz determines the form of fa(θ, t) as follows.

Ott-Antonsen ansatz. Eq. (2.52) has an attracting invariant manifold that

contains all relevant dynamics of Eq. (2.44) for sufficiently large N . Then,

the probability density function fa(θ, t) is given as

fa(θ, t) =
1

2π

(
1 +

∞∑
k=1

[Z∗
a(t)e

ikθ + Za(t)e
−ikθ]

)
, (2.54)

where Za(t) denotes the global order parameter given as Eq. (2.53).

Substituting Eq. (2.54) into Eq. (2.52), we can obtain the evolution equa-

tion for Za(t) as Eq. (2.50), which have been obtained by the Watanabe-

Strogatz approach in N → ∞. The Ott-Antonsen ansatz is just an “ansatz”,

but it is well known that this ansatz can be applied to various phase oscillator

systems.

2.3.5 Stability of Synchronization

Let us study the stability of synchronous solutions for globally coupled phase

oscillators by using Eq. (2.50), as mentioned in Section 2.3.2. In the system

described as Eq. (2.37), we have Y (t) = Ke−iαZ(t). Therefore, Eq. (2.50)

becomes

Ż(t) = iωZ(t) +
K

2
e−iαZ(t)− K

2
eiα|Z(t)|2Z(t). (2.55)

Putting R(t)eiΘ(t) := Z(t), the evolution equations for the amplitude R(t)

and the argument Θ(t) are obtained as

Ṙ(t) =
K

2
cosα[R(t)−R(t)3], (2.56)

Θ̇(t) = ω − K

2
sinα[1 +R(t)2]. (2.57)

Here, Eq. (2.57) holds for R(t) ̸= 0. It is clear that fixed points of R(t) are

R = 1 and R = 0. For R = 1, the frequency of synchronized oscillators is

Θ̇(t) = ω − K sinα. Because the dynamics of R(t) is independent of Θ(t),

we may consider only the Jacobian matrix L̂R of Eq. (2.56) in order to study
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0 ≤ |α| < π/2 π/2 < |α| ≤ π
R = 1 stable unstable
R = 0 unstable stable

Table 2.2: Stability regions of two synchronous solutions to Eq. (2.35).

the stability of synchronous solutions:

L̂R(R) =
K

2
cosα(1− 3R2). (2.58)

For each fixed point, we have

L̂R(1) = −K cosα, (2.59)

L̂R(0) =
K

2
cosα. (2.60)

Therefore, we obtain the stability regions of R = 1 and R = 0 as shown in

Tab. 2.2. When |α| = π/2, both of them are neutral. These results are in

good agreement with Fig. 2.5 in Section 2.3.2.

The reduction method such as the Watanabe-Strogatz approach or the

Ott-Antonsen ansatz is extremely useful for understanding the collective mo-

tion of phase oscillators. That is similar in the case of chimera states men-

tioned in the next chapter.
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Chapter 3

Review: Chimera State

In this chapter, we review the previous works of chimera states. Although

it is known that chimera states can be seen in a wide variety of systems, we

especially focus on chimera states in the one-dimensional array of nonlocally

coupled phase oscillators.

3.1 Feature of Chimera States

3.1.1 Nonlocally Coupled Phase Oscillators

As the most basic models, we consider N identical phase oscillators uniformly

distributed on the one-dimensional ring. In the continuum limit N → ∞,

the dynamics of oscillators is described as

θ̇(x, t) = ω −
∫ π

−π
dy G(x− y) Γ[θ(x, t)− θ(y, t)], (3.1)

with 2π-periodic phase θ(x, t) ∈ [−π, π) on the one-dimensional space x ∈
[−π, π) under the periodic boundary condition. The natural frequency ω can

be set to zero without loss of generality. In this system, the coupling strength

characterized by the coupling kernel G(x) depends on the distance between

oscillators. Such a system is called the nonlocally coupled system. Eq. (3.1)

24



was originally derived from the dynamical model [52]

Ẋ(x, t) = F [X(x, t)] +U [A(x, t)],

ϵȦ(x, t) = −(1−D∇2)A(x, t) +

∫
dyW [X(y, t)]δ(x− y),

(3.2)

where U(A) andW (X) are general functions of A and X, respectively. This

model denotes the dynamics of biologically oscillating cells X with the extra

substance A mediating interaction between cells. If N is finite, we discretize

x into xj := −π + 2πj/N (j = 1, · · · , N) and rewrite Eq. (3.1) as

θ̇j(t) = ω − 2π

N

N∑
k=1

Gjk Γ[θj(t)− θk(t)], (3.3)

where θj(t) := θ(xj, t) and Gjk := G(xj − xk). For numerical simulations of

Eq. (3.1), we need to do this discretization.

As the coupling function Γ, the sine coupling [48]

Γ(ϕ) = − sin(ϕ+ α), (3.4)

is most often used in the study on chimera states [3–13, 15, 18–23, 25–30].

In particular, the phase lag parameter α is essential for the appearance of

chimera states. Instead of the sine coupling, the coupling with higher har-

monic components is sometimes used [14, 16, 17], for instance, the Hansel-

Mato-Meunier coupling [53]

Γ(ϕ) = − sin(ϕ+ α) + r sin(2ϕ), (3.5)

where r is the amplitude ratio of the second harmonic component. For r = 0,

Eq. (3.5) recovers the sine coupling. In the globally coupled systems, it

is known that such higher harmonic components in the coupling function

are responsible for a rich variety of synchronous patterns excluded by the

sine coupling [53–58]. Therefore, it is expected that also in the nonlocally

coupled systems, there could appear new chimera patterns excluded by the

sine coupling.
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The coupling kernel G(x) is generally an even real function described as

G(x) =
∞∑
k=0

gk cos(kx), (3.6)

with gk ∈ R. In the study on chimera states, one of the following coupling

schemes is usually chosen.

(i) The exponential kernel [3, 6, 20]:

G(x) =
κ

2
e−κ|x|, (3.7)

where κ > 0 is a real constant. When the chimera state was first discovered,

this coupling was used. Eq. (3.7) is the Green’s function associated with the

operator 1−D∇2 in Eq. (3.2) on x ∈ [−∞,∞]. Recently, as the exponential

kernel revised on x ∈ [0, L) under the periodic boundary condition, the

hyperbolic kernel

G(x) =
κ

2 sinh(κL/2)
cosh

[
κ

(
|x| − L

2

)]
, (3.8)

is also used [18,19,21].

(ii) The step kernel [8–12,16,22–24]:

G(x) =

1/(2πs) (|x| ≤ πs)

0 (|x| > πs),
(3.9)

with 0 < s ≤ 1. The constant s denotes the coupling range. This kernel is

very functional for numerical simulations because the discretized system (3.3)

with the step kernel becomes the simple form

θ̇j(t) = ω +
1

2R

j+R∑
k=j−R

Γ[θj(t)− θk(t)], (3.10)
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where R := sN/2. All the indexes in Eq. (3.10) are regarded as modulo N .

(iii) The cosine kernel [4, 5, 7, 13]:

G(x) = A0 + A1 cos(x) + A2 cos(2x), (3.11)

with A0, A1, A2 ∈ R. This kernel is often useful for analytical calculations.

In addition, it is also used when the systems with negative coupling at large

separations, such as neural systems, are studied.

3.1.2 Chimera State

Let us consider nonlocally coupled phase oscillators with the sine coupling

described as

θ̇(x, t) = ω −
∫ π

−π
dy G(x− y) sin[θ(x, t)− θ(y, t) + α]. (3.12)

In this system, there appears the chimera state as shown in Fig. 3.1. The

phase pattern [see Fig. 3.1(a)] is clearly separated into two different regions,

called the coherent region and the incoherent region. The coherent region

consists of phase-locked oscillators, while the incoherent region consists of

drifting oscillators whose phases are scattered from −π to π. Fig. 3.1(b)

shows the average frequency of each oscillator:

⟨θ̇(x)⟩ := 1

T

∫ T

0

dt′ θ̇(x, t′), (3.13)

with the measurement time T . In this thesis, ⟨·⟩ denotes the time-averaged

quantity after a sufficiently long transient time. In the coherent region, os-

cillators are completely synchronized, and their average frequencies are con-

stant. In contrast, the average frequency in the incoherent region varies

continuously. The coexistence of coherent and incoherent regions is the most

essential feature of chimera states. Such a chimera basically can not appear

in globally coupled or locally (nearest neighbor) coupled phase oscillators [5].
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Figure 3.1: Chimera state for Eq. (3.12) with the step kernel. Parameters
are N = 10000, α = 1.500, and s = 0.700. (a) The snapshot of the phase
θ(x, t). (b) The profile of the average frequency ⟨θ̇(x)⟩ with T = 500.
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There also exist chimera states with two or more coherent and incoherent

regions, which are often called multichimera states. A typical multichimera

state with two coherent and incoherent regions is shown in Fig. 3.2. Then,

though there exist two coherent regions, all oscillators in the coherent re-

gions have an identical average frequency. However, two coherent regions are

separated from each other by the phase almost exactly π, which is a remark-

able feature of this multichimera and different from merely two neighboring

chimeras. Note that the number of coherent and incoherent regions generally

depends on the coupling kernel G(x) and chosen parameters [11].

3.2 Self-Consistency Analysis

3.2.1 Self-Consistency Equation

In this section, we review the self-consistency analysis for chimera states

based on [3]. We define the local mean field

Y (x, t) :=

∫ π

−π
dy G(x− y) eiθ(y,t), (3.14)

acting on the oscillator located in point x. Then, Eq. (3.12) is rewritten as

θ̇(x, t) = ω − Im[eiαeiθ(x,t)Y ∗(x, t)]. (3.15)

Here, we make an important assumption about chimera states.

Assumption. In the continuum limit N → ∞, the chimera state for Eq. (3.12)

is a stationary state in the rotating frame with an appropriate frequency Ω.

Then, the probability density function fx(ϕ, t) of the phase ϕ(x, t) such that

ϕ(x, t) := θ(x, t)− Ωt is independent of time.

This assumption means that the local mean field takes the form

Y (x, t) = Yst(x) e
iΩt. (3.16)
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Figure 3.2: Multichimera state for Eq. (3.12) with the step kernel. Param-
eters are N = 10000, α = 1.500, and s = 0.360. All figures show the same
quantities as those in Fig. 3.1.
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Then, Yst(x) is defined as

Yst(x) =

∫ π

−π
dy G(x− y) eiϕ(y,t). (3.17)

However, if infinitely many oscillators are contained in each small local sub-

system, Eq. (3.17) can be considered as

Yst(x) =

∫ π

−π
dy G(x− y)

∫ π

−π
dϕ fy(ϕ) e

iϕ. (3.18)

We derive the self-consistency equation for Yst(x) from Eq. (3.18).

Putting Yst(x) =: R(x)eiΘ(x), Eq. (3.15) becomes

ϕ̇(x, t) = ∆−R(x) sin[ϕ(x, t)−Θ(x) + α] =: Vx(ϕ), (3.19)

where ∆ := ω − Ω. In coherent regions, it is clear that oscillators have the

frequency Ω and satisfy ϕ̇ = 0. From Eq. (3.19), if R(x) ≥ ∆, we have the

synchronous solution

ϕ(x) = arcsin

[
∆

R(x)

]
+Θ(x)− α. (3.20)

Eq. (3.20) consists of two solutions, but the stable solution is either one

satisfying
dVx(ϕ)

dϕ
= −R(x) cos[ϕ−Θ(x) + α] < 0. (3.21)

Therefore, we obtain

eiϕ(x) = e−iαeiΘ(x)

√1−
(

∆

R(x)

)2

+ i

(
∆

R(x)

)
= ie−iαYst(x)

∆− i
√
R(x)2 −∆2

R(x)2
. (3.22)

Then, fx(ϕ) is the Dirac delta function.

