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D’yakonov-Perel’ spin relaxation in a bilayer with local structural inversion asymmetry

Kenji Hayashida and Hiroshi Akera
Division of Applied Physics, Graduate School and Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan

(Received 25 October 2019; published 31 January 2020)

The spin relaxation in the D’yakonov-Perel’ mechanism is theoretically studied in a symmetric double-
quantum-well structure (DQWS) with an intersubband spin-orbit interaction (SOI) due to the local structural
inversion asymmetry and the linear-in-wave-number Dresselhaus SOI. It is found that the spin relaxation rate
induced by the intersubband SOI exhibits a suppression with ωτp in the Lorentzian form of (1 + ω2τ 2

p )−1, where
h̄ω is the intersubband energy separation and τp is the momentum relaxation time. The present Lorentzian
suppression leads to a crossover with increasing ωτp from the D’yakonov-Perel’-type relaxation (the spin
relaxation time τs ∝ τ−1

p ) to the Elliott–Yafet-type relaxation (τs ∝ τp). It is also shown that the spin relaxation
rate in the presence of both the linear Dresselhaus SOI and the intersubband SOI is isotropic with respect to
the in-plane spin direction in the present DQWS in contrast to a single quantum well exhibiting an in-plane
anisotropy.

DOI: 10.1103/PhysRevB.101.035306

I. INTRODUCTION

Control of the spin relaxation [1–3] is a challenge in
realizing the spintronic applications which range from the
information storage to the processing [4–6]. The spin relax-
ation for electrons in the conduction band of nonmagnetic
semiconductors has been extensively studied and is known
to depend strongly on the spatial inversion symmetry of
the system. In the presence of the inversion symmetry, the
dominant mechanism of the spin relaxation is the Elliott-Yafet
(EY) mechanism [7,8] in which the electron spin flips at a
scattering from impurities and phonons through the spin-orbit
interaction (SOI) induced by the scattering potential [7–10]. In
the EY mechanism, the spin relaxation time τs is proportional
to the momentum relaxation time τp (τs ∝ τp). In the absence
of the inversion symmetry, an additional spin relaxation is
caused by the D’yakonov-Perel’ (DP) mechanism [11–13] in
which the effective magnetic field (EMF) created by the bro-
ken inversion symmetry induces the electron spin precession
and the scattering changes the direction of the EMF. In the DP
mechanism, which is stronger than the EY mechanism in most
cases, the spin relaxation time is proportional to τ−1

p (τs ∝
τ−1

p ). In this paper we focus on the spin relaxation caused by
the locally broken inversion symmetry in a system with the
global inversion symmetry and show that both the EY-type
relaxation (τs ∝ τp) and the DP-type relaxation (τs ∝ τ−1

p )
appear depending on the magnitude of the effect of the locally
broken inversion symmetry.

Locally broken inversion symmetry [14] is an emergent
concept which has recently been addressed by many theo-
retical and experimental works [14–18]. A crystal with the
global inversion symmetry has, at least, one inversion center.
Even a crystal with the inversion center can have a pair of
atomic sites, A and B, with respect to each of which the
inversion symmetry is broken so that the EMF at each site is
nonzero: BA

eff �= 0 and BB
eff �= 0. Since A and B sites exchange

their positions under the inversion operation with respect to
one of the inversion centers, the EMFs at the two sites are

antiparallel: BA
eff + BB

eff = 0. The absence of the inversion
symmetry with respect to an atomic site in a crystal with the
inversion center is called locally broken inversion symmetry.
This local symmetry can be thought of as more fundamental
than the global symmetry since the presence of the global
inversion symmetry in some crystals is determined by whether
BA

eff + BB
eff = 0 or not. Locally broken inversion symmetry

has been shown to exhibit properties which have been over-
looked when only the global inversion symmetry is consid-
ered. A typical example is the local current-induced effective
magnetic field which has already been applied to the switch-
ing of the sublattice magnetization of the antiferromagnet
[17].

