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Chapter

1
Introduction

The target of this thesis is heat and mass transfer in vapor–liquid two-phase systems

composed of vapor and its condensed phase. Not only can this transport phenomena

be widely observed in the natural world, but these are also applied to engineering.

Hence, this transport phenomenon in the vapor–liquid two-phase system has been

investigated from various theoretical frameworks, such as fluid dynamics, thermo-

dynamics, and physical chemistry. In this thesis, we especially examine heat and

mass transfer associated with a mass flux in the normal direction passing through

the vapor–liquid interface. The mass flux at the vapor–liquid interface arises due to

the molecular motions near the vapor–liquid interface. In general, the influence of

the microscopic phenomenon is confined to a sufficiently small region, and it does

not affect the macroscopic phenomenon. On the other hand, it is known that the

mass flux in the normal direction passing through the vapor–interface affects the va-

por flow beyond the region in the vicinity of the interface. Naturally, such a mass

flux should be predicted based on the microscopic theory. However, simplified models

that ignore the microscopic phenomenon near the vapor–liquid interface are widely

used as the boundary condition in the macroscopic theory, namely, fluid dynamics.

The objective of this thesis is to propose a proper boundary condition at the vapor–

liquid interface from the microscopic theories, namely, the mean-field kinetic theory

and molecular gas dynamics. To achieve this objective, we investigate the boundary

condition in molecular gas dynamics by utilizing the molecular simulation based on

the mean-field kinetic theory. This investigation is the main content of this thesis.

With the use of this boundary condition obtained by the molecular simulation, we

can derive the boundary condition in fluid dynamics by the molecular gas dynamics

analysis.

1



Chapter 1 Introduction

1.1 Vapor–liquid two-phase flows

1.1.1 Importance of mass flux at vapor–liquid interface

In this section, we detail our target, which is heat and mass transfer in vapor–liquid

two-phase systems composed of single-component vapor and its condensed phase.

Fundamentally, liquid and vapor are composed of molecules and are essentially dis-

crete. However, when the molecular collisions sufficiently take place in the domain

under consideration, liquid and vapor can be assumed as the continuum mediums

in which liquid and vapor are in local or global equilibrium. This assumption is

the basis of continuum mechanics, namely, fluid dynamics. On the other hand, the

presence of the interface between liquid and vapor often interrupts the application of

continuum mechanics because the macroscopic variables change drastically. Thus,

we have to impose the rule regarding the mass, momentum, and energy passing

through the vapor–liquid interface.

A fundamental rule is the conservation law of fluxes. The conservation laws of

the mass flux M, the momentum flux Pi, and the energy flux E are described as

follows:

M ≡ ρL(vLj − vwj)nj = ρV(vVj − vwj)nj, (1.1)

Pi ≡ [ρLvLi(vLj − vwj) + pLij]nj = [ρVvVi(vVj − vwj) + pVij]nj, (1.2)

E ≡ [ρL(eL +
1

2
v2Li)(vLj − vwj) + pLijvLi + qLj]nj

= [ρV(eV +
1

2
v2Vi)(vVj − vwj) + pVijvVi + qVj]nj, (1.3)

where the subscripts L and V represent the variables in liquid and vapor, respectively,

ni is the unit vector in the direction normal to the vapor–liquid interface pointing

toward vapor, ρ is the density, vi is the flow velocity vector, vwi is the velocity vector

of the motion of the interface (advection and deformation), pij is the stress tensor,

e is the internal energy, and qi is the heat flux vector.

2



Chapter 1 Introduction

When M = 0, given the condition as to whether vLi and vVi follow vwi (the

slip or non-slip boundary condition), we can readily obtain the expressions of the

stress tensor and the heat flux vector in the direction normal to the vapor–liquid

interface. In contrast, when M ̸= 0, we have to specify a certain M to obtain these

expressions because the terms related to M are included in Pi and E . Therefore,

a proper specification of the mass flux at the vapor–liquid interface is necessary to

predict heat and mass transfer in the vapor–liquid two-phase system.

In this thesis, we mainly discuss the case of M ̸= 0, especially the nonequilibrium

case which cannot be handled as thermodynamic equilibrium. In such nonequilib-

rium cases, the state that the mass flux leaving from liquid to vapor ((vi−vwi)ni > 0)

is referred to as net evaporation, and the mass flux in the direction opposite to net

evaporation ((vi − vwi)ni < 0) is referred to as net condensation. It is known that

the influence of net evaporation/condensation is dominant in some vapor–liquid

two-phase flow problems, namely, dynamics of bubbles and droplets [1–6].

A typical example is the vapor bubble collapse problem. Fujikawa and Aka-

matsu [1] derived the equation of motion for single spherical bubble accompanied

with net evaporation/condensation for the first time. The result of the numerical

simulation of this equation of motion implied that a purely vaporous bubble pro-

duce a strong pressure wave in liquid at the instant the rebound process begins.

This equation of motion is commonly used in the numerical simulation of a bubble

accompanied with net evaporation/condensation. Akhatov et al. [2] proposed the

numerical simulation of the single spherical bubble collapse and rebound processes

accompanied with net evaporation/condensation by the Euler equation and showed

that the temporal evolution of a bubble radius agrees with that obtained by the

experiment for a laser induced bubble. Jinbo et al. [3] investigated the influence of

net evaporation/condensation on the single nonspherical bubble collapse processes

by the Euler equation and indicated that the temperature and pressure fields in a

bubble vary locally according to net evaporation/condensation. These results im-

3



Chapter 1 Introduction

plied that net evaporation/condensation affects the temperature and pressure fields

in the inside and the outside of a bubble. Furthermore, on the basis of these results,

we can naturally predict that net evaporation/condensation affects the shock wave

propagation and the liquid jet formulation attributed to the bubble collapse process.

In these studies, well-known boundary conditions at the vapor–liquid interface,

namely, the Hertz-Knudsen-Langmuir model and the Hertz-Knudsen-Schrage model,

are utilized to estimate the mass flux induced by net evaporation/condensation.

Some studies, however, threw doubt on the accuracy of these models [7]. We detail

these models in the next section.

Moreover, from an application point of view, several studies [8, 9] proposed the

basis of therapeutic applications by using the shock wave and the liquid jet at-

tributed to the bubble collapse process. For example, Ohl et al. [9] tried to apply

the liquid jet to deliver noninvasively large-sized molecules into cells, and Kobayashi

et al. [8] estimated the interaction between the shock wave and the bubble for the

extracorporeal shock-wave lithotripsy. However, in these therapeutic applications,

we have to take into account the influence of net evaporation/condensation in addi-

tion to the effect of the complex bubble interaction and the noncondensable gas. At

least, if we can treat the influence of net evaporation/condensation with the accurate

model, it will be helpful for developing the basis of these therapeutic applications.

1.1.2 Boundary condition at vapor–liquid interface

As was mentioned above, a proper specification of the mass flux at the vapor–liquid

interface is necessary to predict heat and mass transfer in the vapor–liquid two-phase

system. The well-known boundary conditions to estimate the mass flux induced by

net evaporation/condensation are the Hertz-Knudsen-Langmuir (HKL) model and

the Hertz-Knudsen-Schrage (HKS) model [10]. The previous studies introduced in

the above section [1–3] utilized the HKL and HLS models. Even in studies other

than those introduced, these models are very commonly used. The recent researches

4



Chapter 1 Introduction

Evaporation

Reflection

Condensation

Knudsen layerInterface layer

Bulk vaporBulk liquid
Knudsen

layer

Interface

Figure 1.1: Physical picture of the vapor–liquid two-phase system.

regarding these models are reviewed by Persad et al. [11]. However, the accuracy of

these models are questionable [7].

Here, we state the critical issue of the HKL and HKS models and the objective

of this thesis. The mass flux at the vapor–liquid interface obtained by the HKL and

HLS models are as follows:

MHKL =
α√
2πR

(
p∗√
TL

− p√
T

)
, (1.4)

MHKS =
2α

(2 − α)
√

2πR

(
p∗√
TL

− p√
T

)
, (1.5)

where α is an unknown dimensionless parameter, R is the gas constant, TL is the

liquid temperature, p∗ is the saturated vapor pressure at the liquid temperature,

p and T are the pressure and the temperature, respectively. The critical issue of

Eqs. (1.4) and (1.5) lies in the determination of p and T .

To detail the critical issue of the HKL and HKS models, we explain the physical

picture of the vapor–liquid two-phase system as shown in Fig. 1.1. As illustrated

in Fig. 1.1, there is a transition layer between bulk liquid and bulk vapor. This

transition layer in which the characteristic length scale is the mean free path is

called the Knudsen layer [12]. The lower part of Fig. 1.1 is the enlarged view of the

5



Chapter 1 Introduction

vapor–liquid interface and the Knudsen layer. In the macroscopic point of view, the

vapor–liquid interface is the discontinuity surface, while in the microscopic point

of view, the macroscopic variables transit smoothly between bulk liquid and bulk

vapor. As illustrated in Fig. 1.1, the region in contact with the vapor–liquid interface

in which the characteristic length scale is the molecular diameter is referred to as the

interface layer in this thesis. The interface layer is equivalent to the vapor–liquid

interface with zero thickness in the macroscopic point of view. With this microscopic

point of view, we can capture the essence that net evaporation/condensation occurs

as a consequence of the unbalance (nonequilibrium) of the number of molecules

in the interface layer. Such nonequilibrium of molecules accommodates to local

equilibrium through the molecular interactions in the Knudsen layer. We postulate,

throughout this thesis, the physical picture of the vapor–liquid two-phase system

shown in Fig. 1.1.

