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Abstract 

The terrestrial Gross Primary Production (GPP), which is defined as the amount of carbon 

uptake by vegetation through photosynthesis at the ecosystem scale, is the first step of 

atmospheric carbon dioxide (CO2) entering the biosphere. Through GPP, which plays a pivotal 

role in the global carbon balance and almost all ecosystem processes, terrestrial ecosystem can 

partly mitigate global warming and offset the increasing CO2 emissions. Therefore, it is of 

pivotal scientific significance to precisely measure terrestrial ecosystem GPP. However, directly 

measuring GPP at the global scale is impossible; to accurately quantify the spatiotemporal 

patterns of GPP, considerable efforts have been made to develop physiological process models 

as tools to understand terrestrial carbon mechanisms and fluxes at the global scale and to 

hindcast historical situations and predict future changes. 

For the past ten years, remote sensing (RS)-based models have been widely used with the 

development of space technology because compared with process-oriented ecosystem models 

that entail a complex combination of model parameterizations, RS-based approaches are 

relatively simpler and more efficient for exploring dynamic changes in GPP and their 

spatiotemporal variations at the macroscale.Considerable and substantial efforts have been 

made to validate, regulate and contrast the models at flux tower sites, specific ecosystems and 

regional scales. However, the optimal model that is suitable for estimating GPP across different 

ecosystems and a wide range of enviro-climatic conditions has not been identified and designed, 

and the discrepancies associated with the spatial distributions of the environmental controls that 

influence the GPP variation simulated by different models are highly significant. Nonetheless, 

these studies have concluded that it is necessary and important to study and understand model 

sensitivity to indicators before designing and modifying GPP estimation models. 

Simultaneously, it is also important and necessary to accurately describe the changes of GPP in 

different regions to quantitatively evaluate how environmental factors influence GPP. 

Furthermore, a deeper understanding of how GPP has responded to past climate change, land 

cover change and rising atmospheric CO2 concentration will provide insight into how the 

carbon cycle will change under future CO2 and climate conditions. 

In this study, I firstly used twelve models to estimate the global GPP over the past fifteen 

years and tested the performance by comparing them with eddy covariance (EC) flux tower 

measurements. Second, I utilized the models considering CO2 fertilization effect to analyze the 

individual effect of environmental factors and the interactions through a series of factorial 

estimations around the global terrestrial ecosystems, and zoned the categories of GPP variations 

according to seasonal and dimensional characteristics using an unsupervised classifier, and then 

analyzed the GPP trend and its attribution spatially. Thirdly, the model ensemble was tested for 

their apparent sensitivities to climatic variability and rising atmospheric CO2 concentration. 

Then, the values calculated via the flux tower measurements and Free-Air CO2 enrichment 

(FACE) experiments were used to test the sensitivity of the modeled GPP to individual changes 

in climatic variables and CO2. Finally, I combined the results obtained from this study with the 

design concept, structure, and parameters of each model to comprehensively analyze individual 

sensitivity. 

This thesis is made up of six chapters. In Chapter 1, I made a brief introduction of the 

thesis, which mainly included the research background, research aim and research content. In 

the last part, Chapter 6, I summarized the theoretical and practical innovations in this study. 

Based on that, I eventually proposed how to conduct future researches. Chapter 2 to Chapter 5 

are the main research content and the specific as follows. 
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Chapter 2: RS-based models play a significant role in estimating and monitoring terrestrial 

ecosystem GPP. Several RS-based GPP models have been developed using different criteria, 

yet the sensitivities to environmental factors vary among models; thus, the comparison of model 

sensitivity is necessary for analyzing and interpreting results and for choosing suitable models. 

In this part, we evaluated and compared the GPP estimated by 12 RS-based GPP models and 

benchmarked these estimates against the GPP measured at flux tower sites which longer than 

12 years as well as the results estimated by dynamic global vegetation models (DGVM). The 

comparison among models and the comparison of models against observations helps document 

their strengths and weaknesses under current conditions and can also identify heuristic 

constraints about their applicable conditions and scopes. There is no model showing an isolated 

estimation in the spatial distribution, seasonal variation and interannual variation of GPP. 

Vegetation indices (VI) and light use efficiency (LUE) models, relatively simpler form and 

fewer parameters, can perform as well as complex physiological process models on GPP 

estimating. All the models show the similar distribution the largest annual GPP occur in the 

tropics where the model estimates more than 3300 gC m-2 year-1, with a lower amplitude 

responding the alternation of wetter and drier seasons. But the maximum monthly GPP in 

tropical forest is exceeded by forest in the temperature zone in June with closing to 400 gC m-

2 month-1. The monthly global GPP estimates are low during the northern hemisphere’s winter 

and high during its summer. Regarding on the trend of GPP, the models with inputting 

atmospheric CO2 concentration data show more significantly. 

Chapter 3: Quantitative estimation of the spatial pattern of the GPP trends and its drivers 

is one of the key issues in global change research. In Chapter 3, I applied the Carbon Fixation 

(CFix) model to estimate the net effect of each factor on GPP trends from 1982-2015, used an 

unsupervised classifier to group similar GPP trend behaviors, and analyzed the responses of 

GPP to changes in climatic, atmospheric and environmental drivers. According to the 

characteristics of the monthly GPP trends and the patterns of growing season, I presented nine 

categories that could belong to two groups (increasing in amplitude and extending the length of 

the growing season), as aids in interpreting large-scale behavior. Land-cover change (LCC), 

rising CO2 concentration, temperature and water conditions changes have the overall effect of 

increasing GPP (positive) of the entire world, contrary to radiation change effects. The global 

average contributions of LCC, CO2 concentration, temperature, radiation and water on the GPP 

trend are 4.57 %, 65.73 %, 13.07 %, -7.24 % and 11.74 %, respectively. The elevated 

atmospheric CO2 concentration has had the greatest impact on the global GPP trend; however, 

LCC and climatic factors changes have had a greater impact on GPP in terms of a specific 

location or regional rather than globally. The sum of the GPP trends from each factor is smaller 

than the trend obtained when all of the factors are varied together, indicating positive 

interactions among factors. The effects of climatic factors trends on GPP can be positive or 

negative in different regions, in general: regionally, the GPP changes at middle and high 

latitudes are likely to be driven by increases in temperature and radiation; at lower latitudes, the 

GPP changes are likely dominated by shifts in water conditions; at high altitudes, the GPP 

changes are probably caused by changes in temperature and water conditions.  

Chapter 4: Due to the increasing atmospheric CO2 levels quantitative estimation of the 

GPP and its variations at spatial scales are critical issues for quantifying the feedbacks of 

ecosystems to climate change. This chapter applied the improved daily Boreal Ecosystem 

Productivity Simulator (BEPS) model to estimate the global GPP from 2000 to 2015, compared 

the estimated GPP with the flux tower measurements and other GPP products to verify the 

estimation accuracy and analyze the CO2 fertilization effect, and conducted spatial analysis on 

the effects of the spatiotemporal distribution of the CO2 concentration on the estimation of GPP. 

At the same time, however, the effects of the spatiotemporal variability in the atmospheric CO2 
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concentrations on GPP estimations are challenging with respect to the terrestrial ecosystem due 

to land cover component characteristics and difficulties associated with measuring CO2 

concentrations over large spatial areas. The development of remote sensing offers a means to 

routinely monitor CO2 concentrations both spatially and temporally from space. To introduce 

continuous spatial CO2 data as an indicator for the estimation of the terrestrial biosphere GPP, 

I designed a new algorithm to evaluate the CO2 fertilization effect which used the decoupling 

coefficients to evaluate the canopy CO2 concentrations, photosynthetic biochemical models to 

calculate the photosynthetic rate, and Big-leaf model to scale up to a global scale. The results 

of the both two models showed that the estimates could capture the magnitude, amplitude, 

distribution and variation in GPP well compared with the flux tower measurements and the 

other GPP products. Thus, the method proposed in this study utilizing continuous spatial CO2 

data to estimate the GPP is practicable and feasible. In general, the terrestrial GPP increased as 

the atmospheric CO2 concentrations increased; however, the CO2 fertilization effect varied 

based on time and location and was constrained by climatic conditions. The increases in the 

lower latitudes were more significant than those in the middle and higher latitudes, and there 

were seasonal variation characteristics in the middle and higher latitudes. Not considering the 

CO2 fertilization effect would underestimate the global GPP and its trend; additionally, not 

considering the spatiotemporal distribution of the CO2 concentration would overestimate the 

global annual GPP, to put it more specifically，the estimate would overestimate the GPP in the 

lower latitudes and underestimate those in the middle and high latitudes; Regarding the monthly 

GPP estimates, using the annual averages caused the GPP estimates of the Northern Hemisphere 

to be overestimated during the first half of the year, while those during the second half of the 

year were underestimated; the GPP estimates for the Southern Hemisphere were underestimated 

each month. However, using monthly averages caused the GPP estimates for the Northern 

Hemisphere to be overestimated in summer and underestimated in spring and autumn, which 

are opposite to the estimates for the Southern Hemisphere. These results will increase the 

understanding of the variations in carbon flux under future climate change, especially under the 

conditions of changing atmospheric CO2 concentration. 

Chapter 5: The sensitivities to environmental factors vary among the RS-based models 

used in Chapter 1, and the comparison of model sensitivity is necessary for analyzing and 

interpreting results and for choosing suitable models. In this chapter, I globally evaluated and 

compared the sensitivities of 12 RS-based models (2 process-, 4 VI-, 5 LUE-, and 1 machine-

learning (ML)-based model) and benchmarked them against GPP responses to climatic factors 

measured at flux sites and to elevated CO2 concentrations measured at FACE experiment sites. 

The results demonstrated that the models with relatively high sensitivity to increasing 

atmospheric CO2 concentrations showed a higher increasing GPP trend. The fundamental 

difference in the CO2 effect in the models' algorithm either considers the effect of CO2 through 

changes in greenness indices (nine models) or introduces the influences on photosynthesis 

(three models). The overall effects of temperature and radiation, in terms of both magnitude 

and sign, vary among the models, while the models respond relatively consistently to variations 

in precipitation. Spatially, the larger differences among model sensitivity to climatic factors 

occur in the tropics; at high latitudes, models have a consistent and obvious positive response 

to variations in temperature and radiation, and precipitation significantly enhances the GPP in 

mid-latitudes. Compared with the results calculated by flux-site measurements, the model 

performance differed substantially among different sites. However, the sensitivities of most 

models are basically within the confidence interval of the flux-site results. In general, the 

comparison revealed that models differed substantially in the effect of environmental 

regulations, particularly CO2 fertilization and water stress, on GPP, and none of the models 
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showed performed consistently better across the different ecosystems and under the various 

external conditions. 

This thesis evaluated the spatiotemporal pattern of variation and distribution of global 

terrestrial GPP and compared the estimates from different prevalent RS-based models. 

Moreover, I explored effective methods to introduce the spatial continuous atmospheric CO2 

concentration data into global terrestrial GPP estimations. In addition, I designed a new 

algorithm and combined with the models which consider the CO2 fertilization effect to 

comprehensively analyze the effect of environmental factors change on global terrestrial 

ecosystems. All these will help us to understand the mechanism of terrestrial ecosystem GPP 

changing, which is very important for us to take certain measures or make relative policies to 

improve our living environment.  
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Chapter 1 General introduction 

1.1 Introduction 

The main objectives of this research are to investigate the spatiotemporal pattern of 

variation and distribution of global terrestrial GPP using RS algorithms, to introduce the 

satellite spatial continuous atmospheric CO2 concentration data into GPP estimation, to analyze 

the contributions of environmental factors, especially the CO2 fertilization effect, and to attempt 

to explain the possible factors influence GPP under different considering in each model. The 

chapter introduces the thesis structure: (a) the research background; (b) the datasets and models 

applied in this thesis and (c) the outline of the chapters. 

1.2 Background 

1.2.1 Terrestrial ecosystem GPP and its importance 

Terrestrial GPP, which is defined as the amount of carbon uptake by vegetation through 

photosynthesis at the ecosystem scale (Beer et al., 2010), is the first step of atmospheric CO2 

entering the biosphere (Hilker et al., 2008; Beer et al., 2010; Zhang et al., 2017). As reported, 

the increase in atmospheric CO2 on Earth is the major cause of global climate change (Stocke 

et al., 2013; IPCC, 2013), and over the past century, the CO2 accumulation rate has continuously 

increased with the amount of CO2 released due to landcover changes and fossil fuel combustion 

(Le Quéré et al., 2016). Through GPP, which constitutes the largest global land carbon flux 

(Zhao and Running, 2010; Beer et al., 2010) and plays a pivotal role in almost all ecosystem 

processes, terrestrial ecosystems can partially mitigate global warming and offset the increasing 

concentration of atmospheric CO2 (Ballantyne et al., 2012). In recent decades, approximately 

1.2 PgC year-1 has been sequestered by terrestrial ecosystems as the net result of the impact of 

the changing climate and rising CO2 on ecosystem productivity (CO2-climate driven flux) and 

deforestation, harvesting and secondary forest regrowth (LCC flux) (Haverd et al., 2017). It is 

a key area in climate change research (Hilker et al., 2008; Beer et al., 2010). And, therefore, the 

accurate estimation of the GPP of terrestrial vegetation is critical for understanding ecosystem 

carbon cycling and its feedbacks to global change (Liu et al., 2016; Zhang et al., 2017). GPP is 

the starting point of the terrestrial carbon biogeochemical cycle (Raupach et al., 2008) and, thus, 

serves as the gateway for the energy and carbon that are required for almost all ecosystem 

processes (Gilmanov et al., 2003). The patterns of the variation and distribution of GPP in 

terrestrial ecosystems show large spatial variability due to interactions between the biological 

characteristics of plants and external environmental factors (e.g., rising CO2 concentration, 

land-cover change, and climatic variables) (Beer et al., 2010; Anav et al., 2015). There is, thus, 

a need to better understand the mechanisms that control the terrestrial GPP to provide an 

accurate GPP estimations and the dynamic changes in the carbon fluxes between the biosphere 

and atmosphere to help quantify the potential changes resulting from global climate change 

(Poulter et al., 2014; Li et al., 2016). However, their contributions are highly uncertain. 

Furthermore, a deeper understanding of how GPP has responded to past climate change, LCC 

and rising CO2 concentration will provide insight into how the carbon cycle will change under 

future CO2 and climate conditions (Poulter et al., 2014; Huang et al., 2015; Li et al., 2016). 

1.2.2 GPP estimation and RS-based GPP models 

However, directly measuring GPP at the global scale is impossible (Ma et al., 2015); to 

accurately quantify the spatiotemporal patterns of GPP, considerable efforts have been made to 

develop terrestrial ecosystem models (Dury et al., 2011; Tian et al., 2015; Best et al., 2011; 



 

6 

 

Bondeau et al., 2007; Traore et al., 2014; Zeng et al., 2005; Ito et al., 2002) as tools to understand 

terrestrial carbon mechanisms and fluxes at the global scale and to hindcast historical situations 

and predict future changes (Cramer et al., 1999; Piao et al., 2009; Keenan et al., 2016) and 

predict future changes (Friedlingstein et al., 2006; Smith et al., 2016). In addition, inverse 

models that use atmospheric transport models and atmospheric CO2 concentrations or isotopes 

(Bousquet et al., 1999; Reichstein et al., 2003; Welp et al., 2011) were also widely used to 

investigate the biosphere carbon flux. The discrepancies associated with the spatial distribution 

of environmental controls on GPP variation simulated by different models are considerable 

(Anav et al., 2015; Beer et al., 2010). Estimation models vary widely in terms of academic 

foundations and original purposes but can be grouped into the following three major categories 

(Cramer et al., 1999): prescribed vegetation structure-based models, physiological and 

ecological process models, and satellite-based models. For the past ten years, RS-based models 

have been widely used (Liu et al., 1997; Zhang et al., 2018; Ryu et al., 2011; Jiang et al., 2016; 

Verstraeten et al., 2006; Sun et al., 2018b; Potter et al., 1993; Yuan et al., 2007; Xiao et al., 2004; 

Running and Zhao 2015; Gitelson et al., 2006; Sims et al., 2008; Wu et al., 2010; Liu et al., 

2014; Jung et al., 2011) with the development of space technology because compared with 

process-oriented ecosystem models that entail a complex combination of model 

parameterizations (Piao et al., 2013; Peng et al., 2015; Bonan and Doney 2018), RS-based 

approaches are relatively simpler and more efficient for exploring dynamic changes in GPP and 

their spatiotemporal variations at the macroscale (Pasetto et al.,2018; Song et al.,2013;Yuan et 

al., 2007 2014; Sun et al., 2018b). It is also easier to overcome the shortcomings of some 

process-oriented models, including the nutrient limiting effects on vegetation growth (Ollinger 

and Smith 2005; Song et al., 2013; Reich et al., 2006 2014), the influences from agricultural 

management (Lobell et al., 2003) and extreme emergency events (Lentile et al., 2006; Sun et 

al., 2018b), and the uncertainties involved in modeling the phenology of vegetation (Rawlins 

et al., 2015; Song et al, 2013; Xiao et al., 2004; Piao et al., 2007). Additionally, RS is a kind of 

comprehensive and representative way to obtain information (Liang et al., 2018). The prevalent 

algorithms requiring that RS data be inputted to estimate GPP could be categorized into the 

following groups (Song et al., 2013): (a) VI-based: empirical estimation from spectral 

vegetation indices (Li et al., 2013; Liu et al., 2014; Gitelson et al., 2006; Sims et al., 2008; Wu 

et al., 2010); (b) LUE-based: models that are based on LUE theory (Potter et al., 1993; 

Verstraeten et al., 1994 2006; Yuan et al., 2007; Running and Zhao 2015; Xiao et al., 2004); (c) 

process-based: models that are based on biophysical processes of plant photosynthesis (Ryu et 

al., 2011; Jiang et al., 2016; Liu et al., 1997; Zhang et al., 2018); and (d) ML-based: machine 

learning models that require RS data to train the model (Jung et al., 2011; Liu et al., 2016; Wei 

et al., 2017). 

1.2.3 Main factors influencing terrestrial GPP and CO2 fertilization effect 

The increases in atmospheric CO2 concentration that have occurred since the industrial 

revolution are expected to cause a CO2 fertilization effect (Canadell et al., 2007), where 

photosynthesis is enhanced by the increase in CO2 (Farquhar 1997). Additionally, many 

scholars (van Oijen et al., 2004; McMurtrie et al., 2008; Yang et al., 2016) have determined that 

the increasing atmospheric CO2 concentration affects GPP, and numerous studies (Sun et al., 

2018a; Norby et al., 2005; Ainsworth and Long 2005) have been conducted to improve our 

understanding on how plants and ecosystems respond to the elevated CO2 levels. The large-

scale FACE experiment showed that forest ecosystems were more responsive than were other 

functional types; specifically, C4 species showed little response to elevated CO2 concentrations 

(Ainsworth and Long 2005). The response of plants to elevated CO2 would be greater in dry, 

high-nitrogen conditions (McMurtrie et al., 2008); additionally, the CO2 fertilization caused by 

the enhanced foliage cover across the global warm and arid environments is significant 
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(Donohue et al., 2013), resulting in increased photosynthesis area and improved GPP to a 

certain degree. At the same time, the climatic factors and their interactions (Chang et al., 2016) 

with the soil resources (Reich et al., 2014) and nitrogen level (Luo et al., 2004 2006; Donohue 

et al., 2013) would also constrain CO2 fertilization to enhance GPP (Anav et al., 2015). Models 

that do not consider the CO2 fertilization module may serve as a source of uncertainty in the 

estimation of GPP (Anav et al., 2015). In tropical ecosystems, CO2 fertilization could explain 

as much as 100 % of the biospheric carbon sink (Ciais et al., 2004), with large uncertainties 

(bias: ± 68.42 %) (Howard 2005). Additionally, CO2 fertilization could explain 50% of the 

Siberian and 10 % of the European sinks (Canadell et al., 2007). Therefore, including the 

atmospheric CO2 concentration in the global GPP estimation should be a research priority (Liu 

et al., 2016).  

However, few studies have incorporated the global-scale atmospheric CO2 concentration 

into GPP estimates, or the studies have assumed that the CO2 concentrations and variations are 

spatially and temporally uniform around the globe. Theoretically, CO2, which is chemically 

inert, is generally well mixed globally (Eby et al., 2009), but it actually presents large temporal 

and spatial characteristics (Miles et al., 2012; Sun et al., 2016). According to the most recent 

global maps (Dec. 2016) of near surface air CO2 concentrations from the Japan Meteorological 

Agency (JMA), the differences in the spatial distribution of atmospheric CO2 concentrations 

could be greater than 40 ppm; furthermore, the concentrations are highest in South China (> 

436 ppm) and lowest in Uruguay (< 396 ppm) (http:// ds.data.jma.go.jp /ghg /kanshi /CO2map/ 

CO2pmapp lot_alt_e.html), and these values mirror the increase in atmospheric CO2 

concentrations over the past 20 years (i.e., from 365.55 ppm in 1998 to 404.98 ppm in 2017). 

The spatial variation in the atmospheric CO2 concentrations for the entire year of 2016 could 

reach approximately 50 ppm (lowest: 388 ppm in Canada during July), which is equivalent to 

the change in the global average mean annual CO2 concentration from 1990 (353.96 ppm) to 

the present. In addition, the seasonal characteristics of the atmospheric CO2 concentration have 

previously been reported at the local and regional scales (Davis et al., 2003; Miles et al., 2012; 

Liu et al., 2016). For example, the measurement of the atmospheric boundary layer of the CO2 

concentration from the North American Carbon Program’s Mid Continent Intensive (MCI) from 

2007 to 2009 showed that the seasonal CO2 amplitude was five times larger than was the 

tropospheric background (Miles et al., 2012; Liu et al., 2016). The spatiotemporal 

characteristics of the atmospheric CO2 concentrations affect the GPP, both intra- and inter- 

annually. Models that do not consider CO2 fertilization modules might be a source of 

uncertainty (Anav et al., 2015) in estimating GPP. In a sensitivity analysis in which CO2 was 

elevated by 200 ppm, there was a 5 % to 25 % increase in the modeled annual GPP (Wang et 

al., 2014), and, when the current atmospheric CO2 concentrations were doubled, most types of 

ecosystems showed a 10 ~ 25 % ± 2 % increase in the net primary production (Norby et al., 

2005; Luo et al., 2006). With increases in the atmospheric CO2 concentration, seasonal CO2 

variations, resulting from photosynthesis and respiration, have substantially increased in 

amplitude over the last 50 years, particularly in high latitude regions north of 45°N, where the 

amplitude increased by approximately 50 % (Monroe 2013). The spatiotemporal characteristics 

of atmospheric CO2 concentrations affect the GPP, both intra- and inter- annually; therefore, the 

spatial distribution of CO2 concentrations should be considered factor that affect the GPP. 

Almost no studies, however, have yet identified and compared the global discrepancy 

among model sensitivity to external enviro-climatic variability, and even fewer studies have 

analyzed the effect of CO2 fertilization that is implied in RS models (De Kauwe et al., 2016; 

Smith et al., 2016; Sun et al., 2018ab; Liu et al., 2016; Verstraeten et al., 1994; Ryu et al., 2011, 

Jiang et al., 2016; Liu et al., 1997, Zhang et al., 2018), which is likely attributed to the fact that 

the effect from CO2 in models is more concealed than are the influences from enviro-climatic 
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factors (Sun et al., 2018a; Ahlstrom et al., 2015). VI-based models assume that CO2 affects GPP 

solely through changes in the greenness index (Wylie et al., 2003; Piao et al., 2007; Thomas et 

al., 2016; Watham et al., 2017; Sun et al., 2018b); ML- and LUE-based models assume that 

CO2 affects GPP solely through changes in the fAPAR (fractional absorbed photosynthetically 

active radiation) (De Kauwe et al., 2016). However, both of the abovementioned indicators are 

closely related to leaf area (Cheng et al., 2017; Donohue et al., 2013), which is used as an input 

in process-based models; furthermore, process-based models incorporate some greenness 

indices and the modules that represent the photosynthetic rate that is affected by the CO2 

concentration (Jiang et al., 2016; Zhang et al., 2018). Models are typically developed based on 

specific assumptions, and they consider the different processes and complexities involved in 

the control of vegetation production (Garbulsky et al., 2010; Rossini et al., 2012; Yuan et al., 

2014; Ardo et al., 2015); therefore, to make RS-based GPP estimations more robust, it is 

necessary to conduct a rigorous comparison using consistent validation datasets and driving 

variables (Wu et al., 2010 2017; Zhang et al., 2016). 
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1.3 Aims and data resource 

The main objective of this research is to investigate the spatiotemporal pattern of variation 

and distribution of global terrestrial GPP. This requires various RS-based GPP models to 

explore the feature of the changing terrestrial ecosystem, understand the mechanism of the 

changing process, and determine the uncertainty of each approach. To achieve this objective, 

remote sensing data combining with climatic data and ground-measured data have been used to 

drive models, identify external influences and environmental change, and analyze the effects of 

environmental factors on terrestrial GPP changing. The more specific objectives are outlined 

below:  

i. To examine the spatiotemporal distribution of terrestrial GPP. 

ii. To investigate the contributions of each external factor to the variation in GPP 

iii. To analyze the CO2 fertilization effect on terrestrial GPP 

iv. To compare and evaluate the sensitivity of RS-based models to the variation in 

environmental conditions  

In this study, mainly six kinds of datasets have been used, RS-based vegetation indices, 

climatic datasets, soil property and land coverage datasets, atmospheric CO2 concentration 

dataset, and ground-measured data. 

1.3.1 Vegetation indices data 

In this thesis, except for leaf area index (LAI), all the other VIs (e.g., normalized difference 

vegetation index (NDVI), enhanced vegetation index (EVI), clumping index (CI) and land 

surface water index (LSWI)) were calculated by using Moderate Resolution Imaging 

Spectroradiometer (MODIS) Bidirectional reflectance distribution function (BRDF)/Albedo 

Product MCD43. The LAI derived from GlobMap LAI v3 (8-day, 0.08°) (Liu et al., 2012) were 

employed in this study. In GlobMap LAI v3 dataset was generated by inputting MOD09A1 

(MODIS land surface reflectance) (2001~2016) and advanced very high-resolution radiometer 

(AVHRR) NDVI (1981~2000) on the basis of GLOBCARBON LAI algorithm (Deng et al., 

2006). In order to fusion two inputs well, the data series of AVHRR NDVI (Tucker et al., 2005) 

and the MODIS LAI during the overlapping period (2000~2006) were used to establish the 

fusion relationship pixel-by-pixel. Then, using the relationship re-estimate the AVHRR LAI 

values (Liu et al., 2012). In comparison of the previous version, v3 considers the clumping 

effect, and has been widely used for long-term global vegetation condition monitoring and 

detection (Piao et al., 2006; Beck et al., 2011; Wu et al., 2015; Liang et al., 2015). In this thesis, 

I considered the daily LAI values to be the same as the 8-day LAI, in which the day belonged 

to the period of products and resampled it to 0.5° × 0.5° spatial resolution by linear method. It 

should be noted that in Chapter 3 and Chapter 4, when the study period is longer than the 

available period of MODIS products, we also used the NDVI product from the above dataset. 

The BRDF, albedo and nadir surface reflectance of each pixel of the global land surface is 

inverted by the continuous land observations, which is multi-date, multi-angular, cloud-free, 

atmospherically corrected. And then according to the quality, observation coverage and the 

interval of interesting date in the nearest revisit cycle, the daily product weights are determined. 

Additionally, the necessary parameters used to drive the RossThick-LiSparse kernel functions 

(i.e., isotropic, volume and surface scattering) are estimated utilizing a kernel-driven semi-

empirical BRDF model (Wanner et al., 1995 1997; Lucht et al., 2000; Schaaf et al., 2002 2011). 
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The calculation of clumping index requires characterization of the directional anisotropy of 

Earth surface reflectance. The calculation of clumping index requires characterization of the 

directional anisotropy of land surface reflectance which is also provided the products of the 

white-sky and black-sky (at local solar noon) albedo computations for user convenience. A 

complete set of quality control flags accompanies each product and should be utilized by the 

user. 

1.3.2 Climate data 

For the global estimation of GPP, I used the input datasets of climate from the Modern-

Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) (Rienecker et 

al., 2011), which provides data beginning in 1980 at a resolution of 0.5° latitude × 0.625° 

longitude. MERRA-2 is the first long-term global reanalysis to assimilate space-based 

observations of aerosols and represent their interactions with other physical processes in the 

climate system. In comparison of MERRA-1, there are some advances made in the assimilation 

system which allow modern hyperspectral radiance and microwave observations to be 

assimilated. More information on the MERRA dataset is available from National Aeronautics 

and Space Administration (NASA) Goddard Earth Sciences (GES) Data and Information 

Services Center (DISC)/ Modeling/ Data Holding (http:// disc.gsfc.nasa.gov/daac-

bin/DataHoldings.pl). The uncertainties of various meteorological factors at the global scale 

have been validated and evaluated by using surface metrological datasets (Rienecker et al., 2011; 

Li et al., 2013). The daily climate data including air temperature (Ta), specific humidity (SH), 

dew point temperature (TD) and wind speed (WS) were at 2 meters height, while air pressure 

(PS), land surface temperature (LST) and precipitation (Pre) were at surface level. We 

calculated the relative humidity (RH) and vapor pressure deficit (VPD) using SH, Ta and TD 

according to Henderson and Gornitz (1984) daily. In addition, PAR (Photosynthetically active 

radiation), Latent heat flux (LH or λH) and sensible heat flux(H) were also daily data. For BESS, 

the inputted radiation data should to be the corresponding data at the local time when the 

satellites overpassed, therefore, I applied the hourly PARDiff (downwelling PAR diffuse flux), 

PARDir (downwelling PAR beam flux), NIRDiff (downwelling NIR diffuse flux) and NIRDir 

(downwelling NIR beam flux) and then linearly interpolated them to get the corresponding data 

which during satellites overpass. All data were linearly interpolated and resampled to a spatial 

resolution of 0.5° × 0.5°. In order to compare the effects of inputting data on GPP estimation, 

we also used some other climatic datasets, we introduced these datasets in the corresponding 

chapter detailly. 

1.3.3 Soil moisture and property data 

There are two models (Boreal Ecosystem Productivity Simulator (BEPS) and CFix) who 

have a module calculating the water limitations on the photosynthetic rate by considering the 

stomatal regulating factor from the soil moisture deficits were used in this thesis. Therefore, in 

order to drive the two models, the soil water content and soil moisture characteristics are 

indispensable. In the present, we obtained the soil moisture characteristics, including wilting 

point (WP) and field water holding capacity (FC), from the Global Gridded Surfaces of Selected 

Soil Characteristics (IGBP-DIS) dataset (Global Soil Data Task, 2014). It is a global product 

generated at a resolution of 5×5 arc-minutes by the Soil Data System (SDS) which generates 

soil information and maps for geographic regions at user-selected soil depths and resolutions. 

Regarding soil moisture (SM), National Oceanic and Atmospheric Administration/Earth 

System Research Laboratory (NOAA/ESRL) Physical Sciences Division (PSD) run multiple 

land surface models to get a model-calculated Climate Prediction Center (CPC) soil moisture 

(SM) dataset v2 (van den Dool et al., 2003), since globally measuring the SM is impossible, 
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this dataset is to be the most suitable datasets because it provides global monthly data from 

1948 to 2017 and consisted of a file containing the averaged SM water height equivalents at a 

spatial resolution of 0.5°×0.5°. The two datasets represent the SM and characteristics in 

different depth of soil, thus, we used the field capacity maps derived from IGBP-DIS and 

converted the data to the values at a soil depth of 1.6 m, which is the same as that used for the 

CPC-SM. We conducted the model at the daily step, therefore, the inputs of SM for each day 

during the study period ,2000 - 2014, were replaced by the monthly soil condition of which the 

day is located in. Finally, the data were resampled to the 0.5° × 0.5° spatial resolution by linear 

method. 

1.3.4 Atmospheric CO2 concentration data 

Three datasets of the atmospheric CO2 concentration were used to normalize the CO2 

fertilization factor in the thesis; one is the global monthly continuous spatial CO2 concentration 

data from 2000 to 2015, Carbon Tracker (CT) 2016, which is an open product of NOAA's Earth 

System Research Laboratory that uses data from the NOAA ESRL greenhouse gas 

observational network and collaborating institutions (Peters et al., 2007), released on Feb 17th, 

2017. In CT2016, land biosphere, wildfire, fossil fuel emissions, atmospheric transport and 

other factors are data-assimilated to produce the estimates of surface fluxes and atmospheric 

CO2 mole fractions (https:// www. esrl. noaa. gov /gmd/ ccgg/ carbontracker/ index.php). The 

other is globally averaged surface monthly mean CO2 data from 1982 to 1999 obtained from 

NOAA/ ESRL (www. esrl. noaa. gov /gmd/ ccgg/ trends/). A global average is constructed by 

first fitting a smoothed curve as a function of time to each site, after which the smoothed value 

for each site is plotted as a function of the latitude for 48 equal time steps per year. A global 

average is calculated from the latitude plot at each time step (Masarie 1995). In addition, in 

order to introduce the satellite spatial continuous atmospheric CO2 concentration data into GPP 

estimation, I also used the global monthly continuous spatial CO2 concentration data in 2014, 

which were captured by (Greenhouse gases observing satellite) GOSAT 

(http://www.gosat.nies.go.jp/en/), the world's first spacecraft to measure the concentrations of 

CO2 from space. The production is GOSAT Fourier Transform Spectrometer (FTS) L2 CO2 

column amount SWIR (Short Wavelength InfraRed), which was used to calculate the 

atmospheric CO2 concentration, and the FTS SWIR L2 CO2 column abundance products 

(denoted XCO2, in ppm), which contain column-averaged mixed volume ratios of CO2 (Guo et 

al., 2012). The relative accuracy of the Level 2 data is 0.3 % ~ 1.0 % (1 ~ 4 ppm) for CO2 (Butz 

et al., 2011), and the data form is a point set with a circle footprint with a diameter of 

approximately 10.5 km at nadir; nevertheless, the number of data points significantly surpasses 

that currently obtained from ground monitoring stations, which is below 200. The spatial 

continuous CO2 concentration data were resampled to the 0.5° × 0.5° spatial resolution by linear 

method. 

1.3.5 Land cover change datasets 

The land cover map from 1982 to 1991 was acquired from the Global Land Cover Facility 

(GLCF): AVHRR Global Land Cover Classification (http:// glcf. umd. edu/ data/ landcover/). 

The images from the AVHRR satellites between 1981 and 1994 were utilized and analyzed to 

distinguish 14 land cover classes (Hansen et al., 1998). Three spatial scales are available in this 

product (1, 8 km and 1°), and we selected the highest resolution of 1 km. The other is the 

European Space Agency (ESA) Climate Change Initiative (CCI) Land Cover (LC) dataset 

(https://www.esa-landcover-cci.org/), a 300 m annual global land cover time series from 1992 

to 2015. These 24 annual global land cover maps were produced by state-of-the-art reprocessing 

of the full archives of five different satellite missions that provided daily observations of the 
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Earth. CCI-LC provides information for 22 classes of dominant land cover types defined using 

the Land Cover Classification System (LCCS), which was found to be compatible with the 

Plant Functional Types (PFTs) used in the climate models (CCI-LC URD Phase I). Detailed 

information on the CCI-LC is available on the CCI-Viewer (http:// maps. elie. ucl. ac. 

be/CCI/viewer/). For the non-long-term series research, in order to keep the consistency, we 

used the landcover classification was obtained from the MODIS Land Cover Type product 

(MCD12C1), which provides information on 17 classes of dominant land cover types defined 

by the IGBP (Friedl et al., 2010). MCD12C1 is a product that aggregates a higher spatial 

resolution (500 m) of land coverage by selecting the dominant land cover types within the lower 

spatial resolution grids (Duveiller and Cescatti 2016). C3 and C4 species have different 

responses to light, temperature, CO2, and nitrogen; additionally, they differ in physiological 

functions, such as stomatal conductance and isotope fractionation. Therefore, in this thesis, I 

overlaid the C4 vegetation percentage map with the landcover dataset to obtain the landcover 

component map.The C4 vegetation percentage map I obtained, which was determined from 

datasets that described the continuous distribution of plant growth forms, climate classifications, 

fraction of a grid cell covered in cropland, and national crop type harvest area statistics (Still et 

al., 2009), was one of the products from the International Satellite Land Surface Climatology 

Project (ISLSCP) Initiative II and had a spatial resolution of 1° × 1°.The land cover data need 

to be crossed with the grids analyzed in this study at a 0.5° spatial resolution; all 300 m and 1 

km pixels falling in the 0.5° cells were used to calculate the proportion of the dominant land 

cover type. 

1.3.6 In situ measurements 

Not only GPP data but also the local meteorological data used in this study were obtained 

from the FluxNet 2015 dataset (http://www.fluxdata.org), which is a valuable source of GPP 

estimates based on EC measurements performed across the global network of flux towers. 

Briefly, at each tower site, the EC method is applied to quantify the fluxes of scalars and energy 

between the biosphere and atmosphere. The regional network and FluxData teams standardize 

the data format, perform uniform data quality checks, and produce value-added products using 

highly vetted gap-filling and flux partitioning. These data are assessed for quality and are gap-

filled. In addition, value-added products, such as the GPP, are produced, and daily, monthly and 

annual sums, or averages, are computed (Agarwal et al., 2010). The current dataset includes 

over 1,500 site-years of data from 212 sites, covering variable time periods spanning from 1991 

to 2016, depending on the site. In this study, we only used the sites in the period from 2000 to 

2014. These flux sites cover most of the major biomes (DNF (deciduous needleleaf forest), ENF 

(evergreen needleleaf forest), CRO (croplands), DBF (deciduous broadleaf forest), EBF 

(evergreen broadleaf forest), GRA (grasslands), MF (mixed forest), OSH (open shrublands), 

CSH (closed shrublands), WET (wetlands), SAV (savannas), and WSA (woody savanna)), 

representing a total of 1,095 observed years from 160 tower sites. 
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1.4 Thesis contents 

This thesis consists of six chapters, covering four main topics: an introduction of the thesis 

(Chapter 1), estimation on GPP of global terrestrial ecosystem (Chapter 2), the effect of external 

factors on terrestrial GPP (Chapter 3), the CO2 fertilization effect on terrestrial GPP (Chapter 

4), sensitivity of RS-based GPP models to environmental variation (Chapter 5), and final 

conclusions (Chapter 6). The schematic framework for this research is shown in Figure 1.1. 