Among systems with locally broken inversion symme-
try, we consider a symmetric double-quantum-well structure
(DQWS) [16,19–28] (illustrated in Fig. 1) in which electronic
states can be controlled by changing the composition and
the width of the well and barrier layers and by varying the
potential with use of the applied electric field and the doping.
In a single quantum well (QW) with structural inversion asym-
metry (SIA), the EMF is given by the Rashba SOI [29–32],
which is induced by the asymmetric QW potential. In the
symmetric DQWS with the local SIA, the EMF in both the
ground subband (even parity, see Fig. 1) and the first excited
subband (odd parity) vanishes because the local EMFs in two
wells are opposite in direction. However, the matrix element
of the DQWS-potential-induced SOI between the even-parity
and the odd-parity subbands, which is called the intersubband
SOI [21,23], is nonzero and gives rise to various phenomena
such as the bilayer intrinsic spin Hall effect [21,22,26,28]. A
theoretical study on the spin relaxation in such a symmetric
DQWS is highly desirable in view of extensive theoretical
studies performed for the spin relaxation in single quantum
wells [13,33–51]. A theory of the spin relaxation in a simple
DQWS can also provide a clue to understanding the observed
crossover in the oxide bilayer [52] between the EY-type and
the DP-type spin relaxations with changing the separation
between layers.
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FIG. 1. Potential Vwell (z) in a DQWS and wave functions of the
lowest two subbands. |e〉 is the symmetric orbital of the lowest level
εe (the ground subband), while |o〉 is the antisymmetric orbital of the
next lowest level εo. These two orbitals are assumed to be a linear
combination of the lowest bound states in each of the L and the R
QWs [Eq. (14)], |L〉 and |R〉.

In this paper we theoretically study the spin relaxation
in the DP mechanism in a symmetric DQWS with the local
SIA (locally broken structural inversion symmetry). We take
into account the ground and first excited subbands, which
are described by symmetric and antisymmetric linear com-
binations, respectively, of localized orbitals tightly bound to
each of the left and right QWs. The antiparallel EMF in the
two QWs, which is induced by the local SIA, gives rise to
a nonzero intersubband SOI and the vanishing intrasubband
SOI (Rashba SOI). We change the magnitude of the effect
of the local SIA by varying the strength of the interlayer
tunneling which is described by the energy separation be-
tween the ground subband (in the energy range ε � εe) and
the first excited subband (ε � εo). Then we find a suppression
of the spin relaxation rate with increasing the intersubband
energy separation h̄ω ≡ εo − εe in the form of the Lorentzian
function 1/τs = �2

Rτp/(1 + ω2τ 2
p ), with �R being the mag-

nitude of the Rashba EMF in each QW (in units of angular
frequency) (�2

Rτp is the spin relaxation rate in a single QW
with the Rashba EMF, �R). The present ωτp dependence
gives a crossover from the DP-type relaxation (τs ∝ τ−1

p ) at
ωτp � 1 to the EY-type relaxation (τs ∝ τp) at ωτp � 1. We
discuss the origin of this suppression of the spin relaxation due
to the interlayer tunneling in the DQWS by comparing it with
a similar suppression due to the cyclotron motion in a single
QW [42–44,53]. (It has been shown [54] by employing a
two-band model Hamiltonian that the spin relaxation rate has
the form of the Lorentzian function in which ωτp in the above
expression for 1/τs is replaced with �/2�, where � is the
band gap between the two bands and � is a constant imaginary
part of the one-particle self-energy which has been introduced
to describe the level broadening due to scatterings.)

