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 Fast Analysis of Rotating Machine  
Using Simplified Model Order Reduction Based on POD 
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2 Meidensha Co., 2-1-1 Osaki, Shinagawa-ku, Tokyo, 141-8565 Japan 
 

This paper proposes a simplified model order reduction for the fast dynamic simulation of electric motors. The magnetic fields are 
snapshotted for different input currents at each mechanical angle to construct a data matrix. The basis vectors are then computed by 
the singular value decomposition applied to the data matrix. The interpolation along the mechanical angle is performed by the dynamic 
mode decomposition. Fast computation of the magnetic field for arbitrary input current and mechanical angle is performed through 
interpolation of the basis vectors in the space of input currents for the dynamic analysis of motors. 

 
Index Terms— Rotating machine, Behavior model, Proper Orthogonal Decomposition, Dynamic Mode Decomposition, Model order 

reduction. 
 

I. INTRODUCTION 
urrently, in the development and design of electric motors 
for electric vehicles, electromagnetic field analysis using 

finite element method (FEM) has widely been used. Fast 
dynamic simulation of a motor and control system including 
inverters and gears has been required for such processes. It is 
difficult to perform the dynamic FE analysis for this purpose 
due to its large computing cost. Instead of the direct use of FEM, 
fast simulation has been performed based on the simplified 
approach referred to as phase-variable model [1] or behavior 
model or [2]. In this approach, FEM is used in the preprocessing 
to compute the magnetic flux for various currents and 
mechanical angles. During the dynamic simulation, the 
magnetic flux is evaluated from the reference table or response 
surface. Although this approach is fast enough to simulate the 
dynamic behavior of the motor and control system, it is difficult 
to evaluate iron and copper losses and electromagnetic forces 
acting on the stator during the simulation because magnetic 
fields would have to be re-computed by FEM. 

The computing cost of FEM can be reduced using the model 
order reduction (MOR) for the dynamic simulation of motors, 
for which the proper orthogonal decomposition (POD) would 
be effective [3, 4]. In this method, the nonlinear reduced field 
equation is solved at each mechanical angle. Because the 
number of unknowns included in the reduced equation is small, 
the computing efficiency is improved in comparison with the 
conventional FEM. However, POD-based MOR would not 
work fast enough for the real-time dynamic motor simulations.  

To overcome this problem, the interpolation method which 
does not solve the reduced equations has been proposed [5], [6]. 
In this method, the machine response for arbitrary input is 

obtained via interpolation of the basis vectors obtained by POD. 
The nonlinear interpolation is applied to the Grassmann 
manifold in [5], while the interpolation is adopted for the right-
hand vector of the singular value decomposition in [6]. 

In this work, we develop a simplified POD-based MOR for 
the dynamic simulation of motors. In this method, the magnetic 
fields are not directly stored but the basis vectors constructed 
by POD as well as the weighting coefficients are stored for the 
restoration of the magnetic field. The interpolation is done for 
the field in the space and time spanned by the d- and q-axis 
currents at each mechanical angle. The proposed method works 
fast because it does not solve the nonlinear equation. Dynamic 
simulation using the simplified POD-based MOR is discussed 
in [7]. The novelty of this study compared to [5-7] is the use of 
the dynamic mode decomposition (DMD) for the interpolation 
along the mechanical angle. 

II. PROPOSED METHOD 

A. Simplified POD-based MOR  
The static magnetic fields are computed using FEM for 

different d and q axis currents, 𝑖𝑖𝑑𝑑 , 𝑖𝑖𝑞𝑞 , at mechanical angle 𝜃𝜃. The 
data matrix is then constructed from the resulting field as 

X = �𝒂𝒂11,𝒂𝒂21,⋯ ,𝒂𝒂𝑠𝑠1,𝒂𝒂12,⋯ ,𝒂𝒂𝑗𝑗𝑗𝑗 ,⋯ ,𝒂𝒂𝑠𝑠𝑠𝑠�,      (1) 

where X ∈ ℝ𝑛𝑛×𝑠𝑠𝑠𝑠, n is the total number of nodes for FEM and 
𝑗𝑗 = 1,2, … , 𝑠𝑠  and 𝑡𝑡 = 1,2, … ,𝑚𝑚  represent the indices relevant 
to the snapshots at grid points  (𝑖𝑖𝑑𝑑 , 𝑖𝑖𝑞𝑞) and 𝜃𝜃, respectively. Then, 
we apply the singular value decomposition to X to obtain 