 

 
Figure 1.1 A schematic flow of the research organization.  
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Chapter 2 Estimation on GPP of global terrestrial ecosystem using 

multi-model 

2.1 Introduction 

Terrestrial GPP is defined as the amount of carbon uptake by vegetation through 

photosynthesis at the ecosystem scale, is the first step of atmospheric CO2 entering the 

biosphere (Hilker et al., 2008; Beer et al., 2010; Zhang et al., 2017). Through GPP, which plays 

a pivotal role in the global carbon balance and almost all ecosystem processes, terrestrial 

ecosystems can partly mitigate global warming and offset increasing CO2 emissions 

(Ballantyne et al., 2012). Therefore, it is of pivotal scientific significance to precisely measure 

terrestrial ecosystem GPP. 

However, directly measuring GPP at the global scale is impossible (Ma et al., 2015); to 

accurately quantify the spatiotemporal patterns of GPP, considerable efforts have been made to 

develop physiological process models (Dury et al.,2011; Tian et al., 2015; Best et al., 2011; 

Bondeau et al., 2007; Traore et al., 2014; Zeng et al., 2005; Ito et al., 2002) as tools to understand 

terrestrial carbon mechanisms and fluxes at the global scale and to hindcast historical situations 

and predict future changes (Cramer et al., 1999; Piao et al., 2009; Keenan et al., 2016) and 

predict future changes (Friedlingstein et al., 2006; Smith et al., 2016). For the past ten years, 

RS-based models have been widely used (Liu et al., 1997; Zhang et al., 2018; Ryu et al., 2011; 

Jiang et al., 2016; Verstraeten et al., 2006; Sun et al., 2018b; Potter et al., 1993; Yuan et al., 

2007; Xiao et al., 2004; Running and Zhao 2015; Gitelson et al., 2006; Sims et al., 2008; Wu et 

al., 2010; Liu et al., 2014; Jung et al., 2011) with the development of space technology because 

compared with process-oriented ecosystem models that entail a complex combination of model 

parameterizations (Piao et al., 2013; Peng et al., 2015; Bonan and Doney 2018), RS-based 

approaches are relatively simpler and more efficient for exploring dynamic changes in GPP and 

their spatiotemporal variations at the macroscale (Pasetto et al.,2018;Song et al.,2013;Yuan et 

al., 2007 2014; Sun et al., 2018b). It is also easier to overcome the shortcomings of some 

process-oriented models, including the nutrient limiting effects on vegetation growth (Ollinger 

and Smith 2005; Song et al.,2013; Reich et al., 2006 2014), the influences from agricultural 

management (Lobell et al., 2003) and extreme emergency events (Lentile et al., 2006; Sun et 

al., 2018b), and the uncertainties involved in modeling the phenology of vegetation (Rawlins 

et al., 2015; Song et al, 2013; Xiao et al., 2004; Piao et al., 2007). Additionally, RS is a kind of 

comprehensive and representative way to obtain information (Liang et al., 2018). 

This chapter is the basis for the next three chapters of research. In this chapter, I evaluated 

and compared the GPPs estimated by 12 RS-based GPP models and benchmarked these 

estimates against the GPP measured at flux tower sites who have longer than 12 years available 

measurements. And then I compared the model output of GPP with the average of six DGVMs 

from ISIMIP2 (The Inter-Sectoral Impact Model Intercomparison Project, Phase II) (Chang et 

al., 2017). Because the DGVM average is not the true GPP value, we only utilized this value as 

an intermediate benchmarking reference to compare the difference in the global distributions 

among models. The comparison among models mainly includes globally averaged multi-year 

annual GPP estimates, the global spatial distribution of GPP estimates, the trend of GPP 

estimates and the characteristics of seasonal cycle and so on. 
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2.2 Materials and methods 

2.2.1 Data 

2.2.1.1 Flux sites data 

In this chapter, one of the objects is evaluating the trend of GPP, therefore, the relatively 

long-term data are more useful. On the basis of that, I only selected the towers which have the 

available observation longer than 12 years from FluxNet 2015 dataset, in a total of 33 flux sites, 

457 site-years, including 11 ENF sites, 2 EBF sites, 6 DBF sites, 4 MF sites, 3 GRA sites, 1 

WSA site, 1 SAV site, 4 CRO sites and 1 WET site. The locations and general information for 

each site are listed in Table 5.3. The measurements of flux GPP in the 33 sites retrieved from 

the Fluxnet 2015 dataset were used to verify of the GPP estimations of each model. The 

measurements of flux GPP that was employed in this study was the mean value of 

GPP_DT_VUT_REF and GPP_NT_VUT_REF. These were respectively estimated using the 

daytime and nighttime partitioning method (Lasslop et al., 2010) and the variable ustar 

threshold method. And for analyzing the sensitivities of GPP to climatic factors, we selected 

the available towers which have been measured as the same period as the models ran, in a total 

of 17. For running models at site-scale, among the meteorological inputs, daily temperature, 

shortwave and longwave radiation, pressure, VPD, ambient CO2 concentration and wind speed, 

were retrieved from the measurements from the flux sites. Missing data from tower observations 

were not included in this study. 

2.2.1.2 Atmospheric CO2 concentration data 

The ambient CO2 concentration is necessary for driving the BESS, BEPS and CFix to 

estimate GPPs, and also for analyzing the responses of GPPs to the increasing atmospheric CO2 

concentration. CT2016 contains global daily continuous spatial CO2 concentration data from 

2000 to 2015 by 2°×3°, was selected by the present study rather than using the CO2 

concentration data from satellite observing because the available timeseries of carbon 

observation is not enough, only from 2009 when the GOSAT launched. Additionally, CT2016 

is an open product of NOAA/ESRL that uses data from the greenhouse gas observational 

network and collaborating institutions (Peters et al., 2007). In CT2016, the land biosphere, 

wildfire, fossil fuel emissions, atmospheric transport and other factors were data-assimilated to 

produce the estimates of surface fluxes and atmospheric CO2 mole fractions (https: 

//www.esrl.noaa.gov /gmd /ccgg /carbontracker /index.php). The spatial continuous CO2 

concentration data were resampled to the 0.5° × 0.5° spatial resolution by linear method. 

2.2.1.3 Soil moisture and property data 

In BEPS and CFix there has a module calculating the water limitations on the 

photosynthetic rate by considering the stomatal regulating factor from the soil moisture deficits. 

Therefore, in order to drive these two models, the soil water content and soil moisture 

characteristics are indispensable. In the present, I obtained the soil moisture characteristics, 

including WP and FC, from IGBP-DIS dataset (Global Soil Data Task, 2014). It is a global 

product generated at a resolution of 5×5 arc-minutes by the SDS which generates soil 

information and maps for geographic regions at user-selected soil depths and resolutions. 

Regarding SM, NOAA/ESRL PSD run multiple land surface models to get a model-calculated 

CPC SM dataset v2 (van den Dool et al, 2003), since globally measuring the SM is impossible, 

this dataset is to be the most suitable datasets because it provides global monthly data from 

1948 to 2017 and consisted of a file containing the averaged SM water height equivalents at a 

spatial resolution of 0.5°×0.5°. The two datasets represent the SM and characteristics in 
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different depth of soil, thus, I used the field capacity maps derived from IGBP-DIS and 

converted the data to the values at a soil depth of 1.6 m, which is the same as that used for the 

CPC-SM. I conducted the model at the daily step, therefore, the inputs of SM for each day 

during the study period, 2000 - 2014, were replaced by the monthly soil condition of which the 

day is located in. Finally, the data were resampled to the 0.5° × 0.5° spatial resolution by linear 

method. 

2.2.1.4 GlobMap LAI 

The leaf area index (LAI) derived from GlobMap LAI v3 (8-day, 0.08°) (Liu et al., 2012) 

were employed in this study. In GlobMap LAI v3 dataset was generated by inputting 

MOD09A1 (MODIS land surface reflectance) (2001-2016) and AVHRR NDVI (1981~2000) 

on the basis of GLOBCARBON LAI algorithm (Deng et al., 2006). In order to fusion two inputs 

well, the data series of AVHRR NDVI (Tucker et al., 2005) and the MODIS LAI during the 

overlapping period (2000~2006) were used to establish the fusion relationship pixel-by-pixel. 

Then, using the relationship re-estimate the AVHRR LAI values (Liu et al., 2012). In 

comparison of the previous version, v3 considers the clumping effect, and has been widely used 

for long-term global vegetation condition monitoring and detection (Piao et al., 2006; Beck et 

al., 2011; Wu et al., 2015; Liang et al., 2015). In this study, we considered the daily LAI values 

to be the same as the 8-day LAI, in which the day belonged to the period of products and 

resampled it to 0.5° × 0.5° spatial resolution by linear method. 

2.2.1.5 Climate data 

For the global estimation of GPP, I used the input datasets of climate from the MERRA-2 

(Rienecker et al., 2011), which provides data beginning in 1980 at a resolution of 0.5° latitude 

× 0.625° longitude. MERRA-2 is the first long-term global reanalysis to assimilate space-based 

observations of aerosols and represent their interactions with other physical processes in the 

climate system. In comparison of MERRA-1, there are some advances made in the assimilation 

system which allow modern hyperspectral radiance and microwave observations to be 

assimilated. More information on the MERRA dataset is available from NASA GES DISC/ 

Modeling/ Data Holding (http:// disc.gsfc.nasa.gov/daac-bin/DataHoldings.pl). The 

uncertainties of various meteorological factors at the global scale have been validated and 

evaluated by using surface metrological datasets (Rienecker et al., 2011; Li et al., 2013). The 

daily climate data including Ta, S), TD and WS were at 2 meters height, while PS, LST and Pre 

were at surface level. We calculated the RH and VPD using SH, Ta and TD according to 

Henderson and Gornitz (1984) daily. In addition, PAR, LH and λH, and H were also daily data. 

For BESS, the inputted radiation data should to be the corresponding data at the local time when 

the satellites overpassed, therefore, we applied the hourly PARDiff, PARDir, NIRDiff and NIRDir 

and then linearly interpolated them to get the corresponding data which during satellites 

overpass. All data were linearly interpolated and resampled to a spatial resolution of 0.5° × 0.5°. 

2.2.1.6 Satellite data 

In this study, all the satellite data were derived from MODIS (Terra and Aqua) in a total of 

three products, including Land Cover product (MCD12C1 and MCD12Q2), Evapotranspiration 

product (MOD16A2), and Bidirectional Reflectance Distribution Function and Albedo product 

(MCD43C2, MCD43C3 and MCD43C4). MODIS as a sensor has become an indispensable 

source of earth observation at global scale since it was launched (Yebra et al., 2013). 
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MCD12Q2 is MODIS Global Vegetation Phenology product, providing the estimates of 

the timing of vegetation phenology globally at a spatial resolution of 500m × 500m. It identifies 

phenophase transition dates (onset greenness increase, onset greenness maximum, onset 

greenness decreases and onset greenness minimum) based on logistic functions fit to time series 

of EVI, which gets the date similar to that using the approach in VPM basing on an EVI seasonal 

threshold. Thus, for large-scale application of VPM across the whole globe in this study, 

MCD12Q2 dates can be used directly (Yuan et al., 2014). And it was interpolated and resampled 

to a spatial resolution of 0.5° × 0.5° by using majority method. 

MCD12C1 is Land Cover Type product, providing a spatially aggregated (0.05° × 0.05°) 

and re-projected version of the tiled data product and having the information on 17 classes of 

dominant land cover types defined by the IGBP (Friedl et al., 2010). In addition, the responses 

of different species to light, temperature, CO2 concentration are different since the physiological 

functions, such as stomatal conductance and isotope fractionation, are different. Therefore, we 

overlaid the MCD12C1 with the C4 vegetation percentage map which was one of the products 

from ISLSCP Initiative II with a spatial resolution of 1°×1° to obtain the landcover component 

map. Then we aggregated this map by selecting the dominant land cover types within the lower 

spatial resolution grids, 0.5° × 0.5° (Duveiller and Cescatti 2016). 

MOD16A2, Evapotranspiration/Latent Heat Flux product, is an 8-day temporal granularity 

composite product produced at a spatial resolution of 500m × 500m (Running et al., 2017). We 

used two layers of evapotranspiration (ET) and potential ET (PET) from this product to 

calculate the limiting factor of water condition to drive CASA model. It is generated by 

Penman-Monteith equation inputting daily meteorological reanalysis data along with MODIS 

remotely sensed data products. Thanks to the quality control layer in this product, only the pixel 

with level equal to or better than good were used to aggregate a 0.5° × 0.5° spatial data by mean 

values. Additionally, in this study, we considered the daily ET and PET values to be the same 

as the 8-day values, in which the day belonged to the period of products. 

MCD43C2, BRDF / Albedo Snow-free Quality Parameters, is produced daily global 0.05° 

grid, using all high quality observations acquired by two satellites, providing the three snow 

free model weighting parameters (isotropic, volumetric and geometric) used for band 1 (red, 

620-670nm) and band 2 (NIR (Near Infrared) 841-876 nm) to calculate the NDHD (normalized 

difference between hotspot and darkspot) using the RossThickLiSparse-Reciprocal model 

(Roujean et al., 1992; Lucht et al., 2000; Wanner et al., 1995) in this study. I aggregated the 

0.05 spatial resolution of NDHD to a 0.5 spatial resolution by using the mean values of the 

pixels which belonged to the coarse grid, only the high-quality pixels included. Then we 

according to the method proposed by He and Fang (2016) and Chen et al. (2005) which has 

been validated in multi-scale and multi-ecosystems estimated the global clumping index (He 

and Fang 2016). 

MCD43C3 (Schaaf and wang 2015a) provides 0.05° × 0.05°daily both directional 

hemispherical reflectance (black sky albedo) and bihemispherical reflectance (white sky albedo) 

for each of the MODIS band 1-7 and the visible (vis), nir, and shortwave bands with Albedo 

Quality layers. Four datasets of the product, the black/white sky vis/nir albedo, were inputted 

into BESS canopy radiative modules. And it was resampled to a spatial resolution of 0.5° × 0.5°. 

MCD43C4 (Schaaf and wang 2015b), Nadir BRDF-Adjusted Reflectance, is computed for 

each band at the local solar noon zenith angle in order to make the reflectance stable by 

removing the view angle effects from the directional reflectance. The spatial and temporal 

resolution of MCD43C4 are the same as MCD43C2 and MCD43C3. In this study, we used band 
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1(red 620-670 nm), 2 (NIR 841-876 nm), 3 (blue 459-479 nm) and 6 (SWIR 1628-1652nm) of 

MCD43C4 to compute three VIs (NDVI, EVI, LSWI) used to driven GPP estimating models.  

For MCD43C2, MCD43C3 and MCD43C4, we used the same method to conduct the gap-

filling and resample. Firstly, we identified the mandatory QA bit index of pixels classified 

belongs to 0 (best quality, 100% with full inversions) and 1 (good quality, 75 % or more with 

best full inversions and 90% or more with full inversions) as the high-quality pixels. Secondly 

for each day, we calculated the mean values of the high-quality pixels which belonged to the 

same 0.5° × 0.5° grid to resample and fill the resulted grid. If unfilled 0.5° grid exists, we used 

the multiyear mean value (at least three years of high-quality data exist in the same date) of the 

corresponding original 0.05° pixels to fill the data gap for specific date (Fang et al., 2008; Ryu 

et al., 2011) and conduct the second step again. If there is still a vacancy value, the mean value 

of the same PFT in the same date will be used as the filling value. 

Sun-induced chlorophyll fluorescence (SIF) datasets from GOME (Global Ozone 

Monitoring Experiment)-2: The latest version (v26) of the monthly SIF data retrieved from the 

GOME-2 instrument onboard the MetOp-A satellite (channel 4 with ~0.5-nm spectral resolution 

and wavelengths between 734 and 758 nm) used in this study is the one proposed by Joiner et 

al. (2013) and is available to the public from the NASA Aura Validation Data Center 

(http://avdc.gsfc.nasa.gov/). The nominal ground pixel lengths at nadir are approximately 40 

km in the along-track and 80 km in the across-track directions (40 km × 40 km from 15 July 

2003) (Joiner et al., 2014). GOME-2 SIF data are quality filtered (e.g., heavily cloud-

contaminated data are removed) and are aggregated into monthly means in 0.5° × 0.5° grids. 

Details of the effects of cloud on fluorescence measurements and the use of an effective cloud 

fraction to filter and quality control the products can be found in previous studies (Joiner et al. 

2013; Joiner et al., 2014) the details of the effects of cloud on fluorescence measurements and 

using an effective cloud fraction to filter and quality control on products can be found. In 

comparison with other RS approaches, SIF data derived from GOME-2 meet the requirements 

of the study, in comparison, the GOSAT measurements have low spatial sampling, the 

SCIAMACHY results have low signal levels that are spectrally far from the fluorescence peak 

(Joiner et al., 2013), and the OCO-2 (Orbiting Carbon Observatory-2) results do not have 

sufficient time series data. GOME-2 provides the highest fidelity satellite fluorescence data set 

currently available; the data have estimated errors of 0.1–0.4 mW/m2/nm/sr (Joiner et al., 2014). 

In this study, I used GOME-2 SIF data for the period from 2007 to 2014. 
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2.2.2 Models 

2.2.2.1 BEPS (Boreal Ecosystem Productivity Simulator) 

BEPS was originally developed to manage and monitor the natural resources of forest 

ecosystem by Canada Center for Remote Sensing (Liu et al., 1997). BEPS is process-based and 

RS data driven model using stomatal conductance as the physiological regulator module to 

couple the carbon and water cycles (Chen et al., 1999; Bunkei et al., 2002). One of the main 

advantages in BEPS is combining LAI with “two-leaf” model to simulate the photosynthesis 

process of shaded and sunlit leaf (Erbs et al., 1982; Norman 1982; Chen et al., 1999), 

respectively, then scaling the instant photosynthetic capabilities up to the canopy, as:  

canopy= GPPGPP A Daylength Factor 
 

Eq-2.1 

canopy sun shadeLAI LAIsun shadeA A A= +
 

Eq-2.2 

sunLAI 2cos(1 exp( 0.5 LAI / cos ))= − −   Eq-2.3 

LAI LAI LAIshade sun= −  Eq-2.4 
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+ + = +  
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= −  −  

   

Eq-2.6 

where Datlength is the day of length in second, FactorGPP converts GPP unit into gC m-2 day-1. 

Acanopy is the total assimilation rate of canopy, the subscripts ‘sun’ and ‘shade’ denote the sunlit and 

shaded components of photosynthesis and LAI, respectively. θ is the solar zenith angle, Ω is 

the clumping index, we obtained the values through the relationships between NDHD and 

clumping index (CI) across PFTs (Chen et al., 2005; He et al., 2012). θnoon is the solar zenith 

angle at noon. 

For calculating sunlit leaf irradiance and shaded lead irradiance: 
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S R R R R R
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 + − + + 
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 Eq-2.9 
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where S0 is the solar constant of 1367 W m-2, Sg is the total solar radiation in W m-2. α is mean 

leaf-sun angle, 60° for a canopy with spherical leaf angle distribution (Chen et al., 1999). 

Sdif,under is diffuse radiation under the plant canopy, Sdif and Sdir denote diffuse and direct 

radiation above the canopy, respectively. 

For estimating Acanopy, in this study, I used the improved BEPS daily (iBEPSd) (Zhang et 

al., 2018), which has two key processes to estimate carbon assimilation rate. The first process 

is stomatal conductance (the conductance to CO2 through the pathway from the atmosphere 

outside of leaf boundary layer), which is calculated according to Jarvis (Jarvis 1976) model:  

610 / (T 273)s gas ag g R +
 

Eq-2.12 

max a(PPFD) (T ) (VPD) (LWP)s sg g f f f f=  Eq-2.13 

(PPFD) PPFD PPFD / (1 (PPFD PPFD ))cof coff =  +   Eq-2.14 

a max a min

a a opt min

a opt max opt opt a max
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(T ) log(T 1) / log(T 1)                    T

cos( (T T ) / 2(T T ))          T T T

a optf T T






= + +  
 − −  

 Eq-2.15 

1                    VPD<0.2

(VPD) (3 VPD) / 2.8      0.2 VPD 3 

0.001           VPD 3

f




= −  
 

 Eq-2.16 

(LWP) (LWP LWP) / (LWP LWP )close close openf = − −  Eq-2.17 

LWP 0.2 / (Soil / Soil )water cap=  Eq-2.18 

where gs is the stomatal conductance (m s-1) and gsmax is the maximum stomatal conductance to 

CO2 (m s-1). f(PPFD), f(Ta), f(VPD) and f(LWP) are the reductions described by photosynthesis 

photon flux density (PPFD), air temperature (Ta), vapor pressure deficit (VPD) and leaf water 

potential (LWP), respectively (Liu et al., 1997). PPFDcof is the coefficient in a relationship 

between gs and PPFD (a constant of 0.01). Soilwater and Soilcap are the soil moisture content and 

field capacity, respectively. Tmax and Tmin and Topt represent the maximum temperature, the 

minimum temperature and the optimal temperature for photosynthesis. 

The second key process is the maximum carboxylation rate (Vm), and in the iBEPSd Vm 

can be represented as the following equations: 

a(T 25)/10

,25 2.4 (T ) (N) (NDVI)m m aV V f f f
−

=  Eq-2.19 

N(N)
Nm

f =  Eq-2.20 

(T ) 1/ (1 exp(( 220000 710(T 273)) / ( (T 273))))a a gas af R= + − + + +  Eq-2.21 
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Eq-2.22 

( )max maxPPFD / 2.1 PPFDJ J J= +
 

Eq-2.23 

max 29.1 1.64 mJ V= +
 Eq-2.24 

where Vm,25 is the maximum carboxylation rate at 25 ℃ in μmol m-2 s-1. f(Ta), f(N) and f(NDVI) 

denote the air temperature constrain, nitrogen constrain and NDVI constrain factors, 

respectively. Rgas is the molar gar constant (8.3143 m3 Pa mol-1 K-1). N is the leaf nitrogen 

content, and Nm is the maximum nitrogen content (Chen et al., 1999). We considered f(NDVI) 

as the constrain of chlorophyll content of leaf. NDVI is the time series value, NDVImax is the 

95% percentile of the NDVI time series at one pixel (Zhang et al., 2018), and NDVImin was 

referenced from the same land surface parameterization as Vm,25 (Sellers et al., 1996). Jmax is the 

light-saturated rate of electron in μmol m-2 s-1, PPFD is the photosynthetically active flux 

density (μmol m-2 s-1). The parameters used in BEPS for each PFTs are shown in Table 2.1. 

2.2.2.2 BESS (Breathing Earth System Simulator) 

BESS is a biophysical model with six key modules that include: evapotranspiration, two-leaf 

canopy conductance and temperature, maximum carboxylation rate, canopy photosynthesis, 

canopy radiative transfer, and atmospheric radiative transfer, which are important to drive this 

process-based approach (Ryu et al., 2011; Jiang et al., 2016). In order to be consistent with the 

input data of other models, in this study we used MERRA-2 data to get the near-infrared 

radiation and shortwave radiation for the beam and diffuse components at the top of canopy 

instead of using atmospheric radiative transfer module. To compute the absorbed radiation for 

sunlit and shaded canopy from that at the top of canopy, a “two-leaf” and “two-stream” (De 

Pury and Farquhar, 1977; Ryu et al., 2011) canopy radiative transfer module are used, which 

can calculate the net radiation (Ryu et al., 2008), absorbed longwave radiation (Wang and 

Leuning 1998), absorbed NIR (Goudriaan 1977) and APAR for sunlit and shade leaves. For 

estimating GPP of sunlit and shade canopy, an iterative carbon-water-coupled procedure which 

incorporated quadratic Penman-Monteith equations (Paw U and Gao 1988), FvCB 

photosynthesis process (Farquhar et al., 1980; Collatz et al., 1992) and a two-leaf longwave 

transfer models (Kowalczyk et al., 2006), and inputs clear-sky emissivity, air specific heat and 

VPD which calculated from the climatic data (e.g., temperature, pressure and humidity). 

Additionally, through this iterative procedure BESS solve the problem of calculating the 

intermediate variables (e.g., leaf temperature, intercellular CO2 concentration and aerodynamic 

resistance). BESS formulates a PFT dependent look-up table (LUT) on the basis of TRY leaf 

trait database (Kattge et al., 2009) to quantify the plants' parameters (e.g., the maximum leaf 

carboxylation at 25℃), and then upscale them from the leaf-level to canopy level. The last step 

is that upscale the instantaneous GPP to daily estimation by a cosine function (Ryu et al., 2012). 

Since the high complexity of BESS, please refer to Ryu (2011) and Jiang (2016) for details. The 

parameters used in BEPS for each PFTs are shown in Table 2.1. 

2.2.2.3 CFix (Carbon Fixation Model) 

CFix is a parametric LUE model with a strong prognostic capability that is driven by plant-

related, meteorological, climatic, and hydrological data to estimate carbon mass fluxes in 

terrestrial ecosystems (Veroustraete et al., 2006) from local (Veroustraete et al., 2002 2004; 

Yuan et al., 2014a) and regional (Maselli et al., 2009; Chiesi et al., 2011; Yan et al., 2016) to 
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global scales (Yuan et al., 2014b; Ma et al., 2015). CFix not only relies on the parameterization 

of fAPAR that is derived from RS-NDVI and downscale factors of environmental stresses to 

estimate GPP, which are the same as other LUE models, but also has a module of carbon 

fertilization effects caused by increases in the atmospheric CO2 concentration, which is 

considered to be the major reason for global warming. CFix can use inputs averaged over 

different time periods (most commonly 10-day to monthly periods) and is conceptually simple 

and generally applicable (Chiesi et al., 2011). For a given geographic coordinate (x, y), GPP is 

calculated as (Veroustraete et al., 2006): 

GPP = PAR × fAPAR × 휀𝑤𝑙 × 𝑇𝑠 × 𝑆𝐶𝑂2 Eq-2.25 

where PAR is the incident photosynthetically active radiation, fAPAR is the fractional absorbed 

PAR, ɛwl is the LUE with water stress, Ts is the temperature dependency factor, and SCO2 is the 

carbon fertilization factor due to the rising atmospheric CO2 concentration levels. The details 

of calculations of the parameters can be found in Table 2.2. 

2.2.2.4 CASA (Carnegie-Ames-Stanford Approach) 

CASA is a classic light use efficiency model that directly translates radiation into NPP 

(Potter et al., 1993) rather than GPP. The CASA model driven by five variables: NDVI, PAR, 

Ta, ET and PET. 

max scaled1 scaled2 ssmGPP= NPP= PAR fAPAR WT T          Eq-2.26 

where ɛmax is the potential light use efficiency without environmental limitation, α is the 

approximate conversion of 0.5 between NPP and GPP (Waring et al., 1998; Yuan et al., 2014). 

Wssm (from 0.5 for extreme drought to 1 for fully humid) is the downward-regulation scalar for 

the effect of soil moisture using actual ET and PET as: 

ssm

ET
W =0.5 0.5

PET
+   Eq-2.27 

Tscaled1 and Tscaled2 are down-regulation scalars for the effect of temperature on LUE of 

vegetation. Tscaled1 reflects the limitation of biochemical effect on photosynthesis due to the low 

or high temperature while Tscaled2 represents the decline trends of photosynthesis rate displaced 

from the optimum temperature. 

2

scaled1=0.8 0.02 T 0.005 Topt optT +  −   Eq-2.28 

( ) ( )opt opt0.2 T 10 T 0.3 T 10 T

scaled2 =1.1919 1 e 1 eT
 − −  − − +   + +

      
 Eq-2.29 

and in Eq-2.26 the fAPAR is computed by a linear relationship with simple ratio (SR), 

min

max min

fAPAR min ,0.95
SR SR

SR SR

 −
=  

− 
 Eq-2.30 

( ) ( )SR= 1 NDVI 1 NDVI+ −  Eq-2.31 
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where SRmin represents for unvegetated land areas and is set for 1.08. SRmax is considered as the 

value in clear-sky which has been corrected for effects of the canopy architecture and cloud 

contamination (Yuan et al., 2014). The parameters used in CASA for each PFTs are shown in 

Table 2.2. 

2.2.2.5 EC-LUE (Eddy Covariance Light Use Efficiency model) 

The EC-LUE model, belonging to LUE model, developed by Yuan et al. (2007) is driven 

by inputting NDVI, PAR, Ta and Bowen ratio. Comparing with other LUE models, the most 

characteristic is the assumption that the realized LUE calculated from a biome-independent 

invariant potential LUE, is only limited by the most limiting factor between air temperature and 

moisture according to Liebig’s Law. 

max scaled SEFGPP=PAR fAPAR min( , )T W    Eq-2.32 

fAPAR=1.24 NDVI 0.168 −  Eq-2.33 

( ) ( )

( ) ( ) ( )
min max

scaled 2

min max

T T T T
=

T T T T T Topt

T
−  −

−  − − −
 Eq-2.34 

SEF nW =λE / R  Eq-2.35 

Tscaled is the temperature downward-scalar calculated using the equation designed for the 

terrestrial ecosystem model (TEM) (Raich et al., 1991). Rn is net radiation. The parameters used 

in EC-LUE for each PFTs are shown in Table 2.2. 

2.2.2.6 VPM (Vegetation Photosynthesis Model) 

The VPM developed by Xiao et al. (2004) is based on temperature, land surface moisture 

condition and leaf phenology. VPM assumes that the leaves and canopies are composed of 

photosynthetic parts and non-photosynthetically active parts. Based on that conceptual 

assumption, VPM introduces the Pscaled as the scalar for the effect of partitioning of leaf 

morphology, leaf age and growth history on fAPAR, as: 

max scaled SLSWI scaledGPP=PAR fAPAR T W P      Eq-2.36 

where fAPAR is calculated by a linear function of EVI, and the coefficient set equal to 1 (Xiao 

et al., 2004). Tscaled is computed using the same Equation as shown at Eq-2.34. WSLSWL 

represents the scalar for the effect of water limitation as: 

( ) ( )SLSWI max= 1 LSWI 1 LSWIW + +  Eq-2.37 

where LSWI is land surface water index, utilized not only for capturing the effects of water 

stress but also for calculating the limiting of phenology on photosynthesis. LSWImax is the 

maximum LSWI within the plant growing season. 

( ) ( )LSWI= NIR SWIR NIR SWIR   − +  Eq-2.38 
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where ρNIR and ρSWIR represent the spectral reflectance in near infrared and short-wavelength 

infrared range, respectively. 

Pscaled is used to account for the effect of leaf phenology on photosynthesis at canopy level, 

and it was dependent upon leaf longevity. For a canopy during one growing season, Pscaled was 

set to 1 after leaf full expansion, and during bud burst to leaf full expansion was calculated as: 

( )scaled 1 LSWI 2P = +  Eq-2.39 

The parameters used in VPM for each PFTs are shown in Table 2.2. 

2.2.2.7 MODIS GPP algorithm 

In this study, we used MODIS GPP products MOD17 which generated using LUE 

approach as (Running and Zhao 2015): 

max VPDscaled minscaledGPP= fAPAR PARW T      Eq-2.40 

where WVPDscaled is the downward-scalar that reduces the potential LUE when the water 

condition is low enough to inhibit photosynthesis. Tminscaled is the downward-scalar for the effect 

of low temperature on plant function. They are simple linear ramp functions of daily lowest 

temperature (Tmin) and VPD (Eq-2.41, Eq-2.42) which obtained from the GMAO/NASA 

datasets. And ɛmax is the maximum radiation conversion efficiency in the optimum 

environmental conditions, obtained on the basis on of MOD12Q1, according to which a biome-

properties-look-up-table was established for each grid. fAPAR is also the MODIS products, 

MOD15. 

min

min min max min min max
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Eq-2.41 
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(VPD VPD) (VPD VPD )       VPD VPD VPD

0                                                          VPD VPD

W



= − −  








 Eq-2.42 

Tminmin and Tminmax represent the minimum and maximum daily lowest temperature at which 

ε=0 (at any VPD) and ε= ɛmax (for optimal VPD) for one pixel, respectively. And VPDmin and 

VPDmax are the daytime average VPD at which ε=0 (at any Tmin) and ε= ɛmax (for optimal 

Tmin), respectively. The parameters used in MODIS for each PFTs are shown in Table 2.2. 

2.2.2.8 GR (Greenness-Radiation Model) 

GR is a vegetation index type model driven by EVI and radiation (Gitelson et al., 2006). 

The model was original designed to study the relationship between GPP with chlorophyll 

content in crop ecosystem (Gitelson et al., 2006), but also calibrated and applied successfully 

in various ecosystems in North American continent (Wu et al., 2011). The EVI is used as the 

proxy for the chlorophyll content to upscale the GR model to regional and global scale (Liu et 

al., 2014). The model uses the following equations to estimate vegetation GPP: 
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GPP=m EVI PAR   Eq-2.43 

where m is an empirical coefficient with the unit of gC MJ-1 day-1 in this study, EVI and PAR 

are the same as above. The parameters used in GR for each PFTs are shown in Table 2.2. 

2.2.2.9 TG (Temperature-Greenness Model) 

TG model was original developed to simulate 8-day vegetation GPP (Sims et al., 2008), 

which is driven by only two satellite-based variables obtained from MODIS: LST and EVI. In 

contrast to other models, the independence of climate variables makes TG an entirely RS-based 

model (Li et al., 2013). The conceptual formula is simple, but it performed well in various 

ecosystems in North America continent (Sims et al., 2008; Wu et al., 2011). 

scaled scaledGPP=m EVI LST 
 

Eq-2.44 

where, m is a conversion coefficient with the unit of gC m-2 day-1 in this study, and EVIscaled is 

given by: 

scaled baseEVI =EVI-EVI
 

Eq-2.45 

according to the study of Sims et al. (2008), EVI will decline to a value of approximately 0.1 at 

a GPP of zero, therefore, EVIbase is set to 0.1. LSTscaled is defined as the minimum of two linear 

functions which are based on the determination of optimum temperature for GPP. 

scaled opt

opt

LST
LST =min[ ,1+0.05 (LST -LST)]

LST


 

Eq-2.46 

In addition, when LSTscaled lower than 0, it will be set to 0. In this study, we identified 

LSTopt for one pixel when the NDVI which as a proxy for plant physiological state get optimum 

level that larger than the 95% percentile of the NDVI time series. The parameters used in TG 

for each PFTs are shown in Table 2.2. 

2.2.2.10 VI (Vegetation Indices Model) 

VI model relies heavily on the VI-based approach, with inputs EVI and temperature, 

developed by Wu et al. (2010a) for crop ecosystems. Wu et al. (2010b) calibrated and 

successfully applied it in forest ecosystems. In VI model, EVI is incorporated as the proxies for 

both LUE and fAPAR (Li et at., 2013). 

2GPP=m EVI PAR   Eq-2.47 

where m is a conversion coefficient with the unit of gC MJ-1 day-1 in this study and the other 

inputs are the same as above. The parameters used in VI for each PFTs are shown in Table 2.2. 

2.2.2.11 AVM (Alpine Vegetation Model) 

AVM is a vegetation index model that utilizes satellite measurements to estimate GPP (Li 

et al., 2013). It was originally developed for estimating the GPP in alpine meadow ecosystems 
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since the air temperature is the dominated factor which limits plants growth in the ecosystem. 

And Liu et al. (2014) calibrated and successfully applied it in cropland, grassland, and various 

forest ecosystems in China. Since the temperature is closely correlated with other 

environmental variables (e.g., VPD, PAR, SM) (Li et al., 2013), and EVI can be adopted to 

explain the variance in FPAR, the AVM follows Eq-2.48: 

scaled scaledGPP=m EVI T 
 

Eq-2.48 

where m is a conversion coefficient, EVIscaled is calculated by the same approach as that in TG, 

and EVIbase is set to be 0.15. When EVI is less than EVIbase, EVIscaled is set as zero. Tscaled is 

calculated as: 

( ) ( )scaled min max minT = T T T T− −
 

Eq-2.49 

where T is the daily average air temperature, when it is less than Tmin, Tscaled is set as zero. Tmax 

and Tmin are the biological maximum and minimum temperature during the growing season, 

respectively. The parameters used in AVM for each PFTs are shown in Table 2.2. 

2.2.2.12 MTE (Multi-Tree Ensemble) 

MTE is based on machine learning algorithms, employed by Jung et al. (2011), upscaling 

the GPP from in situ scale to the global scale. They forced 25 individual model trees for each 

biosphere-atmosphere flux using gridded inputs. The variables used to train the MTE are in 

total of 29, divided into four categories: climate, vegetation structure, meteorology and 

vegetation status. Among them the proxies of vegetation status and meteorology, temperature, 

precipitation, fAPAR and potential APAR, are at monthly resolution, the rest of driven data are 

static or yearly or monthly but static over years (Jung et al., 2011). Since it is based on direct 

eddy-covariance flux tower measurements of GPP and is thus considered close to the truth 

where the flux tower density is high (Beer et al., 2010; Frankenberg et al., 2011). However, 

under the circumstances that without considering the uncertainties of measurements of eddy 

covariance fluxes, of global climatic driven factors, of the unbalance of distribution of samples 

as well as the uncertainty sources from satellite observations, the uncertainty of the MTE GPP 

is relatively small, at about ± 5 % (Jung et al., 2011). 

2.2.2.13 SIF_GPP model 

Recently studies (Frankenberg et al. 2011; Guanter et al. 2012 2014; Joiner et al. 2013; 

Joiner et al. 2011) conducted using state-of-the-art methods have suggested that the spatial and 

temporal patterns of satellite-derived SIF data are highly correlated with those of GPP. Under 

appropriate conditions where light is moderate or high or environmental stress exists, SIF is 

strictly proportional to GPP (Van der Tol, Verhoef and Rosema 2009; Flexas et al. 2000; Lee et 

al. 2015). In particular, Frankenberg et al. (2011) found that “global space-borne observations 

of solar-induced chlorophyll exhibit a strong linear correlation with GPP and that the 

fluorencence emission even without any additional climatic or model information has the same 

or better predictive skill in estimating GPP as those derived from traditional remotelt sensed 

vegetation indices using ancillary data and model assumptions”. To quantify the spatial 

agreement between the observation-based GPP and satellite fluoresecnce, we also estimated the 

GPP-SIF and discussed the advantages and disadvantages of this method. A simple regression 

model was used to investigate the SIF-GPP relationship. Monthly SIF and GPP data were 

averaged over the observation period from 2007 to 2014 for each month to minimize the 
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uncertainties resulting from different spatial resolutions. Since the SIF-GPP relationship is 

biome-specific (Guanter et al., 2012), we established regression models for each PFT obtained 

from the MODIS land cover products to estimate GPP. 

In this study, I only used the most spatially homogeneous sites in the period from 2007 to 

2014, shown in Table 2.3. The most spatially homogeneous refers to the following: for a site to 

be selected for the study, the dominant vegetation cover type at the flux site must represent 

more than 65 % of the GOME-2 pixel area, and the standard deviation of the NDVI must be 

less than 0.1. These flux sites cover most of the major biomes (DNF, ENF, CRO, DBF, EBF, 

GRA, MF, OSH, SAV, WSA), representing a total of 231 observed years. 
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Table 2.1 List of parameters used in BESS and BEPS for each PFTs. 

