
 

Instructions for use

Title A study on the relationship between synoptic field and precipitation/runoff with dynamical downscaling

Author(s) 玉置, 雄大

Citation 北海道大学. 博士(理学) 甲第13570号

Issue Date 2019-03-25

DOI 10.14943/doctoral.k13570

Doc URL http://hdl.handle.net/2115/77048

Type theses (doctoral)

File Information Yuta_Tamaki.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp


i 

 

Doctoral Dissertation 

 

A study on the relationship between synoptic field and 

precipitation/runoff with dynamical downscaling 

力学的ダウンスケーリングを用いた総観場と降水・流出の

関係に関する研究 

 

 

Yuta Tamaki 

玉置雄大 

 

 

Division of Earth and Planetary Dynamics, Department of Natural History Sciences, 

Graduate School of Science, Hokkaido University 

北海道大学大学院理学院自然史科学専攻 

地球惑星ダイナミクス講座 

 

2019 年 3 月 

  



ii 

 

 

 

 

 

 

 

 

 

 

 

 

  



iii 

 

Abstract 

 We applied the sampling downscaling (SmDS), one of the efficient dynamical 

downscaling (DDS) method, to summertime precipitation over Hokkaido as a case study 

and estimated the error in SmDS based on a statistical theory. And we quantitatively 

evaluate the rainfall duration bias and the response of runoff and water-depth to the 

rainfall duration bias.  

 The high spatiotemporal resolution data produced by the DDS are mainly used 

in climate change adaptation researches. In particular, rainfall amount and rainfall 

duration are important factors for estimating river runoff. DDS has generally two 

problems; one is that the DDS needs much computational cost for the high resolution 

simulation, the other is that the DDS has rainfall bias, which are resulted from the 

unrealistic topography and insufficient physical parameterizations, including cloud 

physics, convective parameterization in regional climate model (RCM) and general 

circulation model (GCM). Some previous studies have developed the economical DDS 

method in computational cost. Thus, the bias correction of frequency of rainfall amount, 

quantile mapping, has been developed. However there are a few case studies for 

application of the economical DDS and its estimation error has not been theoretically 

evaluated. On the other hand the bias correction of rainfall duration bias still has not been 

developed and furthermore no study has not evaluated the rainfall duration bias.  

 The sampling downscaling (SmDS) in which a regional atmospheric model is 

integrated for sampled periods was performed for summertime Hokkaido. Selected are 

top two and bottom two years of the general circulation model projection onto the first 

mode of a singular value decomposition analysis, and for this mode, heavy precipitation 

in southern Hokkaido is correlated with the moisture flux convergence in the synoptic 
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field. The SmDS result integrated for the four years successfully reproduces the 

dynamical downscaling result for 30 years, in terms of climatological precipitation and 

the 99-percentile value of daily precipitation. This indicates that SmDS can be applied to 

the environment where local precipitation is mostly controlled by synoptic climate 

patterns. A further statistical consideration in this study supports the notion. It is also 

demonstrated that SmDS selects a group of years where extreme events likely occur 

another group of years where they rarely occur.  

 The DDS was conducted over Japan by using a regional atmospheric model with 

reanalysis data to investigate the rainfall duration bias over Kyushu, Japan, in July and 

August from 2006 to 2015. The model results showed that DDS had a positive rainfall 

duration bias over Kyushu and a dry bias over almost all of Kyushu, results which were 

emphasized for extreme rainfall events. Investigated was the rainfall duration bias for 

heavy rainfall days, accompanied by synoptic-scale forcing, in which daily precipitation 

exceeded 30 mm day-1 and covered over 20% of the Kyushu area. Heavy rainfall days 

were sampled from observed rainfall data based on rain-gauge and radar observations. A 

set of daily climatic variables of horizontal wind and equivalent potential temperature at 

850 hPa and sea-level pressure, around southwestern Japan, corresponding to the sampled 

dates, were selected to conduct a self-organizing map (SOM) and K-means method. The 

SOM and K-means method objectively classified three synoptic patterns related to heavy 

rainfall over Kyushu: strong monsoon, weak monsoon, and typhoon patterns. Rainfall 

duration had a positive bias in western Kyushu for the strong monsoon pattern and a 

positive bias in southern and east-coast Kyushu for the typhoon pattern, whereas there 

was little rainfall duration bias in the weak monsoon pattern. The bias for the typhoon 

pattern was related to rainfall events with a strong rainfall peak. The results imply that 
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bias correction for rainfall duration would be required for accurately estimating river 

runoff in a catchment area besides the precipitation amount. 

 Motivated from the problem of a rainfall duration bias typically in dynamical 

downscaling, its possible effect of the rainfall duration bias to hydrology was evaluated 

for heavy rainfall events over Kyushu, Japan, in summer. For the typical heavy-rainfall 

periods, a tank model for several target rivers ran to analyze runoff and water-depth 

sensitivity to hyetograph, by artificially extending the rainfall duration to 8 hours or 16 

hours with keeping the total rainfall amount. The results showed that a spike peak of 

runoff was suppressed by a prolonged weak rainfall as typically found in downscaling 

outputs. The rising timings of runoff and water depth in the tank model became earlier. 

The decrease in the contribution of surface and subsurface runoff was pronounced in the 

heavy rainfall events accompanied with a persistent Baiu rainband. Our results suggest 

that the rainfall duration bias of DDS is a non-negligible factor for predicting river runoff 

and flood risk in climate change adaptation.  
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日本語要旨 

本研究では力学的ダウンスケーリング(DDS)の計算効率化手法の一つである

サンプリングダウンスケーリング(SmDS)を夏季北海道に事例に適用し，SmDS

の誤差を統計理論を用いて評価し．さらに降水継続時間バイアスの定量化と降

水継続時間のバイアスに対する流出，水位応答の定量的評価を行った． 

降水データを用いた気候変動適応研究には時空間解像度の細かい DDS の出

力が主に用いられる．特に，降水量と降水継続時間は河川流出予測にとって重要

な要素である．DDS には高解像度化するほど計算コストが膨大となること，そ

して全球モデル，領域モデルの物理的パラメタリゼーションや，地形に由来する

モデルバイアスを含むという二つの問題がある．先行研究では DDS の計算コス

トを効率化する手法が開発されており，降水バイアスの問題に対しては降水量

の頻度バイアスを補正する手法,クオンタイルマピングが開発されている．しか

しながら，効率化手法の適用事例は少なく，理論的に誤差を評価した研究はない．

一方で降水バイアスの問題については降水継続時間のバイアスは評価されてこ

なかった． 

サンプルされた年のみを領域モデルで積分するサンプリングダウンスケーリ

ング(SmDS)を夏季北海道に適用した．全球モデル出力を北海道南側での強い降

水が総観場での水蒸気フラックス収束と相関を持つ第一特異モードに射影し，

その射影の上位２年と下位２年を選んだ．4 年積分した SmDS の結果は降水量

の気候値および日降水量の 99 パーセンタイル値において 30 年積分した力学的

ダウンスケーリングの結果をほぼ正確に再現した．これは，局所的な降水が総観

規模の気象状況に支配される状況では SmDS が適用できうることを示唆してい

る．本研究ではさらにこのような考えを裏付ける統計的考察を行った．また，

SmDS は極端降水が多い年と少ない年を選択していることも明らかとなった． 
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2006-2015 年の 7,8 月において九州における降水継続時間のバイアスを評価

するために，領域気候モデルを用いて再解析データを境界条件に DDS を行った．

その結果 DDS は九州全体で正の継続時間バイアスを持ち，九州のほとんどの領

域で降水量のバイアスが過小であった．このバイアスの特徴は極端降水イベン

トにおいてさらに顕著であった．さらに，九州陸域において日降水量≥30mm 

day-1かつ被覆率が 20%以上を満たす日の，総観規模の強制に伴う強降水日にお

いて降水継続時間のバイアスを評価した．強降水日は雨量計とレーダー観測に

基づく観測データから抽出した．自己組織化マップ(SOM)と K-平均法を実行す

るために，４つの気象場の変数として 850hP 水平風，相当温位，海面校正気圧

を選択した．SOM と K-平均法は強いモンスーン型，弱いモンスーン型，台風型

の３つの大雨に関連する気象場を客観的に分類した．降水継続時間の正のバイ

アスは強いモンスーン型では九州西部に，台風型では九州東部に見られた．一方

で弱いモンスーン時には降水継続時間のバイアスは小さかった．台風型での降

水継続時間のバイアスは大きな降水ピークを持つ降水イベントに関連していた．

この結果は河川流出の正確な推定のためには，降水量のバイアス補正に加えて，

降水継続時間のバイアス補正も必要であることを示唆している． 

 DDS の継続時間バイアスの問題意識から，夏季九州において降水継続時間バ

イアスに対する水文学的応答を評価した．典型的な豪雨事例を対象に総降水量

を保存し，降水継続時間を 8 時間，16 時間引き伸ばしたハイエトグラフに対す

る流出と水位の感度をいくつかの河川を対象にタンクモデルを用いて評価した．

その結果，DDS で典型的に見られた降水量の小さい長雨によって流出の鋭いピ

ークは抑制された．また，流出と水位の上昇のタイミングは早まる結果となった．

表面流とサブ表面流出の減少は梅雨前線に伴う強降雨イベントで顕著であった．

本研究の結果は，河川流出，洪水リスクに関する気候変動適応研究を実施する上



viii 

 

で，降水継続時間バイアスが無視できない要素であることを示唆する． 
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Chapter 1. General Introduction 

 

Heavy rainfall causes natural disasters, including flooding and inundation, 

landslides, erosion, and hightides. Many observation studies have reported recent increase 

in heavy rainfall (cf. DeGaetano 2009; Bartholy and Pngracz 2007; Fujibe et al. 2006). It 

is anticipated that a wetter climate caused by global warming would result in a greater 

chance of heavy rainfall (Donat et al. 2016). Therefore, a series of adaptation policies 

should be compiled to prepare for possible hazards due to more frequent heavy rainfall, 

and thus a high-resolution dataset for the precipitation is highly required. Dynamical 

downscaling (DDS; Giorgi 1990) has been a widely used to fill the scale gap between the 

climate model projection and social demand. 

DDS provides physically consistent data, but the DDS results strongly depend 

on the choice of regional climate model (RCM) and lateral boundary condition. Therefore, 

the multi-GCMs by multi-RCMs experiment is needed to identify model uncertainty in 

the regional climatic field. This ensemble experiment, however, needs much 

computational cost. Recently, the sampling downscaling (SmDS) method proposed by 

Kuno and Inatsu (2015) was proposed to conduct DDS for a few typical years that the 

synoptic pattern controls local precipitation. The SmDS method is one of the techniques 

with mixing DDS with statistical downscaling (SDS), extending previous works (Frey-

Buness et al. 1995; Pinto et al. 2014; Yamada et al. 2014). However the SmDS is still 

applied to only one case, thus it is not fully explored that whether the SmDS can be 

applied to another season or region and how effectively the SmDS reduces the 

computational costs for DDS. Moreover, in order to demonstrate the relevance of such 

kind of DDS-SDS methods, we need a statistical consideration as well as a pile of case 
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studies with DDS-SDS mixture methods.  

 DDS also has rainfall bias that results from the unrealistic topography and 

physical parameterizations, including cloud physics, convective parameterization in 

RCM and GCM as the lateral boundary condition (Ehret et al. 2012; Wang et al. 2004), 

of which bias influences the runoff prediction. However, the traditional bias correction 

for rainfall such as frequency bias correction of rainfall amount (quantile mapping; Piani 

et al. 2010) and bias correction of mean consecutive rainfall days (Nyeko-Ogiramoi et al. 

2012) does not correct the spatio-temporal characteristics of rainfall that is important 

factor to determine the runoff (Kim and Kim 2018; Ogden and Julien 1993). In addition, 

no one has yet stated how the rainfall from DDS contains the rainfall duration bias.  

 There are three purposes for this thesis. The first purpose is to apply SmDS to 

summertime precipitation over Hokkaido as another case study and to estimate the error 

in SmDS based on statistical theory. We compare SmDS for four years with DDS with 30 

years in terms of the daily-mean precipitation, the standard deviation, and the 99-

percentile value of daily precipitation. The second purpose is to evaluate the rainfall 

duration bias of DDS forced with reanalysis data in summertime over Kyushu. Li et al. 