X = WΣV∗ ,                                                (2) 

where W ∈ ℝ𝑛𝑛×𝑠𝑠𝑠𝑠 and V ∈ ℝ𝑠𝑠×𝑠𝑠𝑠𝑠 are the orthogonal matrices 
containing the left and right-hand eigenvectors, and Σ ∈
ℝ𝑠𝑠𝑠𝑠×𝑠𝑠𝑠𝑠 denotes the diagonal matrix that includes the singular 
values  𝜎𝜎𝑖𝑖  of X, 𝑖𝑖 = 1, 2, … , 𝑠𝑠𝑠𝑠. 

The low rank approximation with the dominant 𝑠𝑠0 singular 
value is applied to (2) as 

X ≈ W� C ,                                            (3) 

C 
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where 𝑠𝑠0 ≪ 𝑠𝑠𝑚𝑚,  W� ∈ ℝ𝑛𝑛×𝑠𝑠0 , C ∈ ℝ𝑠𝑠0×𝑠𝑠𝑠𝑠 . Accordingly, the 
vector potential can also be represented by the linear 
combination of the dominant eigenvectors as follows: 

𝒂𝒂 ≈ W� 𝒄𝒄 ,                                         (4) 

where 𝒄𝒄  is the coefficient vector. In the analysis of 
magnetostatic field based on conventional POD, the reduced FE 
equation for 𝒄𝒄 ∈ ℝ𝑠𝑠0   is solved under the assumption of (4). 
Since the reduced FE equation has nonlinearity due to the 
magnetic saturation in a motor core, its solution would still need 
long computing time for the real-time dynamic simulation of a 
motor. The proposed method does not solve the reduced FE 
equation but obtain the reduced variable 𝒄𝒄 via interpolation in 
the time and space spanned by 𝑖𝑖𝑑𝑑 , 𝑖𝑖𝑞𝑞 ,𝜃𝜃 as will be shown in the 
next section. 

B. Interpolation for input current 
Let us consider the interpolation on the plane of  (𝑖𝑖𝑑𝑑 , 𝑖𝑖𝑞𝑞). The 

magnetic field at an arbitrary point (𝑖𝑖𝑑𝑑 , 𝑖𝑖𝑞𝑞 ,𝜃𝜃) can be computed 
from 𝒂𝒂 ≈ W� 𝒄𝒄(𝜃𝜃)  where the coefficient 𝒄𝒄(𝜃𝜃)  is evaluated on 
the basis of the interpolation function used for the FE analysis 
with quadrature elements as 

𝒄𝒄�𝑖𝑖𝑑𝑑 , 𝑖𝑖𝑞𝑞 ,𝜃𝜃� ≈�𝒄𝒄𝑗𝑗(𝜃𝜃)𝑁𝑁𝑗𝑗�𝑖𝑖𝑑𝑑 , 𝑖𝑖𝑞𝑞�
4

𝑗𝑗=1

.                 (5) 

The interpolation (5) is expected to work well for the fixed 
mechanical angle 𝜃𝜃. To consider the dependence 𝒄𝒄 of on 𝜃𝜃, the 
simplest way is to adopt the linear interpolation between 
sampling angles, as in [7]. This simple method would become 
inaccurate as the sampling interval 𝛥𝛥𝛥𝛥 becomes large. In this 
paper, we introduce the interpolation along the mechanical 
angle seeking for higher accuracy below. 

C. Interpolation for mechanical angle with DMD 
DMD performs model order reduction in time for nonlinear 

dynamic systems [8]. So far, DMD has been used in fluid 
dynamics [9] and analysis of an electric motor [10]. 