 

1leaf scattering coefficient for PAR, derived from Sellers et al. (1996) except for WSA, SAV (Asner 

et al., 1998); 
2leaf scattering coefficient for NIR, derived from Sellers et al. (1996) except for WSA, SAV (Asner 

et al., 1998); 
3Soil reflectance for PAR, derived from Sellers et al. (1996) except for WSA, SAV and OSH (Asner 

et al., 1998; Roberts et al., 1993); 
4Soil reflectance for NIR, derived from Sellers et al. (1996) except for WSA, SAV and OSH (Asner 

et al., 1998; Roberts et al., 1993); 
5Nitrogen constrain factor, derived from Liu et al. (1997); 
6Maximum carboxylation rate at 25 ℃: aJiang and Ryu 2016; bRyu et al. 2011; cWalker et al. 2014; 
dPan et al. 2015; eZhang et al. 2012; 
7The main climates of Koppen-Geiger climate classification, derived from Kottek et al. (2006).
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Table 2.2 Key parameter values for LUE and VI models. 

 
aTmax and Topt are the biological maximum and minimum temperature during the growing season for all models, derived from Zhang et al. 

(2017), except for CFix and EC-LUE (Tmax = 40 and Topt = 21 for all PFTs) (Yuan et al., 2014); 
bThe potential light use efficiency without environmental limitations, derived from Yuan et al. (2014), which is based on the measurements 

of ecosystem carbon fluxes from 168 globally distributed sites in a range of vegetation types. Parameters of MODIS are derived from 

Running and Zhao (2015). 
cThe minimum light use efficiency with extreme environmental stress in CFix model, derived from Yuan et al. (2014). 
dI identified LSTopt as the average value of the LSTs which the corresponding NDVI is larger than the 95% percentile of the NDVI time 

series calculated in this study. 
eThe conversion coefficient, in this study I obtained this value by using the MTE GPP of 2000.
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Table 2.3 Details of the sites used in this study. σ NDVI is the standard deviation of NDVI within the GOME-

2 pixel. MAX LC represents the fraction of a GOME-2 grid cell covered by the dominant plant. 

PFT is the plant functional type. 
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2.3 Results and discussions 

The original spatial resolution and the available spatial range of the datasets used to drive 

each model are different, although they are nominally global in scale; when the models run in 

global mode, these estimates must be scaled based on the land area to estimate a global total 

value; however, this scaling causes a difference of several PgC year-1 for the global total GPP 

(Avan et al., 2015). To remove this issue in our subsequent analysis, for the results presented 

here, we calculated the average estimates of grids in common according to the global moderate 

resolution dataset of GPP (Zhang et al., 2017) to estimate the total global GPP for each model. 

 

 
Figure 2.1 Global total annual GPP estimation of each model during 2000-2014. 

 

Over the period of 2000~2014, the estimations of the 12 models diverged in terms of total 

global GPP, ranging from approximately 102.6 (BEPS) to 124.9 (GR) PgC year-1, with a 

standard deviation of 7.2 PgC year-1 (Figure 2.1).
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Figure 2.2 Comparison of the annual averaged GPP estimations among different models from 2000 to 2014. 
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However, the global spatial patterns from the 12 models agreed reasonably well (Figure 

2.5), although differences were definited in some areas (Figure 2.2). 

 

 
Figure 2.3 The latitudinal distribution of annual averaged GPP estimation of each model during the period 

of 2000-2014. 

 

Specifically, there was good agreement in mid-high latitudes in the Northern Hemisphere, 

and relatively large differences in magnitude were found in the Tropics (Figure 2.3). 
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Figure 2.4 Comparison between the spatial distribution of the RS-based GPPs with that of DGVM's average. 

 

To verify the relative spatial distribution of the estimates from each model, I also used the 

mean global GPP estimation from 7 DGVMs (i.e., CARAIB (CARbon Assimilation In the 

Biosphere), DLEM (Dynamic Land Ecosystem Model), JULES (the Joint UK Land 

Environment Simulator), LPJml (Lund-Potsdam-Jena managed Land), ORCHIDEE 

(Organising Carbon and Hydrology In Dynamic Ecosystems), VEGAS (VEgetation-Global 

Atmosphere-Soil Model) and VISIT (Vegetation Integrative Simulator for Trace Gases)) of 

ISIMIP2 to compare the values with those estimates. The DGVM average is not the true value, 

but running these DGVMs is not necessary to input the RS-based data; therefore, I used the 

average as the benchmark and intermediate reference to compare the performances between 

RS-based models. 

The results showed that the GPP estimates of the 12 models were highly consistent with 

the DGVM average (Figure 2.4), with the correlation coefficient (R) ranging from 0.88 (BESS) 

to 0.95 (CFix) (Figure 2.5); these results mean that these RS-based models have a comparable 

ability to capture the spatial variations in GPP, at least at the same level as the DGVM. 
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Figure 2.5 Annual averaged GPP comparison against DGVMs for different models. 
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However, the above results should be treated with caution because a small total difference 

can mask compensation of biases, which has been illustrated in the cumulative frequency 

distribution of GPP (Figure 2.6). As shown in Figure 2.6, the grids of global GPP, which are 

larger than 2000 gC m-2 year-1, as estimated by BESS, CASA and EC-LUE, are few, while the 

other nine models show that at least 10 % of the global grids have GPP larger than  

2200 gC m-2 year-1. In addition, I also compared the estimates of 12 models at the site-scale 

(Figure S1). 

 

 
Figure 2.6 Cumulative frequency distribution for averaged GPP at each 0.5° × 0.5° pixel over global land 

estimated by each model during 2000-2014. 

 

The performances of the 12 models varied among the sites (Figure S1), but generally, all 

the models basically captured the magnitudes of the daily GPP variations and the seasonal 

cycles (Figure 2.7). 
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Figure 2.7-a Monthly global GPP estimation by each model. 
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Figure 2.7-b Monthly global GPP estimation by each model. 
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Figure 2.7-c Monthly global GPP estimation by each model. 

 

For the mean seasonal cycle of GPP at the global scale, all models showed similar 

variations, with only CASA having a sharper transition during the boreal summer (Figure S8). 
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Figure 2.8 Comparison of seasonal variations in GPP among the different models. 
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Given the anti-phase of GPP between hemispheres, I also investigated the seasonal cycle 

of GPP over three subdomains (Figure 2.8): in the Northern Hemisphere (~20°N), characterized 

by a strong seasonality, all models estimated the small values during the boreal winter and the 

large values during the boreal summer, with R above 0.9; in the Southern Hemisphere (~20°S), 

characterized by an opposite seasonality to that of the Northern Hemisphere but with weaker 

amplitudes. All models showed similar seasonal variations, and among them, the minimum R 

of 0.86 appeared between BEPS and GR. Remarkable differences were found in the tropical 

regions (20°N~20°S), where the R between models was low or even negative (Figure 2.8); 

additionally, the tropical areas were characterized by low seasonality. In this study, I used the 

detrended GPP anomalies to evaluate the interannual GPP variations among different models 

(Figure 2.9). The interannual GPP variations of VI, VPM, TG, GR, BEPS, AVM and CASA 

showed a significant similar pattern with the R above 0.7, while that of the other models showed 

a moderate (or lower) correlation. No model showed an isolated result, and any model had a 

medium (or above) correlation with at least three other models. Among them, BESS showed a 

relatively independent performance but had the strongest correlation with MTE. 

 

 
Figure 2.9 The correlation matrixes display correlation coefficient in pairs among detrended GPP anomalies 

estimated by the different models during 2000-2014. 

 

The linear GPP trends over 2000-2014 were computed for each model using linear 

regression analysis (Figure 2.10). All the models estimated the increasing trend of GPP. The 

strongest trends were found in BEPS (0.888), AVM (0.807), TG (0.741), CFix (0.652) and 

BESS (0.654) (PgC year-1), and the driving factors of these models led me to hypothesize that 

the positive responses of plants to both increasing atmospheric CO2 concentration and 

temperature were the main reasons for the increasing GPP. This hypothesis is further discussed 

in the next section. Conversely, MTE and MODIS estimated the lowest GPP trends. 
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Figure 2.10 Long-term trends of GPP estimations by different models. 

 

2.3.1 Discussion on SIF_GPP model 

2.3.1.1 Estimation and distribution of GPP 

I used GPP data from 45 eddy flux sites that comprised the Fluxnet 2015 dataset (Table 

2.3). I extracted SIF data based on the coordinates of each EC tower site and averaged these to 

calculate the monthly means to minimize uncertainties arising from the different spatial scales 

of the SIF and GPP data (Guanter et al. 2014). A simple regression model was used to 

investigate the correlation between SIF and GPP. The scatter plots and regression lines between 

SIF and GPP are presented in Figure 2.11 for the PFTs. Collectively, there were no significant 

systematic errors in the model predictions shown in Table 2.4. Individually, the coefficients of 

correlation varied from 0.61 (ENF) to 0.96 (DBF), all of which were statistically significant at 

p<0.001 except for DNF (p=0.0012). Since the relationships for each vegetation type were 

stronger or strong, I used the relationships to scale GPP from the tower footprint to the global 

scale. To avoid signal contamination from urban or ocean areas, nearby pixels that fulfilled the 

homogeneity criteria were also extracted for six sites (shown in Figure 2.12). 
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Figure 2.11 Relationship between monthly mean SIF obtained from GOME-2 and monthly mean GPP 

obtained from the Fluxnet 2015 dataset. 

 
Table 2.4 Regression models between GPP and SIF for different ecosystems. Number is the number of 

samples used to calculate the relationship. Pearson's r is the Pearson correlation coefficient. Adj. 

R2 is the adjusted R2 value, i.e., the coefficient of determination.  
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Figure 2.12 The selection of nearby grids to represent the impacted sites (sea effects: GH-Ank, AU-Cum, 

GF-Guy, MY-PSO; urban effects: AU-Cum, MY-PSO; vegetation effects: RU-SkP; South 

Atlantic Anomaly effects: GF-Guy). 

 



 

53 

 

Figure 2.13 shows the spatial distribution of multi-annual average GPP estimated in this 

study from 2007 to 2014. The figure shows that the highest GPP is found in the rainforest in the 

Intertropical Convergence Zone (ITCZ) (e.g., the Amazon Rainforest, Congo Rainforest, and 

Indonesia), with estimates of over 3000 g C m-2 year-1, followed by monsoon subtropical regions 

(e.g., southeastern Asia, Central America), with values that exceed 2000 g C m-2 year-1, and 

humid temperate regions in eastern North America and western and central Europe, with GPP 

values of approximately 1500 g C m-2 year-1. Low GPP values occur in regions with adverse 

conditions, such as high-altitude regions (e.g., Tibetan Plateau), high latitude areas (e.g., 

northern Canada, North Russia), those characterized by short growing seasons due to low 

temperature, and dry areas (e.g., Sahara, Taklamakan, Arabian deserts) which are limited by 

water availability. 

 

 
Figure 2.13 Global spatial distribution of estimated annual GPP. 

 

Figure 2.14 shows considerable seasonal variations, especially in the Northern 

Hemisphere, with high GPP estimates in summer and low values during winter. The GPP in 

tropical rainforest areas is relatively high throughout the year, and changes in values correspond 

to seasonal changes, i.e., wet and dry seasons. However, in summer, the maximum monthly 

GPP of temperate forests exceeds that of tropical forests.  
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Figure 2.14 Global spatial distribution of estimated monthly GPP (M: Month (i.e., M06: June)). 

 

Collectively, the spatial patterns of multi-annual average GPP and monthly GPP are 

consistent with those of numerous other models (Figure 2.7). The estimated GPP correctly 

captured the patterns at the global scale. For example, the GPP patterns over North America 

show considerable East-West differences, boreal forests exhibit a typical longitudinal gradient 

in Northern Eurasia and GPP decreases eastward as a consequence of increasing continental 

climatic patterns, and South America lies mainly in a tropical climate zone with relatively high 

GPP except for the Andes in western South America. Since light intensity, illumination time, 

and temperature considerably affect photosynthesis, monthly GPP latitudinal variations that 

follow solar insolation and temperature variations are evident at the global scale. 

2.3.1.2 Accuracy assessment of GPP estimates 

In this part, I estimated a series of monthly global GPP at a spatial resolution of 0.5o, which 

is larger than the footprint size of ground-based observations. Hence, I relied on the model and 

other remotely sensed data for a comparison on the global scale. As a benchmark, I compared 

the estimates against the MTE model GPP from 2007 to 2011 (Jung et al., 2011) because it is 

based on direct EC flux tower measurements of GPP and is thus considered close to the truth 

where the flux tower density is high (Beer et al., 2010; Frankenberg et al., 2011). MODIS GPP 

products from 2007 to 2016 were also used because MODIS products have been widely known 

and used (Turner et al., 2006; Zhao and Running, 2010; Frankenberg et al., 2011). For the annual 

GPP, I found a strong linear spatial correlation between the estimated GPP with model-based 

and remotely sensed GPP data shown in Figure 2.15 The estimated GPPs are highly consistent 

with MTE and MODIS products; thus, the estimated GPP in the present study can be used in 

GPP estimations. 
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Figure 2.15 Accuracy assessment of GPP by comparing with MODIS and MTE GPPs. 

2.3.1.3 Uncertainties of SIF_GPP model 

Although estimating GPP is not the focus in the thesis, it is worthwhile to further analyze 

the limitations of GPPSIF (the estimates of GPP based on SIF) to provide information on the 

uncertainties. Here, I discussed the sources of uncertainties in GPPSIF at a global scale from the 

aspects of input data and methods. 

For the Fluxnet 2015 dataset, although the GPP recorded at the flux towers was treated in 

this study as “observed”, these data include the advantages, disadvantages and assumptions of 

the original net ecosystem exchange (NEE) observations. Uncertainties in the GPP derived from 

flux tower measurements have been calculated by (Schaefer et al., 2012). Due to the lack of 

surface energy balance closure, the threshold used to filter ecosystem respiration under stable 

conditions, the hypothesis that the entire system temperature is equal to air temperature and the 

factors that control ecosystem respiration such as soil moisture have not been included in the 

partitioning algorithm, which may result in errors in the observed GPP. The complete set of 

uncertainties includes i) contributions from random errors, which account for the greatest 

contribution, ~50% (winter) and ~90% (summer) of total uncertainties, ii) friction velocity 

uncertainties and iii) partitioning uncertainties, which depend on the variance generated by the 

different partitioning algorithms (Desai et al., 2008). I discarded values that were less than or 

equal to zero. Consequently, many sites were not included for the calculation of the GPP-SIF 

relationship. 

With respect to the GOME-2 SIF data, it has been explicitly reported that the v26 products 

have undergone only limited validation (Yang et al., 2015). Due to instrumental (e.g., 

instruments degrade significantly during their lifetime (Joiner et al., 2016)) and algorithmic 

effects, temporal variations may not be recommended for long-term analysis. Clouds and 

aerosol are present in nearly every single observation despite the following: various filters have 

been applied to the monthly average products to reduce the shielding effects of cloud 

contamination and aerosols, a relatively large footprint of approximately 40 km × 80 km (40 

km × 40 km after 15 July 2003) was used, and cloud fractions have been reduced to 30%. At 

high latitudes, owing to very high solar zenith angles (>70o), fluorescence will be slightly 
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positive or negative, resulting in very large uncertainties. According to Joiner et al. (2013), 

GOME-2 errors are generally higher over South America compared with other areas due to the 

South Atlantic Anomaly (SAA). Nevertheless, given the objectives of this study, the GOME-2 

SIF dataset is the most appropriate choice among the SIF datasets. 

Most of the flux towers used in this study are located in the Northern Hemisphere, 

especially Europe and North America (Table 2.3); therefore, there are large uncertainties for 

regions that are poorly covered by a limited number of flux sites (e.g., tropical areas, Siberia, 

South America). In order to avoid signal contamination from ocean, desert or urban areas, we 

extracted SIF data from a nearby pixel or used average values of nearby pixels fulfilling the 

homogeneity criteria (Guanter et al., 2014). For example, the GF-Guy site was established near 

the Atlantic Ocean; thus, the SIF grid in which the site is located is not pure EBF; rather, it is a 

combination of sea water and EBF (Figure 2.12). I selected the closest valid pixels within a 

region of 7 × 7 pixels (smaller than 5.5o × 5.5o) (Duveiller and Cescatti 2016), to calculate the 

averages to represent the SIF values for the GF-Guy site. Although this method can reduce 

signal contamination, imperfect points may result in other uncertainties. Even though the PFTs 

are the same, the different spatial scales of the SIF retrievals and the flux tower data may result 

in a mixed signal sampled within the GOME-2 footprint. For example, the PFT of the site, US-

Ne3, is croplands, but both soybean and corn fields exist in one GOME-2 grid, so the SIF signal 

is mixed. To reduce this type of uncertainty, I used the averages for each month to calculate the 

relationship between GPP and SIF. While I calculated the relationship between GPP and SIF 

according to the PFTs, relationships with the same PFT exhibited large differences, e.g., both 

corn (C4 species) and soybean (C3 species) are crops, but their relationships are different, and 

estimations will result in uncertainties. In addition, different correction parameters between 

GPP and SIF for different sites or pixels of the same PFT also increase the uncertainty. Several 

hypotheses must be formulated to estimate GPP from the linear relationship with SIF. For 

example, the sampling time of GOME-2 is approximately 9:30 am local time, and under the 

light intensities at this time, I assumed that a linear relationship between SIF and GPP would 

be valid for each ecosystem. However, I do not know whether every sampling period satisfies 

the hypotheses. This is also one source of uncertainty. The SIF data showed a significantly (p < 

0.01) positive correlation with GPP in all ecosystems. Among the relationships between SIF 

and GPP for each PFT, only ENF and EBF did not exhibit strong correlations; the correlation 

coefficients were 0.61 and 0.62, respectively. The moderate correlation with ENF can be 

explained by the different spatial scales of the footprints of GOME-2 and the flux tower: the 

PFT in the Fluxnet 2015 dataset is ENF, whereas the land cover product indicated that a large 

component is MF. I selected the flux sites by using homogeneity criteria, while for the forest 

ecosystems, MF was not subjected to the heterogeneity calculation because the number of valid 

flux sites was too small to perform the statistical analysis. Therefore, there were a large number 

of mixed MF signals in the pixels in which the ENF flux towers were located, e.g., the ENF 

sites such as FI-Hyy, RU-Fyo, CA-BK1, DE-Wet and De-Lkb had high proportions of MF. The 

moderate correlation of EBF can be explained by cloud contamination. EBF consists mainly of 

rainforests distributed in tropical regions characterized by high levels of cloud cover. 
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2.4 Conclusions 

RS-based models play a significant role in estimating and monitoring terrestrial ecosystem 

GPP. Several RS-based GPP models have been developed using different criteria, yet the 

sensitivities to environmental factors vary among models; thus, the comparison of model 

sensitivity is necessary for analyzing and interpreting results and for choosing suitable models. 

In this part, we evaluated and compared the GPP estimated by 12 RS-based GPP models and 

benchmarked these estimates against the GPP measured at flux tower sites which longer than 

12 years as well as the results estimated by dynamic global vegetation models (DGVM). The 

comparison among models and the comparison of models against observations helps document 

their strengths and weaknesses under current conditions and can also identify heuristic 

constraints about their applicable conditions and scopes. There is no model showing an isolated 

estimation in the spatial distribution, seasonal variation and interannual variation of GPP. 

Vegetation indices (VI) and light use efficiency (LUE) models, relatively simpler form and 

fewer parameters, can perform as well as complex physiological process models on GPP 

estimating. And we detailed described, discussed and explained the distinctions among the 

models and its reasons in Chapter 5. All the models show the similar distribution the largest 

annual GPP occur in the tropics where the model estimates more than 3300 gC m-2 year-1, with 

a lower amplitude responding the alternation of wetter and drier seasons. But the maximum 

monthly GPP in tropical forest is exceeded by forest in the temperature zone in June with 

closing to 400 gC m-2 month-1. The monthly global GPP estimates are low during the northern 

hemisphere’s winter and high during its summer. Regarding on the trend of GPP, the models 

with inputting atmospheric CO2 concentration data show more significantly. 
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Chapter 3 Analysis on long-term trends of variations in GPP 

Quantitative estimation of spatial pattern of GPP trends and its drivers plays a crucial role 

in global change research. This chapter applied CFix model to estimate the net effect of each 

factor on GPP trends of 1982~2015, used an unsupervised classifier to group similar GPP trend 

behaviors, and analyzed the responses of GPP to changes in climatic, atmospheric and 

environmental drivers. According to the features of monthly GPP trends and the patterns of 

growing season, I presented nine categories as aids in interpreting large-scale behavior. LCC, 

rising CO2, temperature and water conditions changes have the positive overall effect on GPP 

over the entire world, contrary to radiation change effects. The global average contributions of 

LCC, CO2, temperature, radiation and water on GPP trend are 4.57 %, 65.73 %, 13.07 %, -7.24 % 

and 11.74 %, respectively. LCC and climatic factors changes have had a greater impact on GPP 

in terms of a specific location or regional rather than globally, and the interactions between 

factors are positive on GPP. The effects of climatic factors trends on GPP in different locations 

can be opposite, in general: regionally, GPP changes at middle and high latitudes are likely 

dominated by rises in radiation and temperature; at lower latitudes, GPP changes are likely to 

be driven by shifts in water conditions; at high altitudes, GPP changes are probably caused by 

changes in temperature and water conditions. These results will increase the understanding of 

the variations of carbon flux under future CO2, LCC and climate conditions. 

3.1 Introduction 

Terrestrial GPP is the amount of CO2 fixed as organic compounds by vegetation through 

photosynthesis at the ecosystem scale (Beer et al., 2010); GPP plays a pivotal role in the global 

carbon balance and almost all ecosystem processes (Gilmanov et al., 2003). The patterns of the 

variation and distribution of GPP in terrestrial ecosystems show large spatial variability due to 

interactions between the biological characteristics of plants and external environmental factors 

(e.g., rising CO2 concentration, land-cover change, and climatic variables) (Beer et al., 2010; 

Anav et al., 2015). In recent decades, approximately 1.2 PgC year-1 has been sequestered by 

terrestrial ecosystems as the net result of the impact of the changing climate and rising CO2 on 

ecosystem productivity (CO2-climate driven flux) and deforestation, harvesting and secondary 

forest regrowth (LCC flux) (Haverd et al., 2017). However, their contributions are highly 

uncertain. Therefore, it is important and necessary to accurately describe the changes of GPP in 

different regions and to quantitatively evaluate how environmental factors influence GPP. 

Furthermore, a deeper understanding of how GPP has responded to past climate change, LCC 

and rising CO2 concentration will provide insight into how the carbon cycle will change under 

future CO2 and climate conditions (Poulter et al., 2014; Huang et al., 2015; Li et al., 2016).  

However, directly measuring GPP at the global scale is infeasible (Ma et al., 2015), and 

the discrepancies associated with the spatial distribution of environmental controls on GPP 

variation simulated by different models are considerable (Anav et al., 2015; Beer et al., 2010). 

In recent years, with the development of space technology, satellite-based LUE models have 

been widely used because they rely on simple algorithms to estimate the macroscale terrestrial 

GPP (Yuan et al., 2014b). In this study, the CFix model (Verstraeten et al., 2006) was selected 

to perform a series of factorial estimations to explore the drivers’ net effect on GPP because in 

CFix, a CO2 fertilization factor exists that differs from other LUE models, and we can directly 

introduce the effect of the atmospheric CO2 concentration, which is considered one of the main 

causes of global warming (Bazzaz 1990; Gillett et al., 2013). 

Many studies have been performed, and various models and approaches, from individual 

sites to global scales, have been developed and used to examine climate factors that affect GPP 
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(Nemani et al., 2003; Beer et al., 2007 2010; de Jong et al., 2013; Anav et al., 2015; Liang et 

al., 2015). Simultaneously, that CO2 concentration effect on GPP has also been found by many 

scholars (Farquhar 1997; Norby et al., 2005; Luo et al., 2006; Yang et al., 2016; Sun et al., 

2018), and numerous studies (van Oijen et al., 2004; Ainsworth and Long, 2005; Yang et al., 

2016) have been conducted to reveal how ecosystems respond to elevated CO2 levels, although 

the magnitude and the spatial distribution of the influence remain unclear. Moreover, it is an 

indisputable fact that large-scale land-cover changes have taken place over the past few decades 

(Lambin et al., 2001; Hansen et al., 2013), and large-scale estimates of terrestrial carbon fluxes 

are highly dependent on the land cover (Quaife et al., 2008). However, studies that combined 

climate change, LCC, rising CO2 concentration and their interactions into the effects on the 

pattern and trend of GPP are few. 

In this chapter, I first used the CFix model to estimate the global monthly GPP over the 

past 34 years and tested the performance by comparing it with MTE GPP and MODIS products. 

Second, I analyzed the individual effect of each factor and the interactions through a series of 

factorial estimations around the world. Third, I zoned the categories of GPP variations 

according to seasonal and dimensional characteristics using an unsupervised classifier. Finally, 

I analyzed the GPP trend and its attribution spatially. The overarching goals of this chapter are 

to (globally during the period of 1982~2015) investigate the spatial distribution and magnitude 

of GPP trend; separate the contributions of climate factors, the rising CO2 concentration, LCC 

and their interactions on the pattern of GPP trends spatially and quantitatively; and explain how 

the possible factors influence GPP in different regions. 
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3.2 Materials and methods 

3.2.1 Materials 

 
Table 3.1 Overview of the datasets used in this chapter. 

 
 

3.2.1.1 Climate data 

For the global estimation of GPP, I used input datasets of sensible heat flux, latent heat 

flux, Ta and PAR from MERRA (Rienecker et al., 2011), which is a NASA reanalysis for the 

satellite era based on the main new version of the Goddard Earth Observing System Data 

Assimilation System Version 5 (GEOS-5) to produce an estimate of global climatic conditions 

at a resolution of 0.5° latitude × 0.6° longitude. More information on the MERRA dataset is 

available from NASA GES DISC/ Modeling/ Data Holding (http:// disc.gsfc.nasa.gov/daac-

bin/DataHoldings.pl). The uncertainties of various meteorological factors at the global scale 

have been validated and evaluated by using surface metrological datasets (Rienecker et al., 2011; 

Li et al., 2013). 

3.2.1.2 Vegetation indices data 

The VI I used in this study, NDVI dataset, is Global Inventory Modelling and Mapping 

Studies (GIMMS)-3g (Tucker et al., 2005), which spanned 1982 to 2015 at a spatial resolution 

of 8×8 km2 and a 15-day interval and was acquired from NOAA-AVHRR (Advanced Very 

High-Resolution Radiometer). The dataset provides the only continuous and longest time series 

of approximately three decades that has been continually assessed and validated, and it has been 

widely used for long-term global vegetation condition monitoring and detecting (Piao et al., 

2006; Wu et al., 2015; Liang et al., 2015). We conducted the biweekly data composite with 

pixels using the maximum value composite (MVC) method (Holben 1986) to generate a 
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monthly temporal scale NDVI dataset to calculate fAPAR (Myneni and Williams 1994) for 

running the CFix model. 

3.2.1.3 Land cover data 

The land cover map from 1982 to 1991 was acquired from the GLCF: AVHRR Global 

Land Cover Classification (http://glcf.umd.edu/data/landcover/). The images from the AVHRR 

satellites between 1981 and 1994 were utilized and analyzed to distinguish 14 land cover classes 

(Hansen et al., 1998). Three spatial scales are available in this product (1, 8 km and 1°), and we 

selected the highest resolution of 1 km. The other is the ESA CCI-LC dataset (https://www.esa-

landcover-cci.org/), a 300m annual global land cover time series from 1992 to 2015. These 24 

annual global land cover maps were produced by state-of-the-art reprocessing of the full 

archives of five different satellite missions that provided daily observations of the Earth. CCI-

LC provides information for 22 classes of dominant land cover types defined using the Land 

Cover Classification System (LCCS), which was found to be compatible with the PFTs used in 

the climate models (CCI-LC URD Phase I). Detailed information on the CCI-LC is available 

on the CCI-Viewer (http://maps.elie.ucl.ac.be/CCI/viewer/). The land cover data need to be 

crossed with the grids analyzed in this study at a 0.5° spatial resolution; all 300-m and 1-km 

pixels falling in the 0.5° cells were used to calculate the proportion of the dominant land cover 

type. 

3.2.1.4 Atmospheric CO2 concentration data 

Two datasets of the atmospheric CO2 concentration were used to normalize the CO2 

fertilization factor in the present study; one is the global monthly continuous spatial CO2 

concentration data from 2000 to 2015, CT2016, which is an open product of NOAA's Earth 

System Research Laboratory that uses data from the NOAA ESRL greenhouse gas 

observational network and collaborating institutions (Peters et al., 2007), released on Feb 17th, 

2017. In CT2016, land biosphere, wildfire, fossil fuel emissions, atmospheric transport and 

other factors are data-assimilated to produce the estimates of surface fluxes and atmospheric 

CO2 mole fractions (https://www.esrl.noaa.gov/gmd/ccgg/carbontracker/index.php). The other 

is globally averaged surface monthly mean CO2 data from 1982 to 1999 obtained from NOAA/ 

ESRL (www.esrl.noaa.gov/gmd/ccgg/trends/). A global average is constructed by first fitting a 

smoothed curve as a function of time to each site, after which the smoothed value for each site 

is plotted as a function of the latitude for 48 equal time steps per year. A global average is 

calculated from the latitude plot at each time step (Masarie 1995). The spatial continuous CO2 

concentration data were resampled to the 0.5°×0.5° spatial resolution by linear method. 

3.2.1.5 Soil property data 

The CPC SM dataset v2 (van den Dool et al., 2003) provided by the NOAA/OAR/ESRL 

PSD (http://www.esrl.noaa.gov/psd/) and the IGBP-DIS dataset (Global Soil Data Task, 2014) 

(http://www.daac.ornl.gov) were used in this study to calculate the water limitation on LUE by 

considering the stomatal regulating factor from soil moisture deficits. Since globally measuring 

soil moisture is impossible, we used the model-calculated CPC-SM dataset, which provides 

global monthly data from 1948 to 2017 consists of a file containing the averaged soil moisture 

water height equivalents at a spatial resolution of 0.5°×0.5°. On the other hand, IGBP-DIS 

dataset is a global product generated at a resolution of 5×5 arc-minutes by the SDS, which 

generates soil information and maps for geographic regions at user-selected soil depths and 

resolutions. I used the wilting point and field capacity maps derived from this dataset and 
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converted the data to the values at a soil depth of 1.6 m, the same as CPC-SM. The data were 

resampled to the 0.5°×0.5° spatial resolution by linear method. 

3.2.2 Model description 

CFix is a parametric LUE model with a strong prognostic capability that is driven by plant-

related, meteorological, climatic, and hydrological data to estimate carbon mass fluxes in 

terrestrial ecosystems (Veroustraete et al., 2006) from local (Veroustraete et al., 2002 2004; 

Yuan et al., 2014a) and regional (Maselli et al., 2009; Chiesi et al., 2011; Yan et al., 2016) to 

global scales (Yuan et al., 2014b; Ma et al., 2015). Comparing with other LUE models, CFix 

has a module of carbon fertilization effects caused by increases in the atmospheric CO2 

concentration, which is considered to be the major reason for global warming. CFix can use 

inputs averaged over different time periods (most commonly 10-day to monthly periods) and is 

conceptually simple and generally applicable (Chiesi et al., 2011). For a given geographic 

coordinate (x, y), GPP is calculated as (Veroustraete et al., 2006): 

GPP = PAR × fAPAR × 휀𝑤𝑙 × 𝑇𝑠 × 𝑆𝐶𝑂2 Eq-3.1 

fAPAR is the fraction of absorbed photosynthetic active radiation (PAR) (0,1). Myneni and 

Williams (1994) used a set of empirical constants to establish a linear equation to describe the 

relationship between fPAR and NDVI: 

fAPAR = 0.8624 × NDVI + 0.0814 Eq-3.2 

ɛwl is the LUE by considering the impact of water limitation. Veroustraete (2006) combined the 

soil moisture deficit and vapor pressure deficit to calculate a linearly water limited LUE 

delimited between εmax and εmin: 

휀𝑤𝑙 = 휀𝑚𝑖𝑛 + (𝑎 × 𝐹𝑠 + 𝑏 × 𝐹𝑎) × (휀𝑚𝑎𝑥 − 휀𝑚𝑖𝑛) Eq-3.3 

where εmax and εmin are the maximum and minimum LUE, respectively, which are biome-

dependent invariant. I used the values from Yuan (2014), which is based on the measurements 

of ecosystem carbon fluxes from 168 globally distributed sites in a range of vegetation types. a 

and b are the empirical coefficients in the weighting of water limitations in LUE originating 

from soil and air according to Veroustraete (2006) (a=0.5, b=0.5). Fs and Fa are stomatal 

regulating factors from soil and air, which are simulated by SM and evaporative fraction (EF), 

respectively: 

𝐹𝑠 = 1 − a1 × exp[a2 × (FC − SM) × (FC −WP)−1] Eq-3.4 

𝐹𝑎 = b1 × exp(b2 × EF) Eq-3.5 

EF = λE × (λE + H)−1 Eq-3.6 

where a1 (0.5), a2 (0.5), b1 (0.1) and b2 (2.88) are empirical coefficients in the stomatal 

regulating factor relation (Veroustraete et al., 2006). SM is the volumetric moisture content, FC 

and WP are the volumetric moisture content at the field capacity and wilting point. λE is the 

latent heat flux, and H is the sensible heat flux.  

The temperature dependency factor was defined by Wang (1996) as: 
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𝑇𝑠 =
exp[𝐶𝑙 − ∆𝐻𝑎,𝑝 × (𝑅𝑔 × 𝑇)−1]

1 − 𝑒𝑥𝑝[(∆𝑆 × 𝑇 − ∆𝐻𝑑,𝑝) × (𝑅𝑔 × 𝑇)−1]
 Eq-3.7 

where Rg, Hd,p, Ha,p, S and Cl in the temperature dependency factor equation are  

8.31 J K-1 mol-1, 211 kJ mol-1, 52.75 kJ mol-1, 704.98 J K-1 mol-1 and 21.77, according to 

Veroustraete (2002). 

SCO2 is defined by Veroustraete (1994) (0,+∞), due to CO2 concentration levels above the 

reference level enhancing the carbon assimilation rate, as follows. 

𝑆𝐶𝑂2 =
[CO2] − [O2] × (2𝑠)−1

[CO2]
𝑟𝑒𝑓 − [O2] × (2𝑠)−1

×
𝐾𝑚 × (1 + [O2] × 𝐾0

−1) + [CO2]
𝑟𝑒𝑓

𝐾𝑚 × (1 + [O2] × 𝐾0
−1) + [CO2]

 Eq-3.8 

where the parameters of s, Km, Ko, [CO2]
ref are 2550, 948, and 30 and the CO2 mixing ratio for 

the reference year is 1833 (281ppm). [CO2] is the atmospheric CO2 concentration (for 

1982~1999, we used the global averaged monthly mean value; for 2000~2015, we used the 

spatial continuous monthly grid data). In this study, [O2] was set to 209,500 ppm according to 

Zimmer (2013). The datasets used in this study to calculate these parameters are shown in Table 

3.1. 

3.2.3 Attribution method of GPP trends 

Five drivers were considered for their impact on estimated GPP trends: i) rising global 

CO2 concentration, ii) land-cover change and changes in iii) solar radiation, iv) temperature and 

v) water conditions. These five drivers were prescribed in the CFix model and the sources are 

introduced in Table 3.1. To assess the contribution of each of the five factors and possible 

interactions between them, we conducted a series of CFix factorial estimates where one driver 

remains fixed while the others vary during the period of 1982~2015. The estimation protocol is 

shown in Table 3.2. 

 

Table 3.2 Illustration of the estimation protocol and the five factors used as input data for factorial 

estimates. 

 
 

The estimation with all factors varying defines the GPPControl. In each factorial estimate, 

the selected factor is held to the fixed value as the gray background in Table 3.2, while all other 

factors vary as the group of GPPControl. In the case of “constant water, temperature and radiation”, 
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to eliminate the particularity of one year, we used the averaged values of five years from 1980 

to 1984.  

The individual contribution of each factor is defined as the difference, δX (X represents 

the individual factor), between GPP trends from each corresponding estimation and that of 

GPPcontrol (Trendcontrol), in which all factors are varied (Chang et al., 2016). Since the factors 

influence each other, in this study, the nonlinear interaction as a residual is defined as δResidual: 

𝛿Residual = Trend𝑐𝑜𝑛𝑡𝑟𝑜𝑙 −∑ TrendX𝑖

𝑛

𝑖=1
 

Eq-3.9 

where n is the number of factors and TrendXi denotes the linear trend of Factorial Xi. 

3.2.4 Study process 

Figure 3.1 shows the logical process of this study. First, due to the different spatial 

resolutions of global datasets, all grid data were resampled by mean values or dominated 

indicators to a 0.5° × 0.5° spatial resolution. Second, all data were inputted into CFix to estimate 

the GPPControl. I used two widely used GPP products to test the accuracy of the estimated GPP. 

If the accuracy of the estimates were acceptable, the factorial estimates would be calculated to 

obtain the estimates of GPPFactorX. Based on the attribution method of the GPP trend, I can obtain 

the spatial distributions of the individual effect of each factor. I can better know the spatial and 

seasonal patterns of GPP variations through the monthly trend information, therefore, the GPP 

trend for each month of the year was calculated (e.g., the monthly GPP trends of all 34 

Decembers were averaged to obtain a December trend). After spatially calculating, I got the 

map that shows the annual cycle of monthly GPP trends. I then calculated the monthly GPP 

mean values of 34 years from January to December for each pixel. Therefore, we can obtain 

information on the vegetation average growing situation in one year to represent the annual 

cycle of growing season. The two annual cycles revealed the month of one year when GPP 

increases or decreases at a given location were caused by changes in the GPP amplitude or the 

growing season length (Hicke et al., 2002); and I draw the description figure following Hicke 

et al. (2002) as Figure 3.2. I used this characteristic as the index of vegetation growth changes 

in the cluster classification to obtain the spatial distribution of the GPP change types. Finally, 

according to the spatial distribution of each factor monthly trends, net effects and GPP change 

types, we will more clearly understand the spatial patterns and the drivers of GPP variations.  
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Figure 3.1 Study flowchart. 