If R(x) < ∆, we have the drifting solution instead of the synchronous
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solution. From the continuity equation

0 = − ∂

∂ϕ
[Vx(ϕ)fx(ϕ)] , (3.23)

we have

fx(ϕ) =
C

Vx(ϕ)
, (3.24)

where the normalizing constant C satisfies

C =

∣∣∣∣∫ π

−π
dϕ

1

Vx(ϕ)

∣∣∣∣−1

=
1

2π

√
∆2 −R(x)2. (3.25)

Applying Eqs. (3.24)-(3.25), we can obtain∫ π

−π
dϕ fx(ϕ) e

iϕ = ie−iαYst(x)
∆−

√
∆2 −R(x)2

R(x)2
. (3.26)

Substituting Eq. (3.22) and Eq. (3.26) into Eq, (3.18), we obtain the

self-consistency equation for Yst(x) as

Yst(x) = ie−iα
∫ π

−π
dy Yst(y)h(y), (3.27)

h(x) :=

[∆−
√
∆2 −R(x)2]/R(x)2 [∆ > R(x)]

[∆− i
√
R(x)2 −∆2]/R(x)2 [∆ ≤ R(x)].

(3.28)

As the sign of the square root of a negative number in Eq. (3.28), we can

also choose √
R(x)2 −∆2 = −i

√
∆2 −R(x)2. (3.29)

Then, the self-consistency equation becomes one equation [4, 5]:

Yst(x) = ie−iα
∫ π

−π
dy Yst(y)

∆−
√
∆2 −R(x)2

R(x)2
. (3.30)

Solutions to this self-consistency equation include all stationary states for

Eq. (3.12), which are not only chimera states but synchronous solutions.
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According to [11], chimera solutions to Eq. (3.30) are bifurcated from the

completely incoherent solution satisfying |Z(t)| = 0 at α = π/2 and exist for

α < π/2.

3.2.2 Solving Self-Consistency Equation

The self-consistency equation (3.30) is composed of two equations given by

the real and imaginary parts, but it has two real unknown functions and

one real unknown, namely, R(x), Θ(x), and ∆. Therefore, we need to add

another condition to solve it. The additional condition can be obtained

from the fact that Eq. (3.30) are invariant under any rotation, Θ(x) →
Θ(x) + Θ0 [4–6, 13, 16]. This means that the argument Θ(x) on any point

can be set to the arbitrary fixed value, for instance,

Θ(−π) = 0. (3.31)

Eq. (3.30) under the condition (3.31) can be numerically solved by the fol-

lowing iteration procedure. First, we prepare an initial function Yst(x), i.e.,

R(x) and Θ(x). Then, an initial ∆ satisfying Eq. (3.31) can be obtained

from Eq. (3.30) by Newton’s method with respect to ∆. Second, substi-

tuting Yst(x) and ∆ into the right-hand side of Eq. (3.30), we generate a

new Yst(x) from the left-hand side. Third, we obtain a new ∆ satisfying

Eq. (3.31), again by Newton’s method, using the new Yst(x). It only remains

to repeat the second and third steps until both Yst(x) and ∆ converge. Note

that space translational symmetry of Yst(x) is not eliminated in this iteration

procedure, so the spatial position of Yst(x) depends on the initial Yst(x).

Fig. 3.3 shows the numerical solution Yst(x) to the self-consistency equa-

tion (3.30) for the chimera state. It agrees with the time-averaged local mean

field ⟨Yst(x)⟩ obtained by the numerical simulation.

3.2.3 Average Frequency

By using Yst(x) and ∆, we can analytically calculate the average frequency

⟨θ̇(x)⟩ for stationary chimera states [3]. From Eqs. (3.24)-(3.25), the average
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Figure 3.3: Local mean field Yst(x) of the stationary chimera state as shown
in Fig. 3.1. (a) The amplitude R(x); (b) The argument Θ(x). Open circles
denote the time-averaged local mean field ⟨Yst(x)⟩ obtained by the numerical
simulation. Those are plotted once every 2000 oscillators. The solid line
denotes the numerical solution Yst(x) to the self-consistency equation (3.30)
under the condition (3.31).
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Figure 3.4: Average frequency ⟨θ̇(x)⟩ for the stationary chimera state. Open
circles are the same date in Fig. 3.1(b) which are plotted once every 2000
oscillators. The solid line denotes Eq. (3.33) computed from the numerical
solutions Yst(x) and ∆ in Fig. 3.3.

frequency of each oscillator in incoherent regions can be calculated as

⟨θ̇(x)⟩ = Ω+

∫ π

−π
dϕ fx(ϕ) ϕ̇

= Ω+

∫ π

−π
dϕ

C

Vx(ϕ)
Vx(ϕ)

= Ω +
√
∆2 −R(x)2. (3.32)

Therefore, ⟨θ̇(x)⟩ in the whole space is given by

⟨θ̇(x)⟩ =

Ω +
√

∆2 −R(x)2 [∆ > R(x)]

Ω [∆ ≤ R(x)].
(3.33)

Using the numerical solutions Yst(x) and ∆ to the self-consistency equation,

we can compute Eq. (3.33). It agrees with the result of the numerical simu-

lation as shown in Fig. 3.4.
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3.3 Stability of Chimera States

The self-consistency analysis helps us theoretically to understand chimera

states. However, just because the self-consistency equation has a chimera

solution does not mean that the chimera state is stable. This section deals

with the stability of chimera states.

3.3.1 Linear Stability Analysis

To study the stability of chimera states for Eq. (3.12), we define the local

order parameter

z(x, t) := lim
ϵ→0+

1

2ϵ

∫ x+ϵ

x−ϵ
dy eiθ(y,t), (3.34)

and we have

Y (x, t) =

∫ π

−π
dy G(x− y) z(y, t). (3.35)

|z(x, t)| denotes the synchronization degree of oscillators around point x,

similarly to the global order parameter |Z(t)|. For |z(x, t)| = 1, the oscillators

in the neighborhood of x are completely synchronized in phase. Otherwise,

when their phases are scattered, we obtain 0 ≤ |z(x, t)| < 1. Therefore,

we can identify |z(x, t)| = 1 and 0 ≤ |z(x, t)| < 1 as the coherent and

incoherent regions for chimera states, respectively. In N → ∞, the system

described as Eq. (3.15) can be considered as interacting subpopulations of

globally coupled infinite oscillators in each small local subsystem, similar

to Eq. (2.44). In this case, the local order parameter z(x, t) is considered

as the global order parameter in the local subsystem around x. Therefore,

applying the Watanabe-Strogatz approach to each subpopulation, we obtain

the evolution equation for z(x, t) [9] as

ż(x, t) = iωz(x, t) +
1

2
e−iαY (x, t)− 1

2
eiαz2(x, t)Y ∗(x, t). (3.36)

Instead of Eq. (3.34), the local order parameter can be also defined as

z(x, t) =

∫ π

−π
dθ fx(θ, t) e

iθ, (3.37)
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where fx(θ, t) is the probability density function of the phase θ(x) at time

t. Then, Eq. (3.36) can be obtained by another method [7, 11] using the

Ott-Antonsen ansatz.

We assume that chimera states are stationary again. Similarly to Eq. (3.16),

the local order parameter takes the form

z(x, t) = zst(x) e
iΩt. (3.38)

Substituting Eq. (3.16) and Eq. (3.38) into Eq. (3.36), we have

0 = i∆zst(x) +
1

2
e−iαYst(x)−

1

2
eiαz2st(x)Y

∗
st(x). (3.39)

Solving Eq. (3.39) as a quadratic equation in terms of zst(x), the solutions

are

zst(x) = ie−iα
∆±

√
∆2 − |Yst(x)|2
Y ∗
st(x)

. (3.40)

When ∆ > |Yst(x)|, the solution with the negative sign of the square root

satisfies |z(x, t)| < 1, while the other does not. On the other hand, When

∆ ≤ |Yst(x)|, both of solutions satisfy |z(x, t)| = 1. However, the stable

solution in coherent regions is either one satisfying Eq. (3.21). Therefore, as

the stable solution satisfying |z(x, t)| ≤ 1 in the whole space, we obtain

zst(x) = ie−iα Yst(x)h(x), (3.41)

h(x) =

[∆−
√
∆2 − |Yst(x)|2]/|Yst(x)|2 [∆ > |Yst(x)|]

[∆− i
√
|Yst(x)|2 −∆2]/|Yst(x)|2 [∆ ≤ |Yst(x)|],

(3.42)

where h(x) is the same equation as Eq. (3.28). Fig. 3.5 shows the local

order parameter for the stationary chimera state given as Eqs. (3.41)-(3.42).

Integrating Eq. (3.41), we obtain the self-consistency equation for Yst(x) as

Yst(x) = ie−iα
∫ π

−π
dy G(x− y)Yst(y)h(y). (3.43)

This equation corresponds to the self-consistency equation (3.27) in the pre-
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Figure 3.5: Local order parameter zst(x) for the stationary chimera state as
shown in Fig. 3.1. (a) The amplitude |zst(x)|; (b) the argument of z(x, t).
These figures are obtained by Eq. (3.41) from the numerical solutions Yst(x)
and ∆ corresponding to Fig. 3.3.
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vious section.

Let us consider the linear stability analysis for stationary chimeras. Sub-

stituting z(x, t) = [zst(x) + v(x, t)] eiΩt with a small perturbation v(x, t) into

Eq. (3.36), we obtain a linear evolution equation for v(x, t) as

v̇(x, t) = g(x)zst(x) +
1

2
e−iαV (x, t)− 1

2
eiαz2st(x)V

∗(x, t), (3.44)

g(x) :=

i
√

∆2 −R(x)2 [∆ > R(x)]

−
√
R(x)2 −∆2 [∆ ≤ R(x)],

(3.45)

V (x, t) :=

∫ π

−π
dy G(x− y) v(y, t). (3.46)

We rewrite Eqs. (3.44)-(3.46) as v̇ = L̂v using v(x, t) = [Re v(x, t), Im v(x, t)]T .

To study the linear stability of stationary chimeras, we must solve the eigen-

value problem of L̂, which is generally an infinite dimensional matrix. Ac-

cording to [11, 13, 23], the spectrum of L̂ consists of the essential spectrum

and the point spectrum. In the present case, the essential spectrum is given

by

{g(x) : −π ≤ x ≤ π} ∪ {c.c.}, (3.47)

consisting of pure imaginary and negative real eigenvalues, which correspond

to incoherent and coherent regions, respectively, as shown in Fig. 3.6. There-

fore, the stability of stationary chimeras should be determined only by the

point spectrum. If the number of nonzero gk in Eq. (3.6) is finite, such as the

cosine kernel, we may solve the eigenvalue problem of a finite size matrix to

obtain the point spectrum [11,13,23]. However, when the kernel has infinite

numbers of nonzero gk, such as the step kernel, we must directly compute all

eigenvalues of L̂, as mentioned in Chapter 5.

3.3.2 Lyapunov Spectrum

Chimera states are surely stable in the continuum limit N → ∞. However,

the stability of chimeras in finitely discretized systems is questioned. Wol-

frum at al. [9] studied the Lyapunov spectrum of chimera states for Eq. (3.12)
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Figure 3.6: Essential spectrum λ calculated by Eq. (3.47) from the numerical
solutions Yst(x) and ∆ in Fig. 3.3. The dashed lines are drawn only for
reference.

with the step kernel. The Lyapunov exponent is defined as follows. We con-

sider a point X(t) in the neighborhood of a solution for Eq. (2.1) at t = 0.

Letting δXν(t) be the separation along an eigenvector eν of the Jacobian

matrix L̂ from the solution, the Lyapunov exponent Λ(ν) is defined as the

following real scalar:

Λ(ν) := lim
t→∞

1

t
ln

∣∣∣∣ δXν(t)

δXν(0)

∣∣∣∣ . (3.48)

Therefore, we have

δXν(t) = eΛ(ν)t δXν(0). (3.49)

When Λ(ν) > 0, the separation δXν(t) exponentially diverges with time. In

contrast, when Λ(ν) < 0, it converges on zero. Therefore, if all Lyapunov

exponents are not positive, the solution is stable or neutral stable.

