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 ABSTRACT   

In this study, the approximate analytical solutions for the solidus temperature which strongly depends on the 

steel composition were sought as the part of the solutions of the nonlinear heat- and solutes- transfer 

equations in the mushy zone of the continuously cast steel. Because the conventional theories of the 

solidification of the multicomponent steel were not well grounded due to the highly nonlinear phenomenon 

complicated by the time depending phase change interface. Neither analytic nor approximate solutions 

existed that describe the relation between the size of the mushy zone (the solid-liquid zone) and the 

volumetric energy generation. In addition, owing to the lack of the reliable measurements in the real casting 

process due to the difficulties of measurements, the significant discrepancies exist between the estimates of 

the solidus temperature and the thermo-analytical measurements by the small specimens of the various 

grades steel. This may cause the considerable errors in the accuracy of the numerical heat analysis to 

estimate the shell thickness and the solid fraction at the target point in the mushy zone of the continuously 

cast steel.  The simultaneous solutions of the non-linear heat- and solutes equations were sought step by 

step through the three model, assuming the linear relation between solid fraction and temperature in the 

mushy zone.  

(1) Model Ⅰ: Develop the mathematical treatment to simultaneously solve the heat- and solutes- transfer 

equations, with the simple boundary conditions (Dirichlet conditions), adopting the measured solidification 

constants which represent the boundary positions with respect to time. (2) Model Ⅱ: Incorporate the 

Neumann’s boundary conditions (i.e., equal derivative values at the boundary front and back) which are 

generally used in the numerical analysis for the solid- liquid zone in the model. The solidification of the Fe-C 

binary steel was investigated to make the model as simple as possible. The model predictions were in good 

agreement with the numerical heat analysis and were also consistent with Neumann’s solution at the low 

carbon range. (3) Model Ⅲ: Obtain the solidus temperature of the multicomponent general steel by 

expanding the Model Ⅱ to the multicomponent steel. The predicted solidus temperatures of the various 

grades steel were in reasonable agreement with the measured zero ductility temperature of the high 

manganese steel and the thermo- analytical measurements. It was also shown that the conventional numerical 

heat analysis, such as the equivalent specific heat method, adopting the solidus temperature predicted by the 

model was in good agreement with that of Model Ⅲ. The model can reduce the extensive numerical 

computational load to seek the solidus temperature. 

The models and the predicted solidus temperature were, subsequently, used in the numerical heat analyses to 

estimate the solid fraction at which the electro magnetic stirring was applied in the continuously cast steel 



ii 

 

slabs. The industrial findings with these numerical heat analyses and the analog study with Pb-Sn alloy 

showed that the stirring at the low fraction solid was important to refine crystals and to improve the macro-

segregations, in the continuously cast steel.  

 

The methods to transform the partial differential equations to ordinary equations and the boundary conditions 

adopted in the models were as shown in Table 1.  

 

 

Table 1 The main objective of the model, the method to transform the partial differential equations (P.D.E) to the 

ordinary differential equations and the boundary conditions adopted in models 

 Model Ⅰ Model Ⅱ Model Ⅲ 

Main objective of the model Develop the 

mathematical 

treatment to solve the 

equations 

Incorporate the 

Neumann’s boundary 

conditions, 

Obtain the solidus 

temperature of the 

multicomponent 

general steel 

Steel type Multi-component 

alloy steel 

Fe-C Binary steel Multi-component 

alloy steel 

Analyzed zone — 

a solid-liquid zone 

— 

a sold zone 

a solid-liquid zone 

a liquid zone 

a solid zone 

a solid-liquid zone 

a liquid zone 

Method to transform P.D.E. to ordinary differential 

equations  

Moving coordinate 

method 

Similarity value 

method 

Similarity value 

method 

Boundary conditions Dirichlet conditions 

(Constant boundary values) 

adopted adopted adopted 

Neumann conditions 

(Equal derivative values at the 

boundary front and back) 

not adopted adopted adopted 

Solidification constants used not used not used 
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Chapter 1 

INTRODUCTION 

1.1  Development of the Technology in the Steelmaking Process 

The blast furnace on the landfill in Chiba works, Kawasaki steel (JFE Steel), put into operation in June 1953, 

brought an increase in the momentum of productivity that continued throughout the ensuing decades. Since 

then, Japanese steel industries devoted the effort to modernizing its plants and increasing its production 

capacity to keep its competitive edge, based on the early use of new technology. In the steelmaking shops, LD 

converters (Linz-Donawitz converters with the oxygen blowing through the top lance commercialized in 1952-

1953) started in operations in the place of the open hearth furnaces and the continuous casters were also 

constructed in succession. The expansion continued through 1970’s and the basic technologies of these 

facilities drastically increased the capacity to produce the semi-finished products, slabs or blooms. Fig.1.1 

shows the typical process flow in the integrated steel works. 

In the following period (1975-), the new technologies, such as the bottom blowing through the oxygen hearths 

installed in the bottom of the converter [1], spurred the developments in the refining process. The oxygen 

potential of the molten steel was considerably reduced by both of the strong stirring in converters and 

secondary refining process. In addition, the newly developed process of the hot metal pretreatment (removing 

silicon-phosphorous-sulfur of the hot metal in advance of the refining at the LD converters) increased the 

productivities of the high grades steel [2,3]. The casting methods for the clean steel were also developed. These 

newly developed processes warranted the surface qualities of the ultra-low carbon steel sheets for automobiles 

in the cold mill adopting the continuous annealing process (the cleanliness of the steel is essential to reduce 

the defects such as blisters and sliver defects of the ultra-low carbon steel because the ultra-low carbon sheets 

are highly sensitive to the oxide inclusions).  

The technologies developed in the continuous casting were shown in Fig.1.2 The drastic improvement in 

controlling the casting process, i.e., controlling of the surface temperature based on the thermal analysis of the 

continuous casting, also warranted the surface qualities of slabs for the high grades steel for plate use or pipe 

use. The technologies to prevent the internal cracks and the irregular macro segregations in slabs or blooms 

also warranted the mechanical properties of the high grades steel products.  The electro-magnetic stirrers 

installed in a mould or at the strands of the caster reduced the macro-segregations (i.e., centerline segregation) 

in the central region of slabs or blooms [4-7]. The unique developments were also made by T. Fujimura et al. 

[8] and H. Kojima et al. [9] to continuously forge the solidifying shells of the blooms. This continuous forging 
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process drastically improved the durability of the inner race products for bearing use and the ductile fracture 

of the steel for bar use. However, the further improvements of the segregations in slabs or blooms are necessary 

to meet the more severe requirements for the high grades steel products.  

,  

Fig.1.1 Process flow of the typical steel works. 

 
Fig.1.2 Technologies developed in the continuous casting process. 
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1.2 Segregation and Theories of Solidification  

 

The schematic of the solidification of the general steel in the continuous caster is shown in Fig.1.3. The 

solidification of the molten steel begins in a water-cooled mould, followed by the water spraying in the strands 

of the caster.  A mushy zone forms at the solidification front where both solid and liquid exist. It typically has 

a complicated, irregular morphology as dendrites grow. The latent heat is generated in accordance with the 

growth of the solid dendrite. At the same time, the solutes, generally are rejected from the solid into the liquid 

because of the low solubility of alloy elements in solid comparing to that in liquid. The solutes balance of the 

inflows from solid and the outflows by diffusions yields the solutes enriched liquid at the vicinity of the root 

of the primary dendrite (or secondary arms, Fig.1.3). The solidus temperature at these solute enriched regions 

decreased in accordance with the concentrations of solutes. Thus, hence, the amount of the latent heat 

generation and the solutes concentrations are linked together through the change of the solid fraction in the 

mushy zone. However, many of models focus, in general, only on the heat balance or on the solutes balances 

in the mushy zone because of the complexity of the problems.  

 

 

Fig.1.3 Schematic of the solidification of the continuously cast steel. 

 

 The segregation may appear on the micro scale between dendrite arms or on the larger macro or semi-macro 

scale. Macro and semi-macro segregations in the central region of slabs or blooms are particularly undesirable 

in slabs for plate application because they may give rise to welding cracks, ultrasonic-inspection defects, 

hydrogen-induced cracks. Ohashi et al. [10] reported the precipitated MnS inclusion deteriorated both the 

ductile fracture and brittle fracture of the steel plate. It was also found that manganese and phosphorous in the 

segregated region of the steel plate decreased the nil-ductility transition temperature in notch tensile tests due 
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to the transformation to the multensite-bainite duplex structure. The hydrogen induced cracks are also induced 

by the segregations of manganese and phosphorous [11]. The macro or semi-macro segregations appear at the 

centerline or as spots distributed in the central region in continuously cast slabs.  

To control the process and to reduce these macro segregations, the thermal analyses of the solidification are 

indispensable.  The numerical thermal analyses provide reliable surface temperatures (i.e., those calibrated 

with the measured values). However, these analyses do not always provide the accurate solidification profiles 

because the inner temperatures are not generally calibrated with the actual (measured) values. In particular, the 

solidus position with the associated solidus temperature is hardly checked by measurements. 

The main reason for these problems lies in the difficulty [12] of achieving reliable measurements of the solidus 

temperature of general steel in a real casting process (these measurements are difficult owing to the 

unavailability of a small durable sensor to detect the infinitesimal change of temperature at the high 

temperature range over 1700K).  In addition, the fraction of solid in a mushy zone remains unclarified [13,14]. 

It should be noted that the problems of the solidification with a mushy zone are frequently referred to as the 

Stefan [15] boundary problem which is a nonlinear phenomenon, complicated by a time depending phase 

change interface. 

The morphology of a mushy zone is difficult to predict and no analytic solutions are known to exist that 

describe the relation between the size of a mushy zone and volumetric heat generation [13].  

With respect to the liquidus temperature, while it is not also generally measured during the casting process, the 

problems are not serious because microsegregation at the dendrite tips is so small that super-cooling is limited 

to only a few degrees. Therefore, the liquidus temperature for general steel can be estimated from the phase 

diagram or from measurements, which are in reasonable agreement with each other. However, with regard to 

the solidus temperature of steel, significant discrepancies exist among the estimates based on the phase diagram 

and models accounting for microsegregation. (i.e., 40 K discrepancies [16–18]). Recently, Gryc et al. [19] 

thermo-analytically measured the solidus temperature of the small specimens for various grades steel and 

reported significant discrepancies between the measurements and the values obtained from the reported 

formulae (up to 42 K) or thermodynamic calculations (up to 50 K). These discrepancies could lead to 

considerable errors in estimating the shell thickness with respect to time. These errors may give the fatal errors 

to estimate the solid fraction in the mushy zone at the target position because the magnitude of these errors are 

almost even to that of the solidification range ∆T (from the liquidus temperature to the solidus temperature, 

i.e., 40K for 0.15%C,0.7%Mn,0.22%Si general steel).  

The lack of knowledge about the fraction of solid in the mushy zone has spurred the onset of numerous methods 
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based on heat analysis. They can be classified into three major models (A)–(C): (A) methods [20–22] assuming 

a linear relationship between the solid fraction and the temperature (e.g., equivalent specific heat model); (B) 

methods [23,24] based on the equilibrium lever rule, the Scheil equation, and back diffusion models [25–29]; 

(C) methods [30] recovering the temperature with the latent heat release after solidification. However, these 

methods are not always consistent with the real solidification process. For example, (C) methods assume that 

the primary dendrites should grow after solidification. When the (B) methods such as Scheil equation with a 

large domain are used along the dendrite axial direction, a flat boundary surface should be assumed for the 

dendritic mushy zone. Thus, the fraction of solid used in the thermal analysis should be consistent with general 

solidification. 

Instead of a large domain, for the (B) methods with a small scale of domain, as small as a secondary arm 

spacing, the microsegregation in the dendritic mushy zone can be analytically evaluated assuming a constant 

cooling rate with the uniform temperature in a domain and neglecting the diffusion along the primary dendrite 

axis direction. The lever rule assumes the complete diffusion in both liquid and solid, while Scheil’s equation 

assumes no diffusion of solutes in solid and complete diffusion in liquid, which are considered to be two 

significant limitations for microsegregation predictions (i.e., infinite diffusion and negligible diffusion in solid). 

Because this small domain is assumed to be blockaded by secondary arms as soon as secondary arms develop. 

Brody & Flemings [25] developed a model to consider the back diffusion of solutes in solid with the 

assumption of finite diffusion in solid and complete diffusion in liquid. Clyne & Kurz [26] treated the Brody 

& Flemings model in a mathematical way that allowed the model approach the lever rule and Scheil’s model 

for infinite and negligible diffusion in a solid, respectively. Ohnaka [27] considered a columnar dendrite rather 

than the plate dendrite and derived the model through solving the overall mass balance. Voller et al. [28] also 

proposed a model that considered the coarsening of secondary arms. These models are effectively used to 

investigate the microsegregation of numerous alloys. However, the cooling rate considerably varies during 

solidification and the diffusions of solutes in liquid, which are neglected in these models along the primary 

dendrite axis, are not negligible since the effective partition ratio of carbon is typically close to 0.9 (0.85–1.0) 

for continuously cast steel [31]. Furthermore, these assumptions make it difficult to incorporate the heat-

transfer equation in back diffusion models, because the assumption of a constant cooling rate with the uniform 

temperature in a mushy zone is not always consistent with a general solidification process. In addition, the 

estimates of the solidus temperature by these back diffusion models are highly dependent on the assumed 

cooling rate. 

To resolve the issue, an enlarged domain as large as a primary dendrite arm divided into small volume elements 
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is considered. This enlarged domain involves the continuum liquid, which allows the diffusion of the solutes 

along the primary dendrite axis direction (solidification direction). It should be noted that taking account of 

diffusion in liquid, which is much larger (generally two order magnitude larger) than that in solid, composes 

the limitation at the end of solidification and makes it easier to incorporate the heat transfer along the 

solidification direction in the diffusion model. Considering the large domain wherein both solute and heat are 

transferred along the primary dendrite axis direction (solidification direction), Asai et al. [32], Hills et al. [33], 

and Alexandrov et al. [34] obtained analytical or approximate analytical solutions for the solute- and heat-

transfer simultaneous equations under a steady-state conditions (i.e., constant solidification velocity). However, 

these analytical solutions cannot be directly used for general heat analysis because the solidification velocity 

significantly changes with time. 

Regarding the unsteady state solidification, Takeshita [35] obtained simultaneous solutions for unsteady state 

solidification using an extensive numerical computation model for a NH4Cl aqueous eutectic system (a binary 

system); in advance of the numerical computation, the model analytically eliminated the solid fraction-related 

terms in the equations in the case of negligible solute diffusion in a solid. However, to use this model for multi-

component alloy steel, more complicated computations are required. Huppert et al. [36] and Alexandrov et al. 

[37] proposed models for aqueous chimney-type unsteady state solidifications (a binary system); their models, 

however, focused on particular scenarios, such as if a liquidus point develops, whereas the solidus point barely 

develops. This limits the applicability of their models for the solidification of steel, because the solidus point 

of the general steel typically develops along with an associated liquidus point during solidification. Although, 

thus, many models and numerical analyses were demonstrated, the solidus temperature along with the solid 

fraction in a mushy zone of the general steel still remains unclarified. 
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1.3 Objectives and Scope of the Study 

 

The objective of this study is to analytically solve the nonlinear heat- and solutes- transfer equations in the 

mushy zone of the multi-component alloy steel and to obtain the solidus temperature as the part of the solutions 

for the unsteady state solidification [38-40]. In addition, the method to provide the more reliable numerical 

analysis is also sought in this study by obtaining the consistencies between the analytical solutions and the 

numerical analyses. It is noted that these equations are one of the Stefan problems for the solidification of the 

multicomponent general steel and the analytical solutions were not found to exit. 

The studies were made through the three models. In chapter 2 (Model Ⅰ), the mathematical treatment to 

simultaneously solve the heat-and solutes- transfer equations adopting the measured solidification constants 

was developed and examined. In chapter 3 (Model Ⅱ), the mathematical treatment to solve the equations with 

Neumann’s conditions in addition to the Dirichlet conditions for boundaries was developed. The simple case, 

Fe-C binary steel, was chosen.  In chapter 4 (Model Ⅲ), finally, the limited applicability of the model Ⅱ was 

expanded to the multicomponent alloy steel. The solidus temperature of the general steel was obtained as aimed 

and compared with measurements and with those of other models. In the chapter 5, the numerical heat analyses 

based on these models with adopting the predicted solidus temperature were used to investigate the industrial 

findings on the electro-magnetic stirring to reduce the macro-segregation in the continuously cast slab in 

chapter 5. 

 

1.4 Outline of the Dissertation 

Chapter 1  Introduction  

The background of the problems, objectives and scope of study are presented.   

Chapter 2  Model Ⅰ 

Mathematical Analysis of Solidification Behavior in Multicomponent Alloy Steel [38] 

The mathematical treatment to simultaneously solve the heat- and solutes- transfer equations is 

developed with the simple boundary conditions (Dirichlet conditions), adopting the measured 

solidification constants which represent the boundary positions with respect to time. The results 

were in good agreement with generally accepted values and temperature measurements. However, 

the solutions were not fully consistent with the conventional heat analysis [20-22] owing to 

insufficient boundary conditions.  
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Chapter 3  Model Ⅱ 

Mathematical Analysis of the Solidification Behavior of Plain Steel Based on Solute- and Heat-

Transfer Equations in the Liquid–Solid Zone [39] 

The Neumann’s boundary conditions (i.e., equal derivative values at the boundary front and back) 

which were generally used in the numerical analysis for the solid- liquid zone were incorporated 

into the model. The simple Fe-C binary steel was investigated to make the model as simple as 

possible. The model predictions were in good agreement with the numerical heat analysis and were 

also consistent with Neumann’s solution [41] at the low carbon range. 

Chapter 4  Model Ⅲ 

Mathematical Analysis of the Solidification Behavior of Multi-Component Alloy Steel Based on 

Heat- and Solute-Transfer Equations in the Liquid–Solid Zone [40] 

The solidus temperature of the multicomponent general steel was obtained by expanding the Model 

Ⅱ to the multicomponent steel. The predicted solidus temperatures of the various grades steel were in 

reasonable agreement with the measured zero ductility temperature of the high manganese steel [42] 

and the thermo- analytical measurements [19]. It was also shown that the conventional numerical 

heat analysis, such as the equivalent specific heat method, adopting the solidus temperature predicted 

by the model was in good agreement with that of Model Ⅲ.  

Chapter 5  Effect of Stirring on Crystal Morphologies and on Macro Segregation [6,7] 

The models and the predicted solidus temperature were, subsequently, used in the numerical heat 

analyses to estimate the solid fraction at which the electro-magnetic stirring was applied in the 

continuously cast steel slabs. The industrial findings with these numerical heat analyses and the 

analog study with Pb-Sn alloy showed that the stirring at the low fraction solid was important to 

refine crystals and to improve the macro-segregations, in the continuously cast steel.  

Chapter 6  Conclusion 

Conclusions are presented. 
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Chapter 2 Model Ⅰ 

Mathematical Analysis of Solidification Behavior in Multicomponent Alloy Steel 

 

Abstract 

A mathematical model of dendrite solidification in multi-component alloys has been developed to predict 

microsegregation and to obtain a better understanding of the relation between the solid 

fraction and temperature in the solid/liquid zone. An analytical solution to the solute- and heat-balance equations in 

the model has been obtained by assuming that equilibrium exists at the solid/liquid interface and that the solidus 

and liquidus grow in proportion to the square root of time. 

Effective partition ratios predicted by the model for the continuous casting of steel are in good agreement with 

generally accepted values. Model predictions of temperature distribution in the mushy zone fit well with measured 

temperatures.     However predictions of micro-segregation of Cr and Ni in a unidirectionally solidified stainless 

steel were less satisfactory, presumably because the model neglects segregation between adjacent secondary 

dendrite arms. The model also has provided a theoretical basis for the relationship between temperature and solid 

fraction in the mushy zone. It is possible to assume a linear relationship between temperature and solid fraction 

in cases, general steel, where one of the solutes has a dominant effect on depression of the liquidus temperature with 

respect to its concentration. This assumption simplifies the computation of solidification behavior without 

introducing severe errors. 

[Note] Model Ⅰ adopts the Dirichlet conditions with the measured solidification constants as the boundary conditions. 

2.1 Introduction 

 

Prediction of solidification phenomena in the mushy zone of a casting process is important for the 

determination of solute concentration distributions and of the solidification profile. But the problem, from a 

theoretical standpoint, is difficult because solute transport and heat flow within the mushy zone are coupled: 

variation of the solid fraction within the mushy zone influences both inter-dendritic solute segregation and 

latent-heat evolution. Thus mathematical equations describing heat and mass transport must be solved 

simultaneously. 

Recently mathematical models have been formulated in which both heat conduction and diffusion in the mushy 

zone have been taken into account. Asai et al. [1] have considered a binary alloy system in which heat and 
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mass transfer proceed under, quasi-steady state conditions. A constant solidification rate was assumed and an 

analytical solution to the transport equations was achieved. The assumption of constant solidification rate poses 

problems, however, because in general, with the exception of the initial and final stages of solidification, the 

position of the solidus and liquidus positions vary linearly with the square root of time. In another study, 

Takeshita [2] has developed a numerical solution for a similar model of a binary eutectic system. Tacke et al. 

[3] also have employed a numerical solution to solve the simultaneous transport equations applied to a 

multicomponent alloy. 

In the present study, an analytical solution is sought to the heat- and mass- transfer equations applied to the 

solidus and liquidus positions depend on the square root of time. The validity of the solution also is checked 

against reported measurements. 

 

2.2 Mathematical Model 

2.2.1 Solidification Problems 

The solidification problem being mathematically modelled is shown schematically in Fig.2.1. Heat is 

extracted unidirectionally and a solid shell grows from the cooled surface. In the mushy zone heat flows 

by conduction and solutes are transferred solely by diffusion. From the mathematical point of view, the 

equations describing these process in the mushy zone should be solved simultaneously for the liquid and 

solid phases in the mushy zone subjected to boundary conditions at moving solidus and liquidus boundaries, 

and initial conditions. The problem can be simplified, however, if the boundary values (temperature and 

solute concentration) at the solidus and liquidus positions are assumed to be constant. The same assumption 

has been made previously by Asai et al. [1] and Takeshita [2]. 

 

 

 

Fig. 2.1 Schematic diagram of the solidification problem under study. 
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2.2.2  Assumptions 

 

The principal assumptions made in the model formulation are as follows: 

(1) The density and specific heat of the liquid are the same as in the solid. 

(2) Liquid and solid are in equilibrium at the solid-liquid interface. 

(3) Heat is extracted only by heat conduction along the x axis. 

(4) Solutes are transported only by diffusion subject to moderate fluid flow in the mushy zone. 

(5) The dependence of the equilibrium partition ratios and the diffusion coefficients on solute concentration 

is negligible. 

(6) The effect of the dendrite tip curvature on liquidus temperature is negligible. 

(7) Undercooling within the mushy zone is negligible. 

(8) Diffusion of solutes in the liquid is sufficiently rapid to yield a homogeneous composition in the direction 

normal to that of heat extraction over distances of the order of the dendrite arm spacing. 

(9) The solidus and liquidus move according to the square root of time. 

(10) The heat and solute transport are in steady state relative to a normalized coordinate system which moves 

with the solidus point. 

 

2.2.3 Mathematical Formulation 

 

The volume element considered is shown in Fig. 2.l. The variation of the solute concentration within the 

volume element of component i with respect to time is given by 

 ( )

( )
        

i i s si

i s si
si i s

C f C f C

t t

fC f C
C f

t t t


  +
=

 

  
= + +

  

 (2.1) 

where i  represents the extent of diffusion of the solute i in the solid(i.e., i  00  when diffusion of 

component i in the solid is negligible and i 0 1 when diffusion in the solid is rapid enough to result in an 

homogeneous composition over distances of the order of the dendrite arm spacing). 

siC and sf  are related to iC  and f  by the following equations. 

ksi i iC C=  (2.2) 

1sf f= −  (2.3) 

The solute flux of component i due to diffusion in a multicomponent alloy within the volume element is 
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 D
j sj

i ij j s ij

j j

C C
J f E f

x x


 
= − −

 
   (2.4) 

Then a mass balance on component i, based on Eqs. (2.l) to (2.4) yields the following 

2

2

(1 k ) (1 k ) k

                         ( k ) ( ) k D

i i
i i i i i i

j j

ij j j ij j j ij

j j

C Cf
f C

t t t

C C
E D f

x x x

 

 

 
− + − +

  

 
= − +

  
 

 (2.5) 

A heat balance gives 

2

2 2 2 2 2
Cp K

T f T
L

t t x
 

  
+ =

  
 (2.6) 

It is reasonable to assume that the inter-dendritic liquid is in chemical equilibrium with the solid at the 

solid/liquid interface. Hence, its composition is coupled with temperature by the liquidus Surface of the phase 

diagram which can be represented by 

M mi i

i

T T C= +  
(2.7) 

Substituting Eq.(2.7) into Eq.(2.6) yields 

 

2

2

i i
p i i

i i

C C f
C m K m L

t tx
 

  
= −

 
   (2.8) 

The boundary conditions for Eq.(2.8) can be characterized as follows: 

  :      ,   1l i ix x C C f= = =  (2.9) 

*  :      ,   0s i ix x C C f= = =  (2.10) 

Next it is assumed that 

i i i j j jf C s C s = + = +  (2.11) 

which is in fact one of the solutions to the simultaneous equations. 