 

 

 
Figure 3.2 Schematic showing monthly trends in GPP in response to an increase in the amplitude if the GPP 

annual cycle (dashed-dotted curve) and an increase in the length of the growing season (dashed 

curve) occurred from a baseline GPP annual cycle (solid curve). 
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3.3 Results 

3.3.1 Accuracy assessment of estimated GPP  

In this chapter, I estimated a relative long-term series global GPP at a spatial resolution of 

0.5o, which is larger than the footprint size of ground-based observations. Hence, I relied on the 

model and other remotely sensed data for a comparison on the global scale. As a benchmark, I 

compared the estimates against the MTE model GPP from 1982 to 2011 (Jung et al., 2011) 

because it is based on direct eddy-covariance flux tower measurements of GPP and is thus 

considered close to the truth where the flux tower density is high (Beer et al., 2010; Frankenberg 

et al., 2011). MODIS GPP products from 2000 to 2014 were also used because MODIS products 

have been widely known and used (Turner et al., 2006b; Zhao and Running, 2010; Frankenberg 

et al., 2011). As well as the results from process-based models (Table 3.4) of 1982-2010 from 

the ISIMIP2a (Reyer et al., 2017; Chang et al., 2017) were selected to test the accuracy of 

estimated GPP. For the annual GPP, I found a strong linear spatial correlation between the 

estimated GPP with process-based models, MTE and remotely sensed GPP values, most notably 

with MTE_GL GPP (averaged r=0.9269, averaged slope=1.0977), followed by MTE_MR GPP 

(averaged r=0.9266, averaged slope=1.1008) and MODIS GPP (averaged r=0.9205, averaged 

slope=1.3089) (Table 3.3). The performs of the comparing with the results from different 

process-based models were different (Table 3.3), but all show a strong correlation. Compared 

with the results of multiple models, the spatial correlation coefficient could reach 0.8377 with 

the slope of 1.0159. I found that the estimated GPPs are highly consistent with MTE GPP and 

MODIS products; thus, the estimated GPP in the present study can be used in subsequent 

analyses. 

 

Table 3.3 The parameters of linear regression lines of GPP comparisons. 

 
models: Climate dataset: G- GSWP3; P- PGMFD v.2 (Princeton); W- WATCH (WFD). 

The GPP datasets used in this chapter were obtained from The Inter-Sectoral Impact 

Model Intercomparison Project (ISIMIP2a) (https://www.isimip.org/). 
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Table 3.4 The parameters of linear regression lines of GPP comparisons (p_value < 0.0001). 
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3.3.2 GPP trends 

3.3.2.1 Contributions of different factors to GPP trends  

For the global terrestrial ecosystems, the overall effect of all the five factors considered is 

positive (Table 3.5). The key result is that the increases in the atmospheric CO2 concentration 

make the largest contribution to the globally averaged GPP trend. The changes in water 

conditions and temperature caused comparable but lower GPP positive trends. The changes in 

solar radiation caused the whole effect of decreasing GPP. Although the change in GPP 

attributed to land-cover change is positive around the world, the regional maximum negative 

effect also occurred due to land-cover changes. That the sum of the effects of each factor on 

GPP trends is 0.0795 gC m-2 year-1 smaller than the overall GPP trend attributed to all factors 

indicates that the interactions between each factor are positive. 

 
Table 3.5 Trends in GPP globally during the period 1982-2015 and the effects of the factors on the trend.  

 
 

3.3.2.2 Spatial distribution of the GPP trend and its attribution 

The spatial distribution of annual GPP trend in the period of 1982~2015 is shown in  

Figure 3.3. The contribution of different factors in different areas vary considerably (Figure 

3.4). The figure shows that the largest increases in GPP are found in the southern parts of the 

Amazon rainforest with increases of 5 gC m-2 year-1, where the changes in temperature and 

water conditions play the major roles in causing the increasing GPP trends (Figure 3.4). Positive 

GPP trends greater than 3 gC m-2 year-1 were found in the ITCZ except for Congo rainforest, 

which has the largest decreases in GPP with values that exceed -2 gC m-2 year-1, where the 

changes in water conditions and the enhanced interactions play the most important roles in 

explaining those GPP trends. Followed by humid temperature regions in eastern North America, 

western and central Europe and eastern China, with an increment of approximately  

2.5 gC m-2 year-1 is found, and solar radiation and temperature have positive effects on GPP 

trends. Not all regions show the positive GPP trends, I also found negative GPP trends in the 

Borbolima Plateau, Diamantine Plateau, Pampas grassland, Cordillera Mountains, Australian 

desert and the areas east of Caspian Sea. And relatively concentrated are the trends of the Congo 

Basin which were attributed to the effect of the changes in temperature and water conditions. 
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Figure 3.3 The spatial distribution of linear trends in GPP during the period 1982-2015. The pixels that are 

not satisfied at p_value < 0.1 are drawn in gray. 

 

The changes in the atmospheric CO2 concentration make almost no negative contribution 

to the pattern of the GPP trend globally. Significant positive GPP trend effects of land-cover 

changes were found in regions such as high latitudes, mid-latitudes inland areas, high altitude 

areas and some barren vegetation areas. In contrast, in many areas, especially the dry forest of 

South America and eastern Africa and the Eurasian rainforest, the land-cover change shows a 

decreasing GPP effect. Regarding contributions of climatic factors (temperature, water, and 

radiation), regionally, climate change can have either a positive or a negative effect on GPP 

trends. In addition, the interactions among different factors also have regional characteristics. 

 

 

 

Figure 3.4 Spatial distribution of the trends in GPP due to (a) increases in atmospheric CO2 concentration, 

(b) land-cover change, (c) solar radiation changes, (d) temperature changes, (e) changes in water 

conditions, and (f) their nonlinear interactions or non-attributed. The pixels ((a) to (e)) that are 

not satisfied at p_value < 0.1 are drawn in gray. 

 

3.3.2.3 Spatial Distribution of GPP trend in each month of a year 

All drivers considered in this study have the overall effect of increasing GPP for each 

month for the whole terrestrial ecosystems (Units: gC m-2 year-1; Jan: 0.3918; Feb: 0.3818; Mar: 

0.3999; Apr: 0.5234; May: 0.6968; Jun: 1.0340; Jul: 1.0418; Aug: 0.8255; Sep: 0.6338; Oct: 

0.4390; Nov: 0.3869; Dec: 0.3680). Figure 3.5 shows considerable seasonal variations, 

especially in the Northern Hemisphere, with larger increases in later spring and summer and 

low increases or decreases in earlier spring and autumn. Regarding the ITCZ regions, GPP 
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trends in Amazon and Asian rainforests are continuously increasing throughout the year; on the 

contrary, the GPP trends in the Congo rainforest is reduced. The GPP trends in Southern South 

America, southern Africa and Australia also have seasonal change characteristics. The GPP 

trends in two regions, southern Amazon and Congo Basin, have trends that reflect the most 

significant changes more obviously following the subsolar point from the equator moving 

northward. The GPP trends correctly captured patterns at the global scale, such as the trends 

over North America showing considerable East-West differences and a typical longitudinal 

gradient in Northern Eurasia. 

 

 
Figure 3.5 The monthly spatial distributions of linear trends in GPP during the period 1982-2015. 

 

3.3.2.4 GPP trend category zoning 

To further investigate the seasonal dynamics and varying patterns of GPP during the period 

of 1982~2015, we classified the monthly GPP and monthly GPP trends to group locations with 

similar behaviors. This isolated regions that had lengthening growing seasons, for example, or 

had increased GPP in the rapid growth stage (RGS). We used the average monthly GPP in the 

classification as an index of the vegetation growth stage. The monthly GPP and GPP trends 

were first normalized to allow these variables to be used together in the classification (Hicke et 

al., 2002). 

 

 

Figure 3.6 The spatial distribution of classes on variations in GPP during the period 1982-2015. 
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Nine general categories (Figure 3.6) resulted from using a k-means (Hartigan, 1975) 

classifier according to the statistical characteristics information of GPP variations. Here, I focus 

these results on the large-scale patterns that occurred. Because specifying fewer groups 

obscured some information in the analysis, and although the classification assigns each pixel to 

a group and we present the class mean information (Figure 3.7), I have to admit that the 

circumstance that a pixel may not behave in a manner close to the class mean exists. This 

categorization is necessarily approximate; I used the groups as an aid to explain the large-scale 

behavior of GPP variations: Class 1: Mainly in the African rainforest, GPP trends are negative, 

especially in July between two RGSs; the first RGS ends early and the second RGS has a 

delayed start; Class 2: Mainly in high latitudes and high altitudes, GPP trends are positive, and 

the main reason for the increasing GPP is the changes in the amplitude. Class 3: Mainly in polar 

and barren areas, there are low or almost no GPP in these areas, and the increases or decreases 

are almost equal to 0; Class 4: Mainly in cool temperate zones, GPP trends are positive, and the 

RGS has an early lengthening trend. However, the changes in the amplitude play a more 

important role. In Class 5, Mainly in equatorial, winter dry climate zones, the GPP trends are 

positive throughout the growing season; and the increasing trend in the early period is less than 

that in the middle and later periods. The RGS has a trend of delayed ends; Class 6: Mainly in 

equatorial, fully humid climate zones, the GPP trends were positive throughout the growing 

season, and the end of the RGS has a slightly delayed trend. In Class 7: Mainly in warm 

temperate zones, the curve of the GPP trends are similar to a bimodal curve, and the trend of 

lengthening in growing season is obvious; Class 8: Mainly distributed in desert areas, the 

vegetation has two RGSs, and the increment in the first RGS is larger than that in the second 

RGS; Class 9: Mainly distributed in the fully humid zones of Amazon rainforest, the GPP is 

stable at a high level throughout the year, and the RGS extends backwards. 
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Figure 3.7 Characteristics of the annual cycle of the growing season distribution and GPP trends associated 

with each class. 
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3.4 Discussions 

3.4.1 Increases in atmospheric CO2 concentration 

In this chapter, the contribution of the rising CO2 concentration on the globally averaged 

GPP trend is the largest proportion. However, I cannot conclude that the effect of the increasing 

CO2 concentration on GPP variations is more important than the changes in other factors. The 

main reason is that the increases in the CO2 concentration occurred in a globally synchronous 

manner, while the global averaged effects of the other factors are neutralized because the 

attributions can be positive or negative in different locations (Figure 3.7). An elevated 

atmospheric CO2 concentration enhances vegetation photosynthesis and has indirect effects on 

increasing water use efficiency (Donohue et al., 2013; Fensholt et al., 2012), and in this chapter, 

I can see that the regions with a relatively larger increasing GPP trend also had better water 

condition trends (e.g., Asian rainforest, Amazon rainforest, eastern Africa, and large areas in 

the middle-high latitudes in the Northern Hemisphere). In my estimation, the rising CO2 

concentration causes an average of a 2.63% increase around the globe over 34 years which falls 

within the range of a sensitivity analysis on GPP affected by increasing CO2 (Wang et al. 2014). 

Models that do not consider CO2 fertilization modules might be a source of uncertainty (Anav 

et al. 2015) in estimating GPP, and elevated atmospheric CO2 concentration is one of the main 

reasons for global climate change. Therefore, I used the CFix model, which has a carbon 

fertilization module instead of other LUE models such as the CASA (Potter et al., 1993), CFlux 

(Turner et al., 2006a) VPM (Xiao et al., 2004), VPRM (Mahadevan et al., 2008), EC-LUC 

(Yuan et al., 2007) and MODIS-GPP algorithms (Running et al., 2000). I used the MTE GPP 

and MODIS product to compare our estimated GPP and found that we estimated a higher GPP 

than the MTE GPP and MODIS product. The relationship with MODIS GPP is consistent with 

previous studies (Heinsch et al., 2006; Avan et al., 2015), which reported that the products are 

smaller than the GPP observed at many flux tower sites. The growth rate of the slopes of the 

estimated GPP on the MODIS product shows a significant correlation with the trend of rising 

CO2 concentrations with a correlation coefficient of 0.9290 (Figure 3.8). This finding can better 

illustrate that without considering carbon, fertilization is the main reason for the lower values 

in MODIS product. Regarding the comparison with MTE GPP, my estimates are larger than 

MTE GPP, with an average slope of 1.1985 from 1982 to 2011, with the trend of following the 

rising CO2 concentration. This result is almost the same as the finding by Piao (2013), who used 

10 process-based terrestrial biosphere models used for the IPCC Fifth Assessment Report 

compared to MTE GPP, and the models were found to produce a higher GPP than MTE with a 

trend of 1.1271 from 1982 to 2008. Therefore, my estimates can successfully reflect the effect 

of elevated CO2 concentration on GPP during the period of 1982-2015. 
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Figure 3.8 Relationship between the slopes of the estimated GPP to MODIS product and atmospheric CO2 

concentration. 

 

 

 

Figure 3.9 The range of contributions of GPP to different factors globally and on each continent (The bottom 

of the box is the lower quartile, and the top is the upper quartile. The whiskers extend to the 

maximum and minimum values). 

 

3.4.2 Effects of LCC 

For the globe, the greatest negative impact on the GPP trend is from LCC, which has a 

direct effect on PFTs (Chen et al., 2006). These negative effect areas are concentrated in South 

America (especially Brazil, Argentina, Bolivia and Paraguay), Eurasian rainforests (especially 

Indonesia), and tropical dry forests in Africa (especially Ethiopia), all of which had the highest 

rate of forest loss (Lepers et al., 2005; Hansen et al., 2017). In addition, the rates of forest loss 

were relative lower in the temperate climate zones of North America and Europe, where the 

LCC also had a relatively lower negative effect on GPP. In Europe and Oceania, the latitudinal 

span is not as great as on other continents; therefore, the range of the effects of radiation, water 

and temperature are relatively consistent, and the most significant spatial difference effect is 

from LCC (Figure 3.9). 

3.4.3 Effects of climatic factors on GPP 

The changes in the temperature and water over the past 34 years are estimated to cause 

increases in GPP around the world as a whole, which is contrary to the results caused by changes 

in radiation. However, the effect of these factor trends can be positive or negative in different 
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regions. To further investigate the possible climate drivers that cause the seasonal dynamics and 

varying patterns of GPP during the period of 1982-2015, we analyzed the monthly trends for 

each factor (Figure S2-S5) and summarized the distribution of the regions where GPP has varied 

due to different possible drivers. 

The productivity of vegetation in tropical dry zone is weak; climate change induces a slight 

trend in GPP in those regions. The GPP trends in tropical wet zones (i.e. Indonesian- Malaysian 

rainforest, Latin America) are positive because their dominant factor, water conditions, have 

become increasingly suitable for vegetation growth, which is also suitable for the high altitudes 

in Africa. In cool temperate moist zones, the positive trend is the result from the early growing 

season lengthening caused by radiation shifts and plant growth enhancement caused by 

temperature and radiation changes. With respect to cool temperate dry zones, the positive effects 

of the temperature and radiation during the rapid growth stage are the main drivers causing 

increases in the amplitude of vegetation growth. For most warm temperate dry zones, the 

changes of the GPP are dominated by radiation; hydrothermal conditions in the regions are 

almost unchanged during the growing season (from May to September). Conversely, radiation 

and water conditions together led to an increasing GPP trend in warm temperate moist zones, 

where water condition changes enhance the plant growth magnitudes and radiation lengthens 

the growing season. Additionally, in tropical moist zones, the evapotranspiration is reduced by 

the decreasing temperature; simultaneously, the water conditions become more suitable for 

plant growth. Therefore, the GPP trends are positive. Moreover, in South America, the growing 

season length has been extended by increased radiation in the later period of the rapid growth 

stage. In boreal moist zones, radiation and hydrothermal conditions in the growing season 

jointly promote vegetation growth. Regarding polar moist zones, in September, the rapid growth 

stage has an early end due to the declining radiation, but the water conditions and temperature 

elevating the GPP magnitude during the growing season result in a positive effect. For Congo 

Basin and Brazilian Highlands where following by increasing temperatures and decreasing 

water the monthly GPP decreased mostly. The Congo rainforest has some continental climate 

characteristics, where water is the dominant factor inducing the trend in GPP. Water conditions 

become more unsuitable; although radiation became more abundant, it is accompanied by 

increasing temperatures and evapotranspiration, ultimately inducing a negative trend in GPP. 

Additionally, in South Central Australia, three factors contribute to the conditions: water 

conditions dominate the GPP changes, including the magnitudes and growing season length; 

radiation increased during the later growth period; and temperatures became more suitable 

during the growing season. 

Combined with terrain and location, I can generally and summarily conclude that radiation 

and temperature are relatively sufficient for vegetation in lower latitudes since solar irradiation 

occurs twice a year. Therefore, water conditions have become the dominant climatic factor 

affecting GPP trends. In addition, adequate water conditions are associated with decreasing 

radiation due to cloud cover and reducing temperature due to evaporation. Hence, the trends of 

GPP in lower latitudes are also affected by radiation and temperature synergistically, while in 

the middle and high latitudes, the main climatic factors affecting GPP trends are temperature 

and radiation, which have improved the demand for suitable conditions during the growing 

season and explains much of the increasing GPP trends in temperature and radiation variability 

in the northern regions of North America and Eurasia. Additionally, in high altitude regions, 

since the hydrothermal conditions are further from the ideal situation, temperature and water 

conditions are the main climatic factors in GPP trends in these regions. 
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3.5 Conclusions 

In this chapter, I estimated the global monthly GPP at a 0.5° × 0.5° spatial resolution during 

the period of 1982~2015, analyzed the effects of drivers on GPP trend and zoned the categories 

of GPP variation.  

The five factors considered in this chapter resulted in an overall positive effect on the GPP 

trend but with different spatial patterns, magnitudes, and mechanisms. Globally, increases in 

GPP occurred in over 75 % of the areas; the interactions between factors were positive, and the 

increases in atmospheric CO2 concentration had the greatest contribution on global increasing 

GPP. However, regionally, the LCC and climatic factors appear play more important roles in 

GPP changes. 

Larger areas in the lower latitudes showed increases in the amplitude of the GPP annual 

cycle which dominated by shifts in water conditions; in contrast, in the middle latitudes GPP 

expressed not only the amplitude changes but also a lengthened rapid growth stage during the 

early period which were likely to be driven by increases in temperature and radiation; in large 

areas of the Southern Hemisphere, GPP increased in both the early and later period of the 

growing season, resulting in a lengthening growing season. However, at high altitudes, the 

changes in GPP were probably caused by the changes in the temperature and water conditions. 

The CO2 fertilization effect was explicitly expressed in this study by comparisons with 

MTE and MODIS GPP. By contrast, the effect of nutrition cannot be quantified from our study 

since any resulting changes were implicit in the satellite-observed NDVI and were not explicitly 

modeled. Many studies show that nutrient availability strongly constrains vegetation growth 

through water availability, the CO2 assimilation rate and other factors (Reich et al., 2014; 

Wieder et al., 2015). The potential effects of nutrient limitation should be considered in 

estimates of the terrestrial GPP in future studies.  

In summary, I found a wide range of GPP trends, both spatially and seasonally. It appears 

that CO2, LCC and climatic factors together played a role in global terrestrial GPP changes. 
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Chapter 4 Investigation on effect of CO2 fertilization on GPP 

Quantitative estimations of the GPP and its variations at spatial scales are important issues 

with future significance due to the increasing atmospheric CO2 levels. However, the effects of 

the spatiotemporal variability in the atmospheric CO2 concentrations on GPP estimations are 

challenging with respect to the terrestrial ecosystem due to land cover component 

characteristics and difficulties associated with measuring CO2 concentrations over large spatial 

areas. The development of remote sensing offers a means to routinely monitor CO2 

concentrations both spatially and temporally from space. Therefore, this chapter firstly applied 

the improved daily BEPS model to estimate the global GPP from 2000 to 2015, compared the 

estimated GPP with the flux tower measurements and other GPP products to verify the 

estimation accuracy and analyze the CO2 fertilization effect, and conducted spatial analysis on 

the effects of the spatiotemporal distribution of the CO2 concentration on the estimation of GPP. 

And then, to introduce continuous spatial CO2 data as an indicator for the estimation of the 

terrestrial biosphere GPP, I used the decoupling coefficients to evaluate the canopy CO2 

concentrations, photosynthetic biochemical models to calculate the photosynthetic rate, and 

big-leaf model to scale up to a global scale. the method proposed in this study utilizing 

continuous spatial CO2 data to estimate the GPP is practicable and feasible. 

4.1 Introduction 

The terrestrial GPP, which is defined as the amount of carbon uptake by vegetation through 

photosynthesis at the ecosystem scale, is a key area in climate change research (Hilker et al., 

2008, Beer et al., 2010). The GPP through photosynthesis by terrestrial ecosystems constitutes 

the largest global land carbon flux (Zhao and Running, 2010; Beer et al., 2010; Zhu et al., 2016), 

affects the land-atmosphere CO2 exchange and is important for regulating atmospheric CO2 

concentrations (Li et al., 2016). As reported, the increase in atmospheric CO2 on Earth is the 

major cause of global climate change (Hartmann et al., 2013; IPCC AR5), and over the past 

century, the CO2 accumulation rate has continuously increased with the amount of CO2 released 

due to landcover changes and fossil fuel combustion (Le Quéré et al., 2016). GPP is the starting 

point of the terrestrial carbon biogeochemical cycle (Raupach et al., 2008) and, thus, serves as 

the gateway for the energy and carbon that are required for almost all ecosystem processes 

(Gilmanov et al., 2003). Therefore, the GPP is an important biophysical parameter for any 

ecosystem that plays a key role in the spatiotemporal dynamics of CO2 (Ahongshangbam et al., 

2016). At the global scale, direct measurements of the GPP do not exist (Anav et al., 2015); 

therefore, GPP estimation has become a key issue for scientists quantifying global carbon cycles 

(Canadell et al., 2000; Gitelson et al., 2006). There is, thus, a need to better understand the 

mechanisms that control the terrestrial GPP to provide an accurate GPP estimations and the 

dynamic changes in the carbon fluxes between the biosphere and atmosphere to help quantify 

the potential changes resulting from global climate change (Poulter et al., 2014; Li et al., 2016). 

However, directly measuring GPP at the global scale is infeasible (Ma et al. 2015); rather, 

the global terrestrial GPP has been estimated using inverse models that use atmospheric 

transport models and atmospheric CO2 concentrations or CO2 isotopes (Bousquet et al., 1999; 

Reichstein et al., 2003; Welp et al., 2011), physiological and ecological process models 

(Schaefer et al., 2012; Beer et al., 2010; Anav et al., 2015) and RS estimates (Joiner et al., 2011; 

Frankenberg et al., 2011; Guanter et al., 2014; Yuan et al., 2014). In recent years, with the 

development of space technology, satellite-based models, particularly LUE models, have been 

widely used to estimate the GPP on regional and global scales (Yuan et al., 2014). However, for 
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most RS-based models, CO2, which is the raw material needed for photosynthesis and the main 

cause of global warming, is rarely considered as a primary parameter (Wang et al., 2014). 

The increases in atmospheric CO2 concentration that have occurred since the industrial 

revolution are expected to cause a CO2 fertilization effect (Canadell et al., 2007), where 

photosynthesis is enhanced by the increase in CO2 (Farquhar 1997). Additionally, many 

scholars (van Oijen et al., 2004; McMurtrie et al., 2008; Yang et al., 2016) have determined that 

the increasing atmospheric CO2 concentration affects GPP, and numerous studies (Sun et al., 

2018; Norby et al., 2005; Ainsworth and Long 2005) have been conducted to improve our 

understanding on how plants and ecosystems respond to the elevated CO2 levels. The large-

scale FACE showed that forest ecosystems were more responsive than were other functional 

types; specifically, C4 species showed little response to elevated CO2 concentrations 

(Ainsworth and Long 2005). The response of plants to elevated CO2 would be greater in dry, 

high-nitrogen conditions (McMurtrie et al., 2008); additionally, the CO2 fertilization caused by 

the enhanced foliage cover across the global warm and arid environments is significant 

(Donohue et al., 2013), resulting in increased photosynthesis area and improved GPP to a 

certain degree. At the same time, the climatic factors and their interactions (Chang et al., 2016) 

with the soil resources (Reich et al., 2014) and nitrogen level (Luo et al., 2004 2006; Donohue 

et al., 2013) would also constrain CO2 fertilization to enhance GPP (Anav et al., 2015). 

Theoretically, CO2, which is chemically inert, is generally well-mixed globally (Eby et al., 

2009), but it presents temporal and spatial characteristics (Miles et al, 2012; Sun et al., 2016). 

However, few studies have incorporated the global-scale atmospheric CO2 concentration into 

GPP estimates, or the studies have assumed that the CO2 concentrations and variations are 

spatially and temporally uniform around the globe. According to the most recent global maps 

(Dec. 2016) of near surface air CO2 concentrations from the Japan Meteorological Agency, the 

differences in the spatial distribution of atmospheric CO2 concentrations could be greater than 

40 ppm; furthermore, the concentrations are highest in South China (> 436 ppm) and lowest in 

Uruguay (< 396 ppm) (http:// ds.data.jma.go.jp / ghg / kanshi /CO2map /CO2pmapplot_alt_e. 

html), and these values mirror the increase in atmospheric CO2 concentrations over the past 20 

years (i.e., from 365.55 ppm in 1998 to 404.98 ppm in 2017). The spatial variation in the 

atmospheric CO2 concentrations for the entire year of 2016 could reach approximately 50 ppm 

(lowest: 388 ppm in Canada during July), which is equivalent to the change in the global 

average mean annual CO2 concentration from 1990 (353.96 ppm) to the present. In addition, 

the seasonal characteristics of the atmospheric CO2 concentration have previously been 

reported at the local and regional scales (Davis et al., 2003; Miles et al., 2012; Liu et al., 2016). 

For example, the measurement of the atmospheric boundary layer of the CO2 concentration 

from the North American Carbon Program’s Mid Continent Intensive (MCI) from 2007 to 2009 

showed that the seasonal CO2 amplitude was five times larger than was the tropospheric 

background (Miles et al., 2012; Liu et al., 2016). Although numerous studies have demonstrated 

that increasing atmospheric CO2 levels can influence the terrestrial GPP, the magnitude and the 

spatial distribution of the influence remain unclear. Models that do not consider the CO2 

fertilization module may serve as a source of uncertainty in the estimation of GPP (Anav et al., 

2015). In tropical ecosystems, CO2 fertilization could explain as much as 100% of the 

biospheric carbon sink (Ciais et al., 2004), with large uncertainties (bias: ± 68.42 %) (Howard 

2005). Additionally, CO2 fertilization could explain 50% of the Siberian and 10% of the 

European sinks (Canadell et al., 2007). In a sensitivity analysis in which CO2 was elevated by 

200 ppm, there was a 5 % to 25 % increase in the modeled annual GPP (Wang et al., 2014), and, 

when the current atmospheric CO2 concentrations were doubled, most types of ecosystems 

showed a 10 ~ 25 %±2 % increase in the net primary production (Norby et al., 2005; Luo et al., 

2006). With increases in the atmospheric CO2 concentration, seasonal CO2 variations, resulting 
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from photosynthesis and respiration, have substantially increased in amplitude over the last 50 

years, particularly in high latitude regions north of 45°N, where the amplitude increased by 

approximately 50 % (Monroe 2013). Therefore, including the atmospheric CO2 concentration 

in the global GPP estimation should be a research priority (Liu et al., 2016). The spatiotemporal 

characteristics of the atmospheric CO2 concentrations affect the GPP, both intra- and inter- 

annually; therefore, the spatiotemporal distribution of the CO2 concentrations should be 

considered as a factor in the estimation of GPP (Liu et al., 2016; Sun et al., 2018). 

Global-scale models rarely use spatial CO2 data, which may be due to difficulties related 

to the observation of global variations in CO2 because the direct sampling of gasses requires 

great effort and cost (Sun et al., 2016). However, launching satellites to collect CO2 data can 

solve this issue quite well. Since the launching of GOSAT, OCO-2 and other satellites, obtaining 

global CO2 concentrations data has been possible (Oguma et al., 2011; Reuter et al., 2010). 

Therefore, in this chapter, I used the BEPS (Chen et al., 1999), which is an RS-based 

process model based on the FvCB photosynthesis model (Farquhar et al., 1980), that considers 

the atmospheric CO2 concentration data to estimate the GPP. Despite its namesake, BEPS can 

be used to simulate vegetation GPP for the entire global terrestrial ecosystem (Chen et al., 2012). 

In addition, in contrast with other ecological process-based models, BEPS proposes an 

algorithm to solve the spatiotemporal scaling conversion problem that occurs when using RS 

data to successfully drive the ecological process model (Chen et al., 1999); furthermore, BEPS 

works in combination with the multiple-layer canopy transfer model to describe the structure 

of the canopy, thereby eliminating the limitation of overestimations that occur when using 

actual solar radiation data (Matsushita et al., 2004). Considering the advantages of BEPS and 

because I mainly focused on the effects of the spatial distribution of the atmospheric CO2 

concentration on the GPP simulation, we selected the BEPSd (Zhang et al., 2018). 

Firstly, I integrated the global-scale spatial continuous atmospheric CO2 concentration data 

into the improved BEPSd (iBEPSd) model to estimate the daily GPP from 2000 to 2015; 

additionally, I utilized EC flux tower measurements to verify the accuracy of the model. Then, 

I analyzed the CO2 fertilization effect by comparing the GPP products from the MTE, the 

MODIS and the VPM, which do not include the CO2 fertilization module. Furthermore, this 

chapter considered that there are a few studies using global scale satellite-based CO2 

concentrations data to estimate the GPP and attempted to apply satellite-based CO2 

concentrations data to global GPP estimations, thus extending the range of satellite-based CO2 

applications, increasing the sources of CO2 indicators, determining the effects of the 

spatiotemporal variations in atmospheric CO2 concentrations on the spatial and temporal 

distributions of the GPP, and understanding the response of the GPP variation to the elevated 

atmospheric CO2 concentrations. To achieve the objective of incorporating CO2 concentration 

constraints into estimates of the terrestrial GPP, I calculated photosynthesis using a land surface 

model of leaf- and canopy-level photosynthesis based on Farquhar et al. (1980)'s measurement 

of C3 species and Collatz et al. (1992)'s measurement of C4 species at a photosynthesis model 

scale for the canopy level (Sellers et al., 1996a b). I utilized MODIS land products; GOSAT 

global CO2 distribution data; MERRA global reanalysis climate data; and NACP (North 

American Carbon Program) Model Driver Data, which are supported by the canopy 

transmittance model and other methods, and relies on the assumptions that the realized 

photosynthetic rate, which is calculated from the biome-dependent invariant potential 

photosynthetic rate, is controlled by sucrose synthesis, Rubisco, light hitting canopy leaves, and 

upper- and lower-layer leaves that are only controlled by light (whichever is most limiting) to 

estimate the terrestrial GPP. Using the year 2014 as a case study, the GPP was estimated, and 

the accuracy of the estimates was assessed using by the GPP estimates from the Fluxnet 2015 
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dataset. Finally, I conducted an analysis on the GPP estimations from different atmospheric CO2 

concentration data forms to determine the influences of the seasonal and spatial variations and 

the distribution of atmospheric CO2 concentration on the GPP estimates. 
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4.2 Data and methods 

4.2.1 Data 

4.2.1.1 Flux sites data 

BEPS is a mature model for estimating the process in ecosystem, therefore, only sixty flux 

sites, including 9 ENF sites, 3 EBF sites, 1 DNF site, 13 DBF sites, 3 MF sites, 11 GRA sites, 

6 CRO sites, 5 OSH sites, 4 WSA sites, 2 SAV sites and 3 WET sites, were used for assessing 

BEPS. A total of 395 site-years was available. The locations and general information for each 

site are listed in the Table 4.1. Among the meteorological inputs of iBEPSd, the daily 

temperature, radiation, VPD and Ca were retrieved from the measurements from the flux sites. 

Missing data from tower observations were not included in this study. The estimated GPP values 

were validated using the flux GPP at the 60 flux sites retrieved from the Fluxnet 2015 dataset. 

The available flux GPP that was employed in this study was the mean value of 

GPP_DT_VUT_REF and GPP_NT_VUT_REF. These were respectively estimated using the 

daytime and nighttime partitioning method (Lasslop et al., 2010) and the variable ustar 

threshold method. It is best to use as many sites as possible for new model accuracy assessment, 

therefore, all the sites in the period from 2000 to 2014 were used in the second step, representing 

a total of 1,095 observed years from 160 tower sites.  
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Table 4.1 The list of the flux tower sites used in this study. 
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4.2.1.2 CO2 concentration data 

The atmospheric CO2 concentration data used to drive the BEPS model that estimated the 

GPP and analyzed the CO2 fertilization effect in the present study was CT2016, which contains 

global daily continuous spatial CO2 concentration data from 2000 to 2015; additionally, 

CT2016 is an open product of NOAA/ESRL that uses data from the greenhouse gas 

observational network and collaborating institutions (Peters et al., 2007) that was released on 

Feb 17th, 2017. In CT2016, the land biosphere, wildfire, fossil fuel emissions, atmospheric 

transport and other factors were data-assimilated to produce the estimates of surface fluxes and 

atmospheric CO2 mole fractions. 

The leaf-internal CO2 concentration (Ci) can be estimated from Ca (ppm), which has been 

proposed to be equal to the canopy CO2 concentration. Many scholars have performed many 

studies on the ratio of the intercellular to ambient CO2 concentration, and the Ci/Ca ratio is 

similar in all species (Morison et al., 1983). Many studies (Morison et al., 1983; Van et al., 2004) 

found that the Ci/Ca ratio is associated with vapor pressure, temperature, etc.; when various 

pressures approximate environment conditions, the ratio is a constant for a species, generally 

approximately 0.7 for C3 species and 0.3 for C4 species (Wong et al.,1979a b; Caemmerer and 

Evans,1991). Therefore, in this part, I calculate the internal CO2 concentration by Ci = 0.7 × Ca 

for C3, and Ci = 0.3 × Ca for C4. In addition, the canopy CO2 concentration was calculated from 

the atmospheric CO2 concentration using the decoupling coefficient, which indicates the degree 

of canopy decoupling from the bulk air (Jarvis and McNaughton 1986). A completely smooth 

surface has a decoupling coefficient of 1.0, and a canopy in which the air is identical to that in 

the atmosphere has a decoupling coefficient of zero (Chapin III et al., 2011). According to Jarvis 

et al. (1986) and Jones (1992), the decoupling coefficients of diverse PFTs in this study are 

approximately 0.1 for ENF and DNF; 0.2 for EBF, DBF and MF; 0.8 for GRA; 0.5 for SAV, 

WSA, CRO, CSH, OSH and WET, and 0 for BAR.  

Two types of atmospheric CO2 concentration data were used to analyze the CO2 

fertilization effect; one type is the global monthly continuous spatial CO2 concentration data in 

2014, which were captured by GOSAT (http://www.gosat.nies.go.jp/en/), the world's first 

spacecraft to measure the concentrations of CO2 from space. The production is GOSAT FTS L2 

CO2 column amount SWIR, which was used to calculate the atmospheric CO2 concentration, 
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and the FTS SWIR L2 CO2 column abundance products (denoted XCO2, in ppm), which contain 

column-averaged mixed volume ratios of CO2 (Guo et al., 2012). The relative accuracy of the 

Level 2 data is 0.3 % ~ 1.0 % (1 ~ 4 ppm) for CO2 (Butz et al., 2011), and the data form is a 

point set with a circle footprint with a diameter of approximately 10.5 km at nadir; nevertheless, 

the number of data points significantly surpasses that currently obtained from ground 

monitoring stations, which is below 200. The other type is globally averaged surface CO2 data, 

including globally averaged surface monthly mean data in 2000 and 2014 and globally averaged 

surface annual mean data (Ed Dlugokencky and Pieter Tans, 2017) obtained from NOAA/ESRL 

(www.esrl.noaa.gov /gmd/ccgg/trends/). A global average is constructed by first fitting a 

smoothed curve as a function of time to each site, and then, the smoothed value for each site is 

plotted as a function of the latitude for 48 equal time steps per year. A global average is 

calculated from the latitude plot at each time step (Masarie 1995). I used different types of CO2 

concentration data to analyze the effect of CO2 concentrations on the GPP estimates. 

4.2.1.3 Climatic data 

For the global estimation of GPP using BEPS, I used the input datasets of Ra, Ta, and RH 

from the National Centers for Environmental Prediction (NCEP), Department of Energy (DOE) 

Reanalysis 2 (NECPR2), which uses a state-of-the-art analysis/forecast system to perform data 

assimilation using data from 1979 to the previous year at a spatial resolution of 2.5° × 2.5° 

(Kanamitsu et al., 2002). The daily Ta and Ra were from surface data, while the RH was 

pressure level data at 1000 hPa. We calculated the VPD using RH and Ta. All data were linearly 

interpolated and resampled to a spatial resolution of 0.5° × 0.5°. Regarding introducing satellite 

CO2 concentration into GPP estimation, because the driving variables. 

4.2.1.4 Land cover component map 

The land cover component is an important factor for global primary productivity estimates. 

If the vegetation covers are different, the photosynthetic capacity will be different. In addition, 

photosynthesis rate estimation models of C3 species are different from those for C4 species; 

thus, it is necessary to know the spatial distributions of the C3 and C4 species. Therefore, a 

global land component map was drawn by overlaying the global C3/C4 maps and the land cover 

data to estimate the global GPP. I obtained current global grassland C3 and C4 maps from the 

NACP model driver data using the Spatial Data Access Tool (SDAT) 

(http://webmap.ornl.gov/wcsdown/). This dataset provides environmental data that have been 

standardized and aggregated for use as input in carbon cycle models at global scales, and the 

relative fraction of C3 (fC3) and C4 (fC4) grasses can be obtained (Wei et al., 2014). Because 

C4 plants are largely confined to an herbaceous growth form (Still et al., 2003), fC4 was 

considered the relative fraction of the C4 species in this chapter. The driver data were used in 

22 terrestrial biosphere models to perform baseline and sensitivity simulations. For driving 

BEPS, the C4 vegetation percentage map I also obtained, which was determined from datasets 

that described the continuous distribution of plant growth forms, climate classifications, 

fraction of a grid cell covered in cropland, and national crop type harvest area statistics (Still et 

al., 2009), was one of the products from the ISLSCP Initiative II and had a spatial resolution of 

1°×1°. The land cover classification was obtained from the MCD12C1, which provides 

information regarding 17 classes of dominant land cover types defined by the IGBP, including 

11 natural vegetation classes, three human-altered classes, and three non-vegetated classes 

(Friedl et al., 2010). MCD12C1 is a product that aggregates a higher spatial resolution (500 m) 

land coverage by selecting the dominant land cover types within lower spatial resolution grids 

(Duveiller and Cescatti 2016). However, the MCD12C1 product was unavailable in 2014; thus, 

the 2012 data were used instead. 
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4.2.1.5 Soil moisture and property data 

The CPC-SM dataset v2 (van den Dool et al, 2003) provided by NOAA/ESRL Physical 

PSD and IGBP-DIS dataset (Global Soil Data Task, 2014) were used in this study to calculate 

the water limitations on the photosynthetic rate by considering the stomatal regulating factor 

from the soil moisture deficits. Since globally measuring the SM is impossible, I used the 

model-calculated CPC-SM dataset, which provided global monthly data from 1948 to 2017 and 

consisted of a file containing the averaged SM water height equivalents at a spatial resolution 

of 0.5° × 0.5°. On the other hand, the IGBP-DIS dataset is a global product generated at a 

resolution of 5 × 5 arc-minutes by the SDS, which generates soil information and maps for 

geographic regions at user-selected soil depths and resolutions. I used the field capacity maps 

derived from this dataset and converted the data to the values at a soil depth of 1.6 m, which is 

the same as that used for the CPC-SM. 