(2018) proposed a bias correction method of rainfall based on quantile mapping according 

to synoptic patterns related to heavy rainfall. Their studies imply that rainfall bias is 

related to synoptic patterns and it is natural that rainfall duration bias is also related to its 

synoptic patterns. We apply the self-organizing map (SOM) to detect the typical synoptic 

patterns related to heavy rainfall days in Kyushu and link the patterns with rainfall 

duration biases. The third purpose is to evaluate the sensitivity of runoff to rainfall 

duration in typical synoptic patterns related to heavy rainfall with tank-model (Sugawara 

1972). 
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The rest of this thesis is organized as follows. Chapter 2 describes the application 

of SmDS to summertime precipitation over Hokkaido and the error estimation theory 

based on Tamaki et al. (2016). In Chapter 3, the heavy rainfall duration bias is investigated 

based on Tamaki et al. (2018). In Chapter 4, the runoff response to the rainfall duration is 

investigated with tank model simulation. Chapter 5 describes the general summary. 
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Chapter 2. Sampling downscaling in summertime precipitation 

over Hokkaido 

 

2.1. Introduction 

The dynamical downscaling (DDS) is a widely-used technique to estimate high-

resolution data that are physically consistent with prescribed low-resolution data such as 

reanalysis data and general circulation model (GCM) outputs, by using a regional 

atmospheric model (RAM) for a limited domain. In the DDS, a RAM is integrated 

typically with O(10 km) horizontal resolution nested into a GCM with O(100 km) 

horizontal resolution and can considerably resolve the geographical features such as 

mountains and coastlines. Hence, by using the RAM, one can realistically simulate local 

phenomena such as orographic rainfall (Frei et al. 2003) and snow-albedo feedback 

(Leung et al. 2004), and estimate a regional climate change including a land effect 

characterized locally (Sato and Kimura 2005). However, a RAM integration in DDS 

mostly has much computational costs in order to satisfy the Courant–Friedrichs–Lewy 

condition. Moreover, if the DDS result largely depends on the GCM imposed as the RAM 

boundary condition (Plummer et al. 2006; Fowler et al. 2007; Piani et al. 2010), we would 

spend still more costs for multi-GCM experiments in order to evaluate uncertainty in a 

local climate change. 

Conversely, the statistical downscaling (SDS) is another downscaling method, 

based on an observed statistical relationship between a regional variable and a global 

circulation pattern (e.g., von Storch 1995; Hay et al. 2002; Imada et al. 2012). The SDS 

may evaluate a regional climate depending on the observation density, and it takes a little 
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computations. However, because the empirical relationship in the present climate is not 

always applied to the future climate, the reliability of SDS results strongly depends on 

the stability of statistics (Wilby et al. 2004). 

Recently, Kuno and Inatsu (2014) proposed the sampling downscaling (SmDS), 

in which the DDS is performed for a few years based on the statistical relation between a 

synoptic climate pattern and a local precipitation amount. On the basis of a robust 

observed linkage between winter Asian monsoon and regional snowfall in Hokkaido, they 

showed that SmDS actually provided a similar result to conventional DDS. The SmDS is 

one of the techniques with mixing DDS with SDS, extending previous works; Frey–

Buness et al. (1995) obtained a regional climate feature based on DDS for a few large-

scale weather types that were a priori classified. Pinto et al. (2014) attempted to select 

the representative days for DDS based on the probability density function (PDF) of 2 m 

air temperatures; Yamada et al. (2014) established a statistical equation which 

approximately follows the Clausius–Clapeyron relationship equation between 99-

percentile value of sub-hourly precipitation and near surface temperature. Using the near 

surface temperature given by DDS, they successfully estimated the 99-percentile value 

of sub-hourly precipitation in Sapporo for future climate. However, in order to 

demonstrate the relevance of the DDS–SDS mixture, we need statistical consideration as 

well as a pile of case studies in which a particular DDS–SDS mixture method is applied 

to different domains and seasons. For example, summertime rainfall in Hokkaido is 

possibly related to local-scale phenomena such as topographic rainfall, cumulus cloud 

convection, and small-scale rainband. Hence, a study extending Kuno and Inatsu (2014) 

to boreal summer deserves our attention to ascertain the applicability of SmDS. 

The purpose of this study is (1) to apply SmDS to summertime precipitation over 
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Hokkaido as another case study from Kuno and Inatsu (2014) and (2) to estimate the error 

in SmDS with statistical consideration. For the first purpose, we compare SmDS for four 

years with DDS for 30 years (hereafter full DDS) in terms of the daily-mean precipitation, 

the standard deviation of June–July–August (JJA) mean precipitation, and the 99-

percentile value of daily precipitation. The 99-percentile value of daily precipitation is 

calculated during the JJA days for all years used. For the second purpose, we theoretically 

consider the error of the mean and the 99-percentile value estimated in SmDS. 

This paper is organized as follows. Datasets and models we used are described 

in Section 2.2. A general overview of SmDS with error estimation consideration is stated 

in Section 2.3. In Section 2.4, the result of SmDS for four selected years is compared with 

the result of DDS for 30 years, in terms of the climatological precipitation and the 99-

percentile value of daily precipitation in Hokkaido in summer. Section 2.5 summarizes 

this paper. 

 

2.2. Data and models 

a. Observed data 

 We used a set of observed datasets for SmDS. Precipitation dataset is APHRO_JP 

V1207 (Yatagai et al. 2012). The horizontal resolution is 0.05° × 0.05°. We used a 6-

hourly reanalysis dataset, JRA-25/JCDAS (Onogi et al. 2007), for the moisture flux 

convergence vertically integrated from surface pressure to 100 hPa. The horizontal 

resolution of the reanalysis data is 1.25° × 1.25°. The analysis period is JJAs from 1981 

to 2010. 

 

b. GCMs 
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 We performed DDS experiments with multiple atmosphere-ocean GCMs in 

Coupled Model Inter-comparison Project phase 3 (CMIP3) as the boundary condition. 

GCMs we used are the Model for Interdisciplinary Research on Climate version 3.2 

(hereafter MIROC) developed by the University of Tokyo (Hasumi and Emori 2004); the 

fifth generation atmospheric GCM in Max Plank Institute for meteorology (hereafter 

MPI; Roeckner et al. 2003); and Community Climate System Model version 3 in the 

National Center for Atmospheric Research (hereafter NCAR; Collins et al. 2006). These 

three GCMs can reproduce the present climate over Japan in summer (Inatsu et al. 2015). 

Following Kuno and Inatsu (2014), we selected the last decade of the 20th-century 

experiment called 20C3M in CMIP3 as the current climate. 

 

c. RAM 

 The RAM that we used is the Japan Meteorological Agency/Meteorological 

Research Institute non-hydrostatic model (JMA/MRI-NHM) [see Saito et al (2006) for 

more details]. The model domain covers 132°E–152°E and 38°N–50°N (Fig. 2.1) of 

which center is Hokkaido Island (Fig. 2.2). The horizontal grid space is set to 10 km. The 

RAM was integrated for 10 years with each GCM as the boundary condition of 1991–

2000 for MIROC and MPI, and 1990–1999 for NCAR and then we obtained 30 year 

output in total for the current climate condition. The sea surface temperatures provided 

by the ocean component of each GCM were prescribed as the ocean-surface boundary 

condition of the RAM. 
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2.3. General concept of SmDS 

a. Procedure 

 We will give the procedure of SmDS in a nutshell (Fig. 2.3). See Kuno and Inatsu 

(2014) for more details. First, we took the singular value decomposition (SVD) analysis 

between moisture flux convergence around Hokkaido (120°E–160°E by 30°N–60°N) and 

precipitation over Hokkaido (139°E–146°E by 41°N–46°N; Fig. 2.1) based on JJA-mean 

data from 1981 to 2010. Since the SVD analysis provides the highly-covariate spatial 

patterns between the two, we obtained a heterogeneous spatial pattern for the first mode 

of moisture flux convergence around Japan referred to as 𝐠𝟏(𝐱), where 𝐱 is the position 

vector. 

 Next, we projected GCM’s moisture flux convergence anomaly, 𝐆(𝐱, �̃�), onto 

the first SVD mode, 𝐠𝟏(𝐱), where �̃� denotes a sequential union of the GCM periods. 

The projected time-series 𝑠(�̃�) was used as an index to select years for SmDS. Finally, 

we conducted the DDS for years with top two and bottom two of 𝑠(�̃�). In this paper, as 

has already mentioned above, we conducted the DDS for 30 years in total and then the 

statistics for all years were compared with the statistics for selected years. 

 

b. Error estimation theory 

We here consider the error in SmDS estimates of statistical precipitation amount. 

First, though the sample number is practically finite, we regard it as population Ω with 

N samples as 

 

Ω =⋃𝜔𝑘

𝑁

𝑘=1

, 
(1) 

where a sample 𝜔𝑗 is the j-th year with the amount of daily data being n as 
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 𝜔𝑗 = {𝑝𝑗,1 , 𝑝𝑗,2 , … , 𝑝𝑗,𝑛}, (2) 

where n is the number of days in a single sample. Regional variable P and global variable 

Q are set as probabilistic variables on the population Ω. A set of the sample mean of P 

expressed as 

 𝛴𝑃 = {𝑃1̅, 𝑃2̅̅ ̅, … , 𝑃𝑁̅̅̅̅ }, (3) 

is assumed to follow the normal distribution with its mean 𝜇𝑃 and its variance 𝜎𝑃
2, where 

the overbar means the average over a sample. It is remarked that the central limit theorem 

warrants Gaussianity of sample-mean distribution even if the original data does not follow 

the normal distribution. A set of the sample mean of Q similarly expressed as 

 𝛴𝑄 = {𝑄1̅̅ ̅, 𝑄2̅̅ ̅, … , 𝑄𝑁̅̅ ̅̅ }, (4) 

is assumed to follow the standard normal distribution. Unless 𝛴𝑄 is standardized, the Z 

transformation is to be taken. Further, given that the linear regression equation between 

𝛴𝑄 and 𝛴𝑃, the residual variance 𝐸2 is calculated as 𝐸2 = (1 − 𝑟2)𝜎𝑝
2, where r is a 

correlation coefficient between global and regional variables. Selecting 2M samples from 

𝛴𝑄, the estimation error variance is given as 

 𝐸2

2𝑀
=
(1 − 𝑟2)𝜎𝑝

2

2𝑀
. 

(5) 

This is the estimation error of mean in SmDS. The estimation error variance is a function 

of the number of selecting years, the correlation coefficient between 𝛴𝑄 and 𝛴𝑃, and the 

inter-sample variance 𝜎𝑝
2 . Therefore, more selecting years and higher correlation 

between global and regional variables make the smaller estimation error variance in 

SmDS. Even if the samples are randomly selected, its estimation error follows Eq. (5). 

However, as mentioned below, if we selected the samples such that the mean of 𝛴𝑄 is 

zero, the bias of the mean would be zero. 

 Next, we will consider the bias of both mean and 99-percentile value in SmDS. 
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In SmDS, we select top M and bottom M years in the statistical estimation for the regional 

variable. Now we renumber the element of 𝛴𝑄 in its decreasing order as 

 𝛴�̃� = {𝑄𝐼(1)̅̅ ̅̅ ̅̅ , 𝑄𝐼(2)̅̅ ̅̅ ̅̅ , … , 𝑄𝐼(𝑁)̅̅ ̅̅ ̅̅ ̅}, (6) 

where  

 (
1
𝐼(1)

    
2
𝐼(2)

    
⋯
⋯    

𝑁
𝐼(𝑁)

), (7) 

is an element of n-dimensional symmetric group. Following this permutation rule, the 

element of 𝛴𝑃 is renumbered as 

 𝛴�̃� = {𝑃𝐼(1)̅̅ ̅̅ ̅̅ , 𝑃𝐼(2)̅̅ ̅̅ ̅̅ , … , 𝑃𝐼(𝑁)̅̅ ̅̅ ̅̅ }.  (8) 

We define two sample groups as 

 

Ω+ =⋃𝜔𝐼(𝑘)

𝑀

𝑘=1

, and Ω− = ⋃ 𝜔𝐼(𝑘)

𝑁

𝑘=𝑁−𝑀+1

, 
(9) 

corresponding to selecting top M and bottom M years from 𝛴�̃� in SmDS. The mean of 

P over Ω+ and Ω− are respectively expressed as 

 𝜇𝑃 ± 𝛼𝜎𝑃, (10) 

where 𝛼 is the mean of the upper M/N of the normal distribution expressed as 

 
𝛼 =

∫ 𝑥𝑁(0,1)(𝑥)𝑑𝑥
∞

𝛽

∫ 𝑁(0,1)(𝑥)𝑑𝑥
∞

𝛽

=
𝑁

√2𝜋𝑀
exp(−

𝛽2

2
), 

(11) 

noting that 

 ∫ 𝑁(0,1)(𝑥)𝑑𝑥
∞

𝛽

=
𝑀

𝑁
. (12) 

Hence, the expected value of sample group Ω̃ = Ω+ ∪ Ω− is 𝜇𝑃, so that the mean of 

SmDS estimates is unbiased.  

We next assume that the daily precipitation for the j-th sample follows log-

normal distribution of 
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𝑓𝑗(𝑥; 𝐴𝑗 , 𝐵𝑗) =
1

√2𝜋𝐵𝑗𝑥
exp [−

(ln 𝑥 − 𝐴𝑗)
2

2𝐵𝑗
2 ] . 