Let us now go back to the HKL and HKS models (Eqs. (1.4) and (1.5)). The

critical issue of the HKL and HKS models is that these models ignore the molecular

interactions in the Knudsen layer. In other words, p and T in these models can be

specified independently of the molecular interactions in the Knudsen layer. Since the

outside of the Knudsen layer reaches local equilibrium as a consequence of the molec-

ular interactions in the Knudsen layer, there is no basis that a proper mass flux can

be predicted from the HKL and HKS models by specifying p and T that ignore such

molecular interactions. It would be advantageous that the HKL and HKS models

can omit the complex analysis in the Knudsen layer, but the molecular interactions

there play a major role in the mass flux induced by net evaporation/condensation.

The aim of this thesis is to propose a physically proper boundary condition at the

vapor–liquid interface that takes into account such microscopic phenomenon.

We then describe the strategy of this thesis. In this thesis, we postulate a

phenomenological model of the molecular motions to discuss the microscopic phe-

nomenon near the vapor–liquid interface. The key processes according to this model

6



Chapter 1 Introduction

are evaporation, reflection, and condensation. As illustrated in Fig. 1.1, the process

from the interface layer into the Knudsen layer is called evaporation, that from the

Knudsen layer into the interface layer is called condensation, and that accompanied

by the change in the direction in the interface layer is referred to as reflection. When

the number of the evaporation molecules is greater than that of the condensation

molecules, net evaporation occurs at the vapor–liquid interface, while when the num-

ber of condensation molecules is greater than that of the evaporation molecules, net

condensation occurs at the vapor–liquid interface.

To examine these molecular processes, we have to carry out the molecular sim-

ulation for the vapor–liquid two-phase system including the interface layer and the

Knudsen layer. We refer to the simulation that tracks the temporal evolution of the

positions and the velocities of molecules under a certain intermolecular potential as

the molecular simulation. With the development of high-performance computing

from the 1990s, the molecular simulations for the vapor–liquid two-phase system

have been performed to examine the molecular processes, such as evaporation, re-

flection, and condensation [13–20]. However, the results of the molecular simulation

cannot be directly applied as the boundary condition in the macroscopic theory,

namely, fluid dynamics.

The most accurate way to derive the boundary condition in fluid dynamics by re-

placing the microscopic information obtained from the molecular simulation with rel-

evant macroscopic variables is the molecular gas dynamics analysis [12]. In a sense,

molecular gas dynamics bridges between the microscopic theory and the macroscopic

theory. In the molecular gas dynamics analysis, the microscopic phenomenon in the

interface layer is taken into the boundary condition (the kinetic boundary condi-

tion). However, the conventional kinetic boundary condition that has been used in

the molecular gas dynamics analysis is mere mathematical model. The main content

of this thesis is to investigate the kinetic boundary condition at the vapor–liquid in-

terface by utilizing the molecular simulation in the vapor–liquid two-phase system

7



Chapter 1 Introduction

including the interface layer and the Knudsen layer.

1.2 Molecular gas dynamics

Here, we briefly explain the theoretical framework of molecular gas dynamics, the

conventional kinetic boundary condition, and the derivation method of the boundary

condition in fluid dynamics. The contents of this section are based on the literature

[7, 12].

1.2.1 Velocity distribution function

In the following, we consider gas or vapor consisting of single-component monatomic

molecules with the influence range of the intermolecular force a. The motion of

these molecules is governed by Newton’s equation of motion. A sufficient number of

molecules are present in the system under consideration; there is also many molecules

in the volume elements taken in the system in which the number density is n. In the

limit when n→ ∞ and a→ 0, we assume that na3 → 0 holds. This condition means

that the total volume where the intermolecular forces are effective is negligibly small

compared with the volume of gas or vapor, that is, the ideal gas condition. Also,

the limiting that n → ∞ and a → 0 with fixed na2 is called the Grad-Boltzmann

limit. The inverse of na2 is the order of the mean free path, which is the distance

of molecules traveling before the subsequent collision.

Under the limiting that m → 0 and n → ∞ with keeping mn is fixed at a

finite value, we can define the velocity distribution function f , which is a function

representing the statistical properties of molecules in the volume element, as follows:

mdN = f(x, ξ, t)dxdξ, (1.6)

where dx is the volume element in the physical space (dx = dxdydz), dξ is the

volume element in the molecular velocity space (dξ = dξxdξydξz), and m is the mass

8



Chapter 1 Introduction

of a molecule. In Eq. (1.6), dN is the number of molecules in dxdξ at time t, the

position xi = (x, y, z), and molecular velocity ξi = (ξx, ξy, ξz) in the 6-dimensional

phase space. This f defined in Eq. (1.6) is the only unknown variable in molecular

gas dynamics. Note that we use vector notation and tensor notation without notice,

such as xi = x and ξi = ξ, if necessary.

Once the velocity distribution function f is obtained, the macroscopic variables

at position xi and time t are defined by the moments of f :

• Density ρ

ρ =

∫
f(x, ξ, t)dξ. (1.7)

• Velocity vi

vi =
1

ρ

∫
ξif(x, ξ, t)dξ. (1.8)

• Temperature T

T =
1

3Rρ

∫
(ξi − vi)

2f(x, ξ, t)dξ. (1.9)

• Pressure p

p =
1

3

∫
(ξi − vi)

2f(x, ξ, t)dξ = RρT. (1.10)

• Specific internal energy e

e =
1

ρ

∫
1

2
(ξi − vi)

2f(x, ξ, t)dξ =
3

2
RT. (1.11)

9



Chapter 1 Introduction

• Stress tensor pij

pij =

∫
(ξi − vi)(ξj − vj)f(x, ξ, t)dξ. (1.12)

• Heat flux vector qi

qi =

∫
1

2
(ξi − vi)(ξj − vj)

2f(x, ξ, t)dξ. (1.13)

Similarly, the mass, momentum, and energy fluxes passing through an arbitrary

surface are obtained from f :

• Mass flux M

M =

∫
(ξj − vwj)njf(x, ξ, t)dξ

= njρ(vj − vwj). (1.14)

• Momentum flux vector Pi

Pi =

∫
ξi(ξj − vwj)njf(x, ξ, t)dξ

= nj[pij + ρvi(vj − vwj)]. (1.15)

• Energy flux E

E =

∫
1

2
ξ2i (ξj − vwj)njf(x, ξ, t)dξ

= nj[qj + pijvi + ρ(e+
1

2
v2i )(vj − vwj)]. (1.16)

In Eqs. (1.7)–(1.16), the three-dimensional integration with respect to ξi is carried

out over the whole space of ξi. In the framework of molecular gas dynamics, we can

examine f itself and all variables defined by f , such as Eqs. (1.7)–(1.16), regardless

10



Chapter 1 Introduction

of equilibrium or nonequilibrium. For this reason, fluid dynamics is sometimes

expressed as to be the part of molecular gas dynamics.

1.2.2 Boltzmann equation

As mentioned above, we deal with numerous molecules whose motion is governed by

Newton’s equation of motion. Here, we regard the gas or vapor as an ensemble of

particles and examine the motion of this ensemble, which is governed by the Liouville

equation. Although the Liouville equation is exact, it is often too detailed to describe

the motion of gas or vapor, and it is too complex to be solved. A more convenient

starting point to describe the N -particle system is the Bogolyubov-Born-Green-

Kirkwood-Yvon (BBGKY) hierarchy equation. The BBGKY hierarchy equation

connects the evolution of an N -particle distribution function to an N + 1 particle

distribution function; this equation is not closed generally because both distribution

functions are unknown.

In fact, to obtain the macroscopic variables and the fluxes that we are inter-

ested in, we only require the lowest order distribution function defined in Eq. (1.6).

However, the two-particle distribution function is required to solve the BBGKY hi-

erarchy equation for the one-particle distribution function, and this equation is not

closed after all. We introduce the following correlation function to close the BBGKY

hierarchy equation.

f2(x1,x2, ξ1, ξ2, t) = Y f1(x1, ξ1, t)f1(x2, ξ2, t), (1.17)

where f1 indicates the one-particle distribution function, which is equivalent to f

defined in Eq. (1.6), f2 indicates the two-particle distribution function, x1 and x2

indicate the positions of two molecules, ξ1 and ξ2 indicate the velocities of two

molecules, and Y is a pair correlation. In the Grad-Boltzmann limit, Y can be

set to unity, which is called the molecular chaos assumption, and thereby f2 is

11



Chapter 1 Introduction

transferred to the product of f1. Also, the intermolecular collisions are events that

occur at one point in time and space. Since the collision frequency of the triple or

more multiple collisions is sufficiently small in the Grad-Boltzmann limit, we can

only consider the binary event.

By the above procedure, the Boltzmann equation which is an equation governing

the evolution of the one-particle distribution function in the system without the

external force is derived as follows [21]:

∂f

∂t
+ ξi

∂f

∂xi
= CB, (1.18)

where the left-hand side of Eq. (1.18) represents the effect of the evolution of f along

the path of free molecular motion, and the right-hand side of Eq. (1.18) represents

the effect of the intermolecular collision and is called collision integral or Boltzmann

collision term,

CB =
1

m

∫
all Ki, all ξ1i

[f(x, ξ′1, t)f(x, ξ′, t) − f(x, ξ1, t)f(x, ξ, t)]BdΩ(K)dξ1,

(1.19)

where ξi indicates the velocity of a molecule under consideration, ξ1i indicates the

velocity of a molecule colliding with the molecule having the velocity ξi, Ki is a unit

vector along the direction of the molecular velocity before and after the collision,

dΩ(K) is a solid angle element in the Ki direction, and B is a nonnegative function

determined by the intermolecular force model and B = a2|Kj(ξ1j − ξj)|/2 for hard-

sphere molecules having a diameter a. In Eq. (1.19), ξ′i and ξ′1i indicate the molecular

velocities after the collision and are determined by considering the elastic collision,

ξ′i = ξi +KiKj(ξ1j − ξj), ξ′1i = ξ1i +KiKj(ξ1j − ξj). (1.20)

The details of the derivation of Eqs. (1.18) and (1.19) are given in the literature

12



Chapter 1 Introduction

[12,21].