 We consider here the interpolation along the mechanical angle 
𝜃𝜃 . For simplicity, we omit the index relevant to 𝑖𝑖𝑑𝑑 , 𝑖𝑖𝑞𝑞   until 
notified. We assume that the change in the coefficient obeys 

𝒄𝒄(𝜃𝜃 + 𝛥𝛥𝛥𝛥) = A𝑑𝑑𝒄𝒄(𝜃𝜃),                  (6) 

where A𝑑𝑑 denotes the transform matrix. Moreover, we consider 
the continuous counterpart of (6) as 

𝑑𝑑𝒄𝒄
𝑑𝑑𝑑𝑑

= A𝑐𝑐𝒄𝒄.                              (7) 

The solution to (7) can be formally represented as 𝒄𝒄(𝜃𝜃) =
𝑒𝑒A𝑐𝑐𝜃𝜃𝒄𝒄0. The eigenvalue decomposition is applied to A𝑐𝑐 to have 
A𝑐𝑐 = PΛP∗  , where P and Λ  are the matrix composed of the 
eigenvectors and diagonal matrix composed of the eigenvalues 
𝜆𝜆𝑖𝑖 of P, respectively. The solution to (7) can be now written as 
𝒄𝒄 = P𝑒𝑒Λ𝑐𝑐𝜃𝜃P∗𝒄𝒄0, where 𝑒𝑒Λ𝑐𝑐𝜃𝜃 = diag�𝑒𝑒𝜆𝜆1𝜃𝜃 , 𝑒𝑒𝜆𝜆2𝜃𝜃 , … �. 
    We consider here the relationship between (6) and (7). By 
representing 𝒄𝒄(𝜃𝜃 + 𝛥𝛥𝛥𝛥) in (6) with the solution to (7), we find 

𝒄𝒄(𝜃𝜃 + 𝛥𝛥𝛥𝛥) = 𝑒𝑒A𝑐𝑐Δ𝜃𝜃𝒄𝒄(𝜃𝜃).                         (8) 

This suggests that A𝑑𝑑 = 𝑒𝑒A𝑐𝑐Δ𝜃𝜃. Moreover, it can be found that 

A𝑑𝑑P = 𝑒𝑒A𝑐𝑐Δ𝜃𝜃P = P𝑒𝑒Λ𝑐𝑐Δ𝜃𝜃 .                          (9) 

It follows from (9) that the eigenvalues of  A𝑑𝑑 are 𝑒𝑒𝜆𝜆𝑖𝑖Δ𝜃𝜃 and the 
eigenvectors of A𝑑𝑑  and A𝑐𝑐  are identical. Inversely, the 
eigenvalues 𝜆𝜆𝑖𝑖  of A𝑐𝑐   can be expressed by means of the 
eigenvalues 𝜇𝜇𝑖𝑖 of A𝑑𝑑 as 𝜆𝜆𝑖𝑖 = ln 𝜇𝜇𝑖𝑖 Δ𝜃𝜃⁄ . 

The coefficient in (5) can be thus written as 

𝒄𝒄(𝜃𝜃) = P𝑒𝑒
lnΛ𝑑𝑑
Δ𝜃𝜃 𝜃𝜃𝒃𝒃,                                  (10) 

where 𝑒𝑒Λ𝑑𝑑𝜃𝜃 = diag�𝑒𝑒𝜇𝜇1𝜃𝜃 , 𝑒𝑒𝜇𝜇2𝜃𝜃 , … �  and 𝒃𝒃 = P∗𝒄𝒄(0) . Finally, 
we consider the computation of 𝜇𝜇𝑖𝑖  and P . We introduce the 
matrix C𝑗𝑗,1:𝑚𝑚 ∈ ℝ𝑠𝑠0×𝑚𝑚 composed of the coefficient vectors 𝒄𝒄𝑗𝑗𝑗𝑗 
defined by 

C𝑗𝑗,1:𝑚𝑚 = �𝒄𝒄𝑗𝑗1, 𝒄𝒄𝑗𝑗2,⋯ , 𝒄𝒄𝑗𝑗m �,              (11) 

Now the time evolution of C𝑗𝑗 is assumed to obey 

C𝑗𝑗,2: 𝑚𝑚 = A𝑑𝑑C𝑗𝑗,1: 𝑚𝑚−1.                                (12) 

Moreover, for computational efficiency, A𝑑𝑑  is projected onto 
the POD basis U of C𝑗𝑗,1:𝑚𝑚−1 to obtain the approximation 

A�𝑑𝑑 = U∗A𝑑𝑑U = U∗C𝑗𝑗,2:𝑚𝑚ZS−1,                     (13) 

where the matrices U, Z and S are obtained from the singular 
value decomposition; C𝑗𝑗,1: 𝑚𝑚−1 = USZ∗ . Note that U, Z  and S 
correspond to W, V  and Σ  in (2), respectively. Now, the 
eigenvalue decomposition of A�𝑑𝑑 