(13) 

Moreover if the (square root of) intra-sample variance, 𝜎0,𝑗, is proportional to the j-th 

mean as 

 𝜎0,𝑗 = 𝑣𝑃�̅�, (14) 

then the parameters of 𝐴𝑗 and 𝐵𝑗 in Eq. (13) are estimated as 

 𝐴𝑗 = ln
𝑃�̅�

√𝑣2 + 1
 and 𝐵𝑗 = √ln(𝑣

2 + 1). (15) 

Here 𝑣 is a proportional coefficient that is assumed to be constant. In the full DDS 

estimation, the 𝜀-percentile value of 𝑋𝜀 is to be found such that  

 
𝜀

100
=
1

2𝑁
∑erfc

(

 
 
−

ln
𝑋𝜀√𝑣2 + 1

𝑃�̅�

√2 ln(𝑣2 + 1)

)

 
 

𝑁

𝑗=1

. 

(16) 

A Monte-Carlo simulation for sampling from the normal distribution of 𝑃�̅� with the inter-

sample mean of 𝜇𝑝 and the inter-sample standard deviation of 𝜎𝑝 at a fixed 𝑣 provides 

the 𝜀-percentile value 𝑋𝜀 from Eq. (16). The parameter 𝑣 is approximately equal to 2 

in daily precipitation in Hokkaido (not shown). Figure 2.4a shows the 99-percentile 

estimation value in the (𝜇𝑝, 𝜎𝑝) space. The 99-percentile value is smaller for smaller 

mean and standard deviation. In the realistic range for daily precipitation in Hokkaido 

(the PDF shown in Fig. 2.4b), the 99-percentile value ranges between 20 and 100 mm 

day−1.  

Conversely, in the SmDS estimation, the 𝜀-percentile value is 𝑋�̂� is such that 
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𝜀

100
=
1

4𝑀
∑erfc

(

 
 
−

ln
𝑋�̂�√𝑣2 + 1
𝑃𝐼(𝑗)̅̅ ̅̅ ̅̅

√2 ln(𝑣2 + 1)

)

 
 

𝑀

𝑗=1

+
1

4𝑀
∑erfc

(

 
 
−

ln
𝑋�̂�√𝑣2 + 1
𝑃𝐼(𝑁−𝑗+1)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

√2 ln(𝑣2 + 1)

)

 
 

𝑀

𝑗=1

. 

(17) 

Similarly in Fig. 2.4a, a Monte-Carlo simulation for the selected samples satisfied with 

|𝑃�̅� − 𝜇𝑝| > 𝛽𝜎𝑝 provides the estimation of 𝜀-percentile value in SmDS by Eq. (17). 

Figure 2.4b shows the ratio of SmDS to full DDS estimations for 99-percentile value for 

the given parameter of 2𝑀 𝑁⁄ = 2 15⁄ . In the domain where the inter-sample standard 

deviation is smaller than the average, the SmDS can estimate the 99-percentile value 

correctly. Elsewhere, the SmDS tends to overestimate the 99-percentile value compared 

with the full DDS estimation. Thinking of the realistic (𝜇𝑝, 𝜎𝑝) in daily precipitation in 

Hokkaido, the difference of the 99-percentile estimation by SmDS and full DDS is quite 

small.  

A Monte-Carlo simulation for the selected samples satisfied with 𝑃�̅� > 𝜇𝑝 + 𝛽𝜎𝑝 

or 𝑃�̅� < 𝜇𝑝 − 𝛽𝜎𝑝 provides the first or last term of right-hand-side of Eq. (17) (Fig. 2.4c). 

The first-term estimates the 99-percentile value almost twice larger than the SmDS. The 

99-percentile value with only the last-term in Eq. (17) is near zero in the domain where 

the inter-sample standard deviation is smaller than the average; elsewhere it is larger for 

the large mean value. This encourages that the technique of SmDS originally proposed in 

Kuno and Inatsu (2014) can select two important groups with a few years where heavy 

precipitation frequently occurs and with another few years where heavy precipitation 

rarely occurs. 
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2.4. Results 

a. SmDS setup 

 Figure 2.5a shows the observed daily-mean precipitation over Hokkaido in JJA. 

The precipitation amount is ~6 mm day−1 in Hidaka and Iburi subprefectures and is less 

than 4 mm day−1 in northern Hokkaido (See also Fig. 2.2a). This contrast is caused by 

mountain ranges in central Hokkaido called Hidaka Mountains (Fig. 2.2b) that blocks a 

warm, moist air mass from the southwest due to the summertime Asian monsoon (cf. 

Inatsu et al 2015). The standard deviation of JJA-mean precipitation shows less than 2 

mm day−1 in almost all Hokkaido except for the part of the Hidaka and Iburi 

subprefectures (Fig. 2.5b). The 99-percentile value of daily precipitation (Fig. 2.5c) 

shows more than 80 mm day−1 in Hidaka and Iburi subprefectures and less than 40 mm 

day−1 in Abashiri subprefecture. A large amount of monthly precipitation is attributed to 

daily heavy precipitation, which is consistent with the assumption that the daily 

precipitation roughly follows the log-normal distribution (Section 2.3b). 

 Following the instruction of SmDS illustrated in Fig. 2.3, we performed the SVD 

analysis for an interannual variation of precipitation over Hokkaido and that of moisture 

flux convergence around Japan. We then obtained a set of heterogeneous maps for the 

first SVD mode with the squared covariance fraction being 68.7%. This mode means that 

an anomalously large precipitation in southern Hokkaido is related to anomalously large 

moisture flux convergence around northern Japan (Figs. 2.6a, b). The correlation 

coefficient between their time-series is 0.87 (Fig. 2.6c) and the first mode explains 43.8% 

of the variance in local precipitation fluctuation over Hokkaido (Fig. 2.6a). This is the 

evidence that moisture transported toward Hokkaido strongly controls precipitation in 

southern Hokkaido. 
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 As the next step of SmDS (Fig. 2.3), we calculated the sampling index [denoted 

by 𝑠(�̃�) in section 2.3a], by projecting GCMs’ moisture flux convergence anomaly onto 

the first SVD mode (Fig. 2.7). It is noted that the projection has a non-zero average for 

each model, because the GCM anomaly is defined as the departure from the observed 

daily-mean precipitation (Fig. 2.5a). Based on the projection, we picked up 1991 and 

1992 in MPI as top two, and 1995 and 1996 in MIROC as bottom two. 

 

b. Comparison with conventional DDS 

Following Kuno and Inatsu (2014), we compared the SmDS result for four 

sampled summers with the full DDS result for 30 summers. The daily-mean precipitation 

in both results is quite similar (Figs. 2.8a, b); it is more than 12 mm day−1 in Hidaka and 

Kamikawa subprefectures and less than 4 mm day−1 in Abashiri subprefecture. The spatial 

correlation coefficient between SmDS and full DDS is 0.96, while the precipitation 

amount is reduced by 10% uniformly over Hokkaido. The standard deviation of JJA-mean 

precipitation for full DDS shows more than 4 mm day−1 in Hidaka subprefecture and less 

than 2 mm day−1 in northeastern Hokkaido (Fig. 2.8c). The SmDS result of standard 

deviation of JJA-mean precipitation is underestimated in Hidaka subprefecture (Figs. 2.8c, 

d). The 99-percentile value of daily precipitation in both results is also similar (Figs. 2.8e, 

f); it is more than 80 mm day−1 in Hidaka subprefecture and less than 60 mm day−1 in 

northeastern Hokkaido. The spatial correlation coefficient is 0.85, while the 99-percentile 

value is a bit smaller around Hidaka subprefecture and is a bit larger in Abashiri 

subprefecture in SmDS. Hence, SmDS can also reproduce the precipitation pattern and 

its characteristics of the extreme events over Hokkaido in summer, which is consistent 

with Kuno and Inatsu (2014) for wintertime Hokkaido. Our analysis for summertime 
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Hokkaido thus supports the notion that SmDS can be applicable to the situation that a 

synoptic-scale pattern mostly controls local precipitation. 

 

c. Interpretation of results 

 Recalling a statistical consideration in Section 2.3b, the mean estimate of SmDS 

is unbiased with an estimation error of 

 

√
(1 − 𝑟2)

2𝑀
𝜎𝑝, 

(18) 

where the sample number 2M = 4 in this paper. The inter-sample variance 𝜎𝑝
2 gives a 

similar spatial pattern to the intra-sample variance 𝜎0
2  (Figures not shown) but the 

amount of 𝜎𝑝
2  is much less than 𝜎0

2 . Figure 2.9a shows the correlation coefficient 

between statistical and DDS estimations for precipitation over Hokkaido, noting that the 

statistical estimation here means the projection of GCM time-series onto the first SVD 

mode (Fig. 2.6b). The correlation coefficient is more than 0.6 in Oshima and Ishikari 

subprefectures and central mountains in Hokkaido, and it is less than 0.4 in Hidaka and 

Shiribeshi subprefectures and northern Hokkaido. A low correlation means a weak control 

by a synoptic situation at least represented by the first SVD mode.  

Figure 2.9b shows the estimation error given by Eq. (18). It shows more than 6 

mm day−1 in Hidaka subprefecture and less than 2 mm day−1 northeastern Hokkaido. 

The spatial distribution mostly depends on the inter-sample standard deviation 𝜎𝑝  (Fig. 

2.8c). Figure 2.9c shows the relative error of daily-mean precipitation (%) calculated by  

 

SmDS − full DDS

full DDS
× 100. 

(19) 

The relative error falls within ±10% in Oshima and Ishikari subprefectures and eastern 

Hokkaido. However, the SmDS result underestimates the precipitation for full DDS 
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more than 30% in Hidaka subprefecture. This might be possibly attributed to the 

difficulty of reproducing the stratiform type of rain that was prominently observed in the 

western side of Hidaka mountain range (Sugimoto et al. 2013). The spatial pattern of 

relative error is consistent to the spatial pattern of the estimation error (Figs. 2.9b, c). 

 Figure 2.10a shows the ratio of SmDS to full DDS for the 99-percentile value of 

daily precipitation. The error range of the ratio ranges within ±20% except for Hidaka, 

Oshima and Abashiri subprefectures and the central mountains in Hokkaido. Although 

Section 2.3b suggested that SmDS tends to overestimate the 99-percentile value by 10%–

40% (Fig. 2.4b), the SmDS underestimates the 99-percentile value more than 20% in 

Hidaka subprefecture. It is probably because the daily-mean precipitation in SmDS 

underestimates the daily-mean precipitation in full DDS more than 30% (Figs. 2.8a, b). 

Figures 2.10b, c show the 99-percentile value for top two and bottom two years of SmDS 

respectively. In almost all areas the 99-percentile value for top two years of SmDS shows 

much larger than that for bottom two years of SmDS. The 99-percentile value ranges 

showed in both maps are consistent to the ranges estimated in the error theory (Fig. 2.4c). 

In this study we can conclude that SmDS extracts a set of optimal years where the heavy 

precipitation likely occurs and another set of years where the heavy precipitation rarely 

occurs. 

 

2.5. Conclusions and discussion 

 We have applied SmDS developed by Kuno and Inatsu (2014) to summertime 

precipitation over Hokkaido. By using the SVD analysis, we extracted a spatial pattern of 

a global variable, which mostly controls the precipitation over southern Hokkaido. Both 

of the spatial distributions for the mean and 99-percentile value in SmDS were similar to 
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those of the DDS for 30 years. This indicates that SmDS can be applied to the place where 

the synoptic field strongly controls the local precipitation. 

 The error theory for the mean and 99-percentile value in SmDS was established 

in this study. In SmDS estimation, the mean should be unbiased and the 99-percentile 

value tends to be overestimated compared with that in full DDS. Moreover, it turned out 

that the estimation error of the mean in SmDS depended on the correlation coefficient 

between global and regional variables, the number of samples, and the standard deviation 

of JJA-mean precipitation. Since the standard deviation of JJA-mean precipitation 

strongly contributes to the estimation error, the estimation error is large even if the 

correlation between the global and regional climate field is high. This adds a new sight 

for a necessary condition for the original discussion by Kuno and Inatsu (2014). 

 Basically, since the SmDS method is based on a statistical method, it is quite 

difficult to specify the reason for the difference from the full DDS statistics in a particular 

season in a physical sense. The SmDS only shows possible error range at the significant 

level of 2𝛼 within  

 

±tα(2𝑀)√
(1 − 𝑟2)

2𝑀
𝜎𝑝, 

(20) 

from Eq.(18), where 𝑡𝛼(2𝑀) is a student’s t-value with the degree of freedom of 2M. In 

the case of 𝛼 = 0.025 , the difference between full DDS and SmDS for daily-mean 

precipitation falls within this range in all areas in Hokkaido for both summer and winter 

cases (See also Kuno and Inatsu 2014). 