H-theorem

We hereafter give further explanations on the Boltzmann equation. Although these

are very important to analyzing the Boltzmann equation, since it is not the main

topic of this thesis, we do not give the derivation or proof here. The H-theorem

explains the irreversibility of entropy, that is, the second law of thermodynamics, in

a molecular theory. This theorem prescribes the relation of the H function,

H =

∫
all ξi

f ln(f/c)dξ, (1.21)

or a function, H, obtained by integrating the H function with respect to the domain

D,

H =

∫
D
Hdx. (1.22)

where c is an appropriate constant with the same dimension as f . According to the

following inequality, H or H never increases.

dH
dt

−
∫
∂D
HinidS =

∫
D

(∫
all ξi

[1 + ln(f/c)]CBdξ

)
dx ≤ 0, (1.23)

when Hini = 0 on ∂D,

where

Hj =

∫
all ξi

ξjf ln(f/c)dξ. (1.24)

In this inequality, the equal sign is valid only when f is an equilibrium solution of

the Boltzmann equation. The equilibrium solution of the Boltzmann equation is

shown in the next section. This inequality represents that if there is no transport
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Chapter 1 Introduction

of Hi through the boundary ∂D and the system is isolated from the outside, the

macroscopic quantity H never increases, that is, the irreversibility of the temporal

evolution of the Boltzmann equation. From this reason, the models of the Boltzmann

equation should also hold the H-theorem.

Equilibrium solution of Boltzmann equation

The steady and spatially uniform solution of the Boltzmann equation is called the

equilibrium solution, which is the velocity distribution function of the system in

thermodynamic equilibrium and is expressed as

f ∗ =
ρ

√
2πRT

3 exp

(
−(ξi − vi)

2

2RT

)
, (1.25)

where ρ is the density, T is the temperature, vi is the flow velocity vector, and R is

the gas constant. Equation (1.25) is called the Maxwellian distribution. The steady

and spatially uniform f holds CB = 0. Also, when ρ, v, and T are replaced with the

function of t and xi, Eq. (1.25) is called the local equilibrium distribution or the local

Maxwellian distribution. Although the local equilibrium distribution holds CB = 0,

this distribution is not always the solution of the Boltzmann equation. Grad [22]

clarified the general form of the local equilibrium distribution to be the solution of

the Boltzmann equation.

Mean free path

The mean free path, ℓ, which is the distance of molecules traveling before the subse-

quent collision, is the characteristic length for the Boltzmann equation and defined

as

ℓ =
ξ̄

µ̄
, (1.26)
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where ξ̄ is the average molecular speed,

ξ̄ =

√
8RT

π
, (1.27)

and µ̄ is the mean collision frequency,

µ̄ =
1

ρm

∫
all Ki, all ξi and ξ1i

f(ξ)f(ξ1)BdΩ(K)dξdξ1. (1.28)

When f is the Maxwellian distribution with constant ρ, T , and vi (Eq. (1.25)), µ̄

becomes

µ̄ = 4na2
√
πRT , (1.29)

where n is the number density. Note that the inverse of the mean collision frequency

µ̄−1 is called the mean free time. The substitution of Eqs. (1.27) and (1.29) into

Eq. (1.26) leads to

ℓ =
1√

2πna2
. (1.30)

1.2.3 Kinetic boundary condition

The Boltzmann equation regulates the evolution of the velocity distribution function

along the path in (x, t) space of the molecules having the velocity ξi. If f in the

domain under consideration at the initial time is given and how the molecules are

scattered at the boundary at the arbitrary time is determined, we can determine the

behavior of f by the Boltzmann equation. In other words, the boundary condition

for the Boltzmann equation is an outgoing velocity distribution function to gas or

vapor, fout, as a consequence of molecules colliding and scattering at the boundary.

The boundary condition for the Boltzmann equation is called the kinetic boundary

condition (KBC). Similar to other boundary conditions, we cannot derive the KBC
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from the framework of molecular gas dynamics. Although we have to investigate

the molecular interaction with the boundary in order to impose the KBC, in the

molecular gas dynamics analysis, mathematical models have often been utilized as

the KBC [12,23–25].

We hereafter consider the KBC in the system composed of monatomic vapor and

its condensed phase (liquid) with the planar vapor–liquid interface. The conventional

KBC, which is widely used in the molecular gas dynamics analysis [12, 23–25], is

shown as follows:

fout = [αρ∗ + (1 − α)σ]f̂ ∗, (ξi − vwi)ni > 0, (1.31)

where ni is the unit vector in the direction normal to the vapor–liquid interface

pointing vapor, ρ∗ is the saturated vapor density at the liquid temperature TL, f̂ ∗

is the normalized velocity distribution function of the KBC and is assumed the

normalized Maxwellian distribution at TL,

f̂ ∗ =
1

√
2πRTL

3 exp

(
−(ξi − vwi)

2

2RTL

)
, (1.32)

σ is a parameter having the dimension of the density, and its definition is related

to the velocity distribution function of molecules colliding with the vapor–liquid

interface from vapor, fcoll,

σ

√
RTL
2π

= −
∫
(ξi−vwi)ni<0

(ξj − vwj)njfcolldξ, (1.33)

where
∫
(ξi−vwi)ni<0

dξ indicates that the domain of the integration is −∞ to zero for

the molecular velocity in the direction normal to the vapor–liquid interface and −∞

to ∞ for that in the tangential direction. Equation (1.31) is a mere mathematical

model; α is a parameter and is often set to unity for simplicity, and the functional

form of f̂ ∗ is an assumption.
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The conditions that Eq. (1.31) should satisfy as the KBC are shown below. The

KBC is expressed by a scattering kernel, KI, as

fout(x, ξ, t) = gI(x, ξ, t) +

∫
(ξ̃i−vwi)ni<0

KI(ξ, ξ̃,x, t)fcoll(x, ξ̃, t)dξ̃, (ξi − vwi)ni > 0,

(1.34)

where gI is a term to be independent of fcoll, ξ̃ indicates the molecular velocity

colliding with the boundary. The scattering kernel KI represents how the molecules

that collide with the vapor–liquid interface are scattered. We restrict KI to the

linear scattering kernel independent of fcoll, which satisfy the following conditions:

1. gI should be the non-negative function for (ξi − vwi)ni > 0.

2. KI should be the non-negative function for (ξi−vwi)ni > 0 and (ξ̃i−vwi)ni < 0.

3. KI should satisfy the following relation in vapor–liquid equilibrium:

f ∗(ξ) = gI(ξ) +

∫
(ξ̃i−vwi)ni<0

KI(ξ, ξ̃,x, t)f
∗(ξ̃)dξ̃, (1.35)

where

f ∗ =
ρ∗

(
√

2πRTL)3
exp

(
−(ξi − vwi)

2

2RTL

)
, (1.36)

that is, the equilibrium solution in the vapor–liquid two-phase system. This

condition indicates that if the molecules colliding with the vapor–liquid in-

terface have the equilibrium velocity distribution function (Eq. (1.36)), the

molecules reflecting at the vapor–liquid interface should also have the same

velocity distribution function.
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1.2.4 Knudsen layer analysis

Sone et al. [12, 23] have systematically investigated the method for deriving the

boundary condition in fluid dynamics, which is consistent with the fluid dynamic

equations. As stated in the former section, the HKL and HKS models (Eqs. (1.4)

and (1.5)) have the problem in determining p and T included in these models. In

the method proposed by Sone et al. [12, 23], p and T , which take into account

the molecular interactions in the Knudsen layer, can be obtained by solving the

Boltzmann equation with the KBC. We here introduce the result by utilizing the

conventional KBC (Eq. (1.31)).

The procedure to derive the boundary condition for the fluid dynamic equations

by solving the Boltzmann equation in the Knudsen layer is called the Knudsen

layer analysis [12, 23]. It becomes possible to replace the microscopic information

in the Knudsen layer with the relevant macroscopic variables by this analysis. The

Knudsen layer analysis is a boundary value problem to obtain the solution of the

Boltzmann equation and its existence condition under the KBCs at the vapor–liquid

interface and at the end of the Knudsen layer (infinitely far from the vapor–liquid

interface). The existence condition of the solution of this boundary value problem

means the states of the pressure p, the temperature T , and the velocity vi at the

end of the Knudsen layer,

p− p∗

p∗
=

(
C∗

4 − 2
√
π

1 − α

α

)
(vi − vwi)ni√

2RTL
, (1.37)

T − TL
TL

= d∗4
(vi − vwi)ni√

2RTL
, (1.38)

that is, the slip boundary condition [12,23]. In Eqs. (1.37) and (1.38), C∗
4 and d∗4 are

the slip coefficients, which include the microscopic information in the Knudsen layer

and these are obtained by determining the molecular model. The slip coefficients of

various molecular models are summarized in the literature [12].