In addition to the Rashba SOI, the Dresselhaus SOI acts on
an electron in semiconductors [55] and in QWs [13] due to
the bulk inversion asymmetry in zinc-blende semiconductors.
In a (001)-oriented QW with both the linear-in-wave-number
Dresselhaus SOI and the Rashba SOI, it has been predicted
[33] and observed [56] that the spin relaxation rate depends
on the direction of the spin polarization in the QW plane

relative to the crystal axis, because the directional distribution
of the EMF at the Fermi level has an in-plane anisotropy
which is largest when the two SOIs are equal in strength.
However we find that such anisotropy completely disappears
in a symmetric DQWS with the local SIA. This can be
understood by noting that the antiparallel Rashba EMF in
the symmetric DQWS leads to an isotropic EMF directional
distribution when averaged by the interlayer tunneling.

The outline of this paper is as follows. Section II introduces
the model and the Hamiltonian of a symmetric DQWS with
electrons occupying the ground and first excited subbands
described by a pseudospin. Section III derives the density
matrix up to first order in the SOIs. Section IV presents cal-
culated spin relaxation rates and discussion. We demonstrate
the absence of the spin relaxation anisotropy in the present
DQWS as well as the Lorentzian suppression factor in the
spin relaxation rate induced by the intersubband SOI. Then,
we discuss the isotropy and suppression of the spin relaxation
in terms of the EMF and the interlayer tunneling. Furthermore,
we point out a crossover from the usual τp dependence of the
DP spin relaxation rate to the anomalous EY-type dependence
which occurs with increasing ωτp. Finally, Sec. V gives
conclusions.

II. HAMILTONIAN

We consider a two-dimensional electron gas in a DQWS
with electrons occupying the ground and first excited sub-
bands. The DQWS we consider has the symmetry with respect
to the center plane (z = 0) of the barrier between the left
(L) and the right (R) QWs, which leads to the formation
of an even-parity orbital |e〉 in the ground subband and an
odd-parity orbital |o〉 in the first excited subband, while each
of the two QWs has a locally broken inversion symmetry
(Fig. 1). The coordinate axes x, y, and z are oriented along
[100], [010], and [001], respectively.

The Hamiltonian describing the motion of an electron in
the conduction band of the DQWS is

H = HW + HSO
D + HSO

I + Vimp(r̂), (1)

where

HW = h̄2

2m

(
k̂2

x + k̂2
y

) + H⊥, (2)

H⊥ = h̄2

2m
k̂2

z + Vwell(ẑ), (3)

HSO
D = −γ k̂2

z (σxk̂x − σyk̂y), (4)

HSO
I = η(ẑ)(σxk̂y − σyk̂x ), (5)

in which h̄ is the Planck constant divided by 2π , m is the effec-
tive mass of an electron in the conduction band, r̂ = (x̂, ŷ, ẑ)
is the position vector operator, k̂ = (k̂x, k̂y, k̂z ) is the wave
vector operator, σ = (σx, σy, σz ) is the Pauli spin operator,
Vwell is the potential in the DQWS due to the conduction band
offset, the gate voltage, the dopants, and the electron-electron
interaction in the Hartree approximation. The eigenvectors of
H⊥ are |e〉 (symmetric orbital) and |o〉 (antisymmetric orbital)
and the corresponding eigenenergies are denoted by εe and
εo, respectively. Vimp is the spin-independent potential due
to randomly distributed impurities for which we employ the
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following two-dimensional model:

Vimp(ρ̂) =
∑

i

u(ρ̂ − ρi ), (6)

where ρ̂ = (x̂, ŷ), ρi represents the two-dimensional position
of the ith impurity, and u is the potential of each impurity with
cylindrical symmetry.

HSO
D is the Dresselhaus SOI linear in k̂x and k̂y [13] and

γ is the coefficient of the Dresselhaus SOI of constituent
semiconductors [55]. The Dresselhaus SOI cubic in k̂x and k̂y

is neglected since the expectation value of k̂2
x and k̂2

y is much

smaller than that of k̂2
z at moderate electron sheet densities

[57]. HSO
I is the SOI induced in the heterostructure [21,23,58],

and the z-dependent coefficient η(ẑ) has contributions from
the electrostatic potential and the potential due to the valence
band offsets. Since both potentials are symmetric with respect
to z = 0 in the DQWS, we consider, η(ẑ) is an odd function
of ẑ,