 As mentioned in Section 2.1 and Inatsu et al. (2015), the DDS result is strongly 

influenced by the GCM boundary condition. Compared to the DDS result with the 

observed data, we found that the model climatology overestimated both the daily-mean 
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precipitation and 99-percentile value (Figs. 2.5, 2.8). It is likely that this overestimation 

is because of the bias of GCM. In climate modeling community, the ensemble mean is 

often used for DDS experiment (e.g., Kendon et al. 2010; Donat et al. 2011; Inatsu et al. 

2015) because the ensemble mean possibly provides the most optimal estimation than any 

other individual model mean (Pierce et al. 2009). However the DDS experiment using 

multi-GCM requires much more computational costs. The important thing in this problem 

is how to select a few subsets of GCM-RAM pairs and climate scenarios. Some studies 

have recently attempted to establish the method which reduces the ensemble members 

(e.g., Pennell and Reichler 2011; Evans et al. 2013). There is a possibility that the criterion 

of GCM selection can be established by using the SmDS method. For instance, Kuno and 

Inatsu (2014) discussed that the average of the projection in each model discrete year, 

𝑠(�̃�)̅̅ ̅̅ ̅, is regarded as the GCM bias. If we selected a set of GCMs so that 𝑠(�̃�)̅̅ ̅̅ ̅ is zero, we 

could reduce the GCM bias in terms of the SVD mode. Since there is a room for 

discussing about this, we will report it elsewhere. 
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Figure. 2.1. The surface height (m) from the sea level as the bottom boundary condition 

for the regional atmospheric model (RAM). The shading level is shown in the reference 

in the right. The outer solid line indicates the lateral boundary of the RAM. The horizontal 

resolution is 10 km with grid number 161 × 133 and there are 40 vertical levels. The 

inner dotted line is the domain used in singular value decomposition (SVD) analysis. 
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Figure. 2.2. Fourteen subprefectures in Hokkaido with their names shown in the color 

reference. (b) The surface height (m) in Hokkaido as the bottom boundary condition for 

the RAM. The shading level is shown in the reference in the right. The dashed line shows 

the location of Hidaka Mountains. 
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Figure. 2.3. Procedure of sampling downscaling. 
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Figure. 2.4. (a) The 99-percentile value [Eq. (16)] by using a Monte-Carlo estimation with 

the mean 𝜇𝑝 in the horizontal axis and the standard deviation of 𝜎𝑝 in the vertical axis. 

The contour interval is 20 mm day-1. (b) The ratio of sampling downscaling (SmDS) to 

full dynamical downscaling (full DDS) estimations for the 99-percentile value with 

contour interval 10%. The shading denotes the probability density function (PDF) of the 

mean and standard deviation of June-July-August (JJA) mean precipitation in full DDS 

simulation in Hokkaido as per the reference in the right. (c) The (solid lines) first and 

(dashed) last terms of the right-hand-side of Eq. (17) in SmDS estimation for the 99-

percentile value. The shading denotes the PDF of the mean and standard deviation of JJA-
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mean precipitation in SmDS simulation as per the reference in the right. 
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Figure. 2.5. (a) The daily-mean precipitation in JJA months (mm day-1) based on 

APHRO_JP V1207 from 1981 to 2010 (Yatagai et al. 2012). The shading level is as per 

the reference in the right. (b) The standard deviation of JJA-mean precipitation (mm day-

1). (c) The 99-percentile value of daily precipitation (mm day-1). 

  



25 

 

Figure. 2.6. Heterogeneous regression maps of (a) precipitation and (b) vertically 

integrated moisture flux convergence for the first SVD mode based on the interannual 

variability in JJAs from 1981 to 2010. The precipitation is based on AHORO_JP V1207, 

and the moisture flux convergence is based on JRA-25/JCDAS. The contour interval is 

0.3 mm day-1 with the shading denoted in the right of each panel. (c) The time-series of 

(solid) precipitation and (dashed) moisture flux convergence for the first SVD mode. 
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Figure. 2.7. Time-series of projection onto the heterogeneous regression map for the first 

SVD mode (Fig. 2.6b) under current climate experiments. Projection for MIROC, MPI, 

and NCAR general circulation models are plotted in left, center, and right subpanels, 

respectively. 
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Figure. 2.8. (a, b) The daily-mean precipitation (mm day-1) for (a) the full DDS and (b) 

the SmDS, with the shading as the reference in the right. (c, d) The standard deviation of 

JJA-mean precipitation (mm day-1) for (c) the full DDS and (d) the SmDS. (e, f) The 99-

percentile value (mm day-1) of daily precipitation for (e) the full DDS and (f) the SmDS. 
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Figure. 2.9. (a) The correlation coefficient between dynamical and statistical estimations. 

(b) The estimation error expressed as √
(1−𝑟2)

4
𝜎𝑝. (c) The relative error of SmDS (%) 

in the daily-mean precipitation. 
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Figure. 2.10. (a) The ratio of SmDS to full DDS for the 99-percentile value of daily 

precipitation (%) as per the reference in the right. (b, c) The 99-percentile value of daily 

precipitation (mm day-1) for (b) top 2 and (c) bottom 2 years for SmDS. The shading 

reference is in the right. 
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Chapter 3. Heavy rainfall duration bias in dynamical 

downscaling and its related synoptic patterns in summertime 

Asian monsoon 

 

3.1.  Introduction 

 Sudden heavy rainfall causes natural disasters, including flooding and inundation, 

landslides, erosion, and high tides. There has been a great concern about observational 

studies that showed a recent increase in heavy precipitation over North America 

(DeGaetano 2009; Pryor et al. 2009), Europe (Bartholy and Pongrácz 2007; Maraun et al. 

2008; Zolina et al. 2009), and Asia (Fujibe et al. 2006; Rajeevan et al. 2008). It is 

anticipated that a wetter climate caused by global warming would result in a greater 

chance of heavy rainfall (Donat et al. 2016). A series of adaptation policies should be 

compiled to prepare for possible hazards due to more frequent heavy rainfall, and thus a 

high-resolution dataset for the precipitation change is highly required. Recently, 

dynamical downscaling (DDS; Giorgi 1990) has been used to fill the gap between the 

coarse resolution of the global climate model projection and the provincial scale of social 

demand. The DDS has the advantage of physical consistency over a model domain, but it 

contains model bias due to the unrealistic topography and physical parameterizations 

including cloud physics, convective parameterization, boundary layer schemes in both 

general circulation model (GCM) and regional climate model (RCM;(Ehret et al. 2012; 

Wang et al. 2004). Therefore, we need to correct the model bias before estimating future 

changes from the DDS results. 
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The bias correction for daily and monthly precipitation amount has typically 

been made. Shifting and scaling (Leander and Buishand 2007; Prudhomme et al. 2002; 

Shabalova et al. 2003) and quantile mapping (Ines and Hansen 2006; Jakob Themeßl et 

al. 2011; Piani et al. 2010a) are two major methods of bias correction to daily or monthly 

precipitation amount. The former method scales model precipitation amount to match its 

climatology with observations (Shabalova et al. 2003). This method is not always suitable 

for heavy rainfall, however, because the estimate is highly sensitive to the scaling factor 

(Berg et al. 2012; Leander and Buishand 2007). The latter method adjusts the precipitation 

amount to maintain consistency in a cumulative distribution function between the model 

and observations. The quantile mapping tends to smooth the local-scale variability 

(Maraun 2013). It should be remarked here that there is no way to make correction if 

regional atmospheric model (RAM) simulates no rainfall. 

When the bias correction is applied to the DDS output such as temperature or 

precipitation amount in future climate, the correction coefficient in quantile mapping or 

shifting and scaling is obtained from the climatic variable in the bias correction based on 

the current climate simulation. This method implicitly assumes that the model bias is time 

invariant. However, this stationary assumption is questionable (Christensen et al. 2008; 

Maraun 2012; Maraun et al. 2010). Li et al. (2018) proposed a bias correction method 

according to synoptic patterns related to heavy precipitation amount. They detected heavy 

rainfall events based on the rain-gauge data and classified the synoptic patterns related to 

heavy rainfall events using a self-organizing map (SOM; Kohonen 1982) with an input 

parameter of sea-level pressure (SLP). They then applied quantile mapping to daily 

precipitation with respect to the corresponding synoptic pattern. Their bias correction 

approach for precipitation amount may provide a possible way to overcome this stationary 
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assumption problem in bias correction. 

On the other hand, there is only one study that attempted the correction method 

for rainfall duration bias. Nyeko-Ogiramoi et al. (2012) defined the length of consecutive 

wet days as a wet-spell and corrected the mean of wet-spell, by extending additional wet 

days using a kernel density estimation method (Lall et al. 1996) and replacing the end of 

wet days of a wet-spell with dry days. For example, if the rainfall duration changed in a 

catchment area consisting of a main stream and its branch rivers, the structure of 

hydrograph in each sub-catchment area would be changed depending on the different 

spatial scale and runoff coefficient of each sub-catchment area. At the downstream toe of 

the main stream, the timing and amount of direct runoff peak can therefore be affected by 

hydrographs for sub-catchments. Maraun (2013) pointed out that the temporal variation 

of bias-corrected precipitation amount by a quantile mapping was determined for every 

grid box. He also pointed out that, if these precipitation data were to be used in 

hydrological modeling, the flood risk would be overestimated in narrow, rapidly-

responding catchments. For the above reason, the bias correction of rainfall duration is 

important for accurately estimating the direct runoff and flood risk in a catchment area. 

However, no one has yet explicitly stated how a DDS result contains the precipitation 

duration bias. 

This study aims to provide an explicit description on the rainfall duration bias of 

a RAM forced with reanalysis data. The knowledge obtained in this paper is useful in that 

the atmospheric forcing drives a hydrological model to evaluate direct runoff in a 

catchment, which is often crucial for estimating flood risk. We focus on summertime 

heavy precipitation over Kyushu, one of the four main islands of Japan as mapped in Fig. 

3.1. Recalling Li et al. (2018), it is natural that a rainfall event has the model bias of the 
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rainfall duration involving its related synoptic pattern. Summertime precipitation in 

Kyushu is generally controlled by the low-level moisture intrusion related to the Asian 

monsoon and typhoon passages. We apply SOM to detect typical synoptic patterns related 

to heavy rainfall days in Kyushu and link the patterns with rainfall duration biases. This 

paper is organized as follows: Section 3.2 describes the data and method. Section 3.3 

clearly describes the precipitation duration bias in the DDS experiments and performs the 

SOM analysis to reveal the relationship between heavy rainfall days and surrounding 

atmospheric environment. Sections 3.4 and 3.5 provide discussion and conclusions. 

 

 

3.2. Data and method 

 

a. Observations 

 The rainfall observation data is the Radar/Rain gauge-Analyzed Precipitation 

(RA), based on 46 C-band radars operated by the Japan Meteorological Agency (JMA), 

the Ministry of Land, Infrastructure, Transport and Tourism (MLIT) and approximately 

10,000 rain gauges of the JMA, MLIT and local governments [see Nagata (2011) for 

details], which have been intensively used as the verification data in many publications 

without additional quality controls (cf. Oki and Sumi 1994; Iida et al. 2006). The 

horizontal resolution of RA is 1 km and the analysis period is July and August from 2006 

to 2015. The RA provides 1-h accumulated precipitation amount (mm) with the minimum 

unit of 0.4 mm h-1. We regard the 1-h accumulated precipitation amount of RA as 

precipitation intensity (mm h-1). This study focuses on Kyushu, with 38,869 RA grid 

points over the land originally. For comparison RA to model results, we also use the 
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original RA data with a sub-sample, of which the horizontal resolution is approximately 

15 km as fine as the RAM used in this study (Section 3.2b). Hereafter, the sub-sampled 

RA is referred to as RA-S, with 181 grid points over Kyushu. We also use, as the lateral 

boundary condition for dynamical downscaling, three-dimensional geopotential height, 

horizontal wind vector, air temperature, and specific humidity, and sea surface 

temperature and SLP (sea level pressure) from 6-h JRA-55 reanalysis data (Kobayashi et 

al. 2015) originally with the resolution of TL319L60. In the SOM analysis, we use JRA-

55 with 1.25° latitude/longitude grid data (Kobayashi et al. 2015). 

 

b. RAM experiments 

 We used the JMA/Meteorological Research Institute non-hydrostatic model 

(NHM) [See Saito et al. (2006) for more details]. The horizontal resolution is 15 km with 

the Lambert conformal projection and there are 23 vertical levels with the terrain 

following coordinate system. The model domain covers the area around Japan (Fig. 3.1a). 