Then, the concentration of i is related to that of j in the liquid by 

jii
j i

j i

s s
C C



 

−
= +  (2.12) 

Moreover, as has been stated earlier, the solidus point and the liquidus point are assumed to be related to time 

by the following equations 

l lx t d= −  (2.13) 

s sx t d= −  (2.14) 

The normalized coordinate X moving with the solidus point is related to the original coordinate x fixed in space 

by 

'

( )

s s

l s l s

x x x t
X

x x t



 

− −
= =

− −
 (2.15) 
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where x' is 

'x x d= +  (2.16) 

Equations (2.5) and (2.8) have been transformed according to Eq.(2.15) and Eq.(2.l6) and unsteady terms have 

been neglected (Applying the Neumann-type solution gives the same results). Equations (2.11) and (2.12) have 

been substituted into the resulting equations which then have been rearranged to give 

2

2

d d
(A+B )( )

dd

i i
i i

C C
a X b

Xx
= +  (2.17) 

2

2

d dd
( ) W ( ) Q ( )

d d d

d dd
                      M P 0

d d d

i i
i i i

i i
i i

C Cf
X b f X b C X b

X X X

C C
f

X X X

+ + + + +

 
+ + = 

 

 (2.18) 

where 

2
( ) / 2l sa  = −  (2.19) 

/ ( )l l sb   = −  (2.20) 

W (1 ) / (1 )i i i ik k= − −  (2.21) 

Q / (1 )i i i i ik k = −  (2.22) 

P ( / ) / (1 )i j j ij i j i i

j

k D a k   = −  (2.23) 

M ( ) / / (1 )i ij j j ij i j i i

j

E k D a k   = − −  (2.24) 

A = /pC K−  (2.25) 

B = 
/j i j

j

L

K m



 
−


 
(2.26) 

The boundary conditions are rewritten by substituting Eq.(2.11) to yield the following. 

1  : 1 i i iX C s= = +  (2.27) 

*0  : 0 i i iX C s= = +  (2.28) 

Hence, *

iC  is  

* 1/i i iC C = −  (2.29) 

Integrating Eq.(2.17) twice from X 0 0 to X 0 1 and applying the approximation 

 
2exp(- )

erf( ) 1 i
i

i





 −  (2.30) 

where 
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(A B )
( )

2

i i
i X b




+
= − +  (2.31) 

gives  

2 2(A+B ) (A+B )
exp ( ) exp

2 2

(A+B )( ) (A+B )

i i i i
i i

i i

i i i i

a a
X b b

C C
a X b a b

 
 

 



   
 +    

   = + −
+

 
(2.32) 

The error for this approximation is less than 0.05% when i >2. 

Substituting Eq.(2.11) and Eq.(2.17) into Eq.(2.18) yields 

2(A+B )
exp ( )

2

( )

i i
i

i
i

i i

a
X b

G
C

F X b F




 
 + 

 = −
+

 
(2.33) 

where iF  and iG  are 

(1 ) (A+B )i i i i
i

i

W M a
F

M

+ +
= −  (2.34) 

( ) (A+B )i i i i i i i
i

i i

s Q s M P a
G

M





+ + +
= −  (2.35) 

Comparing Eq.(2.32) and Eq.(2.33) and substituting Eq.(2.21) to Eq.(2.24), one obtains 

(1 )(1 ) A

B
2B ( )

i i i
i

i i
i ij j j ij

j j

W k

E k D









+ −
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−
 

(2.36) 
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2 1

1
(1 )exp( ) 2 ( )
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i ii i i
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W C
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





 






  
+  

  =  + − 
 − + −    




 (2.37) 

Consequently, iC and f are given as follows; 

exp ( 2 )
2

1
( )

i

i i i

F
b X X b

C C
X b




  
+  

  = − +
+ 

  

 (2.38) 
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2 1
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i
i j j ij

j ji i
i i i

ii i i i
ij j j ij
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W k D
k

W C
W k

E k D







 






  
−  

  = + − 
 + − −    




 (2.39) 

*
1/i i iC C = −  (2.40) 

( ) 1i i if C C= − +  (2.41) 
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(A+B )i i iF a =  (2.42) 

i i j j  =  (2.43) 

For the case where diffusion in the solid is rapid, the effective partition ratio for component i, defined as the 

ratio of the average solute concentration in the solid to the solute concentration in the bulk liquid, is 

ef *1  :    /

                      = (1 1/ )

i i i i i

i i i

k k C C

k C





= =

−
 (2.44) 

For the other case, 

1
ef

0
0  :    /  d

                      = (1 1/ 2 )

i i si i s

i i i

k C C f

k C





= =

−

  (2.45) 

 

2.3 Model Predictions and Discussion 

2.3.1  Physical Properties 

 

The physical properties used in the calculations are listed in Table 2.1. 

Selection of the values for thermal conductivity in the mushy zone warrants discussion because measurements 

have not been made under conditions corresponding to in this solid/liquid region, particularly with respect to 

fluid flow. Thermally driven flow adjacent to the solidification front can give rise to estimated velocities of 0.1 

to l cm/s [5,6] while solidification shrinkage may generate a fluid velocity of about 0.01 cm/s [7-9].  

Consequently, the thermal conductivity in the mushy zone could be larger than that measured in a stagnant 

liquid. However, the difference is not expected to be great because heat flow by conduction is large compared 

to that by convection at the low fluid velocities estimated in the inter-dendritic region. Moreover, a significant 

fraction of the mushy zone consists of fixed solid dendrites unaffected by fluid flow. Thus a thermal 

conductivity measured under stagnant conditions has been used for the mushy zone, Table 2.1. 

The same argument does not hold when considering inter-diffusion coefficients in the inter-dendritic liquid 

because the rate of solute transport by diffusion is low relative to that by convection. Hence inter-diffusion 

coefficients measured in a stagnant liquid cannot be adopted for the inter-dendritic region. However, if the 

thermal conductivity and solidification constants, 
l  and s , are known, the inter-diffusion coefficients, as 

well as other constants involved in the model, can be determined. This is the approach taken in this study; 

hence the estimated inter-diffusion coefficients include the influence of fluid flow and should be larger than 

values obtained under stagnant conditions. The problem of characterizing the solidification constants remains 

but is taken up in a later section. 
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Questions also arise concerning the determination of liquidus and solidus temperatures in the presence of 

microsegregation. With respect to liquidus temperature, the problem is not serious because microsegregation 

at the dendrite tips is so small that super-cooling is only a few degrees [10]. Therefore, it is reasonable to 

estimate the liquidus temperature from the phase diagram [11,12] or from measurements [13] which are in 

reasonable agreement. Such is not the case with the solidus temperature. Discrepancies exist between estimates 

of solidus temperature based on the phase diagram and models accounting for microsegregation. Consequently, 

the solidus temperature has been taken from measurements employing the "shooting bullet" technique [15]. It 

may be noted that any other temperature could be used in place of the solidus temperature provided that its 

location is known. 

 

Table 2.1 Nomenclature and physical properties used in the present model. 

Property Value 

L Heat of fusion 276 kJ/kg [16] 

ρ Density 7.5 × 103 kg/m [17] 

Cp Specific heat 0.77 kJ/kgK [18] 

K Thermal conductivity 31.8 W/mK [18] 

kC Partition ratio of C in δ-Fe 0.235 [19,20] 

 Partition ratio of C in γ-Fe 0.36 [21] 

kMn Partition ratio of Mn in δ-Fe 0.73 [22] 

kSi Partition ratio of Si in δ-Fe 0.77 [23] 

kCr Partition ratio of Cr in γ-Fe 0.86 [21,24] 

kNi Partition ratio of Ni in γ-Fe 0.89 [21,24] 

 T  

General steel 
M

78* (% ) 4.9 * (%Mn) 7.6 * (%Si)T T C= − − −  [11]   

Stainless steel 
M

83.9 * (%C) 5.1* (%Ni) 1.5* (%Cr)T T= − − −  [25] 

αC Parameter 1 

αMn,αSi, 

αCr,αNi 
Parameter 0 

 

2.3.2 Comparison of Model Predictions with Reported Measurements 

 

The effective partition ratios and apparent inter-diffusion coefficients first have been predicted by the model 

for the continuous casting of steel. The dependence of the positions of the liquidus and solidus temperatures 
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on time (t00 at the meniscus) is shown in Fig. 2.2. As mentioned earlier, the shooting bullet technique was 

employed to obtain this data [15]. The two solid lines in Fig. 2.2 have been fit to the data by Asai et al. [15].  

It is clear that the liquidus and solidus positions depend on the square root of time; the solidification constants, 

s and 
l  were determined from Fig.2.2 for the steel which is effectively an Fe-C-Mn-Si quaternary alloy. 

The apparent inter-diffusion coefficients (see Appendix) and effective partition ratios have been predicted with 

the model using this data and the results are presented in Tables 2.2 and 2.3 and Fig. 2.3. It is difficult to make 

a direct comparison of the estimated partition ratios to measured results because they have not been determined 

for this steel. Generally, however, 
ef

Ck , 
ef

Sik  and 
ef

Mnk  are in the range of 0.9 to 1.1 in continuously cast steel 

[26] except in the chill and center regions. Hence the estimates of effective partition ratios in Table 2.2 appear 

sound. It should be noted that the approximation employed in formulating the model, given by Eq.(2.30), is 

reasonable since the minimum value of   (02.9) is sufficiently large. 

The estimated carbon diffusivity, parameter MC, 5.58 ×10−7 m2/s, was in good agreement with the carbon 

inter-diffusion coefficient estimated by Asai et al. [19] (4.7 × 10−7 m2/s) for a Fe-0.15%C-0.70%Mn-0.22% 

Si continuously cast steel. Although these values are somewhat larger than that measured by Grace et al. [27] 

(2–4 × 10−7 m2/s) under stagnant conditions, these are reasonable as discussed earlier. 

 

Table 2.2 Estimations of model parameters based on the shot bullet measurements [15] of the liquidus and solidus 

positions in the continuously cast steel (Steel composition: 0.15%C, 0.70%Mn, 0.22%Si, 0.017%P, 0.019%S :

2.91 3.397 = )  

 1
(% )

−
 

ef
k  

Estimated inter-diffusion coefficients in the 

inter-dendritic liquid 
7

2
( 10 m / s)

−

  

C -2.33 0.91 
CC CMn CSi

1.12 0.29     3.98E E E+ + =  

Mn -2.07 0.98 
MnMn MnC MnSi

0.89 0.26 3.30E E E+ + =  

Si -8.12 0.99 
SiSi SiC CMn

3.49 3.92     3.20E E E+ + =  
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Fig. 2.2 Square-root time dependence of position liquidus and solidus temperatures in a continuously cast slab as measured 

by the shooting bullet technique[15]. 

 

Fig. 2.3 Distribution of solute concentration in the liquid and of fraction liquid in the mushy zone. 

 

Next the model was evaluated using measurements by Mori et al. [28] of temperature in the mushy zone of a 

240-mm square bloom; again the shooting bullet technique had been applied in the experiments. The measured 

temperatures at different locations relative to the liquidus position are shown in Fig. 2.4. In this case the 

solidification constant, 
s  was not measured but l  was reported to be 0.42 cm 1/2

s
− . This value was adapted 

and the unknown parameters including 
s   were adjusted to fit model predictions of the temperature 
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distribution in the mushy zone to the measurements within   2CC. The resulting estimates of effective 

partition ratios and apparent inter-diffusion coefficients are given in Table 2.3 and seen to be in relative 

agreement with the values derived from the other case, Table 2.2. Also, as before, the minimum value of a (

0 2.45) is large enough to justify the approximation given by Eq.(30). In Fig. 2.4 the fitted temperature 

distribution in the mushy zone is observed to closely match the measurements of Mori et al. [28]. 

 

 

Table 2.3 Estimations of model parameters based on the shot bullet measurements [28] of the continuously cast steel 

(Steel composition: 0.2%C, 1.33%Mn, 0.36%Si, 0.029%P, 0.038%S : 2.45 3.10 = )  

 1
(% )

−
 

ef
k  

Estimated inter-diffusion coefficients in the inter-

dendritic liquid 
7

2( 10 m / s)
−

  

C -1.65 0.95 
CC CMn CSi

1.56 0.34     5.58E E E+ + =  

Mn -1.06 0.99 
MnMn MnC MnSi

0.64 0.22 4.63E E E+ + =  

Si -4.82 0.99 
SiSi SiC CMn

2.92 4.56     4.48E E E+ + =  

 

Fig. 2.4 Temperature distribution in the mushy zone of a continuously cast 240-mm square bloom. 

 

Finally, the model has been evaluated for the case of stainless steel that contains a considerable concentration 

of alloy components. Sugiyama et al. [29] and Umeda et al. [30] have investigated micro-segregation in 

unidirectionally solidified 25 Cr - 20 Ni austenitic stainless steel. In order to obtain 
s   and 

l  , their 

1700

1720

1740

1760

1780

1800

0 5 10 15 20 25 30

T
em

p
er

at
ur

e 
(K

)

Distance from the liquidus point (mm)

Observed
Calculated

Calculated
solidus Ponit



 

23 

 

 

 

temperature measurements at different distances from the chill face have been rearranged as shown in Fig. 2.5. 

The liquidus temperature of this steel has been estimated to be 1666K (1393CC) and the solidus, temperature 

is expected to be between 1603K(1330CC) [29] and 1658K(1385CC) [31]. Since the estimate of the solidus 

temperature is not reliable, a value of 
s cannot be obtained directly from Fig. 2.5. However, the unknown 

constants, 
C , 

Ni and 
Cr can be fixed by using the maximum observed concentrations of Ni and Cr rather 

than by specifying 
s .  In this study, 

max

NiC 026.8% and 
max

CrC 019.8% have been adopted and all unknown 

constants have been fitted. The minimum value of   is 2.92. The solidus temperature, with respect to the 

maximum concentrations 
max

NiC and max

CrC adopted, was estimated to be 1635K(1362CC) ( A different solidus 

temperature is obtained depending on the values chosen for max

NiC  and 
max

CrC  ,e.g. 1629K(1356CC) for 
max

NiC

027.8% and
max

CrC 020.4%, but the difference is not large). This is within the range where isotherm position is 

proportional to the square root of time, Fig. 2.5. 

Figure 6 shows the measured [29] and estimated micro-segregation of Ni and Cr in the stainless steel. It should 

be noted that Sugiyama et a1. [29] defined the fraction of solid as the area ratio of each iso-concentration 

contour in the transverse section of the primary dendrites; this corresponds to the definition of sf  adopted in 

the present model. Micro-segregation of Cr was measured by Sugiyama et al. [29] in two sections: one on the 

axis of the secondary dendrite arm and the other intermediate between two secondary dendrite arms. In both 

sections the Cr concentration - fraction solid plots exhibit more pronounced curvature than the model-

prediction. With respect to Ni micro-segregation the difference between the measurements and model 

predictions is even greater. This difference is likely due, at least in part, to micro-segregation between adjacent 

secondary dendrite arms which is not considered in the present model. Unfortunately, the location. of the 

measured section relative to secondary dendrite arms has not been reported for the Ni micro-segregation. For 

both Cr and Ni, the model predictions of minimum and maximum concentrations at fs 0 0 and 1 respectively 

are in good agreement with measurements. 
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Fig. 2.5 Variation of isotherm locations with the square root of time during the unidirectional solidification of 25%Cr-

20%Ni stainless steel (based on temperature measurements of Sugiyama et al. [29]). 

 

Fig. 2.6 Measured [29] and calculated Cr and Ni compositions as a function of fraction solid in stainless 

steel(0.08%C,25.6%Cr,19.1%Ni). (A: Section between neighboring secondary dendrite arms. B: Section close to the axis 

of the secondary dendrite arm.)  
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2.3.3  Relationship between Temperature and Fraction Liquid in the Mushy 

Zone 

 

The linear relationship between solute concentration and the fraction liquid, denoted by Eq.(2.41), deserves 

further comment particularly with respect to steel in which the predominant alloying component is carbon. 

Considering that cm  >> Mnm , Sim , Eq.(2.7) can be simplified as follows 

M C CT T m C+  (2.46) 

Then substituting Eqs.(2.40) and (2.46) into Eq.(2.4l) yields 

* T T
f

T T


−

−
 (2.47) 

that is, the fraction liquid increases linearly with temperature between the liquidus and solidus temperatures. 

In earlier studies [16,31], Eq.(2.47) has been adopted for solidification calculations without a firm theoretical 

basis. The present model provides the fundamental basis for this conventional assumption. 

 

 

2.4 Conclusion of this Chapter 

 

A mathematical model of dendrite solidification in which the liquidus and solidus points move in proportion 

to the square root of time has been formulated and an analytical solution has been sought. The applicability of 

the model has been examined by comparing model predictions to measurements reported from several 

solidification studies. For the continuous casting of steel, reasonable agreement between predictions and 

measurements was obtained for the effective partition ratios of C, Mn and Si. Also the estimated temperature 

in the mushy zone could be fit closely to reported values. For a unidirectionally solidified austenitic stainless 

steel, model predictions of Cr and Ni concentration as a function of fraction solid were less satisfactory, 

presumable because the micro-segregation between the neighboring secondary dendrite arms was neglected in 

the model. 

Finally, the model provides a theoretical basis for the conventional assumption of the linear relationship 

between temperature and fraction liquid in the mushy zone. 
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NOMENCLATURE 

 

iC   : Average concentration of component i in volume element. 

iC   : Concentration of component i in inter-dendritic liquid. 

siC  : Concentration of component i in solid. 

iC  : Concentration of component i at the liquidus point. 

iC


 : Concentration of component i at the solidus point. 

f   : Fraction of liquid. 

sf   : Fraction of solid. 

iJ   : Diffusion flux of component i in volume element. 

ijE  : Interdiffusion coefficient in inter-dendritic liquid. 

ijD  : Interdiffusion coefficient in solid. 

i   : parameter describing the extent of diffusion of component i in solid. 

ik   : partition ratio of component i. 

ef

ik  : effective partition ratio of component i. 

K   : Thermal conductivity. 

   : Density. 

pC  : Specific heat. 

L   : Heat of fusion. 

im  : Slope of liquidus temperature with respect to the concentration of component i. 

x   : Distance 

X  : Normalized distance from the solidus point. 

i  : Arbitrary constant. 

s  : Solidification constant for solidus point. 

l  : Solidification constant for liquidus point. 

i  : Arbitrary constant defined in Eq.(2.36). 

i  : Parameter corresponding to the distance from the solidus point. 

d  : Arbitrary constant. 

t   : Time 

MT : Melting temperature of pure metal. 

T : Liquidus temperature. 

T


: Solidus temperature. 
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Appendix 

Estimation of the unknown parameters 

When 
C C1,  X C C= =  and from Eqs.(2.38) and (2.4), one obtains the following: 

C

C C

exp (1 2 )
2

1 1
(1 )

F
b b

b
 

  
+  

  = −
+ 

 
 

 (2.A1) 

Where CF is given by Eq.(25), (26) and (27) as follows: 

p

C
C SiMn

C Mn Si

( )

a C a L
F

m mmK
K

 

  

= − −

+ +

 
(2.A2) 

Eq.(2.39) can be simplified by neglecting ijD ,which is much smaller than ijE as follows: 

C C
C C C

C C C C C

2 1
( )

(1 ) (1 )

k
W C

W k




  

 
= − + 

+ − 
 (2.A3) 

Mn Mn
Mn Mn Mn

Mn Mn Mn Mn Mn

2 1
( )

(1 ) (1 )

k
W C

W k




  

 
= − + 

+ − 
 (2.A4) 

Si Si
Si Si Si

Si Si Si Si Si

2 1
( )

(1 ) (1 )

k
W C

W k




  

 
= − + 

+ − 
 (2.A5) 

where C Mn Si,  W W and W are given by Eq.(2.22) as follows: 

C
C

C C

1

1

k
W

k

−
=

−
 (2.A6) 

Mn
Mn

Mn Mn

1

1

k
W

k

−
=

−
 (2.A7) 

Si
Si

Si Si

1

1

k
W

k

−
=

−
 (2.A8) 

Substituting Eq.(2.A3) to (2.A5) into Eq.(2.43) yields
Mn and 

Si with 
C ,considering 

C Mn Si1,  0  = = = . 

Thus, then Eq.(2.A1) is solved with respect to C   by combining Eq.(2.A2) and (2.A3). Substituting this 

solution into Eq.(2.36) yields 
ijE . 
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Chapter 3 Model Ⅱ 

Mathematical Analysis of the Solidification Behavior of Plain Steel Based on 

Solute- and Heat-Transfer Equations in the Liquid–Solid Zone 

 

Abstract 

An analytical approximate solution to nonlinear solute- and heat-transfer equations in the unsteady-state 

mushy zone of Fe–C plain steel has been obtained, assuming a linear relationship between the solid fraction 

and the temperature of the mushy zone. The heat transfer equations for both the solid and liquid zone along 

with the boundary conditions have been linked with the equations to solve the whole equations. The model 

predictions (e.g., the solidification constants and the effective partition ratio) agree with the generally 

accepted values and with a separately performed numerical analysis. The solidus temperature predicted by 

the model is in the intermediate range of the reported formulas. The model and Neumann’s solution are 

consistent in the low carbon range. 

A conventional numerical heat analysis (i.e., an equivalent specific heat method using the solidus 

temperature predicted by the model) is consistent with the model predictions for Fe–C plain steels. The 

model presented herein simplifies the computations to solve the solute- and heat-transfer simultaneous 

equations while searching for a solidus temperature as a part of the solution. Thus, this model can reduce the 

complexity of analyses considering the heat- and solute-transfer phenomena in the mushy zone. 

[Note] Model Ⅱ adopts the Dirichlet conditions and Neumann conditions as the boundary conditions. 

 

3.1  Introduction 

 

Numerical methods are effectively used to simulate heat transfer phenomena during solidification processes. 

While these methods provide reliable surface temperatures (i.e., those calibrated with the measured values), 

inner temperatures, especially at the solidus point, are not generally confirmed with the actual (measured) 

values. The main reason for these problems lies in the difficulty [1] of achieving reliable results while 

measuring the solidus position during the casting process with an associated solidus temperature for general 

carbon steels. In addition, the fraction of solid in a solid–liquid coexisting zone (i.e., mushy zone) remains 

partly unknown. 
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With respect to the liquidus temperature, while it is not also generally measured during the casting process, 

the problems are not serious because micro-segregation at the dendrite tips is so small that super-cooling is 

limited only a few degrees. Therefore, the liquidus temperature for Fe–C plain steel can be estimated from 

the phase diagram or from measurements which are in reasonable agreement with each other. However, with 

regard to the solidus temperature of steel, discrepancies exist between estimates of solidus temperature based 

on the phase diagram and models accounting for microsegregation. (i.e. 40 K discrepancies [2-5]). Recently, 

Gryc et al. [6] thermoanalytically measured the solidus temperature for various steel grades and reported 

significant discrepancies between the measurements and the values obtained from reported formulas (up to 

42 K) or thermodynamic calculations (up to 50 K). These discrepancies could lead to considerable errors 

while estimating the position at which the shell develops with a target thickness. 

The lack of knowledge about the fraction of solid in the mushy zone has spurred the onset of numerous 

methods based on heat analysis: (A) methods [7-9] assuming a linear relationship between the solid fraction 

and the temperature (e.g., equivalent specific heat model); (B) methods [10,11] assuming the equilibrium lever 

rule, the Scheil equation, and back diffusion models such as the Brody–Flemings model [12] or the Clyne–

Kurz [13] model; (C) methods [14] recovering the temperature with the latent heat release after solidification. 

However, these methods are not always consistent with the real solidification process. For example, (C) 

methods assume that the primary dendrites should grow after solidification. When the (B) methods are used 

along the dendrite axial direction, a flat boundary surface should be assumed for the dendritic mushy zone. 

When the (B) models are applied along to the normal to the dendrite axis direction (radial direction), diffusion 

along the dendrite axis direction should be neglected. However, diffusion along the primary dendrite axis is 

not negligible since the effective partition ratio of carbon is typically close to 0.9 (0.85–1.0) for continuously 

cast steels [15]. Thus, the fraction of solid used in the thermal analysis should be consistent with general 

findings (e.g., solute diffusions along the primary dendrites axis) such that these heat analysis results are in 

line with general findings. 

At the early stage of the solidification process (e.g., the chill zone), the issues mentioned above are not 

relevant because the mushy zone is not fully developed and because the solidus and liquidus surfaces are 

close together forming a substantially planar boundary. 

At the middle stage of the solidification process, the mushy zone is fully developed, and the solidification 

process in this region should be taken into account. Asai et al. [16], Hills et al. [17], and Alexandrov et al. [18] 

obtained analytical or approximate analytical solutions assuming steady-state conditions (i.e., constant 

solidification velocity). However, these analytical solutions cannot be directly used for general solidification 
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processes because the solidification velocity significantly changes with time. In addition, general thermal 

analysis assuming unsteady state solidification does not provide the data which are consistent with those 

obtained from the steady-state analyses.  

In the case of unsteady state solidification at the middle stage, numerical analyzes are generally performed 

because of the difficulties to obtain the exact simultaneous solutions for the non-linear heat- and solute-transfer 

equations. Takeshita [19] obtained the simultaneous solutions for the NH4Cl aqueous eutectic system after 

analytically eliminating the solid fraction-related terms in the equations. Although extensive numerical 

computation was required to obtain the unknown solid fraction at the eutectic point where the solidus 

temperature and the solute concentration are given by the phase diagram, the solution was obtained as 

simultaneous solutions of the nonlinear heat- and solute-transfer equations. 

Regarding the analytical solutions for unsteady state solidification, Huppert et al. [20] and Alexandrov 

[21] proposed models for aqueous chimney-type solidifications. However, these models focusing on a special 

cases, such as a liquidus position develops exclusively while the solidus point hardly develops, cannot be 

applied for the solidification of general steels, because it is well known that the solidus point typically develops 

with the associated liquidus point during the solidification of general steels.  

The approximate analytical solutions for a multi-component alloy system have been demonstrated by 

Fujimura et al. [22] solving the nonlinear heat- and solute-transfer equations with a moving coordinate system. 

The predicted effective partition ratios for a typical steel and shell thickness were in good agreement with the 

reported measurements. However, only the Dirichlet conditions (e.g., constant temperature and solute 

concentrations at the solidus point) at the boundaries have been assigned without adopting the boundary 

conditions generally used in heat analysis (i.e., Neumann-type boundary conditions). Consequently, this 

solution needs the measured solidification constants for the solidus and liquidus positions, and the accuracy of 

the model predictions strongly depends on the dispersion of these measurements. In addition, the results of the 

analysis cannot be directly linked with the thermal analysis results because of the insufficient boundary 

conditions.  