η(−ẑ) = −η(ẑ). (7)

Thus matrix elements of η(ẑ) become

〈e|η(ẑ)|e〉 = 〈o|η(ẑ)|o〉 = 0, (8)

〈e|η(ẑ)|o〉 = 〈o|η(ẑ)|e〉 = αI , (9)

which represent the intersubband SOI [21,23] induced by
the local SIA, where αI determines the strength of the in-
tersubband SOI. We assume that state vectors with respect
to the motion along the z direction are described by a linear
combination of |L〉 and |R〉, representing the lowest bound
state in each of the L and the R QWs, so that the formulation is
simplified in that some off-diagonal matrix elements between
|L〉 and |R〉 vanish. In fact we can neglect off-diagonal matrix
elements of the Dresselhaus SOI using this tight-binding
assumption:

〈L|k̂2
z |L〉 = 〈R|k̂2

z |R〉 = −β/γ , (10)

〈L|k̂2
z |R〉 = 〈R|k̂2

z |L〉 = 0, (11)

where β describes the strength of the Dresselhaus SOI in each
of the L and the R QWs. We will also employ the same tight-
binding assumption in Eqs. (50) and (51).

Matrix elements of η(ẑ) with respect to |L〉 and |R〉 are
obtained to be

〈L|η(ẑ)|L〉 = − 〈R|η(ẑ)|R〉 = αI , (12)

〈L|η(ẑ)|R〉 = 〈R|η(ẑ)|L〉 = 0, (13)

from Eqs. (8) and (9) using the unitary transformation:

|e〉 = |L〉 + |R〉√
2

, |o〉 = |L〉 − |R〉√
2

. (14)

With use of the pseudospin operators defined by

1̂τ = |L〉 〈L| + |R〉 〈R| , (15)

τ̂X = |L〉 〈L| − |R〉 〈R| , (16)

τ̂Y = i(|L〉 〈R| − |R〉 〈L|), (17)

τ̂Z = |L〉 〈R| + |R〉 〈L| , (18)

HW (k) ≡ 〈k|HW |k〉, HSO
D (k) ≡ 〈k|HSO

D |k〉, and HSO
I (k) ≡

〈k|HSO
I |k〉 [k = (kx, ky) = k(cos θ, sin θ ) with k = |k|] are

expressed as

HW (k) = Ek − h̄ω

2
τ̂Z , (19)

HSO
D (k) = h̄ωD

2
1̂τ (σx cos θ − σy sin θ ), (20)

HSO
I (k) = h̄ωI

2
τ̂X (σx sin θ − σy cos θ ), (21)

where we have chosen εo + εe as the zero of energy and

Ek = h̄2k2/2m, (22)

h̄ω = εo − εe, (23)

h̄ωD = 2βk, (24)

h̄ωI = 2αI k. (25)

III. DENSITY MATRIX

To obtain the spin relaxation rate, we start with the quan-
tum Liouville equation for the density operator ρ(t ) describ-
ing noninteracting electrons [59],

∂ρ(t )

∂t
= 1

ih̄
[H, ρ], (26)

and separate the Hamiltonian H into the unperturbed Hamil-
tonian H0 and the perturbation V ,

H = H0 + V, H0 = HW + HSO
D + HSO

I , V = Vimp. (27)

By rewriting [V, ρ] with the use of the interaction picture, we
have

∂ρ(t )

∂t
= 1

ih̄
[H0, ρ] + Ĵρ, (28)

with

Ĵρ = e−iH0t/h̄ 1

ih̄
[VI , ρI ]e

iH0t/h̄, (29)

ρI (t ) = ρI (0) + 1

ih̄

∫ t

0
ds[VI (s), ρI (s)], (30)

where AI = eiH0t/h̄Ae−iH0t/h̄. We employ the lowest-order per-
turbation approximation with respect to Vimp by assuming that
the impurity potential is smaller than the Fermi energy. Up
to second order in the perturbation V , which we switch on at
t = 0, we have

Ĵρ = (Ĵρ)1 + (Ĵρ)2, (31)

(Ĵρ)1 = e−iH0t/h̄ 1

ih̄
[VI (t ), ρI (t )]eiH0t/h̄, (32)

(Ĵρ)2 =
(

1

ih̄

)2 ∫ t

0
dse−iH0t/h̄{VI (t ), [VI (s), ρI (t )]}eiH0t/h̄.