Fig. (3.7) shows Lyapunov spectra ΛN(ν) numerically computed for chimera

trajectories. The indexes ν of the Lyapunov exponents are sorted in the order

such that Λ1(ν) ≤ Λ2(ν) ≤ · · · ≤ ΛN(ν). For finite N , chimera states have

the positive Lyapunov exponents, that is, they are unstable. Moreover, as

N is increased, the maximal Lyapunov exponent decreases and approaches
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Figure 3.7: Lyapunov spectra ΛN(ν) computed for chimera trajectories of
Eq. (3.12) with the step kernel. Parameters are s = 0.700 and α = 1.500 [9].

Figure 3.8: Lyapunov spectra Λ∞(x) of the chimera state in N → ∞. Pa-
rameters are the same as those in Fig. (3.7) [9].

zero. In N → ∞, the Lyapunov spectrum of chimera states is given by

Λ∞(x) :=

0 [0 ≤ x ≤ Sincoh]

−
√

|Yst(x)|2 −∆2 [Sincoh < x ≤ 1].
(3.50)

where x denotes the continuum parameter corresponding to ν, as shown in

Fig. 3.8. Λ∞(x) corresponds to the real part of the essential spectrum given

by Eq. (3.45) and Eq. (3.47). Similarly to the essential spectrum, Λ∞(x) < 0

(stable) and Λ∞(x) = 0 (neutral) correspond to coherent and incoherent

regions, respectively. Therefore, it is shown that chimera states are neutral

stable in N → ∞, but they become unstable for finite N .

41



3.3.3 Chimera’s Collapse

Even if N is finite, we have observed that chimera states are maintained in

numerical simulations where we can not use infinite N in principle. How-

ever, for especially small N , chimera states are chaotic transient [10, 42].

As shown in Fig. 3.9, the chimera state composed of a few oscillators sud-

denly collapses without advance notice and changes over to the completely

synchronous state. Fig. 3.10 shows the histogram of lifetimes τ of chimera

states obtained by numerical simulations of Eq. (3.12) with the step kernel

using different initial conditions. The distribution of the lifetimes ρ(τ) clearly

follows an exponential low

ρ(τ) = γe−γt, (3.51)

with a constant collapse rate γ and the average lifetime

⟨τ⟩ = γ−1. (3.52)

Therefore, it is concluded that the chimera’s collapse is randomly caused by

the finite size effect.

Fig. 3.11 shows average lifetimes ⟨τ⟩ of chimera states for increasing N .

They are fitted by an exponential growth

⟨τ⟩ ∝ eξN , (3.53)

with an exponential rate ξ = 0.23. From this result, it is shown that lifetimes

of chimeras diverge to infinity in N → ∞. In [10], the authors mentioned

that it is very unlikely to observe even a single collapse event in numerical

simulations for N ≥ 60.

3.3.4 Weak Chimera

As mentioned above, chimera states in the one-dimensional system with the

sine coupling are unstable without taking the continuum limit N → ∞.

On the other hand, Ashwin and Burylko [14] used the Hansel-Mato-Meunier

coupling (3.5) and proposed the weak chimera similar to the chimera state.
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Figure 3.9: Chimera’s collapse for Eq. (3.12) with the step kernel. Param-
eters are N = 40, R = 14, and α = 1.460. The whole space is defined as
x ∈ [−1, 1]. Figures (a) show the space time plot of the average frequency
⟨θ̇(x)⟩ and the global order parameter |Z(t)|. The chimera state suddenly
collapses to the completely synchronous state at t ≃ 4600. Figures (b) and
(c) show a magnification of segments well before the collapse and directly at
the collapse [10].
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Figure 3.10: Histogram of lifetimes τ of chimera states obtained by 2000
numerical simulations (circles). The data is plotted in logarithmic scale with
fitted exponential distribution (solid line). Parameters are the same as those
in Fig. (3.9) [10].

Figure 3.11: Average lifetimes ⟨τ⟩ of chimera states for increasing N (circles)
and fitted exponential growth (solid line). Each point is obtained by 2000
numerical simulations with R/N ≃ 0.350 and α = 1.460 [10].

44



Figure 3.12: Weak chimera in the ring of six phase oscillators governed by
Eq. (3.10) with the Hansel-Mato-Meunier coupling (3.5). Parameters are
R = 2, α = −1.560, and r = −0.1. Figures show the time evolution of the
phase θj(t) ∈ [0, 2π]. The frequency of θ2(t) and θ5(t) clearly differs from
that of the others [14].

Weak chimeras are defined by the coexistence of frequency-synchronous and

-asynchronous oscillators in coupled identical phase oscillators, but they are

not necessarily spatially structured as coherent and incoherent regions, as

shown in Fig. 3.12. Ashwin and Burylko analytically proved that weak

chimeras in the ring of a few phase oscillators such as N = 4, 6, 10 are surely

stable for r ̸= 0 and cannot appear in globally coupled systems.

3.4 Another Chimera State

Chimera states also appear in phase oscillator systems other than the one-

dimensional system. As an example of chimeras that can be mathematically

analyzed in detail, we review symmetry breaking in interacting populations
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of globally coupled phase oscillators [27–29] in this section. For instance, we

consider the dynamics of two interacting populations described as

θ̇aj (t) = ω −
2∑
b=1

Kab

Nb

Na∑
k=1

sin[θaj (t)− θbk(t) + α], (3.54)

where N1 = N2, K11 = K22 =: µ > 0, and K12 = K21 =: ν > 0. Also, we

define A := µ − ν and β := π/2 − α. For Eq. (3.54), two populations are

identical. However, there appears the chimera state where synchronized (a =

1) and desynchronized (a = 2) populations coexist, as shown in Fig. 3.13.

Then, an initial condition determines which population is synchronized or

desynchronized. Eq. (3.54) can be considered as a minimal model of the

right and left brains. From this, it have been suggested that there is similarity

between such a chimera and unihemispheric sleep of dolphins and other sea

mammals [27].

The assumption that chimera states are stationary is not always true. For

Eq. (3.54), there appears the breathing chimera state where the global order

parameter of a desynchronized population oscillates temporally, as shown

in Fig. 3.14. It is shown that this breathing chimera branches via Hopf

bifurcation from the stable stationary chimera. When the breathing chimeras

were first discovered, Abrams et al. [27] posed the question of whether such

breathing chimeras exist in the case of one-dimensional arrays.
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Figure 3.13: Snapshot of a chimera state in two interacting populations de-
scribed as Eq. (3.54) with N1 = N2 = 1024, A = 0.20, and β = 0.1. Each
figure shows (a) the synchronized population, (b) the desynchronized popu-
lation, and (c) the density of desynchronized phases [27].

Figure 3.14: Time evolution of the global order parameter of a desynchro-
nized population for Eq. (3.54) with N1 = N2 = 128 and β = 0.1. The
stationary chimera appears for (a) A = 0.20, while the breathing chimeras
appear for (b) A = 0.28 and (c) A = 0.35 [27].
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Chapter 4

Persistent Chimera State

When N is finite, chimera states in one-dimensional nonlocally coupled phase

oscillators with the sine coupling are chaotic transient and finally collapse

into the completely synchronous solution [9,10,42]. Doesn’t there exist stable

chimera states in finitely discretized systems? In this chapter, we numerically

study chimera states by using the coupling function different from the sine

coupling and obtain the result that chimera states can be stable even without

taking the continuum limit N → ∞, which we call the persistent chimera

state [16].

4.1 Model

We consider a ring of N identical nonlocally coupled phase oscillators de-

scribed as

θ̇j(t) = ω +
1

2R

j+R∑
k=j−R

Γ[θj(t)− θk(t)],

Γ(ϕ) = − sin(ϕ+ α) + r sin(2ϕ),

(4.1)

with j = 1, · · · , N . The natural frequency ω is set to zero, and the coupling

range R is fixed as R/N ≃ 0.350. As the coupling function, we choose the

Hansel-Mato-Meunier coupling (3.5) with the phase lag parameter α and the

amplitude ratio r [53]. For Eq. (4.1), there appear weak chimeras, which
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Figure 4.1: Initial condition given as Eq. (4.2) with N = 1000.

can be persistent (nontransient) in the system composed of even the mini-

mal number of oscillators [14, 17]. Therefore, we also expect that persistent

chimera states excluded by the sine coupling could be observed in this system.

4.2 Stable Solutions in N → ∞

First, we consider stable solutions for sufficiently large N corresponding to

the continuum limit. To assist the appearance of chimeras, we use the fol-

lowing initial condition [5], which is so close to a chimera state as shown in

Fig. 4.1:

θj(0) = 6 exp

[
−30

(
j

N
− 1

2

)2
]
Rj, (4.2)

where Rj ∈ [−1/2, 1/2] is a uniform random number. Fig. 4.2 shows the

results of numerical simulations of Eq. (4.1) for several r ≥ 0 and fixed

α = 1.460, where chimera states can be observed in the case of the sine

coupling (r = 0). In our numerical simulations, chimera states are observed

for r < 0.073 as shown in Figs. 4.2(a)-(c). The phase pattern (left panels)

is clearly separated into coherent and incoherent regions. The right panels

show the profiles of the average frequency after the transient time trel =

2000. For r ≥ 0.073, chimera states gradually disappear with increasing r.

Furthermore, chimera states are not observed for r ≥ 0.110. Then, each
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Figure 4.2: Results of numerical simulations of Eq. (4.1) with N = 2000
and α = 1.460. In each row, the left panel shows the snapshot of phase
θj(t), and the right panel shows the profile of the average frequency ⟨θ̇j⟩ with
T = 5000. For (a) r = 0.001, (b) r = 0.030, and (c) r = 0.060, chimera
states are observed, while they are not observed for (d) r = 0.120 [16].
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oscillator evolves almost independently, where the average frequency seems

to converge on a constant value in T → ∞, though the average frequency in

Fig. 4.2(d) still exhibits some fluctuations due to finite T .

For Eq. (4.1), there also appear the completely synchronous solution

θ1(t) = · · · = θN(t) = Ωt. By the linear stability analysis, we can obtain

the stability region. Letting ψj(t) be the small perturbation applied to syn-

chronized oscillator j, the linear evolution equation for ψj(t) is obtained as

ψ̇j(t) = Γ′(0)ψj(t)−
1

2R
Γ′(0)

j+R∑
k=j−R
k ̸=j

ψk(t), (4.3)

where

Γ′(ϕ) :=
dΓ(ϕ)

dϕ
= − cos(ϕ+ α) + 2r cos(2ϕ). (4.4)

Therefore, the Jacobian matrix L̂ of Eq. (4.1) for the completely synchronous

solution is

L̂ =



a0 a1 · · · aN−2 aN−1

aN−1 a0 · · · aN−3 aN−2

...
. . .

...

a2 a3 · · · a0 a1

a1 a2 · · · aN−1 a0


, (4.5)

an =


Γ′(0) (n = 0)

−Γ′(0)/(2R) (n = 1, · · · , R, N −R, · · · , N − 1)

0 (otherwise).

(4.6)

The matrix (4.5) is a circulant matrix. Because all eigenvalues Λl (l =

0, · · · , N − 1) of the circulant matrix are calculated as

Λl =
N−1∑
n=0

ei
2π
N
nl an, (4.7)

we have

Λl = Γ′(0)

{
1− 1

R

R∑
n=1

cos

[
2π

N
nl

]}
. (4.8)
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Then, we have Λ0 = 0, and the sign of Λl ̸=0 is identical with that of Γ′(0).

Therefore, when Γ′(0) < 0, namely,

r <
1

2
cosα, (4.9)

the completely synchronous solution is stable. For r < cosα/2 (≃ 0.055 at

α = 1.460), chimera states are also stable, as shown in Figs. 4.2(a)-(b).