4.2.1.6 Other GPP products 

Multiple GPP products are currently available based on different methods, but their 

performances vary substantially when validated against GPP estimates from EC data (Zhang et 

al., 2017; Ma et al., 2015). In addition to verifying the estimates at tower sites, I compared the 

estimated GPP with the other GPP products. As a benchmark, I compared the estimates against 

the GPP values from the MTE model from 2000 to 2011 (Jung et al., 2011) because the MTE 

model is based on direct eddy covariance flux tower measurements of GPP and is thus 

considered close to the truth where the flux tower density is high (Beer et al., 2010; Frankenberg 

et al., 2011). The MODIS GPP products from 2000 to 2014 were also used because MODIS 

products have been widely known and used (Turner et al., 2006; Zhao and Running, 2010; 

Frankenberg et al., 2011). In addition, I also selected one RS-based VPM GPP product, which 

is based on an improved LUE theory, a state-of-the-art VI gap-filling and smoothing algorithm 

and a separate treatment for C3/C4 photosynthesis pathways (Zhang et al., 2017). Since the 

three datasets calculated GPP without considering the CO2 fertilization effect, I also conducted 

CO2 effect analysis by converting those products to monthly and yearly temporal resolutions. 

4.2.1.7 Vegetation indices data 

LAI and fAPAR depend on the canopy structure, vegetation element optical properties, 

atmospheric conditions, and angular configuration. LAI is a dimensionless variable that is 

defined as the total one-sided area of green leaves in a vegetation canopy relative to a unit of 

ground area. Since leaves are photosynthetic organs, LAI was used to calculate the 

photosynthesis area. fAPAR is directly related to the primary productivity function of 

photosynthesis and, therefore, is used to estimate the assimilation of CO2 in vegetation. MCD 

15A3 is the level-4 combined (Terra and Aqua) MODIS global LAI and fAPAR products 

composited every 4 days at a 1 km resolution. I calculated the data from the same month to 

obtain averaged monthly values to develop the model which introduces satellite CO2 

concentration data into GPP estimation. For driving BEPS, vegetation indices (VIs), including 

NDVI from GIMMS-3g.v1 (15 days, 8 km) and LAI from the GlobMap LAI v3 (8 days, 

0.08°)(Zhu et al., 2013), were employed in this study. GlobMap LAI v3 was made of a 

combination of AVHRR LAI (1981~2000) and MODIS LAI (2001~2016). The MODIS LAI 

series was generated from MODIS land surface reflectance data (MOD09A1) based on the 

GLOBCARBON LAI algorithm (Deng et al., 2006). The relationships between the AVHRR 

observations (GIMMS NDVI) (Tucker et al., 2005) and the MODIS LAI were established pixel-

by-pixel using two data series during an overlapping period (2000~2006). Then, the AVHRR 

LAI was back-estimated to 1981 using historical AVHRR observations based on these pixel-
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level relationships (Liu et al., 2012). GIMMS-3g.v1 provides the only continuous and the 

longest time series (of approximately three decades) that has been continually assessed and 

validated, and it has been widely used for long-term global vegetation condition monitoring and 

detection (Piao et al., 2006; Beck et al., 2011; Wu et al., 2015; Liang et al., 2015). In this chapter, 

I considered the daily VI values to be the same as the biweekly NDVI and the weekly LAI, in 

which the day belonged to the period of products. 

4.2.2 Study process 

4.2.2.1 Study process of BEPS 

The logical workflow of this part is shown in Figure 4.1 and the data are listed in  

Table 4.2. The global data with different spatial resolutions were resampled to a spatial 

resolution of 0.5° × 0.5° and inputted into a collaborative spatial dataset. The climate, CO2 

concentration and soil water data were resampled by using the linear interpolation method, and 

the RS data and landcover map were resampled using the mean values and the dominant 

indicators, respectively. The C3/C4 fractional map was overlaid with the landcover map to 

determine the land component in each pixel, meaning that the Vm of each pixel could be 

calculated; finally, based on the NDVI and temperature limitation, I calculated the actual Vm. 

Sunlit leaves and shaded leaves were separated by using the two-leaf model according to the 

location of the pixel, the Julian day, the LAI values and the canopy clumping index of each PFT, 

which is the same as in the BEPS model (Chen et al., 1999). All parameters used in this study 

were the same as those used in the BEPSd model unless otherwise specified. Daytime duration 

was calculated by using the location of the pixel and the Julian day. The direct and diffuse 

irradiances were calculated by using the computationally efficient estimation methodology 

developed by Chen (1999) for driving BEPS. Finally, after calculating the aforementioned 

variables and combining the data with the ambient constraints, including the limitation of SM, 

temperature, CO2 concentration, radiation and VPD, the daily GPP of each pixel was estimated 

using the iBEPSd model. I verified the estimated GPP at both the site and the global scale; I 

compared the results with the measurements from 60 flux tower sites, the other RS GPP 

products, including MODIS and VPM, and the MTE modeled GPP products. At the same time, 

I conducted the CO2 fertilization effect analysis by comparing the estimated GPP with the other 

global-scale GPP products. If the accuracy of the estimated GPP was acceptable, then the 

inputted CO2 concentration data were changed to the globally averaged monthly and annual 

mean CO2 concentrations to analyze the effects of not considering the annual temporal 

variability and the spatial distribution of the atmospheric CO2 concentrations around the globe 

on the estimation of GPP. 
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Table 4.2 Overview of the datasets used to drive iBEPSd. 

 
 

 

 
Figure 4.1 The logical flowchart for indentifing CO2 fertilization effect by iBEPSd. 

 

4.2.2.2 Methods for model developing 

The photosynthetic rate of the canopy leaf (Prate) is usually expressed as the rate of CO2 

assimilation (A). According to previous studies (Farquhar et al., 1980 1982; Kirschbaum and 

Farquhar 1984; Collatz et al., 1991; Sellers et al., 1996a b), we know that A is described as the 

minimum of the three limiting rates, which are functions that describe the assimilation rate as 

being limited by the photosynthetic enzyme system (Rubisco-limited); the amount of PAR 

captured by the leaves (light-limited); and the capacity of the leaf to export or utilize the 

products of photosynthesis (sucrose synthesis-limited). A is estimated as follows: 
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𝐴 ≈ min(𝐽𝑒 , 𝐽𝑠, 𝐽𝑐) Eq-4.1 

where Je, Js and Jc are separate rate expressions for the photosynthetic CO2 assimilation rate in 

terms of different rate-limiting steps in the photosynthesis process (Je, light-limiting; Js, sucrose 

synthesis-limiting; Jc, Rubisco-limiting) (μmol m-2 s-1). 

Je describes the response of photosynthesis to PAR as follows: 

𝐽𝑒 = 𝜑0 × ã × PAR × FAPAR × (𝐶i − 𝛤∗) (𝐶i + 2 × 𝛤∗)⁄    ,for C3 Eq-4.2 

𝐽𝑒 = 𝜑0 × ã × PAR × FAPAR                        , for C4 Eq-4.3 

where φ0 is the intrinsic quantum efficiency of photosynthesis (mol mol-1, C3: 0.08, C4: 0.05), 

a ̃ is the leaf absorbance (dimensionless, C3: 0.86, C4: 0.80), PAR is the incident 

photosynthetically active radiation quantum unit (μmol m-2 s-1), and fAPAR is the fractional 

absorbed PAR (dimensionless). Ci is the leaf internal CO2 concentration (mlCO2 m
-3), and Γ* 

is the CO2 compensation point (mlCO2 m
-3). 

The sucrose synthesis-limited rate of assimilation, Js, is given by: 

𝐽𝑠 = 𝑉𝑚 2⁄             , for C3 Eq-4.4 

𝐽𝑠 = 2 × 104 × 𝐶i × 𝑉m P⁄ , for C4 Eq-4.5 

where Vm is the maximum catalytic capacity of Rubisco (μmol m-2 s-1), and P is the atmospheric 

pressure (hPa). 

The third limiting rate is Rubisco-limited rate, Jc, which is calculated by: 

𝐽𝑐 = 𝑉m × (𝐶i − 𝛤∗)/(𝐶i + 𝐾𝐶 × (1 + [O2] 𝐾𝑂⁄ )), for C3 Eq-4.6 

𝐽𝑐 = 𝑉m                                 , for C4 Eq-4.7 

where [O2] is the atmospheric O2 concentration (20.95 %), KC is the Michaelis-Menten Constant 

for CO2 (ppm), and KO is the inhibition constant of O2 (%). 

Γ* can be calculated by: 

𝛤∗ = 0.5 × 𝑓𝐾𝑂𝐾𝐶 × [O2] × 𝐾𝐶 𝐾𝑂⁄  Eq-4.8 

 

where fKcKo is the ratio of the turnover of oxygenase and carboxylase (dimensionless, 0.21), and 

KO and KC can be modeled as follows: 

𝐾𝐶 = 𝐾𝐶,25 × exp(1 298⁄ − 1/(𝑇 + 273.15) × 𝐸𝐾𝐶 8.314⁄ ) Eq-4.9 

𝐾𝑂 = 𝐾𝑂,25 × exp(1 298⁄ − 1/(𝑇 + 273.15) × 𝐸𝐾𝑂 8.314⁄ ) Eq-4.10 

where 8.314 is the universal gas constant (J K-1mol-1), KC,25 is the Michaelis-Menten constant 

for CO2 at 25℃ (460 ppm), and KO,25 is the Inhibition Constant of O2 at 25℃ (%, C3: 33, C4: 

34). T is the average photoperiod-temperature (℃) that is approximately equal to Tair in this 
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study. EKO and EKC are the activation energy for KC and KO, respectively. The Vm for the different 

land cover components is referenced from a revised land surface parameterization established 

by Sellers (1996b). 

The low-temperature inhibition of photosynthesis is calculated by weighting Tair. If Tair is 

below 0℃, the weight value is 0; if 0 < Tair <10, the weight value = Tair/10 (Wang et al., 2014). 

There are mainly three types of canopy-leaf models to estimate the canopy photosynthetic 

rate from the single leaf photosynthetic rate. The first type considers the canopy to be a large 

leaf (Lloyd et al., 1995) that is suitable for measuring the CO2 flux using the EC method. The 

second type integrates the photosynthetic rate from the top layer leaves to the bottom layer 

leaves according to Beer law, which is based on the hypothesis that the photosynthetic rate in 

the leaf in the canopy is proportional to the intensity of the light. The third type is the sun/shade 

model, which was presented by de Pury and Farquhar (1997) and considers both direct light 

and scattered light. In this chapter, I used the second method, the canopy photosynthetic rate, 

which can be calculated by: 

𝐴canopy = ∫ 𝐴𝑑LAI
LAI𝑚𝑎𝑥

0

= 𝐴𝑚𝑎𝑥

1 − exp(−𝑘 × LAI)

𝑘
 

Eq-4.11 

where Acanopy is the canopy photosynthetic rate, Amax is the photosynthetic rate of the top leaf 

calculated by Eq-4.1, LAImax is the maximum leaf area index of the canopy, and k is the light 

extinction coefficient (0.41 (Monteith and Moss 1997; Norby et al., 2003), dimensionless). 

4.2.2.3 Study process of new model 

First, I defined some symbols in this paty to facilitate the comprehension of this part. 

GPP2000 denotes the estimated GPP under the atmospheric CO2 concentration conditions in 

2000 using globally averaged monthly mean data, and the climatic conditions are the same as 

those in 2014. Tower GPP is the GPP data from the Fluxnet 2015 dataset 2monthly mean global CO

2014GPP ,

2annual mean global CO

2014GPP  and 2monthly spatial CO

2014GPP  represent the estimated GPPs in 2014 using globally 

averaged monthly mean CO2 data, globally averaged annual mean CO2 data and continuous 

spatial monthly CO2 data, respectively. 

The data are listed in Table 4.3 and are described in greater detail below. Four types of 

data were used in this part, including RS data and reanalysis climate data from NASA and the 

Japan Aerospace Exploration Agency (JAXA), observation data from NOAA and GPP data 

from the Fluxnet 2015 Dataset. The RS data and climatic data were mainly used to estimate the 

terrestrial GPP, and the Fluxnet 2015 Dataset was used to evaluate the estimated results. 

  



 

103 

 

Table 4.3 Overview of the datasets used to develop model. Parea, Prate and Pperiod are the photosynthetic 

area, photosynthetic rate and photosynthetic period, respectively. 

 
 

The global datasets have different spatial resolutions; thus, I created a spatial dataset to 

establish concordance among the spatial resolutions of all the data, which includes the RS data, 

climate grid data, underlying surface observed data, and so on. The observed data from over 

2000 stations were interpolated using the Kriging method to convert to raster data, and then, all 

the raster data were resampled by mean values to a 0.5° × 0.5° spatial resolution. According to 

the definition of the GPP, the GPP is generally the amount of the fixation of organic carbon 

through photosynthesis by vegetation. Therefore, a conceptual formula was proposed for 

estimating the terrestrial GPP as the product of the photosynthetic rate, photosynthetic duration 

and photosynthetic area. In this part, I utilized the Eq-4.1 to calculate the photosynthetic rate. 

But due to the vertical structure of the plants, the light intensity and PAR absorption of canopy 

leaves, upper-layer leaves, and lower-layer leaves are different. Thus, in addition to the canopy 

leaves, the extinction effects of the vertical structure of the plants were considered in the 

calculation of the photosynthetic CO2 assimilation rate, which was calculated using the canopy 

transmittance as supported by the big-leaf model (Eq-4.11) used in this model. Generally, 

without light, there will be no photosynthesis, and the rate of photosynthesis increases as the 

light intensity increases, except for in cases limited by other factors, such as temperature, water 

and CO2. Therefore, sunshine hours are defined as the photosynthetic duration, which is the 

maximum lasting time for solar radiation. The leaf is the place for vegetation to proceed with 

photosynthesis, and without leaves, there will no photosynthesis; therefore, LAI was considered 

the photosynthetic area of one-unit area. Based on the logical flow chart shown in Figure 4.2, 

the global GPP can be estimated. Then, the GPP estimates are compared with the GPP data from 

the Fluxnet 2015 dataset; if the discrepancy is great, the calculation attempt explained above is 

infeasible. However, if the distribution of the GPP estimates is consistent with that from the 

Fluxnet dataset, the attempt to use atmospheric CO2 concentration data in the estimation of the 
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GPP is feasible. Then, the inputted CO2 concentration data were changed to analyze the effects 

of CO2 concentrations on the GPP estimation. The input of the CO2 concentration data includes 

the globally averaged monthly mean data from 2000, the globally averaged monthly mean data 

from 2014 and the globally averaged annual mean data for 2014, which are used for estimating 

GPP2000, 2monthly mean global CO

2014GPP    and 2annual mean global CO

2014GPP  , respectively. Finally, the most 

important step is comparing the multifarious GPP estimates as follows: by comparing GPP2000 

vs. 2monthly mean global CO

2014GPP , the response of the global GPP estimates to the elevated atmospheric 

CO2 concentrations between 2000 and 2014 can be found; by comparing 2monthly spatial CO

2014GPP  vs. 

2monthly mean global CO

2014GPP  , the effects, which without considering atmospheric CO2 concentration 

spatial distribution on global GPP estimates can be expressed; and by comparing 
2monthly spatial CO

2014GPP   vs. 2annual mean global CO

2014GPP  , the spatiotemporal biases in the GPP estimates, 

which without considering the annual temporal variability and the spatial distribution of 

atmospheric CO2 concentrations around the globe can be represented. 

 

 
Figure 4.2 The logical flow chart for detecting the CO2 effects. 

  

 



 

105 

 

4.3 Results and discussions 

4.3.1 BEPS estimation 

First, I define some symbols in this section to facilitate the description of the results: 

GPPspaCO2 denotes the estimated GPP under the daily spatial continuous atmospheric CO2 

concentration; GPPannCO2 and GPPmonCO2 represent the estimated GPP using the globally 

averaged annual and monthly mean CO2 concentrations, respectively. The two estimates were 

used to explain the effect of the spatial distribution of CO2 concentrations on the estimation of 

GPP. For GPP2000CO2, the daily value of the spatial continuous atmospheric CO2 concentration 

in the year 2000 was simply employed for every year of the inputted data. In this simulation, I 

ignored the inter-annual variability and development of the atmospheric CO2 concentration. 

 

 
Figure 4.3. Global spatial distribution of the annual mean GPP for 2000-2015. 
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Figure 4.4 Global spatial distribution of the monthly mean GPP for 2000-2015. 

 

4.3.1.1 Accuracy assessment of GPP estimates 

I evaluated the accuracy of the estimated GPP in this section at the site scale and global 

scale (Figure 4.3 and Figure 4.4). At the site scale, I showed the performance of the iBEPSd by 

validating with the flux tower GPP, as shown in Figure 4.5. The overall accuracy of the 

estimated GPP was relatively high, with a determination coefficient (R2) of 0.7546, a low root 

mean square error (RMSE) of 2.0494 gC m-2 day-1 and a slope of 1.0074. For the individual 

biome types, the estimated GPP was underestimated in needleleaf forests (~30 % and 24 % for 

DNF and ENF, respectively) and slightly overestimated in savanna types. For other biome types, 

the estimated GPP did not show a systematic bias, and the accuracy of the estimates in the EBF, 
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DBF, MF, GRA and CRO ecosystems were relatively higher, in which the biases were less than 

±10 %. A complete list of the used sites is available in Table 4.1. As there was only one DNF 

site (RU-SkP), the number of flux tower sites for DNF was slightly less, and the fraction of this 

grid cell covered by the dominant plant was 65 %, which indicated that the spatial homogeneity 

was low. Therefore, the underestimation in the DNF ecosystem may be partly due to the decline 

in the LAI and NDVI when the RS data were resampled as the mean values and because of the 

different spatial footprint size between this study and the flux tower measurements. The 

correlation coefficient (R) between the estimates and the EC flux tower GPP ranged from 

0.6705 in WSA to 0.9140 in DBF, and the slope of the estimated GPP to the flux tower GPP 

ranged from 0.6803 in DNF to 1.1677 in WET; additionally, the RMSE ranged from 0.6310 in 

OSH to 3.3179 gC m-2 day-1 in CRO. Comparisons of the GPP estimated by iBEPSd against the 

EC flux tower GPP for different PFTs indicated that the estimates in this party captured the 

magnitude and variability at most of the sites well. To deeply address the performances of the 

estimated GPP, I compared the time series of the estimates with that of the EC flux tower 

measurements at each site, as shown in Figure S15. The performances of the estimated GPP 

varied across sites, and the overall, maxima and minima, amplitude and seasonal variability of 

the flux tower GPP were very well captured by the estimates. 

In terms of global distribution, the estimated GPP was highly consistent with the MODIS, 

MTE and VPM products (Table 4.4), which means the estimated GPP captured the spatial 

variations well. However, our estimated GPP was slightly higher than those of the three 

products, with an average slope of 1.0983, an R of 0.9302 and a low RMSE of  

1.0489 g C m-2 day-1. To further understand the differences in the estimated GPP against each 

product in each year, I also drew the scatterplots between the estimates and the products for 

each year, which are listed from Figure S17 to FigureS5.5. Numerous studies (Sjöström et al., 

2013; Zhu et al., 2016; Anav et al., 2015; Chen et al., 2017b) have found that the MODIS and 

MTE GPP products are somewhat lower than the observed values. In addition, with respect to 

VPM, the overestimated GPP mainly occurred when the GPP was equal to or greater than  

3000 g C m-2 year-1, which was mainly the GPP of the EBF ecosystem. It has been reported 

(Zhang et al., 2017) that the VPM GPP for the EBF ecosystem used in this chapter may be 

underestimated by approximately 30 % compared with the flux tower measurements; however, 

according to Figure 4.5, the estimated GPP for the EBF ecosystem showed more agreement 

with the flux tower measurements. Therefore, as verified above, the GPP estimated in the 

present study could be used in subsequent analyses. 
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Figure 4.5 GPP validation against EC flux tower measurements for different PFTs.    
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Table 4.4 Slope, R, and RMSE of each GPP product during the study period. Statistics from the regression 

(Y=Slope·X) of the estimated GPP (as Y) on the GPP products (as X) (gC m-2 day-1). 

 
 

4.3.1.2 The effect of CO2 concentration on GPP 

In this section, I analyzed the response of the GPP to increasing atmospheric CO2 

concentrations by comparing the estimated GPP with the other GPP products that did not 

consider the CO2 fertilization modules; additionally, I analyzed the trend of the estimated GPP 

against GPP2000CO2, in which the CO2 concentration is maintained to that recorded for the year 

2000. 

The patterns of the variation in the GPP of terrestrial ecosystems show large variability 

due to the interactions between the biological characteristics of plants and the external 

environmental factors (Beer et al., 2010; Anav et al., 2015). I used the same inputs, i.e., 

landcover, climatic dataset and soil water data, as the VPM model to drive the iBEPSd in this 

study to exclude the influences of the external environment. In addition, for MODIS and MTE, 

I also compared the driving climatic data of the models (i.e., GMAO for MODIS and CRU for 

MTE). The results (Figure 4.6) showed that, except for Ta in CRU that showed a very slightly 

positive trend of 0.0001°C ppm-1 and an R of 0.3116, most climatic factors showed a slightly 

negative correlation, and the overall relative relationship between the climatic datasets was 

almost unchanged during the study. Therefore, the trend of the changes in relative GPP were 

mainly caused by the changes in the CO2 concentration. According to Figure 4.7, I found a 

strong linear positive correlation between the slope of the estimated GPP and the GPP products 

with the atmospheric CO2 concentration; this relationship was most notable with the MODIS 

products (slope=0.0057, R=0.9743), followed by the MTE (slope=0.0037, R=0.9432 and 

0.9423, for GL and MR, respectively) and the VPM products (slope=0.0037, R=0.9583). The 

ratios of the estimated GPP to GPP products were tightly consistent with the increases in the 

atmospheric CO2 concentration. The above results could confirm the previous conjecture (Jung 

et al., 2010; Anav et al., 2015; Huang et al., 2015; De Kauwe et al., 2016; Chen et al., 2017) 
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that the underestimation observed in MODIS and MTE may originate from the exclusion of the 

CO2 physiological effects on stomatal conductance in the algorithm.  

 

 
Figure 4.6 The correlation trends between rising CO2 concentration and the ratio of the climate data used in 

this chapter to those used in MODIS and MTE products. NECP-DOE R2 were used in this part, 

CRU (Climatic Research Unit) were used in MTE and GMAO (Global Modeling and 

Assimilation Office) were used in MODIS. Slope were calculated by statistics from the 

regression (y=slope·x) of NECP-DOE R2 (as y) on CRU and GMAO (as x). TA, RH, RA donate 

the air temperature (℃), relative humidity (%) and radiation (W m-2), respectively. 

 

 

 
Figure 4.7 The correlation between the increasing atmospheric CO2 concentration and the ratio of 

estimated GPP to other GPP products. 

 

With respect to GPP2000CO2, the correlation was strongest with an R of 0.9988, and the 

lowest slope was 0.0025. The small trend of relative change was due to the different level of 

CO2 fertilization effects rather than the exclusion of the CO2 fertilization effect; furthermore, 

the other datasets used to drive the model were the same. Therefore, by comparing GPP2000CO2 

with GPPspaCO2, I obtained the magnitude and spatial patterns of the effects of CO2 

concentration variability on GPP (Figure 4.8). Overall, the GPP in different regions had 

different levels of increase due to elevated atmospheric CO2 concentrations, and the spatial 

distributions were highly consistent with previous research results (Sun et al., 2018; Chang et 
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al., 2016), which compared the GPP values of 2014 under different CO2 levels. The effects of 

CO2 concentration variability on GPP in Sub-Saharan Africa and in tropical rainforests (Chen 

et al., 2017b; Sun et al., 2018) were stronger than those in the middle and high latitudes, and 

the increment of GPP in the middle- and high-latitude areas of the Northern Hemisphere 

approximately averaged 0.2 gC m-2 day-1 from 2000 to 2015. In lower latitudes, there were 

abundant hydrothermal resources; additionally, in this study, I presumed the N limitation 

remained unchanged, which would reduce the positive effect in an environment with higher 

precipitation (Sowerby et al., 2008). Thus, the elevated atmospheric CO2 concentrations could 

significantly enhance the photosynthetic rate (Long et al., 1991; Kirschbaum et al., 1994; 

Temme et al., 2015). This could also be reflected in the annual growth rate of the global GPP. 

The growth rate of the estimated GPP in this chapter was 0.6171 PgC year-1, which is faster 

than those for the period of 2000-2010 in MODIS (0.01 PgC year-1) and MTE  

(0.25 PgC year-1), which did not consider CO2 fertilization. Conversely, this section did not 

reproduce the nitrogen limitation that would overestimate the CO2 fertilization effect; thus, 

there was a higher-than-average trend for the models that considered the carbon fertilization 

effect that was limited by nitrogen levels. Chen et al. (2017b) selected 8 models from the 

ISIMIP2 to calculate the global GPP trends for 2000-2010, and the average trend of the models 

that included the nitrogen cycle module was 0.385 PgC year-1, which was much smaller than 

our estimation; however, our results were almost equal to those of JULES (0.62 PgC year-1) and 

the Hadley Center Global Environment Model version 2 - Earth System Modeling (HadGEM2-

ES) (0.60 PgC year-1), which both showed that not reproducing the nitrogen limitation might 

overestimate the GPP trends (Anav et al., 2015). In contrast, in middle and high latitudes, the 

vegetation is more limited by temperature, water and/or light (Nemani et al., 2003), and plants 

do not respond as robustly to the elevated atmospheric CO2 concentration as those in low 

latitudes. The monthly positive effect of CO2 concentration on GPP was reflected in each month 

(Figure 4.9) but varied based on the month and location; however, the effects were almost the 

same as the temporal-spatial patterns of GPP. The monthly GPP differences in our simulation 

also indicated that there were interactions between CO2 effects and climate drivers (Liu et al., 

2016). During winter in the middle and high latitudes of the Northern Hemisphere, the plants 

have not yet entered the growing season due to low temperatures and insufficient solar radiation; 

thus, there are no CO2 fertilization effects. At the same time, since most of the terrestrial plants 

are located in the Northern Hemisphere and do not conduct photosynthesis, the atmospheric 

CO2 concentration was the highest in winter across the whole year. This result may explain why, 

although the CO2 fertilization effect was reflected every month in the tropics, the most 

significant performance was shown during the winter period of the Northern Hemisphere. After 

entering spring, the effects of CO2 fertilization on GPP obviously appear, while from summer 

to autumn, the effects decrease as the subsolar point moves southward; furthermore, the 

variation in the monthly effects has an obvious seasonal characteristic in the Northern 

Hemisphere. During summer, the atmospheric CO2 concentration reaches its lowest point 

throughout the year; thus, the weakest CO2 fertilization effect should occur in summer, but 

plants grow more significantly. This may be because the higher atmospheric CO2 concentration 

in spring ameliorates the photosynthetic process in plants to enable enhanced carbon fixation 

capacity, which would provide the essential resources for the rapid growth of plants in summer 

(Wu et al., 2015) as well as the interaction effect between the climate resources and the 

atmospheric CO2 concentration on plant growth (Dijkstra et al., 2010; Nowak et al., 2004; 

Chang et al., 2016). During summer, there are abundant hydrothermal resources for plants 

growth. Based on the above results, considering the variability in the CO2 concentration and 

incorporating the CO2 fertilization module into the estimation should improve the GPP 

estimation. 
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Figure 4.8 Comparison of the annual averaged GPP under dynamic and fixed atmospheric CO2 

concentrations from 2000 to 2015. 

 

 

 
Figure 4.9 Comparison of the monthly averaged GPP under dynamic and fixed atmospheric CO2 

concentrations from 2000 to 2015. 
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4.3.1.3 The effect of CO2 concentration distribution on GPP 

In this section, I considered GPPspaCO2 to be a nominally more accurate estimate than 

those obtained by inputting globally averaged values, and we used it as the standard value used 

to analyze the influences of the distribution of CO2 concentration on the estimation of GPP. 

Except for the opposite positive and negative performances observed in Europe, Southeast Asia, 

southern North America and northern Brazil, the distribution of estimated biases in GPPannCO2 

and GPPmonCO2 were almost identical in terms of the annual GPP estimates (Figure 4.10 and 

Figure 4.12). Both forms of data estimations underestimated the annual GPP in eastern Africa, 

northeastern North America and the Brazilian plateau; however, the estimation in the high 

latitudes of the Northern Hemisphere, central and western sub-Saharan Africa, Asian rainforests 

and most of Northeast Asia were overestimated. The maximum overestimation of GPPmonCO2 

was found in Northeast Asia, which presented a bias of approximately 1 gC m-2 year-1; in 

contrast, the most underestimated values were found in Europe and Southeast Asia, where the 

calculated biases were over -1 gC m-2 year-1. Regarding GPPannCO2, the most underestimated 

GPP values were found in the Brazilian plateau, at approximately -10 gC m-2 year-1; in contrast, 

the maximum overestimations were greater than 15 gC m-2 year-1 in the African rainforests and 

the high latitudes of Eurasia. Both overestimated the annual GPP but had different magnitude 

of discrepancy; specifically, the biases of GPPannCO2 (globally averaged 15-year mean bias 

was 1.6285 ± 3.0568 gC m-2 year-1) were more significant than those of GPPmonCO2 (0.0476 

± 0.2174 gC m-2 year-1). This was because the GPPmonCO2, in contrast with the GPPannCO2, 

only reflected the impact of the distribution of the CO2 concentration on the global GPP 

estimates, whereas the GPPannCO2 was a comprehensive manifestation of the influences of the 

differences of seasonal variations and spatial distribution on the CO2 concentration. The 

overestimation phenomenon could be explained from temporal and spatial dimensions: the 

rapid growth seasons for plants in the middle-high latitudes of the Northern and Southern 

Hemispheres occur in inverse periods; moreover, the atmospheric CO2 concentration variations 

are similar, and the atmospheric CO2 concentration during the vegetation growth season would 

decrease due to vegetation carbon fixation. In other words, most terrestrial ecosystems are 

located in the Northern Hemisphere, and photosynthesis in the Northern Hemisphere has the 

greatest contribution to the seasonal variation in the global carbon flux. Before the growing 

season (i.e., in early spring), under the higher CO2 concentration conditions caused by 

accumulation during winter, plants would enhance the carbon fixation process to provide the 

essential conditions for plant growth in summer (Wu et al., 2015). In addition, during the 

growing periods, plants would conduct photosynthesis and absorb CO2 from the atmosphere. 

Therefore, the atmospheric CO2 concentration was lower than the annual mean value, and the 

estimates calculated from using the mean annual CO2 concentration would be larger than the 

actual GPP; furthermore, the atmospheric CO2 concentration in the Northern Hemisphere was 

lower than that in the Southern Hemisphere, and using globally averaged CO2 concentrations 

results in the overestimation of GPP. This could be more easily explained by the distribution of 

the monthly biases of GPP (Figure 4.11 and Figure 4.13). The rapid growth period of vegetation 

in the Southern Hemisphere is approximately from November to March, when the atmospheric 

CO2 concentration is high; however, it would decrease after neutralizing in the other months. 

Therefore, the estimated GPP would be an underestimation when the globally averaged value 

was used, and the differences of GPPmonCO2 were much smaller than those of GPPannCO2. 

Regarding tropical areas, the plants have strong photosynthetic capacity and fix atmospheric 

CO2 with a low amplitude throughout the year; thus, during the same period, the atmospheric 

CO2 concentration should be lower than the globally averaged CO2 concentration; not 

considering the distribution of the atmospheric CO2 concentration could lead to an 

overestimation of GPP. In tropical regions, the annual CO2 concentration cycle has an anti-
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phase relationship with the global averaged CO2 cycle, and the estimates would be 

overestimated at the beginning and at the end of a year and underestimated in the middle of the 

year. 

 
Figure 4.10 Comparison of the annual GPP estimates using different CO2 data forms (GPPannCO2 minus 

GPPspaCO2). 

 

 

 
Figure 4.11 Comparison of the monthly GPP estimates using different CO2 data forms (GPPmonCO2 minus 

GPPspaCO2). 
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Figure 4.12 Comparison of the annual GPP estimates using different CO2 data forms (GPPmonCO2 minus 

GPPspaCO2). 

 
 

 
Figure 4.13 Comparison of the monthly GPP estimates using different CO2 data forms (GPPannCO2 minus 

GPPspaCO2). 

 

Thus, not considering the temporal and spatial variations in the atmospheric CO2 

concentration would affect the estimation of the GPP; though the estimation would vary based 

on location and period, overall, there would be an overestimation effect. 
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4.3.2 New model estimation 

4.3.2.1 GPP estimates 

The estimated spatial distribution of the annual global GPP for 2014 is shown in Figure 

4.14. This figure shows that the largest GPP is found in the tropics (e.g., the Amazon Rainforest, 

Congo Rainforest, and Indonesia), where the model estimates a value of more than  

3000 gC m-2 year-1. This is followed by values found for monsoonal subtropical regions (e.g., 

Southeastern Asia, Easternmost Australia), which present GPP values of approximately 1000 to 

2300 gC m-2 year-1, and temperate humid regions in Eastern North America and Western and 

Central Europe, which present GPP values of approximately 1400 gC m-2 year-1. Low GPP 

values are typical of adverse environments, such as high-altitude regions (e.g., Tibetan Plateau), 

high latitude areas (e.g., Greenland, Northern Canada, Northern Russia) with short growing 

seasons and low temperatures, desert regions (e.g., Sahara, Taklamakan, Arabian) characterized 

by low levels of precipitation, and dry areas where water availability limits plant production 

(Avan et al., 2015). 

 

 

Figure 4.14 Global spatial distribution of the annual 2monthly spatial CO

2014GPP . 

 

At the global scale, Figure 4.15 shows the considerable seasonal variations, and the 
2monthly spatial CO

2014GPP  estimates are high during the northern hemispheric summer and low during 

the northern hemispheric winter. Although the GPP is seasonal in tropical and subtropical 

regions, seasonal variations in the global GPP appear to be largely influenced by the seasonal 

GPP in temperate and boreal regions. Figure 4.16 shows that the land components (ENF, DNF, 

DBF and MF) of temperate and boreal regions present a higher seasonal amplitude. In tropical 

and subtropical regions, the land cover classifications are mainly EBF, SAV, SHR and BAR 

with a lower seasonal amplitude. This may be attributable to the combined effects of a cold bias 

in the surface temperature and plant nitrogen limitations (Avan et al., 2015). Tropical EBF areas 

present high GPP levels throughout the year, with lower amplitudes corresponding to 

alternations between the wetter and drier seasons. Presenting relatively sufficient water, 

temperature, and light conditions, an estimated average monthly GPP of more than 

150 gC m-2 month-1 was found in tropical forests, which are the most productive on a monthly 

scale, and, thus, tropical forests are the world’s most stable regions. 
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Figure 4.15 Global spatial distribution of estimated monthly GPPs. 

 

However, the maximum monthly GPP in tropical forests is exceeded by that in forests in 

temperature zones in June and July, and this result is consistent with results from numerous 

studies (Wang et al., 2014; Avan et al., 2015). This result was found because the GPP of DBF, 

DNF, and MF can exceed that of EBF during the summer (Figure 4.16), and such areas are 

mainly distributed in temperate and boreal zones (Figure 4.15, 50°N ~ 70°N over the Eurasian 

continent and 45°N ~ 60°N over North America). Monthly latitudinal variations can be found 

at the global scale. Such variations, followed by solar insolation and temperature variations, 

such as light intensity, illumination time, and temperature, considerably affect photosynthesis, 

which is the direct source of the GPP. Figure 4.16 shows the monthly GPP for every land cover 

component as follows: woody savannah, savannah combined into SAV, open shrublands, and 

closed shrublands combined into SHR. 
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Figure 4.16 Median, upper quartile and lower quartile of the estimated monthly GPP2014
𝑚𝑜𝑛𝑡ℎ𝑙𝑦𝑠𝑝𝑎𝑡𝑖𝑎𝑙𝐶𝑂2 for all vegetated land cover types delineated using the 

MODIS land cover. 
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4.3.2.2 Accuracy assessment of GPP estimates 

Figure 4.17 shows the comparison between 2monthly spatial CO

2014GPP   and tower GPP. The 

Fluxnet 2015 dataset, which is based on EC technology, represents one of the only three types 

of datasets that appear capable of validating GPP estimates (Running et al., 2004). Therefore, 

it is meaningful and relevant to compare the estimated 2monthly spatial CO

2014GPP  with tower GPP to 

test the estimation accuracy levels. Since the different spatial scales of 2monthly spatial CO

2014GPP  and 

tower GPP increase the uncertainty, and the number of Fluxnet data in 2014 is a bit less, 

therefore, to better observe the relationship between 2monthly spatial CO

2014GPP   and tower GPP, we 

utilized MODIS products as a “bridge” to establish a GPP vs. MODIS GPP Products space to 

test the accuracy of the estimates; the red dots denote the relationship between the MODIS GPP 

Products and the tower GPP (Table 4.6) from 2000 to 2014, and the green dots represent the 

relationship between the MODIS GPP Products in 2014 and the 2monthly spatial CO

2014GPP . The same 

version of MODIS GPP was used to ensure consistency in the uncertainty and accuracy levels.  

 

 

Figure 4.17 Accuracy assessment of GPPs (left: comparison between the estimated annual GPP in this study 

and the GPP from Flux tower sites; right: comparison between the estimated GPP in this study 

and MODIS product). 