(33)

Here we have introduced the average of an operator A with re-
spect to the in-plane impurity configuration, which is defined
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by [59]

A = 1

S

∫
S
· · · 1

S

∫
S

Adρ1 · · · dρNimp
, (34)

where Nimp is the number of impurities in the DQWS with the
area S. In deriving Eqs. (32) and (33) we have used ρI (0) =
ρI (t ) + O(V ) which is obtained from Eq. (30) by using the
independence of ρI (0) on the impurity configuration.

In the following calculation we focus on the DP mecha-
nism [11–13] and neglect HSO

D and HSO
I in eiH0t/h̄ and e−iH0t/h̄

in calculating Ĵρ. We calculate diagonal-in-k matrix elements,
〈k| · · · |k〉, of both sides of Eq. (28) and take the average with

respect to the impurity configuration. By using 〈k|(Ĵρ)1|k〉 =
0 [60] we obtain the following equation for ρ(k) ≡ 〈k|ρ(t )|k〉:

∂ρ(k)

∂t
= 1

ih̄
[〈k|H0|k〉 , ρ(k)] + 〈k|(Ĵρ)2|k〉 , (35)

where the last term, 〈k|(Ĵρ)2|k〉, becomes the collision term
which includes the momentum relaxation time τp defined by

1

τp
=

∑
k′

2π

h̄
|Vk′k|2δ(Ek′ − Ek )(1 − cosφ), (36)

with φ being the angle of k′ relative to that of k.
We consider the strong scattering regime [11–13], in which

ωDτp � 1 and ωIτp � 1. Then we expand ρ(k) with respect
to ωDτp and ωIτp and retain terms up to the first order:

ρ(k) � ρ (0)(k) + ρ (1)(k). (37)

The zeroth-order term ρ (0)(k), which gives nonzero spin po-
larization, is expressed by [11–13]

ρ (0)(k) = F00(k) + F10(k)σs + F01(k)τ̂Z + F11(k)σsτ̂Z , (38)

with

Fst (k) ≡ 1

4

∑
σ=±1

∑
τ=±1

σ sτ t f0

(
Ek − τ

h̄ω

2
− μσ

)
, (39)

and

f0(ε) ≡
[

1 + exp

(
ε

kBT

)]−1

, (40)

where σs = σ · es, with es being the unit vector in the direction
of the spin polarization; σ and τ are eigenvalues of σs and τ̂Z ,
respectively; μσ is the spin-dependent chemical potential; T
is the temperature; and kB is the Boltzmann constant.

By solving Eq. (35) we obtain the first-order term divided
into two terms:

ρ (1)(k) = ρ
(1)
D (k) + ρ

(1)
I (k). (41)

The first term comes from the Dresselhaus SOI and is given
by

ρ
(1)
D (k) = τp

ih̄

[
HSO

D (k), ρ (0)(k)
]
. (42)

The second term originates from the intersubband SOI and is
expressed by

ρ
(1)
I (k) = ρ

(1)
IX (k)τ̂X + ρ

(1)
IY (k)τ̂Y , (43)

with (
ρ

(1)
IX (k)

ρ
(1)
IY (k)

)
= − ωIτp

2
(
1 + ω2τ 2

p

)
(

1 ωτp

−ωτp 1

)

×
(

iF10[σI , σs]

2F01σI + F11{σI , σs}

)
, (44)

where σI = σx sin θ − σy cos θ and {A, B} = AB + BA.