As other solutions to Eq. (4.1), we can expect wave solutions

θj(t) = Ωt± 2π

N
k(j − 1), (4.10)

with the wave number k ∈ N. Fig. 4.3(a) shows the wave solution with

k = 1. When k = 0, Eq. (4.10) is the completely synchronous solution. We

can also obtain the stability region of the wave solution for each k. Because

the Jacobian matrix L̂ for the wave solution is also circulant matrix, we

finally obtain eigenvalues as

Λl =
1

R

R∑
n=1

[
cos

(
2π

N
kn

)
cosα

{
cos

(
2π

N
nl

)
− 1

}
±i sin

(
2π

N
kn

)
sinα sin

(
2π

N
nl

)
−2r cos

(
4π

N
kn

){
cos

(
2π

N
nl

)
− 1

}]
. (4.11)

Then, we have Λ0 = 0. Since Λl is a complex value, the stability of the wave

solution is determined by the sign of the real part of Λl. In the present case,

the wave solution with k = 1 is stable for r ≥ 0.004 as shown in Fig. 4.3(b),

while wave solutions with k ̸= 1 are unstable in the present parameter region.

The survey of the stability regions of stable solutions is depicted in Fig. 4.4.

4.3 Lifetime of Chimera State

We below confirm whether chimera states, particularly for r > 0, are tran-

sient or really stable even when N is finite. Fig. 4.5 shows the average lifetime
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Figure 4.3: (a) Wave solution with the wave number k = 1. (b) Maximum
value of real parts of eigenvalues Λl for the wave solution with k = 1 for
Eq. (4.1) with N = 2000 and α = 1.460.

Figure 4.4: Phase diagram of stable solutions to Eq. (4.1) with α = 1.460 in
the continuum limit (N = 2000). Horizontal lines denote the stability regions
of each solution. We have not clearly determined the transition between the
chimera state and almost independent oscillation yet. Note that the stability
region of the wave solution with k = 1 does not cover r = 0 [16].
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τ of chimera states for N = 30, as increasing r from 0 to (cosα)/2 ≃ 0.055.

Here, we regard the lifetime of the chimera state as the time at which the

completely synchronous solution appears, that is, the global order parameter

given as Eq. (2.36) reaches |Z(t)| = 1. As for the chimera state with small

N , we should note that it is difficult to judge the appearance of the chimera

state, because the spatial position of the chimera state does not stay still but

fluctuates [8], in particular, more violently as N becomes smaller. In fact,

for N = 30, we could not observe the characteristic profile of the average

frequency. However, we observed that the coherent region exists in the phase

pattern, which convinces us of the appearance of the chimera state.

In numerical simulations for Fig. 4.5, there is also a possibility that

chimera states collapse into a stable solution other than the completely syn-

chronous solution, for instance, the wave solution with k = 1. However, we

never observed such collapse in our simulations from 1000 different initial

conditions given as Eq. (4.2) at each r.

As r is increased, the average lifetime τ increases monotonically and ap-

pears to diverge to infinity at some r∗. Assuming some values as r∗, we

obtain Fig. 4.6 by the log-log plot of the data (∆r, τ) where ∆r := r∗ − r.

From this figure, we can assume the power law

τ ∝ (∆r)−ζ , (4.12)

where ζ is a real exponent, and we determine r∗ ≃ 0.039 from the best

linear fitting of the data. Since r∗ < (cosα)/2 ≃ 0.055, the chimera state

and the completely synchronous solution are bistable for r∗ < r < (cosα)/2

even in the finite N cases. However, we cannot exclude the possibility of

r∗ = (cosα)/2, because it is difficult to obtain the exact value of r∗ due to

divergent simulation time.

Next, we study chimera states with N = 30 for r ≥ (cosα)/2 where the

completely synchronous solution is unstable. The possibility that chimera

states appear in the region without the stable completely synchronous so-

lution differs from the case of the sine coupling. In this region, chimera

states cannot collapse into the completely synchronous solution. Though
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Figure 4.5: Average lifetime τ of chimera states for N = 30 and α = 1.460.
Each point is the average over 1000 simulations from different initial condi-
tions given as Eq. (4.2) [16].
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Figure 4.6: Log-log plot of the data (∆r, τ) for r∗ = 0.035 (diamonds), 0.039
(circles), 0.045 (crosses), 0.050 (squares), and 0.055 (triangles). The data
for r∗ = 0.039 are fitted linearly by the least squares method (black line),
where we used only the data τ ≥ 300000 to obtain better linearity for this
fitting [16].
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the wave solution with k = 1 is stable in this region, we never observed

that chimera states collapse into it within our maximum simulation time

t = 2 × 108. Therefore, the collapse of the chimera state should not oc-

cur if other stable non-chimera solutions do not exist. Though we searched

for stable non-chimera solutions other than the wave solution by extensive

numerical simulations, we were not able to find any such solutions. From

the above results, we conclude that, in a certain range of r > (cosα)/2, the

chimera state and the wave solution are bistable, and the chimera state can

be persistent even in the finite N cases. This is consistent with τ → ∞ for

r > r∗.

Fig. 4.7 shows the stability region of the chimera state. The red region

corresponding to stable chimera states in the continuum limit (N = 2000) is

spread around r = (cosα)/2. In the finite N cases, chimera states for small

r become transient, while chimera states for large r remain persistent for

r > (cosα)/2 at least. For cosα < 0.150, we can observe that there exists

a region r∗ < r < (cosα)/2 where chimera states are persistent for N = 30.

Note that the stability region of the persistent chimera state (hatched in

Fig. 4.7) extends to the r = 0 line. This means that chimera states with

the sine coupling can be also persistent for finite N . Specifically, the average

lifetime τ of the chimera state increases similarly to Fig. 4.5 as cosα is

decreased on the r = 0 line and diverges at cosα∗ ≃ 0.044. However, this

result does not contradict the previous work [10] because the parameter α

in that work corresponds to the line of black circles (α = 1.460) in Fig. 4.7,

which has a larger cosα than our hatched region on the r = 0 line.

4.4 Other Chimera States & Weak Chimera

When we studied the collapse of chimera states at α = 1.460, we infrequently

observed that a chimera state collapses into a weak chimera as shown in

Fig. 4.8. In [14], the existence of weak chimeras for Eq. (4.1) is confirmed

in the system composed of a small number of oscillators (N = 4, 6, and 10).

In our numerical simulations with a larger number of oscillators (N = 30),
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Figure 4.7: Stability region of the chimera state on the (cosα, r) plane for
N = 2000 (red region). In the hatched region, there appear the persistent
chimera state that is stable for N = 30 at least. The blue line denotes
r = (cosα)/2, and the completely synchronous solution is stable for r <
(cosα)/2. Black circles and triangles denote the parameter values of Fig. 4.2
and Fig. 4.9, respectively [16].

such a weak chimera is stable in a small range of r < (cosα)/2, for instance,

0.032 ≤ r ≤ 0.040 at α = 1.460.

As other solutions, we observed characteristic chimera states in the con-

tinuum limit (N = 2000), as shown in Fig. 4.9. Other than the black trian-

gles in Fig. 4.7, we observed such chimeras in a large region of the parameter

space. However, we do not describe the region in detail since it is beyond

the scope of this thesis.

4.5 Summary of This Chapter

In this chapter, we numerically studied chimera states in nonlocally coupled

phase oscillators with the Hansel-Mato-Meunier coupling. In the continuum

limit, chimera states appear around r = (cosα)/2. For r < (cosα)/2, the

chimera state and the completely synchronous solution can be bistable. In

this region of the finite N cases, chimera states are transient for r < r∗,
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Figure 4.8: Weak chimera for Eq. (4.1) with N = 30, α = 1.460, and r =
0.032, which are the parameter values on the line of black circles in Fig. 4.7.
The left figure shows the snapshot of the phase θj(t), and the right figure
shows the profile of the average frequency ⟨θ̇j⟩ [16].

Figure 4.9: Characteristic chimera states for Eq. (4.1) with N = 2000. The
left figures show the snapshot of phase θj(t), and the right figures show
the profile of the average frequency ⟨θ̇j⟩. Parameters are (a) α = 0.950 and
r = 0.280, and (b) α = 1.220 and r = 0.300, which are plotted in Fig. 4.7 [16].
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while they are persistent for r∗ < r < (cosα)/2. Moreover, even for r >

(cosα)/2, they are persistent in the region where chimera states are stable

in N → ∞. At first, we expected chimera states to become persistent due to

the destabilization of the completely synchronous solution by the effect of r.

However, the persistent chimera state appears not only in the unstable region

of the completely synchronous solution as expected but also in its stable

region. As a result, we have discovered that chimera states with the sine

coupling can also become persistent by using appropriate α in the stability

region of the completely synchronous solution. Though we have numerically

found the persistent chimera state, its bifurcation-theoretical understanding

is still an open problem.
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Chapter 5

Breathing Chimera State

Chimera states in one-dimensional nonlocally coupled phase oscillators in

the continuum limit are assumed to be stationary states in most studies [3–

6, 11, 13, 18, 19, 21, 23]. This assumption plays an important role in vari-

ous studies and forms the basis of the analytical theory. However, there is

also the question of whether breathing chimeras exist in the one-dimensional

system, similarly to two interacting populations of globally coupled phase

oscillators [27]. In this chapter, we numerically demonstrate that breath-

ing chimeras can appear even in the one-dimensional system, and we show

that the system exhibits a Hopf bifurcation from a stationary chimera to a

breathing one [22].

5.1 Model

We consider nonlocally coupled phase oscillators with the sine coupling in

N → ∞ described as

θ̇(x, t) = ω −
∫ π

−π
dy G(x− y) sin[θ(x, t)− θ(y, t) + α],

G(x) =

1/(2πs) (|x| ≤ πs)

0 (|x| > πs),

(5.1)
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with the phase θ(x, t) on the space x ∈ [−π, π] under the periodic boundary

condition. The natural frequency ω is set to zero. The coupling range s

satisfies 0 < s ≤ 1. For numerical simulations, we need to discretize x into

xj := −π + 2πj/N (j = 0, · · · , N − 1). Then, Eq. (5.1) is rewritten as

θ̇j(t) = ω − 1

2R

j+R∑
k=j−R

sin[θj(t)− θk(t) + α], (5.2)

where θj(t) = θ(xj, t) and R = sN/2.

To answer the question posed by Abrams et al. [27], Laing [7] demon-

strated that there also appear breathing chimeras in the one-dimensional

system by introducing phase lag parameter heterogeneity α = α0 + α1 cosx,

but phase oscillators are not identical in this system. After that, Bolotov

et al. [19, 21] numerically confirmed that similar breathing chimeras appear

in the system composed of identical phase oscillators with improved hetero-

geneity α = α0 + α1|Y (x, t)|2. However, we do not use such heterogeneity.

5.2 Numerical Simulation

We focus on the multichimera state with two coherent and incoherent re-

gions, as shown in Fig. 5.1. When we use the word “multichimera” below, it

basically means such a multichimera state. To assist the appearance of mul-

tichimeras for numerical simulations, we use the following initial condition

θ(x)=



exp

[
−30

(
|x|
2π

− 1

4

)2
]
p(x)

(
0 ≤ |x| < π

2

)

exp

[
−30

(
|x|
2π

− 1

4

)2
]
p(x) + π

(π
2
≤ |x| < π

)
,

(5.3)

where p(x) ∈ [−π, π] is a uniform random number. As shown in Fig. 5.2, this

initial condition is close to a multichimera. Fig. 5.3 shows the stability region

of the multichimera obtained by the numerical simulation of Eq. (5.1) with
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Figure 5.1: Multichimera state with two coherent and incoherent regions for
Eq. (5.1) with N = 100000 and α = 1.480. In each row, the left panel shows
the snapshot of the phase θ(x, t), and the right panel shows the profile of the
average frequency ⟨θ̇(x)⟩ with T = 2000. (a) The breathing multichimera
appears for s = 0.360, while (b) the stationary multichimera appears for
s = 0.440. All figures are plotted once every 10 oscillators.
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Figure 5.2: Initial condition given as Eq. (5.3) with N = 1000.
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Figure 5.3: Stability region of the multichimera for Eq. (5.1) obtained by the
numerical simulation with N = 100000. Black circles denote the parameter
values of Fig. 5.1. The blue line denotes the Hopf bifurcation points obtained
by the linear stability analysis for the stationary multichimera with fixed α
in Section 5.4.1.
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N = 100000. This result is consistent with the phase diagram in [12] as far

as the stability region of the multichimera is concerned. However, in [12], the

stationary and breathing multichimeras are not distinguished, and the region

of the breathing one is identified as a part of the region of the stationary one.