A�𝑑𝑑Q =  QΛ,                                 (14) 

can be readily performed. The eigenvalues  𝜇𝜇𝑖𝑖  are directly 
obtained from Λ in (14) and its eigenvectors can be computed 
from (see [9] in detail) 

P =  C𝑗𝑗,2:𝑚𝑚ZS−1Q.                                (15) 

Consequently, the vector potential 𝒂𝒂�𝑖𝑖d, 𝑖𝑖q,𝜃𝜃�  can be 
expressed as  

𝒂𝒂�𝑖𝑖d, 𝑖𝑖q,𝜃𝜃� ≈ W� � P𝑗𝑗𝑒𝑒
lnΛ𝑑𝑑
𝛥𝛥𝛥𝛥 𝜃𝜃𝒃𝒃𝑗𝑗𝑁𝑁𝑗𝑗

4

𝑗𝑗=1
�𝑖𝑖d, 𝑖𝑖q�.             (16) 

In the preprocessing of the dynamic simulation, W� , P𝑗𝑗 ,Λ𝑑𝑑  and 
𝒃𝒃𝑗𝑗 are computed by FEM, singular value decomposition, DMD 
and stored, as shown in Fig. 1. 

In the conventional fast dynamical simulation, the magnetic 
field has to be re-computed from the currents obtained by 
solving the circuit equation. In contrast, in the proposed method, 
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the field-related quantities can be directly computed from the 
coefficients 𝒄𝒄(𝑖𝑖𝑑𝑑 , 𝑖𝑖𝑞𝑞 ,𝜃𝜃) for any input current and mechanical 
angle through the interpolation given by (16). For example, the 
Maxwell stress tensor can be directly computed from 

T�𝑖𝑖d, 𝑖𝑖q,𝜃𝜃� = 𝒄𝒄�𝑖𝑖𝑑𝑑 , 𝑖𝑖𝑞𝑞 ,𝜃𝜃�tW� 𝑡𝑡NW� 𝒄𝒄�𝑖𝑖𝑑𝑑 , 𝑖𝑖𝑞𝑞 ,𝜃𝜃�,            (17) 

where N denotes a sparse matrix including the derivatives of the 
interpolation function of FEM in the real space defined by 

N =
1

2𝜇𝜇
�
𝑵𝑵𝑦𝑦
𝑡𝑡 𝑵𝑵𝑦𝑦 − 𝑵𝑵𝑥𝑥

𝑡𝑡𝑵𝑵𝑥𝑥 −2𝑵𝑵𝑥𝑥
𝑡𝑡𝑵𝑵𝑦𝑦

−2𝑵𝑵𝑥𝑥
𝑡𝑡𝑵𝑵𝑦𝑦 𝑵𝑵𝑥𝑥

𝑡𝑡𝑵𝑵𝑥𝑥 − 𝑵𝑵𝑦𝑦
𝑡𝑡 𝑵𝑵𝑦𝑦

� ,       (18) 

𝑵𝑵𝑢𝑢 = �𝜕𝜕𝑁𝑁1
𝜕𝜕𝜕𝜕

𝜕𝜕𝑁𝑁2
𝜕𝜕𝜕𝜕

⋯
𝜕𝜕𝑁𝑁𝑛𝑛
𝜕𝜕𝜕𝜕

�
𝑡𝑡

, 𝑢𝑢 = {𝑥𝑥,𝑦𝑦}.      (19) 

 
 

FIG. 1 HERE  
 
 

III. NUMERICAL RESULTS 
We apply the present method to the analysis of an electric 

motor shown in Fig.2 which has 4 poles and 24 slots (D model 
of IEEJ) to verify its effectiveness. The MOR-related 
parameters are summarized in TABLE I, where 𝑠𝑠0  is 
determined so that the cumulative contribution rate in singular 
value decomposition exceeds 0.999. The current effective value 
and the current phase angle are set to 4.0 Arms and 30 deg, 
respectively. The interval 𝛥𝛥𝛥𝛥  of mechanical angle for 
computation is 0.5 degrees. Since this motor has 24 slots and 4 
poles, it generates torque at an electrical angle of 1/6 cycle. 
Thus, the torque is evaluated in the range 15≤ θ ≤45 degrees. 