Several physical processes are implemented in the NHM, including a microphysics 

scheme (Ikawa and Saito 1991), moisture diffusion (Saito and Ishida 2005), a land surface 

and boundary layer processes (Kumagai 2004a, 2004b), and vertical diffusion (Fujibe et 

al. 1999). The Kain–Fritsch scheme (Kain and Fritsch 1993) is switched on to compensate 

for the amount of convective precipitation in the insufficient-resolution model. The NHM 

is integrated from June 28 to August 31 of each year from 2006 to 2015 with lateral and 

bottom boundary conditions given by JRA-55 original data. We exclude the period from 

June 28 to June 30 as the model spin-up. 
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c. Classification of synoptic patterns related to heavy rainfall 

 To classify the synoptic patterns, we use SOM and the K-means method. SOM 

can provide a two-dimensional map with keeping the nonlinear information. After the 

SOM process, we conduct K-means and obtain the synoptic patterns. This combination 

method of SOM and K-means has been used other studies for objectively classifying 

synoptic patterns (Nguyen-Le et al. 2017; Nishiyama et al. 2007; Ohba et al. 2016; Ohba 

et al. 2015). Our method basically follows Nguyen-Le et al. (2017) and is slightly 

different from Nishiyama et al. (2007), who did not apply the combined empirical 

orthogonal function (CEOF) analysis before SOM method.  

Using daily precipitation from the RA data, we sample days on which the number 

of grid boxes with daily precipitation of each grid surpassing 30 mm day-1 exceeds 20% 

of the total number of grid boxes over Kyushu. We regard these detected days as “heavy 

rainfall days”. The area of 20% of Kyushu is set to focus on the precipitation system 

forced by large-scale forcing. It is noted that, if a rainfall system such as a typhoon passed 

midnight and if these two consecutive days satisfy the definition of a heavy rainfall day, 

we counted two heavy rainfall days. There are 127 heavy rainfall days in the analysis 

period. The dependency on area coverage of 20% on our results is discussed in Section 

3.4b. For the selected dates, we prepare a set of daily mean dataset for the following 

climatic variables from JRA-55 with 1.25° latitude/longitude grid data: daily-averaged 

horizontal wind and equivalent potential temperature at 850 hPa and SLP for the domain 

shown in the box in Fig. 3.1a. These variables are important for intense precipitation in 

this region, because it is mainly caused by the Meiyu/Baiu rainband characterized by the 

strong meridional gradient of equivalent potential temperature and specific humidity 

(Ninomiya 1984; Ninomiya and Akiyama 1992; Sampe and Xie 2010; Tomita et al. 2011), 
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along with the low-level southwesterly along the western fringe of the North Pacific 

subtropical high that transports moisture from the tropics (Akiyama 1973; Kodama 1992; 

Ninomiya 1984; Ninomiya 2000; Ninomiya and Shibagaki 2007). Following Nguyen-Le 

et al. (2017), for the efficiency of learning processes in SOM, the CEOF analysis of these 

synoptic variables is performed in advance and 62 leading principal components, for 

which the explained variance is 99%, are input into the SOM program.  

The CEOF analysis of these synoptic variables is performed in advance to reduce 

the size of input vector from 528 to 62, noting that the original size is 11 longitude grids 

times 12 latitude grids times 4 climatic variables of JRA-55. And then, 62 leading 

principal components are input into the SOM procedure. The results of the SOM analysis 

are generally sensitive to the number of output nodes. This study fixed it as 10 × 10. The 

node number dependency is discussed later (Section 3.4b). A Gaussian neighborhood 

function is used with the learning rate set to 0.2. To relate the original SOM result to the 

typical synoptic patterns, we apply the U-matrix (Ultsch and Siemon 1990) and K-means 

methods for cluster analysis. Note that the number of cluster is fixed at 3 before 

conducting K-means, because synoptic patterns related to heavy rainfall over Kyushu 

were mainly categorized into three patterns even with more clusters permitted (not 

shown). As a consequence, we obtain three typical synoptic patterns related to heavy 

rainfall over Kyushu. 

 

d. Definition of a rainfall event 

 Let us consider a time series of precipitation intensity at a particular grid point 

in Kyushu (Fig. 3.2). A single rainfall event is defined as the event in which hourly 

precipitation continuously exceeds 0.4 mm h-1, the minimum unit of RA. The rainfall 
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duration is the period when the rainfall event happens. We also define the peak value (mm 

h-1) as the maximum precipitation intensity (mm h-1) in the event period.  

 

3.3. Results 

a. RAM simulations 

Figures 3.3a,b show the precipitation intensity averaged in July and August (mm 

day-1) for RA and DDS. Most of areas in the island seem to exceed 12 mm day-1 around 

mountain areas with the height over 200 m in RA (Figs. 3.1b, 3.3a), whereas the 

precipitation amount in DDS seems to exceed 8 mm day-1 around the part of northwest 

and along the southeast coast in Kyushu (Fig. 3.3b). The DDS then underestimates the 

observed precipitation amount in almost all areas in Kyushu island, particularly more than 

50% underestimation over the part of the central area and almost all part of the northern 

area, except for an overestimation of >10% along the easternmost coast of Kyushu island 

(Fig. 3.3c). Figures 3.3d,e show histograms of hourly precipitation over Kyushu with the 

bin width of 1 mm h-1 and the first bin excluding zero precipitation. A histogram of hourly 

precipitation over Kyushu reveals that the model underestimates the rainfall with the 

intensity of >10 mm h-1 and fails to reproduce the very heavy rainfall with the intensity 

of >50 mm h-1. The RA and DDS precipitation intensity follow the log-normal distribution, 

but the RA precipitation intensity has a variance twice larger than that of the DDS 

precipitation intensity (Fig. 3.3d). In addition, the DDS has a large positive bias in the 

frequency of non-zero precipitation (Figs. 3.3d,e), which is generally called “drizzle 

problem” that GCM and RCM simulate too much non-zero precipitation (e.g. Maraun et 

al. 2010). 

The discrepancy between RA and DDS is also obvious in the precipitation 
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duration averaged over the rainfall events, which is the total rainfall durations divided by 

the number of events. For DDS, two peaks of the average rainfall duration are found on 

the southeastern side of Kyushu with over 8 h and on the part of northwest around 

131°E/33°N with over 8 h, whereas the average rainfall duration is less than 8 h over the 

rest of the region (Fig. 3.4a). In contrast, the RA-S provides an average rainfall duration 

ranging from 2 to 6 h and a small peak with over 4 h is found on the eastern side of 

Kyushu (Fig. 3.4b). The difference therefore shows a positive bias of rainfall duration 

over Kyushu, with its local maxima located on the eastern side and the northwest area in 

Kyushu (Fig. 3.4c). If we restrict rainfall events with their peak values over 30 mm h-1, 

the average duration time is prolonged in DDS and RA-S (Figs. 3.4d,e) and the DDS 

shows the large positive bias with over 20 h in the southeastern Kyushu whereas the other 

areas show a relativity little bias (Fig. 3.4f). 

 

b. Synoptic patterns related to heavy rainfall days 

 Table 1 shows the lists of heavy rainfall day in three clusters. We classified 53% 

of events as cluster C0, 27% as C1, and 20% as C2. Some consecutive heavy rainfall days 

across the midnight with dates falling into different clusters (marked date in Table 1), 

called transition in this paper, are excluded in our results for simplicity. We will discuss 

transition cases in Section 3.4a. 

 The SOM and K-means method produce three clusters for the synoptic patterns 

related to heavy rainfall days (Fig. 3.5). Cluster C0, containing 60 days, is characterized 

by high equivalent potential temperature air intruding into Kyushu via the low level jet 

(LLJ; Matsumoto 1972) and southwesterly along the western ridge of the North Pacific 

subtropical high. A sharp meridional gradient of equivalent potential temperature extends 



39 

 

from the Yellow River basin to northern Kyushu, which can be interpreted as the Meiyu–

Baiu rainband (Fig. 3.5a; Ninomiya and Akiyama 1992; Sampe and Xie 2010). These 

characteristics are similar to the composited synoptic field with SOM in Ohba et al. (2015; 

See the cluster 5 in their Fig. 3), Nguyen-Le et al. (2017; See the clusters 1 and 2 in their 

Fig. 2) and Nishiyama et al. (2007; See the clusters 5, 6, and 8 in their Fig. 9). The 

composited pattern for daily precipitation in Kyushu (Fig. 3.5b) shows more than 50 mm 

day-1 over western Kyushu related to the C0 cluster pattern. Cluster C1 suppresses the 

intensity of the LLJ, a westward extension of the North Pacific subtropical high and the 

intrusion of warm moist air toward Japan (Fig. 3.5c). The precipitation amount over 

Kyushu (Fig. 3.5d) is less prominent than cluster C0. Although the LLJ and southwesterly 

along the North Pacific subtropical high are suppressed, these characteristics of synoptic 

pattern are similar to the composite synoptic fields from SOM in Nguyen-Le et al. (2017; 

See the cluster 3 in their Fig. 2) and Nishiyama et al. (2007; See the cluster 2 in their Fig. 

9). In contrast to clusters C0 and C1, cluster C2 shows strong cyclonic circulation over 

the East China Sea that transports warm, moist air to Kyushu (Fig. 3.5e). This typhoon 

pattern was also detected in Ohba et al (2015; See the cluster 6 in their Fig. 3). Collating 

the typhoon record with 22 dates categorized into C2, the cyclonic circulation is caused 

by 13 typhoon cases. The pattern brings rainfall of more than 70 mm day-1 in the southerly 

wind area of the typhoon (Fig. 3.5f). 

Using the date list for each cluster obtained from the SOM and K-means method 

from JRA-55 and RA (Table 1), synoptic charts and rainfall maps were also composited 

using DDS output (Fig. 3.6). Wind circulation and SLP are similar to the composite maps 

based on the reanalysis data (Figs. 3.5a,c,e), though DDS makes drier weather than JRA-

55 in cluster C1. The spatial distributions in clusters C0 and C2 (Figs. 3.6b,f) are similar 
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to the distribution of reanalysis data (Figs. 3.5b,f), though DDS underestimates the 

precipitation intensity in almost all areas in Kyushu (Figs. 3.6b,d,f). Therefore, we 

conclude that the DDS reproduces a fundamental composite pattern classified with the 

SOM and K-means method. 

 

c. Rainfall duration bias related to heavy rainfall days 

The identification of rainfall event and rainfall duration in each cluster is 

restricted to dates falling into a particular cluster. Here we consider a time-series of hourly 

rainfall continuously lasting from 2300 UTC on July 9 to 0300 UTC on 10 July (Fig. 3.7). 

When both 9 July and 10 July fall into cluster C0, the rainfall event is once counted as C0 

and its rainfall duration is 4 h (Fig. 3.7a). On the other hand, when only 10 July falls into 

cluster C0, the rainfall event is also once counted as cluster C0 but its rainfall duration is 

shortened to 3h (Fig. 3.7b). 

Figure 3.8 shows the spatial distribution of average rainfall duration (h) in the 

three clusters. The average rainfall duration for clusters C0 and C1 ranges from 4 to 6 h 

in most areas of Kyushu (Figs. 3.8a,b), whereas the average rainfall duration for cluster 

C2 is more than 6 h in eastern Kyushu and less elsewhere (Fig. 3.8c). Compared with 

RA-S, the DDS almost reproduces the rainfall duration for clusters C0 and C1, although 

it overestimates the rainfall duration of C0 as 2 h longer than the observation in western 

Kyushu (Figs. 3.8d,e). However, DDS overestimates the rainfall duration of C2 in 

southern and east-coast areas in Kyushu (Fig. 3.8f) as 5 h longer than the observation. 

These results are quite robust because we sampled a sufficient number of rainfall events 

for clusters C0 and C1 (Figs. 3.9a,b,d,e) with more than 10 events. However, it should be 

cared that cluster C2 in DDS has less than 10 rainfall events in southern Kyushu (Fig. 
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3.9c).  

The histograms of rainfall duration for RA-S and DDS show a log-normal 

distribution for all clusters (Fig. 3.10). The mean and standard deviation of cluster C2 are 

higher than those of the other clusters. The DDS has a positive bias of 1.3 h in cluster C0 

and of 1.0 h in cluster C2 (Figs. 3.10a,c), in spite of little mean bias for cluster C1 (Fig. 

3.10b). This result suggests that the duration bias depends on a synoptic weather pattern 

that brings heavy rainfall events. Rainfall duration biases among synoptic weather 

patterns are larger if rainfall is limited to cases with peak values exceeding 30 mm h-1 

(Fig. 3.11). The mean and standard deviation of cluster C2 are higher than for other 

clusters in both RA-S and DDS (Fig. 3.11b). In cluster C2, the location of the entire 

distribution in DDS shifts to the right compared to the one in RA-S. The DDS has a 

positive bias of 26.2 h in cluster C2 (Fig. 3.11b) and a negative bias of 2.2 h in cluster C0 

(Fig. 3.11a). 