It is mostly assumed that the chimera state for Eq. (5.1) is a stationary

state in the rotating frame with a frequency Ω. This precisely means that

the local order parameter

z(x, t) := lim
ϵ→0+

1

2ϵ

∫ x+ϵ

x−ϵ
dy eiθ(y,t), (5.4)

and the local mean field

Y (x, t) =

∫ π

−π
dy G(x− y) eiθ(y,t), (5.5)

take the form z(x, t) = zst(x) e
iΩt and Y (x, t) = Yst(x) e

iΩt, respectively.

Then, the global order parameter

Z(t) =
1

2π

∫ π

−π
dy eiθ(y,t), (5.6)

also takes the form Z(t) = Zst e
iΩt with Zst ∈ C, so |Z(t)| is independent

of time. In the case of stationary multichimeras, |Z(t)| should vanish in

N → ∞, but we found that |Z(t)| can oscillate periodically at appropriate

parameters (α, s) and sufficiently large N . Fig. 5.4 shows the time evolution

of |Z(t)| for multichimeras in Fig. 5.1. The blue solid line (s = 0.360) ex-

hibits a clear periodic oscillation, while the orange dashed line (s = 0.440)

merely exhibits a small fluctuation around zero. We call the former state the

breathing multichimera and regard the latter as the stationary multichimera.

We can distinguish between stationary and breathing multichimeras by ob-

serving the time evolution of |Z(t)|, but that is difficult for small N because

large fluctuation in |Z(t)| is unavoidable as shown in Fig. 5.5. To distinguish

between these clearly, we needed 10000 oscillators at least in our numerical

simulation.

The detailed periodic behavior of the breathing multichimera can be con-
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Figure 5.4: Time evolution of the global order parameter |Z(t)| for multi-
chimeras in Fig. 5.1. The multichimera is breathing for s = 0.360 (blue
solid line), while it is stationary for s = 0.440 (orange dashed line). Vertical
dashed lines correspond to the times t in Fig. 5.6 [22].
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Figure 5.5: Time evolution of the global order parameter |Z(t)| for multi-
chimeras with α = 1.480 and s = 0.360. When N = 1000 (green line), it
is difficult to distinguish whether or not the multichimera is breathing. The
blue line is the same as that in Fig. 5.4.
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firmed as the periodic oscillation of |Y (x, t)| as shown in Fig. 5.6. |Y (x, t)|
takes a bimodal form, where the positions of the peaks correspond to each

center of the coherent regions. Within a period of |Z(t)| approximately cor-

responding to t = 12 ∼ 24 in Fig. 5.4, |Y (x, t)| experiences the variation in

one-half of its period, and within the next period of |Z(t)|, |Y (x, t)| com-

pletes its whole period. In the simulation of Fig. 5.6, the angular frequency

of |Y (x, t)| is calculated as about 0.270.

Thus, breathing chimera states also exist in the one-dimensional system

without introducing phase lag parameter heterogeneity [7, 19, 21]. In this

chapter, we focus on the breathing multichimera and study the bifurcation

mechanism from the stationary multichimera by the linear stability analysis

for the stationary multichimera.

5.3 Stationary Multichimera

Before the linear stability analysis for the stationary multichimera, we need

to obtain the numerical solution to the self-consistency equation for Yst(x)

Yst(x) = ie−iα
∫ π

−π
dy G(x− y)Yst(y)h(y), (5.7)

h(x) =

[∆−
√

∆2 − |Yst(x)|2)/|Yst(x)|2] [∆ > |Yst(x)|]

[∆− i
√
|Yst(x)|2 −∆2)/|Yst(x)|2] [∆ ≤ |Yst(x)|],

(5.8)

with the step kernel. At first, We tried to numerically solve Eq. (5.7) with

the step kernel by iteration procedure mentioned in Sec. 3.2.2. However, we

were not able to obtain the stationary solution Yst(x) of the multichimera

because Yst(x) converged on another solution corresponding to a standard

chimera state with one coherent and one incoherent region, under any initial

conditions. Since where the iteration converges is attributed to the property

of the iteration procedure, this does not mean that the stationary multi-

chimera solution does not exist in this system. To solve this problem, we

try to obtain the corresponding solution by using another coupling kernel,
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Figure 5.6: Snapshot of the local mean field |Y (x, t)| for the breathing mul-
tichimera in Fig. 5.1. (a) The global view of the snapshot; (b) the upper
enlarged view. The red dashed line (t = 12) and green solid line (t = 24) ap-
proximately correspond to peaks of |Z(t)|, while the blue dotted line (t = 18)
approximately corresponds to a valley, as shown in Fig. 5.4 [22].
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instead of the step kernel.

The coupling kernel G(x) is generally an even real function of x ∈ [−π, π)
described as

G(x) =
∞∑
k=0

gk cos(kx), (5.9)

with gk ∈ R. According to [11], it is analytically proved that multichimeras

exist under the condition g1 ̸= 0, and the local mean field Yst(x) of a station-

ary multichimera is given by an even function

Yst(x) =
∞∑
m=1

C2m−1 cos[(2m− 1)x], (5.10)

with C2m−1 ∈ C. This means that all multichimera solutions to Eq. (5.7) can

be transformed into the form (5.10) by the appropriate spatial translation.

Using Eq. (5.10), h(x) turns out to be an even function because |Yst(x)| is also
even. Let a set of Ỹ (x) satisfying Eq. (5.10) and ∆ be a solution to Eq. (5.7).

Substituting Eq. (5.9) and Eq. (5.10) into Eq. (5.7) and eliminating the terms

whose integrands are odd functions of y, we have

Yst(x) = ie−iα
∞∑
k=0

gk

∞∑
m=1

C2m−1

×
∫ π

−π
dy cos[k(x− y)] cos[(2m− 1)y]h(y)

= 2ie−iα
∞∑
k=0

gk cos(kx)
∞∑
m=1

C2m−1

×
∫ π

0

dy cos(ky) cos[(2m− 1)y]h(y). (5.11)

Moreover, changing the variable as y′ = y−π/2 in the integration in Eq. (5.11),

it becomes

Yst(x) = 2ie−iα
∞∑
k=0

gk cos(kx)
∞∑
m=1

C2m−1

×
∫ π

2

−π
2

dy′ cos
[
k
(
y′ +

π

2

)]
cos
[
(2m− 1)

(
y′ +

π

2

)]
h
(
y′ +

π

2

)
. (5.12)
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Since the function h(y′ + π/2) in the integrand is an even function of y′ too,

we again eliminate the terms whose integrands are odd functions of y′, and

we have

Yst(x) = 2ie−iα
∞∑
l=1

g2l−1 cos[(2l − 1)x]
∞∑
m=1

C2m−1(−1)l+m

×
∫ π

2

−π
2

dy′ sin[(2l − 1)y′] sin[(2m− 1)y′]h
(
y′ +

π

2

)
. (5.13)

From the above, for Yst(x) and ∆ of a stationary multichimera satisfying

Eq. (5.7), we can finally obtain

Yst(x) = ie−iα
∞∑
l=1

g2l−1

∞∑
m=1

C2m−1Alm cos[(2l − 1)x], (5.14)

where Alm is a complex constant. Eq. (5.14) shows that Yst(x) and ∆ of

a stationary multichimera depends only on the odd harmonic coefficients

g2m−1, not on the even harmonic coefficients g2m of the coupling kernel G(x).

This is because we recover Eq. (5.14) even when we substitute the identical

set of Yst(x) and ∆ into Eq. (5.7) with another coupling kernel, for instance,

Godd(x) =
∞∑
m=1

g2m−1 cos[(2m− 1)x], (5.15)

with the same set of odd harmonic coefficients g2m−1. Therefore, each station-

ary multichimera for G(x) and Godd(x) systems has an identical local mean

field. This does not mean that the stability properties of these multichimeras

are also identical. However, Eq. (5.7) for each system have an identical sta-

tionary multichimera solution, whether or not each multichimera is stable.

It is expected that for Eq. (5.7) with Godd(x), Yst(x) converges on the sta-

tionary multichimera solution by the iteration procedure because it dose not

have the standard chimera solution due to g0 = 0 [11]. In fact, the coupling

kernel Godd(x) corresponding to the step kernel is useful for obtaining the

numerical solution of the stationary multichimera.

To confirm the above property, we perform a numerical simulation using
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a new coupling kernel Godd(x) with the same set of odd harmonic coefficients

g2m−1 of the step kernel G(x). The coefficients gk of the step kernel are given

as

gk =

1/(2π) (k = 0)

sin(πkr)/(π2kr) (k ̸= 0),
(5.16)

but an infinite number of coefficients are required to make Godd(x). Instead

of these coefficients, we use

Godd(x) = [G(x)−G(x− π)]/2, (5.17)

in our numerical simulation. For this Godd(x), we also observed stationary

multichimeras. Fig. 5.7 shows the time-averaged local mean fields ⟨Yst(x)⟩ of
the stationary multichimeras using the step kernel G(x) and the correspond-

ing Godd(x). They are clearly identical and also agree with the numerical

solution Yst(x) to the self-consistency equation (5.7) with Godd(x). Here, we

have chosen the additional condition

Θ(−π) = −π
2
, (5.18)

for solving the self-consistency equation, instead of Eq. (3.31). From this

result, when we perform the linear stability analysis for the stationary mul-

tichimera, we can use the local order parameter zst(x) computed from the

numerical solution to Eq. (5.7) with the corresponding Godd(x), instead of the

step kernel G(x). The local order parameter of the stationary multichimera

can be obtained by

zst(x) = ie−iαYst(x)h(x), (5.19)

as shown in Fig. 5.8.

Multichimeras can also appear for the otherGodd(x) system, e.g., Godd(x) =

cosx [13], Godd(x) = g1 cosx + g3 cos 3x as shown in Fig. 5.9, and so on. In

our numerical simulations for various Godd(x) systems, we found an inter-

esting property common to multichimeras for Godd(x), which is an exact
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Figure 5.7: Local mean field Yst(x) of the stationary multichimera corre-
sponding to Fig. 5.1. (a) The amplitude R(x); (b) the argument Θ(x). Open
circles denote the time-averaged local mean field ⟨Yst(x)⟩ for the step kernel
G(x), and open squares denote ⟨Yst(x)⟩ for Godd(x) with the same parame-
ters. Note that those are plotted once every 2000 oscillators. The solid line
denotes the numerical solution Yst(x) to the self-consistency equations (5.7)
with Godd(x) [22].
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to Fig. 5.7.
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Figure 5.9: Snapshot of a multichimera for Godd(x) = g1 cosx+g3 cos 3x with
N = 10000, α = 1.500, g1 = 1, and g3 = −0.0916. The phase θ(x, t) on any
point x satisfies Eq. (5.20) [22].

relationship between the phase θ(x, t) as

|θ(x, t)− θ(x− π, t)| = π, (5.20)

on any point x. In fact, for any Godd(x), we obtain θ̇(x, t)− θ̇(x− π, t) = 0

under Eq. (5.20) from rewritten phase equation

θ̇(x, t) = ω − Im[eiαeiθ(x,t)Y ∗(x, t)], (5.21)

because the relation Y (x, t) = −Y (x − π, t) is satisfied at any time. This

means that Eq. (5.20) can be a solution to Eq. (5.21) with Godd(x) whether

stable or not, but our simulations show that the system with Godd(x) always

converges on the solution satisfying Eq. (5.20) under any initial conditions.

For the kernel other than Godd(x), this property is not exact, but seems to be

satisfied only in the meaning of average, as seen in Fig. 5.1. Under Eq. (5.20),

the global order parameter |Z(t)| exactly vanishes, and the oscillation of the

local mean field |Y (x, t)|, as shown in Fig. 5.6, cannot appear. Therefore, the

appearance of breathing multichimeras is forbidden in the Godd(x) systems.
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5.4 Breathing Multichimera

It is known that the breathing chimeras in the other studies [7, 19, 21, 27]

branch via Hopf bifurcation from stable stationary chimeras. If the present

breathing multichimera also branches via Hopf bifurcation, an unstable sta-

tionary multichimera should exist in the neighborhood of the bifurcation

point. The local mean field of this unstable stationary multichimera should

be a solution to the self-consistency equation (5.7) and identical with that of

the stationary multichimera for the Godd(x) system.