IV. SPIN RELAXATION RATE AND DISCUSSION

The spin relaxation rate is defined by

1

τi j
= −dSi

dt

1

S j
, i, j = x, y, z, (45)

with the use of the spin polarization

Si = trσ,τ

(
σi ⊗ 1τ

∑
k

ρ(k)

)
(46)

and its time derivative, where trσ,τ is the trace operation with
respect to the spin and pseudospin (layer) degrees of freedom.
By substituting ρ (0)(k) in Eq. (38) into the expression of S j

and ∂ρ(k)/∂t in Eq. (35) with ρ (1)(k) in Eq. (41) into that of
dSi/dt , we obtain

2

τxx
= 2

τyy
= 1

τzz
,

1

τi j
= 0 (i �= j), (47)

with

1

τzz
=

[∫
dEkF10(k)

]−1 ∫
dEk

(
ω2

D + ω2
I

1 + ω2τ 2
p

)
τpF10(k).

(48)

The above spin relaxation rate is derived using the two-
dimensional impurity potential, Eq. (6). In the case of the
three-dimensional impurity potential, we obtain a similar
result of the spin relaxation rate with τpτl instead of τ 2

p
in Eq. (48), where τl is the lifetime defined by a formula
without the factor 1 − cosφ in the formula for the momentum
relaxation time τp, if we make the following two assumptions
[60].

(i) The potential range of each impurity is short compared
to the separation between two QWs. More precisely, the
spherically symmetric potential of each impurity v, which
appears in the expression of the impurity potential

Vimp(r̂) =
∑

i

v(r̂ − ri ), (49)

satisfies

〈L|v(r̂ − ri )|R〉 = 0, (50)

〈L|v(r̂ − ri )|L〉〈R|v(r̂ − ri )|R〉 = 0, (51)

for each impurity.
(ii) In addition we neglect H⊥ in eiH0t/h̄ and e−iH0t/h̄ in

calculating Ĵρ.
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FIG. 2. Total effective magnetic field (EMF) consisting of the
Dresselhaus and the intersubband SOIs in (a) the L layer and (b) the R
layer. Each vector represents the EMF at each point in (kx, ky ) space.
The x and y axes are taken along the [100] and [010] directions,
respectively.

The derived spin relaxation rate Eq. (48) is determined
by ω2

Dτp, ω2
I τp, and ωτp at the Fermi level when kBT � εF

and h̄ω � εF (εF : the Fermi energy). The contribution of the
Rashba term relative to that of the Dresselhaus term, ωI/ωD =
αI/β, can be changed in the range of 0 < αI/β < 10 [50,61].
The dimensionless parameter ωτp can also be changed in the
range of 0 < ωτp < 10 since 0 < h̄ω < 10 meV and τp ∼
1 ps.

The spin relaxation rate in our symmetric DQWS exhibits
two distinct features. First, the spin relaxation rate has in-
plane isotropy: τ−1

xx = τ−1
yy and τ−1

xy = τ−1
yx = 0 [Eq. (47)];

and second, the spin relaxation rate due to the intersub-
band SOI is suppressed with increasing the intersubband
energy separation h̄ω in the form of the Lorentzian function
[Eq. (48)].

The inplane anisotropy in a (001)-oriented single QW with
both the linear-in-k Dresselhaus SOI and the Rashba SOI [33]
appears due to the cross term between the two SOIs. In our
symmetric DQWS, the corresponding cross term between the
Dresselhaus SOI and the intersubband SOI vanishes because
of the different symmetry of the two SOIs in pseudospin
space. In fact cross terms appearing in dSi/dt ,[

HSO
D (k), ρ (1)

I (k)
] = AX τ̂X + AY τ̂Y , (52)[

HSO
I (k), ρ (1)

D (k)
] = BX τ̂X + BY τ̂Y , (53)

with AX , AY , BX , and BY operators in spin space, disappear in
the trace operation in pseudospin space.