To resolve these issues and obtain more reliable thermal analysis data, we expanded the analyzed regions 

to the entire system as compared to the previous model that considered only the mushy zone. The unknown 

solidification constants should be obtained as part of the solutions upon assigning the additional boundary 

conditions. A plain Fe–C binary system is subjected to analysis since carbon is the dominant solute influencing 

the phase diagram. Additionally, the simplifications that help making a model as simple as possible have been 

adopted. 
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3.2  Mathematical Model 

3.2.1 Solidification Problems 

 

The solidification problems mathematically modeled and the volume element studied are schematically 

shown in Fig. 3.1. Heat is unidirectionally extracted and a solid shell is considered to grow from the surface. 

In the mushy zone, heat and solute are considered to transfer by conduction and diffusion, respectively. The 

main assumptions made in the model formulation, which are in agreement with the previous model22) for 

multicomponent alloy systems, are as follows: 

(1) Heat is exclusively extracted by heat conduction along the primary dendrite axis (i.e., x axis) direction. 

(2) The density and specific heat of the liquid are the same as those of the solid in a mushy zone. 

(3) The solute is exclusively transported by diffusion via moderate fluid flow in the mushy zone. 

(4) The dependency of the equilibrium partition ratio and the solute interdiffusion coefficient on the solute 

concentration is negligible. 

(5) The effect of the dendrite tip curvature on the liquidus temperature is negligible. 

(6) Undercooling within the mushy zone is negligible. 

(7) The diffusion of the solute, carbon, in the liquid within the mushy zone is sufficiently rapid to achieve a 

homogeneous composition in the direction normal to that of the heat extraction (i.e., primary dendrite 

radial direction) over a distance in the order of the primary dendrite arm spacing. Generally, the magnitude 

of the primary dendrite arm spacing in cast steels (continuously cast or into static ingot) is in the range of 

50–500 µm except in the chill zone.  

(8) Local equilibrium between the liquid and the solid surfaces in the volume element is achieved (This 

assumption was also considered by Asai et al., [16] Takeshita [19], Huppert et al. [20] and Fujimura et al. 

[22]).  

(9) As considered in conventional heat analysis, the fraction of solid in the mushy zone is assumed to be linear 

to the temperature. 

From the mathematical point of view, the heat- and solute-transfer equations should be simultaneously solved 

for the liquid and solid in the mushy zone which are subjected to the boundary conditions of the moving solidus 

and liquidus boundaries at initial conditions. However, the problem can be simplified upon the assumption that 

the boundary values (i.e., temperature and solute concentration) are constant. The same assumption was 

previously made by Asai et al. [16], Takeshita [19], and Fujimura et al. [22]. 
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Another important methodology of the models is achieved by the assumption (8) as follows: If the models (B) 

mentioned before (i.e., the equilibrium lever rule) are adopted in the volume element, the solidus temperature 

should be that dictated on the solidus line of the phase diagram with the initial bulk liquid concentration (Fig. 

1, c–f temperature line). On the other hand, the solidus temperature is obtained on the liquidus line of the phase 

diagram liquidus line where the residual liquid completes the solidification (Fig. 3.1, b–e temperature line). 

This is the key methodology of the model which was adopted in many models [16,19,20,22]. 

In the following analysis, the diffusion of the solute along the primary dendrite axis direction (i.e., x axis) 

resulting the dilution of the solute in the mushy zone is considered, and the solute- and heat-transfer equations 

will be simultaneously solved. 

 

Fig. 3.1 Schematic of the solidification problem under study. 

 

3.2.2 Mathematical Formulations 

 

The preconditions and assumptions made in the model are as follows, which correspond to three zones, [I] 

solid zone, [II] mushy zone, and [III] liquid zone, are as follows: 

 [ Ⅰ zone ] 

(I) The liquid initially held at T i is instantaneously kept at T s at the surface (x 0 0) and solidification begins. 

(Ⅱ) As is typical of continuously cast steels, the thickness of the cast steel is large. 

[ Ⅱ zone ] 
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(Ⅱ1) The objective steel is Fe–C binary steel. 

(Ⅱ2) The liquidus temperature is coupled with the solute concentration by the liquidus surface of the phase 

diagram that can be represented by the following equation, as proposed by Kawawa et al. [23]. 

= m  T  TM + C  (3.1) 

TM : Solidus temperature of pure liquid (K) 

m : Temperature gradient of the liquidus line with respect to the solute concentration（K/％） 

C : Solute concentration (%) of the liquid in the mushy zone. 

(Ⅱ3) A linear relationship between the liquid fraction f and the temperature T is assumed as follows: 

 = 
 - 

  - 
f

T
o

T *

T T*

 

(3.2) 

T 
o: Liquidus temperature  

T 
*: Solidus temperature 

The following equation is obtained using 1) and 2): 

f  = C + s        (3.3) 

By the definition of solid fraction fs and f, one obtains: 

1    =  f   + fs  (3.4) 

 fs    ：fraction solid 

λ、s ：unknown constants 

  (Ⅱ3) T 0 T * at Ⅰ/Ⅱboundary (x 0 x* solidus point) 

  (Ⅱ4) T 0 T o at Ⅱ/Ⅲboundary (x 0 xo liquidus point) 

[ Ⅲ zone ] 

The liquid temperature at the center of cast steel is assumed to remain constant at T i (as will be discussed later, 

the numerical analysis showed that this assumption is practically reasonable). We denote the solute 

concentration at the liquidus and solidus positions as C o and C *, respectively, and the following equations are 

obtained: 

At the liquidus point:  

 1  +      :  =  , = 1= C o s x  xo   f  (3.5) 

 =  +m   :  =  , = ,  = CT o  TM Co x  xo  T  T
 o

C
o
 (3.6) 

At the solidus point:  

0  +        :  =  ,  = 0=C* s x  x*  f  (3.7) 

 =  +m   :  =  , = ,  =T* TM C* x x*  T T* C  C *
 (3.8) 
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Combining Eq. (3.4)– (3.8), the following equations are obtained:  

 -

m
 = 

T
o

 T*
 

(3.9) 

 = 
 - 

 - 
s

T
o

T*

T
M

T *

 
(3.10) 

The density, the specific heat, and the thermal conductivity of each zone are referred as ρi, Cpi, Ki (i represents 

the zone), while L represents the latent heat. The heat balance equations are as follows in the three zones. 

[ Ⅰ zone ] 

2

1 1 1 2

T T
Cp K

t x


 
=

 
 (3.11) 

= 0    : x T = T
s
 (3.12) 

  :    x = x* T = T*    (3.13) 

[ Ⅱ zone ] 

 
2

2 2 2 2 2

T f T
Cp L K

t t x
 

  
+ =

  
  (3.14) 

 =     :  =   x  x*  T T*
 (3.15) 

 =     :  =       x xo T T
o

 (3.16) 

By substituting 2) in 14) we obtain:  

 
2

*

2 2 2 2 2
/( )

T T
Cp L T T K

t x
 

 
+ − =

 
 (3.17) 

The Neumann’s boundary equation [24] is needed if mushy zone does not exist. The heat accumulation by the 

conduction at the interface and the latent heat generation due to the moving of interface should be related to 

the velocity of moving interface. However, the boundary conditions are simplified as are used in the 

conventional heat analysis for the present case.  

* *

1 2 0
x x

T T
K K

x x

 
− + =

 
 (3.18) 

2 3 0
x x

T T
K K

x x

 
− + =

 
 (3.19) 

[ Ⅲ zone ] 

2

3 3 3 2

T T
Cp K

t x


 
=

 
 (3.20) 

 = 0    : = t T T
i
     (3.21) 

 =   :  = x x
o

T T
o
 (3.22) 

These equations are transformed with the similarity variables defined as Eq. (3.23), (3.24), and (3.25) that 

are conventionally used to yield the ordinary differential equations as shown below. It should be noted that 
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these transformations fit well with an infinite molten liquid. However, the thickness of the continuously cast 

steel is generally large enough to yield constant temperature at the central region of the slab.  

 

 = 
2

   1
1t

x

  
(3.23) 

 

 = 
2

   2
2t

x

  
(3.24) 

 

 = 
2

   3
3t

x

 
(3.25) 

 1
1

1 1

K

Cp



=  (3.26) 

 2
2

2
2 2 *( )

K

L
Cp

T T






=

+
−

 
(3.27) 

 3
3

3 3

K

Cp



=  (3.28) 

The following ordinary differential equations and solutions in three zones are obtained by the above 

transformations. 

[ Ⅰ zone ] 

- 2  
d

d
 = 

d

d
 1 1

T

1
2

2
T

 

(3.29) 

 = 0   = 0  =x 1       : T  T
s           

 (3.30) 

 =   =  =    x  x* 1  *
1    : T T *

 
(3.31) 

 = 
erf(  )

(  -  )
erf( ) +T

1
*

T * T
s

1 T
s

 
(3.32) 

[ Ⅱ zone ] 

　   - 2
d

d

d

d
        2 

2

T
 = 

2
2

2
T

 

(3.33) 

 =     =      :  =          x  x* 2  2
* T T*

 (3.34) 

 =x  xo  2 = 2
o     :T = T

o          　
 (3.35) 

 = 
{erf( ) - erf( )}

(  ) {erf(  ) - erf(  )} 
 + T

2 
* 2 

o

T*-T
o

2 2
o

T
o  

 

(3.36) 

[ Ⅲ zone ] 

- 2  
d

d
 = 

d

d
3 3

T

 2
3

2
T

 

(3.37) 
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 0  :t =    3 =        T = T 
i

 (3.38) 

=    =  　    :  =  x  xo 3 3
o

T  T
o

 (3.39) 

 =         :   =   x  xc 3 = 3
 c

T  T
 c
 T 

i
  (3.40) 

 = 
{1 - erf(  )}

(  -  ){ 1 - erf( )}
 + T

3
o

T
o

T
i

3 
T

i

 

(3.41) 

 where T c (η3
c) ≈ T i  because η3

c at the center of the slab is kept large in a general continuous casting (i.e. the 

temperature drop of T c is few degrees as shown in the later chapter). 

Note that the following T ∞ obtained from Eq.(3.36) by adopting η2 0 ∞ was the extrapolated temperature out 

the range of the zone (II). This T ∞ will be used in the later chapter. 

 = 
{erf( ) - erf(  )}

(  ){1 - erf(  )}
 + T



2
* 2

o

T* - T
o

2
o

T
o

 

(3.42) 

 

3.2.3 Heat and Solute Transportations in the Mushy Zone 

 

The solute discharged from the growing solid is transferred to the solidification direction (along the primary 

dendrite axis direction) by diffusion. The diffusivity, inter-diffusion coefficient, of the solute in the solid was 

referred as D while that in the liquid is denoted as E. 

The variation of the solute concentration within a volume element with respect to time is given by: 

 
 

  
( )s s s

s

f C f C CC
E f D f

t x x x x

  +    
= +   

       
 (3.43) 

Cs    : solute concentration of the solid surface, which is in equilibrium with the liquid 

     
   : averaged solute concentration in solid


Cs  

The variation of the solute concentration in the solid (i.e., the second term of the left-hand of Eq. (3.43) is 

given by using the parameter α:  

( )
 =  +  

(  )

t

 fs 

Cs Cs

t

fs  fs
t

  Cs

 
(3.44) 

where α is a parameter [16] having a value of 0 or 1 that defines the diffusion limits in the solid (i.e., α 0 0 

when the diffusion of the solute in the solid is negligible and α 0 1 when the diffusion in the solid, such as 

the case of carbon, is rapid enough to result in homogeneous composition over distances in the order of the 

primary dendrite diameter). 
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Cs is related to C with the partition ratio k by the following equation: 

 = k Cs C
 (3.45) 

Substituting Eqs.(3.4), 44), and (3.45) into (3.43) yields: 

 (1 k) k
k (1 )

f C C C C
E f D f

t x x x x

 


 − +       
= + −   

       
 (3.46) 

Transforming with Eq.(3.24) provides the following ordinary equation. 

  2 2

2

2 2

2
2 2

d
(2 k- k (1 k)+ k}(-2 )

d

d d
             = ( k ) { ( k ) ( k ) k }

d d

C
C s

C C
E D E D C s E D D

     


     
 

− + −

 
− + − + − + 

 

 (3.47) 

Substituting Eq.(3.1) to the heat balance Eq.(3.33) gives 

　   - 2  =              2
d2

dC

d2
2

d2C

 
(3.48) 

The boundary conditions Eqs.(3.34) and (3.35) can be characterized as follows: 

at   ,   ,   = 0x = x
*
      2 = 2

*
C = C

*
f  (3.49) 

at   ,   ,   = 1x = x
o
      2 = 2

o
C = C

o
f

 (3.50) 

To simultaneously solve Eqs.(3.47) and (3.48), the unknown constants are determined to match both the 

first-order differential equation obtained by Eq.(3.48) and that obtained by eliminating the second-order 

differential terms from Eq.(3.47). Integrating Eq.(3.48) twice with Eqs.(3.49) and (3. 50) yields  

 =
{erf( ) - erf(  )}

( ){erf( ) - erf( )}
 +  C

2
* 2

o

 C*-C
o

2 2
o

C
o

 

(3.51) 

Differentiating Eq.(3.51) gives 

d

d
 = 

{erf( ) - erf( )

(  ) .
2 exp(-   )

2

C

2
* 2

o  }

C*- C
o



2
2

 

(3.52) 

Eliminating the second-order differential terms from Eqs.(3.47) and (3.48) and defining the constants F 
o and 

G 
o as follows yields 

d

d
 = ( -2  )(  +  )

2

C
2 F

 o
C G

o

 
(3.53) 

2

(2 k k)
1

( k )
F

E D






− −
= −

−
 (3.54) 

2
2

k( )(1 k)
1

( k ) ( k )

Ds
G

E D E D

 


   

  −−
= − + 

− − 
 (3.55) 

Substituting Eq.(3.51) into (3.53) gives 
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d

d
 = (- 2  )

{erf(  erf( )}

( -  ){erf(  ) - erf( )}
 +  +  

2

C
2 [[

2
* ) - 2

o

C* C
o

2  2
o

C
o]F

o
G

o ]
 

(3.56) 

The following equation is a good approximation [22] of the error-function of η for large η (Appendix 3.1). 

erf()　  1 - 
 

exp(- 2 ) 
     

 

(3.57) 

Adopting this approximation to Eq. (3.56) yields 

d

d
 = 

{erf( ) - erf( )}

( -  ) .
2exp(-  )

  -  (2  )
{erf(  ) - erf(  )}

(  - ){1- erf(  )}
 +   +  

2

C
F

o

2 
* 2 

o

C* C
o



2
2

2 [[
2

* 2
o

C* C
o 

2
o

C
o ]F

o
G

o ]
  

(3.58) 

The followings expressions are obtained to match Eq.(3.52) with (3.58). 

 = 1                         F
o

 (3.59) 

[ ]
{erf(2

* ) - erf(2
o
 )}

(C* - C
o 
){1- erf(2

o
 )}

 + C
o
 F

o
 + G

o
 = 0

  

(3.60) 

Substituting Eq.(3.59) into (3.54) results in 

( 2- k - k )

2( - k)
β

2
 = 



E 
      

 
(3.61) 

Substituting Eq.(3.27) into (3.9) gives 

2
2 2 2

2 2

m K
Cp

L
 

 

 
= − 

 
 (3.62) 

Substituting Eq.(3.62) into (3.5) gives 

2
2 2

2 2

m
1

K
s Cp

L


 

 
= − − 

 
 (3.63) 

Note that β2, λ, and s satisfy Eqs.(3.27),(3.9) and (3.10). C* is obtained using Eqs.(3.7), (3.62) and (3.63) as 

follows: 

 

2
2 2

2 2

1

m
C C

K
Cp

L


 


= −

 
− 

 

 
(3.64) 

Cs
* is obtained with Eq.(3.45) as follows: 

 = kCs
* C*

 (3.65) 
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Assuming the concentration of the solute at the liquidus position is equal to that of bulk liquid, T o and T * are 

obtained by Eq.(3. 6) and (3.8). The condition (3.60) which closes the simultaneous equations, is formulated 

using Eqs.(3.1) and (3.42) as follows:  

[ ]
{erf(2

* ) - erf(2
o
 )}

(T * - T
o
 ){1 - erf(2

o
 )}

 + T
o
 - TM

m

F
o

 + G
o
= (T


 - TM )

m

F
o

 + G
o
 = 0

 

(3.66) 

where F 
o=1 as shown in Eq.(3.59), G 

o is expressed in terms of T * by substituting Eqs.(3.9), (3.10), and 

(3.61) into Eq.(3.55) and T ∞is expressed in terms of T *, η2
*, η2

o and T *as in Eq.(3.41). Substituting these G 

o, F 
o, and T 

∞ into Eq.(3.66) gives the following equation which shows the requirement for three unknown 

constants η2
*,η2

o and T *, 

2

2 2

{1 erf( )} 2(1 k) (1 k)k k

(2 k k) (2 k k) k{erf( ) erf( )}

T T D
C

E DT T

  


   



 

−− − +
= = + −

− − − − −− −
 (3.67) 

where λ is given with T 
* using Eq.(3.9). It should be noted that E in the right-hand of Eq.(3.67) should 

satisfy the following equation given by Eqs.(3. 27) and (3.61). 

 2

2
2 2

2( k)

(2 k k)

KE

L
Cp

T T



 


−
=

− −
+

−

 
(3.68) 

Eqs.(3.23),(3.24), and (3.25) give the following expressions: 

 
  =           2
*

2

1 1
*

 

(3.69) 

 

 =      2
o

2

3 
3
o

 

(3.70) 

Substituting Eqs.(3.32), (3.36), (3.41), and (3.69) and (3.70) into the boundary conditions, (3.18) and (3.19) 

give 

 

2* 2 *
1 2

1 2

*
* 2 2 2 2*

2 1

1

( )exp (1 )( )

erf( ) erf( )
( )erf(  )

K T T
K

T T






   
 



 
− − 

 
=

−
−

 (3.71) 

 

22
3 2

3 2

*
2 2 2* 2

2 3

3

( )exp (1 )( )

erf( ) erf( )
( ) 1 erf(  

iK T T
K

T T






  
 



 
− − 

 
=

  − 
− − 

  

 (3.72) 

Three unknown constants T *, η2
*, and η2

o are easily fixed to match Eqs.(3. 67), (3.71), and (3.72) with 
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the try and error method (the process is shown in Appendix 3.2), where K1, K2, K3, β1, and β3 are given by the 

reported physical properties, and T i, T s, and T o are given as initial conditions. The liquidus temperature T o is 

estimated with the reported formula [23] and both β2 and λ are expressed in terms of T * by Eq.(3.27) and 

(3.9). It should be noted that the third term in the right-hand of Eq.(3.67) is negligible because D is 

significantly smaller than E. Consequently, the three equations exclusively involve the three unknown 

constants (T *, η2
*,and η2 

o), such that these unknown constants should be able to be fixed. Fixing the three 

unknown constants takes several minutes by manual calculation with spreadsheets or, alternatively, it can be 

instantly obtained if the algorithm shown in Appendix 3.2 is used either with a personal or a tablet computer.  

The interdiffusion coefficient E is estimated with Eq.(3.61) or Eq.(3.68) after closing the simultaneous 

equations (i.e., after fixing T *, η2
*, and η2

o). The interdiffusion coefficient D in the solid is referred to 

reported measurements. Finally, the solidus and liquidus positions x*and x 
o, respectively, as a function of 

time are given by Eq.(3.24) with η2
* and η2

o as follows: 

 
 = 2x* 2

* 2 t   (3.73) 

 = 2xo 2
o 2 t   (3.74) 

Thus, the heat- and solute-transfer equations are simultaneously solved without the measured 

solidification constants (as required in the previous model [22]. The fractions of solid in the mushy zone are 

predicted by Eq.(3.2). The temperature in the solid, mushy, and liquid zones are predicted with Eqs.(3.32), 

(3.36), and (3.41), respectively. The solute concentration in the mushy zone is also predicted with Eq. (3.1) 

or (3.51). It should be noted that the predicted solidus temperature T * is determined as a part of the 

simultaneous solutions.  

 

3.3  Model Validations and Discussions 

3.3.1 Physical Properties  

The physical properties used in the model are listed in Table 3.1. The values selected for the thermal 

conductivity in the mushy zone warrants discussion because the measurements have not been made under 

the conditions corresponding to this solid–liquid region, particularly with respect to the fluid flow. 

Thermally driven flow adjacent to the solidification front can give rise to estimated velocities of 0.001–

0.01 m/s [8,25] while solidification shrinkage may generate a fluid velocity of 0.001 m/s [26–28]. 

Consequently, the thermal conductivity in the mushy zone could be larger than that measured in a stagnant 

liquid. However, this difference is not expected to be great because heat flow via conduction is larger as 

compared to convection at the low fluid velocities used herein. Moreover, a significant fraction of solid of the 
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mushy zone consisted of fixed solid dendrites unaffected by the fluid flow. Thus, the thermal conductivities 

[29] measured under stagnant conditions, were used in the present model. 

The same argument does not hold when considering the interdiffusion coefficients in the interdendritic 

liquid because the rate of solute transport by diffusion is low as compared to convection. Hence, the 

interdiffusion coefficients measured in a stagnant liquid cannot be used for the interdendritic region. However, 

the diffusivity and interdiffusion coefficients of carbon can be estimated with Eq.(3.68). This approach used 

herein was also employed in the previous model [22]. The estimated interdiffusion coefficient, including the 

influence of the fluid flow, should be greater than the values measured under stagnant conditions. 

In general, a molten steel at a temperature of around 1812 K (1539 CC) is poured into a water-cooled 

mold. Initial solidification begins upon chilling with the water cooled mold and subsequent cooling by water 

spraying. The slab surface temperature is generally measured with optical instruments generally installed in 

the lower positions of a caster because of the facility restrictions. Under such circumstances, Meng et al. [30] 

performed a reliable and continuous measurements of a continuously cast 0.45%C steel by means of a 

thermocouples with a block fed into a mold. Considering their analysis, the surface temperature is assumed to 

remain at 1423 K (1150 CC) during solidification. The molten steel super-heat (i.e., the over heat of the bulk 

liquid against the liquidus temperature) was assumed to be 15 K (15 CC) as is common for a general 

continuously cast steel.  

The influence of the carbon partition ratio on the solidus temperature is high while the reported carbon 

partition ratios k for a δ phase are in the range of 0.13–0.29 [31,32] except for the low carbon steel 

( 0.023% C). The representative value [33,34] of this range (k 0 0.225) was used in this model . This k 

value can be changed as discussed in later chapters.  
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Table 3.1 Physical properties employed in the model 

  Property Value 

Ⅰ ρ1 density 7.7 × 103 Kg/m3 

zone Cp1 specific heat 0.77 kJ/kgK 

  K1 thermal conductivity 30.6 W/mK 

  L heat of fusion 276 kJ/kg  

Ⅱ  ρ2 density 7.5 × 103 Kg/m3 

zone Cp2 specific heat   0.77 kJ/kgK  

  K2 thermal conductivity 31.8 W/mK  

  k partition ratio of C in δ-Fe 0.225[33,34] 

  D interdiffusion coefficients of solid  6.6 × 10−10 m2/sec [40] 

Ⅲ ρ3 density 7.4 × 103 Kg/m3 

zone  Cp3 specific heat   0.77 kJ/kgK  

  K3 thermal conductivity 31.8 W/mK  

Liquidus temperature [23] T 0 1809 − 78(%C) − 4.9(%Mn) − 7.6(%Si)  K 

 

3.3.2 Thermal Analysis 

The temperature transition of a plain steel (0.15% C) slab with 0.22 m in thickness as predicted by the 

present model after 240 s lapse from the solidification start is shown in Fig. 2. The surface T s and initial T i 

temperatures were 1423 and 1812 K (1150 and 1539 CC) (superheat ΔT 0 15 K (15 CC)), respectively. The 

thickness of the mushy zone was 1.4 ×10−2 m and the solidification constants for the solidus and liquidus 

points were 2.55 × 10−3 and 3.44 × 10−3 m/s1/2, respectively, which are in the range of generally accepted 

values [1,15]. The temperature gently decreased from the center of the slab to the liquidus point. 

Subsequently, the slope increased toward the solidus point while smoothly passing the solidus point.  

The numerical heat analysis was separately performed (shown by a dashed line). The consistencies with 

respect to the solidus and liquidus points between the analytical solutions and the numerical heat analysis 

were examined by using the solidus temperature T * estimated by the present model. The conventional 

equivalent specific heat method (according to the procedure by Katayama et al. [35]) and the upwind finite 

difference methods were adopted in the numerical analysis, assuming a linear relationship between the solid 

fraction and the temperature, as assumed in the model. The boundary conditions (3.18), (3.19), and the 

symmetric condition at the center region of the slab were adopted. 
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As shown in Fig. 3.2, the analytical solutions and the numerical analysis were in good agreement with 

respect to the temperature and both the solidus and liquidus positions. Better agreements were obtained upon 

increasing the partitioning of the objective slab (e.g., the accuracy of the solidus point obtained by the 

numerical analysis was less than 0.3% with a partitioning of 4000 for a half thickness slab).  

Concerning to the drop of temperature in the center region, it was estimated to be 3 K (3 CC) with the 

numerical analysis, and this value is within the accuracy range of the temperature measurements [36]. 

Consequently, the assumption of constant temperature at the center of the slab made in the model 

formulations was reasonable, at least it should be allowed from the practical viewpoint. 

It should be noted that a conventional numerical heat analysis that satisfies the solute-transfer equation 

needs extensive computation to search for the solidus temperature with the associated solid fraction in a 

mushy zone which is obtained by the model while accounting for the heat and solute balances in a large 

quantity of volume elements. 

 

Fig. 3.2 Temperature distributions predicted by the model and numerical analysis of a continuously cast steel. (0.15% C, T s 0 

1423 K (1150 ℃), ΔT 0 15 K (15 ℃), t 0 240 s, slab thickness 0 0.22 m, N 0 partitioning number of the half thickness of a slab). 