5.4.1 Hopf bifurcation

A Hopf bifurcation, where a fixed point loses stability and a limit cycle

appears around the unstable fixed point, is caused by a pair of complex

conjugate eigenvalues of the Jacobian matrix which crosses the imaginary

axis on the complex plane. As mentioned in Sec. 3.3.1, the linear stability

of the stationary chimera is determined by the eigenvalues of the matrix L̂

such that v̇ = L̂v with v(x, t) = [Re v(x, t), Im v(x, t)]T where the small

perturbation v(x, t) governed by

v̇(x, t) = g(x)zst(x) +
1

2
e−iαV (x, t)− 1

2
eiαz2st(x)V

∗(x, t),

V (x, t) =

∫ π

−π
dy G(x− y)v(y, t),

(5.22)

where

g(x) =

i
√

∆2 − |Yst(x)|2 [∆ > |Yst(x)|]

−
√

|Yst(x)|2 −∆2 [∆ ≤ |Yst(x)|].
(5.23)

The eigenvalues of L̂ consist of the essential spectrum and the point spectrum,

but the stability of the stationary chimera is determined only by the point

spectrum [11,13,23].

Since the step kernel G(x) has infinite numbers of nonzero gk, we cannot

the method for obtaining the point spectrum in [11, 13]. Therefore, we dis-

cretize the space coordinate x→ xj = −π + 2πj/M (j = 0, · · · ,M − 1) and
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compute all eigenvalues λ by solving the eigenvalue problem of 2M×2M ma-

trix Ld such that v̇d = Ld vd with vd(t) = [· · · , Re v(xj, t), Im v(xj, t), · · · ]T .
Then, we use Yst(x) and ∆ satisfying Eq. (5.7) with the correspondingGodd(x),

instead of G(x). Note that we insert the original kernel G(x) into Eq. (5.22)

to solve the eigenvalue problem, though Godd(x) is used for computing Yst(x)

and ∆. Fig. 5.10(a) shows all the eigenvalues λ of Ld with M = 5000,

α = 1.480, and s = 0.360 on the complex plane. As seen from this fig-

ure, we have some eigenvalues with positive real part because the stationary

multichimera is unstable and changes into a breathing one at these parame-

ters. We can regard those eigenvalues as roughly separating into two groups.

Group 1 consists of some eigenvalues around the real axis, and group 2 con-

sists of others around the imaginary values about 0.270 and their complex

conjugate, as shown in Fig. 5.10(c).

Even though we can observe the eigenvalues with a positive real part, we

cannot easily tell whether they belong to the point spectrum or a fluctuation

of the essential spectrum caused by finite discretization. If an eigenvalue with

a positive real part belongs to such a fluctuation, its real part should go to

zero inM → ∞, while an eigenvalue in the point spectrum keeps the positive

real part in that limit. We computed the eigenvalues of Ld with various M

and found their limiting behaviors as M is increased, as shown in Fig. 5.11.

From this figure, we can see that the maximum value of the real parts of

the eigenvalues in group 1 tends to go to zero, while that value in group 2

converges to a positive constant. Therefore, it turns out that at least a pair of

the complex conjugate eigenvalues in group 2 belongs to the point spectrum,

while the eigenvalues in group 1 belong to the fluctuation of the essential

spectrum. At the other parameters where the stationary multichimera is

stable, the point spectrum contains only the eigenvalues with a negative real

part, as shown in Fig. 5.10(b).

Fig. 5.12 shows that a Hopf bifurcation from a stationary multichimera

to a breathing one occurs for α = 1.480, denoted by the black dashed line

in Fig. 5.3. The Hopf bifurcation points for α = 1.480 and other values

are shown as the blue line in Fig. 5.3. Note that the absolute values of the

imaginary parts of the point spectrum, as shown in Fig. 5.10(a), are nearly
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Figure 5.10: Complex eigenvalues λ of Ld with M = 5000 and α = 1.480
using Yst(x) with N = 200000. (a) All eigenvalues for the unstable stationary
multichimera that changes to a breathing one (s = 0.360); (b) those for the
stable stationary multichimera (s = 0.440). (c) The enlarged view of (a) and
(b) denoted by the blue and orange points, respectively. The dashed lines in
each panel are drawn only for reference [22].
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Figure 5.11: Transition of the positive real parts of the eigenvalues of Ld
for an unstable stationary multichimera (α = 1.480 and s = 0.360) with
increasing M . Circles denote the maximum values of the real parts of the
eigenvalues in group 1, and triangles denote those in group 2. The data for
group 1 are fitted linearly (dashed line) in the log-log plot and go to zero
with increasing M . In contrast, the data for group 2 converge to a positive
constant 1.175× 10−3 (solid line) [22].
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Figure 5.12: Hopf bifurcation for fixed α = 1.480. Each point shows the
point spectrum with the positive imaginary part for s = 0.440 (orange circle),
s = 0.420 (orange triangle), s = 0.380 (blue triangle), and s = 0.360 (blue
circle), and corresponds to the black dashed line in Fig. 5.3. The point
for s = 0.400, that is very close to the Hopf bifurcation point, is omitted
because we could not distinguish the point spectrum from other eigenvalues.
The dashed line is the imaginary axis [22].
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equal to the angular frequency of the local mean field |Y (x, t)|, as shown in

Fig. 5.6, which is calculated to be about 0.270. This result agrees with the

occurrence of a supercritical Hopf bifurcation [1].

5.4.2 Non-standard Hopf bifurcation

Next, we compare breathing multichimeras for fixed s = 0.360, denoted

by the red dashed line in Fig. 5.3. In our numerical calculation, we found

that the positive real parts of the point spectrum tend to go to zero as α is

increased toward α = π/2. We infer that the real parts of the point spectrum

is exactly zero at α = π/2. In other words, the breathing multichimera

branches via non-standard Hopf bifurcation [23] at α = π/2 since chimera

solutions do not exist for α > π/2 [11]. However, we were not able to

confirm this inference numerically because it is difficult to distinguish the

point spectrum whose real parts are almost zero for α ≃ π/2 as shown in

Fig. 5.13. According to the theory of Hopf bifurcation [1], the amplitude of

the limit cycle is almost proportional to the positive real part of the point

spectrum in the neighborhood of the bifurcation point. Fig. 5.14 looks as

if |Z(t)| does not oscillate periodically for α = 1.560, but the oscillation is

too small to get over the fluctuation in |Z(t)| since the real part of the point
spectrum is very small.

We also found that the real parts of eigenvalues belonging to the fluctua-

tion of the essential spectrum become small as α is increased toward α = π/2.

The positive real parts of these eigenvalues correspond to instability caused

by the finite discretization. Therefore, the degree of instability for multi-

chimeras becomes smaller as α is brought close to π/2, which is similar to

the appearance of the persistent chimera state with the sine coupling around

α = π/2 as mentioned in Chapter 4.

5.5 Summary of This Chapter

In this chapter, we studied the multichimera with two coherent and inco-

herent regions in one-dimensional nonlocally coupled phase oscillators and
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Figure 5.13: Complex eigenvalues λ of Ld with M = 5000, s = 0.360, and
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Figure 5.14: Time evolution of the global order parameter |Z(t)| for the
breathing multichimera with N = 100000, α = 1.560, and s = 0.360 (red
line). The blue line is the same as that in Fig. 5.4.

numerically found breathing multichimera states with oscillatory global or-

der parameter |Z(t)|, without introducing phase lag parameter heterogene-

ity [7,19,21]. Moreover, we showed that the system exhibits a Hopf bifurca-

tion from a stationary multichimera to a breathing one by the linear stability

analysis for the stationary multichimera.

Furthermore, we showed that the local mean field Yst(x) of stationary

multichimeras depends on only odd harmonic coefficients g2m−1 of the cou-

pling kernel G(x). This means that if G(x) has the same set of the odd

harmonic coefficients, then Yst(x) of stationary multichimeras are common

to all those G(x) systems for the same parameters. We were able to actually

apply Yst(x) of the Godd(x) system to the linear stability analysis for the

stationary multichimera in the G(x) system, even though we were not able

to obtain Yst(x) of the stationary multichimera in the G(x) system. The

method used in this chapter is based on the fact that Yst(x) of stationary

multichimeras is characterized by only odd harmonic components, namely,

Eq. (5.10). We expect that a similar method is applied to other stationary

multichimera states because their local mean fields are also characterized by

a set of specific harmonic components [11].

In contrast to the G(x) system, multichimeras in the Godd(x) systems can-
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not breathe because the system converges on the solution satisfying Eq. (5.20)

with vanishing |Z(t)|. Therefore, it is inferred that the coupling kernel is

an important factor for the appearance of breathing chimeras in the one-

dimensional system. It may be interesting to find other breathing chimeras

by using other appropriate coupling kernels, but it is an open problem.
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Chapter 6

Appearance of New Coherent

Regions

We continue to study breathing multichimeras in one-dimensional nonlocally

coupled phase oscillators with the sine coupling. In this chapter, we demon-

strate that there appears another type of breathing multichimera with multi-

ple coherent regions whose average frequencies are respective different. New

coherent regions suddenly appear in the incoherent regions of the original

breathing multichimera. We show that the appearance of new coherent re-

gions is caused by increasing the amplitude of the breathing. Moreover, we

derive a new self-consistency equation extended for breathing chimeras and

numerically solve it [24].

6.1 Another Type of Breathing Chimera

We continue to consider the system described as Eq. (5.1). In this system,

there appears the breathing multichimera whose phase pattern looks the

same as that of the stationary multichimera, as shown in Fig. 5.1. We call

such a breathing multichimera type-1 below.

In contrast, the phase pattern of the breathing chimera reported by Bolo-

tov et al. [19, 21] differs markedly in appearance from that of the stationary

chimera, as shown in Fig. 6.1. They considered the one-dimensional system
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Figure 6.1: Breathing chimera state with phase lag parameter heterogeneity
α = α0 + α1|Y (x, t)|2 with α0 = 0.3π and α1 = 0.65. (b) All eigenvalues for
the unstable stationary chimera state. (c) The snapshot of the phase φ(x, t).
(e) The profile of the average frequency ⟨φ̇⟩. The details of figures (a), (d),
and (f) are omitted [21].

with phase lag parameter heterogeneity α = α0+α1|Y (x, t)|2 and numerically

demonstrated that such a breathing chimera appears for α1 ̸= 0. However,

we numerically found that there appears another type of breathing multi-

chimera similar to it without introducing parameter heterogeneity, as shown

in Fig. 6.2. We call the new breathing multichimera type-2 below. The type-

2 breathing multichimera has two kinds of coherent regions with respective

different average frequencies. The first coherent regions around x = 0 and

x = ±π in Fig. 6.2(a) correspond to the coherent regions of the stationary

or type-1 breathing multichimera, and the second coherent regions lie on the

both sides of each first coherent region. The type-2 breathing multichimera

appears in the blue region of Fig. 6.3. In our numerical simulations, there

does not exist the bistable region of the type-1 and type-2. In this chap-

ter, we aim for understanding these two types of breathing multichimeras

theoretically.
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Figure 6.2: Type-2 breathing multichimera for Eq. (5.1) with α = 1.500
and s = 0.600. (a) The snapshot of the phase θ(x, t). (b) The profile of
the average frequency ⟨θ̇(x)⟩ with T = 2000. (c) Time evolution of the
global order parameter |Z(t)|. These figures are obtained by the numerical
simulation with (a)-(b) N = 10000 and (c) N = 100000.
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6.2 Theory for Breathing Multichimeras

First, we study the properties common to the type-1 and type-2 breathing

multichimeras. When the solution is stationary, the local order parameter

z(x, t) and the local mean field Y (x, t) take the forms z(x, t) = zst(x) e
iΩt and