 

In addition, in order to evaluate the accuracy of the estimated GPPs relative to MODIS, at 

each Flux tower site the month-to-month difference between tower GPP and 2monthly spatial CO

2014GPP  

and difference between tower GPP and MODIS GPP were also compared and analyzed (Figure 

S13). Except for a very few sites (AU-Rob, US-Wcr, IT-Isp), the positive-negative 

characteristics of the differences between tower GPP and 2monthly spatial CO

2014GPP  are in accordance 

with that of the difference between tower GPP and MODIS GPP, vice versa, simultaneously 

overestimated or underestimated. For every pixel, the air temperature is one of the important 

restrictive factors whether this method estimates GPP or not (if Tair > 45℃ or Tair < 0℃, GPP 

= 0 gC m-2 year-1), however, for Fluxnet GPP dataset, the GPPs are estimated by carbon flux 

between ecosystem and atmosphere, which is calculated by using EC technology; and most of 
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the Flux tower sites are located in high latitudes with low winter temperature, therefore, in 

winter the estimated GPP are less than tower GPPs. Comparing 2monthly spatial CO

2014GPP   with 

MODIS product, I found that the magnitude of the GPP which was lower than  

2000 gC m-2 year-1 is more concentrated, while that with values greater than 2000 gC m-2 year-

1 is relative more scattered. According to Figure 4.14, the locations with GPP greater than 2000 

gC m-2 year-1 are basically located within the scope of tropical, where the high cloud coverage 

are a major obstacle to optical remote sensing (Asner 2010). Furthermore, in the range of 1000 

to 2000 gC m-2 year-1 of MODIS GPP, we found that 2monthly spatial CO

2014GPP  are significantly lower 

than MODIS product. These GPPs are mainly distributed in the Brazilian plateau, the African 

savanna, Eastern United States, almost the same with the distribution region of high C4 species 

fraction. In this research, we not only utilized the satellite-based LUE models relying on simple 

algorithms to estimate C4 species GPP (the theoretical basis of MODIS products), but also 

supplemented the restrictions of sucrose synthesis and Rubisco; accordingly, the 
2monthly spatial CO

2014GPP  would be lower than MODIS product. Moreover, besides high C4 species 

coverage areas, from the seasonal view 2monthly spatial CO

2014GPP  are generally lower than MODIS 

product in the autumn, which is opposite to that in summer. By means of comparing MODIS 

product and 2monthly spatial CO

2014GPP   at every flux tower site, the accuracy of MODIS product in 

autumn is higher than that of 2monthly spatial CO

2014GPP  in more than half of observed months. On the 

other hand, in 62% of observed months in summer the accuracy of MODIS product is lower 

than that of 2monthly spatial CO

2014GPP  . Since the sites are mainly distributed with higher density in 

Europe and North America, but lower density in the Southern Hemisphere and low latitudes, 

we cannot conclude that the accuracy of 2monthly spatial CO

2014GPP  is higher than MODIS product. In 

this section, the first objective was to attempt to utilize continuous spatial CO2 concentration 

data obtained by satellite to estimate the terrestrial GPP; it can be observed from the results of 

the comparisons with tower GPP and MODIS product that the study has achieved this objective. 
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Table 4.6 A list of the Flux tower sites used in this study. 
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4.3.2.3 The effect of CO2 concentration variability on GPP 

In this section, I analyzed the response of the GPP to increasing atmospheric CO2 

concentrations using 2monthly mean global CO

2014GPP   minus GPP2000 (Figure 4.18). Both 

2monthly mean global CO

2014GPP   and GPP2000 are estimated values using climate data in 2014 and the 

globally averaged monthly mean CO2 concentration data, and the annual GPP is the sum of the 

monthly estimates. Overall, the global GPP has different levels of increases due to elevated 

atmospheric CO2 concentrations. The effects of the CO2 concentration variability on the GPP 

in middle and high latitudes are weaker than those in lower latitudes, and the increment of GPP 

in middle and high latitudes areas of the Northern Hemisphere are approximately 30 gC m-2. 

The increment of the GPP in the rainforest is much higher than that in other areas around the 

world, particularly in the Amazon Rainforest, where the increase is up to 100 gC m-2 or more. 

This is followed by the increment of the GPP in humid temperate regions, which present 

increases of approximately 30 to 55 gC m-2. Similar to the previous study (Ainsworth et al., 

2004), the GPP increments in forests were greater than those in other PFTs; and, the increments 

in forests are ranked as EBF > DBF > MF > DNF > ENF, with average values of 54.96, 28.04, 

14.36, 11.81 and 7.83 gC m-2, respectively, calculated by the geostatistics method according to 

the MODIS land cover maps. Using the same geostatistics method, I found that the increments 

of GRA, SHR, SAV and GRO are approximately 3.18, 5.34, 10.41 and 10.47 gC m-2, 

respectively. Most of the C4 species belong to herbs, and under natural atmospheric CO2 

concentration conditions, C4 species have been close to the CO2 saturation point; thus, the 

increase in GRA is much smaller than that in the others. Broad-leaf forests are located in lower 

latitudes, where there are abundant hydrothermal resources; therefore, the elevated atmospheric 

CO2 concentrations can significantly enhance the photosynthetic rate. In contrast, in middle and 

high latitudes, the plants, regardless of whether they are in a forest, are more limited by 

temperature and light; therefore, plants do not respond to the elevated atmospheric CO2 

concentrations as robustly as those in low latitudes. 

 

 

Figure 4.18 Comparison of the annual GPP under different atmospheric CO2 concentrations (GPP2014 minus 

GPP2000). 

 

The annual GPP was the sum of the monthly GPP estimates, and the CO2 concentrations 

in each month of 2014 were higher compared with the monthly CO2 concentrations in 2000. 
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Figure 4.19 shows the differences in the monthly GPP estimates between 2014 and those in 

2000 under the atmospheric CO2 concentration conditions. The monthly GPP estimates 

increased each month, but the increases in the GPP varied based on the month and location; the 

differences between the months are relatively large, and the monthly maximum can reach more 

than 20 gC m-2. In the Northern Hemisphere winter, because plants affected by temperature 

conditions almost stop growing, there are no signs of increasing GPP in middle and high 

latitudes. After entering the growth period, the GPP in middle and high latitudes in the Northern 

Hemisphere obviously respond to the elevated atmospheric CO2 concentrations. Particularly in 

the summer, GPP increased most significantly under conditions in which there were abundant 

hydrothermal resources during the summer. There may be parts because that plants in the spring 

season, due to the higher CO2 concentration, could improve the photosynthesis process to 

enable increased photosynthesis for carbon fixation, which provides the essential conditions for 

plant growth in the summer. From summer to autumn, the increment of the GPP decreased as a 

result of the subsolar point moving southward. The variation in the monthly GPP increment in 

the Northern Hemisphere has an obvious seasonal characteristic. The monthly GPP increments 

in ITCZ are almost consistent throughout the year as a result of perennial climate resources that 

are abundant and scarcely variant, and this is also the reason why the increment in the GPP in 

the Amazon rainforest is maximum. Under the same climate resource conditions of 2014, the 

global GPP estimates increase as the atmospheric CO2 concentrations elevated from 2000 to 

2014. 

 

 
Figure 4.19 Comparison of the monthly GPP under different atmospheric CO2 concentrations 

( 2monthly mean global CO

2014GPP minus GPP2000). 

 

4.3.2.4 The effect of CO2 concentration distribution on GPP 

Since 2monthly spatial CO

2014GPP   has been verified using Fluxnet data in the Section 4.3.2.3, I 

consider 2monthly spatial CO

2014GPP  a nominally relatively more accurate estimate than those inputting 

globally averaged values. I compared 2annual mean global CO

2014GPP   and 2monthly mean global CO

2014GPP   with 

2monthly spatial CO

2014GPP  and found that the estimated biases in the annual 2annual mean global CO

2014GPP  and 

2monthly mean global CO

2014GPP   are nearly identical in terms of the annual GPP estimates; however, 

regarding the monthly GPP estimates, there were significant differences.  
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Figure 4.20 Comparison of the annual GPP estimates using different CO2 data forms ( 2monthly spatial CO

2014GPP

minus 2annual mean global CO

2014GPP ). 

 

 

Figure 4.21 Comparison of annual GPP estimates using different CO2 data forms ( 2monthly spatial CO

2014GPP  minus 

2monthly mean global CO

2014GPP ). 

The 2annual mean global CO

2014GPP   estimates in high latitudes were slightly underestimated, 

whereas the estimates in middle latitude areas located in Europe, Eastern United States, and the 

Northeast part of East Asia were overestimated. In the lower latitudes, the GPP estimates are 

greater than 2monthly mean global CO

2014GPP  , except for those north of the sub-Saharan Africa and 

northwest of Southeast Asia, where the GPP were underestimated comparing with 

GPP2014
𝑚𝑜𝑛𝑡ℎ𝑙𝑦𝑠𝑝𝑎𝑡𝑖𝑎𝑙𝐶𝑂2  as shown in Figure 4.20 and Figure 4.21. The max positive biases are 

found in Northeast China, Indonesia and the Amazon rainforest, which present biases of over 

12 gC m-2, and the most underestimated estimates were found in the Congo Rainforest, where 

the calculated biases were approximately 6 gC m-2. Although the spatial distributions of the 

biases in 2monthly mean global CO

2014GPP  compared with that in 2annual mean global CO

2014GPP  are near unanimous, 

the degrees of the discrepancies are different. The biases of 2annual mean global CO

2014GPP   (globally 

averaged bias is approximately -0.74 gC m-2 with the standard deviation of approximately 

1.10 gC m-2) are more significant than those of 2monthly mean global CO

2014GPP  (globally averaged bias 

is approximately -0.63 gC m-2 with a standard deviation of approximately 1.00 gC m-2). This 
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result indicates that in comparison to using globally averaged annual mean CO2 data to estimate 

the annual GPP, using globally averaged monthly mean CO2 data to estimate the annual GPP is 

relatively more accurate.  

 

 

Figure 4.22 Comparison of monthly GPP estimates using different CO2 data forms ( 2monthly spatial CO

2014GPP minus

2annual mean global CO

2014GPP ). 

 

 

Figure 4.23 Comparison of monthly GPP estimates using different CO2 data forms ( 2monthly spatial CO

2014GPP minus

2monthly mean global CO

2014GPP ). 

 

The monthly distributions of the GPP biases of 2annual mean global CO

2014GPP   (Figure 4.22) are 

different from those of 2monthly mean global CO

2014GPP   (Figure 4.23). Regarding 2annual mean global CO

2014GPP  

and using June as the turning point, it can be found that generally, before June the GPP in the 

North Hemisphere was underestimated, and after June, the GPP was overestimated because 

plants in the Northern Hemisphere during the summer grow quickly, the photosynthesis rate 

increases, the amount of the atmospheric CO2 that is absorbed by plants increases, and the 

atmospheric CO2 concentrations are lower than the annual mean. However, concentrated zones 
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of high CO2 concentrations appeared in South America and Africa (maps of distributions of 

monthly global surface air CO2 concentrations in 2014 are shown in Figure S14); therefore, in 

the corresponding area (e.g., Amazonis Planitia, Brazilian Highlands in South America, Congo 

Rainforest in Africa), the GPP estimates using the annual mean are lower. Overall, the CO2 

concentration distribution does not affect the GPP estimates in the Northern Hemisphere, except 

for during the growth period in which the GPP estimates were significantly overestimated (after 

June) or underestimated (before June). However, in most of the Southern Hemisphere, 
2annual mean global CO

2014GPP are larger than 2monthly spatial CO

2014GPP  for each month, which is mainly due to 

the globally averaged CO2 concentrations being dominated by the vegetation in the Northern 

Hemisphere that grow seasonally, and the atmospheric CO2 concentration in the Southern 

Hemisphere hardly affects the globally averaged value; moreover, in the Southern Hemisphere 

(except for in rainforest areas), the CO2 concentration is low throughout the year; therefore, 

using the globally averaged annual CO2 mean will overestimate the GPP. 

Regarding 2monthly mean global CO

2014GPP  , in the Northern Hemisphere from June to August (i.e., 

summer), a large amount of atmospheric CO2 is absorbed since vegetation grows rapidly; thus, 

atmospheric CO2 concentration in the Northern Hemisphere is lower than the globally averaged 

CO2 concentration, which is much lower than that in the Southern Hemisphere. Accordingly, 

during the summer, 2monthly mean global CO

2014GPP in the Northern Hemisphere were overestimated, and 

those in the Southern Hemisphere were underestimated. Nevertheless, in the spring (i.e., March, 

April, May), vegetation does not grow rapidly and does not absorb large amounts of CO2 for 

photosynthesis; thus, due to the accumulation during the winter, the CO2 concentration in the 

Northern Hemisphere reached the highest period, which is higher than the globally averaged 

CO2 concentration. In contrast, the plants in the Southern Hemisphere grow normally and 

absorb atmospheric CO2, and the CO2 concentration in the Southern Hemisphere is lower than 

the globally averaged mean CO2 concentration. Therefore, in the spring, by comparing 
2monthly mean global CO

2014GPP   with 2monthly spatial CO

2014GPP  , we can find that the Northern Hemisphere is 

obvious on the high side, and the Southern Hemisphere is on the low side.  

Based on the above-mentioned results, the spatial distribution of CO2 concentrations has 

a great influence on the estimation of the GPP, particularly for the monthly scale GPP estimates. 

Utilizing the globally averaged monthly mean CO2 concentrations to estimate the GPP will 

cause seasonal estimation biases, which are opposite in the Northern and the Southern 

Hemispheres. Simultaneously, in the Southern Hemisphere, the GPP estimates in each month 

are overestimated, and the vegetation in the Northern Hemisphere during the growth periods 

before June will be overestimated, while that after June will be underestimated as a result of 

using globally averaged annual mean CO2 concentration data to estimate GPP. 
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4.4 Conclusions 

When estimating global GPP using RS-based methods, the effects of the temporal and 

spatial distribution of the atmospheric CO2 concentration on GPP have rarely been incorporated. 

Here, I considered this effect when quantifying the global GPP. I used the iBEPSd model that 

incorporated RS variables and climatic factors to estimate the global GPP; furthermore, I 

compared the estimated GPP with the products of the models that did not consider the CO2 

fertilization module, and I compared the estimates obtained by inputting the CO2 data without 

spatiotemporal characteristics to analyze the effects of the CO2 concentration and its 

spatiotemporal influence on the estimation of GPP. The results showed that the estimated GPP 

values were able to capture the GPP variation and distribution when compared with the flux 

tower measurements and other GPP products. However, the relative relationship between the 

estimated GPP and the other GPP products exhibited a close relationship with the increasing 

CO2 concentration, indicating that not considering the CO2 fertilization effect would result in 

an underestimation of GPP. In addition, the estimations that do not consider the spatiotemporal 

distribution of the CO2 concentration would cause an overall overestimated annual GPP, and 

these biases varied with location and period. This chapter suggested that the spatiotemporally 

varied CO2 concentrations should be factored into GPP estimations when using an RS-based 

model for a long-term period and a large regional scale. And then, given the above-mentioned 

I attempted to use continuous spatial CO2 concentration data obtained from GOSAT to estimate 

the GPP combined with the decoupling coefficients of PFTs to obtain the CO2 concentration in 

canopy; then, according to climate data, I attempted to calculate the photosynthetic efficiency 

using the leaf- and canopy-level photosynthesis model and estimate the global monthly and 

annual GPP by scaling up to the whole ecosystem using the Big-leaf model. Finally, I applied 

this method, which was verified by the Fluxnet 2015 dataset and MODIS GPP products, to 

calculate the GPP estimates in 2000 and 2014 using input of globally averaged monthly CO2 

mean data to analyze the effects of the elevated atmospheric CO2 concentration on the global 

GPP magnitude and distribution, and I also used globally averaged monthly and annual mean 

CO2 data to estimate the global GPP and compared the two with that estimated by the 

continuous spatial CO2 data to analyze the effects of atmospheric CO2 concentration patterns 

on the estimation of the GPP. The following conclusions were made based on these steps: 

a) Through using the Fluxnet 2015 dataset to assess the accuracy of the estimates, the GPP 

estimates are relatively consistent with tower GPP, indicating that the method proposed in this 

chapter, which introduces the continuous spatial CO2 concentration data obtained by RS 

technology, is feasible. 

b) From 2000 to 2014, the average atmospheric CO2 concentration has increased by 

approximately 28 ppm, and this has increased the global GPP, with annual increment from over 

50 gCm-2 in broad-leaf forests to 11.81 gCm-2 in coniferous forests, approximately 

10.41 gCm-2 in SAV, 5.34 gCm-2 in SHR, and approximately 3.18 gCm-2 in GRA. Considering 

the spatial allocation, the increases in the lower latitudes are more significant than those in the 

middle and high latitudes; the increments in the GPP estimates in the middle and high latitudes 

in the Northern Hemisphere during the summer are greater than those during the other seasons, 

but in the Southern Hemisphere, the increments are almost the same throughout the year. 

c) By comparing annual 2monthly spatial CO

2014GPP   with 2annual mean global CO

2014GPP   and

2monthly mean global CO

2014GPP , the annual GPP, which was calculated according to globally averaged CO2 

concentrations, was overestimated, except for in zones located in the lower latitudes, such as 
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north of sub-Saharan Africa and northwest of Southeast Asia. The max biases occurred in 

Northeast China and the Amazon rainforest, which present annual overestimates of over 

12 gC m-2. 

d) Regarding the monthly effects of CO2 concentrations on the GPP estimates, without 

considering the temporal variability and global distribution of atmospheric CO2 concentrations 

(i.e., 2annual mean global CO

2014GPP ), there are significant differences between the GPP estimates in the 

Northern Hemisphere during the first half and the second half of the year. The GPP estimates 

were underestimated before June and overestimated after June; moreover, the GPP in the 

Southern Hemisphere was overestimated all throughout the year. However, when considering 

temporal variability, but not considering the global distribution of atmospheric CO2 

concentrations (i.e., 2monthly mean global CO

2014GPP  ) in the Northern Hemisphere or the vegetation 

growing periods, the GPP in the Northern Hemisphere was overestimated and that in the 

Southern Hemisphere was underestimated compared with 2monthly spatial CO

2014GPP , while the results 

were opposite during the non-growing periods. 
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Chapter 5 Discussion on sensitivity of GPP to external factors in RS 

models 

RS-based models play a significant role in estimating and monitoring terrestrial ecosystem 

GPP. Several RS-based GPP models have been developed using different criteria, yet the 

sensitivities to environmental factors vary among models; thus, the comparison of model 

sensitivity is necessary for analyzing and interpreting results and for choosing suitable models. 

In this Chapter, I globally evaluated and compared the sensitivities of 12 RS-based models the 

same as used in Chapter 1, and benchmarked them against GPP responses to climatic factors 

measured at flux sites and to elevated CO2 concentrations measured at FACE experiment sites. 

The results demonstrated that the models with relatively high sensitivity to increasing 

atmospheric CO2 concentrations showed a higher increasing GPP trend. The fundamental 

difference in the CO2 effect in the models' algorithm either considers the effect of CO2 through 

changes in greenness indices (nine models) or introduces the influences on photosynthesis 

(three models). The overall effects of temperature and radiation, in terms of both magnitude 

and sign, vary among the models, while the models respond relatively consistently to variations 

in precipitation. Spatially, the larger differences among model sensitivity to climatic factors 

occur in the tropics; at high latitudes, models have a consistent and obvious positive response 

to variations in temperature and radiation, and precipitation significantly enhances the GPP in 

mid-latitudes. Compared with the results calculated by flux-site measurements, the model 

performance differed substantially among different sites. However, the sensitivities of most 

models are basically within the confidence interval of the flux-site results. In general, the 

comparison revealed that models differed substantially in the effect of environmental 

regulations, particularly CO2 fertilization and water stress, on GPP, and none of the models 

showed performed consistently better across the different ecosystems and under the various 

external conditions. 

5.1 Introduction 

The prevalent algorithms requiring that RS data be inputted to estimate GPP could be 

categorized into the following groups (Song et al., 2013): (a) VI-based: empirical estimation 

from spectral vegetation indices (Li et al., 2013; Liu et al., 2014; Gitelson et al., 2006; Sims et 

al., 2008; Wu et al., 2010); (b) LUE-based: models that are based on LUE theory (Potter et al., 

1993; Verstraeten et al., 1996 2006; Yuan et al., 2007; Running and Zhao 2015; Xiao et al., 

2004); (c) process-based: models that are based on biophysical processes of plant 

photosynthesis (Ryu et al., 2011; Jiang et al., 2016; Liu et al., 1997; Zhang et al., 2018); and (d) 

ML-based: machine learning models that require RS data to train the model (Jung et al., 2011; 

Liu et al., 2016; Wei et al., 2017). VI-based models are conceptually related to GPP because 

they are generally developed based on the linkage between chlorophyll and the presence of 

photosynthetic biomass (Myneni et al., 1992; Wu et al., 2010; Rossini et al., 2012), which is 

essential for primary production (Hashimoto et al., 2012). Regarding GPP estimation, VI-based 

models can perform as well as complex physiological process models (Raczka et al., 2013). 

The most important point is the simple conceptual algorithm, which does not require the prior 

knowledge and is suitable for running at the global scale (Sellers et al., 1992; Wu et al., 2010). 

Compared with the VI-based algorithm, the LUE model has a more solid physical foundation, 

in which ecosystem GPP is determined by the APAR through LUE, which could be reduced by 

the environmental stresses that detract from the optimal condition (Yan et al., 2015; Alton et al., 

2007; Zhang et al., 2015; Joiner et al., 2018; Yuan et al., 2014). The key linkage between 

terrestrial GPP and RS in the LUE-based model is the estimation of fAPAR using RS data (Wu 

et al., 2012; Xiao et al., 2004). Numerous LUE-based models have been developed and are 
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widely used to quantitatively estimate and analyze terrestrial GPP (Verstraeten et al., 1994 2006; 

Yuan et al., 2007 2014; Running and Zhao 2015; Xiao et al., 2004). In process-based models, 

RS data and/or products are usually the key model inputs used to assess the energy transfer, 

flux exchange, and physiological and biochemical processes and then to estimate the ecosystem 

GPP. Each node of the model involves the corresponding physical meaning and is expressed by 

several simplified mathematical functions. More recently, ML algorithms have been used to 

derive continental- and global-scale GPP from multiple RS products based on EC flux tower 

measurements with reasonable accuracy (Jung et al., 2011; Liu et al., 2016; Wei et al., 2017). 

The most widely known model is the MTE-GPP, in which gridded GPP data are derived from 

a statistical model based on the spatiotemporal interpolation of flux tower observations using 

the MTE regression trained by satellite fAPAR and gridded climate field predictors (Jung et al., 

2011); this model has been used as a reference to validate and benchmark other the results of 

other models (Piao et al., 2013; Smith et al., 2016; Beer et al., 2010). 

Regarding the aforementioned models, considerable and substantial efforts have been 

made to validate, regulate and contrast the models at flux tower sites (Yuan et al., 2014; Wang 

et al., 2012; Zhang et al., 2015; Wu et al., 2010), specific ecosystems (Wang et al., 2012; Lees 

et al., 2018; Souza et al., 2013; Meroni et al., 2015; Wu et al., 2010; Li et al., 2016; Hashimoto 

et al., 2012; Rossini et al., 2012) and regional scales (Yuan et al., 2014; Garbulsky et al., 2010; 

Yang et al., 2013, Ardö 2015; Zhang et al., 2015; Li et al., 2016). However, the optimal model 

that is suitable for estimating GPP across different ecosystems and a wide range of enviro-

climatic conditions has not been identified and designed (Yuan et al., 2014; Ardö 2015; Zhang 

et al., 2015; Lees et al., 2018; Hashimoto et al., 2012; Garbulsky et al., 2010; Wang et al., 2012; 

Rossini et al., 2012), and the discrepancies associated with the spatial distributions of the 

environmental controls that influence the GPP variation simulated by different models are 

highly significant (Anav et al. 2015; Piao et al., 2013; Beer et al. 2010). Nonetheless, these 

studies have concluded that it is necessary and important to study and understand model 

sensitivity to indicators before designing and modifying GPP estimation models (Garbulsky et 

al., 2010; Wang et al., 2012; Yuan et al., 2014; Keenan et al., 2012; Yan et al., 2015; Schaefer 

et al., 2012; Zhang et al., 2016; Piao et al., 2013; Yang et al., 2013; Song et al., 2013). Almost 

no studies, however, have yet identified and compared the global discrepancy among model 

sensitivity to external enviro-climatic variability, and even fewer studies have analyzed the 

effect of CO2 fertilization that is implied in RS models (De Kauwe et al., 2016; Smith et al., 

2016; Sun et al., 2018ab; Liu et al., 2016; Verstraeten et al., 1994; Ryu et al., 2011; Jiang et al., 

2016; Liu et al., 1997; Zhang et al., 2018), which is likely attributed to the fact that the effect 

from CO2 in models is more concealed than are the influences from enviro-climatic factors (Sun 

et al., 2018a; Ahlstrom et al., 2015). VI-based models assume that CO2 affects GPP solely 

through changes in the greenness index (Wylie et al., 2003; Piao et al., 2007; Thomas et al., 

2016; Watham et al., 2017; Sun et al., 2018b); ML- and LUE-based models assume that CO2 

affects GPP solely through changes in the fAPAR (De Kauwe et al., 2016). However, both of 

the abovementioned indicators are closely related to leaf area (Cheng et al., 2017; Donohue et 

al., 2013), which is used as an input in process-based models; furthermore, process-based 

models incorporate some greenness indices and the modules that represent the photosynthetic 

rate that is affected by the CO2 concentration (Jiang et al., 2016; Zhang et al., 2018). Models 

are typically developed based on specific assumptions, and they consider the different processes 

and complexities involved in the control of vegetation production (Garbulsky et al., 2010; 

Rossini et al., 2012; Yuan et al., 2014; Ardo et al., 2015); therefore, to make RS-based GPP 

estimations more robust, it is necessary to conduct a rigorous comparison using consistent 

validation datasets and driving variables (Wu et al., 2010 2017; Zhang et al., 2016). 
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In this chapter, twelve models belonging to four RS-based algorithms were tested 

regarding their abilities to estimate current global terrestrial GPP’s apparent sensitivities to 

climatic variability and increasing atmospheric CO2 concentration. The model ensemble used 

in this chapter is the same as that used in Chapter 1 including the AVM (Li et al., 2013, Liu et 

al., 2014), BESS (Ryu et al., 2011, Jiang et al., 2016), BEPS (Liu et al., 1997, Zhang et al., 

2018), CASA (Potter et al., 1993), CFix (Verstraeten et al., 1994, 2006), EC-LUE (Yuan et al., 

2007), GR (Gitelson et al., 2006), MODIS (Running and Zhao 2015), MTE (Jung et al., 2011), 

TG (Sims et al., 2008), VI (Wu et al., 2010, 2012) and VPM (Xiao et al., 2004). MODIS satellite 

data, MERRA-2 meteorological data (Rienecker et al., 2011), CT2016 CO2 concentration data 

(Peters et al., 2007), CPC-SM (Global Soil Data Task, 2014) soil water content data, and other 

datasets were used to run the models at the global scale in this chapter, and the data from EC 

flux tower were used for site-scale estimations. The values calculated via the flux tower 

measurements and FACE experiments were used to test the sensitivity of the modeled GPP to 

individual changes in climatic variables and CO2. Finally, I combined the results obtained from 

this chapter with the design concept, structure, and parameters of each model to 

comprehensively analyze individual sensitivity. 
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5.2 Materials and methods 

5.2.1 Terrestrial GPP RS-based models 

The models used in this chapter are detailed in Chapter 1. Based on the model's 

characteristics regarding its theoretical basis and core algorithm, each model was grouped into 

one of four categories, i.e., LUE-, VI-, process- and ML-based models, as shown in Figure 5.1. 

Among them, I directly used the MTE GPP product developed by Jung et al (2011). instead of 

re-estimating the MTE-GPP. All models belonged to the full or partial RS data-driven model, 

but the formulation and the number of limiting factors of the conceptual processes primarily 

responsible for estimating GPP differed among models. For the process-based models BEPS 

and BESS, two simulations—S1 and S2—were performed over the period (2000~2014), and 

one LUE-based model, CFix, was also used, which has a CO2 fertilization effect item. In S1, 

the three models were forced with increasing atmospheric CO2 concentration, while the 

environmental limiting factors were held constant (by recycling the environmental mean values 

and variability from the first three years of the study period, e.g., 2000-2002). For all models, 

S2 was performed, in which the models were forced with factors that all varied (using 

reconstructed historical environmental fields and increasing atmospheric CO2 concentrations). 

All models used the same forcing datasets, shown in Table 5.1. Details of the datasets used and 

the variables computed in this study can be found in Chapter 1. 

 

 
Figure 5.1 The classification of the RS-based GPP estimation models used in this chapter.   
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Table 5.1 Overview of the datasets used in this chapter. 

 
1Ca : ambient CO2 concentration; SM: soil moisture; WP: wilting point; FC: field capacity; LC type: Land Cover Type; CT: Climate Type; Ta: 

air temperature; PAR: Photosynthetically active radiation; SH: specific humidity; LH: latent heat flux; H: sensible heat flux; LST: land surface 

temperature; PARDiff: downwelling PAR diffuse flux; PARDir: downwelling PAR beam flux; NIRDiff: downwelling NIR diffuse flux; NIRDir: 

downwelling NIR beam flux; PS: surface pressure; WS: wind speed; TD: dew point temperature; Pre: total precipitation; PET: potential 

evapotranspiration; ET: evapotranspiration; NDVI: normalized difference vegetation index; EVI: enhanced vegetation index; CI: clumping 

index; LCD: land cover dynamic; LSWI: land surface water index; ALB_BSA_VIS: black sky albedo at visible range; ALB_WSA_VIS: white 

sky albedo at visible range; ALB_BSA_NIR: black sky albedo at NIR range; ALB_WSA_NIR: white sky albedo at NIR range; NIR: Near-

infrared; SWIR: Short-wavelength infrared; fiso: isotropic coefficient; fvol: RossThick coefficient; fgeo: LiSparseR coefficient. 
2CT2016: Carbon Tracker 2016; CPC-SM: Climate Prediction Center Soil Moisture; MCD12C1: Land Cover Type Climate Modeling Grid 

product; ISLSCP II: The International Satellite Land Surface Climatology Project, Initiative II; MERRA-2: The Modern-Era Retrospective 

analysis for Research and Applications, Version 2; MOD16A2: MODIS/Terra Net Evapotranspiration 8-Day L4 Global 500 m SIN Grid V006; 

This study means the factor was calculated in this study; MCD12Q2: Land Cover Dynamics Yearly L3 Global 500 m SIN Grid; MCD43C3: 

MODIS/Terra and Aqua BRDF/Albedo (Bidirectional Reflectance Distribution Function and Albedo) Daily L3 Global 0.05Deg CMG V006; 

MCD43C4: MODIS/Terra and Aqua Nadir BRDF-Adjusted Reflectance Daily L3 Global 0.05Deg CMG V006; MCD43C2: MODIS/Terra and 

Aqua BRDF/Albedo Snow-free Parameters Daily L3 Global 0.05Deg CMG V006; GLAS: Geoscience Laser Altimeter System. 
3The period of the data derived from MODIS is from 2000065 to 2014365, the data before 2000065 were replaced by the mean value of multi-

years.  
4NOAA ESRL: National Oceanic and Atmospheric Administration / Earth System Research Laboratory; IGBP-DIS: The International 

Geosphere-Biosphere Programme Data and Information System; LP DAAC: The Land Processes Distributed Active Archive Center; ORNL 

DAAC: Oak Ridge National Laboratory Distributed Active Archive Center; NASA GES DISC: Goddard Earth Sciences Data Information 

Services Center.   
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5.2.2 Analysis 

5.2.2.1 Response of GPP to climate variations 

Many methods can be used to investigate the sensitivities of GPP to climate variations 

(Nemani et al., 2003; Chang et al., 2016; Sun et al., 2018b; Piao et al., 2013; Schaefer et al., 

2002; Friedlingstein et al., 2006; Bonan and Doney 2018; Bai et al., 2010); however, in this 

chapter, most of the models are not based on biochemical processes. Thus, the experiments of 

the control variables are not suitable. Therefore, I empirically estimated the response of GPP to 

climate variability (e.g., interannual mean annual temperature, radiation, and annual 

precipitation) over the last 15 years, referring to the multiple regression approach from Piao et 

al (2013): 

int int inty T P Rx x x   = + + +
 

Eq-5.1 

where y is the detrended anomaly of GPP estimated by each model from S2, which considers 

rising atmospheric CO2 concentration and climate change. The xT is the detrended mean annual 

temperature anomaly, xP is the detrended annual precipitation anomaly and xR is the detrended 

mean annual radiation anomaly. The fitted regression coefficients γint, δint and ηint define the 

apparent GPP sensitivity to interannual variations in temperature, precipitation and radiation, 

respectively, and ɛ represents the residual error term. Note that in Eq-5.1, the γint, δint and ηint 

are not the true sensitivities of these GPPs; rather, these values are only the contributive effect 

of each factor’s variation on GPP (Piao et al., 2013), given that temperature, precipitation and 

radiation are the three main factors that affect GPP (Nemani et al., 2003; Yu et al., 2013; Wu et 

al., 2017). That being said, there may be other environmental drivers (Chang et al., 2016; Bonan 

and Doney 2018) (e.g., wind speed, soil moisture) that have not been considered in Eq-5.1 but 

that also contribute to the variability of GPP; in addition, Eq-5.1 uses the annual scale 

temperature, precipitation and radiation, but these factors interact and co-vary over time. Based 

on the contributive method of GPP, I can obtain the spatial distributions of the sensitivities of 

GPP to the climatic variables. I also estimated the monthly response of GPP to climatic 

variations to obtain the seasonal characteristics of those responses; therefore, this method was 

used to calculate values for each month of an entire year (e.g., the monthly GPP estimates, as 

well as the monthly mean temperature, monthly mean radiation and monthly mean precipitation 

of all 15 Decembers, were inputted into Eq-5.1 to obtain the corresponding results for 

December). 

5.2.2.2 Response of GPP to CO2 trend 

For all models including the ones that did not apparently contain the CO2 fertilization 

effect module, I used a multiple regression approach, shown in Eq-5.2, that refers to the results 

of previous studies (Piao et al., 2013; Zhang et al., 2016; Wu et al., 2017; Smith et al., 2016) 

that estimated the response of GPP to CO2 for each model based on the concept that this method 

attributes the time series of GPP to what I consider as the dominant drivers of change, i.e., 

temperature, precipitation, radiation and CO2. 

2GPP= CO Tem + Pre + Rad +  + a b c d +
 

Eq-5.2 

where GPP is the estimated value of each model, and CO2, Tem, Pre and Rad are the mean 

annual atmospheric CO2 concentration (ppm), mean annual temperature (℃), annual 

precipitation (mm) and mean annual radiation (W m-2), respectively. β, a, b, c and d are the 

regression coefficients, and ɛ is the residual error term. The regression coefficients indicate the 
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contributive effect of the CO2, temperature, precipitation and radiation variations on the GPP 

variations. Similar to the assumption concept of Eq-5.1, other meteorological forcing elements, 

such as nitrogen deposition, wind speed, and soil moisture, might also influence GPP variations, 

and these would modulate the trend of the GPP time series in addition to the assumed CO2 

driver. In response to the above concerns, Piao et al (2013), the inventors of Eq-5.2, used 10 

DGVMs to test the statistically estimated coefficients from Eq-5.1; the authors found that the 

coefficients calculated using the statistical method have a high consistency with the results 

computed using the process-based method (i.e., multiple simulations of control variables). For 

the monthly estimations, I inputted the monthly GPP estimates and the monthly mean 

temperature, radiation, atmospheric CO2 concentration and total precipitation. 

In this study, I also applied a control variable to estimate the value of β for BESS, BEPS 

and CFix who consider the CO2 fertilization effect: 

2= GPP CO  
 

Eq-5.3 

where ΔGPP is equal to the difference between the average GPP estimates in the last 3 years 

and the first 3 years of S1, in which the models were forced with rising atmospheric CO2 

concentration while the environmental limiting factors were held constant. ΔCO2 is the change 

in atmospheric CO2 concentration during the corresponding period. 
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5.3 Results 

5.3.1 Response of GPP to variations in enviro-climatic drivers 

5.3.1.1 Response of GPP to CO2 variations 

Because Eq-5.3 is not appropriate for all models to calculate the CO2 fertilization effect, 

the responses of the estimated GPP to rising atmospheric CO2 concentration presented in this 

section were calculated by Eq-5.2, and the comparison between Eq-5.3 is further discussed in 

Section 5.4. At the global scale, the magnitude of 𝛽𝐺𝑃𝑃
𝑖𝑛𝑡   (i.e., the overall response of the 

estimated GPP to the effect of rising atmospheric CO2 concentration) varied among models, but 

almost all of them showed a positive effect (Figure 5.2). The average of 𝛽𝐺𝑃𝑃
𝑖𝑛𝑡  from all models 

was 25.42 ± 15.28 Pg C year-1 100 ppm-1, and the minimum was MTE, which was close to zero, 

followed by MODIS (0.04), EC-LUE (15.26), GR (17.08), VPM (23.04), CASA (26.68), BESS 

(28.99), VI (29.44), CFix (37.33), TG (38.35), and AVM (43.41), and the most significant was 

BEPS (45.82, unit is Pg C year-1 100 ppm-1). Regarding the latitudinal distribution, all the 

models performed similar patterns, and the maximum of βGPP appeared in the Tropics with high 

uncertainty (2.46 ± 1.79 gC m-2 yr-1 ppm-1); the βGPP in the Northern Hemisphere showed a 

positive effect and a relatively consistent distribution (1.29 ± 0.47 gC m-2 year-1 ppm-1). In 

contrast, there was no uniform distribution feature in the Southern Hemisphere  

(0.24 ± 0.81 gC m-2 year-1 ppm-1) and no tendency of variation with latitude (Figure 5.3). As 

the maps of the global distribution of the βGPP (Figure 5.4) show, the rising atmospheric CO2 

concentration enhances GPP around almost the entire globe, except in some small sparse parts 

of Southern Africa, Midwestern Australia, Brazilian Plateau, and the longitudinal stripped areas 

distributed along the Kazakhstan-Mongolia direction. In addition, some models also showed a 

few unique distribution characteristics; the estimates from MODIS and VPM showed the 

negative response of GPP in some parts of the Amazon and Indonesian-Malay Rainforest to 

rising CO2, while in these regions, the other models estimated the greatest CO2 fertilization 

effect; additionally, MODIS and CASA showed that the βGPP in large parts of southern Africa 

had opposite signs to those of the other models (Figure 5.4). Simultaneously, combined with 

the monthly cycle of βGPP (Figure 5.5), it can be inferred that the individual differences among 

the models were mainly caused by the contributions of the negative effects during the boreal 

winter to the overall performance (i.e., VPM, MODIS and EC-LUE showed the slight overall 

negative feedback of GPP to rising CO2 during the boreal winter, and during this period, the 

plants in the Northern Hemisphere basically stop photosynthesis, so the main contribution 

comes from the Tropics and the Southern Hemisphere, where there are large differences among 

models). Generally, the monthly βGPP estimated by all models showed the same seasonal pattern 

as that of GPP, i.e., rising during spring, reaching a maximum in summer, falling during autumn 

and reaching a minimum in winter; this pattern was a consequence of the CO2 fertilization effect 

enhancing the photosynthetic intensity in the northern continent during the growing season. In 

terms of the responses of each PFT to the rising CO2 concentration (Figure 5.6), the most 

significant positive effect of CO2 on GPP was in the EBF ecosystem (3.79 ± 1.78), except for 

MODIS and MTE, which estimated a slight negative response. This was followed by WSA 

(2.45 ± 1.29) and ENF (1.75 ± 0.59), and among PFTs, only CSH (-1.63 ± 2.30) slightly 

negatively responded to rising atmospheric CO2 concentrations but had high uncertainty. For 

most models, the other PFTs had a positive βGPP value (the unit is gC m-2 year-1 ppm-1). In 

summary, the reflected carbon fertilization effect was quite different between models. 
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Figure 5.2 Annual globally averaged GPP and the sensitivities of interannual GPP variation to variations in environmental factors. 
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Figure 5.3 The latitudinal distribution of comparisons of the responses of GPP to changes in different factors (a) temperature, (b) precipitation, (c) radiation, and (d) 

atmospheric CO2 concentration between DGVMs and RS-based models. Gray shadow is the s.d. of RS-based models. 