From Eq. (1.37) and the equation of state for the ideal gas, the mass flux at the
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end of the Knudsen layer can be found as follows:

MMGD =
1

2
√
π 1−α

α
− C∗

4

√
2

R

(
p∗√
TL

− p√
TL

)
, (1.39)

where the term O[((vi − vwi)ni/
√

2RTL)2] is neglected because the slip boundary

condition is derived under the condition |(vi − vwi)ni/
√

2RTL| ≪ 1. With the use

of Eqs. (1.39) and (1.38) or Eqs. (1.37) and (1.38) as the boundary conditions, the

fluid dynamic equations can be closed. Equations (1.37), (1.38), and (1.39) are,

strictly speaking, the boundary conditions at the end of the Knudsen layer, but we

call those the boundary conditions at the vapor–liquid interface because we do not

have to solve the Knudsen layer in the fluid dynamics analysis.

1.3 Summary

The objective of this thesis is to propose a physically proper boundary condition at

the vapor–liquid interface with net evaporation/condensation. After summarizing

the topics so far, we then clarify the remaining issue and state the scope of this

thesis.

1.3.1 Clarification of remaining issue

To summarize the preceding sections, what we have to do to propose the boundary

condition at the vapor–liquid interface are (i) to conduct the molecular simulation

to construct the KBC and (ii) to conduct the Knudsen layer analysis to derive

the boundary condition for the fluid dynamic equations. As for (ii), it has been

systematically investigated by Sone et al. [12,23]; hence, as long as these results are

available, the only thing we should study in this thesis is (i).

According to the physical picture shown in Fig. 1.1, the KBC is the outgoing

velocity distribution function from the interface layer at the vapor–liquid interface.

Numerous studies [26–39] examined this velocity distribution function by the molec-
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ular simulation in the vapor–liquid two-phase system including the interface layer

and the Knudsen layer.

In some previous studies, α is divided into two different coefficients, namely, the

evaporation coefficient αe and the condensation coefficient αc, as a kind of physical

properties. These coefficients are defined in relation to the molecular processes

illustrated in Fig. 1.1. Some different definitions have been proposed for αe and

αc. For instance, Tsuruta et al. [31] defined αe and αc by the number of molecules

at the vapor–liquid interface and expressed these coefficients as the functions of

the liquid temperature and the translational energy in the direction normal to the

vapor–liquid interface. Ishiyama et al. [33, 34] defined αe and αc by the molecular

mass fluxes at the vapor–liquid interface and indicated that these coefficients depend

only on the liquid temperature. Naturally, such a different tendency arises from the

different definitions of αe and αc. However, it should be emphasized that even if these

coefficients are calculated according to the same definitions as Ishiyama et al. [33,

34], these coefficients vary with the degree of net evaporation/condensation [27,37].

These results indicate that neither αe nor αc has been indisputably determined after

all.

In addition, some previous studies [34,38,40,41] pointed out that the normalized

velocity distribution function of the KBC deviates from the normalized Maxwellian

distribution (Eq. (1.32)) when the vapor–liquid interface is in strong net evaporation

or condensation. Thus, the construction of the KBC at the vapor–liquid interface

is an issue open to question.

To clarify this remaining issue, we consider the following generalized KBC [42].

fout = Af̂ ∗, (ξi − vwi)ni > 0, (1.40)

where we assume that f̂ ∗ is to be the normalized Maxwellian distribution (Eq. (1.32)).

The conditions of A is shown as follows: (1) A is the nonnegative function, (2) A

is allowable to be the function of the liquid temperature TL and/or σ (Eq. (1.33)),
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and (3) A is independent of the molecular velocity. Note that some KBCs proposed

by the previous molecular simulations do not satisfy these conditions. We extract

the part related to the liquid temperature A0(TL) from A and rewrite Eq. (1.40) as

A = A0(TL) + [A−A0(TL)]. (1.41)

When A = αeρ
∗ + (1 − αc)σ, αe and αc are defined by

αe =
A0(TL)

ρ∗
, αc = 1 − A−A0(TL)

σ
. (1.42)

In Eq. (1.42), the selection of A0(TL) is arbitrary. In other words, under the as-

sumption that f̂ ∗ is to be the normalized Maxwellian distribution (Eq. (1.32)), there

is an infinite number of αe and αc pairs corresponding to arbitrary A0(TL). To de-

termine αe and αc uniquely, we have to clarify the physical requirement that A0(TL)

should satisfy. Also, if αe and αc is related to the molecular processes illustrated in

Fig. 1.1, the physical requirement that A0(TL) should satisfy is synonymous with

the definitions of these molecular processes. That is why αe and αc have not been

determined so far.

1.3.2 Scope of this thesis

To break through the issue stated in above, we consider αe and αc from a more

fundamental rule, that is, the conservation law of the mass flux extended to the

microscopic point of view. This fundamental rule holds regardless of any condition.

The conservation law of the mass flux extended to the microscopic point of view

represents the relation between the mass flux in the macroscopic and microscopic
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points of view as shown in the following.

M = ρ(vj − vwj)nj

=

∫
all ξi

(ξj − vwj)njf(x, ξ, t)dξ

=

∫
(ξi−vwi)ni>0

(ξj − vwj)njfoutdξ +

∫
(ξi−vwi)ni<0

(ξj − vwj)njfcolldξ, (1.43)

where
∫
(ξi−vwi)ni>0

dξ indicates that the domain of the integration is zero to ∞ for

the molecular velocity in the direction normal to the vapor–liquid interface and −∞

to ∞ for that in the tangential direction. Equation (1.43) clearly shows that the

mass flux induced by net evaporation/condensation is caused by the difference in

the mass flux related to the velocity distribution functions fout and fcoll. When fout

is the generalized KBC (Eq. (1.40)), we get the following expression.

ρ(vi − vwi)ni = (A− σ)

√
RTL
2π

, (1.44)

For example, when A = αeρ
∗ + (1 − αc)σ, Eq. (1.44) becomes

ρ(vi − vwi)ni = (αeρ
∗ − αcσ)

√
RTL
2π

. (1.45)

We hereafter call Eq. (1.44) the mass flux relation for simplicity. In this thesis,

we investigate Eq. (1.44) by the molecular simulation. From this result, we can

determine αe and αc without explicitly defining the molecular processes illustrated

in Fig. 1.1. Also, after determining αe and αc in this way, we can consider their

physical meanings by investigating the relation between these coefficients and the

molecular processes.

Let us now detail how to investigate and what to clarify together with the scope

of this thesis. In Chapter 2, we first explain the vapor–liquid two-phase system to

be considered. The system considered in this thesis is a steady one-dimensional

net evaporation/condensation problem in vapor between two liquid slabs with the
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different temperature. This problem is often called the two-surface problem. After

explaining the one-dimensional problem of net evaporation/condensation, we intro-

duce the features of the two-surface problem from the results of the previous studies.

Next, we explain the molecular simulation method. The investigation of Eq. (1.44)

requires to exhaustively and precisely obtain ρ(vi−vwi)ni under the various cases of

net evaporation/condensation. However, the molecular dynamics simulation, which

has been utilized as a molecular simulation, requires a high computational cost.

Actually, in the previous studies [27, 29, 31, 32, 34–38], only in the several limited

cases of net evaporation/condensation have been examined. In contrast, we focus

on the novel molecular simulation method based on the mean-field kinetic theory

proposed by Frezzotti et al. [43]. We can perform the molecular simulation for

the one-dimensional net evaporation/condensation problem with less computational

cost than the molecular dynamics simulation by utilizing this novel method.

In Chapter 3, we examine the mass flux relation (Eq. (1.44)) to find a pair of αe

and αc defined by Eq. (1.42) by the molecular simulation based on the mean-field

kinetic theory. We perform the molecular simulation for the two-surface problem

in 160 cases of the temperature differences between two liquids. First, we confirm

whether the normalized velocity distribution function of the KBC obeys Eq. (1.32)

because the results of the previous studies [34,38,39,41] indicated that the normal-

ized velocity distribution function of the KBC deviates from Eq. (1.32) under strong

net evaporation/condensation. Next, we formulate the mass flux relation at each

liquid temperature by using ρ(vi − vwi)ni obtained by the molecular simulation and

corresponding σ (Eq. (1.33)), and then we discuss αe and αc defined by Eq. (1.42)

by comparing the formulated mass flux relation with Eq. (1.44). In this way, we

can find a pair of αe and αc without explicitly defining the molecular processes

illustrated in Fig. 1.1.

In Chapter 4, we consider the physical meaning of αe and αc obtained in Chap-

ter 3. To determine αe and αc uniquely, we have to clarify the definitions of the
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molecular processes illustrated in Fig. 1.1. Although this definition has not been

clarified, if we assume a certain condition, these molecular processes can be dis-

tinguished. We here consider a hypothesis of the spontaneous evaporation [33, 44].

According to this hypothesis, αe and αc are defined by the mass fluxes related to the

molecular processes. αe and αc according to this hypothesis can be obtained from

the virtual vacuum simulation [26, 33] and the net evaporation and condensation

simulation [34]. However, the virtual vacuum simulation is inappropriate when the

liquid temperature becomes relatively high; hence, we apply a new method, which

is called the two-boundary method, proposed by Kobayashi et al. [30] to estimate

αe and αc according to the hypothesis of the spontaneous evaporation. First, we

confirm whether the normalized velocity distribution function of the evaporation

molecules is to be the normalized Maxwellian distribution (Eq. (1.32)), which is

the premise of the hypothesis of the spontaneous evaporation. Next, we discuss the

correspondence of the hypothesis of the spontaneous evaporation with αe and αc ob-

tained in Chapter 3 by examining the mass fluxes of evaporation and condensation

molecules in both the vapor–liquid equilibrium and net evaporation/condensation

cases. In this way, we can find the relation among αe, αc obtained in Chapter 3,

and the molecular processes illustrated in Fig. 1.1.