 

 

3.3.3 Material Analysis 

The transition of the solute concentration and the liquid fraction in the mushy zone predicted by the 
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model is shown in Fig. 3.3. The estimated carbon interdiffusion coefficient E for a 0.15% C steel was 3.8 

×10−7 m2/s which was in good agreement with the reported values by Asai et al. [16] (4.7 × 10−7 m2/s) and by 

Fujimura et al. [22] (3.98 × 10−7 m2/s) estimated for a Fe-0.15%C-0.70%Mn-0.22% Si continuously cast 

steel. Although the estimated interdiffusion coefficient obtained by the model was somewhat larger than that 

measured by Grace et al. [37] (2–4 × 10−7 m2/s) under stagnant conditions, this is reasonable as discussed 

earlier. 

The carbon concentration at the solidus point (defined as C/Co) predicted by the present model was 3.9 

and was in good agreement with that estimated by the previous model [ 22] for a 0.15%C low-alloyed steel 

(C/Co 0 3.8). The effective carbon partition ratio kef (0.89) was in the range of reported findings [15], kef  0 

0.9 (0.85–1.0). Moreover, as shown in Fig. 3.3, a good agreement between the numerical solute analysis by 

directly solving Eq. 43) with the C* and T* values estimated by the model (long dashed line) and those 

predicted from the conventional heat analysis using the solidus temperature T* estimated by the model 

(carbon concentration was estimated by Equation 1), thin solid line) was obtained. Thus, conventional heat 

analysis such as the equivalent specific heat method using the solidus temperature estimated by the model 

provides the solutions not only for the temperature but also for the solute concentrations. Thus, the present 

model is considered to simplify the extensive computations required to simultaneously solve the heat- and 

solute-transfer equations while searching the solidus temperature and the fraction solid as part of 

simultaneous solution. 

 

Fig. 3.3 Solute concentration C/Co and liquid fraction predicted by the model and numerical analysis of a continuously 

cast steel. (0.15% C, T s 0 1423 K(1150 ℃), ΔT 0 15 K(15 ℃), t 0 240 s, slab thickness 0 0.22 m, N 0 partitioning number of the 

half thickness of a slab). 
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3.3.4 Comparisons with Neumann’s solution 

 

The temperature transitions in the mushy zone predicted by the model and the Neumann’s solution24) for 

pure iron are shown in Fig. 3.4. Again, the surface temperature was kept at 1423 K (1150 CC) and the 

superheat of the initial temperature (ΔT) was 15 K (15 CC) for all cases. Accordingly, the initial temperature 

for the low carbon steels was higher than that of the high carbon steels to keep the same superheat (ΔT).  As 

shown in Fig. 3.4, the temperature profile approached that of the Neumann’s solution as the carbon 

concentration decreased. The changes in the solidification constants of the solidus and liquidus points with 

respect to the carbon concentration are shown in Fig. 3.5. The solidification constants of the solidus point 

increased and that of liquidus decreased while decreasing the carbon concentration. These values converged 

with the Neumann’s solution for carbon concentration lower than 0.025%. The errors of the solidus 

temperature T* in the process shown in Appendix 3.2 exceeded 0.1 K (0.1 CC) at carbon concentrations lower 

than 0.025%, and this should be considered the limitation to use the model. However, this convergence of the 

model predictions with the Neumann’s solution [24] is indicative of a good consistency between the model 

and the Neumann’s solution at low carbon range.  

 

Fig. 3.4 Transitions of temperature predicted by the model and the Neumann' solution (C0 0%) of a continuously cast steel. 

(C00%–0.15%, T s 0 1423 K (1150 ℃), ΔT 0 15 K (15 ℃), t 0 240 s, slab thickness 0 0.22 m). 
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Fig. 3.5 Predicted liquidus and solidus solidification constants and the Neumann’s solution of a continuously  

cast steel. (0.025%–0.15% C, T s 0 1423 K (1150 ℃), ΔT 0 15 K(15 ℃),t 0 240 s, slab thickness 0 0.22 m). 

 

3.3.5 Solidus Temperature  

As shown earlier, the solidus temperature T * was obtained by matching the three of Eqs. (3.67), (3.71), 

and (3.72) with a set of T *, η2
*, and η2

o. However, this T * can be explicitly given by Eq.(3.68) as follows: 

*

2
2

2

(2 k k)

2 ( k )

L
T T

K
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E D



 

= −
− −

−
−

 
(3.75) 

The solidus temperature T * estimated with (3.75) exactly matches with the set of solutions satisfying 

Eq.(3.67), (3.71), and (3.72). It should be noted that the inter-diffusion coefficient E for the liquid used in 

(3.75) is given by (3.68). 

The evolution of the solidus temperature T * and the estimated E as the physical properties changed by 

1% are shown in Table 3.2. The estimated E value changes almost evenly with the heat conductivity K2, 

while the influence of the carbon partition ratio k is prominent as compared with other independent physical 

properties. The solidus temperatures estimated with different carbon partition ratios k and those calculated 

with other reported formulas are shown in the Fe–C binary phase diagram (Fig. 3.6). The solidus 

temperatures estimated by the model are represented with solid lines while dotted lines correspond to the 

approximation errors of (Eq.3.57) exceeding 1% for the higher carbon concentration range. The solidus 

temperatures estimated by the model exist in the intermediate range between those calculated with formulas 

by Hirai et al. [3] and Suzuki et al. [4] and those calculated by Kawawa et al. [2] and Jablonka et al. [5] The 
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colored area seems to be reasonable because the effective partition ratio is larger than 0.85 as in the case of a 

real continuously cast steel (mostly close to 0.9) and the approximation errors remain lower than 1%. The 

solidus temperature predicted by the model is 10 and 20 K higher than that calculated with the Kawawa’s 

formula [2] for a Fe-0.15%C steel when k 0 0.19 and k 0 0.225 are used, respectively.  

 

Table 3.2 Effect of an increase of 1% in the parameters over T * and E.  

  ΔT*(K) ΔE (%) 

K2 −0.0072 1.02 

ρ2 −0.044 −0.86 

Cp2 −0.041 −0.2 

L −0.042 −0.93 

k 4.161 −1.43 

 

 

Fig. 3.6 Solidus temperature predicted by the model with different k values and the reported solidus temperature (phase 

diagram of a Fe–C binary system). 
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3.3.6 Applications of the Present Analytical Solutions to the Steel Casting 

Operations 

  

To check the consistency between the model predictions and the actual values, the model predictions have 

been compared with the reported measurements by Kawawa et al. [1] adopting the shoot bullet technique for a 

continuously cast carbon steel (Fig. 3.7). The solidus positions were determined at the points where the bullets 

stuck with the steel shell. On the other hand, the points where the bullet fully melted and the composition 

became homogeneous with the molten bulk steel were defined as the liquidus positions (i.e., fs 0 0.2 − 0.6). 

It should be noted that the liquidus temperature of the present model (Fe–C binary alloy model) was 

corrected (5 K down) in accordance with the formula by Kawawa et al. [23] because of the effect of additional 

alloy components (i.e., 0.7% Mn and 0.22% Si). This approach for low-alloyed or low-carbon steels belonging 

to the Fe–C binary system was previously used by Fujimura et al. [22], and Esaka et al. [38]. The further 

decrease of the solidus temperature as a result of the enrichment of Mn and Si in the mushy zone estimated to be 

3.3 K (3.3 CC) according to the previous model for a multi-component alloy system (a 2.8 K (2.8 CC) decrease 

was expected according to the formula by Esaka et al.[38] was neglected because it is low as compared to that 

produced by carbon enrichment (the error of solidus point, the 240 s after the solidification started was 

estimated to be 2 × 10−4 m). The estimated kef value for carbon (kef 0 0.9) was in good agreement with generally 

accepted values. As shown in Fig. 3.7, good agreements between the measured and the estimated liquidus (fs 0 

0.2–0.6) and solidus lines were also obtained. 

The changes in important parameters predicted by the model for a 0.15%C steel with respect to the surface 

temperature are shown in Fig. 3.8. The effective partition ratio and the solidus temperature remained nearly 

constant. The solidification constants of the solidus and liquidus points slightly increased with the decrease of 

surface temperature. Thus, increasing the shell thickness by intensive cooling is not easy and can possibly result 

in an increase of surface defects in cast steel as a result of intensified non-uniform water spray cooling. Thus, it 

is easy to study the operational actions and results with the model proposed herein. The validation of α that 

represents the homogeneity of the carbon concentration in the solid within a mushy zone along the dendrite 

radius direction was made as follows: 

The numerical analysis regarding to the carbon redistribution by diffusion in the solid was made 

(Appendix 3.3). It was assumed that a cylindrical dendrite sequentially grew up to 500 µm in diameter 

according to fs and the carbon concentration at the solid/liquid interface changed according to the model 

predictions. The total solidification time from the beginning until the end of the solidification process was 
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213 s. The carbon diffusion coefficient in the solid used in the calculation was D 0 6.6 × 10−10 m2/s [39]. The 

carbon concentration in the solid mostly followed the enrichment of carbon in residual liquid, although a 

small diffusion delay in the central region was observed after the middle stage of solidification. However, the 

final averaged carbon concentration in the dendrite reached 97%. Thus, it is considered that α remained close 

to 1 during solidification.   

 

Fig. 3.7 Measured and estimated liquidus and solidus positions in a continuously cast steel as measured by the shoot 

bullet technique [1] and the model predictions (the observed liquidus positions are defined as fs 0 0.2–0.6. Steel 

composition 0.15%C, 0.22% Si, and 0.70% Mn).  
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Fig. 3.8 Influence of the surface temperature T s on the solidus temperature T *, the effective partition ratio kef and the 

solidification constants ν*and νo. (0.15% C, k 0 0.225, and the others properties are listed in Table 3.1). 

 

3.4  Conclusions of this Chapter  

The solidus temperature, parameters directly related to the solidification constants of the solidus and the 

liquidus points were obtained as a part of the solutions of the nonlinear heat- and solute-transfer equations 

assuming a linear relationship between the solid fraction and the temperature. As a result, an estimation of 

the temperature profile and solute concentration in the mushy zone with the overall temperature profiles in 

the solid and liquid is easily obtained. The model predictions were in good agreements with generally 

accepted values for a continuously cast steel. The solidification constants were also in the range of those of 

continuously cast carbon steels. Furthermore, the predicted solidus temperature lied in the intermediate 

temperature range between the values calculated with formulas by Hirai et al. and Suzuki et al. and those 

estimated by Kawawa et al. and Jablonka et al. 

The analytical solutions of the model were in good agreement with the numerical analysis, and showed 

good consistency with the Neumann’s solution at low carbon ranges. It should be noted that conventional heat 

analyses (e.g., the equivalent specific heat method), with the solidus temperature predicted by this model, 

provide the temperature and the solute concentration in the mushy zone with respect to time. The model 

simplifies the extensive computation to simultaneously solve the heat- and solute-transfer equations while 

searching for the solidus temperature and the fraction solid as part of simultaneous solutions. This model would 
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be beneficial for simplifying the complicated analysis considering the heat- and solute-transfer phenomena in 

the mushy zone. 

 

Appendix 3.1 

 

The error of the approximation of the erf(η ) is kept smaller than 0.2% for η > 1.73, as shown in Fig.9. 

 

Fig. 3.9 Error of approximation for the erf(η) used in the model. 

 

 

Appendix 3.2 

The unknown variables, important physical properties are shown in Table 3.3. The typical carbon partition 

ratio k in the δ phase (a wide range of values is reported) is used. The left and right sides of Eqs.(3.71) and 

(3.72) are denoted as A, B, and C (B is commonly used). The unknown parameters minimizing the aimed 

function Z defined as follows were sought: 

Z0(1-A/B)2 + (1-C/B)2 
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(1) First, the initial values for T *, η*, and ηo are given. The T * calculated with the reported formula is used 

as the initial value for T *. The initial ηo was 1.0. The η* was given as η*= γ ηo where the initial γ 0 0.3.  

(2) Second, the η o is changed to minimize Z for the initial T *. Convergence is quickly obtained. 

(3) Next, η* minimizing Z is obtained by changing γ (η*= γ ηo). 

(4) Substituting η*, ηo obtained by the above process to the left side of Eq.(3.67) provides λ (used in the 

right side of the Eq.(3. 67), (D: shown above). Substituting this λ into Eq.(3.9), yields the new T *. 

Using this T * as the initial T * and repeating the same process mentioned above (2) to (4) yields the 

set of (T *, η*, and η o) as the three Eqs.(3.67), (3.71), and (3.72) match. 

(5) This process is repeated until Z < 0.1, and the four decimal digits does not change in the present 

analysis.                         

 

Table 3.3 Unknown variables and physical properties used in the model and the equations to determine unknown 

properties  

T 
* Solidus Temp. ● 

η2
* η for solidus point in mushy zone ● 

η2
o η for liquidus point in mushy zone ● 

T 
o Liquidus temp. 〇 

T 
i Initial Temp. 〇 

T 
s Surface Temp. 〇 

C  Solute concentration in bulk liquid 〇 

K1 , K2 , K3 Thermal conductivity reported value 〇 

Cp1,Cp2,Cp3 Specific heat reported value 〇 

m Temperature gradient of the liquidus line 〇 

k Partition ratio of solute ◎ 
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β1 , β3 Thermal properties defined by eq. 26),28) 〇 

β2 Thermal properties defined by eq. 27) △ 

λ,S parameter determined by eq. 62),63) △ 

E Interdiffusion coefficient in liquid estimated by eq. 61)  △ 

D Interdiffusion coefficient in solid  〇 

 ● unknown properties  

 ◎ known property with wide variety   

 〇 known values or properties  

 △ properties obtained by T *, η2*, η2
o  

 

Appendix 3.3 

 

The carbon concentration in a cylindrical dendrite becomes almost homogeneous at the end of solidification 

due to the rapid diffusion, as shown in Fig. 3.10.  

 

Fig. 3.10 Transition of C in the solid during the growth of a dendrite. C in the liquid was increased according to the 

model predictions. (Co/0.15%, Cs
*/0.138%, D 0 6.6 × 10−10 m2/s, solidification time 0 213 s, dendrite diameter 0 500 µm). 
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Chapter 4  

Model Ⅲ 

Mathematical Analysis of the Solidification Behavior of Multi-Component Alloy 

Steel Based on Heat- and Solute-Transfer Equations in the Liquid–Solid Zone 

 

Abstract 

An approximate analytical model has been developed to obtain simultaneous solutions for nonlinear solute- 

and heat-transfer equations for multi-component alloy steels; in this model, a linear relation between the solid 

fraction and the temperature in the mushy zone was assumed. This model predicts important parameters, such 

as the solidus temperature for the multi-component steel materials that have not been well confirmed by the 

reliable measurement in a real process. The predicted temperature, solidification constants, and effective 

partition ratios of solutes were in good agreement with both the reported measurements and generally accepted 

values. The predicted solidus temperatures were also in reasonable agreement with the reported zero ductile 

temperature of Fe–C–Mn steel and the thermo-analytically measured solidus temperatures of steels of various 

grades. The solutions were also in good agreement with those separately performed numerical thermal analysis. 

The model involves the solution for Fe-C binary alloy which is consistent with the Neumann’s solution in the 

low carbon range. Thus, this model provides approximate analytical solutions that can reduce the 

computational load, saving time and cost. 

 

4.1  Introduction      

Numerical methods are effectively used to simulate heat-transfer phenomena during solidification processes. 

While these methods provide reliable surface temperatures (i.e., those calibrated with the measured values), 

inner temperatures are not generally confirmed with the actual (measured) values. In particular, the solidus 

points were hardly checked by measurements with the associated solidus temperature. 

The main reason for these problems lies in the difficulty [1] of achieving reliable measurements of the solidus 

temperature of general steel. In addition, the fraction of solid in a solid–liquid coexisting zone (i.e., mushy 

zone) remains unclarified. According to Crepau et al. [2], the morphology of a mushy zone is difficult to predict 



 

61 

 

 

 

and no analytic solutions are known to exist that describe the relation between the size of a mushy zone and 

volumetric heat generation. 

With respect to the liquidus temperature, while it is not also generally measured during the casting process, the 

problems are not serious because microsegregation at the dendrite tips is so small that super-cooling is limited 

to only a few degrees. Therefore, the liquidus temperature for general steel can be estimated from the phase 

diagram or from measurements, which are in reasonable agreement with each other. However, with regard to 

the solidus temperature of steel, significant discrepancies exist among the estimates based on the phase diagram 

and models accounting for microsegregation. (i.e., 40 K discrepancies [3–5]). Recently, Gryc et al. [6] thermo-

analytically measured the solidus temperature for various steel grades and reported significant discrepancies 

between the measurements and the values obtained from the reported formulas (up to 42 K) or thermodynamic 

calculations (up to 50 K). These discrepancies could lead to considerable errors in estimating the position at 

which the shell develops with a target thickness. 

The lack of knowledge about the fraction of solid in the mushy zone has spurred the onset of numerous methods 

based on heat analysis. They can be classified into three major models (A)–(C): (A) methods [7–9] assuming 

a linear relationship between the solid fraction and the temperature (e.g., equivalent specific heat model); (B) 

methods [10,11] based on the equilibrium lever rule, the Scheil equation, and back diffusion models [12–16]; 

(C) methods [17] recovering the temperature with the latent heat release after solidification. However, these 

methods are not always consistent with the real solidification process. For example, (C) methods assume that 

the primary dendrites should grow after solidification. When the (B) methods such as Scheil equation with a 

large domain are used along the dendrite axial direction, a flat boundary surface should be assumed for the 

dendritic mushy zone. The diffusions of solutes in liquid along the dendrite axial direction are 

neglected ,although the effective partition ratios of solutes are generally less than 1.0 [18]. Thus, the fraction 

of solid used in the thermal analysis should be consistent with general solidification. 

Instead of a large domain, for the (B) methods with a small scale of domain, as small as a secondary arm 

spacing, the microsegregation in the dendritic mushy zone can be analytically evaluated assuming a constant 

cooling rate with the uniform temperature in a domain and neglecting the diffusion along the primary dendrite 

axis direction. The lever rule assumes the complete diffusion in both liquid and solid, while Scheil’s equation 

assumes no diffusion of solutes in solid and complete diffusion in liquid, which are considered to be two 

significant limitations for microsegregation predictions (i.e., infinite diffusion and negligible diffusion in solid). 

Because this small domain is considered to be blockaded by secondary arms as soon as secondary arms develop. 

Brody and Flemings [12] developed a model to consider the back diffusion of solutes in solid with the 
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assumption of finite diffusion in solid and complete diffusion in liquid. Clyne and Kurz [13] treated the Brody 

and Flemings model in a mathematical way that allowed the model approach the lever rule and Scheil’s model 

for infinite and negligible diffusion in a solid, respectively. Ohnaka [14] considered a columnar dendrite rather 

than the plate dendrite and derived the model through solving the overall mass balance. Voller and Beckermann 

[15] also proposed a model that considered the coarsening of secondary arms. These models are effectively 

used to investigate the microsegregation of numerous alloys. However, the cooling rate considerably varies 

during solidification and the assumption of the constant cooling rate make it difficult to incorporate the heat-

transfer equation for the general steel in these models. 

To resolve the issue, an enlarged domain as large as a primary dendrite arm divided into small volume elements 

is considered. This enlarged domain involves the continuum liquid, which allows the diffusion of the solutes 

along the primary dendrite axis direction (solidification direction). It should be noted that taking account of 

diffusion in liquid, which is much larger (generally two order magnitude larger) than that in solid, composes 

the limitation at the end of solidification and makes it easier to incorporate the heat transfer along the 

solidification direction in the diffusion model. Considering the large domain wherein both solute and heat are 

transferred along the primary dendrite axis direction (solidification direction), Asai and Muchi [19], Hills and 

Looper [20], and Alexandrov [21] obtained analytical or approximate analytical solutions for the solute- and 

heat-transfer simultaneous equations under a steady-state conditions (i.e., constant solidification velocity). 

However, these analytical solutions cannot be directly used for general heat analysis because the solidification 

velocity significantly changes with time. 

Regarding the unsteady state solidification, Takeshita [22] obtained simultaneous solutions for unsteady state 

solidification using an extensive numerical computation model for a NH4Cl aqueous eutectic system (a binary 

system); in advance of the numerical computation, the model analytically eliminated the solid fraction-related 

terms in the equations in the case of negligible solute diffusion in a solid. However, to use this model for multi-

component alloy steel, more complicated computations are required. Huppert and Worster [23] and Alexandrov 

and Malygin [24] proposed models for aqueous chimney-type unsteady state solidifications (a binary system); 

their models, however, focused on particular scenarios, such as if a liquidus point develops, whereas the solidus 

point barely develops. This limits the applicability of their models for the solidification of steel, because the 

solidus point of the general steel typically develops along with an associated liquidus point during solidification. 

Fujimura and Brimacombe [25] obtained approximate analytical solutions to nonlinear heat- and solute-

transfer equations for a case where the solidification front develops with the square root of time by considering 

the diffusion of the solutes along the solidification direction. The solutions thus obtained were in good 
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agreement with the reported measurements. These solutions, however, were obtained by assigning the 

measured solidification constants as boundary conditions rather than by using the conditions generally adopted 

in conventional heat analyses; consequently, the accuracy of the predictions made by that model strongly 

depends on the measured solidification constants, and the analyses are not fully consistent with the 

conventional heat analyses because of the insufficient boundary conditions. 

In that direction, Fujimura et al. [26] recently proposed an approximate analytical model for the heat- and 

solute-transfer equations for Fe–C binary plain steel by considering the boundary conditions that are generally 

used in heat analyses (i.e., the measured solidification constants were not used). The solutions were in good 

agreement with the numerical analysis that was performed separately. Furthermore, they were consistent with 

Neumann’s solution [27] in the low carbon range.  

However, the applicability of this model is limited to carbon plain steel. Expanding the model’s applicability 

to the general steel, the solidus temperature of the general steel is pursued in the present study. The model 

predictions and the solidus temperatures of the multi-component alloy steel obtained as the part of the 

approximate analytical solution are compared with the numerical analysis and the reported measurements. In 

the present model, the solidification at the middle stage between the early stage and the end stage is investigated. 

 

4.2  Governing Equations of Solidification 

4.2.1 Basic Assumptions 

The solidification problems mathematically modeled are schematically shown in Fig. 4.1. The volume element 

in a domain, which is as large as a primary dendrite, is considered wherein the representative fraction solid is 

defined as the total fraction solid of both a primary dendrite and a secondary arm (a shaded area in Fig. 4.1). 

Heat is unidirectionally extracted and a solid shell is considered to grow from the surface. In the mushy zone, 

heat and solute are considered to transfer by conduction and diffusion, respectively. The main assumptions 

made in the model, which are consistent with the previous model [25,26], are as follows: 

(1) Heat is exclusively extracted by heat conduction along the solidification direction (primary dendrite axis 

direction, i.e., x axis). 

(2) The density and specific heat of the liquid are the same as those of the solid in a mushy zone. 

(3) The solute is exclusively transported by diffusion via moderate fluid flow in a mushy zone. 
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(4) The effect of the dendrite tip curvature on the liquidus temperature is negligible. 

(5) Undercooling within the mushy zone is negligible. 

(6) The diffusion of the solute, carbon, in the liquid within a mushy zone is sufficiently rapid to achieve a 

homogeneous composition in the direction normal to that of the solidification direction (i.e., primary 

dendrite radial direction) over a distance in the order of the primary dendrite arm spacing (generally, the 

magnitude of the primary dendrite arm spacing in continuously cast steels is in the range of 50–500 µm 

except in the chill zone). 

(7) Local equilibrium between the liquid and the solid surfaces in a volume element is achieved (This 

assumption was also considered by Asai and Muchi [19], Takeshita [22], Huppert and Worster [23] and 

Fujimura and Brimacombe [25] and Fujimura et al. [26]. 

(8) As considered in a conventional heat analysis, the fraction of solid in the mushy zone is assumed to be 

linear to the temperature. 

It should be noted that the present model does not discriminate between the primary dendrites and the 

secondary arms as the solid in a mushy zone. Therefore, the precise micro-segregations between the 

secondary arms are not considered in the present model. 

 

 

Fig. 4.1 Schematic of the solidification problem studied in the model. 

4.2.2 Mathematical Formulations 

The preconditions and assumptions made in the model are as follows, which correspond to three zones, 

Solute

Heat
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[I] solid zone, [II] mushy zone, and [III] liquid zone. In [II] mushy zone, the mathematical process for the 

multi-component solutes developed in the multi-component alloy model [25] is used to expand the binary 

model [26] to the multi-component system model. (Some of the equations refer to Appendix 4.A to 4.D.) 

[I] zone 

(I-1) The liquid initially held at T i is instantaneously kept at T s at the surface (x 0 0) and solidification 

begins. 

(I-2) This T s is assumed to be the temperature that results the same amount of heat extraction from the 

surface with the real continuous casting (Appendix 4.D). 

(I-3) The temperature of the boundary (I/ II), solidus temperature T * is kept constant. 

[II] zone 

 (II-1) The liquidus temperature is coupled with the dilute solute concentrations by the liquidus lines of the 

phase diagram that can be represented by the following equation, as proposed by Kawawa et al. [28]: 

M mi i

i

T T C= +  (4.1) 

MT : Solidus temperature of pure liquid (K) 

mi
: Temperature gradient of the liquidus line with respect to the concentration of i (K/%) 

iC : Concentration (%) of solute i in the liquid 

 (II-2) The liquid fraction f is assumed to be linear to the temperature T in a mushy zone as follows: 

*

*

T T
f

T T

−
=

−
 (4.2) 

f : Liquid fraction 

T : Temperature (K) 

T : Liquidus temperature (K) 

*T : Solidus Temperature (K) 

(II-3) The linear relationship between the liquid fraction and the concentration of each solute is obtained 

for the binary system adopting Eq. (4.1) to Eq. (4.2), and then Eq. (4.3) is obtained if the negligible 

solute-solute interaction is assumed [25]. (the reported measurement [29], which showed the 

similarities between the concentration profile of each solute against the solid fraction in a mushy 

zone, partially supports this assumption). 

i i i j j jf C s C s = + = +  (4.3) 

, , ,i j i js s  : unknown constants 

(II-4) 
**, iT T C C= = are constant at I/II boundary (x 0 x solidus point). 

*

iC : Concentration of the solute i at the solidus point 
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(II-5) , iT T C C= =  are constant at II/III boundary (x 0 x liquidus point). 

 iC : Concentration of the solute i at the liquidus point 

 [III] zone 

 (III-1) The liquid initially held with iT remains in the central region (as will be discussed in 4.4.2.1), the 

numerical analysis showed that this assumption is practically reasonable). 