(a)                                 (b)          (c)                                (d) 
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Figure 5.4 Global distribution of responses of GPP to rising atmospheric CO2 concentration. 
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Figure 5.5 The monthly responses of GPP to variations in climate of each model, (a) to temperature change, 

(b) to precipitation change, (c) to radiation change and (d) to rising atmospheric CO2 

concentration. 

 

    

    

(a)                                      (b) 

(c)                                      (d) 
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Figure 5.6 The responses of GPP to the variations in (a) precipitation, (b)radiation, (c) temperature and (d) 

rising CO2 concentration across PFTs by each model. 

 

5.3.1.2 Response of GPP to temperature variations 

The influence of temperature on the interannual variation in global total GPP varied among 

models (all variables detrended), as seen from not only the differences in the magnitude  

(Figure 5.2) but also the spatial distribution of γGPP (Figure 5.7), especially in the tropical and 

subtropical regions (-28.99 ± 43.46 gC m-2 ℃-1). According to the spatial distribution of γGPP, 

the 12 models can be divided into two groups: in the first group, which includes AVM, MODIS, 

BEPS, VPM, GR, VI, CASA, TG and MTE, the estimated γGPP is negative only in South Asia, 

Latin America, northern Australia, Brazil Plateau, and southern and eastern Africa; in the 

second group, the productivity of almost all plants located between 30°N and 30°S declined 

with increasing temperature. All models showed high consistency in the mid-high latitudes in 

the Northern Hemisphere (6.56 ± 2.16 gCm-2 ℃-1) (Figure 5.3). The spatial distribution of the 

monthly γGPP indicated that all models estimated the significant seasonal pattern of the response 

of GPP to temperature in the northern continental region, with the greatest γGPP during June and 

the lowest γGPP during the boreal winter (Figure S17); additionally, the responses changed with 

the latitudinal gradient. In contrast, the γGPP in the low latitudes varied widely among models 

and did not have significant seasonal characteristics. As the monthly global overall γGPP shows 

(Figure 5.5), the effects of temperature on enhancing vegetation activities in spring and autumn 

were presented by all models, and CASA, AVM, TG, CFix and BEPS also presented the positive 

effect of temperature on GPP during summer, while the other models showed that temperature 

may inhibit plants that grow rapidly during summer. The negative effect of temperature on the 
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productivity of DBF was reflected in all models, and except for in AVM, the same inhibitory 

influence in DNF was also estimated by the other models (Figure 5.6). The most significant 

difference of γGPP among models was reflected in EBF. AVM, CASA and VPM estimated that 

the maximum was in EBF, but in EC-LUE, CFix and BESS, the temperature limited the GPP 

of EBF to the utmost extent. In addition, the sign of γGPP estimated by different models were 

also different in savannas and shrublands ecosystems. In general, for all other PFTs, the models 

estimated consistent results that supported that temperature promoted vegetation growth. 

 

 
Figure 5.7 Global distribution of responses of GPP to variations in temperature. 

 

5.3.1.3 Response of GPP to precipitation variations 

No model used in this chapter needed to be driven by inputting precipitation data, but the 

models still showed a relatively consistent 𝛿𝐺𝑃𝑃
𝑖𝑛𝑡 (Figure 5.2). The interannual variation of the 

modeled global total GPP was significantly and positively correlated with the precipitation 

variation in 11 of 12 models, with an average 𝛿𝐺𝑃𝑃
𝑖𝑛𝑡  of 3.43 ± 2.65 PgC m-2 100 mm-1, except 

for VPM (-0.86 PgC m-2 100 mm-1). The latitudinal distribution of δGPP had an obvious bimodal 

distribution (Figure 5.3). The relatively larger positive responses of the modeled GPP to 

precipitation were found in the middle latitudes, with average values of 22 ± 7 and 13 ± 5 in 

the Southern Hemisphere and Northern Hemisphere, respectively, followed by the Tropics (7 ± 

4) and high latitudes (2 ± 3), units in gC m-2 100 mm-1. This trend can also be seen from the 

spatial distribution of δGPP (Figure 5.8), and the response of the estimated GPP in the high 

latitudes of Eurasia to precipitation variation was mainly negative; in contrast, in the temperate 

regions of Eurasia and the American continent, especially in steppe ecosystems, precipitation 

significantly promoted vegetation growth. The spatial distribution of δGPP in the African 

continent was the most complex, and 11 of 12 models (EC-LUE showed a significant positive 

effect of precipitation except in the Congo Rainforest) did not estimate the same obvious spatial 

distribution characteristics. In addition, the models indicated that in most tropical rainforest 
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areas, the increase in precipitation was likely to limit GPP to some extent. As shown in Figure 

S18, which shows the monthly spatial distribution of δGPP during the period of boreal winter, 

the precipitation significantly enhanced the plants growing in the tropical savanna and forest-

savanna mosaic of tropical Africa; however, during the period of boreal summer, the 

precipitation promoted productivity in the South Africa Plateau and in most parts of the 

Northern Hemisphere. Globally, although the monthly δGPP estimated by each model was not 

the same in terms of magnitude, the seasonal cycle was almost the same; during late summer 

and early autumn, the overall effect of precipitation variation on GPP variation was negative 

(Figure 5.5). In different PFTs, the modeled GPP had different responses to precipitation, and 

even the signs of δGPP were inconsistent (Figure 5.6). However, in savannas  

(52 ± 17 PgC m-2 100 mm-1) and shrublands (29 ± 10 PgC m-2 100 mm-1), all the models 

estimated positive δGPP values, while the wetland ecosystem reflected the opposite situation to 

the above two ecosystems, with an average of -43 ± 24 PgC m-2 100 mm-1. The δGPP values 

estimated by CASA, EC-LUE and TG were positive in deciduous forest, while the δGPP values 

estimated by the other models were negative. Regarding grassland and cropland ecosystems, 

CASA, CFix and all VI-based models estimated negative effects of precipitation on GPP. 

 

 
Figure 5.8 Global distribution of responses of GPP to variations in precipitation. 

 

5.3.1.4 Response of GPP to radiation variations 

At the global scale, the overall effect of radiation among the different models had 

differences in the magnitude and even in the sign of 𝜂𝐺𝑃𝑃
𝑖𝑛𝑡  (Figure 5.2), although the latitudinal 

distribution of 𝜂𝐺𝑃𝑃
𝑖𝑛𝑡  among the 12 models was similar (Figure 5.3). The sensitivity values were 

the highest in the high latitudes of the Northern Hemisphere (2.61 ± 1.37 gC m-2(W m-2)-1), 

followed by the Tropics (1.04 ± 3.47 gC m-2(W m-2)-1), and the temperate regions, which had 

negative responses (-0.67 ± 1.28 gC m-2(W m-2)-1). Five of the 12 models (i.e., CFix, GR, VI, 

EC-LUE and CASA) showed significant positive sensitivity in the Tropics, and all the models 
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showed a large spatially continuous positive sensitivity in the mid-high latitudes of the Northern 

Hemisphere (Figure 5.9). At the monthly scale, compared with 𝛾𝐺𝑃𝑃
𝑖𝑛𝑡  and 𝛿𝐺𝑃𝑃

𝑖𝑛𝑡 , the responses 

of models to radiation were not obvious, but all models basically reflected positive responses 

to radiation in the spring (March, April and May) and late autumn (October and November), 

likely because radiation affects the growth period of plants in the Northern Hemisphere. From 

the perspective of the monthly spatial distribution of sensitivity, the CASA, CFix, GR, EC-LUE, 

VI models showed a higher spatial consistency than did the other models. Regarding the 

sensitivity of PFTs to radiation variations, although the values were different, the relative 

magnitude of the responses among the various PFTs were basically consistent across models, 

with the greatest ηGPP occurring in deciduous forests (13.04 gC m-2(W m-2)-1) and the minimum 

value occurring in grassland (-5.20 gC m-2(W m-2)-1) (Figure 5.6). 

 

 
Figure 5.9 Global distribution of responses of GPP to variations in radiation. 
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5.3.2 Comparison with the in-situ results 

The selected FluxNet sites with more than 15 years of available data were used as 

benchmark sites, and Figure 5.10 shows the comparisons between the modeled sensitivities and 

the sensitivity calculated by on-site measurements and the spatial distribution of R𝛾𝐺𝑃𝑃
𝑖𝑛𝑡 , R𝛿𝐺𝑃𝑃

𝑖𝑛𝑡  

and R𝜂𝐺𝑃𝑃
𝑖𝑛𝑡  (the ratio of 𝛾𝐺𝑃𝑃

𝑖𝑛𝑡 , 𝛿𝐺𝑃𝑃
𝑖𝑛𝑡  and 𝜂𝐺𝑃𝑃

𝑖𝑛𝑡  to the 15-year average GPP of each model) 

averaged across the 12 models. No model obtained a corresponding value that was exactly 

consistent with the one calculated using the measurements at all sites; this trend included the 

sign of the sensitivities, but the estimations were basically located within the confidence interval 

of the calculated results, with only a few exceptions. However, the confidence intervals were 

wide, indicating that for a site and a given model, there were large factor-to-factor differences 

in estimation accuracy. Models behave and perform differently in response to each climatic 

factor and vary with site; furthermore, no model systematically overestimated (or 

underestimated) the sensitivity of GPP to climatic factors. Conversely, some sites existed where 

all models showed overestimation or underestimation. 
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Figure 5.10 Comparisons of the observed relative response of GPP to temperature changes in EC flux towers (Table 5.3) and estimated relative response of GPP to 

interannual variation in temperature by 12 RS-based models for the period of 2000-2014. 
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For R𝛾𝐺𝑃𝑃
𝑖𝑛𝑡   (Figure 5.10), the results from the sites showed that a step increase in 

temperature generally increased GPP across most sites, except at BE-Vie, DK-ZaH, IT-Ren, 

US-MMS, US-PFa and US-WCr, where almost all models overestimated the effect of 

temperature on GPP. Considering all 17 sites, the average RMSE (Table 5.2) of the model 

ensemble was 1.79 ± 0.20 %℃-1, which ranged from 1.46 %℃-1 in MTE to 2.04 %℃-1 in BEPS. 

The maximum RMSEs of the models all occurred in the WET ecosystem (average of 13.21 ± 

2.30), followed by the GRA (average of 5.92 ± 2.41), DBF (average of 4.19 ± 0.62), ENF 

(average of 2.48 ± 0.61), and MF (average of 2.20 ± 0.51); moreover, the R𝛾𝐺𝑃𝑃
𝑖𝑛𝑡   values 

estimated by the models were closest to the value calculated using the on-site measurements in 

the EBF ecosystem (average of 1.91 ± 1.27). The GR only at GRA sites and that at all GRA 

sites estimated negative R𝛾𝐺𝑃𝑃
𝑖𝑛𝑡 ; BEPS estimated a negative R𝛾𝐺𝑃𝑃

𝑖𝑛𝑡  at only ENF sites; and the 

other models obtained a negative response of GPP to variations in temperature at more than one 

PFT. Ten of the 12 models (except CFix and MODIS) estimated the same trend of the GPP 

response to temperature as that at most sites as calculated using real measurements. The 

responses estimated by the 12 models were relatively consistent in the MF ecosystem (i.e., a 

positive effect of temperature on GPP except for MDOIS at US-PFa), while using 

measurements to estimate the influence resulted in negative values at two of the three MF tower 

sites. The sensitivity of GPP to temperature estimated by all models showed positive results in 

at least at 10 sites out of the 17 flux sites. The average R𝛾𝐺𝑃𝑃
𝑖𝑛𝑡  for all sites of each model was 

larger than that of the site measurements. I utilized the natural break method to evaluate the 

performance of each model against the results calculated by the on-site measurements, and we 

divided the RMSE values into three groups, i.e., relatively good, medium and relatively poor, 

and combined the group with bias (model minus flux) to summarize the results (Table 5.2) as 

follows (similarly, we describe the results of R𝛿𝐺𝑃𝑃
𝑖𝑛𝑡  and R𝜂𝐺𝑃𝑃

𝑖𝑛𝑡 ): For all PFTs, MTE (+0.47, 

the unit of bias is % ℃-1, + means overestimation, – means underestimation; and hereinafter 

the same and omitted) and BESS (+0.63) captured the relative optimal response of GPP to 

changes in temperature; VI (+2.21) and VPM (+2.04) were relatively better at MF sites; and at 

GRA sites, BESS (+3.06), CFix (-4.02), VI (-3.92) and MTE (+0.28) had estimates that were 

closest to the results for site R𝛾𝐺𝑃𝑃
𝑖𝑛𝑡 . Additionally, for ENF, MTE (+0.05), BESS (+1.70) and 

GR (+1.51) performed relatively well; and the estimations of AVM (-10.93), CFix (-11.31) and 

CASA (-8.69) were relatively better than those of the other models in WET. For DBF, BESS 

(+3.91), MODIS (+3.25) and TG (+3.45) belonged to the relatively good performing models; 

and with regard to EBF, BEPS (-0.41), MTE (-0.84), MODIS (+1.03) and VPM (+0.83) showed 

the optimal R𝛾𝐺𝑃𝑃
𝑖𝑛𝑡 . 
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Figure 5.11 Comparisons of the observed relative response of GPP to changes in precipitation in EC flux towers (Table 5.3) and estimated relative responses of GPP to 

interannual variation in precipitation by 12 RS-based models for the period of 2000-2014. 
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Regarding R𝛿𝐺𝑃𝑃
𝑖𝑛𝑡 (Figure 5.11), site R𝛿𝐺𝑃𝑃

𝑖𝑛𝑡  values were positive at 11 sites, and at the 

sites with negative R𝛿𝐺𝑃𝑃
𝑖𝑛𝑡  values, with the exception of DK-ZaH, the R𝛿𝐺𝑃𝑃

𝑖𝑛𝑡  values of the 12 

models were all greater than that of the site R𝛿𝐺𝑃𝑃
𝑖𝑛𝑡  values, which was the same situation as 

that for the comparison of R𝛾𝐺𝑃𝑃
𝑖𝑛𝑡 . Considering all 17 sites, the average RMSE (Table 5.2) of 

the model ensemble was 1.02 ± 0.34 % 100 mm-1, ranging from 0.72 % 100 mm-1 using CASA 

to 1.98 % 100 mm-1 using VI. All models received the lowest discrepancy against flux R𝛿𝐺𝑃𝑃
𝑖𝑛𝑡  

in the ENF ecosystem (average of 0.51 ± 0.28), followed by MF (average of 1.68 ± 0.45), EBF 

(average of 1.78 ± 1.11), DBF (average of 2.02 ± 0.40), and WET (average of 5.11 ± 1.13); 

additionally, the greatest divergence of R𝛿𝐺𝑃𝑃
𝑖𝑛𝑡  against the flux results appeared in the GRA 

ecosystem (average of 6.27 ± 3.35). BESS, MTE, TG, VI and MODIS estimated the negative 

effect of precipitation on GPP at more than 9 of the 17 sites, and BEPS, CASA, EC-LUE and 

CFix obtained larger positive precipitation effects than those from the calculation using flux 

measurements at more sites. At most sites, the R𝛿𝐺𝑃𝑃
𝑖𝑛𝑡   estimated by all the models was in 

accordance with that calculated using measurements. For all PFTs, BESS (-0.77, the unit of bias 

is % 100 mm-1), CASA (+0.12), EC-LUE (-0.38) and VPM (-0.56) captured the relative optimal 

response of GPP to changes in precipitation; furthermore, CASA (-0.63), EC-LUE (-1.99), TG 

(-1.71), VI (-1.22) and VPM (-1.40) performed relatively better at MF sites. At GRA sites, BESS 

(-1.12), CFix (-4.47), CASA (-5.22), EC-LUE (-4.28) and VPM (-5.50) estimated the closest 

results to those of sites R𝛾𝐺𝑃𝑃
𝑖𝑛𝑡  . For ENF, MTE (-0.19), EC-LUE (-0.38) and VPM (-0.44) 

performed relatively well; the estimations of BESS (-2.73) and CASA (-3.05) were relatively 

better than those of other models in WET. For DBF, BESS (+2.21), AVM (+2.30) and TG (+2.29) 

belonged to the relatively good performing models; and with regard to EBF, AVM (+0.82), 

CASA (+0.80) and MODIS (+0.99) showed the optimal R𝛾𝐺𝑃𝑃
𝑖𝑛𝑡  . At MF and WET sites, all 

models underestimated the sensitivity of GPP to precipitation; in contrast, in deciduous forest 

ecosystems, the R𝛾𝐺𝑃𝑃
𝑖𝑛𝑡  value estimated by all models were larger than the value calculated by 

using the site measurements, and the R𝛿𝐺𝑃𝑃
𝑖𝑛𝑡  estimated by different models in GRA ecosystem 

varied widely. Finally, only CASA overestimated the R𝛿𝐺𝑃𝑃
𝑖𝑛𝑡  at ENF sites. In general, for all 

PFTs, all models underestimated the average effect of precipitation on GPP, except for MTE, 

AVM, CASA and TG. 
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Figure 5.12 Comparisons of the observed relative response of GPP to radiation changes in EC flux towers (Table 5.3) and estimated relative response of GPP to 

interannual variation in radiation by 12 RS-based models for the period of 2000-2014. 
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In regard to R𝜂𝐺𝑃𝑃
𝑖𝑛𝑡  (Figure 5.12), the site results showed that increases in radiation would 

enhance the GPP at 10 of 17 sites, and except at the DK-ZaH site, the sign of R𝜂𝐺𝑃𝑃
𝑖𝑛𝑡  estimated 

by each model at any different site was consistent with that calculated by the corresponding site 

measurements. At more than 9 sites, MTE, AVM, MODIS and TG estimated negative response 

of GPP to radiation, but CFix, EC-LUE, VPM and GR obtained negative R𝜂𝐺𝑃𝑃
𝑖𝑛𝑡  at only one 

or two sites. Considering all 17 sites, the average RMSE (Table 5.2) of the model ensemble was 

0.40 ± 0.22 % (W m-2)-1, ranging from 0.21 % (W m-2)-1 using CASA to 0.99 % (W m-2)-1 using 

VI. In terms of the performance of models in each PFT: for MF, BESS (bias of  

0.01 % (W m-2)-1) had the strongest ability to capture the radiation effect; VI (-7.90) performed 

significantly worse at GRA sites; the estimations of BESS (+0.07), BEPS (0.21), MTE (-0.18) 

and MODIS (-0.17) were relatively better than those of other models at ENF sites; MTE (0.20) 

showed the optimal estimation at DBF sites; MODIS (-1.03) and MTE (-0.92) performed worst 

in WET; and for EBF, BEPS (+0.99) was the relatively poorest model for radiation sensitivity 

compared to the results calculated by using site measurements. For all the PFTs, we found VI 

(bias of -0.55 % (W m-2)-1) showed the weakest performance for reflecting the sensitivity of 

GPP to variation in radiation. In addition, all models underestimated the effect of radiation on 

WET ecosystems; 5 of 12 models (i.e., MTE, AVM, BEPS, MODIS and TG) showed negative 

bias between the models' results and the flux results in the MF and DBF ecosystems. For GRA, 

only CFix and CASA overestimated the response of GPP to radiation changes; and in EBF 

ecosystems, apart from BEPS, BESS, VPM and GR, all models underestimated the R𝜂𝐺𝑃𝑃
𝑖𝑛𝑡 . 
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Table 5.2 The RMSE of the sensitivity of GPP to climatic factors for each PFT 

(models' estimations vs. results calculated using flux measurements; Rγ, 

Rδ and Rη represent the sensitivity of GPP to temperature (% ℃-1), 

precipitation (% 100mm-1) and radiation (% (W m-2)-1), respectively). 

 

Superscripts are the levels of model performance determined by natural break 

method: 
a: relatively good 

b: medium 
c: relatively poor 
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Table 5.3 A list of the FluxNet sites used in Chapter 1 and this chapter. 
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5.4 Discussions 

5.4.1 The CO2 fertilization effect in RS-based models 

Three models, i.e., BESS, BEPS and CFix, require the atmospheric CO2 concentration as 

an input to estimate GPP; therefore, Eq-5.3 (i.e., the control variable method) can be used to 

determine the pure effect of elevated CO2 concentration on GPP. I found that the 𝛽GPP
𝑖𝑛𝑡  values 

estimated using Eq-5.2 (hereafter represented by β1) were larger than the β values estimated 

using Eq-5.3 (hereafter represented by β2), which considered only the rising atmospheric CO2 

concentration. This result was consistent with the research conducted by Piao et al (2013), in 

which they used the 10 DGVMs from Trendy to calculate the βGPP effect on global terrestrial 

GPP during the period of 1982-2010, which was longer than the period used in this study. The 

authors attributed this circumstance to β1 in the Tropics, where the hydrothermal conditions are 

more suitable for vegetation growth, which contributes more to the overall effect; furthermore, 

the linear regression approach did not replicate the intricate nonlinear complexity of the carbon 

cycle (Piao et al., 2013). By contrast, in the present study, the more detailed latitudinal β 

distribution was used to compare the difference between the two methods, and I found that in 

the Tropics and in most parts of the Northern Hemisphere, β1 was generally larger than β2; 

however, the Southern Hemisphere had the opposite situation. Because the continental 

vegetation coverage is much larger in the Northern Hemisphere than that in the Southern 

Hemisphere, β2 was lower than β1. BESS and BEPS, belonging to RS-based process models, 

require the atmospheric CO2 concentration to be input, as this value adjusts the photosynthesis 

rate by influencing stomatal conductance (Buckley 2017). Simultaneously, the two models also 

express another part of the CO2 fertilization effect from VIs (Smith et al., 2015) or fAPAR (De 

Kauwe et al., 2016). LAI, which is closely related to fAPAR, was also the driving factor for 

running BESS and BEPS, and the rising atmospheric CO2 concentration increased LAI, which 

had already been reported by scholars (Donohue et al., 2013; Devaraju et al., 2016). Therefore, 

in BESS and BEPS for the greener and greener Earth, β2 is supposed to be lower than β1. 

Generally, LUE models assume that CO2 affects GPP solely through changes in the observed 

fAPAR (calculating fAPAR by the relationship with VIs) (Tucker et al., 1986); however, for 

CFix, one LUE model, it also introduces an individual CO2 fertilization effect module that 

requires inputting the atmospheric CO2 concentration and comparing the current CO2 

concentration level with the reference level to determine the degree of the CO2 fertilization 

effect (Veroustraete et al., 1994). Therefore, CFix estimated that β2 was lower than β1 and had 

the highest β1 value among the LUE models. From the monthly distribution of βGPP, it was 

found that the amplitude of the intra-annual cycle of β2 was gentler than that of β1, especially 

when the vegetation in the Northern Hemisphere enters the summer growing season. This result 

can be partly explained by the fact that during boreal summer, the hydrothermal conditions for 

vegetation growing are adequate, and the interaction between the climatic factors and CO2 will 

be more apparent than the single effect of CO2 (Zhang et al., 2016; Sun et al., 2018a). It can be 

seen from the global distributions of Rβ1 and Rβ2 (Figure 7) that a significant discrepancy 

appeared in the arid areas, where Rβ1 occasionally had negative values. It is hard to conclude 

that the negative value is not sound because β1 represents the comprehensive response of GPP 

to the variation in CO2, including its interaction with climatic factors. Hotter and dryer climatic 

conditions resulting from increasing atmospheric CO2 concentrations are known to increase 

vegetation moisture stress and reduce productivity (Donohue et al., 2013; Poulter et al., 2014; 

Ahlstrom et al., 2015; Williams et al., 2013; Smith et al., 2016). Therefore, although 

theoretically an increasing atmospheric CO2 concentration could drive an increase in water-use 

efficiency (Lawlor et al., 1991), the final effects of CO2 on GPP could decrease or be negative 

if the negative effects of moisture stress are larger than the positive effects of CO2 fertilization, 
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particularly in arid ecosystems (Smith et al., 2015; Zhang et al., 2016). This result has been 

proven in field experiments by Reich et al (2014), who showed that the positive effect of the 

increasing CO2 concentration on productivity was apparent in wet years but not in years when 

moisture constraints were relatively strong. This result can also be seen in Figure 5.13; During 

the relatively dryer year in the semi-arid grassland, there was a negative GPP response to CO2. 

This result was due to the positive effect of CO2 on GPP being offset by the negative interaction 

among the environmental, meteorological and edaphic factors (Smith et al., 2015). The spatial 

distribution of the negative areas was consistent with the areas where the interactive effect was 

strongest (Zhang et al., 2016). In addition, the factor, the magnitude and the duration of the CO2 

fertilization effect on GPP are thought to be constrained by nutrient availability, specifically the 

availability of nitrogen (N) and phosphorus (P), which play critical roles in regulating plant 

photosynthesis and growth (Norby et al., 2010; Oren et al., 2001) and are represented by VIs 

(Song et al., 2013; Fisher et al., 2012) using Eq-5.2 but are missing in Eq-5.3. At the relatively 

humid two European sites, most models overestimated the response of GPP to CO2 compared 

to the FACE results. One reason for this result is the mismatched footprint size (Pasetto et al., 

2018); another reason is likely to be the saturating response to CO2 (De Kauwe et al., 2016), 

which means that the β2 was estimated by the RS models that ranged from a relatively low CO2 

concentration. This condition would result in more efficient and larger values than the β 

calculated from the higher CO2 concentration ranges in the FACE experiments (Franks et al., 

2013). Several scholars have suggested that the comparison of satellite and FACE estimates of 

CO2 fertilization is invalid (De Kauwe et al., 2016), but due to the absence of true values of β, 

using the limited FACE experiments might be the next-best option for analyzing and comparing 

the β values of models. In addition, it should be noted that the β values at the FACE sites were 

calculated by physiological and ecological models driven by the inputs of the observed data 

because GPP cannot be measured or obtained directly (Ryan et al., 2017; Bachman et al., 2010; 

Schafer et al., 2003; Luo et al., 2001; Wittig et al., 2005; Gielen et al., 2005), and the sensitivity 

of each model to external factors seriously affects the accuracy. Furthermore, the nutrient 

constraints and the vegetation physiological response may represent a transient phenomenon 

that becomes more apparent with time due to the depletion of soil nutrients and the 

physiological adaptation (De Kauwe et al., 2016); therefore, the results obtained from a longer-

running experimental site could be more convincing. Alternatively, when we accepted that GPP 

was approximately twice the magnitude as the value of NPP (Waring et al., 1998) that could be 

measured directly in field experiments, we found that the β value estimated by most models 

were basically within the range calculated at the two longest-running forest FACE sites, i.e., 

Oak Ridge (average of 17.7 %, ranging from 10.2 % to 34.6 % during 1998-2008) and Duke 

(average of 27.2 %, ranging from 7.7 % to 41.9 % during 1996-2007) (De Kauwe et al., 2016). 



 

168 

 

 
Figure 5.13 Comparisons of the observed relative response of GPP to rising atmospheric CO2 concentration 

at the FACE experimental sites (Table 5.4) and the estimated relative response of GPP to rising 

atmospheric CO2 by 12 RS-based models for the period of 2000-2014. 
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Table 5.4 The list of Free Air CO2 enrichment experiments sites. 
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5.4.2 Comparison of models 

Although satellite data are used by all models, the principles, parameters, structures and 

driving variables of VI-, LUE-, process- and ML-based models vary widely (Keenan et al., 

2012; Song et al., 2013; Pasetto et al., 2018). It must be noted that some models may overly 

assume the meaning represented by VIs (Wang et al., 2012; Baret et al., 1991; Silleos et al., 

2006; Yang et al., 2013; Watham et al., 2017). For example, AVM utilizes the enhanced 

vegetation index (EVI), the partial and indirect expression of water effects (Wu et al., 2010; 

Watham et al., 2017; Lees et al., 2018), as a moisture constraint combined with temperature to 

estimate GPP, which would hyper-respond to temperature, especially in areas with adequate 

thermal resources (Li et al., 2016) (e.g., rainforest); thus, this method would not be suitable for 

use at the global scale. Meanwhile, rainforests that have high temperatures throughout the year 

contribute most to the global GPP, and rainforests are significantly affected by the CO2 

fertilization effect; thus, β would be overestimated to a certain extent in AVM (Ryan et al., 2017). 

For a similar reason, apart from the models considering the CO2 fertilization effect, using TG, 

which is based on EVI and land surface temperature (LST) (Sims et al., 2008), to estimate 

productivity is next only to AVM, followed by VI, in which the productivity is estimated using 

the multiplication of LUE and fAPAR (both of which are affected by CO2) (Wu et al., 2010). 

GR, also a VI-based model, does not directly respond to temperature and only utilizes EVI as 

the proxy of the CO2 effect (Yang et al., 2013); therefore, the sensitivity to CO2 is lower than 

that in the other VI models. On the other hand, as the result of both the direct and the indirect 

radiation-influencing parameters that are introduced in GR (Gao et al., 2014), the effect of 

radiation on GPP would be relatively high, which is demonstrated by Figure 5.5. The sensitivity 

to radiation in GR is only lower than that in BESS, which also considers the effect of diffuse 

radiation, which is more effective than beam radiation on GPP, particularly during cloudy days 

(Ryu et al., 2011; Song et al., 2013; Jiang et al., 2016). For MODIS and MTE, studies have 

reported that these models are not suitable for interannual variation and trend benchmarking 

(Kelley 2013; Li et al., 2016), especially in terms of assessing the CO2 fertilizer effects, because 

almost no apparent response to the rising atmospheric CO2 concentration in the two models 

leads to an underestimated trend (Anav et al., 2015). Theoretically, the calculation of fAPAR is 

an expression of the effect from the CO2 fertilization in the MODIS algorithm and MTE (Smith 

et al., 2016; De Kauwe et al., 2016). However, the calculation of fAPAR in MODIS is based on 

the LAI, which is estimated using different PFT-classifying schemes (Yan et al., 2016; Pasetto 

et al., 2018). There is a total of 29 variables in the MTE algorithm, most of which are 

environmental factors; additionally, there are complex linear and nonlinear coupled 

relationships among the various parameters (Beer et al., 2010; Jung et al., 2011). Finally, the 

weight of fAPAR cannot be determined and would be slight. What is more important is that the 

CO2 data and fertilization effect were not used in the initial calibration of the model algorithms 

(Graven et al., 2013; Thomas et al., 2016; Prentice et al., 2017). For the models considering the 

CO2 effect, i.e., BESS, CFix and BEPS, the β values of the latter two would be significantly 

higher than that in BESS; the empirical response function in CFix is based on the influences on 

the photosynthetic rate from the increasing CO2 concentration (Veroustraete et al. 1994 2002) 

via the FvCB (Farquhar and von Caemmerer 1982) model measured at saturated light intensity 

(De Kauwe et al., 2016b); but in typical daytime field conditions the Rubisco-limited rate more 

steeply determines the photosynthetic rate than does the radiation-limited rate (Maire et al., 

2012), as well as the β effect that is implied in fAPAR and calculated by the normalized 

difference vegetation index (NDVI); thus, CFix is over-sensitive to increasing CO2 

concentrations (Prentice et al., 2017). BEPS overestimates β because the influences of the CO2 

concentration on both stomatal conductance and fAPAR are considered in the algorithm, but 

double VIs, LAI and NDVI introduced in the model will cause the overlapping CO2 effect on 
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fAPAR. Only VPM has a negative 𝜂𝐺𝑃𝑃
𝑖𝑛𝑡   effect (Figure 5.2), and it is easy to find that the 

negative responses in the Tropics and sub-tropics during the dry seasons (Figure 5.13) lead to 

a negative global overall effect. Studies (Poulter et al., 2009; Souza et al., 2013; Yang et al., 

2013) have proven that during the dry season, due to influences from deep SM, GPP will reach 

its maximum. However, the LSWI is utilized in VPM to represent water stress and would be 

inconsistent with the EVI enhanced by deep SM (Poulter et al., 2009; Souza et al., 2013), which 

would lead to underestimating the GPP during the dry season. Furthermore, the wavelength 

bands selected to calculate the LSWI can hardly be absorbed by atmospheric vapor (Song et al., 

2013; Zhang et al., 2015); thus, it cannot be utilized to assess the situation of atmospheric 

moisture (Lees et al., 2018) and can only represent the water content in the canopy, particularly 

in the leaves, which decreases during the dry season. In the Tropics, the sensitivity of the models 

to temperature varies widely (Yang et al., 2013; Zhang et al., 2016; Wu et al., 2017). First, RS 

data in the Tropics are inferior in quality, and the available rate does not reach half (Wu et al., 

2017). Second, the non-periodic variation in VIs cause the relationship of GPP-VI to not be as 

obvious as that with temperate (Wu et al., 2010; Keenan et al., 2012); additionally, the 

corrections of all the models were conducted at flux tower sites that were concentrated in the 

mid-high latitudes of the Northern Hemisphere and rarely in the Tropics. These conditions may 

be uncertainties and disadvantages that result in the responsiveness of models in the Tropics to 

be insufficient (Wei et al., 2017; Tagesson et al., 2017; Prentice et al., 2017; Ito et al., 2017). 

The spatial continuity of sensitivity to precipitation is not significant (Yan et al., 2015), except 

in regions with high water stress (e.g., western North America, Australia, South Africa) and 

vary among models. One reason for this result is because precipitation data are not required to 

run the models, and second, the expression of moisture constraint varies among models (Yuan 

et al., 2014; Lees et al., 2018). The moisture constraint item in AVM, GR and VI is implied by 

the EVI (Wu et al., 2010; Song et al., 2013; Lees et al., 2018), which will represent leaf color 

changes caused by variations in moisture stress (Song et al., 2013). However, the EVI represents 

the greenness rather than the productivity, and the situation in which water conditions have 

caused photosynthesis but not yet caused EVI changes (Song et al., 2013; Lees et al., 2018) has 

insinuated that the EVI has insufficient emergency responses to short-term and rapid water 

stress changes (Yang et al., 2013; Joiner et al.., 2018). Additionally, in addition to VIs, 

introducing the non-universal indicators to reinforce the effect of water could also cause the 

over (or under)-estimation of δGPP to some extent (Li et al., 2013; Song et al., 2013; Zhang et 

al., 2015; Lees et al., 2018). For example, TG always overestimated δGPP. Because LST had low 

accuracy during cloudy days (Wan et al., 2008; Wu et al., 2010; Watham et al., 2017); but when 

the cloud coverage is low, the vegetation coverage will be lower (during the dry season 

(Vourlitis et al., 2008)), and LST could be seriously affected by the soil (Yang et al., 2013; Sun 

et al.,2016; Lees et al., 2018). MODIS, BESS and BEPS (Ryu et al., 2011; Jiang et al., 2016; 

Zhang et al., 2018) mainly rely on vapor pressure deficit (VPD) as an important variable to 

balance the atmospheric demand for water vapor (Hu et al., 2018) on GPP to express water 

stress (Leuning et al., 2005). However, the spatial distribution of VPD and the available water 

resources for plants are not consistent (Song et al., 2013; Lees et al., 2018) and are very sensitive 

to temperature variations (Nemani et al., 2002; Yuan et al., 2014). Therefore, as long as the 

model contains VPD, even if the external water resources are sufficient, there will be some 

degree of moisture pressure during summer (Hashimoto et al., 2013; Yan et al., 2015). For BESS, 

moreover, the considered VPD was calculated by the temperature that was estimated by 

considering the longwave radiation from the soil and atmosphere and the heat generated by 

photosynthesis (Ryu et al., 2011; Jiang et al., 2016); therefore, BESS is significantly sensitive 

to both temperature and water. From the perspective of demand theory (Churkina et al., 1999), 

the expressions of water stress in EC-LUE and CASA belong to the proxy of energy exchange 

(Garbulsky et al., 2010;Yan et al., 2015), reflecting the exchange of hydrothermal flux between 
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the soil and atmosphere (Yan et al., 2015). However, it is difficult to accurately estimate ET 

(Yuan et al., 2010; Mu et al., 2013; Yang et al., 2013; Hu et al., 2018), and in the CASA model, 

the water limitation is permanently greater than 0.5(Poulter et al., 2009; Wu et al., 2010; Souza 

et al., 2013; Song et al., 2013; Yuan et al., 2014; Zhang et al., 2016; Hu et al., 2018). Only CFix 

and BEPS introduce the SM, which is an important indicator used to assess the water stress on 

GPP. However, CFix considers the SM and atmospheric moisture circumstances to have an 

equal influence on photosynthesis (Veroustraete et al., 2002), which in reality not (Yuan et al., 

2014; Zhang et al., 2016; Hu et al., 2018; Lees et al., 2018). The uncertainty in BEPS is 

relatively complex (Yang et al., 2013; Zhang et al., 2015): theoretically, the combination of the 

VPD and SM should produce a better estimation of GPP (Zhang et al., 2015; Lees et al., 2018); 

however, because the VIs are introduced in the algorithm, BEPS may be oversensitive to water 

stress (Li et al., 2013; Lees et al., 2018), and multiple factors may also neutralize the effect of 

one another. In general, most models do not consider SM or use VI as a proxy of SM (Prentice 

et al., 2017; Hu et al., 2018), and none of the models correctly indicate drought stress (Wu et 

al., 2010; Garbulsky et al., 2010; Schaefer et al., 2012; Yuan et al., 2014; Hu et al., 2018); the 

disadvantages and advantages of each model under different external conditions are different 

(Wang et al., 2012; Yang et al., 2013; Yuan et al., 2014), and the applicability of each is also 

inconsistent (Garbulsky et al., 2010; Yang et al., 2013). 
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5.4.3 Uncertainty analysis 

The method used in this chapter is based on one assumption: sensitivity is more accurate 

when there is less interaction between variables. It has been demonstrated that the interaction 

is overall less than 7 % at the global level (Zhang et al., 2016), but in some regions, the 

interaction could be 35 % or larger (Wu et al., 2017; Zhang et al., 2016). Therefore, special 

attention is required in the interpretation of the spatial distribution of the sensitivity in the 

models. 