The isotropy in the spin relaxation can also be understood
from the angular distribution of the total EMF in each of
the L and the R layers. Figure 2 schematically presents the
sum of the EMFs induced by the linear Dresselhaus and the
intersubband SOI in (a) the L layer and (b) the R layer.
Although the EMF in each layer has an anisotropic angular
distribution, the EMF which acts on electrons in the two layers
has an isotropic distribution, thus leading to the isotropic spin
relaxation.

The suppression of the spin relaxation rate in our symmet-
ric DQWS [Eq. (48)] with ω, which represents the angular
frequency of the pseudospin precession, has the same form

as that in a single QW with the cyclotron frequency ωc

in a perpendicular magnetic field [42–44,53], in which the
spin relaxation rate is suppressed by (1 + ω2

cτ
2
p )−1. Since the

cyclotron motion changes the direction of the k-dependent
EMF and that of the spin precession axis, the precession-
induced spin relaxation is suppressed. In a symmetric DQWS
with the antiparallel EMF, the pseudospin precession changes
the direction of the layer-dependent EMF, leading to the
suppression of the DP spin relaxation. It has been shown [60]
that the same suppression factor, (1 + ω2τ 2

p )−1, due to the
pseudospin precession also appears in spin Hall conductivity
in a DQWS.

The suppression factor (1 + ω2τ 2
p )−1 gives a crossover

from the DP-type relaxation (τs ∝ τ−1
p ) at ωτp � 1 to the

EY-type relaxation (τs ∝ τp) at ωτp � 1 by considering the
DP mechanism alone. A similar crossover was already derived
from a two-band model Hamiltonian and a constant imaginary
part of the one-particle self-energy which was introduced
to describe the level broadening due to scatterings [54] as
mentioned in Sec. I. The derived crossover, however, occurs
around �/2� = 1, which corresponds to ωτl = 1 with use of
the lifetime τl defined by

1

τl
=

∑
k′

2π

h̄
|Vk′k|2δ(Ek′ − Ek ), (54)

since the band gap � corresponds to h̄ω and the level
broadening 2� corresponds to h̄τ−1

l , In our calculation we
have exactly solved the kinetic equation with the collision
term and obtained the crossover around ωτp = 1. The dif-
ference between ωτp = 1 and ωτl = 1 is important in our
system since the dominant impurity in modulation-doped
QW structures has a long-range potential leading to τp �
τl (see, for example, observed values of τp and τl in
Ref. [62]).

V. CONCLUSIONS

We have theoretically studied the spin relaxation in the
DP mechanism in a symmetric DQWS with the intersubband
SOI due to the local SIA and the linear-in-k Dresselhaus SOI.
We have found that the spin relaxation rate induced by the
intersubband SOI exhibits a suppression with the pseudospin
precession frequency in the Lorentzian form (1 + ω2τ 2

p )−1,
which is analogous to the suppression with the cyclotron
frequency in a single QW [42–44,53]. The present Lorentzian
suppression leads to a crossover with increasing ωτp from
the DP-type relaxation (τs ∝ τ−1

p ) to the EY-type relaxation
(τs ∝ τp). We have also shown that the spin relaxation rate
in the presence of both the linear Dresselhaus SOI and the
intersubband SOI is isotropic with respect to the in-plane spin
direction in our symmetric DQWS in contrast to a single QW
exhibiting the in-plane anisotropy [33,56].

The interplay in the spin relaxation between the spin and
the pseudospin, which we have found in a DQWS, is also
expected to appear in other electronic systems with the pseu-
dospin degree of freedom. In graphene and bilayer graphene,
which are typical systems with pseudospin, the spin relaxation
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has been extensively studied [63–67] and both the DP-type
and the EY-type relaxation have been observed [63,66,67]. In
understanding the spin dynamics including the spin relaxation
in graphene and transition metal dichalcogenides, the view-
point of the spin-pseudospin interaction will be useful.
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