In Chapter 5, we verify the accuracy of αe and αc obtained in Chapter 3 and

Chapter 4. We perform the molecular simulation for the different two vapor–liquid

two-phase systems, which are distinct from that considered in the preceding chap-

ters. First, in these two systems, we confirm whether the normalized velocity

distribution function of the KBC obeys the normalized Maxwellian distribution

(Eq. (1.32)). Next, we compare the macroscopic variables in vapor, namely, the

velocity and the temperature, in these two systems obtained from the numerical

simulation of the Boltzmann equation with the KBC, which is specified by αe and

αc obtained in the preceding chapters, and those obtained from the molecular simu-

lation based on the mean-field kinetic theory. Since it has been pointed out that the
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KBC significantly affects the macroscopic variables in the numerical simulation of the

Boltzmann equation [45–47], the proper specification of the KBC is critical. In other

words, the KBC at the vapor–liquid interface with net evaporation/condensation is

validated if and only if the macroscopic variables in vapor obtained from these two

simulations accurately agree with each other. This simple validation method has

often been performed in the molecular dynamics simulation [45, 46]. Finally, we

compare the liquid temperature dependence of αe and αc in these two systems with

those obtained in Chapter 3. In this way, we can verify whether αe and αc obtained

in Chapter 3 and Chapter 4 depend on the simulation systems.

This thesis is based on the results of the previous journal papers and proceedings

papers as shown in the following.

[48] M. Kon, K. Kobayashi, M. Watanabe, Physics of Fluids 26 (2014) 072003.

[49] M. Kon, K. Kobayashi, M. Watanabe, AIP Conference Proceedings 1628

(2014) 398–403.

[50] M. Kon, K. Kobayashi, K. Sasaki, M. Watanabe, Japanese Journal of Multi-

phase Flow (in Japanese) 99 (2015) 493–500.

[51] M. Kon, K. Kobayashi, M. Watanabe, International Journal of Heat and Mass

Transfer 29 (2016) 317–326.

[52] M. Kon, K. Kobayashi, M. Watanabe, AIP Conference Proceedings 1786

(2016) 110002.

[53] M. Kon, K. Kobayashi, M. Watanabe, European Journal of Mechanics-B/Fluids

(in press).
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2
Method

In this chapter, we first explain the vapor–liquid two-phase system to be consid-

ered. The system considered in this thesis is a steady one-dimensional net evap-

oration/condensation problem in vapor between two liquid slabs with the different

temperature. This problem is often called the two-surface problem. After explain-

ing the one-dimensional problem of net evaporation/condensation, we introduce the

features of the two-surface problem from the results of the previous studies. Next,

we explain the molecular simulation method. The investigation of Eq. (1.44) re-

quires to exhaustively and precisely obtain ρ(vi − vwi)ni under the various cases of

net evaporation/condensation. However, the molecular dynamics simulation, which

has been utilized as a molecular simulation, requires a high computational cost. Ac-

tually, in the previous studies [27, 29, 31, 32, 34–36, 38], only in the several limited

cases of net evaporation/condensation have been examined. In contrast, we focus on

the novel molecular simulation method based on the mean-field kinetic theory pro-

posed by Frezzotti et al. [43], which is referred to as the EV-DSMC simulation in

this thesis. We can perform the molecular simulation for the one-dimensional net

evaporation/condensation problem with less computational cost than the molecular

dynamics simulation by utilizing the EV-DSMC simulation.

2.1 Problem

2.1.1 One-dimensional net evaporation/condensation

In this thesis, we consider the vapor–liquid two-phase system composed of single-

component monatomic vapor and its condensed phase (liquid). As a fundamental
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problem, we assume the planar vapor–liquid interface and neglect its advection

and deformation (vwini = 0). Under this assumption, we can regard net evapora-

tion/condensation as a spatially one-dimensional problem with only in the direction

normal to the vapor–liquid interface (xini = z). This is not an extreme assump-

tion and is often utilized in the molecular gas dynamics analysis. Note that as for

the molecular velocity space, we have to consider three-dimensions in this analysis.

For example, Sone and his colleagues [12] comprehensively investigate the spatially

one-dimensional net evaporation/condensation in the system composed of the plane

condensed phase and semi-infinite vapor, that is, the half-space problem, by the

Boltzmann equation or its model equation. The Knudsen layer analysis described

in Chapter 1 is also a part of these studies.

In such a spatially one-dimensional net evaporation/condensation problem, the

generalized KBC (Eq. (1.40)) can be expressed as

fout = Af̂ ∗, ξz > 0, (2.1)

where

f̂ ∗ =
1

√
2πRTL

3 exp

(
− ξ2i

2RTL

)
, (2.2)

Also, the mass flux relation (Eq. (1.44)) becomes

ρvz = (A− σ)

√
RTL
2π

, (2.3)

where

σ

√
RTL
2π

= −
∫
ξz<0

ξzfcolldξ. (2.4)
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When A = αeρ
∗ + (1 − αc)σ, Eq. (2.3) becomes

ρvz = (αeρ
∗ − αcσ)

√
RTL
2π

. (2.5)

We discuss, throughout this thesis, these spatially one-dimensional KBC and mass

flux relation (Eqs. (2.1)–(2.5)).

2.1.2 Two-surface problem

Next, we explain the system mainly considered in this thesis. This system is com-

posed of vapor between two parallel liquid slabs, that is, the two-surface problem.

If two liquids are kept at the different temperatures, except in the special cases,

net evaporation occurs at the vapor–liquid interface on the high-temperature side,

while net condensation occurs at the vapor–liquid interface on the low-temperature

side. According to the second law of thermodynamics, the heat flow from the high-

temperature side to the low-temperature side becomes positive and the temperature

gradient becomes negative in vapor. In contrast, Pao [24] reported that the tem-

perature gradient in vapor from the high-temperature side to the low-temperature

side becomes positive by the molecular gas dynamics analysis of the two-surface

problem. This phenomenon that seems to be contradictory to the second law had

been discussed as the paradox of inverted temperature gradient.

The inverted temperature gradient itself is not the scope of this thesis. We

briefly introduce this phenomenon as a characteristic feature of the two-surface

problem. Initially, the inverted temperature gradient had been thought to be an

unphysical phenomenon caused by utilizing the uncertain KBC [54, 55]. A few

years later, it was shown that this phenomenon does not violate nonequilibrium

thermodynamics [56–59]. At present, it is clarified by the molecular gas dynamics

analysis that the cause of the inverted temperature gradient is the temperature

jump, which is the temperature difference between liquid and vapor in contact with
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the vapor–liquid interface, accompanied with net evaporation/condensation [12,47].

The temperature jump increases according to the vapor velocity induced by net

evaporation/condensation, and then the inverted temperature gradient occurs when

the temperature jump at each vapor–liquid interface exceeds the mean temperature

of two liquids. Furthermore, it is also shown by the molecular dynamics simulation

that the inverted temperature gradient certainly occurs in the two-surface problem

[45,46,60,61].

As described above, the two-surface problem is addressed by various approaches,

such as molecular gas dynamics, nonequilibrium thermodynamics, and molecular

dynamics. Although the examination of the inverted temperature gradient is not

the scope of this thesis, these results are relevant in discussing the accuracy of

the molecular simulation based on the mean-field kinetic theory. Moreover, in this

thesis, we have to obtain ρvz under various cases of net evaporation/condensation

to investigate Eq. (2.3). One of the advantages of using this system is that it is easy

to change ρvz by changing the temperature difference between two liquids.

2.2 Mean field kinetic theory

In this thesis, we perform the molecular simulation based on the mean-field ki-

netic theory. We here describe the mean-field kinetic theory and the Enskog–Vlasov

equation derived from this theory. The Enskog–Vlasov equation is an equation that

extends the Boltzmann equation for the ideal gas to both vapor and liquid under

some approximation and assumption. Although the premise of the Enskog–Vlasov

equation is not mathematically clear as compared with that of the Boltzmann equa-

tion, describing the vapor–liquid two-phase flow by using the velocity distribution

function is useful for the molecular simulation explained in the next section. We

preliminarily explain the Enskog theory and the Enskog equation derived from this

theory, which is the basis of the mean-field kinetic theory. We also discuss the rela-

tion between the Enskog–Vlasov equation and the Boltzmann equation because the
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solution of the Enskog–Vlasov equation in vapor should be consistent with that of

the Boltzmann equation to examine the KBC for the Boltzmann equation.

2.2.1 Enskog equation

We here explain the Enskog theory and the Enskog equation derived from this theory.

Since the Boltzmann equation is derived under the ideal gas condition (na3 → 0), it

cannot be applied to dense fluids. In the Enskog theory, we extend the Boltzmann

equation to dense fluids with finite na3 under some assumption. Ideas proposed in

the Enskog theory [62] are listed below:

1. The multiple collisions are completely neglected, and the binary collision is

only described.

2. The collision frequency is modified by a factor, which is the function of the

number density, and the centers of two molecules are separated by the diameter

of a hard-sphere molecule a.

3. The momentum exchanged between the molecules is suddenly transferred from

the center of a molecule to that of the other, that is, the collisional transfer.