From the original studies of the models, it is evident that GPP data measured using the EC 

technique at the limited number of sites (Schaefer et al., 2002; Wei et al., 2017) concentrated in 

the Northern hemisphere are required by nearly all models to accurately calibrate the conversion 

coefficient (m) (Li et al., 2013; Liu et al., 2014), light use efficiency (ε) (Yuan et al., 2014; 

Zhang et al., 2015) and the maximum rate of carboxylation (Vmax) (Jiang et al., 2016; Zhang et 

al., 2018), which are the basis of GPP estimation via VI-, LUE- and Process-based methods, 

respectively. In natural ecosystems, Vmax, m and ε are determined by a wide variety of biological, 

biophysical, and environmental parameters (Li et al. 2007), and the same ecosystem may have 

different values (Tagesson et al., 2017). Furthermore, the variable measured by the EC tower is 

NEE instead of GPP, and the latter is estimated by the simplified model of the real process 

involving numerous assumptions and judgments that will bring many hidden uncertainties to 

the model (Loescher et al., 2006). 

Inputting the different climate datasets to run the same model will induce an overall global 

uncertainty of 9 % (Wu et al., 2017); if inputting combined climate variables from different 

datasets, the uncertainty can be larger than 30 %, which is even greater than the uncertainty of 

the model itself (Wu et al., 2017; Blyth et al., 2011; Zhao et al., 2006). All the meteorological 

data used in this study were obtained from MERRA-2, while the soil moisture data and other 

related data were derived from different datasets, which introduces some errors. I directly used 

the MET-GPP product developed by Jung et al (2011), which is based on the CRU dataset, so 

the uncertainty in the sensitivity analysis of MTE would be higher than that of the other models. 

All the RS data and products used in this study were from MODIS; thus, to some extent, the 

uncertainty caused by the different sensors should be reduced. However, RS data only represent 

the underlying surface state when the satellite passes, rather than the average for a certain period 

of time (Li et al., 2013; Yuan et al., 2014; Wu et al., 2010). The low quality of RS data will also 

introduce some uncertainties (Yang et al., 2013; Yuan et al., 2014; Li et al., 2016; Sun et al., 

2016), particularly in terms of cloud contamination in the Tropics (Hilker et al., 2012), and the 

low solar angles and extended periods of darkness at high latitudes can affect the reflectance 

readings from the optical MODIS sensor (Beck et al., 2006). 

Studies have shown that the qualitative analysis that compares the RS results with the site 

results is meaningful, while the spatial patterns and quantitative analysis are not sufficiently 

accurate (Pasetto et al., 2018). Therefore, the uncertainty introduced by the scale effect should 

be considered for the comparative evaluation of the sensitivity of the models at the site scale. 

In the preparatory stage of the spatial datasets, all the data should be resampled into the same 

spatial resolution and coordinate system, but different gap-filling methods, diversity and 

complex biophysical environments, mixed pixels and spatial heterogeneity may interactively 

affect model performance (Benz et al., 2004; Pasetto et al., 2018). 

Finally, it should be noted that the main focus of this chapter was to compare and evaluate 

the differences in responses to climatic variability and increasing atmospheric CO2 

concentrations in the models, and the best performances of these models might be reached 
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through utilizing model-dependent parameter values and driving datasets from the original 

publications. 
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5.5 Conclusions 

In this chapter, I evaluated and compared the sensitivity of GPP estimated by 12 RS-based 

GPP models and benchmarked these estimates against the GPP responses to climatic factors 

measured at flux tower sites and to elevated CO2 concentrations measured at FACE 

experimental sites. The comparison among models and the comparison of models against 

observations helps document their strengths and weaknesses under current conditions and can 

also identify heuristic constraints about their applicable conditions and scopes. I report the 

following main conclusions: Regarding the GPP trend, the models with the relatively higher 

sensitivity to increasing atmospheric CO2 concentrations (e.g., BEPS, AVM, TG, CFix and 

BESS) show more significant trends. Through the analysis of the response to increasing 

atmospheric CO2 concentrations, considering only the effect of variation in CO2 concentrations 

on photosynthesis without considering the CO2 fertilization effect on the greenness index, LUE 

or fAPAR will underestimate the sensitivity of models to CO2, and vice versa. Compared with 

the results from the FACE experiment, models will easily overestimate the CO2 fertilization 

effect when the CO2 saturation effect and environmental limitations, such as moisture, are not 

considered. At the global scale, the overall effects of temperature and radiation among different 

models have differences in magnitude and even in sign, while models were relatively consistent 

in their response to variations in precipitation, although the expressions of the water effect in 

different models were different. The spatial differences in response to climatic factors among 

models were mainly reflected in the Tropics where the highest uncertainty existed. At high 

latitudes, all models had a consistent and obvious positive response to temperature and radiation, 

while precipitation showed the most significant positive effect on GPP in the mid-latitudes. 

Although the models' estimations are basically within the confidence intervals of the 

sensitivities to climatic factors calculated by measurements at the flux sites, none of the models 

consistently reproduced the optimal ability to capture climatic stress across the different sites, 

indicating that for a site and a given model, there were large factor-to-factor differences in 

estimation accuracy. 

Although there are various uncertainties, the optimal response model varies across 

ecosystems and affecting factors.   
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Chapter 6 Summary and conclusions 

6.1 Summary of present work 

GPP plays a pivotal role in the global carbon balance and almost all ecosystem processes. 

Quantitative estimations of the GPP and its variations at spatial scales are important issues with 

future significance due to the increasing atmospheric CO2 levels. It is significant to the study 

of terrestrial ecosystem that understand the response relationships between GPP and 

environmental changes. Since the influences and constraints of physical environments and 

biochemical processes, terrestrial GPP response to the environment varies with diverse spatial 

patterns. Aiming to derive spatiotemporal patterns of variation and distribution of terrestrial 

GPP using satellite remote sensing technique, to investigate the enviro-climatic effects on 

global terrestrial GPP, and to discuss the difference among RS-based GPP algorithms, four main 

tasks have been undertaken: (i) Estimation on GPP of the global terrestrial ecosystem using 

multi-model; (ii) Analysis on Long-term trends of variations in GPP and its attribution; (ii) 

Investigation on effect of CO2 fertilization on GPP; (iv) Comparison of the sensitivity of GPP 

to external factors in RS-based models. The data used for these researches include remote 

sensing datasets, climate datasets, soil moisture and property, and the datasets from EC flux 

tower sites and FACE experimental sites. The data used are listed in Table 6.1. 

6.2 Theoretical and practical innovations 

This thesis focuses on utilizing RS-based models to research global terrestrial GPP, 

including spatial distribution changes, temporal trends, seasonal cycle, external factors 

influencing, CO2 fertilization effect and other aspects. It has important theoretical and practical 

significance in multiple fields, such as terrestrial ecosystem carbon cycle, RS GPP algorithm, 

global climate change etc. And I summarized as the followings 5 major points: 

(i) Comprehensively and systematically evaluating, comparing and analyzing the GPP 

estimations from RS-based model ensemble at the global scale; 

(ii) Interpreting and benchmarking the prevalent RS-based model sensitivity to external 

factors on the basis of model structure, parameters, and hypothesis; 

(iii) Utilizing RS-based GPP models to investigate the CO2 fertilization effects, and 

discussed the effect in two aspects, physiological structure changes and photosynthetic rate 

enhancement; 

(iv) Attempting to introduce the satellite-based atmospheric CO2 concentration data into 

global terrestrial GPP estimating; 

(v) According to the variations in global terrestrial GPP and its attributions, zoning and 

characterized analyzing the global terrestrial ecosystems.   
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Table 6.1 Overview of data used in this thesis. 
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6.3 Limitation of this study 

As mentioned before, there are so many advantages for remote sensing datasets, while, the 

disadvantages are also obvious, such as, same object with different spectra, different objects 

with same spectrum, mixed pixel, the quality difference etc., lead to remaining some limitations 

in this study. The limitations did not influence to achieve the objectives in each study. In the 

followings, I delineated the limitations that I think it is necessary and meaningful for our future 

study and other researches who want conduct similar researches. 

First of all, the spatial scale conversion issues: the spatial resolution of final datasets used 

in this thesis was 0.5° × 0.5°, almost all the original data had to use superiority category methods, 

linear or nonlinear interpolation to obtain the consistently spatial resolution datasets. For 

example, the phenological dataset is at 1-km × 1-km spatial resolution, we had to select one 

typical value from more than 2500 pixels, but the complex underlying surface conditions do 

not allow me to get one value which can represent all the pixel especially in the plant functional 

types transition zone. More often than not, the interesting grid contained the plants from 

budburst to leaf full expansion. Simultaneously, when comparing the estimates with the 

measurement at sites, the mismatch footprint size also brought the limitations and uncertainty. 

Improving the spatial resolution is likely to be the optimal way to solve this limitation, but the 

improvement in spatial resolution would bring the geometric progression increase in the amount 

of data. 

Second, although I used the consistent gap-filling scheme, priority space dimension, to 

make up the quality issues of RS data, some insurmountable problems still exist. For example, 

when calculating the Clumping Index, I used the median to represent the average situation 

throughout the year, only the grid with the high-quality flag would be used. However, in the 

Tropics, the proportion of high-quality grids appear during the dry season was much higher than 

that during rainy seasons. Unfortunately, during rainy seasons the tropics ecosystems always 

have the relatively higher productivity which contributes more to global and annual GPP, but 

using the dry seasons CI would reduce this contribution. 

The representative issue of the data used in the thesis: the atmospheric CO2 concentration 

data obtained from GOSAT is XCO2 instead of the canopy CO2 concentration which is 

important to photosynthesis. I used the decoupling coefficients and the pressure layer data to 

estimate the CO2 concentration in the canopy, but the relationship of CO2 concentration among 

different air pressure layers is not linear, and the influencing factors on decoupling coefficient 

are complex. Therefore, the method of getting the canopy CO2 concentration should be further 

investigated to improve the special representativeness of satellite CO2 concentration data. I 

mainly used two climate datasets, i.e. MERRA-2 and NECP-DOE, which is different from CRU 

that often as the driving dataset to run the ecosystem models. Because of the number of 

involving models and essential variables is relatively more, I mainly used two climate datasets, 

i.e. MERRA-2 and NECP-DOE, which is different from CRU that often as the driving dataset 

to run the ecosystem models. Therefore, it is not easy to compare our results with the results 

from others' researches. Although the study period for the long-term changing study meets the 

lowest requirement of climatology, the study period of the research on the sensitivity and 

accuracy of the RS-model ensemble limited by the availability of satellite data is only from 

2000 to 2014. The study period is not long enough and leads to the weak persuasiveness of 

phenomenon. 

In addition to the limitations of data, there are also some limitations to the methods used 

in this thesis. First of all, the selection of models, there are 12 models included in the model 
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ensemble used in this thesis including VI-, LUE-, process- and machine learning-based models. 

However, many other models that are also representative were not involved in the estimation 

and comparison. For VI models, the GPP estimation from SIF was considered in the study but 

I did not compare the long-term results with other estimates, because of the available temporal 

range of RS data; and due to the similar reason, some photochemical indexes (e.g., PRI 

(Photochemical Reflectance Index), MTCI (Merris Terrestrial Chlorophyll Index)) were also 

not discussed. Regarding LUE-based models, VPRM, CFlu etc. were also not considered in this 

thesis. I directly used the MTE GPP products instead of re-calculating it also became one of the 

limitations. Process-based models lack the dynamic constraint module between N and C; on 

one hand, because this constraint relationship is too complex; and on the other hand, because 

there is no spatiotemporal continuous sequence of N-deposition dataset could be used. 

In Chapter 3, for the long-term GPP estimation and its attribution analysis I only selected 

the CFix model and verified the accuracy with MTE and MODIS GPP products. Choosing only 

the CFix model is also forced to no alternative since CFix is the only one considering CO2 

fertilization effect and with enough driving data. BESS and BEPS are more suitable for control 

variables and quantitative research, but there is no dataset meets the large requirement of driving 

variables. Therefore, the CFix model can only be selected secondly, which also led to a weaker 

stringency of conclusion by only one single model than by the model ensemble. In Chapter 4, 

for the study on the CO2 fertilization effect, I firstly used BEPS models and then according to 

the photosynthesis principle proposed a RS-based model introducing GOSAT CO2 data. Only 

used the BEPS model because it is the only one process model who considers the CO2 fertilizer 

effect and also involves the soil moisture effect. The same as Chapter 3 only one model would 

reduce the stringency of study. The attempt which introduced the GOSAT CO2 data lacks the 

direct constraints from soil moisture and nutrition. and since the GOSAT satellite data does not 

exist before 2009, I only compared the difference between 2000 and 2014, and only in 2014 we 

used the spatial continuous CO2 concentration data; unless combined with DGVMs, this issue 

is not easily to solve. 

Finally, it should be noted that in chapter 5 the main focus is to compare and evaluate the 

differences in response to the climatic variability and the rising atmospheric CO2 concentration 

in the models, and the best performance of these models might be reached through utilizing 

model-dependent parameter values and driving datasets from the original publications. 

6.4 Further study 

Improve the proposed RS model and using the high spatiotemporal resolution RS data to 

drive models and benchmark it at EC flux sites and FACE experimental sites; Hoped that 

experts in the fields of ecosystem and climate change could publish a series of RS data to 

standardize the comparison among models, and to more clearly explain and discover the 

advantages and disadvantages and applicable conditions of each model. Combining with 

DGVMs and utilizing the respective advantages to discuss the effects of external factors on 

terrestrial ecosystems in detail, and trying to estimate more realistic and accurate global 

terrestrial GPP are necessary. Establishing and developing the full RS based GPP models by 

introducing the physiological vegetation indices (e.g., SIF, PRI, MTCI) and the more detailed 

CO2 concentration data and etc is the next step. Hindcasting the history, inverting the present 

and deducing the future: utilize RS parameters or algorithms to adjust or correct the key 

parameters and process in the DGVMs, and make attempt to predict the spatiotemporal 

distribution of terrestrial GPP under the background of climate change.  
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6.5 Final conclusions 

The main objectives of this study are investigating the spatiotemporal patterns of 

distribution and variations in global terrestrial GPP and comparing the prevailing RS-based 

models. Four research tasks (from Chapter 2 to Chapter 5) have been undertaken: 

There is no model showing an isolated estimation in the spatial distribution, seasonal 

variation and interannual variation of GPP. However, The VI and LUE models, which are 

relatively simpler in form and have fewer parameters, also have comparable abilities of 

estimating GPP to those of complex process-based models. 

The five factors considered in Chapter 3 resulted in an overall positive effect on the GPP 

trend but with different spatial patterns, magnitudes, and mechanisms. Globally, increases in 

GPP occurred in over 75% of the areas; the interactions between factors were positive, and the 

increases in atmospheric CO2 concentration had the greatest contribution on global increasing 

GPP. However, regionally, the LCC and climatic factors appear play more important roles in 

GPP changes. Larger areas in the lower latitudes showed increases in the amplitude of the GPP 

annual cycle which dominated by shifts in water conditions; in contrast, in the middle latitudes 

GPP expressed not only the amplitude changes but also a lengthened rapid growth stage during 

the early period which were likely to be driven by increases in temperature and radiation; in 

large areas of the Southern Hemisphere, GPP increased in both the early and later period of the 

growing season, resulting in a lengthening growing season. However, at high altitudes, the 

changes in GPP were probably caused by the changes in the temperature and water conditions. 

The effect of nutrition cannot be quantified from this study since any resulting changes were 

implicit in the satellite-observed NDVI and were not explicitly modeled. In summary, Chapter 

3 found a wide range of GPP trends, both spatially and seasonally. It appears that CO2, LCC 

and climatic factors together played a role in global terrestrial GPP changes. 

When estimating global GPP using RS-based methods, the effects of the temporal and 

spatial distribution of the atmospheric CO2 concentration on GPP have rarely been incorporated. 

Chapter 4 considered this effect when quantifying the global GPP. First, I used process-based 

RS model, BEPS, to compared the estimated GPP with the products of the models that did not 

consider the CO2 fertilization module, and I compared the estimates obtained by inputting the 

CO2 data without spatiotemporal characteristics to analyze the effects of the CO2 concentration 

and its spatiotemporal influence on the estimation of GPP. Second, I attempted to use 

continuous spatial CO2 concentration data obtained from GOSAT to estimate the GPP combined 

with the decoupling coefficients of PFTs to obtain the CO2 concentration in canopy; then, 

according to climate data, I attempted to calculate the photosynthetic efficiency using the leaf- 

and canopy-level photosynthesis model and estimate the global monthly and annual GPP by 

scaling up to the whole ecosystem using the big-leaf model. Through using the Fluxnet 2015 

dataset to assess the accuracy of the estimates, the GPP estimates are relatively consistent with 

tower GPP, indicating that the method proposed in Chapter 4, which introduces the continuous 

spatial CO2 concentration data obtained by RS technology, is feasible. The results showed that 

the relative relationship between the estimated GPP and the other GPP products exhibited a 

close relationship with the increasing CO2 concentration, indicating that not considering the 

CO2 fertilization effect would result in an underestimation of GPP. In addition, the estimations 

that do not consider the spatiotemporal distribution of the CO2 concentration would cause an 

overall overestimated annual GPP, and these biases varied with location and period. In particular, 

the increases in the lower latitudes are more significant than those in the middle and high 

latitudes; the increments in the GPP estimates in the middle and high latitudes in the Northern 

Hemisphere during the summer are greater than those during the other seasons, but in the 
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Southern Hemisphere, the increments are almost the same throughout the year; without 

considering the spatiotemporal distribution of atmospheric CO2 concentrations, the GPP 

estimates were underestimated before June and overestimated after June in the Northern 

Hemisphere; moreover, the GPP in the Southern Hemisphere was overestimated all throughout 

the year. Chapter 4 suggested that the spatiotemporally varied CO2 concentrations should be 

factored into GPP estimations when using an RS-based model for a long-term period and a large 

regional scale. 

In Chapter 5, I evaluated and compared the sensitivity of GPP estimated by 12 RS-based 

GPP models and benchmarked these estimates against the GPP responses to climatic factors 

measured at flux tower sites and to elevated CO2 concentrations measured at FACE 

experimental sites. The comparison among models and the comparison of models against 

observations helps document their strengths and weaknesses under current conditions and can 

also identify heuristic constraints about their applicable conditions and scopes. I report the 

following main conclusions: through the analysis of the response to increasing atmospheric 

CO2 concentrations, considering only the effect of variation in CO2 concentrations on 

photosynthesis without considering the CO2 fertilization effect on the greenness index, LUE or 

fAPAR, will underestimate the sensitivity of models to CO2, and vice versa. Regarding the GPP 

trend, the models with the relatively higher sensitivity to increasing atmospheric CO2 

concentrations (e.g., BEPS, AVM, TG, CFix and BESS) show more significant trends. 

Compared with the results from the FACE experiment, models will easily overestimate the CO2 

fertilization effect when the CO2 saturation effect and environmental limitations, such as 

moisture, are not considered. At the global scale, the overall effects of temperature and radiation 

among different models have differences in magnitude and even in sign, while models were 

relatively consistent in their response to variations in precipitation, although the expressions of 

the water effect in different models were different. The spatial differences in response to 

climatic factors among models were mainly reflected in the Tropics where the highest 

uncertainty existed. At high latitudes, all models had a consistent and obvious positive response 

to temperature and radiation, while precipitation showed the most significant positive effect on 

GPP in the mid-latitudes. Although the models' estimations are basically within the confidence 

intervals of the sensitivities to climatic factors calculated by measurements at the flux sites, 

none of the models consistently reproduced the optimal ability to capture climatic stress across 

the different sites, indicating that for a site and a given model, there were large factor-to-factor 

differences in estimation accuracy. Although there are various uncertainties, the optimal 

response model varies across ecosystems and affecting factors. 
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Supplementary materials 

 

 

Figure S1-a Comparisons of flux GPP and estimated GPP of each site. 
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Figure S1-b Comparisons of flux GPP and estimated GPP of each site. 
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Figure S1-c Comparisons of flux GPP and estimated GPP of each site. 
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Figure S1-d Comparisons of flux GPP and estimated GPP of each site. 
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Figure S1-e Comparisons of flux GPP and estimated GPP of each site. 
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Figure S1-f Comparisons of flux GPP and estimated GPP of each site. 
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Figure S1-g Comparisons of flux GPP and estimated GPP of each site. 
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Figure S1-h Comparisons of flux GPP and estimated GPP of each site. 
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Figure S1-i Comparisons of flux GPP and estimated GPP of each site. 
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Figure S1-j Comparisons of flux GPP and estimated GPP of each site. 
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Figure S1-k Comparisons of flux GPP and estimated GPP of each site. 
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Figure S1-l Comparisons of flux GPP and estimated GPP of each site. 
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Figure S1-m Comparisons of flux GPP and estimated GPP of each site. 
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Figure S1-n Comparisons of flux GPP and estimated GPP of each site. 
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Figure S1-o Comparisons of flux GPP and estimated GPP of each site. 
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Figure S1-p Comparisons of flux GPP and estimated GPP of each site. 
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Figure S2 The monthly spatial distributions of linear trends in atmospheric CO2 concentrations during the 

period 1982-2015. 

 

 
Figure S3 The monthly spatial distributions of linear trends in radiation during the period 1982-2015. 

 

 
Figure S4 The monthly spatial distributions of linear trends in water conditions during the period 1982-

2015. 

 
Figure S5 The monthly spatial distributions of linear trends in temperature during the period 1982-2015.
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Figure S6-a Scatter plots of estimated GPP values (y axis) vs. MTE_GL GPP values (x axis) from 1982 to 2011. Only pixels over vegetated areas are shown. The 

parameters of the linear regression line in all panels are shown in Table 3.3. 
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Figure S6-b Scatter plots of estimated GPP values (y axis) vs. MTE_GL GPP values (x axis) from 1982 to 2011. Only pixels over vegetated areas are shown. The 

parameters of the linear regression line in all panels are shown in Table 3.3. 
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Figure S7-a Scatter plots of estimated GPP values (y axis) vs. MTE_MR GPP values (x axis) from 1982 to 2011. Only pixels over vegetated areas are shown. The 

parameters of the linear regression line in all panels are shown in Table 3.3. 
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Figure S7-b Scatter plots of estimated GPP values (y axis) vs. MTE_MR GPP values (x axis) from 1982 to 2011. Only pixels over vegetated areas are shown. The 

parameters of the linear regression line in all panels are shown in Table 3.3. 
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Figure S8 Scatter plots of estimated GPP values (y axis) vs. MODIS Product (x axis) from 1982 to 2011. Only pixels over vegetated areas are shown. The 

parameters of the linear regression line in all panels are shown in Table 3.3.
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Figure S9 Comparisons of annual GPP estimated by the MODIS algorithm and the iBEPSd model. 
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Figure S10 Comparisons of annual GPP estimated by the VPM algorithm and the iBEPSd model. 
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Figure S11 Comparisons of annual GPP estimated by the MTE-GL and the iBEPSd model. 
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Figure S12 Comparisons of annual GPP estimated by the MTE-MR and the iBEPSd model. 
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Figure S13-a Different GPP estimates at each flux tower site. (Above: Monthly distribution of GPP values of 

GPP2014
𝑚𝑜𝑛𝑡ℎ𝑙𝑦𝑠𝑝𝑎𝑡𝑖𝑎𝑙𝐶𝑂2  , MODIS product and tower observations; Below: Difference between 

GPP2014
𝑚𝑜𝑛𝑡ℎ𝑙𝑦𝑠𝑝𝑎𝑡𝑖𝑎𝑙𝐶𝑂2  and tower GPP estimates, and difference between the MODIS GPP product 

and tower GPP estimates at each corresponding flux tower site.) 
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Figure S13-b Different GPP estimates at each flux tower site. (Above: Monthly distribution of GPP values of 

GPP2014
𝑚𝑜𝑛𝑡ℎ𝑙𝑦𝑠𝑝𝑎𝑡𝑖𝑎𝑙𝐶𝑂2  , MODIS product and tower observations; Below: Difference between 

GPP2014
𝑚𝑜𝑛𝑡ℎ𝑙𝑦𝑠𝑝𝑎𝑡𝑖𝑎𝑙𝐶𝑂2  and tower GPP estimates, and difference between the MODIS GPP product 

and tower GPP estimates at each corresponding flux tower site.) 
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Figure S14 Monthly surface air CO2 concentrations in 2014. Global maps of the monthly surface air CO2 

concentrations in 2014 obtained from the Japan Meteorological Agency  

(http://ds.data.jma.go.jp/ghg/kanshi/info_kanshi_e.html) 
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Figure S15-a Comparisons of flux GPP and the iBEPSd estimated GPP of each site. 
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Figure S15-b Comparisons of flux GPP and the iBEPSd estimated GPP of each site. 
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Figure S15-c Comparisons of flux GPP and the iBEPSd estimated GPP of each site. 
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Figure S15-d Comparisons of flux GPP and the iBEPSd estimated GPP of each site. 
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Figure S15-e Comparisons of flux GPP and the iBEPSd estimated GPP of each site. 
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Figure S15-f Comparisons of flux GPP and the iBEPSd estimated GPP of each site. 
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Figure S15-g Comparisons of flux GPP and the iBEPSd estimated GPP of each site. 
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Figure S15-h Comparisons of flux GPP and the iBEPSd estimated GPP of each site. 
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Figure S15-i Comparisons of flux GPP and the iBEPSd estimated GPP of each site. 
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Figure S16-a Global distribution of the monthly responses of GPP to variation in radiation. 
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Figure S16-b Global distribution of the monthly responses of GPP to variation in radiation. 
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Figure S16-c Global distribution of the monthly responses of GPP to variation in radiation. 
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Figure S17-a Global distribution of the monthly responses of GPP to variation in Temperature. 
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Figure S17-b Global distribution of the monthly responses of GPP to variation in Temperature. 
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Figure S17-c Global distribution of the monthly responses of GPP to variation in Temperature. 
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Figure S18-a Global distribution of the monthly responses of GPP to variation in precipitation. 
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Figure S18-b Global distribution of the monthly responses of GPP to variation in precipitation. 
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Figure S18-c Global distribution of the monthly responses of GPP to variation in precipitation. 
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Table S1 The comparisons of sensitivities of GPP to factors by RS-based models, DGVMs and ESMs at each Fluxnet site. The red squares represent the results from RS-based models 

including AVM, VPM, VI, BEPS, BESS, MODIS, MTE, CASA, CFix, GR, TG and EC-LUE; The green diamonds are the results calculated from DGVMs including VISIT, 

VEGAS, ORCHIDEE, LPJml, JULES, DLEM and CARAIB obtained from ISIMIP2; And the blue circles mean the results from ESMs got from CMIP5 including 

NorESM1_ME, MIROC_ESM_CHEM, MIROC_ESM, IPSL_CM5A_MR, IPSL_CM5A_LR, GISS_E2_R, GISS_E2_H, GFDL_ESM2M, GFDL_ESM2G. 
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Abbreviations 

GPP Gross primary production / Gross primary productivity 

ρNIR Spectral reflectance in near infrared 

[O2] Atmospheric O2 concentration 

a ̃ Leaf absorbance 

Acanopy Total assimilation rate of canopy 

ALB_BSA_NIR Black sky albedo at NIR range 

ALB_BSA_VIS Black sky albedo at visible range 

ALB_WSA_NIR White sky albedo at NIR range 

ALB_WSA_VIS White sky albedo at visible range 

APAR Absorbed photosynthetically active radiation 

AVHRR Advanced very high-resolution radiometer 

AVM Alpine Vegetation Model 

BEPS Boreal Ecosystem Productivity Simulator 

BESS Breathing Earth System Simulator 

BRDF Bidirectional reflectance distribution function 

Ca Ambient CO2 concentration 

CARAIB CARbon Assimilation In the Biosphere 

CASA Carnegie-Ames-Stanford Approach 

CCI Climate Change Initiative 

CFix Carbon Fixation 

Ci Leaf-internal CO2 concentration 

CI/Ω Clumping index 

CO2 Carbon dioxide 

CPC Climate Prediction Center 

CRO Croplands 

CRU Climatic Research Unit 

CSH Closed shrublands 
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CT Carbon Tracker / Climate Type 

DBF Deciduous broadleaf forest 

DGVM Dynamic global vegetation model 

DIS Data and Information System 

DISC Data and Information Services Center 

DLEM Dynamic Land Ecosystem Model 

DNF Deciduous needleleaf forest 

DOE Department of Energy 

EBF Evergreen broadleaf forest 

EC Eddy covariance 

EC-LUE Eddy Covariance Light Use Efficiency model 

EF Evaporative fraction 

EKC Activation energy for KO 

EKO Activation energy for KC 

ENF Evergreen needleleaf forest 

ESA European Space Agency 

ESRL Earth System Research Laboratory 

ET Evapotranspiration 

EVI Enhanced vegetation index 

ɛmax Potential light use efficiency without environmental limitation 

ɛwl LUE with water stress 

FACE Free-Air CO2 enrichment 

fAPAR Fractional absorbed photosynthetically active radiation 

FC/Soilcap Field water holding capacity 

fgeo LiSparseR coefficient 

fiso Isotropic coefficient 

fKcKo Ratio of turnover of oxygenase and carboxylase 

FTS Fourier Transform Spectrometer 
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FvCB 
Farquhar, von Caemmerer and Berry published a biochemical 

model for C3 photosynthetic rates 

fvol RossThick coefficient 

GEOS Goddard Earth Observing System Data Assimilation System 

GES Goddard Earth Sciences 

GIMMS Global Inventory Modelling and Mapping Studies 

GLCF Global Land Cover Facility 

GMAO Global Modeling and Assimilation Office 

GOME The Global Ozone Monitoring Experiment 

GOSAT Greenhouse Gases Observing Satellite 

GPP2000CO2 

The daily value of the spatial continuous atmospheric CO2 

concentration in the year 2000 was simply employed for every 

year of the inputted data. 

GPPannCO2 
Estimated GPP using the globally averaged annual mean CO2 

concentrations 

GPPmonCO2 
Estimated GPP using the globally averaged monthly mean CO2 

concentrations 

GPPspaCO2 
Estimated GPP under the daily spatial continuous atmospheric 

CO2 concentration 

GR Greenness-Radiation 

GRA Grasslands 

gs Stomatal conductance 

gsmax Maximum stomatal conductance 

H Sensible heat flux 

HadGEM2-ES 
Hadley Center Global Environment Model version 2 - Earth 

System Modeling 

iBEPSd Improved BEPS daily 

IGBP The International Geosphere-Biosphere Programme 

IPCC Intergovernmental Panel on Climate Change 

ISIMIP Inter-Sectoral Impact Model Intercomparison Project 

ISLSCP International Satellite Land Surface Climatology Project 

ITCZ Intertropical Convergence Zone 
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JAXA Japan Aerospace Exploration Agency 

Jc Rubisco-limiting 

Je Light-limiting 

JMA Japan Meteorological Agency 

Jmax Light-saturated rate of electron 

Js Sucrose synthesis-limiting 

JULES The Joint UK Land Environment Simulator 

k Light extinction coefficient 

KC Michaelis-Menten Constant for CO2 

KC,25 Michaelis-Menten constant for CO2 at 25℃ 

KO Inhibition constant of O2 

KO,25 Inhibition Constant of O2 at 25℃ 

LAI Leaf area index 

LC Land cover 

LCC Land-cover change 

LCCS Land cover classification system 

LH/λH Latent heat flux 

LP DAAC The Land Processes Distributed Active Archive Center 

LPJml Lund-Potsdam-Jena managed Land 

LST Land surface temperature 

LSWI Land surface water index 

LUE Light use efficiency 

LUT Look-up table 

LWP Leaf water potential 

MCD12C1 Land Cover Type Climate Modeling Grid product 

MCD12Q2 Land Cover Dynamics Yearly L3 Global 500 m SIN Grid 

MCD43C2 
MODIS/Terra and Aqua BRDF/Albedo Snow-free Parameters 

Daily L3 Global 0.05Deg CMG V006 
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MCD43C3 

MODIS/Terra and Aqua BRDF/Albedo (Bidirectional 

Reflectance Distribution Function and Albedo) Daily L3 Global 

0.05Deg CMG V006 

MCD43C4 
MODIS/Terra and Aqua Nadir BRDF-Adjusted Reflectance 

Daily L3 Global 0.05Deg CMG V006 

MCI Mid Continent Intensive 

MERRA 
Modern-Era Retrospective analysis for Research and 

Applications 

MF Mixed forest 

ML Machine-learning 

MOD16A2 
MODIS/Terra Net Evapotranspiration 8-Day L4 Global 500 m 

SIN Grid V006 

MODIS Moderate Resolution Imaging Spectroradiometer 

MTE Multi-Tree Ensemble 

MVC Maximum value composite 

N Nitrogen 

NACP North American Carbon Program 

NASA National Aeronautics and Space Administration 

NCEP National Centers for Environmental Prediction 

NDHD Normalized difference between hotspot and darkspot 

NDVI Normalized difference vegetation index 

NDVImax 95% percentile of the NDVI time series at one pixel 

NEE Net ecosystem exchange 

NIR Near infrared 

NIRDiff Downwelling NIR diffuse flux 

NIRDir Downwelling NIR beam flux 

Nm Maximum nitrogen content 

NOAA National Oceanic and Atmospheric Administration 

NPP Net primary production 

Nratio Nitrogen constrain factor 

ORCHIDEE Organising Carbon and Hydrology In Dynamic Ecosystems 
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ORNL DAAC 
Oak Ridge National Laboratory Distributed Active Archive 

Center 

OSH Open shrublands 

PAR Photosynthetically active radiation 

PARDiff Downwelling PAR diffuse flux 

PARDir Downwelling PAR beam flux 

Parea Photosynthetic area 

PET Potential evapotranspiration 

PFT Plant functional type 

Pperiod Photosynthetic period 

PPFD Photosynthesis photon flux density 

PPFDcof  Coefficient in a relationship between gs and PPFD 

Prate Photosynthetic rate of canopy leaf 

Pre/P Precipitation 

PS Surface pressure 

Pscaled Scalar for the effect of partitioning of leaf morphology 

PSD Physical sciences division 

R Correlation coefficient 

Rgas Molar gar constant 

RGS Rapid growth stage 

RH Relative humidity 

RMSE Root mean square error 

Rn Net radiation 

RS Remote sensing 

S0 Solar constant 

SAA South Atlantic anomaly 

SAV Savannas 

SCIAMACHY 
SCanning Imaging Absorption SpectroMeter for Atmospheric 

CHartographY 
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SCO2 
Carbon fertilization factor due to the rising atmospheric CO2 

concentration levels 

SDAT Spatial data access tool 

Sdif  Diffuse radiation above the canopy 

Sdif,under Diffuse radiation under the plant canopy 

Sdir Direct radiation above the canopy 

SDS Soil data system 

Sg Total solar radiation 

SH Specific humidity 

SIF Sun-induced chlorophyll fluorescence 

SM/Soilwater Soil moisture 

SR Simple ratio 

SWIR Short wavelength infrared 

Ta Air temperature 

TD Dew point temperature 

TEM Terrestrial ecosystem model 

TG Temperature-Greenness 

Tmax Maximum temperature 

Tmin Minimum temperature 

Tminmax Maximum daily lowest temperature 

Tminmin Minimum daily lowest temperature 

Topt Optimal temperature 

Ts Temperature dependency factor 

Tscaled Down-regulation scalars for the effect of temperature on LUE 

VEGAS Vegetation-global atmosphere-soil model 

VI Vegetation indices 

vis Visible bands 

VISIT Vegetation integrative simulator for trace gases 

Vm Maximum carboxylation rate 
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Vm,25 Maximum carboxylation rate at 25 ℃ 

VPD Vapor pressure deficit 

VPM Vegetation photosynthesis model 

WET Wetlands 

WP Wilting point 

WS Wind speed 

WSA Woody savanna 

WSLSWL Scalar for the effect of water limitation 

Wssm Downward-regulation scalar for the effect of soil moisture 

WVPDscaled Downward-scalar that reduces the potential LUE by VPD 

XCO2 Atmospheric Column CO2 concentration 

xP Detrended annual precipitation anomaly 

xR Detrended mean annual radiation anomaly 

xT  Detrended mean annual temperature anomaly 

β CO2 fertilization effect 

β1 Estimated CO2 fertilization effect using statistical model  

β2 Estimated CO2 fertilization effect using process-based model  

Γ* CO2 compensation point 

γint Apparent GPP sensitivity to interannual variations in temperature 

δint Apparent GPP sensitivity to interannual variations in precipitation 

δNIR Leaf scattering coefficient for NIR 

δPAR Leaf scattering coefficient for PAR 

ηint Apparent GPP sensitivity to interannual variations in radiation 

θ Solar zenith angle 

θnoon Solar zenith angle at noon 

ρsN Soil reflectance for NIR 

ρsP Soil reflectance for PAR 

ρSWIR Spectral reflectance in short-wavelength infrared range 

φ0 Intrinsic quantum efficiency of photosynthesis 
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2monthly mean global CO

2014GPP  
Estimated GPPs in 2014 using globally averaged monthly mean CO2 

data 

2annual mean global CO

2014GPP  
Estimated GPPs in 2014 using globally averaged annual mean 

CO2 data 

2monthly spatial CO

2014GPP  
Estimated GPPs in 2014 using continuous spatial monthly CO2 

data 

𝛽𝐺𝑃𝑃
𝑖𝑛𝑡  Overall response of the estimated GPP to the effect of rising 

atmospheric CO2 concentration 

𝛾𝐺𝑃𝑃
𝑖𝑛𝑡  Overall response of the estimated GPP to the effect of variations 

in temperature 

𝛿𝐺𝑃𝑃
𝑖𝑛𝑡  Overall response of the estimated GPP to the effect of variations 

in precipitation 

𝜂𝐺𝑃𝑃
𝑖𝑛𝑡  Overall response of the estimated GPP to the effect of variations 

in radiation 

R𝛽𝐺𝑃𝑃
𝑖𝑛𝑡  Ratio of 𝛽𝐺𝑃𝑃

𝑖𝑛𝑡  to the 15-year average GPP of each model 

R𝛾𝐺𝑃𝑃
𝑖𝑛𝑡  Ratio of 𝛾𝐺𝑃𝑃

𝑖𝑛𝑡  to the 15-year average GPP of each model 

R𝛿𝐺𝑃𝑃
𝑖𝑛𝑡  Ratio of 𝛿𝐺𝑃𝑃

𝑖𝑛𝑡  to the 15-year average GPP of each model 

R𝜂𝐺𝑃𝑃
𝑖𝑛𝑡  Ratio of 𝜂𝐺𝑃𝑃

𝑖𝑛𝑡  to the 15-year average GPP of each model 

 