 

The density, the specific heat, and the thermal conductivity of each zone are denoted as ,Cp ,Ki i i  (i 

represents the zone), while L represents the latent heat. The heat balance equations are as follows: 

[I] zone 

2

1 1 1 2

T T
Cp K

t x


 
=

 
 (4.4) 

0    : 
s

x T T= =  (4.5) 

**   : x x T T= =  (4.6) 

s
T : Surface Temperature (K) 

[II] zone 

2

2 2 2 2 2

T f T
Cp L K

t t x
 

  
+ =

  
 (4.7) 

**   : x x T T= =  (4.8) 

   : x x T T= =  (4.9) 

By substituting Eq. (4.2) into Eq. (4.7), we obtain 

 
2

*

2 2 2 2 2
/( )

T T
Cp L T T K

t x
 

 
+ − =

 
 (4.10) 

The following equation is obtained by Eq. (4.3). 

 + 
s  - s

Cj = 
j

i Ci j

i j

 

(4.11) 

Eq.(4.1),(4.3) and (4.11) yields Eq.(4.12), (Appendix 4.A) 

* mi

i i

T T


= −  (4.12) 

[III] zone 

2

3 3 3 2

T T
Cp K

t x


 
=

 
 (4.13)  

0     : it T T= =  (4.14) 

  : x x T T= =  (4.15) 
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At the center, the following equation is given by the assumption (III-1): 

  : c icx x T T T= =   (4.16)  

These equations are transformed with the following similarity variables [22,25–27] defined as Eqs. (4.17), 

(4.18), and (4.19). We denote the upper right suffix as the solute i and the lower right suffix as zone [I], [II], 

and [III]. 

1

12

i

i

x

t



=  (4.17)  

2

22

i

i

x

t



=  (4.18) 

3

32

i

i

x

t



=  (4.19) 

1
1

1 1

i K

Cp



=  (4.20) 

2
2

2
2 2 *( )

i K

L
Cp

T T






=

+
−

 
(4.21) 

3
3

3 3

i K

Cp



=  (4.22) 

It is obvious that 1 2 3, ,i i i    and 1 2 3, ,i i i    are independent on the solute types, as shown in Eqs. (4.17)– 

(4.22). Hence, the upper suffix i is omitted and denoted as 1 2 3, ,   and 1 2 3, ,   . The following ordinary 

differential equations and solutions are obtained as follows: 

 [I] zone 

 

2

1 2

1 1

d d
2

d d

T T


 
− =  (4.23) 

10   ,  0      : 
s

x T T= = =  (4.24) 

** *
1 1 ,      : x x T T = = =  (4.25) 

*

1*
1

( )
erf( )

erf( )

s
sT T

T T


−
= +  (4.26) 

[II] zone 

2

2 2

2 2

d d
2

d d

T T


 
− =  (4.27) 

** *
2 2 ,      : x x T T = = =  (4.28) 

2 2 ,      : x x T T = = =  (4.29) 

 
 

*

2 2

*
2 2

( ) erf( ) erf( )

erf( ) erf( )

T T
T T

 

 

− −
= +

−
 (4.30) 
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[Ⅲ] zone 

2

3 2

3 3

d d
2

d d

T T


 
− =  (4.31) 

    30   ,        : it T T= =  =  (4.32) 

3 3 ,      : x x T T = = =  (4.33) 

3 3 ,      : c c icx x T T T = = =   (4.34) 

 

 
3

3

( ) 1 erf( )

1 erf( )

i

i
T T

T T




− −
= +

−
 (4.35) 

 Where 3( ) c c iT T  as assumed in Eq. (4.16), assumption (III-1). 

The Neumann’s boundary condition [27] is required if a mushy zone does not exist. However, the boundary 

conditions generally adopted in the conventional heat analysis are used in the present case wherein a mushy 

zone was found to have developed, as generally used in the numerical analysis. It is noted that the latent heat 

generation in the mushy zone is taken into account in Eq.(4.36) and Eq.(4.37).  

* *

1 2 0
x x

T T
K K

x x

 
− + =

 
 (4.36) 

2 3 0
x x

T T
K K

x x

 
− + =

 
 (4.37) 

Eqs. (4.23), (4.24), and (4.19) gives the followings: 

    
1* *

2 1

2


 


=  (4.38) 

    
3

2 3

2


 


=  (4.39) 

Substituting Eqs. (4.17), (4.18), (4.35), (4.38), and (4.39) to Eqs. (4.36) and (4.37) gives the following 

equations: 

 

2* 2 *
1 2

1 2

*
* 2 2 2 2*

2 1

1

( )exp (1 )( )

erf( ) erf( )
( )erf(  )

sK T T
K

T T






   
 



 
− − 

 
=

−
−

 (4.40) 

 

22
3 2

3 2

*
2 2 2* 2

2 3

3

( )exp (1 )( )

erf( ) erf( )
( ) 1 erf(  )

iK T T
K

T T






  
 



 
− − 

 
=

  − 
− − 

  

 (4.41) 

The solidus and liquidus positions with respect to time are estimated using Eqs. (4.42) and (4.43). 

* *
2 22x t =  (4.42) 
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2 22x t =  (4.43) 

 

4.3  Heat and Solute Transportations in the Mushy Zone 

The solutes discharged from the growing solid are transferred to the solidification direction (along the 

primary dendrite axis direction) by diffusion. The diffusivity, inter-diffusion coefficient, of the solute i in the 

solid was denoted as ijD , whereas that in the liquid is denoted as ijE , where j represents all solutes. 

The variation of the concentration of solute i within a volume element with respect to time is given by 

(Appendix 4.A) 

( )

( )
        

i i s si

i s si
si i s

fC f CC

t t

fC f C
C f

t t t


 +
=

 

  
= + +

  

 (4.44) 

iC  : averaged concentration of solute i in a volume element 

iC : concentration of solute i in liquid 

siC : averaged concentration of solute i in solid 

siC : concentration of solute i at the surface, which is in equilibrium with liquid 

sf : solid fraction 

where 
i is a parameter [19,25,26] having a value of 0 or 1 that defines the diffusion limits of the solute i in 

the solid (i.e., 
i = 0 when the diffusion of the solute i in the solid is negligible and 

i = 1 when the 

diffusion of the solute i in the solid, such as the case of carbon, is rapid enough to result in homogeneous 

composition over distances in the order of the primary dendrite diameter). 

siC is related to 
iC with the partition ratio by the following equation: 

 ksi i iC C=  (4.45) 

The solute flux of the solute i due to diffusion in a multi-component alloy [25] is 

 
j sj

i ij j s ij

j j

C C
J f E f D

x x


 
= − −

 
   (4.46) 

Eqs. (4.44), (4.45), and (4.46) give the following: 

2

2

(1 k ) (1 k ) k

                         ( k ) ( ) k

i i
i i i i i i

j j

ij j j ij j j ij

j j

C Cf
f C

t t t

C C
E D f D

x x x

 

 

 
− + − +

  

 
= − +

  
 

 (4.47) 

At the liquidus point and the solidus point, 

k i
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 :   1    ,   i ix x f C C= = =  (4.48) 

**  :   0   ,   i ix x f C C= = =  (4.49) 

Substituting Eq. (4.11) into Eq. (4.47) yields 

2

2

(1 k ) (1 k ) k

                         ( k ) ( ) k

i i
i i i i i i

i i i i
ij j j ij j j ij

j jj j

C Cf
f C

t t t

C C
E D f D

x x x

 

 
 

 

 
− + − +

  

       
= − +   

        
 

 (4.50) 

Rewriting Eq. (4.50) gives 

2

2
(1 k ) (1 k ) k ( )i i i i

i i i i i i i i

C C C Cf
f C M f N

t t t x x x
 

    
− + − + = +

     
 (4.51) 

( k ) i
i ij j j ij

j j

M E D





= −  (4.52) 

k i
i j j ij

j j

N D





=  (4.53) 

Transforming the solute-transfer equation, Eq. (4.51) with Eq. (4.18) provides the following ordinary 

differential equation. 

  2 2

2

22

2

2 2

d
(2 k k ) (1 k ) k ( 2 )

d

d d
                                    = ( )

d d
( )

i
i i i i i i i i i i

i i
i i i i i i i i

C
C s

C C
M M C s M N

     


 
 

− − + − + −

+ + +

 (4.54) 

Substituting Eq. (4.11) to Eq. (4.1) and then adopting the obtained equation to the heat-transfer equation 

Eq. (4.27) gives a simple equation as follows: 

2

2 2

2 2

d d
2

d d

i iC C


 
− =  (4.55) 

The boundary conditions Eqs. (4.28) and (4.29) can be characterized as follows: 

** *
2 2 ,   =   :     ,   0i ix x C C f = = =  (4.56) 

2 2 ,   =   :      ,   1i ix x C C f = = =  (4.57) 

To simultaneously solve Eqs. (4.54) and (4.55), the unknown constants are determined to match both the 

first-order differential equation obtained by Eq. (4.55) and that obtained by eliminating the second-order 

differential terms from Eq. (4.54). Integrating Eq. (4.55) twice with Eqs. (4.56) and (4.57) yields 

 
 

*

2 2

*
2 2

( ) erf( ) erf( )

erf( ) erf( )

i i

i i

C C
C C

 

 

− −
= +

−
 (4.58) 

Differentiating Eq. (4.58) gives 
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 
 2*

2

*
2 2 2

2exp ( )d ( )

d erf( ) erf( )

i i iC C C 

   

−−
=

−
 (4.59) 

Eliminating the second-order differential terms from Eq. (4.54) with Eq. (4.55) and defining the constants 

iF and as follows yields 

 2

2

d
( 2 )( )

d

i
i i i

C
F C G


= − +  (4.60) 

2

(2 k k )
1

M

i i i
i

i

F



− −

= −  (4.61) 

2
2

(1 k ) k
1i i i i i i

i

i i i i

s N
G

M M

  


 

 − −
= − + 

 
 (4.62) 

Substituting Eq. (4.58) into Eq. (4.60) gives 

 
 

*

2 2

2
*

2 2 2

( ) erf( ) erf( )d
2  

d erf( ) erf( )

i ii
i i i

C CC
C F G

 


  

  − −
  = − + +
 −   

 (4.63) 

The following equation is a good approximation [25,26] (Appendix 4.B) of the error function for large 
2

(the error of this approximation will be checked after solving the equations, as shown in the later chapter): 

 
2

2
2

2

exp(- )
erf( ) 1




 
 −  (4.64) 

Adopting this approximation to Eq. (4.63) yields 

 
 

 
 

** 2
22

2
**

2 2 22 2

( ) 1 erf( )d ( )2exp(- )
2  

d erf( ) erf( )erf( ) erf( )

i ii i i
i i i i

C CC C C
F C F G




    

  − −−
  = − + +
 −−    

 (4.65) 

The following equations are obtained to match Eq. (4.59) and Eq. (4.65): 

1iF =  (4.66) 

 
 

*

2

*
2 2

( ) 1 erf( )
 0

erf( ) erf( )

i i

i i i

C C
C F G



 

 − −
 + + =

−  

 (4.67) 

Eqs. (4.61) and (4.66) give 

2

2

(2 k k )

i

i i i

M



=

− −
 (4.68) 

Substituting Eqs. (4.12), and (4.68) into Eq. (4.67) gives the following equation as the constraint conditions 

of the solutes: 

 
 

2

*
2 2

1 erf( ) 2(1 k ) (1 )k

(2 k k ) (2 k k )erf( ) erf( )

i i i i
i i

i i i i i i i

N
C

M

 


  

− − +
= + −

− − − −−
 (4.69) 

The effective partition ratio is obtained as follows: 

iG



 

72 

 

 

 

ef *1  :    k k /

                      =k (1 1/ )

i i i i

i i i

C C

C





= =

−
 (4.70) 

1
ef

0
0  :    k /  d

                      =k (1 1/ 2 )

i si i s

i i i

C C f

C





= =

−

  (4.71) 

Eqs. (4.70) and (4.71) are convenient to evaluate the extent of back diffusion of the solute in solid. Both 

the equations correspond to the lever rule where complete diffusion can be adopted, such as for carbon, and 

the Scheil equation for the slow diffusion solute, respectively. 

The four unknown parameters (constants) *T , *
2 , 2 , and

i can be readily obtained to match Eqs. (4.12), 

(4.40), (4.41), and (4.69) through a trial-and-error method (as shown in Appendix 4.C), where
1 2 3K ,K ,K ,

1 , 

and
3 are given by the reported physical properties and iT is given as the initial condition. 

s
T is given such 

that the same heat extraction as that produced in a real process (Appendix 4.D). The liquidus temperature T  

is estimated using the reported formula [28] and both
2 and

i are related to *T by Eqs. (4.21) and (4.12). 

Consequently, the four equations involve only the four unknown parameters ( *T , *
2 , 2 , and 

i ), which 

should be fixed. It takes several minutes to fix these four parameters by manual calculations using spreadsheets. 

Alternatively, they can be fixed instantly using the algorithm shown in Appendix 4.C either with a personal 

computer or a tablet computer. 

It should be noted that the solutions of heat, Eqs. (4.26), (4.30), and (4.35), are the exact analytical solutions 

and the solutions for solutes are determined by employing the approximation, Eq. (4.64), to match Eqs. 

(4.54) and (4.55) (i.e., the material (solutes) solutions are obtained to be consistent with the heat solution). 

This approximation [25,26] is accurate for the large 
2 (e.g., the errors of the approximation for the case 

2

> 1.24, 
2 > 1.39 and > 1.72 are less than 2.0%, 1.0%, and 0.2%, respectively, Appendix 4.B). 

It is also noted that the existence of the unique solution of the heat and mass transfer simultaneous equations 

Eqs.(4.55) and (4.54) are shown in Appendix 4.I and 4.J..  

4.4  Results  

4.4.1 Physical Properties 

The physical properties [30–40] used in the model are listed in Table 4.1. The compositions of the steel 

investigated in this study are listed in Table 4.2, in which the measured and predicted solidus temperatures are 

shown along with the corresponding partition ratios of carbon used in the model. Selection of the values for 

thermal conductivity in the mushy zone warrants discussion because measurements have not been made under 

2
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conditions that correspond to this solid-liquid region, particularly with respect to fluid flow. Thermally driven 

flow adjacent to the solidification front can give rise to estimated velocities of 0.1 to l cm/s [8,41] while 

solidification shrinkage may generate a fluid velocity of about 0.01 cm/s [42].  Consequently, the thermal 

conductivity in the mushy zone could be larger than that measured in a stagnant liquid. However, the difference 

is not expected to be great because heat flow by conduction is large compared to that by convection at the low 

fluid velocities estimated in the inter-dendritic region. Moreover, a significant fraction of the mushy zone 

consists of fixed solid dendrites unaffected by fluid flow. Thus a thermal conductivity measured under stagnant 

conditions has been used for the mushy zone, Table 4.1. 

The same argument does not hold when considering inter-diffusion coefficients in the inter-dendritic liquid 

because the rate of solute transport by diffusion is low relative to that by convection. Hence, inter-diffusion 

coefficients measured in a stagnant liquid cannot be adopted for the inter-dendritic region. 

However, the inter-diffusion coefficients in the inter-dendritic liquid can be obtained as the parts of the 

solution of the simultaneous heat- and mass- transfer equations. This is the approach taken in the present 

model. Hence, the estimated inter-diffusion coefficients of the solutes include the influence of fluid flow 

and should be larger than values obtained under stagnant conditions [43].  

It should be noted that temperature changes such as liquidus temperature, resulting from the individual alloys 

are additive as long as solute-solute interactions are negligible as assumed in (Ⅱ-1) in the Chapter 4.2.2. This 

assumption may not be always correct, however Kirkaldy and Baganis [44] found that the assumption of the 

negligible interactions between solutes is valid as long as the total alloy elements(solutes) is less than 6% and 

the Si content<1%. Therefore, the general steel of the total solutes less than 3.5% were subjected to investigate 

in the model. It is also noted that the difference of the densities of the solid and the liquid in the mushy zone 

(3-4%) was neglected because the magnitude of the error caused by this neglect was estimated to be less than 

0.1% (the influence of the latent heat is dominant comparing with that of the heat conduction due to this 

neglect in the mushy zone). 

It is known that the enrichment of sulfur in inter-dendritic liquid results in sulfide precipitations during 

solidification [44,45]. Ueshima et al. [45] demonstrated that MnS precipitation predicted by their 

thermodynamic investigation agreed with the measurements obtained for Si- and Al-killed steel. Accordingly, 

the maximum sulfur concentration in a mushy zone is restricted by the precipitations of MnS (i.e., the solubility 

product of [%Mn] [%S] in a mushy zone). However, taking into account this restriction would complicate the 

model proposed in this study. Therefore, the influence of sulfur was excluded in the model when MnS 

precipitation is expected but is estimated separately (i.e., typically, in the cases of steel K and M in Table 4.2). 
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Regarding phosphorus, phosphates have been found to be precipitated in high-carbon steels [46]; however, 

phosphate precipitations are not expected in the present study due to the larger partition ratio of [P] than that 

of [S] in low- and intermediate-carbon ranges (the primary phase is δ Fe). Therefore, [P] is accounted for as 

like as other alloy solute in the present model. 

The solidification of a liquid begins using a water-cooled mold, followed by water spraying in the continuous 

casting process of steel. The surface temperature of a slab of steel is generally measured using optical 

instruments that are installed in the lower positions of a caster because of facility restrictions. Under such 

circumstances, Meng and Thomas [47] performed reliable and continuous measurements of a continuously 

cast 0.45% C steel using a thermocouple with a block fed into a mold. The surface temperature 
s

T that results 

in almost same amount of heat extraction as that estimated by Meng and Thomas [47] is used in the present 

model (Appendix 4.D). In this study, the superheat in a mold (i.e., the overheating of the bulk liquid to the 

liquidus temperature) was assumed to be 15 K (15 CC) if it is not specified in the later chapter. 

The solidification of the steel in the low and intermediate carbon is complicated due to the peritectic 

reaction. You et al. [48] proposed the model to adopt the variable partition ratio of carbon coupled with the 

thermodynamic library and with both commercial and self-optimized databases in the back ground. The 

present model adopts the similar concept to change the value of the partition ratio of carbon kC in accordance 

with the increase of the carbon concentration of the steel. 

Only δ -Fe precipitates in the range of the carbon concentration less than the peritectic composition, so 

that kC 0 0.19 was adopted for the steel in this low carbon range C<0.15%. The γ -Fe with partition ratio of  

carbon (0.3–0.4) larger than that of δ -Fe begins to precipitate when the carbon concentration in the steel 

exceeds 0.15%, so that the larger partition ratio of carbon, kC 0 0.225, was adopted for the intermediate  

carbon steel. From the viewpoint of the mathematical limitation of the model, it is also reasonable to adopt a 

larger kC for the higher carbon steel to keep the error of the approximation Eq.(4.64) as small as possible, 

because the adopting larger kC yields the larger  

 
obtained as the solution of the model. The selected values 

for kC from the reported are, kC 0 0.19[30]; C < 0.15%, kC 0 0.225[31,32]; 0.15 ≤ C < 0.25%, kC 0 0.25[32]; 

0.25 ≤ C < 0.30% and kC 0 0.29[33]; 0.30 ≤ C ≤ 0.35% (Appendix 4.E). 

The partition ratios of other solutes used in the model are listed in Table 1. The formula for the liquidus 

temperature by Kawawa et al. [28] was used in the model. 
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Table 4.1 Physical properties used in the present model. 

  Property Value 

I ρ1 Density 7.7 × 103 kg/m3 

zone Cp1 Specific heat 0.77 kJ/kgK 

 K1 Thermal conductivity 30.6 W/mK 

 L Heat of fusion 276 kJ/kg 

II ρ2 Density 7.5 × 103 kg/m3 

zone Cp2 Specific heat 0.77 kJ/kgK 

 K2 Thermal conductivity 31.8 W/mK 

 kC Partition ratio of C in δ-Fe 0.19 [30] 

   0.225 [31,32] 

   0.25 [32] 

   0.29 [33] 

 kMn Partition ratio of Mn in δ-Fe 0.76 [34] 

 kSi Partition ratio of Si in δ-Fe 0.77 [33] 

 kP Partition ratio of P in δ-Fe 0.23 [34] 

 kS Partition ratio of S in δ-Fe 0.05 [35] 

 kCr Partition ratio of Cr in δ-Fe 0.95 [35] 

 kNi Partition ratio of Ni in δ-Fe 0.8 [36] 

 αC Parameter for diffusion in solid 1 

 

αMn,αSi,αP, 

αS,αCr,αNi 
Parameter for diffusion in solid 0 

 DC Inter-diffusion coefficient of C in solid 6.6 × 10−10 m2/s [37] 

 DMn Inter-diffusion coefficient of Mn in solid 1.7 × 10−11 m2/s [38] 

 DSi Inter-diffusion coefficient of Si in solid 3.5 × 10−11 m2/s [34] 

 DP Inter-diffusion coefficient of P in solid 3.2 × 10−10 m2/s [39] 

 DS Inter-diffusion coefficient of S in solid 2.1 × 10−10 m2/s [40] 

III ρ3 Density 7.4 × 103 kg/m3 

zone Cp3 Specific heat 0.77 kJ/kgK 

 K3 Thermal conductivity 31.8 W/mK 

Liquidus temperature for general steel 
T C 0 1809 − 78*(%C) − 4.9*(%Mn) − 7.6*(%Si) − 34.4*(%P)  

− 38*(%S) −1.3*(%Cr) − 3.1*(%Ni) K [28] 
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Table 4.2 Chemical compositions of the various grade steels (in mass %) and the solidus temperature T *. 

(For steel G1, interactions between silicon and carbon was neglected because carbon concentration is low) 

Steel  C Mn Si P S Cr Ni 

Measured 

solidus 

temperature 

Predicted 

Solidus 

temperature 

kc 

G1 0.04 ⸺⸺ 3.0 ⸺⸺ ⸺⸺ ⸺⸺ ⸺⸺ 1754+ 1760* 0.19 

G2 0.25 1.4 0.25 ⸺⸺ ⸺⸺ 0.1 0.75 1729++ 1721* 0.25 

G3 0.35 1.3 0.08 ⸺⸺ ⸺⸺ 0.25 0.2 1710++ 1709* 0.29 

Jernkontoret 201 0.11 1.25 0.12 0.04 0.018 0.06 0.03 1728++ 1751** 0.19 

Jernkontoret 202 0.12 1.53 0.27 0.01 0.005 0.02 0.03 1733++ 1747* 0.19 

Jernkontoret 203 0.18 1.26 0.44 0.016 0.025 0.01 0.02 1733++ 1735** 0.225 

Jernkontoret 204 0.19 1.42 0.4 0.012 0.007 0.07 0.13 1733++ 1728** 0.225 

Jernkontoret 209 0.2 0.9 0.25 0.014 0.039 0.81 1.05 1718++ 1727** 0.225 

Jernkontoret 211 0.29 0.62 0.21 0.012 0.006 1.11 0.15 1723++ 1711* 0.25 

Jernkontoret 213 0.35 0.67 0.24 0.01 0.02 0.92 0.05 1698++ 1699** 0.29 

Smetana et al. 0.077 0.635 0.291 0.021 0.008 0.049 0.027 1765+++ 1765* 0.19 

S1 0.06 1.05 0.008 0.0007 0.0006 ⸺⸺ ⸺⸺ 1767 1779* 0.19 

S2 0.13 1.04 0.005 0.0005 0.0006 ⸺⸺ ⸺⸺ 1752 1753* 0.19 

S3 0.18 1.06 0.007 0.0006 0.0006 ⸺⸺ ⸺⸺ 1744 1745* 0.225 

S4 0.27 1.04 0.01 0.0007 0.0006 ⸺⸺ ⸺⸺ 1725 1724* 0.25 

K 0.15 0.7 0.22 0.017 0.019 ⸺⸺ ⸺⸺ ⸺⸺ 1751** 0.225 

M 0.2 1.33 0.36 0.029 0.038 ⸺⸺ ⸺⸺ ⸺⸺ 1727** 0.225 

W11 0.044 1.05 0.015 0.0009 0.0008 ⸺⸺ ⸺⸺ ⸺⸺ 1785* 0.19 

W12 0.18 1.05 0.015 0.0009 0.0008 ⸺⸺ ⸺⸺ ⸺⸺ 1745* 0.225 

W21 0.044 0.61 0.24 0.015 0.009 ⸺⸺ ⸺⸺ ⸺⸺ 1778* 0.19 

W22 0.18 0.61 0.24 0.015 0.009 ⸺⸺ ⸺⸺ ⸺⸺ 1738* 0.225 

W31 0.044 1.52 0.34 0.012 0.015 ⸺⸺ ⸺⸺ ⸺⸺ 1775** 0.19 

W32 0.18 1.52 0.34 0.012 0.015 ⸺⸺ ⸺⸺ ⸺⸺ 1735** 0.225 

(+): DSC −0.1 K/s (*): [P] accounted, [S] accounted 

(++): DSC+0.017–0.025 K/s (**): [P] accounted, [S] not accounted 

     (accounted MnS precipitation) (+++): DTA +0.17 K/s 
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4.4.2 Applications of the Model to General steel 

4.4.2.1 Thermal Analysis 

The transition temperature of general steel (in this case, steel K) cast to a thickness of 0.22 m after 240 s as 

predicted by the present model is shown in Fig. 4.2. The partition ratio of carbon kC 0 0.225 was used. The 

surface and initial temperatures, 
s

T  and iT  , respectively, were 1423 and 1812 K (1150 and 1539 CC) 

(superheat ΔT 0 15 K (15 CC)). [S] was not accounted for in the model, because MnS precipitation was 

expected; the extra drop in the solidus temperature that should occur due to [S], estimated as 0.4 K, was 

therefore not accounted for in the model (Appendix 4.F). The liquidus and solidus temperatures predicted by 

the present model, which accounts for the additional solutes ([Mn], [Si], [P], and [S]) were slightly lower than 

those predicted by the Fe–C binary model [26] where only carbon is considered. However, the influence of 

these on the solidification constants was not serious (i.e., the changes in the solidification constants of the 

liquidus and solidus points were 0.9% and 3.9%, respectively, as shown in Table 4.3) as the constants were 

within the range of the dispersions (i.e., 4%–6%) of the results of the shot bullets measurements [1] (Table 

4.3). 