As for the quite dense gas, molecules cannot move without the collision, in

which case the collisional transfer is dominant for the momentum transfer.

Here, we provide additional explanations regarding these assumptions. Similar

to the Boltzmann equation, a conventional starting point to describe N -particle

system is the BBGKY hierarchy equation. The Enskog theory is a theory for the

hard-sphere fluid having a finite diameter a. Obviously, this fluid does not satisfy

the Grad-Boltzmann limit (n → ∞ and a → 0 with fixed na2), and therefore it

has never been mathematically proven that the triple or more multiple collisions

can be neglected. However, only the binary collision is considered approximately in

the Enskog theory. It is not well understood why these assumptions turn out to be

qualitatively correct. That is why the Enskog theory is not mathematically clear as
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compared with the derivation of the Boltzmann equation. On the other hand, the

Enskog theory provides a very useful approximation for the dense fluid because of

its simplicity.

Under these approximations and assumptions, the Enskog equation for the one-

particle distribution function is derived from the BBGKY hierarchy equation as

follows [21,62]:

∂f

∂t
+ ξi

∂f

∂xi
= CE, (2.6)

CE =
a2

m

∫
all Ki, all ξ1i

[Y f(x + aK, ξ′1, t)f(x, ξ′, t)

− Y f(x− aK, ξ1, t)f(x, ξ, t)]H(ξr ·K)(ξr ·K)dξ1d
2K. (2.7)

where xi indicates the position of the center of the molecule under consideration,

xi − aKi indicates that of another molecule, H is the Heaviside function, and ξri =

ξ1i − ξi. The post-collisional velocities ξ′i and ξ′1i are obtained from Eq. (1.20). In

Eq. (2.7), Y is a pair correlation function in Eq. (1.17). Note that in the Enskog

theory, the molecular chaos assumption (Y = 1), which introduced when we derive

the Boltzmann equation from the BBGKY hierarchy equation, does not hold. In

the original Enskog theory [62], Y can be identified with the local pair correlation

function, which calculated by the density at the contact point of two molecules. In

contrast, the revised Enskog theory [63] is proposed to have an H-theorem, where

Y is expressed from an approximation that the only correlations in the system are

due to the excluded volume between the molecules at any time; in particular, no

correlations between velocities are retained.

According to the revised Enskog theory, Y have been proposed in various ways

[64, 65]. It, however, is difficult to find the exact pair correlation function based on

Eq. (1.17). We here introduce a simpler method using the result of the Chapman–
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Enskog approximation. The Chapman–Enskog approximation is a kind of successive

approximation, which is a widely used method for solving the Boltzmann equation

[66]. In this approximation, the velocity distribution functions f is expanded in an

infinite series around the local equilibrium distribution. Substituting this expanded

f into the Boltzmann equation, we obtain the equations for each order. These

equations are not closed. We first impose a condition to determine the 0th order f

uniquely. Since the 0th order f is the local equilibrium distribution, we obtain f of

1st order, 2nd order, 3rd order, and so on successively. From this result, f in each

order is known, so that we can obtain the expression of the macroscopic variables.

Similar to the Boltzmann equation, this approximation can also be applied to the

Enskog equation [65,67].

We obtain the following expression for the pressure p from the 0th order approx-

imation of the stress tensor by the Chapman–Enskog approximation for the Enskog

equation.

p = nkBT

(
1 +

2

3
πna3Y

)
, (2.8)

Solving this equation for Y , we get

Y (n) =
1

nb

(
p

nkBT
− 1

)
, (2.9)

where n is the number density, kB is the Boltzmann constant, and b = (2/3)πa3.

Although Eq. (2.9) does not directly find the pair correlation, Résibois [65] defined

Eq. (2.9) as the pair correlation function. We can obtain another expression of the

pair correlation function by utilizing other methods [64,68]. In this thesis, we utilize

Eq. (2.9) as the pair correlation function according to Frezzotti et al. [43, 69]. In

Eq. (2.9), if we specify the equation of state of the hard-sphere molecules, Y (n) is

entirely defined.
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2.2.2 Enskog–Vlasov equation

We describe the mean-field kinetic theory and the Enskog–Vlasov equation derived

from this theory. The mean-field kinetic theory is based on the revised Enskog the-

ory. In the mean-field kinetic theory, a kinetic equation is obtained by generalizing

to a potential with hard-sphere core plus smooth attractive tail, which is suited to

liquid dynamics. The hard-sphere fluid structure serves as a reference structure for

the potential tail. When the potential tail is set to zero, the revised Enskog theory

is recovered. Similar to the Enskog theory, we ignore the triple or more multiple

collisions and consider only the binary collision approximately.

A kinetic equation for the one-particle distribution function including a term

related to the potential tail, ϕtail, is obtained from the BBGKY hierarchy equation

[21,64].

∂f

∂t
+ ξi

∂f

∂xi
= − ∂

∂ξi
f(x, ξ, t)

[∫
all ξ1i, r>a

Ki
dϕtail

dr
f(x1, ξ1, t)dx1dξ1

]
+ CE,

= − 1

m

∂

∂ξi
f(x, ξ, t)

[∫
r>a

Ki
dϕtail

dr
n(x1, t)dx1

]
+ CE, (2.10)

where a term related to ϕtail is the mean-field term that is obtained by a self-

consistent field approximation for the potential tail [64], xi and x1i indicate the

positions of the center of molecules, r is the relative distance between the center of

molecules (r = |x1 − x|), m is the mass of a molecule, and Ki is the unit vector

(Ki = (x1 − x)/|x1 − x|). The post-collisional velocities ξ′i and ξ′1i are obtained

from Eq. (1.20). Note that the pair correlation in the mean-field term is completely

neglected (Y = 1). It is shown that for most liquids, Y in Eq. (1.17) is approximately

unity beyond the distance of the molecular diameter (r > a) [70].

By imposing a limit, which is equivalent to set a = 0 in the mean-field term

integral, a reference structure for the attractive tail appears linearly in the mean-

field term. In this thesis, we do not impose this limit in the mean-field term integral

and utilize Eq. (2.10) directly for the molecular simulation. Further deformation of
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Eq. (2.10) yields

∂f

∂t
+ ξi

∂f

∂xi
+
Fi(x, t)

m

∂f

∂ξi
= CE, (2.11)

where the mean-field term appears as an external force term,

Fi(x, t) =

∫
r>a

Ki
dϕtail

dr
n(x1, t)dx1. (2.12)

Equation (2.11) is called the Enskog–Vlasov equation. To derive Eq. (2.12), we apply

the definition of the density (Eq. (1.7)). In the mean-field kinetic theory, the density,

the velocity, the temperature, and the mass flux are defined by only f (Eqs.(1.7)–

(1.9) and (1.14)). In contrast, other macroscopic variables and fluxes, namely, the

pressure, the specific internal energy, the stress tensor, the heat flux, the momentum

flux vector, and the energy flux, cannot be defined by only f because the collisional

transfer and/or the potential contribution should be taken into account. We can

identify these macroscopic variables and fluxes only in local equilibrium by specifying

the collision term, the intermolecular potential, and the equation of state [43,67,71].

However, when the effect of the collisional transfer and the potential contribution

is sufficiently small, these macroscopic variables and fluxes can be obtained from

Eqs. (1.10)–(1.13), (1.15), and (1.16).

H-theorem

We hereafter give further explanations on the Enskog–Vlasov equation through the

comparison with the Boltzmann equation. Several studies [64, 72] have reported

the H-theorem in the Enskog–Vlasov equation. The H-theorem is a feature of the

Boltzmann equation and is also important to guarantee the availability of its model

equations. We here briefly introduce the results for the H-theorem in the Enskog–

Vlasov equation which Sobrino investigated in the simplified case of Y = 1/(1−bn).
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Sobrino [64] defined the following H function which depends on Y ,

H =

∫
all ξi

f ln(Y f/c)dξ, (2.13)

and a function, H, obtained by integrating the H function with respect to the

domain D,

H =

∫
D
Hdx. (2.14)

Sobrino [64] showed that H and H never increases because the following inequality

holds, similar to the Boltzmann equation.

dH
dt

− (lnY + bY n)

∫
∂D
HinidS

=

∫
D

(∫
all ξi

[1 + ln(f/c)]CEdξ − 1

m

∂f

∂ξi

∫
r>a

dϕtail

dr
n(x1, t)dx1

)
dx ≤ 0, (2.15)

where

Hj =

∫
all ξi

ξjf ln(f/c)dξ. (2.16)

In this inequality, the equal sign valid only when f is the local equilibrium distri-

bution. Sobrino [64] derived the term related to the potential contribution in the

above inequality by defining the functional form of the potential tail ϕtail, but we

omit its derivation here.