 

3.4. Discussion 

a. Transition cases 

 The number of transition events are 4 cases between cluster C0 and C1, 3 cases 

between cluster C0 and C2, and 1 case between C1 and C2. Figure 3.12 shows the daily-

mean SLP, horizontal wind and equivalent potential temperature at 850 hPa for the 4 

transition events between cluster C0 and C1. Stationary LLJ due to the Baiu-front and 

southwesterly along the North Pacific subtropical high exists both cluster C0 and C1. 

Moreover, cluster C0 is also characterized the passage of meso-α-scale cyclone around 

Kyushu (Figs. 3.12c,f,i), which may transport more moisture to Kyushu compared to 

cluster C1 (Figs. 3.12b,d,e,g,h). Cluster C0 on 10 July 2009 (Fig. 3.12a) is characterized 
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by the confluence of the LLJ due to the Baiu-front and cyclonic circulation located around 

132°E/20°N, which may transport more moisture compared to cluster C1 on 11 July 2009.  

Three transition events between cluster C0 and C2 is characterized by strong 

cyclonic circulation due to the typhoon (Fig. 3.13). Although Figs. 3.13b,d,f are classified 

to cluster C0 with SOM, but all these dates are obviously a typhoon pattern located around 

the northwest sea of Kyushu. SOM classified this case into C0, in spite that the heavy 

rainfall days are much influenced by typhoon (Figs. 3.13b,d and f). This kind of 

classifications with SOM is also found in transition between C1 and C2 (Fig. 3.14). On 

18 July 2012, a typhoon located around 125°E/33°N transported moisture into Kyushu 

(Fig. 3.14a) and it moved northward on 19 July 2012 (Fig. 3.14b). On 19 July 2012, the 

advection of moisture into Kyushu seemed to be influenced by both typhoon circulation 

and southwesterly along the western fridge of the North Pacific subtropical high (Fig. 

3.14b). As described above, the SOM analysis did not always lead to the result consistent 

with synopticians’ intuition, especially in a case where a typhoon resides at a different 

location from the position where a cluster points.  

 

b. Sensitivity tests 

We here check the node number dependency in SOM. Table 2 shows the mean 

differences of rainfall duration (DDS minus RA-S) in all rainfall events of the heavy 

rainfall days over Kyushu in different SOM experiments as the node number changes 

from 6 × 6 to 12 × 12. Almost all the experiments objectively classify the synoptic patterns 

related to heavy rainfall, similar to patterns with a node number of 10 × 10 (not shown). 

However, SOM with a node number of 9 × 9 provided a different cluster set. Clusters C0 

and C2 (Figs. 3.15a,e) in the 9 × 9 SOM are the same as the standard setting (Figs. 3.5a,e), 
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but the composite pattern for cluster C1 in the 9 × 9 SOM also shows a typhoon pattern 

that brings heavy rainfall to western Kyushu (Figs. 3.15c,d). The mean differences in 

rainfall duration in cluster C2 are higher than in the other clusters in almost all 

experiments, though the DDS has a negative bias of 3.2 h with a node number of 9 × 9 

and 1.0 h with a node number of 8 × 8. In cluster C2, large positive biases are also evident 

in rainfall events with a peak value over 30 mm h-1, except experiments with a node 

number of 8 × 8 and 9 × 9 (not shown). Therefore, the node number dependency has little 

effect on the results in this paper. 

 We next discuss the area coverage dependency on the definition of heavy rainfall 

days. Table 3 shows the mean bias of rainfall duration in all rainfall events of the heavy 

rainfall days in different SOM experiments with area coverages ranging from 5% to 40%. 

The node number is fixed as 10 × 10. All the sensitivity experiments objectively classify 

synoptic patterns compared to the standard setting (not shown). Rainfall duration biases 

are higher in cluster C2 than in other clusters for area coverages of 5%, 10% and 25%, 

whereas cluster C0 has higher positive biases than cluster C2 for area coverages of 

between 15, 20 and 30-40%. In contrast, for rainfall events where the peak value exceeds 

30 mm h-1, rainfall duration bias in cluster C2 have a large long-standing bias ranging 

from +6.4 to +26.2 h within the area coverage from 5% to 25%, whereas the cluster C0 

has a negative duration bias ranging from −4.1 to −0.5 h (Table 4). 

The sensitivity of threshold for heavy rainfall day is moreover remarked. Table 

5 shows the mean difference of rainfall duration (DDS minus RA-S) in all rainfall events 

of heavy rainfall days among the different threshold (mm day-1) for heavy rainfall days. 

Here the other settings are the same as the standard experiment. All the sensitivity 

experiments objectively classify synoptic patterns into strong monsoon, weak monsoon, 
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and typhoon (not shown). The experiment of threshold of 10 mm day-1 shows more 

positive bias compared to the standard experiment in clusters C1 and C2. On the other 

hand, the experiment with the threshold of 50 mm day-1 shows a negative bias of 0.4 h in 

cluster C1, and the positive bias in cluster C2 is smaller than the experiment of threshold 

of 10 and 30 mm day-1. A positive bias in cluster C2 is also evident in rainfall events with 

a peak value over 30 mm h-1 (Table 6). The amount of positive duration bias is +4.9 h in 

the case of threshold of 10 mm day-1 (Table 6). The threshold of 30 mm h−1 is therefore 

one of the reasonable values to keep enough events for some statistics for every cluster.  

 

c. Model biases 

 This study provided the precipitation bias information with the RAM results with 

15-km horizontal resolution. Heavy rainfall in Kyushu is mainly attributed to orographic 

precipitation associated with the low-level wind. We speculate that the smoothed 

topography of RAM with a resolution of 15 km may weaken the convection, which could 

lead to a positive rainfall duration bias. Additionally, the rainfall intensity and duration in 

mesoscale-convective systems are controlled by the interaction between vertical wind 

shear and cold pool (Rotunno et al. 1988), and by locally low-level wind convergence by 

convective heating (Kato and Goda 2001), of which the spatial scale is the meso-β scale 

or smaller. The model resolution of 15 km that we used may be insufficient to reproduce 

these mesoscale environmental fields accurately. This was shown in the total precipitation 

amount in the DDS (Fig. 3.6) compared with the observation (Fig. 3.5). However, it is 

worthwhile noting that the typhoon in the DDS was well reproduced in terms of its 

position. Figure 3.16 shows the location of 22 typhoon centers associated with cluster C2 

with the capital letters of JRA-55 and the small letters of DDS. Here the typhoon center 
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is defined as the minimum value of SLP. The average of the difference of center of 

typhoon between DDS and JRA-55 is 207.0 km. The minimum distance is 18.4 km (Label 

E/e) and the maximum distance is 665.7 km (Label A/a).  

 The frequency of rainfall events in the DDS is also a problem. We obtained 

42,286 events in the RA output and 13,840 events in the DDS output (Figs. 3.3d,e). The 

causes of this difference are speculated that NHM with the 15-km resolution did not well 

reproduce meso-scale convective systems and then several rainfall events detected in RA 

are possibly counted as a single event in NHM because of the non-zero precipitation bias. 

This means that the rainfall duration bias could not perfectly corrected with conventional 

methods such as quantile mapping or shifting and scaling, because they are unable to 

correct the number of dry days.  

The bias correction of rainfall amount and frequency is crucial for hydrological 

applications. Precipitation intensity and frequency is related to frequency of precipitation 

types including stratiform/convective precipitation and drizzle. It is necessary to examine 

the precipitation frequency and intensity, not only duration, in order to accurately evaluate 

the rainfall bias in the DDS with considering the precipitation characteristics (Dai 2006). 

While the shifting and scaling and quantile mapping are generally applied to the daily or 

monthly data (e.x. Bordoy and Burlando 2013; Lafon et al. 2013), no one proposed a 

reasonable way to correct the precipitation intensity with hourly timescales. Hence there 

is still an open question how to correct the precipitation intensity. On the other hand, as 

described in Introduction, the rainfall duration bias would also be another important 

problem when we estimate the timing and amount of direct runoff peak in a catchment. 

The shifting and scaling method and quantile mapping method could possibly lead to an 

imprecise impact assessment, even if the total precipitation amount is exactly corrected; 



46 

 

they work as if a stratiform-type rainfall event characterized by prolonged moderate 

rainfall changed to a long-standing convective-type rainfall event. 

 The spatial and time scale in stratiform and convective precipitation may 

contribute to the surface runoff or infiltration processes. For example, Toews et al. (2009) 

classified convective and stratiform precipitation based on daily precipitation data by 

focusing on the difference of spatial scales; and they suggested that stratiform 

precipitation has much more impact on groundwater recharge rather than convective 

precipitation. On the other hand, we have emphasized the difference of time scale between 

stratiform and convective precipitation. If one thought of precipitation events with the 

same precipitation amount, the duration time would be a key agent in evaluating the 

surface-runoff and infiltration processes. We will refer this matter to a future paper. 

 

3.5. Conclusions 

We have investigated the rainfall duration bias with a RAM over Kyushu, Japan, in July 

and August from 2006 to 2015. The results showed that the DDS provided a dry bias (Fig. 

3.3) and a long-standing rainfall bias, especially over eastern Kyushu and in the part of 

northwest in Kyushu (Fig. 3.4c). The rainfall bias was emphasized for rainfall events with 

the strong rainfall peak (Fig. 3.4f). Using SOM and the K-means method, we objectively 

extracted three typical clusters of synoptic patterns related to heavy rainfall days: strong 

monsoon, weak monsoon, and typhoon (Fig. 3.5). The cluster analysis clarified that the 

model bias of rainfall duration depended on the synoptic patterns. The long-standing 

biases were in western Kyushu under the strong monsoon environment and in southern 

and east-coast Kyushu when a typhoon approaches from the south (Fig. 3.8). The typhoon 

bias was related to a strong rainfall peak in rainfall events (Fig. 3.11b). 
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A possible approach to correct the rainfall duration bias would be to scale rainfall 

durations uniformly for all rainfall events for the model output, so that the mean of rainfall 

durations for the model matches that for the observations. For example, for a positive 

duration bias, we could cut the rainfall days from an event and equally distribute the 

removed amount to the remaining rainfall. It is beyond the scope of this paper to propose 

a feasible method for bias correction of rainfall duration, however. 
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Tables 

Table 3.1. List of heavy rainfall days for each cluster. Dates with mark #, *, and † show 

transition from or toward clusters C0, C1, and C2, respectively. 
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Table 3.2. The mean difference (h) of rainfall duration (DDS minus RA-S) in all rainfall 

events of heavy rainfall days excluding transition days among different node 

numbers. Here the standard experiment in this study is the node number with 

10 × 10. 

Node number 𝟔 × 𝟔 𝟕 × 𝟕 𝟖 × 𝟖 𝟗 × 𝟗 𝟏𝟎 × 𝟏𝟎 𝟏𝟏 × 𝟏𝟏 𝟏𝟐 × 𝟏𝟐 

C0 +1.1 +1.1 +1.3 +1.0 +1.3 +1.4 +1.4 

C1 +0.3 +0.4 -0.2 +3.2 0.0 0.0 +0.3 

C2 +1.0 +0.9 -1.0 −3.2 +1.1 +1.0 +2.7 
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Table 3.3. The mean difference (h) of rainfall duration (DDS minus RA-S) in all rainfall 

events of heavy rainfall days excluding transition days among different area 

coverages with the node number of 10×10. Here the standard experiment in this 

study is the area coverage with 20 %. 

 

Area coverage (%) 5 10 15 20 25 30 35 40 

C0 +1.7 +1.5 +1.5 +1.3 +1.0 +1.1 +1.0 +1.0 

C1 +0.4 +0.7 +0.1 0.0 −0.3 −0.1 −0.1 −0.8 

C2 +2.5 +1.8 +0.9 +1.1 +2.9 −1.0 +0.4 +0.4 
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Table 3.4. The mean difference (h) of rainfall duration (DDS minus RA-S) in the rainfall 

events excluding transition days of which peak value exceeds 30 mm h-1 among 

different area coverages with the node number of 10×10. Hyphens in the table 

show the case that the number of rainfall events with a peak value over 30 mm/h 

is less than 10 events either DDS or RA-S. Here the standard experiment in this 

study is the area coverage with 20 %.  

 

 

Area coverage (%) 5 10 15 20 25 30 35 40 

C0 −0.43 −2.7 −0.5 −2.1 −4.1 −3.3 - - 

C1 - - - - - - - - 

C2 +6.4 +25.7 +26.2 +26.2 +22.5 - - - 
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Table 3.5. The mean difference (h) of rainfall duration (DDS minus RA-S) in all rainfall 

events of heavy rainfall days excluding transition days among the different 

threshold (mm day-1) for heavy rainfall day. Here the standard experiment in this 

study is the threshold with 30 mm day-1.  