 

Fig.4.2 Transition temperature predicted by the model and the numerical analysis of the continuously cast steel K. (T s 0 

1423 K, ΔT 0 15 K, t 0 240 s, slab thickness 0 22 × 10−2 m, N 0 partition number of the half thickness of a slab; in this 

figure, [P] is accounted for but not [S]). 
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Table 4.3 Liquidus and solidus temperatures and solidification constants as predicted by the present model (i.e., the 

multi-component model) and the binary model [26] for steel K (ΔT 0 15 K). 

  Present model  Binary model [26] 

 (P: accounted, S: not accounted) (P: not accounted, S: not accounted) 

 

T(K) 

 Solidification 

T(K) 

 Solidification 

  constant   constant 

   (×10−2 m/s1/2)   (×10−2 m/s1/2) 

Liquidus 1791  0.347 1797  0.344 

Solidus 1751  0.245 1763  0.255 

 

A numerical heat analysis was made separately (represented by the dashed line in Fig. 4.2). A conventional 

equivalent specific heat method [49] and an upwind finite-difference method were used in the numerical 

analysis, assuming that the fraction of solid is linear to temperature in the mushy zone. A symmetric condition 

was used at the center of the slab. The numerical analysis and the analytical solutions (i.e., the present model) 

were in good agreement, as indicated by both Fig. 4.2 and Table 4.4. Better agreements were obtained when 

the partitioning of the target slab thickness was increased (e.g., the difference between the solidus points 

predicted by the numerical analysis and the model was less than 0.5% for a partitioning of 4000 for a half 

thickness of a slab); this can be seen in Table 4.4. 

 

Table 4.4 Comparison of the predicted liquidus and solidus positions by the analytical solution (present model) and the 

numerical analysis of the continuously cast steel K (ΔT 0 15 K, t 0 240 s, T C 0 1792 K, T * 0 1752 K, [P] is accounted 

for but [S] is not). 

Distance from the surface Present model Numerical analysis 

(× 10−2 m)  (N 0 4000) (N 0 2000) 

Liquidus point xC 5.37 5.39 5.40 

Solidus point x* 3.79 3.81 3.82 

 

The decrease in temperature at the center of cast slabs was estimated to be 3 K (or 3 CC) by the numerical 

analysis; this value was within the accuracy range of the temperature measurements. In addition, the heat 

supply to the central region of the cast steel by liquid down streams from the mold and by convection in bulk 

liquid was considered to limit the decrease in temperature in this region. Consequently, the assumption that the 
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temperature at the center of the slabs is kept constant made in the model is reasonable, at least from a practical 

viewpoint. The errors of the approximation yielded by Eq. (4.64) for the case in Fig. 4.2 are less than 0.2%. 

The present model involves a Fe–C binary system model [26], which converges to Neumann’s solution (i.e., 

the solution for the pure metal) in a low carbon range (e.g., [%C] < 0.03%) at t0240s as shown in Fig.4.3. This 

convergence with Neumann’s solution in a low carbon range (e.g., [%C] < 0.03%) was also found at the early 

stage of the solidification (Appendix 4.G). The good agreements of the present model predictions of the shell 

thickness at the early stage of solidification with the measurements of the breakout shell thickness by Meng 

and Thomas [47] were also obtained (Appendix 4.G).   

 

Fig.4.3 Transitions of temperature predicted by the model and the Neumann' solution (C0 0%) of a continuously cast steel. 

(C00%–0.15%, T s 0 1423 K (1150 ℃), ΔT 0 15 K (15 ℃), t 0 240 s, slab thickness 0 0.22 m) [26]. 

 

4.4.2.2 Material Analysis 

The transitions of the solute concentrations and the liquid fraction in the mushy zone of steel K predicted by 

the model are shown in Fig.4.4 The thick lines indicate the segregation ratios (C/CC) of the solutes. The 

segregation ratio of [C] at the solidus point is larger than those of [Mn] and [Si]. The effective partition ratios 

of [C], [Mn], and [Si] shown in Table 4.5 are in the range of 0.88–0.98; these are in good agreement with the 

generally accepted values (0.85–1.0). However, the effective partition ratio of [P] is somewhat smaller than 

the general findings; this may be due to the development of secondary dendrites or because the precipitation 
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of phosphate was neglected in the model. 

 

Fig. 4.4 Solute concentration and liquid fraction predicted by the model and numerical analysis of the continuously 

cast steel K (T s 0 1423 K, ΔT 0 15 K, t 0 240 s, slab thickness 0 22 × 10−2 m, and N 0 partition number of the half 

thickness of a slab. In this figure, [P] is accounted for but not [S]). 

 

Table 4.5 Predicted segregation ratios, effective partition ratios, and Mi (diffusivity) of the continuously 

cast steel K (ΔT 0 15 K, t 0 240 s). 

 
Present model 

Model by Fujimura et al. [25] 

wherein measured solidification constants were 

used 

 ([P]: accounted, [S]: not accounted) ([P],[S] : not accounted) 

Solute C*/CC  kef Mi(m2/s) C*/CC 
 kef Mi(m2/s) 

C 3.91  0.88 4.11 × 10−7 3.86  0.91 3.98 × 10−7 

Mn 1.58  0.98 3.36 × 10−7 1.69  0.98 3.30 × 10−7 

Si 1.55  0.98 3.26 × 10−7 1.56  0.99 3.20 × 10−7 

P 5.76  0.78 5.01 × 10−7 −  − − 

 MC 0 ECC + 1.07ECMn + 0.30ECSi + 0.20 ECP  MC 0 ECC + 1.12ECMn + 0.29ECSi 

 MMn 0 1.07EMnC + EMnMn + 0.30EMnSi + 0.20EMnP MMn 0 0.89EMnC + EMnMn + 0.26EMnSi 

 MSi 0 3.61ESiC + 3.36ESiMn + ESiSi + 0.67 ESiP MSi 0 3.49ESiC + 3.92ESiMn + ESiSi 

 MP 0 5.40EPC + 5.03EPMn + 1.50EPSi + EPP  
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The estimated carbon diffusivity, parameter MC, 4.11 ×10−7 m2/s, was in good agreement with the carbon 

inter-diffusion coefficient estimated by Asai and Muchi [19] (4.7 × 10−7 m2/s) and by Fujimura and 

Brimacombe [25] (3.98 × 10−7 m2/s) estimated for a Fe-0.15%C-0.70%Mn-0.22% Si continuously cast steel. 

Although these values are somewhat larger than that measured by Grace and Derge [50] (2–4 × 10−7 m2/s) 

under stagnant conditions, these are reasonable as discussed earlier (Chapter 4.4.1). 

The present analytical predictions for the concentration of carbon (thick solid line) and those predicted by the 

conventional heat analysis, which provides the solute concentration by Eq. (4.58), adopting the solidus 

temperature T* (thin dotted line), were in good agreement, as shown in Fig.4.4; the results are close and 

overlapped each other. The concentration of carbon predicted by the numerical analysis, which directly 

solved the solute-transfer equation Eq. (4.60) with a lager partitioning N 0 4000 (thick dashed line), was also 

in good agreement with the present analytical predictions (thick solid line) where *T predicted by the model 

was used. 

These agreements show that a conventional heat analysis such as the equivalent specific heat method 

adopting the solidus temperature predicted by the model provides solutions not only for the temperature but 

also for the solute concentrations, which are consistent with each other. In other words, this model provides a 

simple numerical heat analysis, which is consistent with the simultaneous solutions to the heat- and solute-

transfer equations without solving them, when *T predicted by the model is used. Thus, the present model is 

considered to significantly simplify the extensive computations required to solve the simultaneous equations 

and search the solidus temperature with associated solutes diffusivities as parts of simultaneous solution. 

 

4.4.2.3 Temperature in a Mushy Zone 

The model was evaluated using the measurement of the temperature in the mushy zone of a continuously cast 

steel (steel M), a 24 × 10−2 m × 24 × 10−2 m square bloom, which was measured by Mori et al. [51] using 

hybrid shot bullets made of different metals. The temperatures measured at different locations relative to the 

liquidus point are shown in Fig.4.5. The superheat of the liquid poured into the mold was assumed to be 20 K. 

MnS was expected to be precipitated for this steel, as shown in Appendix 4.F. Hence, [S] was not accounted 

for in the model. The extra drop of the solidus temperature due to [S] is considered to be negligible or at least 

less than 0.4 K because the solubility of sulfur is limited by the [Mn][S] product. The predicted temperature 

profile shown with the thick line (i.e., in which [P] was accounted for but not [S]) in this figure is in good 

agreement with the measured temperature profile. The predicted temperature profiles shown by the thick dotted 
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line (in which neither [P] nor [S] was accounted for) and the thin dotted line (in which both [P] and [S] were 

accounted for) deviate from the measured profiles. Thus, the better agreement is obtained for steel M when [S] 

is not accounted for but [P] is. The solidus temperatures predicted by the model are in the intermediate range 

of those estimated by the reported formulas [3–5]. The errors of the approximation, as yielded by Eq. (4.64), 

are less than 1.4%. 

 

Fig. 4.5 Transitions temperature predicted by the model and measurements [51], with shot bullets in the continuously cast 

steel M (T s 0 1423 K, ΔT 0 20 K, and t 0 317 s; [P] is accounted for, but not [S]). In the figure, the points denoted by A, 

B, and C correspond to the liquidus position of the studied steel, the position of a melted bullet shell, and the position of 

a melted Ni rod in a bullet, respectively). 

 

 4.4.2.4 Solidus Temperature  

As shown earlier, the solidus temperature *T was obtained as the part of the simultaneous solutions of heat- 

and solutes-transfer equations Eqs. (4.54) and (4.55). However, this *T can be explicitly obtained using Eqs. 
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(4.21) and (4.68), as shown in Eq. (4.72), which is the goal of the present model. 

*

2
2

2

(2 k k )

2 M

i i i

i

L
T T

K
Cp





= −
− −

−

 
(4.72) 

The solidus temperature *T  estimated with Eq. (4.72) exactly matches the set of solutions satisfying Eqs. 

(4.12), (4.40), (4.41), and (4.69). Parameter iM  corresponds to the inter-diffusion coefficients predicted by 

the simultaneous solutions. The changes of the important parameters predicted by the model for Steel S3 in 

table 4.2, for example, with respect to the surface temperature are shown in Fig.4.6. The solidus temperature 

*T and parameter Mi remained almost constant. In contrast, the solidification constants ,


and the averaged 

cooling rate R of a mushy zone slightly increased with the decrease of surface temperature (the cooling rate R 

is defined as the averaged cooling rate of the liquidus point at t0240s to complete the solidification.).  This 

suggests that the stronger cooling of the surface increases the cooling rates but not the solidus temperature and 

the associated Mi. It should be noted that the solidus temperature predicted by Eq.(4.72) does not involve the 

physical properties which are sensitive to the cooling rate. 

 

4.5  Discussion 

The solidus temperature *T of the model was compared with the zero strength temperature (ZST) and zero 

ductile temperature (ZDT). Above the ZST, solidifying steel has no strength and no ductility but does have 

some strength due to the mechanical network between dendrites. As long as some liquid remains, the steel fails 

in brittle manner due to a rapid strain concentration and failure of the inter-dendritic film. Below the ZDT, the 

solidifying steel behaves as a solid with strength and ductility. The ZDT should, therefore, theoretically be 

found at the nonequilibrium solidus temperature [16]. It was also considered that the measured ZDT depends 

on the cooling rate as many of back diffusion models predict [12-16].  However, measurements of the ZDT 

[52,53,54] are much less sensitive to cooling rate. Soel et al. [52] determined that increasing the cooling rate 

1K/s to 10K/s decreased measured ZDT only 5-10K for 0.12%C and 0.45%C steel.  This insignificant 

dependency of the solidus temperature on the cooling rate can be readily explained by the present model, Eq. 

(4.72) and Fig. 4.6.  Shin et al. [53] measured the ZST and the ZDT for steels S1–S4, as shown in Fig. 4.7.  

A nonequilibrium phase diagram of Fe–C–1.0% Mn calculated by Shin et al. [53] (CALPHAD method) is also 

shown in Fig. 4.6. The ZST and the ZDT were measured under a cooling rate of 0.17 K/s, while the averaged 

cooling rates in a mushy zone expected by the model were 0.16 K/s at t 0 240 s, the instantaneous cooling rates 
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at liquidus and solidus point are 0.053 K/s and 0.53 K/s at t 0 240 s, respectively. 

The solidus temperatures predicted by the present model were in reasonable agreement with the ZDT measured 

by Shin et al. [53].  Won and Thomas [16] obtained a solidus temperature (the two-dotted chain line in the 

figure) by assuming a constant cooling rate of 0.17 K/s and considering the back diffusion of the solutes (the 

parameters obtained by the dendrite coarsening model [15] was adopted in Clyne and Kurz model [13]). The 

solidus temperatures predicted by the present model were also in reasonable agreement with the solidus line 

predicted by Won and Thomas [16]. 

 

Fig.4.6 Effect of the surface temperature on the solidus temperature *
T , the solidification constants *,   and the cooling 

rate R. Steel S3:0.18%C,1.06%Mn,0.07%Si,0.0006%P,0.0006%S, ∆T015K, and t0240s. 
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Fig.4.7 Solidus temperature predicted by the model for different kC values, solidus temperatures estimated with reported 

formulas [3–5], ZST and ZDT values of 1.05% Mn–0.015% Si–0.0007% P–0.0006% S steel (S1–S4 in Table 4.2) 

measured by Shin et al. [53] and Fe–C–1.0% Mn phase diagram (calculated by Shin et al. [53] using the CALPHAD 

method). The model predictions were obtained with different kC in accordance with carbon concentration range 

(Appendix 4.E). The approximation errors of Eq. (4.64) remained lower than 2.0%. 

 

Finally, the solidus temperature predicted by the model was validated against the thermo-analytical 

measurements [6,55,56] as shown in Fig.4.8 (the thick line is an ideal line); the solidus temperatures estimated 

by the reported formulas [3–5] and by the computations [6,16,56] are also shown in Fig.4.8. 

The solidus temperatures predicted by the present model (Table4.2) are in reasonable agreement with that 

measured by Gryc et al. [6] and Smetana et al. [56] within ±8 K and Jernkontret steel [55] within ±12 K, 

1620

1630

1640

1650

1660

1670

1680

1690

1700

1710

1720

1730

1740

1750

1760

1770

1780

1790

1800

1810

1820

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

T
em

p
er

at
u
re

(K
)

C(%)

Fe-C-1%Mn phase diagra(CALPHD by Shin et al. )
Present Model
Solidus line by Suzuki et al.
Solidus line by Hirai et al.
Solidus line by Kawawa et al.
Estimated solidus line by Won et al.  fs=0.75
Estimated solidus line by Won et al.  fs=1.0
ZST measured by Shin et al.
ZDT measured by Shin et al.

[5]

[4]
[3]

[16]

[53]

[53]

[53]

[16]



 

86 

 

 

 

while those of Jernkontret steel 201 (0.11%C) and 202 (0.12%) shows the larger deviations (23K,15K 

respectively). Jernkontret steel 201 and 202 are the steel at which typically peritectic reaction(δ-

Fe+liquid→γ-Fe) occurs. The phosphorous in δ-Fe rapidly discharged to the residual liquid due to the 

peritectic reaction depresses the solidus temperature. This is because phosphorous has very low partition 

ratio, which are even smaller for the γ-Fe than for δ-Fe. Furthermore, the amount of the solidified δ-Fe to 

transform to γ-Fe within the range of carbon concentration from 0.1% to 0.15% is relatively larger than in 

that of carbon concentration larger than 0.15%, so that the depression of the solidus temperature due to the 

enrichment of the solutes is more significant for Jernkontret steel 201 and 202 than for the higher carbon 

steel (e.g. Jernkontret steel 203 or 204). The similar depression of the ZDT in the rage of 0.1%C to 0.2%C 

were observed in the measurements by Schmidtmann et al. [54] at the higher cooling rate 10k/s. Accordingly, 

the considerable underestimations of the present model for Jernkontret steel 201 and 202 are because the 

present model does not account for the influence of the rapid peritectic reactions in the range of 0.1%C to 

0.15%C.   

The present model predictions are in fair agreement with the thermodynamic estimations by Sugden and 

Bhadeshia [57]. The predictions of the present model are roughly 10K lower than those by Sugden et al.. 

These underestimations are reasonable because the micro-segregation are not accounted in the 

thermodynamic model by Sugden and Bhadeshia. The present model predictions are also roughly in good 

agreement with those of the back diffusion model by Won and Thomas [16]. even though the approaches to 

obtain the solidus temperature by the present model are completely different from those by Won and 

Thomas. The comparison of the both models to obtain the solidus temperature is shown in Table 4.6. The 

computed results obtained via the commercial software by Gryc et al. [6] for steels G2 and G3 were also in 

good agreement with both the measured values and those predicted by the model, while the considerable 

deviation of the computed for steel G1 (i.e., a high-Si steel) from others was observed. This extreme 

overestimation for steel G1 computed by Gryc et al. is conceivably attributed to the limitation of the 

commercial software for the high Si steel [6]. The model predictions were in the intermediate range of those 

calculated using reported formulas [3–5].  

The solidus temperatures of the present model are explicitly formulated in accordance with the carbon 

concentration, as shown in Appendix 4.H. The estimations by these formulations are within ±9 K of the 

model predictions for the steel listed in Table 4.2.  

Thus, accordingly, it is considered that the present model can provide the reasonable solidus temperature for 

the various grades steel, which are in reasonable agreement with the reported values. The benefits of the 
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present model are as follows: (1) The present model provides the solidus temperature for various grades steel 

which is instantly obtained by the algorithm shown in Appendix 4.C either with a personal computer or a 

tablet computer. (2) The present model also provides the numerical heat analysis (i.e. equivalent specific heat 

method) which is consistent with the solute- transfer equations by adopting the solidus temperature predicted 

by the model. The model is also consistent with Neumann’s solution at the low carbon concentration. (3) 

This model can reduce the large amount of computational power to search for the solidus temperature and to 

solve the heat- and solutes- transfer simultaneous equations in a mushy zone of the multicomponent alloy 

steel. 

 

 

 

Fig.4.8 Comparison of the solidus temperatures predicted by the present model and those estimated with the reported 

formulas [3-5], measurements [6,55,56], and those computed [6,16,57]. 
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4.6 Conclusions of this Chapter 

An approximate analytical model was developed to obtain simultaneous solutions, such as the solidus 

temperature for a multi-component alloy steel for nonlinear solute- and heat-transfer equations in the unsteady 

state mushy zone; in this model, a linear relation between the solid fraction and temperature in the mushy zone 

was assumed. The model predictions agree well with the conventional numerical heat analyses such as the 

equivalent specific heat method. The predicted solidification constants and the effective partition ratios of 

solutes were also found to be in good agreement with both the reported measurements and generally accepted 

values. Good agreement was also found for predictions made by the model and shot bullet measurements made 

in the mushy zone of high-manganese steel. The predicted solidus temperatures for various grades steel were in 

reasonable agreement with the measured ZDT and the reported thermo-analytical measurements. Furthermore, 

the predictions were also in fair agreement with those by a thermo-dynamic model and a back diffusion model 

for the high-manganese steel.  

Large amount of computational power is required to solve simultaneous solutions for the heat- and solute-

transfer equations of the mushy zone of multi-component alloy steel. This model provides approximate 

analytical solutions that can reduce the required computational load, saving both time and cost. This model 

also involves the Fe-C binary alloy model [26] which is consistent with the Neumann’s solution in the low 

carbon concentration range. The present model also shows that conventional heat analyses (such as an 

equivalent specific heat analysis method) that use solidus temperatures obtained by the model provide not only 

temperature but also solute concentrations as simultaneous solutions for the heat- and solute-transfer equations 

of multi-component alloy steels.  
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Appendix 4.A 

(1) Derivation of Eq.(4.12) 

The following equations are obtained from Eq.(4.3). 

1  : 1 i i if C s= = +  (4.A1) 

*0  : 0 i i if C s= = +  (4.A2) 

* i
i

i

s
C


= −  (4.A3) 

1i i is C= −  (4.A4) 

* 1
( )i i

i

C C


− =  (4.A5) 

Multiplying Eq.(4.A5) with im  and summing with respect all solutes gives 

*m
m ( )i

i i i

i ii

C C


= −   (4.A6) 

Eq.(4.1) and Eq.(4.A6) give Eq.(4.12). 

* mi

i i

T T


= −  (4.12) 

(2) Derivation of Eq.(4.44) 

The more detailed derivation of Eq.(4.44) was shown as the second line of the following equation. 

 

 

( )

( )
       

                                  A                B

( )
        =

i i s si

i s si
si s

i s si
si i s

fC f CC

t t

fC f C
C f

t t t

fC f C
C f

t t t


 +
=

 

    
= + +        

  
+ +

  

 
 

 

A : The second parenthesis in the second line, denoted as A, represents the change of the mass of the 

solute i with respect to the change of sf . This corresponds to the amount of the solute i discharged from 

the solid surface to liquid or taken into the solid from liquid to solid. The concentrations in the solid are 

not constant in the solid except the case of the rapid diffusion solute, e.g. carbon. However, only the 

surface region of the dendrite melts (or solidify). Therefore, the concentration of the solute i discharged 



 

90 

 

 

 

from the solid surface should be, siC , or solidify as the solid of which the concentration is siC .  No 

solid with the averaged value, 
siC  melts or solidify.  Accordingly, 

siC is used in the place of 
siC  in 

the second parenthesis A as follows:  

  s s
si si

f f
C C

t t

 
=

 
  

 

B : As explained in the manuscript ,
i is a parameter having a value of 0 or 1 that defines the diffusion 

limits of the solute i in the solid (i.e., 
i = 0 when the diffusion of the solute i in the solid is negligible 

and 
i = 1 when the diffusion of the solute i in the solid, such as the case of carbon, is rapid enough to 

result in homogeneous composition over distances in the order of the primary dendrite diameter).  

For the case of rapid diffusion solute (i.e., carbon), B is rewritten with 1i = (the concentration of 

carbon in solid is uniform), 

 ( ) ( )si C sC sC
s s s

C C C
f f f

t t t

  
= =

  
  

For the case of the slow diffusion solute, e.g. Mn, Cr, Ni etc. with 0i = ,(neglecting the back diffusion 

in solid) 

 Mn Mn( )
0si s

s s

C C
f f

t t

 
= =

 
  

These equations can be rewritten as follows: 

 ( ) ( )si i si si
s s s i

C C C
f f f

t t t




  
= =

  
  

Accordingly, as shown herein, the third line of Eq.(4.44) is obtained with A and B. 
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Appendix 4.B 

The error of the approximation of the erf(η), Eq.(4.64) is remained smaller than 0.2% for η > 1.73, 1% for η > 

1.39, and 2% for η > 1.24. 

 

Fig.4A1 Error of the approximation of erf(η) used in the model. 

 

Appendix 4.C 

The process to obtain the set of unknown parameters ( *T , *
2 , 2 , and 

i ) of the multi-component system is 

basically same with the that of binary alloy model [26]. The left and right sides of (40) and (41) are denoted as A, 

B, and C (B is commonly used). The unknown parameters minimizing the aimed function Z defined as follows 

were sought: 

 Z 0 (1-A/B)2 + (1-C/B)2 
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 
2

*
2 2 2

B
erf( ) erf( )

K

  
=

−

 

22
3 2

3

* 2
2 3

3

( )exp (1 )( )

C

( ) 1 erf(  )

iK T T

T T







 



 
− − 

 
=

  
− − 

  

 

 
 

2

*
2 2

1 erf( ) 2(1 k ) (1 )k
D :  

(2 k k ) (2 k k )erf( ) erf( )

i i i i
i i

i i i i i i i

N
C

M

 


  

− − +
= + −

− − − −−

 

 

 Note: /i iN M is neglected because i iN M in a general steel. 

(1) First, the initial values for *T , *
2 , and 2  are given. *T calculated with the reported 

formula is used as the initial value for *T . The initial 2 was 1.0. *
2 was given as *

2 = γ 2 , 

where the initial γ 0 0.3. 

(2) Second, the 2  is changed to minimize Z for the initial T *. Convergence is quickly 

obtained. 

(3) Then, η* minimizing Z is obtained by changing γ ( *
2  

= γ 2 ). 

(4) By substituting *
2 , 2 obtained by the above process to the left side of Eq.(4.69) provides

i  

(the left side of D: shown above). 
i  is obtained with same procedure. Substituting these

i into 

Eq. (4.12) yields the new *T . Using this *T as the initial *T and repeating the same process 

mentioned above from Eq.(4.2) to (4.4) yields, the set of ( *T , *
2 , 2 , and 

i ) as the four Eqs. 

(4.12), (4.40), (4.41), and (4.69) match. 

(5) This process is repeated until Z < 0.1, and the four decimal digits do not change in the 

analysis. 