The torque waveforms obtained by the conventional FEM 
and proposed method are shown in Fig. 3. It is found that both 
torque waveforms are in good agreement. It is remarkable that 
the interpolation of the proposed method works fairly well. 

In Fig. 4, the average torques computed by the conventional 
FEM and proposed method are plotted against the current phase 
angle. It can be seen that both torques are consistent over all the 
conditions. In the design of electric motors, it is important to 
know the condition for the maximum average torque. The 
proposed method is also useful for this purpose. 

Fig. 5 depicts the spatial distribution of the radial 
electromagnetic force at 𝜃𝜃 =15.0, 45.0 and 75.0 degrees. We 
find again the good correspondence between the results 
obtained by the conventional FEM and the proposed method. 
Table II summarizes the computing times for one electrical 
angle cycle including and excluding pre-processing of the input 
files. The proposed method is more than ten times faster than 
the conventional FEM. In the dynamic computation, the 
proposed method per one operation takes just about 20 ms to 
restore the magnetic field when using AMD Ryzen 
Threadripper 2990WX@3.00Ghz memory 64GB. 

Finally, we discuss the effects of the number of basis vectors 
𝑠𝑠0 in POD  and snapshot interval 𝛥𝛥𝜃𝜃 on the result. Fig. 6 shows 
the effect of 𝛥𝛥𝜃𝜃 on the torque waveform. For each value of 𝛥𝛥𝜃𝜃, 
𝑠𝑠0  is determined so that the cumulative contribution rate 

exceeds in singular value decomposition 0.999. It can be seen 
from Fig.6 that it is sufficient to have an accurate waveform if 
𝛥𝛥𝛥𝛥 ≤ 1°. This condition would depend on the contribution from 
the higher harmonics to the waveform. Fig. 7 shows the 
comparison of torque waveforms for different values of 𝑠𝑠0. It is 
remarkable that the wavefrom is still well restrored even if 𝑠𝑠0 
is reduced to 100. This means that it suffices to store 100 basis 
vectors and corresponding weight coefficients to correctly 
restore the torque waveform. 

 
 

FIG. 2-7 HERE  
TABLE 1,2 HERE 

 
 

IV. CONCLUSION 
In this paper, a simplified POD-based MOR has been 

proposed. In this method, the field is restored via interpolation 
of the coefficients for the basis vectors without solving the 
reduced equations. The interpolation is performed on the space 
spanned by the input currents. The change of the coefficient 
along the mechanical angle is expressed using the interpolation 
with the DMD. The field can be restored in the dynamic 
simulation within around 20ms. The proposed method has been 
shown to yield the correct torque waveform when the sampling 
interval is set to adequate value, 1 degree for the numerical 
example. The number of the basis vectors for POD can be 
reduced to 100 to restore the torque waveform. 

In future, we will apply the proposed method to the vibration 
analysis of electric motors. We will also study the automatic 
determination of the intervals in the grid on the id-iq plane. 
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Fig.1.  Procedure of the proposed method 
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TABLE I 
PARAMETERS OF MOR 

n : number of FEM node 16557 
sm : number of snapshot 11584 

s0 : low rank approximation number 640 
range of mechanical angle[degree] 15~195 

snapshot interval 𝛥𝛥𝛥𝛥[degree] 1 
range of id[A] 0~-7 
range of iq[A] 0~7 

snapshot interval id,iq[A] 1 
 

TABLE II 
COMPUTING TIMES.  

Computation Method Time[s] speed up rate 
FEM 861 1 

Proposed Method 8.0 (3.6) 107.6 (239.2) 
Parenthesized times do not include pre-processing. 

 
Fig.3.  Torque curve (current effective value 4.0Arms, current phase angle 
30deg) 
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Fig.2.  electric motor for numerical example 
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Fig.4.  Dependence of average torque on current phase angle 
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Fig.6.  Effect of snapshot interval 𝛥𝛥𝛥𝛥 
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Fig.7.  Effect of number of basis vectors 𝑠𝑠0 in POD 
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(a) 𝜃𝜃 =15.0deg (b)  𝜃𝜃 =45.0deg (c)  𝜃𝜃 =75.0deg 
Fig.5.  Radial electromagnetic forces acting on the stator teeth computed by FEM and the proposed method for different mechanical angles  𝜃𝜃. 
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