 

 

Threshold (mm day-1) 10 30 50 

C0 +0.9 +1.3 +1.1 

C1 +1.6 0.0 −0.4 

C2 +2.6 +1.1 +0.4 
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Table 3.6. The mean difference (h) of rainfall duration (DDS minus RA-S) in the rainfall 

events excluding transition days of which peak value exceeds 30 mm h-1 among 

different thresholds with the node number of 10×10. Hyphen in the table shows 

the case that the number of rainfall events with a peak value over 30 mm/h is 

less than 10 events either DDS or RA-S. Here the standard experiment in this 

study is the threshold with 30 mm day-1.  

 

 

Threshold (mm day-1) 10 30 50 

C0 - −2.1 −0.8 

C1 −3.8 - - 

C2 +4.9 +26.2 - 
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Figures 

 

 

Figure 3.1. (a) Terrain elevation in the non-hydrostatic model (NHM) domain and (b) 

magnification over Kyushu. The shading scale is shown on the right. The inner 

solid box in (a) shows the domain for our self-organizing map (SOM). 
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Figure 3.2. Schematic diagram for the definition of rainfall duration (D; h) and peak value 

(P; mm h-1) of a particular grid point in Kyushu. The sequence of hatched bars 

is regarded as a single rainfall event. 
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Figure 3.3. (a,b) July–August mean precipitation (mm day-1) for (a) Radar/Rain gauge-

Analyzed Precipitation (RA) and (b) dynamical downscaling (DDS) with the 

shading reference in the right. Contour shows (a) 12 mm day-1 in RA and (b) 8 

mm day-1 in DDS. (c) Relative error of DDS (%) in the July-August mean 

precipitation with the shading reference on the right. (d) Histograms of hourly 

precipitation (mm h-1) in RA-S (hatched bar) and DDS (gray bar) over Kyushu. 

The bin width is set to 1 mm h-1, and mean 𝜇 and standard deviation 𝜎 are 

provided in the legend. (e) Same as (d), but y axis shows the number. 
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Figure 3.4. (a,b) Average rainfall duration (h) for (a) DDS and (b) RA-S for all rainfall 

events during July and August from 2006 to 2015. (c) Difference between DDS 

and RA-S for average rainfall duration (h). (d-f) Same as (a-c), but for rainfall 

events of which peak value exceeds 30 mm h-1. Black shadings in (d) and (f) 

show no rainfall event with its peak value exceeding 30 mm h-1. 
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Figure 3.5. (a,c,e) Composites excluding transition days for clusters (a) C0, (c) C1, and 

(e) C2 of (contours) daily mean sea-level pressure (SLP), (shading) 850 hPa 

equivalent potential temperature, and (vectors) 850-hPa horizontal wind based 

on JRA-55 reanalysis data. Contour interval is 4 hPa; the shading reference and 
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the unit vector of 20 m s-1 are posed at the bottom of (e), and the vector <5 m s-

1 is omitted. The number of heavy rainfall days is shown in the upper-left corner. 

(b,d,f) Composite for clusters (b) C0, (d) C1, and (f) C2 of (shading) RA-S 

precipitation in Kyushu island (mm day-1) and (contour) RA precipitation of 50 

mm day-1. 
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Figure 3.6. Same as Fig. 3.5, but for composites of DDS results for the dates classified 

with SOM based on JRA-55 and RA. 
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Figure 3.7. An example of a continuous rainfall across the midnight between 9 and 10 

July with (a) both the dates fallen into the same cluster C0, and (b) one date fallen into 

cluster C0 but the other not. 
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Figure 3.8. (a–c) Average rainfall duration (h) in the clusters (a) C0, (b) C1, and (c) C2 

with the shading reference in the right. (d–f) Difference in average rainfall 

duration (h) between DDS and RA-S (DDS minus RA-S) in the clusters (d) C0, 

(e) C1, and (f) C2. 
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Figure 3.9. (a-c) The number of rainfall events for clusters (a) C0, (b) C1 and (c) C2 in 

DDS with the shading reference in the right. (d-f) Same as (a-c), but for RA-S. 
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Figure 3.10. Histogram of rainfall duration in (hatched bar) RA-S and (gray bar) DDS for 

clusters (a) C0, (b) C1, and (c) C2. The bin width is set to 1 h, and the number, 

N, the mean, μ, and the standard deviation, σ, of samples are provided in the 

legend. The mean for RA-S and DDS is emphasized by black and gray vertical 

lines, respectively. 
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Figure 3.11. Same as Fig. 3.10, but for rainfall events of which peak value exceeds 30 

mm h-1. 
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Figure 3.12. Daily mean sea-level pressure (SLP), (shading) 850-hPa equivalent 

potential temperature, and (vectors) 850-hPa horizontal wind during 4 transition events 

between cluster C0 and C1 based on JRA-55 reanalysis data. Contour interval is 4 hPa; 

the shading reference and the unit vector of 20 m s-1 are posed at the bottom of (a), and 

the vector <5 m s-1 is omitted. 
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Figure 3.13. Same as Fig. 3.12, but for 3 transition events between cluster C0 and C2. 
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Figure 3.14. Same as Fig. 3.12, but for 1 transition event between cluster C1 and C2. 
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Figure 3.15. Same as Fig. 3.5, but for the node number of 9 × 9 for SOM. 
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Figure 3.16. Locations of typhoon centers in cluster C2 with JRA-55 (capital letter) and 

blue DDS (small letter). Here the typhoon center is defined as the minimum value of 

SLP. Gray contour shows the cluster-composite SLP (hPa) for JRA-55 in cluster C2. 
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Chapter 4. Possible hydrological effect of rainfall duration bias 

in dynamical downscaling 

 

4.1 Introduction 

Dynamical downscaling (DDS; Giorgi 1990), a powerful method to provide 

high-resolution meteorological data from the coarse-resolution data with a regional 

atmospheric model (RAM), generally suffers from the bias especially in precipitation 

owing to smoothed surface height and incomplete physical parameterizations on clouds, 

convection, and turbulence (Ehret et al. 2012; Wang et al. 2004). The bias in precipitation 

can be classified into the amount and the duration. The quantile mapping (Piani et al. 

2010a,b), often used in climate change adaptation researches, can correct the probability 

distribution of rainfall intensity. However, it cannot correct the duration bias. Recently, 

Tamaki et al. (2018) suggested that the DDS tended to prolong heavy rainfall events in 

their target area, Kyushu, and the extent of this duration bias in the events was closely 

related to synoptic weather patterns such as a persistent Baiu rainband across the island 

and a passage of typhoon along the island. 

If a hyetograph with a prolonged bias in rainfall duration input a hydrological 

model, the peak of surface runoff and river-flow amount would be considerably 

underestimated. This is because the hydrological response strongly depends on the 

temporal variation of the precipitation over the river catchment area, mostly attributed to 

mesoscale phenomena such as storm movement (Kim and Seo 2013; Sigaroodi and Chen 

2016) and sporadic convective cores (Syed et al. 2003). For example, when the intense 

convective line moves parallel to the direction of the convective line itself (Doswell et al. 
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1996) under a back-building type convective system (Schumacher and Johnson 2005), an 

extreme flash flood very likely occurs due to the torrential rainfall in a short time. Hence 

the hydrological response to a hyetograph with the rainfall duration bias should be 

evaluated, and a caveat should be provided in a hydrological estimation based on DDS 

data particularly in climate change problems. However, little studies have focused on this 

problem, despite that the rainfall duration bias probably influences the risk evaluation on 

flash flood.  

The purpose of this study is to evaluate a possible hydrological effect of rainfall 

duration bias as shown in Tamaki et al. (2018). Since a bias extent depends on synoptic 

weather patterns, we selected two typical heavy rainfall periods over Kyushu, Japan, in 

summer. One is the period during 11-15 July 2012 with a persistent Baiu rainband, 

characterized by the strong meridional gradient of equivalent potential temperature in the 

East China Sea along with the low-level jet (Fig. 4.3a). In the period, warm and humid 

air intrudes into Kyushu and cumulative rainfall exceeds 450 mm in western Kyushu (Figs. 

4.3a,b). The other is the period during 12-16 July 2007 with a typhoon’s strong cyclonic 

circulation over the East China Sea. In the period, the cumulative rainfall exceeds 300 

mm in eastern Kyushu (Figs. 4.5a,b). These two periods are quite typical for heavy 

rainfall in Kyushu closely related to synoptic weather patterns [See Fig. 5 of Tamaki et 

al. (2018)]. To clarify the effect of rainfall duration bias to runoff, we develop a new 

method to artificially extend a rainfall duration time with keeping the total rainfall amount. 

We emphasize that the mean duration bias in heavy rainfall events related to a persistent 

Baiu rainband is an 8-hour extension and that related to a typhoon approach is a 16-hour 

extension, estimated with the DDS calculation in Tamaki et al. (2018). Sensitivity 

experiments are then conducted with a tank model forced by hyetographs with an 8-hour 
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extension and with a 16-hour extension. 

 

4.2 Data and method 

 We used the site-observed hourly rainfall (mm h-1) with rain gauge and the 

discharge (m3 s-1) data at eight dams over Kyushu (Fig. 4.1), with no more dams in their 

upstream. The dam data at Ryumon, Yabakei and Kyuragi were downloaded from Water 

Information System operated by Ministry of Land, Infrastructure, Transport, and Tourism 

(MLIT). The dam data at Shimouke, Houri, Urita, Ayaminami and Tashirobe were 

provided by Prefectural Land Development Department, Miyazaki Prefectural 

Government (a special courtesy of Mr. S. Hamada). The river catchment area including 

each dam ranges from 4.4 to 185.0 km2 (Fig. 4.1). We will mainly show the results at 

Shimouke and Urita dams for simplicity. We also used 6-hourly JRA-55 reanalysis data 

(Kobayashi et al. 2015) for a synoptic field analysis, and the Radar/Rain Gauge-Analyzed 

Precipitation (RA; Nagata 2011) for a precipitation field analysis. 

 Figure 4.2 illustrates the procedure to artificially extend the rainfall duration time 

by using any timeseries of hourly rainfall at a site. We here define rainfall event as the 

period during which hourly rainfall continuously exceeds 0.1 mm h-1, the minimum unit 

for the rain gauge. A heavy rainfall event is defined as the rainfall event with the total 

rainfall amount exceeding 10 mm and we used heavy rainfall events only. First, in an 𝑥-

hour extension, a time stamp of rainfall data after the peak is offset by +𝑥 2⁄  hours and 

a time stamp before the peak is offset by −𝑥 2⁄  hours. Note that, if an event overlaps 

another in this extension process, the rainfall data in the overlapped period are replaced 

with an addition of shifted data from both events. Second, the rainfall data around the 

peak are compensated with a linear interpolation from peak to the shifted data. Finally, 
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an artificial hyetograph (𝑅𝑝 in Fig. 4.2) is obtained by uniformly scaling the processed 

data so as to keep the total rainfall amount during the event as original. 

 We used a four-tank model (Sugawara 1972, 1995) to estimate the runoff. The 

tanks are here designated as tank0, tank1, tank2, and tank3 from top to bottom. The tank0 

has two runoff holes and the tank3 does not have an infiltration hole. The runoff 

component of tank0, …, tank3 is physically regarded as surface/subsurface runoff, fast 

intermediate runoff, slow intermediate runoff, and base flow, respectively. This tank 

model has 4 parameters on initial water depths, 5 parameters on runoff, 4 parameters of 

outlet-hole heights, and 3 parameters on infiltration. They are optimized with the L-

BFGS-B algorithm (Byrd et al. 1995) for each site during a heavy rainfall case (The 

optimized parameters in Table 4.1). We have checked that the results shown below do 

not change with a different parameter set realistically considered (Table 4.2 and Fig. 4.3). 

The tank model is forced by the observed control (CTR) hyetograph, the hyetograph with 

the rainfall duration extended by 8 hours (D8 hyetograph), and the hyetograph with the 

rainfall duration extended by 16 hours (D16 hyetograph) with the same optimized 

parameters in each heavy rainfall period.  

 

4.3 Results  

 

a. Event with the Baiu rainband and hydrology at Shimouke dam 

The total rainfall during 11-15 July 2012 accompanied with the Baiu rainband across 

Kyushu is 530 mm at Shimouke dam (Figs. 4.4a, b). Figure 4.4c displays the observed 

runoff and the runoff simulated with the tank model forced by the CTR hyetograph at 

Shimouke dam during 11-15 July 2012. The CTR hyetograph shows three major peaks 
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around t=30, 60 and 80 and its hydrograph represents the rapid response with peaks of 

250 m3 s−1 around t=30, 500 m3 s−1 around t=60, and 1,000 m3 s−1 around t=80 

(Fig. 4.4c). The tank model forced by this CTR hyetograph reproduced the observed 

hydrograph; the correlation coefficient between observation and simulation is 0.95. 