Y (x, t) = Yst(x) e
iΩt, respectively. For breathing multichimeras, we newly

assume that the local mean field z(x, t) takes the form

z(x, t) =
∞∑

k=−∞

zk(x) e
i(Ω+kδ)t, (6.1)

with the frequencies Ω and δ > 0. This is the exponential Fourier series

of z(x, t). When zk ̸=0(x) = 0, Eq. (6.1) recovers the stationary solution as

z0(x) = zst(x). If the frequency Ω of the rotating flame is set to zero by

choosing the suitable natural frequency, z(x, t) oscillates around the center

z0(x) in the phase space, and zk ̸=0(x) characterizes the amplitude of the

breathing. Then, the local mean field Y (x, t) is also obtained as

Y (x, t) =
∞∑

k=−∞

Yk(x) e
i(Ω+kδ)t, (6.2)

where Yk(x) :=
∫ π
−π dy G(x − y) zk(y). Substituting Eq. (6.1) and Eq. (6.2)

into the evolution equation

ż(x, t) = iωz(x, t) +
1

2
e−iαY (x, t)− 1

2
eiαz2(x, t)Y ∗(x, t), (6.3)

we obtain the equation for all k as

0 = i∆kzk(x) +
1

2
e−iαYk(x)−

1

2
eiα

∑
l+m−n=k

zl(x)zm(x)Y
∗
n (x), (6.4)

where ∆k := ω − Ω − kδ (= ∆ − kδ). Similarly to the case of stationary

chimeras, we also regard Eq. (6.4) as a quadratic equation in terms of zk(x):

0 = Ak(x)zk
2(x)− 2Bk(x)zk(x) + Ck(x), (6.5)
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where

Ak(x) := eiαY ∗
k (x), (6.6)

Bk(x) := i∆k − eiα
∑
l ̸=k

zl(x)Y
∗
l (x), (6.7)

Ck(x) := −e−iαYk(x) + eiα
∑
l ̸=k
m̸=k

zl(x)zm(x)Y
∗
l+m−k(x), (6.8)

and obtain the solution

zk(x) =
Bk(x) + {Bk

2(x)− Ak(x)Ck(x)}
1
2

Ak(x)
. (6.9)

As the argument of the square root in Eq. (6.9), we choose either one that

satisfies |z(x, t)| ≤ 1 and that is stable if it belongs to the coherent regions

(|z(x, t)| = 1). We can regard Eq. (6.9) as a new self-consistency equation for

the set of the complex functions zk(x) and numerically solve it in Section 6.4.

By using Eq. (6.1), we can obtain the average frequency ⟨θ̇(x)⟩ for breath-
ing multichimeras. To simplify notation, we define an integral operator D
as

DA := lim
ϵ→0+

1

2ϵ

∫ x+ϵ

x−ϵ
dy A(y). (6.10)

Then, z(x, t) is described as Deiθ. DA denotes that the function A(x) is av-

eraged in the neighborhood of a point x. Note that the continuous functions

for x, e.g. Y (x, t), are not affected by D. Operating D on Eq. (5.21), we

have

D θ̇ = D (ω − Im[eiαeiθY ∗] )

= ω − Im[eiαz(x, t)Y ∗(x, t)]. (6.11)

Interestingly, the right-hand side of Eq. (6.11) is identical with that of Eq. (2.43)

obtained together with Eq. (6.3) by the Watanabe-Strogatz approach. Av-

eraging both sides of Eq. (6.11) temporally, we have

⟨θ̇(x)⟩ = ω − Im[eiα⟨z(x)Y ∗(x)⟩], (6.12)
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since

⟨D θ̇⟩ = D ⟨θ̇⟩ = ⟨θ̇(x)⟩. (6.13)

Moreover, because

⟨z(x)Y ∗(x)⟩ =
∞∑

k=−∞

zk(x)Y
∗
k (x), (6.14)

is established under a sufficiently long measurement time, we finally obtain

the average frequency for breathing multichimeras as

⟨θ̇(x)⟩ = ω − Im

[
eiα

∞∑
k=−∞

zk(x)Y
∗
k (x)

]
. (6.15)

From Eq. (6.9), Eq. (6.15) is rewritten as

⟨θ̇(x)⟩ = Ω+ kδ − {Bk
2(x)− Ak(x)Ck(x)}

1
2 . (6.16)

For stationary multichimeras (z0(x) = zst(x) and zk ̸=0(x) = 0), Eq. (6.16) for

k = 0 is identical with Eq. (3.33) derived by Kuramoto and Battogtokh [3].

Let us consider the linear stability with respect to the short-wavelength

perturbation. Now, let the phase θ(x, t) be the breathing multichimera sat-

isfying Eq. (6.1). It is assumed that the local mean field Y (x, t) is invariable

when a small perturbation ϕ(x, t) is added to only one phase oscillator at

a point x. Then, substituting θ(x, t) + ϕ(x, t) into θ(x, t) in Eq. (5.21), we

obtain a linear evolution equation for ϕ(x, t) as

ϕ̇(x, t) = [∂θV (θ, x)]ϕ(x, t), (6.17)

∂θV (θ, x) = −Re[eiαeiθ(x,t)Y ∗(x, t)], (6.18)

where V (θ, x) denotes the right-hand side of Eq. (5.21). Operating D on

Eq. (6.18) and averaging it temporally, from Eq. (6.14), we finally obtain

⟨∂θV (x)⟩ = −Re

[
eiα

∞∑
k=−∞

zk(x)Y
∗
k (x)

]
. (6.19)
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Then, we have expected that ⟨∂θV (x)⟩ is the continuous function for x that

is not affected by D, though ∂θV (θ, x) is not continuous. Eq. (6.19) deter-

mines whether or not the breathing multichimera is stable with respect to

the short-wavelength perturbation. When the breathing multichimera is sta-

ble, we obtain ⟨∂θV (x)⟩ < 0 in the coherent regions and ⟨∂θV (x)⟩ = 0 in the

incoherent regions. Note that even if ⟨∂θV (x)⟩ ≤ 0 for all x, the breathing

multichimera is not always stable.

The right-hand sides of Eq. (6.15) and Eq. (6.19) can be combined into

a complex equation

f(x) := iω − eiα
∞∑

k=−∞

zk(x)Y
∗
k (x). (6.20)

Fig. 6.4 shows the profiles of Eq. (6.20) for the type-1 and type-2 breathing

multichimeras and agrees with our analytical calculation. Thus, Eq. (6.20) is

the important function describing the properties for breathing multichimeras.

In the case of stationary chimeras, Eq. (6.20) and its complex conjugate

are identical with the essential spectrum given as Eq. (3.47) if the natural

frequency ω is set to the appropriate value such that Ω = 0.

6.3 Relation between Breathing Multichimeras

Next, we study the relation between the type-1 and type-2 breathing mul-

tichimeras. In this section, we fix the parameter s = 0.620, denoted by the

black dotted line in Fig. 6.3. In our numerical simulation, there appear the

type-1 for 1.550 ≤ α < π/2 and the type-2 for α < 1.550. Then, the real part

of the point spectrum, which characterizes the amplitude of the limit cycle

oscillation, increases monotonically as α is decreased from π/2, similarly to

Section 5.4.2. From this result, we suppose that the type-1 breathing multi-

chimera changes to the type-2 by increasing the amplitude of the breathing.

In other words, when the effect of zk ̸=0(x) becomes large, the second coher-

ent regions suddenly appear in the incoherent regions of the type-1 breathing

multichimera.
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Figure 6.4: Profile of Eq. (6.20) for breathing multichimeras with N = 10000.
(a)-(b) The imaginary part corresponds to the average frequency, and (c)-
(d) the real part corresponds to the linear stability with respect to the short-
wavelength perturbation. Figures (a) and (c) denote the type-1 for α = 1.480
and s = 0.360, and Figures (b) and (d) denote the type-2 in Fig. 6.2. All
figures are depicted from ⟨zk(x)⟩ and ⟨Yk(x)⟩ for k ∈ [−5, 5] obtained by the
numerical simulation.

6.3.1 Type-1 Breathing Multichimera

If the type-1 breathing multichimera appears during its small amplitude of

the breathing after a Hopf bifurcation, the coefficient functions zk(x) of the

local order parameter z(x, t) may satisfy

zk(x) = O(ε|k|), (6.21)

where ε is a sufficiently small value [1]. Then, those of the local mean field

Y (x, t) also satisfy Yk(x) = O(ε|k|) similarly. For k = 0, applying Eq. (6.21)

to Eq. (6.9) and eliminating the O(ε1) terms, we have

z0(x) = ie−iα
∆0 −

√
∆0

2 − |Y0(x)|2
Y ∗
0 (x)

, (6.22)
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then A0(x) = eiαY ∗
0 (x), B0(x) = i∆0, and C0(x) = e−iαY0(x). This equation

is identical with Eq. (5.19) for the stationary multichimera. Therefore, we

obtain z0(x) ≃ zst(x), Y0(x) ≃ Yst(x), and ∆0 ≃ ∆, where zst(x), Yst(x), and

∆ correspond to the unstable stationary multichimera with same parameters.

In fact, the time-averaged ⟨Y0(x)⟩ for the type-1 breathing multichimera and

the numerical solution Yst(x) to the self-consistency equation (5.7) look like

identical, as shown in Fig. 6.5.

Since z0(x) corresponds to the origin of oscillation, zk(x) e
ikδt for k =

±1 are the main terms characterizing oscillation for the type-1 breathing

multichimera. Applying Eq. (6.21) to Eq. (6.9) for k = ±1 and eliminating

the O(ε2) terms, we have

zk(x) =
−e−iαYk(x) + eiαz0

2(x)Y ∗
−k(x)

2[i∆k − eiαz0(x)Y ∗
0 (x)]

. (6.23)

z±1(x) has order of ε
1 for almost all x, but it would become large rapidly at

special points x = xs such that

i(Ω + kδ) = iω − eiαz0(x)Y
∗
0 (x), (6.24)

since the denominator of the right-hand side of Eq. (6.23) becomes zero.

Remarkably, the right-hand side of Eq. (6.24) is identical with Eq. (6.20) for

the unstable stationary multichimera. In the incoherent regions, Eq. (6.20) is

a pure imaginary number, and its imaginary part corresponds to the average

frequency. For stationary multichimeras in the present system, the average

frequency of the coherent region is equal to Ω < 0, which is the minimum

value of the average frequency. Therefore, if Ω + δ with δ > 0 is less than

the maximum value of the average frequency, there exist the points xs such

that Eq. (6.24) for k = 1. Note that δ is nearly equal to the absolute value

of the imaginary part of the point spectrum in the neighborhood of a Hopf

bifurcation point.

Such a profile as |z1(x)| becomes large rapidly is particularly observed

just before switching to the type-2 breathing multichimera. In Fig. 6.6, we

compare the type-1 and type-2 breathing multichimeras before and after
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Figure 6.5: Local mean field of the type-1 breathing multichimera. (a) The
amplitude; (b) the argument. Open circles denote the time-averaged ⟨Y0(x)⟩
with N = 100000, α = 1.551 and s = 0.620. Those circles are plotted once
every 2000 oscillators. The solid line denotes the numerical solution Yst(x)
to the self-consistency equation (5.7) with same parameters. This solution
corresponds to the unstable stationary multichimera.
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switching from the type-1 to the type-2. For the type-1 with s = 0.620

and α = 1.551 [see the left low in Fig. 6.6], we obtained Ω ≃ −0.3602 and

δ ≃ 0.2151 by the numerical simulation, then Eq. (6.24) is established for

k = 1. As shown in Fig. 6.6(g), |z1(x)| is very small for almost all x, but it

becomes large rapidly at the points xs such that ⟨θ̇(xs)⟩ = Ω+ δ.