 

Appendix 4.D 

The equivalent surface temperature that results the same amount of heat extraction of the continuously cast 

steel is roughly obtained assuming the step-wise decrease of the surface temperature T s, where T s is kept 

constant within a step as follows: 

The temperature in solid is given as follows (Eq. (4.26)): 

*

1*
1

( )
erf( )

erf( )

s
sT T

T T


−
= +  (4.A7) 
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where η1 is given by 

1

12

x

t



=  (4.A8) 

The heat extraction in a unit time from the surface (x 0 0, η10 0) is given by Eq.(4.A7) and (4.A8) as follows: 

 

*

1 1 *
0 1 1

( ) 1

erf( )

s

x

T T T
q K K

x t =

 −
= − = −


 (4.A9) 

Integrating Eq.(4.A9) from t 0 0 – t C gives the total heat extraction Qreal 

 

*

0 0

( ( ))
Q  d  d

s
t t

real T T t
q t H t

t

−
= = −   (4.A10) 

where H is denoted as follows: 

1

*
1 1erf( )

K
H

 
=  (4.A11) 

In the case T s is constant, the total heat extraction is obtained by Eq.(4.A10) as follows: 

*Q 2 ( )
sconst H T T t= − −  (4.A12) 

The equivalent T s is obtained by Q Qconst real= as follows: 

0

1 ( )
 d

2

st
s

equivalent

T t
T t

tt
=   (4.A13) 

Referring the reported surface temperature by Meng et al. [47], the surface temperature of the continuously 

cast steel are estimated as follows: 

 t 0 0 s T 0 1753 K, t 0 10.9 s T 0 1573 K, t 0 20.8 s T 0 1543 K 

 t 0 65.5 s T 0 1513 K, t 0 76.4 s T 0 1453 K, t 0 240. s T 0 1373 K 

Assuming the step-wise decrease of the surface temperature, the equivalent surface temperature, 
s

equivalentT

which results the nearly same amount of heat extraction with the above continuously cast steel, is obtained as 

follows: 

1420 K
s

equivalentT =  (4.A14) 

In this model, 
s

T 0 1423 K (01150 +273 CC) has been adopted as the equivalent surface temperature, which 

results nearly same amount of the heat extraction during t 0 0–240 s with the real continuously cast steel. 
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Appendix 4.E 

The peritectic composition is estimated to be 0.15% by the nonequilibrium pseudobinary Fe-C diagram 

of 0.015%Si-1.05%Mn-0.0009%P-0.0008%S carbon steel. The partition ratio kC 0 0.19 was adopted in the 

low carbon range (C<0.15%). The γ -Fe begins to precipitate when the carbon concentration of the steel 

exceeds 0.15%, so that the partition ratio of carbon increases with the carbon concentration. On the other 

hand, *
2  obtained with the model gradually decreases with an increase in the carbon concentration of the 

steel because an increase in the carbon concentration lowers *T so that it lowers *
2 , which represents the 

solidification rate at the solidus point. To minimize the approximation error of Eq.(4.64), the larger kC is 

adopted in accordance with the increase of the carbon concentration of the steel. The error of the 

approximation remains less than 2%, as shown in Fig. 4A2. 

The selected kC is kC 0 0.19 [30]; C < 0.15%, kC 0 0.225 [31,32]; 0.15% ≤ C < 0.25%, kC 0 0.25 [32]; 

0.25% ≤ C < 0.30% and kC 0 0.29 [33]; 0.30% ≤ C ≤ 0.35%. 

 

Fig. 4A2 The partition ratio of carbon kC used in the model. 
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Appendix 4.F 

The equilibrium solubility product of MnS of the liquid in a mushy zone is determined by Ueshima et al. 

[44] as follows: 

Si

S
log[%Mn] [%S]= 10590/ 4.302 e [%Si]T − + −   

Si

S
e 0.07=   

(1) Case of Steel K 

Substituting the average temperature ( *T +T )/2 and the initial [%Mn] and [%Si] in the mushy 

zone of steel K, the maximum [S] concentration in a mushy zone is estimated as follows: 

MnS
[%S] 0.029%=   

The solidus temperature drop (Δ *T ) due to the increase of the [S] concentration is estimated with the 

formula [15] in Eq. (4.1). 

 Δ *T 0 1.1 K 

Note that the liquidus temperature drop due to the initial [S] concentration, 0.7 K obtained by the 

liquidus temperature formula [28] has been already accounted by this formula (the liquidus 

temperature dropped corresponding to the drop in the solidus temperature, as assumed in (7), section 

4.2.1). Consequently, the extra solidus temperature drop due to [S] by not accounting [S] in the 

model is estimated to be 0.4 K. 

This solidus temperature drop due to S by the formulas of Suzuki et al., [5] Kawawa et al., [3] and 

Hirai et al. [4], wherein the precipitation of MnS is not considered, are 0 K, 4.2 K, and 19.6 K, 

respectively. 

(2) Case of Steel M 

The maximum [S] concentration in a mushy zone is estimated as follows: 

MnS
[%S] 0.010%=   

The solidus temperature drop (Δ *T ) due to the increase of the [S] concentration is estimated with the 

formula, [28], Eq. (4.1). 

Δ *T 0 0.4 K 

However, it is not necessary to take into account this extra solidus temperature drop, because the 

above [%S]MnS is much smaller than the initial [%S] 0 0.029%, whereas the liquidus temperature 

drop due to the initial [S] has been already accounted in the model. Therefore, the solidus 

temperature drop due to [S] by not accounting [S] in the model is 0.4 K, which can be neglected. The 

solidus temperature drop due to [S] by the formulas of Suzuki et al. [5] Kawawa et al. [3], and Hirai 

et al. [4] where the precipitation of MnS is not considered are 0 K, 0.7 K, and 5.9 K, respectively. 

(3) Case of Steel G1~3, S1~4, W11~W22 
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The precipitation of MnS is not expected and [S] was directly accounted in the model. 

(4) Case of W31,32 

The precipitation of MnS is expected and the solidus temperature were estimated with the 

consideration as shown in (1) and (2). 

Appendix 4.G 

Fig.4A3 shows the convergence of the predictions of the present model to the Neumann’s solution at the 

early stage of the solidification (t024s) at the low carbon concentration range (C00.025%). It should be noted 

the solidus and liquidus temperature increase with decreasing of carbon concentration. 

Meng and Thomas [47] demonstrated the precise model taking account the dynamic change of the heat flux in a 

mold due to the shrinkages and deformations of the thin shell. They calibrated their model with Neumann’s 

solution (adopting 
s

T =1273K). They also compared the predictions by the numerical analysis (the predictions 

for the Wide Face and Narrow Face were made individually) with the measurements of the break out shells of the 

low carbon steel (Fig.4A4). In the numerical analysis, they assumed that the thickness of the break out shell 

corresponded d to the position where fs =0.1. The drainage time of the molten metal from the shell was also 

accounted. The present model predictions were also compared with their measurements.  

    As can be seen in Fig.4A4, the predictions of the present model are in good agreement with the 

measurements and the predictions for the wide face by Meng and Thomas [47].                                                                                                           
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Fig.4A3 Transition of temperature predicted by the model and the Neumann’s solution (C=0%, pure metal) of a 

continuously cast slab ( : 0 0.15%, 1423 , 15 , 24sec,slab thickness=0.22m)
s

C T K T K t− =  = = . 

 

Fig. 4A4 The comparisons of the predicted shell thickness with the breakout shell thickness. 

Size of slabs:0.25mx1.876m, casting speed:1.07m/min.
s

T :1273K was adopted in the present model, WF and NF 

represent the wide face and the narrow face of the shell.  
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Appendix 4.H 

The solidus temperature as a simultaneous solution of a multi-component alloy to the nonlinear solute- and 

heat-transfer equations is obtained as shown in the main text. The following formulas are the solidus 

temperatures that are within ±9 K of the real solutions. To minimize the approximation errors yielded by Eq. 

(4.64), the solidus temperatures are obtained in the different ranges of carbon with the corresponding carbon 

partition ratio. The influence of sulfur should not be accounted in these formulas when the precipitation of 

MnS is expected, as discussed in the main text (the extra solidus temperature drop due to [S] by not 

accounting [S] in the model is separately estimated, as shown in Appendix 4.F). 

*
o C Si Mn P S Cr Ni(K) m [% ] m [%Si]+m [%Mn] m [%P]+m [%S]+m [%Cr]+m [%Ni]T T C= + + +  

 

Carbon range Adopted Ck  oT  
Cm  

Sim  
Mnm  

Pm  
Sm  

Crm  
Nim  

0.04% ≤ C < 0.15% 0.19 1809.5 −354.4 −14.0 −7.8 −202.1 −510.0 −1.4 −4.6 

0.15% ≤ C < 0.25% 0.225 1809.5 −310.0 −13.0 −7.8 −204.4 −550.4 −1.5 −4.6 

0.25% ≤ C < 0.30% 0.25 1811.0 −289.3 −12.0 −7.9 −208.6 −593.1 −1.7 −4.6 

0.30% ≤ C ≤ 0.35 0.29 1812.0 −257.5 −12.0 −8.2 −224.3 −619.0 −1.9 −5.3 

 (*) mS is 0 for the case [%Mn] [%S] exceeds the solubility product of MnS (Appendix 4.F). 

 

Appendix 4.I 

The existence and the uniqueness of the solutions of the model are validated as follows: 

The domain of *

2 2,  is defined in the D defined in the theorems shown in Appendix 4.J. 

(1) The existence and the uniqueness of the solutions of the heat balance equation. 

The solution of the heat balance equation Eq.(4.27) is shown as Eq.(4.30). The existence and uniqueness of 

the solution can be shown with Eq.(4.59). 

 

2

2
2

*
2

2 2

( ) 2exp( )
( )

erf ( ) erf ( )

i i i
i

dC C C
h

d




  



− −
= =

−
 （4.59） 

 Because the initial conditions Eqs.(4.28) and (4.29) gives 2 2 

 , the real value hL  exists which 

satisfies Eq. (4.I1). Accordingly, the solution for the heat balance equation exists as the unique solution. 

(Appendix 4.J) 
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 
 2 2

2 2 *

2 2
*

2 2

2 exp( ) exp( )( )
| ( ) ( ) |  

erf ( ) erf ( )

i i
h i i

C C
h h L C C

 
 

 




− − −−

− =  −
−

 （4.I1） 

  

(2) The existence and the uniqueness of the solutions of the mass balance equation. 

Eq.(4.63) obtained by Eqs.(4.54) and (4.55) is shown as follows:  

 
 

2 2

2 2
*

2
2 2

( ) erf ( ) erf ( )
( ) 2

erf ( ) erf ( )

i i
i

i i i i

C CdC
g C F G

d

 
 

  

  − −
  

= = − + +  
−    

 （4.63） 

The term in the bracket of the right hand of Eq.(4.63) is denoted as Ai. 

 
 

2 2

*

2 2

( ) erf ( ) erf ( )

erf ( ) erf ( )

i i

i i i i

C C
A C F G

 

 

 − −
 

= + +
 

−  

 （4.I2） 

Eq.(4.I3) is obtained by Eq.(4.3). 

1

( )
i

i iC C



=

−
    where ,  1 ,  0=i i i i i i i i if C s C s C s  



= + = + +  （4.I3） 

The following equation is obtained by Eqs.(4.12) and (4.22). 

2 2
2

2 2
2 2 2 2

( ) j

j j

K K

L L
Cp Cp

mT T


 

 





= =

+ +
− 

  

（4.I4） 

By the condition 2 2 

  given by the initial conditions and the condition 0iM   assuming the 

diffusions of solutes in liquid are not negligible, the following parameters can be given as the real values. 

2

(2 )
1i i i

i

i

k k
F

M




− −
= −  （4.61） 

2
2

(1 )
1i i i i i i

i

i i i i

s k k N
G

M M

  


 

 − −
= − + 

 
 （4.62） 

( ) i
i ij j j ij

j j

M E k D





= −  （4.52） 
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) i
i j j ij

j j

N k D





=  （4.53） 

It is noted that ijE can be obtained as the real values which satisfies Ai.00,  while ( )T T


− ,i.e. j  in 

Eq.(4.I4) has not been yet obtained at this moment*1).  The real value iL  exists which satisfies Eq.(4.I5).  

It is also noted that even for the large 
*

2 2,  , the real value iL  exists which satisfies Eq.(4.I5).   

2 2 2 2| ( ) ( ) |  2( ) i i i ig g A L C C   
  

− = − −   −  （4.I5） 

Accordingly, the unique solution for Eq.(4.63) exists (Appendix 4.J). 

 

*1) ( )T T


− and ijE  are obtained under the condition that Eqs.(4.59)and (4.63) becomes 

approximately equal by the approximation Eq.(4.64) in the model. 

 

(3) The existence and the uniqueness of the solutions of the simultaneous equations of the heat  and mass 

balance equations. 

 

Eqs.(4.I1) and (4.I5) gives Eq.(4.I6). 

* * ** *

2 2 2 2( ) ( ) ( ) ( ) ( )j j h i i i i i i ih h g g L C C L C C L C C   − + −  − + −  −  （4.I6） 

It is obvious that the real value L which satisfies Eq.4.I6 exists. 

 

Thus, accordingly, the existence of the real value L which satisfies the Lipshitz’s condtion ( Appendix 4.J) 

shows the existence of the unique solution for the simultaneous equations for the heat and mass transfer 

equations. 

 

Appendix 4.J 

(1) Theorem of the existence and the uniqueness of the solution for the ordinary differential equation  

 

g(x,y) is defined as the continuous function.  The differential equation J1 is defined in the square domain D. 

/ ( , )   ( , ) Ddx dy g x y x y=   （4.J1） 

where 

 D= ( , ) | | ,| || x y x x r y y s−  −   （4.J2） 



 

101 

 

 

 

The unique solution, ( )y x= , exists which satisfies the initial condition ( )x y =  in the region( x -r’, x

+r’), if g(x,y) satisfies the Lipschitz’s condition.  

 

< Lipschitz’s continuity condition(Lipschitz’s condition) [58] > 

   The real value L exists for the arbitrary two positions (x1,y1),(x2,y2) in D 

 1 2 2 1| ( , ) ( , ) | | |g x y g x y L y y−  −  （4.J3） 

 

(2) Theorem of the existence and the uniqueness of the solution for the simultaneous differential equations  

  

1 1 2 2 1 2 1 2( , , ,...., ), ( , , ,...., ),...., ( , , ,...., )n n n ng x y y y g x y y y g x y y y are defined as the continuous function 

for the (n+1) variables, 1 2, , ,...., nx y y y .  D is defined as the hyper rectangular around the point 

1 2, , ,...., nx y y y . 

1 2 1 1 2 2D={( , , ,...., ) | | ,| | ,| | ,..,| | }|  n n nx y y y x x r y y s y y s y y s−  −  −  −   （4.J4） 

The following simultaneous differential equations are defined in D. 

1 1 1, 2

2 2 1, 2

1, 2

/ ( , ,....., )

/ ( , ,....., )
.
.

/ ( , ,....., )

n

n

n n n

dy dx g x y y y

dy dx g x y y y

dy dx g x y y y

=

=

=

 

1 2( , , ,...., ) Dnx y y y    

（4.J5） 

The unique solution 1 2( , ,..., )ny y y which satisfies the initial conditions

1 1 2 2( ) , ( ) ,..., ( )n ny x y y x y y x y= = =  exists in the region ( ', ')x r x r− + , if the real values L exists 

to satisfies the Lipschitz’s condition for Eq.(4.J6).  

 

< Lipschitz’s continuity condition (Lipschitz’s condition) for the simultaneous differential equations [58] > 

The real values L exists for the arbitrary integer 1 j n    and for the arbitrary points 1 2( , , ,... )nx Y Y Y  and 

1 2( , , ,... )nx y y y in D. 

1 2 1 2 1 1 2 2| ( , , ,... ) ( , , ,... ) | (| | | | | |)j n j n n nf x Y Y Y f x y y y L Y y Y y Y y−  − + − + + − |  （4.J6） 

 

 

 

 



 

102 

 

 

 

References 

[1] T. Kawawa, H. Sato, S. Miyahara, T. Koyano and H. Nemoto, Determination of Solidifying Shell 

Thickness of Continuously Cast Slab by Rivet Pin Shooting, Tetsu-to-Hagane 60 (1974) 206–216. 

[2] J.C. Crepeau, A. Siahpush and B. Spotten, On the Stefan Problem with Volumetric Energy 

Generation, Heat Mass Transf. 46 (2009) 119–128. 

[3] T. Kawawa and H. Tuchida, Tekko-no-Gyouko (Solidification of steel), Appendix 4, ed. By 

Solidification Comm., Joint Sc. on Iron and Steel Basic Research of ISIJ, ISIJ, Tokyo, 1977. 

[4] M. Hirai, K. Kanamaru and H. Mori, Tekko-no-Gyouko (Solidification of steel), Appendix 4, ed. By 

Solidification Comm., Joint Sc. on Iron and Steel Basic Research of ISIJ, ISIJ, Tokyo, 1977. 

[5] A. Suzuki, T. Suzuki, Y. Nagaoka and Y. Iwata, On Secondary Dendrite Arm Spacing in Commercial 

Steels Having Different Carbon Contents, J. Jpn. Inst. Met. 32 (1968) 1301–1305. 

[6] K. Gryc, B. Smetana, M. Zaludova, K. Michalek, P. Klus, M. Tkadleckova, L. Socha, J. Dobrovska, P. 

Machovcak, L. Valek, R. Pachlopnik and B. Chmiel, Determination of the Solidus and Liquidus 

Temperatures of the Real-Steel Grades with Dynamic Thermal-Analysis Methods, Mater. Technol. 47 

(2013) 569–575. 

[7] E.A. Mizikar, Mathematical Heat Transfer Model for Solidification of Continuously Cast Steel Slabs, 

Trans. AIME 239 (1967) 1747–1753. 

[8] J. Szekely and V. Stanek, On Heat Transfer and Liquid Mixing in the Continuous Casting of Steel, 

Metall. Trans. 1 (1970) 119–126. 

[9] J. Matsuno, H. Nakato and H. Ohi, An analysis of Solidification Rate and Surface Temperature of 

Continuous Casting Slabs, Tetsu-to-Hagane 60 (1974) 1023–1032. 

[10] Y.K. Chaung and K. Schwerdfeger, Experimentelle und Theoretische Untersuchung der Erstarrung 

einer Eisen-Kohlenstoff-Legierung mit 0.6%C, Arch. Eisenhüttenwes 44 (1973) 341–347. 

[11] P.H. Shingu, K. Takeshita, R. Ozaki and T. Akiyama, An analysis of the Solidification of a Binary 

Eutectic System Considering Temperature and Solute Distribution, J. Jpn. Inst. Met. 42 (1978) 172–

179. 

[12] H.D. Brody and M.C. Flemings, Solute Redistribution during Dendritic Solidification, Trans. Met. 

Soc. AIME 236 (1966) 615–624. 



 

103 

 

 

 

[13] T.W. Clyne and W. Kurz, Solute Redistribution during Solidification with Rapid Solid State Diffusion, 

Met. Trans. 12A (1981) 965–971. 

[14] I. Ohnaka, Mathematical Analysis of Solute Redistribution during Solidification with Diffusion in 

Solid Phase, Trans. ISIJ 26 (1986) 87–96. 

[15] V.R. Voller and C. Beckerman, Approximate Models of Microsegergation with Coarsening, Metall. 

Trans. A 30A (1999) 3016–3019. 

[16] Y.M. Won and B.G. Thomas, Simple Model of Microsegregation during Solidification of Steels, 

Metall. Mate. Trans. A 32A (2001) 1755–1767. 

[17] I. Ohnaka and T. Fukusako, Calculation of Solidification of Castings by a Matrix Method, Trans. Iron 

Steel Inst. Jpn. 17 (1977) 410–418. 

[18] K. Kumai, A. Sano, T. Ohashi, E. Nomura and H. Fujii, Study on Solidification Behavior, Solute 

Segregation and Fluid Flow in Continuously Cast Slab, Tetsu-to-Hagane 7 (1974) 894–914. 

[19] S. Asai and I. Muchi, Analysis of Effective Distribution Coefficient Based of Transport Phenomena 

in Liquid and Solid Region, Tetsu-to-Hagane 64 (1978) 1685–1692. 

[20] R.N. Hills, D.E. Looper and P.H. Roberts, A Thermodynamically Consistent Model of a Mushy 

Zone, Q. J. Mech. Appl. Math. 36 (1983) 505–539. 

[21] D.V. Alexandrov, Solidification with a Quasi-Equilibrium Mushy Region: Exact Analytical 

Solution of Nonlinear Model, J. Crystal Growth 222 (2001) 816–821. 

[22] K. Takeshita, An Analysis of the Solidification of a Binary Eutectic System in Consideration of 

Both Heat and Solute Diffusion, J. Jpn. Inst. Met. 47 (1983) 647–653. 

[23] H.E. Huppert and M.G. Worster, Dynamic Solidification of a Binary Melt, Nature 314 (1985) 703–

707. 

[24] D.V. Alexandrov and V.P. Malygin, Self-Similar Solidification of an Alloy from a Cooled 

Boundary, Int. J. Heat Mass. Transf. 49 (2006) 763–769. 

[25] T. Fujimura and J.K. Brimacombe, Mathematical Analysis of Solidification Behavior of 

Multicomponent Alloys, Trans. Iron Steel Inst. Jpn. 26 (1986) 532–539. 

[26] T. Fujimura, K. Takeshita and R.O. Suzuki, Mathematical Analysis of the Solidification Behavior 

of Plain Steel Based on Solute- and Heat- Transfer Equations in the Liquid-Solid zone, Metall. Mate. 

Trans. B 49 (2018) 644–657. 



 

104 

 

 

 

[27] H.S. Carslaw and J.G. Jaeger, Conduction of Heat in Solids, 2nd ed., Oxford University Press, New 

York, Tronto, Tokyo, 1959, 283–291. 

[28] T. Kawawa, Tekko-no-Gyouko (Solidification of steel), Appendix 4, ed. By Solidification Comm., 

Joint Sc. on Iron and Steel Basic Research of ISIJ, ISIJ, Tokyo, 1977. 

[29] S. Kato and H. Yoshida, Tekko-no-Gyouko (solidification of steel), The Micro Segregation of 

SUS310S Continuously Cast SUS310S steel, ed. By Solidification Comm., Joint Sc. on Iron and 

Steel Basic Research of ISIJ, ISIJ, Tokyo, 1977, 61–63. 

[30] Tekko-Binran (Handbook for steel), 3rd ed., ISIJ, Maruzen, Tokyo, 1981, vol. 1, 193–194. 

[31] C.E. Sims, Electric Furnace Steelmaking, vol. 2, John Wiley & Sons, New York, NY, 1962, 99. 

[32] W.A. Tiller, Solute Segregation during Ingot Solidification, J. Iron Steel Inst. 192 (1959) 338–350. 

[33] W.A. Fisher, H. Splizer and M. Hishinuma, Das Zonenschmelzen von Eisen und die Ermittlung der 

Verteilungskoeffizienten für Kohlenstoff, Phosphor, Schwefel und Sauerstoff, Arch. Eisenhüttenwes. 

31 (1960) 365–371. 

[34] Tekko-no-Gyouko (solidification of steel), Supplement, Solidification Comm., Joint Sc. on Iron and 

Steel Basic Research of ISIJ, ISIJ, Tokyo, 1977. 

[35] A. Hays and J. Chipman, Mechanism of Solidification and Segregation in a Low-Carbon Rimming 

-Steel Ingot, Trans. Met. Soc. AIME 135 (1938) 85. 

[36] J. Chipman, Basic Open-Hearth Steelmaking, Physical Chemistry of Steelmaking Committee, Iron 

and Steel division, AIME, 1951, 632. 

[37] D.F. Kalinovich, I.I. Kovenskii and M.D. Smolin, Carbon State in Austenite with 0, 4 and 0, 6 

Weight Percent Content of C, Izv. Vyssh. Ucheb. Zaved., Fiz. 9 (1971) 116. 

[38] J.S. Kirkaldy, R.N. Smith and R.C. Sharma, Diffusion of Manganese in Paramagnetic BCC Iron, 

Met. Trans. 4 (1973) 624–625. 

[39] G. Seibel, Metallographie-Diffusion du Phosphore Dans le fer, Compt. Rrend. 256 (1963) 4661–

4664. 

[40] J.H. Swisher, Sulfurization Kinetics of Delta Iron at 1410 C, Trans. AIME 239 (1967) 110–113. 

[41] T. Mitsuo, T. Horigome, S. Saito, E. Nomura, Y. Kitamura and R.Kono, On the Accumulation 

Mechanism and Reducing Process of Large Non-metallic Inclusions in the Bottom Equiaxed Zone of 



 

105 

 

 

 

Ingots, Tetsu-to-Hagane, 57 (1971) 915-941. 

[42] H. Nomura, Y. Tarutani and K. Mori, Mathematical Model of Formation of Segregation Zone 

Caused by Volume Change in Solidification of Iron Steel, Tetsu-to-Hagane, 67 (1981) 1449-1461 

[43] R.D. Phelke, A. Jeyarajan and H. Wada, Summary of Thermal Properties for Casting Alloys and 

Mold Materials, Grant DAR78-26171, The university of Michigan-National Science Foundations, 

Applied research division, Dec.1982  

[44] J.S. Kirkaldy and E. Baganis, Thermodynamic Prediction of the Ae3 Temperature of Steels with 

Additions of Mn,Si,Ni,Cr,Mo,Cu, Metall.Trans. 9A (1978) 495-501. 

[45] Y. Ueshima, H. Yuyama, S. Mizoguchi and H. Kajioka, Effect of Oxide Inclusions on MnS 

Precipitation in Low Carbon Steel, Tetsu-to-Hagane 75 (1989) 501–508. 

[46] F. Kurosawa and I. Taguchi, Precipitation Behavior of Phosphides in the Centerline Segregation 

Zone of Continuously Cast Steel Slabs, J. Jpn. Inst. Met. 50 (1986) 89–97. 

[47] Y.A. Meng and B.G. Thomas, Heat-Transfer and Solidification Model of Continuous Slab Casting: 

CON1D, Metall. Mate. Trans. B34 (2003) 685–705. 

[48] D. You, C. Bernhard and G. Wieser, S. Michelic, Microsegregation Model with Local Equilibrium 

Partition Coefficients during Solidification of Steels, Steel Res. Int, 87 (2016) 840–849. 

[49] K. Katayama, S. Hattori, A Study of Heat Transfer with Freezing, Trans. Japanese Soc. Mech. Eng. 

40(1974) 1401-1411. 

[50] R.E. Grace and G. Derge, Diffusion of Third Elements in Liquid Iron Saturated with Carbon, Trans. 

Metall. Soc. AIME 212 (1958) 313–337. 

[51] T. Mori, K. Ayata, J. Fujisawa and H. Sako, Temperature and Thermal Stress in the Solidifying 

Shell of the Continuously Cast Steel, Tekko-no-Gyouko (Solidification of steel), ed. By 

Solidification Comm., Joint Sc. on Iron and Steel Basic Research of ISIJ, ISIJ, Tokyo, 1977, 237–

239. 