Equilibrium solution of Enskog–Vlasov equation

It was shown from the H-theorem proved by Sobrino [64] that the equilibrium

solution of the Enskog–Vlasov equation must be sought among the local, time-
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independent, Maxwellian distribution,

f ∗ =
ρ(x)√

2πRT (x)
3 exp

(
−(ξi − vi(x))2

2RT (x)

)
. (2.17)

We restrict ourselves to the case vi(x) = 0 for simplicity. When the space-independent

temperature is lower than the critical temperature obtained from the Van der Waals

equation of state, the Enskog–Vlasov equation has two types of the equilibrium

solutions [64, 73]: (i) space-independent solutions corresponding to state with a

single-phase, which are not entirely stable but identified with metastable states if

the compressibility is positive and (ii) space-dependent solutions which are identi-

fied with the vapor–liquid equilibrium state. Since the objective of this thesis is

the vapor–liquid two-phase system below the critical temperature, the equilibrium

solution of the Enskog–Vlasov equation is as follows:

f ∗ =
ρ(x)

√
2πRT

3 exp

(
− ξ2i

2RT

)
. (2.18)

When ρ(x) in vapor equals to the saturated vapor density ρ∗ at the liquid tempera-

ture TL, Eq. (2.18) becomes the equilibrium solution of the Boltzmann equation in

vapor,

f ∗ =
ρ∗

√
2πRTL

3 exp

(
− ξ2i

2RTL

)
. (2.19)

Mean free path

We describe the mean free path based on the Enskog theory. In the Enskog theory,

we modify the collision frequency of the Boltzmann equation by Y . On the basis of

Eq. (2.7), the mean collision frequency according to the Enskog theory is

µ̄ = Y 4na2
√
πRT . (2.20)
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The substitution of Eq. (1.29) and the average molecular speed (Eq. (1.27)) into the

definition of the mean free path (Eq. (1.26)) yields

ℓ =
1

Y
√

2πna2
, (2.21)

that is, the mean free path in the Enskog theory. Naturally, the mean free path of

the Enskog equation corresponds with that of the Boltzmann equation for Y = 1.

Transport properties

Here, we describe the expressions of the transport properties, namely, the viscosity

coefficient and the thermal conductivity, as the characteristics of the fluid based on

the Enskog theory. We derive these expressions by the Chapman–Enskog approx-

imation for the Enskog equation. This procedure is often used for obtaining these

transport properties of the Boltzmann equation [66].

In the 1st approximation, the expressions of the viscosity coefficient, κB, and the

thermal conductivity, λB, for the Boltzmann equation with the hard-sphere model

are given by

κB =
5

16a2

√
mkBT

π
, λB =

75

64a2

√
k3BT

πm
. (2.22)

Note that to obtain these expressions from the results of the Chapman–Enskog

approximation, we utilized several mathematical methods (for details, see the liter-

ature [65]).

Also, as described in the former section, we can apply the Chapman–Enskog

approximation for the Enskog equation. In the 1st approximation, the expressions

of the viscosity coefficient, κE, and the thermal conductivity, λE, for the Enskog
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equation are given below.

κE
κB

=
1

Y (n)

[
1 +

4

5
(nbY (n)) +

(
4

45
+

48

25π

)
(nbY (n))2

]
, (2.23)

λE
λB

=
1

Y (n)

[
1 +

5

6
(nbY (n)) +

(
9

25
+

32

25π

)
(nbY (n))2

]
. (2.24)

These transport properties of the Enskog equation corresponds with that of the

Boltzmann equation when na3 → 0 and Y = 1.

We introduce the previous studies which calculated the transport properties from

Eqs. (2.23) and (2.24). Dymond and Alder [74] calculated these transport properties

for extremely dense gas from Eqs. (2.23) and (2.24) and compared these with the

results of the experiment. As a result, it was shown that the transport properties

calculated from Eqs. (2.23) and (2.24) agree with the experimental data, even at

the high temperatures. The difference between these results is approximately 10%.

Karkheck and Stell [71] compared these transport properties with the experimental

data to investigate whether the expressions of these transport properties (Eqs. (2.23)

and (2.24)) can be applied to liquid. As a result, it was shown that the temperature

characteristics of the transport properties calculated from Eqs. (2.23) and (2.24)

agree with the experimental data even in liquid.

2.3 Numerical method

So far, we have shown the general framework of the mean-field kinetic theory. We

demonstrate the numerical method based on this theory from here.

2.3.1 Intermolecular potential and equation of state

Sutherland potential

Here, we specify the intermolecular potential. In this thesis, we utilize the following

intermolecular potential named the Sutherland potential, which is an ideal potential
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having a hard-sphere core plus smooth attractive tail.

ϕ(r) =


+∞ (r < a)

−ϕa

(
r
a

)−γ
(r ≥ a),

(2.25)

where ϕa and γ are constants which are related to the depth of the potential well at

r = a and the range of the attractive tail, respectively; γ is set to six to follow the

attractive tail of the 12–6 Lennard-Jones intermolecular potential in this simulation.

Equation of state for hard-sphere with attractive tail

Next, we describe the equation of state. In this thesis, we consider the following

expression.

p = phs + ptail, (2.26)

where, phs indicates the hard-sphere contribution to the total pressure, and ptail

indicates the potential contribution to the total pressure. We utilize the following

Carnahan and Starling approximation [75] for phs.

phs = nkBT
1 + η + η2 − η3

(1 − η)3
, (2.27)

where η = (1/6)πa3n. It is shown that this expression of phs gives a prediction that

is closer to the real molecules than the Van der Waals equation of state [75].

As for ptail, we consider the modified term due to the attractive intermolecular

force that is proportional to n2 (ptail = Pn2), similar to the Van der Waals equation

of state. Since we already specify the functional form of the intermolecular potential

(Eq. (2.25)), P can be obtained from the virial [76] as

P = −2

3
π

∫ ∞

a

r2ϕ′
tail(r)dr, ϕ′

tail(r) = r
dϕtail(r)

dr
. (2.28)
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From the attractive tail of the Sutherland potential (Eq. (2.25)), we get P =

−(2/3)πa3ϕaγ(γ − 3)−1 when γ > 3. Using the above results, the equation of

state considered in this thesis is obtained as follows:

p = nkBT
1 + η + η2 − η3

(1 − η)3
− 2

3
πa3ϕa

γ

γ − 3
n2. (2.29)

This equation of state is the same as that utilized by Frezzotti et al. [43].

Now we specify the equation of state and therefore we can determine the pair

correlation function Y (n) from Eq. (2.9). We consider only Y (n) for the hard-sphere

contribution because Y (n) is set to unity on the mean-field term in Eq. (2.11). Such

Y (n) is given by Eq. (2.27) as

Y (n) =
1

nb

(
phs
nkBT

− 1

)
=

1

2

2 − η

(1 − η)3
. (2.30)

Critical point

In the molecular simulation of this thesis, we use the macroscopic variables at the

critical point as the reference values for the nondimensionalization. We here show

the expressions of the critical number density, nc, and the critical temperature, Tc,

derived from the equation of state (Eq. (2.29)). We apply the condition of the

critical point in the Van der Waals equation of state,

(
∂p(T, n)

∂n

)
T

= 0,

(
∂2p(T, n)

∂n2

)
T

= 0, (2.31)

to Eq. (2.29), where ()T indicates the partial differentiation with T as a constant.

By solving these simultaneous equations, nc and Tc can be obtained as

1

6
πa3nc = 0.130443, Tc = 0.094329

4γ

γ − 3

ϕa

kB
. (2.32)
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It should be noted that these macroscopic variables at the critical point are derived

from the equation of state; hence, these results do not guarantee that the Enskog–

Vlasov equation has the solution at the critical point. In contrast, we can define the

local Maxwellian distribution using the macroscopic variables at the critical point

obtained from the equation of state, and that can be a solution of the Enskog–Vlasov

equation.

2.3.2 Direct simulation Monte Carlo

Let us explain the numerical method for the Enskog–Vlasov equation (Eq. (2.11)).

In this thesis, instead of solving the Enskog–Vlasov equation by the finite difference

method, we adopt a method of replacing it with the equivalent molecular simulation.

This method is based on the direct simulation Monte Carlo (DSMC) known as

the stochastic simulation of the Boltzmann equation. Several studies [67, 69] tried

to apply the DSMC simulation to the Enskog equation. In particular, Frezzotti

[69] proposed the DSMC simulation for the Enskog equation which can exactly

conserve the momentum and the energy. Moreover, Frezzotti et al. [43] extended

this simulation method to the Enskog–Vlasov equation and proposed it as one of the

molecular simulation methods that can simulate the vapor–liquid two-phase flow.

In this thesis, we utilize this molecular simulation method proposed by Frezzotti et

al. [43]. We hereafter call this molecular simulation the EV-DSMC simulation.

The EV-DSMC simulation is similar to the molecular dynamics simulation for

the monatomic molecules, which tracks the temporal evolution of the positions

and the velocities of molecules under a certain intermolecular potential. The dif-

ference between these two molecular simulations is that the molecular dynamics

simulation handles the intermolecular collision process as deterministic, while the

EV-DSMC simulation handles that as stochastic. Also, molecular dynamics re-

quires the spatially three-dimensional simulation, while the EV-DSMC simulation

can perform the spatially one-dimensional simulation. Therefore, we can reduce
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the computational cost as compared with the molecular dynamics simulation for

the monatomic molecules in a similar system by utilizing the EV-DSMC simula-

tion. Reducing the computational cost is a significant advantage in this thesis

because we have to perform the molecular simulation in the cases of various net

evaporation/condensation. Barbante [77] showed that the EV-DSMC simulation for

the spatially one-dimensional flow runs about 50–60 times faster than an equiva-

lent molecular dynamics simulation with the same number of molecules. Further-

more, several studies confirmed that the macroscopic variables in the vapor–liquid

two-phase system obtained from the EV-DSMC simulation show similar tendencies

with those obtained from the molecular dynamics simulations for the monatomic

molecules [39,43,48,50,51,78].

In the EV-DSMC simulation, we discretize the finite time and space as ∆t and

∆x, respectively. The EV-DSMC simulation handles both liquid and vapor of the

different scales. It is necessary to select ∆t and ∆x based on the characteristic time

and volume in liquid because these scales in liquid are smaller than those in vapor.