6.3.2 Type-2 Breathing Multichimera

For the type-2 breathing multichimera, z0(x) is not identical with zst(x)

clearly, as shown in Fig. 6.6(f), and the order of zk ̸=0(x) is larger than that

of the type-1, as shown in Figs. 6.6(g) and (h). Therefore, the coefficient

functions zk(x) of the local order parameter does not satisfy Eq. (6.21)

In our numerical simulation, we obtained Ω ≃ −0.3974 and δ ≃ 0.2067

for the type-2 with s = 0.620 and α = 1.549. When Figs. 6.6(a) and (b)

are compared, we observe that a part of the incoherent region for the type-1

suddenly changes the second coherent region for the type-2. Remarkably,

the second coherent regions appear at the same points as xs for the type-1

and have the average frequency Ω + δ. From this result, we can explain

that the type-1 breathing multichimera changes to the type-2 by increasing

the amplitude of the breathing, as follows. After the non-standard Hopf

bifurcation at α = π/2, there appears the type-1 breathing multichimera with

small oscillation. The amplitude of this oscillation is mainly characterized by

z±1(x), which are very small for almost all x but large at xs for k = 1. As α

is decreased, z±1(x), especially z1(xs), gradually becomes large and reaches

the threshold |z(x, t)| = 1 at xs for α ≃ 1.550. When α is decreased from

α = 1.550 again, z1(xs) cannot become large anymore. Instead, the second

coherent regions (|z(x, t)| = 1) with the average frequency Ω + δ appear

around xs for increasing the amplitude of the breathing, in other words, the

type-1 changes to the type-2. Such a scenario, that |z(x, t)| = 1 is realized

at only one point and the coherent region appears around it, has analogy

with the appearance of stationary chimeras at α = π/2 [11,23]. As shown in

Fig. 6.3, the type-1 breathing multichimera does not change to the type-2 for

s < 0.400. This seems to be because an increase of the amplitude is smaller
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Figure 6.6: Comparison between the type-1 and type-2 breathing multi-
chimeras with N = 100000 and s = 0.620. The left low denotes the type-1
for α = 1.551, and the right low denotes the type-2 for α = 1.549. (a)-
(b) The snapshot of the phase θ(x, t); (c)-(d) the profile of the average fre-
quency ⟨θ̇(x)⟩. Figures (e)-(f) and (g)-(h) show the amplitude of the time
averaged ⟨z0(x)⟩ and ⟨z1(x)⟩, respectively. All figures are plotted once every
10 oscillators. The type-1 changes to the type-2 at α ≃ 1.550.
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than that for s > 0.600, but the correct reason is an open problem.

For k ≥ 2, there can also exist special points similar to xs, where Eq. (6.24)

is satisfied, if Ω+kδ is less than the maximum value of the average frequency.

Then, the type-2 breathing chimera has not only the second coherent regions

but the third coherent regions and more. Though such points for k ≥ 2 do

not exist in the present system, we have already seen the breathing chimera

with the third coherent regions in Fig. 6.1. In fact, the average frequency of

the third coherent regions looks to be equal to Ω + 2δ. We emphasize that

our analytical theory mentioned in Sections 6.2 and 6.3 can be applied to the

system with phase lag parameter heterogeneity only by replacing α to α(x).

6.4 Solving New Self-consistency Equation

In this section, we numerically solve the new self-consistency equation given

as Eq. (6.9), especially, for the type-2 breathing multichimera. Eq. (6.9)

are composed of one complex function for every k. Therefore, two additional

conditions are wanting at least because there are the set of unknown complex

functions {zk(x)} and two real unknowns Ω and δ. For stationary chimeras

as mentioned in Sec. 3.2.2, the invariance under any rotation is utilized for

solving the self-consistency equation. However, we need to prepare other

additional conditions in the present case because the number of conditions

are not yet enough to solve Eq. (6.9) if such a condition is added.

The function f(x) given as Eq. (6.20) is beneficial for determining the fre-

quencies Ω and δ. The average frequencies of the first and second coherent

regions are equal to Ω and Ω + δ, respectively. Moreover, the stable coher-

ent region satisfies Ref(x) < 0 and has an extreme value of Ref(x) once

every coherent region, as shown in Fig. 6.4. By using these properties, the

frequencies Ω and δ can be considered as the dependent variables of {zk(x)}.
Letting xc1 and xc2 be extreme points in the first and second coherent regions,

respectively, we obtain

Ω = Imf(xc1), (6.25)

δ = Imf(xc2)− Imf(xc1), (6.26)
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where Imf(xc2) > Imf(xc1). The frequencies Ω and δ are uniquely de-

termined according to Eqs. (6.25)-(6.26) with correct {zk(x)}. Note that

Eq. (6.25) is also established in the case of stationary chimeras. By adding

Eqs. (6.25)-(6.26) to Eq. (6.9), we can obtain the complete self-consistency

equation for the type-2 breathing multichimera.

There are several important points to numerically solve the new self-

consistency equation. First, we modify k ∈ [−∞,∞] to k ∈ [−10, 10] on the

basis of the assumption that zk(x) with sufficiently large |k| is small enough

not to affect the other zk(x). This is justified by the numerical simulation.

Second, in order to compute Ω and δ more correctly, Imf(xc1) and Imf(xc2) in

Eqs. (6.25)-(6.26) are replaced with the average values around each extreme

point. The third point is the selection method of the argument of the square

root in Eq. (6.9) that consists of two solutions. In our numerical calculation,

we found that if all zk(x) are close to the correct solution, the order of these

two solutions is greatly different except for k = 0, 1. Therefore, the larger

one is easily rejected by the constraint condition |z(x, t)| ≤ 1. However, such

a selection is difficult in the first coherent regions for k = 0 and in the second

coherent regions for k = 1 because the order of two solutions is not very

different. Either of two solutions in these regions corresponds to the stable

solution, and the other corresponds to the unstable one. This can be shown

as follows. Eq. (6.9) is transformed to

f(x) = i(Ω + kδ)− {Bk
2(x)− Ak(x)Ck(x)}

1
2 , (6.27)

where f(x) is the same function as Eq. (6.20). Interestingly, the left-hand

side of Eq. (6.27) is independent of k. Since Imf(x) = Ω in the first coherent

regions, the square root for k = 0 is the real value that is identical with

Ref(x). Therefore, one corresponding to Ref(x) < 0 is stable, and the other

corresponding to Ref(x) > 0 is unstable. The same is true in the second

coherent regions for k = 1. From this, we can select the stable one as the

solution of Eq. (6.9) at almost all x for k = 0, 1. However, for the point

x such that Ref(x) ≃ 0, the stable and unstable solutions are too close to

distinguish them. To solve this problem, we replace the terms corresponding
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to the right-hand side of Eq. (6.27) in Eq. (6.9) for k = 0, 1 with the averaged

value of those for k ̸= 0, 1 if it is difficult to distinguish two solutions.

Fig. 6.7 shows the numerical solution to the new self-consistency equa-

tion for the type-2 breathing multichimera solved by the Steffensen’s method.

Open circles in Fig. 6.7 denote the time-averaged ⟨zk(x)⟩ obtained by the nu-

merical simulation, and we use them as the initial condition for solving the

self-consistency equation. They look like identical. Although it may seem

that they are not identical in a part of |z1(x)|, that is caused by the cal-

culation error depending on finite-size effects for the numerical simulation

of Eq. (5.1). We succeeded in obtaining the solution to the self-consistency

equation by using the initial condition that was very close to the correct so-

lution. However, when other initial conditions was used, the correct solution

was not able to be obtained because {zk(x)} diverged to infinity. This is a

weak point of our numerical method.

6.5 Summary of This Chapter

In this chapter, we continued to study the breathing multichimera states and

numerically demonstrated that there appear two types of breathing multi-

chimeras. The type-1 breathing multichimera looks the same as the station-

ary multichimera at a glance, while the type-2 has multiple coherent regions

with respective different average frequencies. This feature of the type-2 can

be also seen for the breathing chimera with phase lag parameter heterogene-

ity [19,21].

Next, as the properties common to the type-1 and type-2 breathing multi-

chimeras, we derived the new self-consistency equation (6.9) and the function

f(x) given as Eq. (6.20) whose imaginary and real parts correspond to the av-

erage frequency and the linear stability with respect to the short-wavelength

perturbation, respectively. By using these equations, it is shown that the

type-1 breathing multichimera changes to the type-2 by increasing the am-

plitude of the breathing. Then, the second coherent regions with the average

frequency Ω+ δ appear in the incoherent regions. Such transitions that new
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Figure 6.7: Local order parameter of the type-2 breathing multichimera for
α = 1.500 and r = 0.600 corresponding to Fig. 6.2. Figures show the ampli-
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coherent region appears in the incoherent region are often reported numer-

ically in several systems different from the phase oscillator system [33, 38].

However, it is unclear whether those transitions in other systems are same

as the present phenomenon.

Finally, we numerically solved the new self-consistency equation (6.9).

Then, the frequencies Ω and δ is formulated as dependent variables of {zk(x)},
given as Eqs. (6.25)-(6.26). Our numerical method succeeded in solving the

self-consistency equation, but it was necessary to use the initial condition

that was very close to the correct solution. For obtaining the breathing

chimera solution more easily, we need to improve on the present method in

future.
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Chapter 7

Summary

The behavior of coupled oscillator systems can describe various pattern for-

mations in a wide range of scientific fields. Among them, chimera states have

especially attracted great interest of many researchers since the first discov-

ery in 2002 [3]. In spite of long studies, there still remain some fundamental

problems. This thesis has dealt with a few of such problems for chimera

states in the one-dimensional array of nonlocally coupled phase oscillators.

In Chapter 2, we have reviewed the basic studies of phase oscillators

and their synchronization. Moreover, in Chapter 3, we have reviewed the

previous works of chimera states. In the previous works, it is reported that

chimera states including multichimera states in the one-dimensional systems

are stable in the continuum limit N → ∞ and becomes chaotic transient in

finitely discretized systems [8, 10]. In addition, chimera states in N → ∞
have been assumed to be stationary states in most studies [3–6,11,13,18,19,

21–23]. This assumption forms the basis of the analytical theory for chimera

states, e.g., the self-consistency equation of the local mean field and the linear

stability analysis for stationary chimera states. In our studies, we answer two

simple questions: (a) whether there exist persistent chimera states for finite

N , and (b) whether there exist non-stationary chimera states in N → ∞.

As the answer to the question (a), we have discovered the persistent

chimera state, whose lifetime diverges to infinity even if N is finite, in the

system with the Hansel-Mato-Meunier coupling [16], in Chapter 4. The per-
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sistent chimera state appears not only in the unstable region of the com-

pletely synchronous solution but in its stable region. Furthermore, we have

shown that chimera states in the system with the sine coupling can also be-

come persistent by using appropriate parameters in the stability region of

the completely synchronous solution. The persistency of chimera states are

also agreed by the linear stability analysis for the stationary chimera state.

As the answer to the question (b), we have demonstrated that the breath-

ing multichimera states appear in the system with the sine coupling with-

out introducing phase lag parameter heterogeneity [22], in Chapter 5. The

breathing multichimeras are characterized by oscillatory global order parame-

ter, and there exist two types of breathing multichimeras. The type-1 breath-

ing multichimera has the phase pattern similar to that of the stationary mul-

tichimera. We have shown that a type-1 breathing multichimera branches

via Hoph bifurcation from a stationary one by the linear stability analysis

for the stationary multichimera. The coupling kernel G(x) is an important

factor for the appearance of breathing multichimeras. In fact, the breathing

multichimeras cannot appear in the Godd system at least.

In Chapter 6, we have numerically demonstrated that there can also

appear the type-2 breathing multichimera with multiple coherent regions

whose average frequencies are respective different. Moreover, we have shown

that the type-1 breathing multichimera changes to the type-2 by increasing

the amplitude of the breathing. Our analytical theory for breathing mul-

tichimeras can also apply to the breathing chimera states with phase lag

parameter heterogeneity [7,19,21]. Furthermore, we have derived a new self-

consistency equation extended for breathing multichimeras and numerically

solved it for the type-2 breathing multichimera.

Both of the persistency for finite N and the breathing behavior in N → ∞
are related to the fundamental properties common to chimera states in the

one-dimensional nonlocally coupled phase oscillator system that is one of the

most basic models. We believe that our studies in this thesis will be helpful

for a deeper understanding of chimera states.
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