[52] D.J. Soel, Y.M. Won, K. Hwan OH,Y.C.Shin and C.H.Yim, Mechanical Behavior of Carbon Steels 

in the Temperature Range of Mushy Zone, ISIJ international 40 (2000) 356-363. 

[53] G. Shin, T. Kajitani, T. Suzuki and T. Umeda, Mechanical Properties of Carbon Steels during 

Solidification, Tetsu-to-Hagane 78 (1992) 587–593. 

[54] E. Schmidtmann and F. Raoski, Bnfluß des Kohlenstoffgehaltes von 0,015 bis 1% und der 



 

106 

 

 

 

Gefügestruktur auf das Hochtemperaturfestigkeits‐und‐Zähigkeitsverhalten von Baustählen nach der 

Erstarrung aus der Schmelze, Arch. Eisenhüttenwes. 54 (1983) 357–362 

[55] A Guide to the Solidification of Steels, Jernkontret, Stockholm, 1977. 

[56] B.Smetana,M.Kawuloková,S.Zlá,A.Kalup,M.Strouhalová,L.Řeháćková,S.Rosypalová,M.Tkadlečk

ová,K. Michalek and J. Dobrovská, Comparison of Solidus and Liquidus Temperature of Real Low 

Carbon Steel Grade Obtained by Use of Thermal Analysis Methods, Prace Instytutu Metalurgii 

Żelaza nr 2/2016, 68,33-39.  

[57] A.A.B. Sugden and H.K.D.H. Bhadeshia, Thermodynamic Estimation of Liquidus, Solidus, Ae3 

Temperatures, and Phase Compositions for Low Alloy Multicomponent Steels, Materials Science 

and Technology 5 (1989) 977-984. 

[58] Kouji Kasahara, Basis of the Differential Equation, Asakura Publishing Co.,LTD, Tokyo,1982   

  



 

107 

 

 

 

Chapter 5 

Effect of Stirring on Crystal Morphologies and on Macro-Segregation 

 

Abstract 

To minimize the macro-segregation in continuously cast steel slabs, the effects of the stirring on the macro-

segregation were studied. Industrial findings by the metallographic observations of the steel slabs showed 

macro-segregation was improved by the refinements of crystals. It was also found that the stirring at low 

fraction solid refined crystals. The unsolidified liquid core of the continuously cast slab with the optimum 

stirring was well packed with the refined crystals whereas it was not with coarse equiaxed crystals. The 

analogue study with experiments of Pb-Sn alloy showed, similarly as with steel slabs, the stirring at low solid 

fraction refined crystals. Also, the artificially created cavity in a mush was well packed with the refined, 

globular, crystals whereas it was not with the coarse dendritic crystals. Thus, it is considered the stirring at the 

low solid fraction is advantageous to refine crystals and to improve macro-segregation.  

 

5.1  Introduction 

The goal of continuously casting slabs with homogeneous composition is difficult to achieve owing to the 

strong tendency for elements such as phosphorous, sulfur and manganese to segregate. The segregation may 

appear on the “micro” scale between dendrite arms or on the larger “macro” or semimacro” scale. Macro and 

Semimacro-segregation are particularly undesirable in slabs for plate application because they may give rise 

to welding cracks, ultrasonic-inspection defects, hydrogen-induced cracks [1]. Ohashi et al. [2] reported the 

precipitated MnS inclusion deteriorated both the ductile fracture and brittle fracture of the steel plate. It was 

also found that manganese and phosphorous in the segregated region of the steel plate decreased the nil-

ductility transition temperature in notch tensile tests due to the transformation to the multensite-bainite duplex 

structure [3]. The hydrogen induced cracks are also induced by the segregations of manganese and 

phosphorous [3]. The macro- or semimacro- segregations appear at the centerline or as spots distributed in the 

central region in continuously cast slabs. Macro-segregation is caused by liquid movement in the semi-solid 

mush during the solidification process; in the interior of slabs it is influenced by the morphology and packing 

of crystals, and electromagnetic stirring below the mould [4,5,6]. 
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The objectives of this study are to elucidate the influence of the crystal morphology on macro segregation 

based on the industrial findings and the analogue study with Pb-Sn alloy.  

 

5.2  Macro Segregation in the Interior of Slabs 

 

Macro-segregation in the interior continuously cast slabs is influenced by the shape pf crystals freely moving 

in the liquid pool and by the closeness of packing of crystals as they settle under the influence of gravity to the 

bottom of the sump. Coarse dendritic crystals, for example, do not pack closely, as compared to fine “globular” 

(more equiaxed) crystals, leaving relatively large pockets of liquid in which elements such as manganese, 

phosphorous and sulphur may segregate during solidification [5]. Bulging of the slabs near the point of final 

solidification also is a major factor in the formation of centerline segregation as interdendritic liquid is drawn 

into the void created by the bulging action. 

The influence of stirring on the refinement of crystal shape and macro-segregation were investigated with aid 

of a Pb-10% Sn alloy analogue of steel [5].  

 

5.2.1 Industrial Findings 

The specifications of the casting machine and the conditions under which the industrial trials were conducted 

are presented in Table 5.1. It may be noted that stirrers were located at two positions beneath the mould, 5.4 

and 10.4m below the meniscus respectively. In the test, the casting speed was varied so that the thickness of 

the solid shell, or fraction of unsolidified core remaining, change at the stirrer position. The liquid core fraction, 

fc, defined as the ratio of the thickness of the unsolidified zone between the upper and bottom side of white 

bands, caused by the liquid flow by EMS, relative to the slab thickness, could be determined directly by 

measuring the position of the white bands in transverse sections of fully solidified slabs [4]. The effect of liquid 

core fraction, fC at the No.2 stirrer, on centerline segregation was shown in Fig. 5.1 [4,5]. Thus it is seen that 

centerline segregation, expressed as an index (I.C.S. = area at the centerline occupied by segregated 

solutes/overall length of centerline length), is nearly the same with either both No.1 and No.2 stirrers or solely 

No.2 stirrer. This suggest that the No.1 stirrer is not as effective in changing the macro-segregation as the No.2 

stirrer. It also is observed that the centerline segregation is a minimum when the liquid core fraction, fC is about 

0.2. It is considered, hence, that the stirring at fc=0.2 which corresponds to low fraction solid in liquid core is 
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effective to refine crystals, whereas the stirring at fc=0.07 which corresponds to the high solid fraction in liquid 

core is not. 

To improve the susceptibility to Hydrogen Induced Cracking (HIC) in the steel plates for line pipe use, the 

solutes distributions in the transverse section (samples of 4x4cm2, were taken from the central region of 

continuously cast slabs) were investigated. The extent of the segregations of manganese and phosphorous in 

the samples were measured by an EPMA Macroanalyzer with the 100μm diameter beam. The points of 

measurements to cover 4x4cm2 section was 64x104. The maximum concentrations relative to those of bulk 

liquid decreased with the decrease of the sizes of semimacro-segregation spots, as shown in Fig.5.2. It is seen 

that stirring at fc=0.2 is advantageous to decrease the sizes of spots which results the decrease of the maximum 

concentration ratio of manganese and phosphorous in semimacro-segregation spots. Fig.5.3 shows the 

influence of the liquid core ration fc on the sizes of the spots, semimacro-segregations distributed in the central 

region of continuously cast steel slabs. It is seen that the number of the spots, semimacro-segregations with 

the diameter more than 1 x10-1 cm decreases with the decrease of fc. 

Thus, it is considered that the stirring at fc=0.2 is more effective than that at fc=0.3 or fc=0.37 to refine crystals 

and reduce the maximum concentrations of manganese and phosphorous in the segregated spots. It is noted 

that this results are consistent with the results of I.C.S. in the range of the higher fc more than 0.2 (Fig. 5.1).  

Thus, hence, it is considered that the refinement of crystals to obtain closer packing of crystals and smaller 

semimacro-segregation spots between crystals. It may be noted that the susceptibility to HIC can be improved 

by decreasing the phosphorous concentration of bulk liquid as to the minimum level of 0.005% [7] which may 

not be always available in the general mass production process. Thus, the efforts to minimize the macro- or 

semimacro- segregation in continuously cast slabs should be necessary. 

A detailed metallographic study [4,5] was made of changes to crystal morphology in the center region of slabs 

cast with EMS as shown in Fig.5.4. Both crystals in B(fC=0.2) and C(fC=0.37) are refined and more globular 

than those in A (fC=0.07). This revealed that, depending on the casting speed, No.2 EMS had the effect of 

changing crystal morphology from coarse dendritic to a finer globular shape. The influence of the casting speed 

on the thickness of the refined crystals in the core of the slab and the positions of the zone of refined crystals 

are shown in Fig.5.5. Thus, the strongest influence of stirring (No.2 EMS) on crystal refinement was found at 

casting speed 1 m/min (fC=0.2). Below 0.9m/min (typically 0.7m/min, fc=0.07), there is virtually no refinement 

of crystal morphology by EMS. The refined crystal zone is seen to be displaced toward the lower side of the 

slab due to descending crystals settling into the curved liquid cavity. As a results, a vertical symmetry on 
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crystal structure at 1.0 m/min (fc=0.2) is lost at the higher casting speed (e.g. at 1.3 m/min(fc=0.37)), so that 

the upper side of liquid core is not sufficiently filled with refined crystals as compared to that at 1.0 

m/min(fc=0.2). Thus, it is considered that the stirring at fc=0.2 which corresponds to low fraction solid in 

liquid core is effective to refine crystals and desirable to obtain a symmetry on crystal structure. 

These findings are summarized as follows: 

(1) The electromagnetic stirring EMS at fc00.2 minimize the Index of Centerline segregation, I.C.S. (Fig. 5.1). 

(2) The refinements of crystals are obtained when fc is larger than 0.2 and is not when fc is smaller than 0.2 

(e.g. fc00.07), so that the stirring at fc≥0.2 is essential to refine crystals (Fig. 5.4 and 5.5). 

(3) The sizes of macro- or semimacro- segregation spots decrease with the decrease of fc (Fig. 5.2). 

(4) (2) and (3) suggest that the extents of manganese and phosphorous of macro- or semimacro segregation 

spots are minimized by the stirring at fc00.2.  

(5) (4) and (1) are consistent each other.  

 

Table 5.1 Principal specifications of the caster and test conditions 

Item Specification 

Machine specification Machine type Vertica-Progressive bending-

progressive unbending 

Length of vertical supporting 3000mm 

Metallurgical length 36.5m 

Casting conditions Slab size 230x1300mm 

Casting velocity 0.7-1.3m/min 

Superheat 18-40℃ 

Chemical composition of the 

cast steel 

0.12-0.18%C,0.014-0.024%Si, 

0.55-0.80%Mn,0.009-0.023%P, 

0.007-0.016%S 

EMS conditions Stirrer type Linear mortar type 

Stirring direction Horizontal 

Frequency 0.3-3.0 Hz 

Distance from the meniscus No.1 EMS 5.4m 

 No.2 EMS 10.4m 
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Fig. 5.1 Effect of the liquid core ratio of the slabs where liquid core was stirred by No.2 EMS [4,5]. 

 

 
Fig. 5.2 Relations between the extents of maximum concentration of solutes and diameters of the semimacro 

segregation. Measure by the EPMA Macro analyzer with 100μm beam. 
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Fig. 5.3 Effect of the liquid core ratio of the slabs where liquid core was stirred by No.2 EMS on the sizes of semi-

macro- segregations (spots distributed in central region of continuously cast slabs). 

 
Fig. 5.4 Crystal morphologies in the transverse sections of the continuously cast slab stirred by EMS at the different 

liquid core ratio (Chemical composition: 0.12-0.18%C,0.014-0.024%Si, 0.55-0.80%Mn,0.009-0.023%P, 0.007-

0.016%S, Casting speed 0.7-1.3m/min).  
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Fig. 5.5 Influence of the casting velocity on the positions of the central zone of refined crystal zone and white bands 

induced by No.2 EMS [5]. 

 

5.2.2 Analogue Study with Mechanical Stirring  

 

The effect of mechanical stirring on crystal morphology and macro-segregation was studied in the laboratory 

using the rotary furnace shown in Fig. 5.6 [5]. The furnace was resistively heated and was rotated at a speed 

of 125 r.p.m. A mould shown in Fig. 5.7. was located inside the furnace. The mould was constructed of stainless 

steel, coated with carbon paste and was capable of disassembly to release the solidified ingot of Pb-10%Sn 

used as the metal analogue. The Phase diagram of Pb-Sn binary alloy [8] is shown in Fig. 5.8. The bottom of 

the mould also was fitted with a plunger which could be withdrawn partially prior to complete solidification 

of the ingot to simulate the action of slab bulging or solidification shrinkage. 

In the experiments, molten alloy was cooled at 2℃/min and below 350℃ tumbled to the desired test 

temperature in solid -liquid region. The cooling rate below the liquidus temperature (300℃) was 0.5℃/min. 

The temperature then was held constant and tumbling was continued for various times. Finally, tumbling was 

stopped for 180s to permit the crystals to settle and thereafter the plunger rod was pulled downward to create 

an artificial cavity in the sedimented crystal zone. After another 180s the mould was water quenched; The Pb-
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Sn ingot subsequently was sectioned axially, polished, etched and examined with respect to crystal morphology. 

Typical examples are shown in Fig. 5.9: Both of sample E and K were cooled stationary, but K was tumbled 

from 294℃ to 289℃(fs00.4-0.7) and sample D were continuously tumbled from 300℃(fs00) to 294℃(fs00.4). 

It was found that crystal refinement was achieved by mechanical stirring (tumbling) when the fraction solid 

was less than 0.4(Sample D in Fig. 5.9). It was also found that the dendritic crystals precipitated in the low 

faction solid (fs is 0 to 0.4) are hardly refined by the mechanical stirring (Sample K in Fig. 5.9). This can be 

seen also in Figure 10. The fraction of solid was estimated by the lever rule because the liquid and solid were 

fully mixed by tumbling under slow cooling rate. It may be noted, in the range of low solid fraction, those 

estimated with lever rule were roughly consistent with the estimates by Scheil’s equation (the partition ratio 

of tin, kSn=0.55, can be used as the averaged the equilibrium partition ratio of Pb-10%Sn alloy). Thus, it is 

considered that the stirring at low solid fraction (fs<0.4) is essential to refine crystals.  

With respect to packing/macro-segregation, the fine, globular shape, crystals generated by tumbling were 

found to occupy the void created by the withdrawn plunger (Sample D and G). However unrefined coarse 

dendritic crystals did not behave similarly but remained stationary and only inter-dendritic liquid filled the 

cavity to create a pocket of macro-segregation (Sample E and K) as shown in Fig. 5.10. 

Clearly the fine globular crystals are desirable both from the standpoint of packing and minimization of macro-

segregation. It may be noted that when the artificial cavity was created with solid fraction greater than 0.75 

neither crystals (of any shape) nor inter-dendritic liquid moved to fill it. This finding agrees well with results 

reported for steel by Takahashi et al. [9]. 

 

 
Fig. 5.6 Scematic diagram of rotary furnace: (1) motor (2)chromel-alumerl thermocouple (3) mould (4) ice cold 

junction (5) water inlet (6) water outlet (7) slip ring for thermocouple and power supply [5].  
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Fig. 5.7 Schematic diagram of the mould used in the mechanical stirring(tumbing) experiments.  

(1) stainless steel mould (2)cylindrical plunger (3)chromel-alumel thermocouple (4) 4mm glass tube  

(5) aluminum seal olate [5]. 

 

Fig. 5.8. Phase daigarm of Pb-Sn binary alloy [8]. 
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E                         K                           D 

 
Fig. 5.9 Refinement of crystals from the dendritic crystals to the globular crystals by mechanical stirring (tumbling 

the mould) Note: The refined globular crystals were found in sample D (tumbled 0< fs <0.4). Dendritic equiaxed 

crystals in sample K were hardly refined with the tumbling at high fraction solid (fs >0.4).  

 

 
Fig. 5.10 Effect of the tumbling on crystal morophologies of Pb-10%Sn alloy. 
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Fig. 5.11. Effects of crystal morphologies on packing the void created by the withdrawn plunger 

Note: a mould was kept stationary at the quenched temperature for 180s before creating the cavity. 

 

5.3  Discussion  

Laboratory experiments with Pb-Sn alloy have been conducted to explain the effect of EMS on the refinement 

of internal structure in continuously cast slabs [5]. These analogue study has shown that stirring at low fraction 

solid is essential to refine crystals. Also unrefined coarse, dendritic crystals do not move easily to fill voids 

created by bulging or solidification shrinkage; instead inter-dendritic liquid may fill the cavities and create 

zones of macro-segregation.  
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       Sample D                 Sample G 
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 Temperature of the creation
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plunger(℃)
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G ○ ○ 20 292 (fs=0.5)
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The numerical heat analysis on the continuous casting was performed to compare the metallographic findings 

of the continuously cast slabs with this analogue study. The heat analysis focusing on the interior temperature 

in the steel slab, however, is not easy, as compared to that on the surface temperature analysis, because of the 

lack of the measured temperature of the interior of slabs in the real process. Moreover, the heat generation due 

to solidification in a mushy zone is not sufficiently relevant and the reported formulae of the solidus 

temperature have not been confirmed with the reliable measurements. For example, significant discrepancies 

exist between the thermoanalytical measurements of the small specimen and the values obtained from the 

reported formulae (up to 40K) or the thermodynamic calculations (up to 50k) [10]. To overcome these issues, 

Fujimura and Brimacombe [11] and Fujimura, Takeshita, and Suzuki [12] obtained the approximate analytical 

solutions of the heat- and solute transfer equations assuming the linear heat generation in a mushy zone with 

respect to temperature. It was shown the solutions for continuous casting of the steel were consistent with 

Neumann’s solution in the low carbon concentration range and the conventional numerical heat analysis, such 

as the equivalent specific heat method. Based on these studies, the numerical heat analysis of the continuously 

cast slabs by the equivalent specific heat analysis with the upwind finite-deference method was demonstrated 

assuming a linear heat generation in a mushy zone with respect to temperature. A symmetric condition was 

used at the center of a slab. The surface temperature at the early stage and both at the middle and final stage 

was calibrated with the reliable analysis based on the measurements by Meng and Thomas [13] and the typical 

process data of the caster, respectively. The physical properties, the liquidus temperature [14] and the solidus 

temperature predicted by the model Ⅲ used in the analysis are listed in Table 5.2. It is noted that the influence 

of the stirring by EMS on the solidification was neglected in the heat analysis assuming that the mixing of 

liquid occurs only in the limited region near the EMS position. 

The result of the numerical heat analysis for the case of 1.0m/min (liquid core ratio fc=0.2) was shown in Fig. 

5.12. The position of the white band due to No.2 EMS measured directly in the transverse section of the fully 

solidified slab was also shown in Fig.5.12. The solid fraction fs at the position of white band roughly 

corresponds to that of 0.1 predicted by the numerical heat analysis. The exact fraction solid of the white band, 

unfortunately, is not sufficiently relevant even though many of the investigations focusing on white band [9,16] 

were conducted. However, it is considered that white band could be formed in the range from fs=0 to fs≒

0.7( at fs>0.67, the liquid in a mushy zone cannot freely move) [9]. Thus, it is considered, at least, that the 

result of heat analysis is not unreasonable. Table 5.3 shows the summary of the results of both the continuous 

casting of steel slabs and the analogue study by Pb-Sn alloy on the refinement of crystals. The estimated 

fraction solid sf  defined as an averaged fraction solid in the liquid core within the white bands was 0.15 for 
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case A(fc=0.07) where only coarse dendritic crystals were observed. In contrast to A, the estimated sf  of 

B(fc=0.2) and C(fc=0.37) were 0.02 and 0.03, respectively, where the refined crystals were observed in a liquid 

core. These results suggest that the refinement of crystals is obtained by EMS where fraction solid is low but 

is not obtained at the high solid fraction solid. It should be noted that the liquid core of A was considered to 

be stirred after coarse dendritic crystals developed, so that these coarse crystals were not refined by the stirring. 

These findings are, basically, well consistent with the results of the analogue study of Pb-Sn alloy (Table 5.3).  

Accordingly, it is considered, thus, the refinement of crystal, which is achieved by the stirring at low solid 

fraction, is advantageous to minimize macro-segregation by the close packing of refined crystals in the 

unsolidified liquid core of the continuously cast slabs.  

 

Table 5.2 Physical properties used in the thermal analysis 

  Property Value  

Solid 

zone 

  

  

ρ1 Density 7.7 × 103 Kg/m3 

Cp1 Specific heat 0.77 kJ/kgK 

K1 Thermal conductivity 30.6 W/mK 

Solid and Liquid 

coexisting 

zone 

L Heat of fusion 276 kJ/kg 

ρ2 Density 7.5 × 103 Kg/m3 

Cp2 Specific heat 0.77 kJ/kgK 

K2 Thermal conductivity 31.8 W/mK 

Liquid  

zone 

  

ρ3 Density 7.4 × 103 Kg/m3 

Cp3 Specific heat 0.77 kJ/kgK 

K3 Thermal conductivity 35.0 W/mK 

Liquidus temperature (Kawawa,1977) 1793 K 

Solidus temperature (Hirai, Kanamaru&Mori,1977) 1748K 

Steel composition 0.15%C,0.65%Mn,0.019%Si,0.016%P,0.012%S 

 

        Table 5.3 Comparison of the effects of the stirring on crystal morphologies in continuously cast steel slabs 

and the PbSn alloy 

  

Continuously 

cast slab 

  

Sample A B C 

Casting speed (m/min) 0.7 1.0  1.3 

Conditions 

of No.2 

EMS  

fc: liquid core ratio  0.07* 0.2* 0.37* 

sf : averaged solid fraction in 

the liquid core (within the 

white bands) 

0.15** 0.02** 0.03** 

Crystals observed in the liquid core 

Coarse 

dendritic 

crystals 

Refined 

crystals 

Refined 

crystals 

  

Analogue 

study by Pb-

10%Sn alloy 

Sample K D G 

fs: solid fraction at which a mould was 

tumbled 
0.4∼0.7 0.0∼0.4 0.0∼0.5 

Crystals typically observed in the samples 

Coarse 

dendritic 

crystals 

Refined 

crystals 

Refined 

crystals 

(*) the ratio of the thickness of the unsolidified zone between the upper and bottom white bands relative  
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to the slab thickness 

(**) Estimated by the numerical heat analysis 

 

  
Fig. 5.12. Development of shell thickness of the continuously cast steel slabs estimated by a numerical heat analysis 

(Mesh size of the thickness :0.00575cm, Mesh size of time:2.5x10-5 s, Casting speed: 1.0 m/min, Super heat in a 

mould :15K, Liquids temperature: 1798K, Solidus temperature:1748K, Steel composition: 0.15%C, 0.65%Mn, 

0.019%Si, 0.016%P, 0.012%S) 

 

5.4  Conclusion of this Chapter 

 

The metallographic observations of the continuously cat steel slabs showed that the electro-magnetic stirring 

applied at low fraction solid refined crystals (globular crystals). The central region of the continuously cast 

steel with the optimum stirring was well packed with the refined crystals whereas it was not with coarse 

equiaxed crystals. The analogue study with experiments of Pb-Sn alloy showed that the stirring at the low 

fraction solid was essential to refine crystals as found in the real process. It was also found the artificial cavity 

in a mush made during solidification was well packed with the refined, globular, crystals whereas it was not 

with the coarse dendritic crystals. Thus, hence, it is considered the stirring in the low fraction solid is important 

to refine crystals and improve macro-segregation in continuously cast steel slabs.  
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Chapter 6 

 

Conclusion 

 

The approximate analytical solutions of the nonlinear heat- and solutes- transfer equations in the mushy zone 

of the multicomponent alloy steel were obtained through the three models developments (Model Ⅰ, Ⅱ, Ⅲ). 

The solidus temperatures which strongly depend on the steel composition of the steel were obtained as the 

parts of the solutions. Because the solidus temperature of the general steel was not well clarified due to the 

difficulties of measurements in the real casting process. Neither analytical nor approximate solutions exist 

that describes the relation between the size of the mushy zone and the volumetric energy generation. 

 

In Model Ⅰ, the basic mathematical treatments to simultaneously solve the heat- and solutes transfer 

equations were developed adopting the simple boundary conditions (Dirichlet conditions) and the measured 

solidification constants. The linear relation between the solid fraction and temperature in the mushy zone of 

the general steel was also assumed. The good agreements of the model predictions and measurements 

suggested that the basic mathematical treatments developed in Model Ⅰ seemed to be fair.  

Model Ⅱ adopted the general boundary conditions for the mushy zone, Neumann conditions, were adopted to 

obtain the consistency of the model with the numerical heat analysis. The Dirichlet conditions were also 

adopted. The Fe-C plain binary steel was chosen to make the model as simple as possible. The model 

predictions were in good agreement with the numerical analyses and were also consistent with Neumann’s 

solution for the pure metal at the low carbon range. 

 In Model Ⅲ, the binary alloy model (Model Ⅱ) was expanded to the multicomponent alloy steel to obtain the 

solidus temperatures of the various grades steel. The solutions of Model Ⅲ agreed well with the numerical 

heat and solute analyses and also with Neumann’s solution at the low carbon range. The predicted solidification 

constants and the effective partition ratios of solutes were also found to be in good agreement with both the 

reported measurements. Good agreements of the model predictions and shot bullet measurements were 

obtained. The predicted solidus temperatures for various grade steels were in reasonable agreement with the 

measured ZDT and the reported thermo-analytical measurements. The present model also showed that 



 

124 

 

 

 

conventional heat analyses (such as an equivalent specific heat method) that use solidus temperatures predicted 

by the model provided not only temperature but also solute concentrations in the mushy zone with respect to 

time and positions. Both of them are consistent with the model. Model Ⅲ provides the approximate analytical 

solutions that reduce the extensive computational load to search for the unknown solidus temperature with the 

unclarified solid fraction in the mushy zone.   

Then, the predicted solidus temperature was used in the numerical heat analyses to estimate the solid fraction 

at which the electromagnetic stirring was applied in the continuously cast slabs. These analyses showed the 

stirring at low fraction solid was important to refine crystals and to improve the macro-segregations, 

centerline segregations in the continuously cast steel.  
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