Similarly to the CTR hydrograph response, the water depth response has three major 

peaks of 150 mm around t=30, 200 mm around t=60, and 300 mm around t=80 (Fig. 

4.4d). 

The D8 hyetograph, given the typical DDS bias in Baiu rainband, represents that 

its sharp peaks are smoothed and the second and third rainfall event are connected by the 

rainfall duration bias (blue bars in Fig. 4.5c). The maximum rainfall intensity decreased 

by 60% compared with the CTR hyetograph around t=80 (Figs. 4.5b,c). A tank model 

forced by D8 hyetograph also shows three runoff peaks around t=30, 60 and 80 (Fig. 

4.5a). The runoff amount at major peaks decreased by 34% compared with the CTR 

runoff peak around t=80 (Fig. 4.5a). The runoff amount just after the third major peak 

around t=80-100 increases following the rainfall duration extending in D8 hyetograph 

(Fig. 4.5a). Moreover, a valley between the second and third runoff peaks around t=70 

found in CTR runoff become obscure in D8 and D16 runoffs (Fig. 4.5a). The 

surface/subsurface runoff contribution considerably decreases and the runoff from tank0 

and tank1 less varies in time (Figs. 4.5b,c). Since, in the D8 run, the second and third 

heavy rainfall events of CTR hyetograph become overlapped around t=70 for an artificial 

extension (blue bars in Fig. 4.5b,c), the tank1’s runoff slowly ends around t = 65-70 and 

it slowly restarts around t=75-80 (Figs. 4.5c). The water depth response to D8 hyetograph 

(Fig. 4.5d) also reduces the peak-to-peak difference of runoff around t=50 and 70. The 

timing of the water level rise is about 5h earlier in D8 run, owing to the smoothing of the 
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CTR hyetograph (blue bars in Figs. 4.5e,f). It is noted that the tank model results at 

Ryumon, Yabakei, and Kyuragi dams, where heavy rainfall events are observed 

accompanied with the Baiu rainband as well, are similar to the result at Shimouke dam 

shown here (Fig. 4.6). 

 

b. Event with the typhoon approach and hydrology at Urita dam 

The total rainfall during 12-16 July 2007 accompanied with a typhoon approaching to 

Kyushu is 483 mm at Urita dam (Figs. 4.7a, b). Figure 4.7c displays the observed runoff 

and the runoff simulated with the tank model forced by the CTR hyetograph at Urita dam 

during 12-16 July 2007. The CTR hyetograph shows two rainfall events with their major 

peaks around t = 30 and t=55 (Fig. 4.7c) and its hydrograph represents rapid response 

with two spike peaks with reaching 30 m3 s−1 around t=30 and exceeding 20 m3 s−1 

around t=55 (Fig. 4.7c). The tank model forced by this CTR hyetograph sufficiently 

reproduced the observed hydrograph with their correlation coefficient of 0.95, though 

CTR hydrograph slightly underestimated the second runoff peak around t=55 (Fig. 4.7c). 

Similar to the CTR hydrograph response, the water depth in response to CTR hyetograph 

has two major peaks exceeding 200 mm around t=30 and 55 (Fig. 4.7d). 

 The D16 hyetograph, given the typical DDS bias in typhoon, represents that its 

sharp peaks are smoothed and the two rainfall events in CTR are connected by the rainfall 

duration bias (blue bar in Fig. 4.8b). The two major peaks of rainfall intensity in D16 

hyetograph decreased by 65% around t=30 and 55 (blue bars in Figs. 4.8b,c), compared 

with the CTR hyetograph. A tank model forced by D16 hyetograph shows two major 

runoff peaks around t=30 and t=50 (Fig. 4.8a). The D16 runoff amount at their peaks is 

limited to about a half at the first peak and limited to 60% at the second peak compared 
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with the CTR runoff (Fig. 4.8a). The rising timing before the peaks becomes earlier and 

their runoff amount increases with D8 and D16 hyetographs (Fig. 4.8a), owing to the 

smoothing of the hyetograph (blue bars in Figs. 4.8b,c). The surface/subsurface runoff 

contribution considerably decreases and the runoff from tank0, and both tank0 and tank1 

less vary in time (Figs. 4.8b,c). In the response of water depth, the rising timing just before 

the first and second peaks around t=20 and 50 is about 5h earlier in the D8 run and 10h 

earlier in the D16 run (Fig. 4.8d). This early timing of the water level rise is also accounted 

for the smoothing the CTR hyetograph (Figs. 4.8e,f). It is noted that the tank model results 

at Houri, Tashirobae, and Ayaminami dams, where heavy rainfall events are observed 

accompanied with the typhoon approaching as well, are similar to the result at Urita dam 

shown here (Fig. 4.9). 

 

4.4 Discussion 

Our results shown here provide a caveat when one applies the DDS result for studies on 

climate change adaptation. Nakakita and Osakada (2018) and Osakada and Nakakita 

(2018) showed that the frequency of occurrence of heavy rainfall related to Baiu rainband 

around Kyushu will significantly increase in future climate, on the basis of the DDS data 

with 5-km mesh and a large ensemble climate prediction dataset (d4PDF; Mizuta et al. 

2017). In addition, the heavy rainfall related to Baiu rainband is spatio-temporally 

localized in future climate (Nakakita and Osakada 2018), and this concentration trend of 

heavy rainfall events is also found in northern Japan (Hoshino et al. 2018; Yamada et al. 

2018). Therefore, the rainfall duration bias besides the rainfall amount bias must be 

considered for an accurate evaluation of runoff and flood risk in future climate.

 As we referred in the introduction, however, a quantile mapping does not correct 
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the rainfall duration bias. Our original method for making pseudo-hyetograph might be 

applied the bias correction for rainfall duration. We will report this problem elsewhere. 

 

4.5 Conclusions 

We have investigated the response of runoff and water depth to the rainfall duration bias 

found in the dynamical downscaling over Kyushu, Japan. We selected two heavy rainfall 

periods related to typical synoptic pattern, Baiu rainband and typhoon. The results showed 

that a spike peak of runoff was suppressed by a prolonged weak rainfall as typically found 

in downscaling outputs. The rising timing of runoff and water depth in the tank model 

became earlier, in response to a smoothed hyetograph. The decrease in surface and 

subsurface runoff was pronounced in the heavy rainfall events accompanied with a 

persistent Baiu rainband, compared with the typhoon case. Our results suggest that the 

rainfall duration bias of DDS is a non-negligible factor for predicting river runoff and 

flood risk in climate change adaptation.  

 

  



79 

 

Tables 

 

Table 4.1. Optimized parameters of initial water depth (IS; mm), infiltration coefficient 

(symbolized as b), runoff coefficient (a), and hole heights (Z1 and Z2; mm) for eight dams. 
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Table 4.2. Eleven sets of optimized parameters used in the sensitivity test for Shimouke 

and Urita dams. The maximum and minimum values for each parameter are bolded and 

the standard parameter set in this study is hatched. 
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Figures 

 

Figure 4.1. Geographic distribution of dam sites in Kyushu island, zooming a red solid 

box in a Japanese map shown in the inset. The catchment areas (km2) and river systems 

are shown in the right. 
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Figure 4.2. Illustration for an explanation of the procedure to artificially extend a rainfall 

duration by 4 hours. Ro denotes the original rainfall intensity (mm h-1) at a site, and R’ 

and Rp respectively denote the intermediate and resultant data. 
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Figure 4.3. (a,b) Runoff responses (m3 s-1) to (red) CTR, (blue) D8, and (green) D16 

hyetographs at (a) Shimouke dam during 11-15 July 2012 and (b) Urita dam during 12-

16 July 2007 with eleven different parameter sets shown in Table 4.2. (c,d) Same as (a,b), 

but for results of water-depth responses (mm). 
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Figure 4.4. (a) Daily mean sea level pressure (SLP; contour interval is 4 hPa), 850-hPa 

equivalent potential temperature (shading as bottom reference), and 850-hPa horizontal 

wind (reference vector in bottom right corner and vector < 5 m s-1 omitted) during 11-15 

July 2012. (b) Five-day cumulative rainfall (mm) at the dates based on Radar/AMeDAS 

analysis with the shading as bottom reference. (c) (Blue bar) hyetograph (mm/h) and 

(black line) hydrograph (m3 s-1) on the basis of observation at Shimouke dam. Hydrograph 
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of the tank model result with the CTR hyetograph is shown with red line. (d) (Blue bar) 

hyetograph (mm/h) and (black line) water depth (m3 s-1) on the basis of observation at 

Shimouke dam. Time series of water depth of the tank model result with the CTR 

hyetograph is shown with red line. 
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Figure 4.5. (a) Runoff response (m3 s-1) to (red) CTR, (blue) D8, and (green) D16 

hyetographs at Shimouke dam during 11-15 July 2012. (b,c) Runoff components (m3 s-1) 

of (red) tank0, (black) tank1, (blue) tank2, and (purple) tank3 for (b) the CTR hyetograph 

and (c) the D16 hyetograph at Shimouke dam. (d) The water-depth response (mm) to (red) 

CTR (blue) D8, and (green) D16 hyetographs at Shimouke dam during 11-15 July 2012. 

(e) Water depth components of runoff from each tank for the CTR hyetograph at 

Shimouke dam. (f) Water depth components of runoff from each tank for the D8 

hyetograph at Shimouke dam. 
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Figure 4.6. (a-c) Runoff response (m3 s-1) to (red) CTR, (blue) D8, and (green) D16 

hyetographs at (a) Ryumon (b) Yabakei and (c) Kyuragi during 11-15 July 2012. (d-f) 

Same as (a-c), but for water-depth response (mm). 
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Figure 4.7. (a) Daily mean sea level pressure (SLP; contour interval is 4 hPa), 850-hPa 

equivalent potential temperature (shading as bottom reference), and 850-hPa horizontal 

wind (reference vector in bottom right corner and vector < 5 m s-1 omitted) during 12-16 

July 2007. (b) Five-day cumulative rainfall (mm) at the dates based on Radar/AMeDAS 

analysis with the shading as bottom reference. (c) (Blue bar) hyetograph (mm/h) and 
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(black line) hydrograph (m3 s-1) on the basis of observation at Urita dam. Hydrograph of 

the tank model result with the CTR hyetograph is shown with red line. (d) (Blue bar) 

hyetograph (mm/h) and (black line) water depth (m3 s-1) on the basis of observation at 

Urita dam. Time series of water depth of the tank model result with the CTR hyetograph 

is shown with red line. 
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Figure 4.8. (a) Runoff response (m3 s-1) to (red) CTR, (blue) D8, and (green) D16 

hyetographs at Urita dam during 12-16 July 2007. (b,c) Runoff components (m3 s-1) of 

(red) tank0, (black) tank1, (blue) tank2, and (purple) tank3 for (b) the CTR hyetograph 

and (c) the D16 hyetograph at Urita dam. (d) The water-depth response (mm) to (red) 

CTR (blue) D8, and (green) D16 hyetographs at Urita dam during 12-16 July 2007. (e) 

Water depth components of runoff from each tank for the CTR hyetograph at Urita dam. 

(f) Water depth components of runoff from each tank for the D8 hyetograph at Urita dam. 
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Figure 4.9. (a-c) Runoff response (m3 s-1) to (red) CTR, (blue) D8, and (green) D16 

hyetographs at (a) Houri (b) Tashirobae and (c) Ayaminami during 12-16 July 2007. (d-

f) Same as (a-c), but for water-depth response (mm). 

  



92 

 

Chapter 5. General summary 

 We applied the SmDS to summertime precipitation over Hokkaido. We selected 

the 4 years when the fluctuation of moisture flux convergence in the synoptic scale 

strongly influenced the fluctuation of local rainfall pattern. The SmDS estimation showed 

a good consistency to the full DDS in both mean and 99-percentile value of rainfall. We 

also established the error estimation theory both mean and 99-percentile value that the 

SmDS estimates. The theory showed that the estimation error of mean decrease where the 

synoptic field variability is strongly related to the local climate variability.  

 We also evaluate the rainfall duration bias in summertime in Kyushu, Japan. The 

results showed that the rainfall duration bias in DDS is related to its synoptic pattern. The 

peak runoff amount decreased and the timing of water level rise became faster as the 

rainfall duration bias increased. The contribution of surface/sub-surface runoff decreased 

as the rainfall duration bias increased and this trend is prominent in the Baiu rainband 

pattern.  

 Our research addressed the two challenges of the DDS, the huge computational 

cost and the evaluation of rainfall duration bias. The research of SmDS theoretically 

showed the scope of application of the SmDS. The theory showed that the SmDS is 

applicable to any regions or seasons where the synoptic field variability is strongly related 

to the local climate variability. The research of rainfall duration bias also pointed out the 

necessity of considering the rainfall duration bias and its synoptic pattern of the DDS in 

the climate change adaptation study on river runoff and flood. 
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