The conditions of ∆t and ∆x are shown as follows:

∆t≪ min(µ̄−1
L ), ∆x ≪ min(a3), (2.33)

where µ̄−1
L is the inverse of the mean collision frequency (Eq. (2.20)) in liquid, that

is, the mean free time in liquid.

Principle of uncoupling

We hereafter explain the concept and the procedure of the EV-DSMC simulation.

We can separate the advection and collision processes of molecules by taking suffi-

ciently small ∆t (Eq. (2.33)), that is, the principle of uncoupling [79,80]. Applying

the principle of uncoupling to the Enskog–Vlasov equation, we get the following
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conceptual expression.

∂f

∂t
+ ξi

∂f

∂xi
+
Fi(x, t)

m

∂f

∂ξi
= 0, (2.34)

∂f

∂t
= CE. (2.35)

Equations (2.34) and (2.35) express the advection and collision processes, respec-

tively.

More detailed derivation of the principle of uncoupling is shown below. We

rewrite the Enskog–Vlasov equation (Eq. (2.11)) as follows:

∂f

∂t
= −D1[f ] − D2[f ] + D3[f ], (2.36)

where D1, D2, and D3 are the operators,

D1[f ] = ξi
∂f

∂xi
, D2[f ] =

Fi(x, t)

m

∂f

∂ξi
, D3[f ] = CE. (2.37)

The EV-DSMC method is a technique to obtain the solution at an arbitrary time

t = ∆t from the solution at t = 0 (initial condition). For sufficiently small ∆t, we

have

f(x, ξ,∆t) = f(x, ξ, 0) +

(
∂f(x, ξ, t)

∂t

)
t=0

∆t. (2.38)

With the use of Eq. (2.36), it becomes

f(x, ξ,∆t) = f(x, ξ, 0) + (−D1[f ] − D2[f ] + D3[f ])t=0∆t,

= (1 − D1∆t− D2∆t+ D3∆t)f(x, ξ, 0), (2.39)
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and this equation can be rewritten as

f(x, ξ,∆t) = (1 − D1∆t− D2∆t)(1 + D3∆t)f(x, ξ, 0). (2.40)

Disregarding the term smaller than O[∆t2] in Eq. (2.40), we get Eq. (2.39). Equation

(2.40) states the principle of uncoupling. The evolution of f during ∆t can be divided

into the advection and collision processes. In the advection process, f is changed

due to the operator (1−D1∆t−D2∆t), that is, a collisionless motion of molecules.

In the collision process, f is changed due to the operator (1 + D3∆t), that is, the

collisional relaxation.

Velocity distribution function expressed by delta function

An important point in the EV-DSMC method is to track the molecular motion

instead of solving f directly. A method of rewriting f as the sum of delta function

(Dirac’s delta) is often used as a concept for replacing a kinetic equation governing

f with equivalent molecular simulation. For simplicity, we denote f (defined by

Eq. (1.6)) divided by the mass of a molecule m as f ′. f ′ expanded by the delta

function at an arbitrary point (x, ξ, t) in the system with the number of molecules

Nmol (i = 1, 2, ..., Nmol) is rewritten as

f ′(x, ξ, t) =

Nmol∑
i

δ(x− x(i))δ(ξ − ξ(i)), (2.41)

where subscripts in the parentheses denote the molecular number; x(i) and ξ(i)

indicate the position and velocity of the ith molecules at time t. Each term of

the delta function in this expansion corresponds to each molecule, and x(i) and ξ(i)

correspond to the position and velocity of the ith molecule. Also, when the number

of cells is defined as Ncell (l = 1, 2, ..., Ncell) and the number of molecules in the lth

cell is defined as N
(l)
mol (j = 1, 2, ..., N

(l)
mol), f

′ in the lth cell whose reference point is
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x can be rewritten as

f ′(x, ξ, t) =
n(l)

N
(l)
mol

N
(l)
mol∑
j

δ(ξ − ξ
(l)
(j)), (2.42)

where superscripts in the parentheses denote the cell number; n(l) indicates the

number density in the lth cell and ξ
(l)
(j) indicates the velocity of the jth molecules in

the lth cell. From this expanded f ′, the macroscopic variables defined by f , such as

the density, the velocity, and the temperature in the lth cell are obtained as follows:

• Density ρ:

ρ = m
N

(l)
mol

dx
. (2.43)

• Velocity vi

vj =
1

N
(l)
mol

N
(l)
mol∑
j

ξ
(l)
(j). (2.44)

• Temperature T

T =
1

N
(l)
mol

N
(l)
mol∑
j

(ξ
(l)
(j) −

N
(l)
mol∑
k

ξ
(l)
(k))

2. (2.45)

Equations (2.43)–(2.45) ideally can approximate Eqs. (1.7)–(1.9) by taking a suf-

ficient number of terms in the delta function. In the same way, we can also get

other macroscopic variables and fluxes defined by f when the effect of the collisional

transfer and the potential contribution is sufficiently small.

Advection process

We here show how the advection process (Eq. (2.34)) is dealt in the EV-DSMC

simulation. We consider the position and the velocity of the ith molecules after ∆t,
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which have the velocity ξ(i) and the position x(i) at the time t. The motion of such

a molecule follows the following Newton’s equation of motion.

d2x(i)(t)

dt2
=
Fi(x, t)

m
. (2.46)

where Fi(x, t) indicates the mean-field term as specified in Eq. (2.12). In the spa-

tially one-dimensional problem, Eq. (2.12) can be simplified as [43].

Fz(z, t) = 2πϕa

[
aγ

∫
|z−z′|>a

(z′ − z)

|z − z′|γ
n(z′, t)dz′ +

∫
|z−z′|≤a

(z′ − z)n(z′, t)dz′
]
,

(2.47)

where z indicates the reference point of the cell under consideration, and z′ indicates

that of other cells. We obtain the following position and velocity of molecules by

solving the z-component of Eq. (2.46) by the leapfrog method.

z(i)(t+ ∆t) = z(i)(t) + ξz(i)(t+ ∆t/2)∆t, (2.48)

ξz(i)(t+ ∆t/2) = ξz(i)(t− ∆t/2) +
Fz(z, t)

m
∆t, (2.49)

where the term smaller than O[∆t2] are neglected. Obviously, since Fz affects only

in the z direction, ξx(i) and ξy(i) are not changed in the advection process.

Collision process

We here show how the collision process (Eq. (2.35)) is dealt in the EV-DSMC sim-

ulation. The handling of the collision term is a characteristic feature of the EV-

DSMC simulation. In molecular dynamics simulation, the collision processes with

all molecules are dealt deterministically with according to the intermolecular force.

On the other hand, the DSMC simulation does not deal with the collision processes

with all molecules. In the DSMC simulation, the collision pair is statistically selected

according to the collision probability, and the velocities of molecules are replaced at
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which this event occurred. This concept is the same in the EV-DSMC simulation

as well.

We explain how to choose the collision pairs in the EV-DSMC simulation. The

contents of this section are based on the literature [43, 69]. As for the Boltzmann

equation, the collision integral has a local character; therefore, the collision pairs

are selected from the molecules belonging to the same cell in the DSMC method.

In contrast, as for the Enskog–Vlasov equation, the collision integral involves the

distribution function at the different position; therefore, the molecules in a given cell

interact with that located in nearby cells in the EV-DSMC method. Accordingly, to

estimate the collision probability, it is necessary to predict the number of collisions

in a domain where molecules may interact.

When the domain under consideration is D, the expected number of collision,

Ncoll, during ∆t in D can be obtained from Eq. (2.7) as

Ncoll =
1

2

∫
D

dx

∫
all ξi

dξ

∫
all ξ1i

dξ1

∫
S(x)

a2Y [n(x− aK/2, t)]

× f ′(x− aK, ξ1, t)f
′(x, ξ, t)H(ξr ·K)(ξr ·K)d2K, (2.50)

where S(x) is the set of K for which a condition x−aK ∈ D holds. The substitution

of f ′ expanded by the delta function (Eqs. (2.41) and (2.42)) into Eq. (2.50) yields

Ncoll =
1

2

Nmol∑
i

N ′
cell∑
m

N
(m)
mol∑
j

[µ
(m)
(j) ](i), (2.51)

[µ
(m)
(j) ](i) = a2

n(m)

N (m)

∫
S
(m)
(i)

Y [n(x(i) − aK/2, t)]H(ξr ·K)(ξr ·K)d2K, (2.52)

where N ′
cell (m = 1, 2, ..., N ′

cell) indicates the number of cells containing a position of

the sphere radius a and center x(i), ξr = ξ
(m)
(j) − ξ(i), and a term (1/2)[µ

(m)
(j) ](i) gives

the collision frequency between the jth molecule in the mth cell and the ith molecule

to the total number of collisions per unit time. Hence, the probability of collisions
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between the jth molecule in the mth cell and the ith molecule, P̄coll becomes

P̄coll =
1

2

[µ
(m)
(j) ](i)

Ncoll

, (2.53)

Now, the probability of collisions P̄coll can be obtained from Eq. (2.53). However,

in the actual algorithm, the estimation of Ncoll from Eq. (2.52) is not practical

because this estimation would require a huge computational cost that is proportional

to N2
mol. Some stochastic techniques have been proposed [79–81] for calculating

Ncoll. In this thesis, we utilize the majorant frequency method [81] according to the

literature [43,69].

In the majorant frequency method, we estimate the temporary collision number

which is certainly larger than the actual number (Eq. (2.52)) and is easy to be calcu-

lated. We preliminarily consider the following inequality that [µ
(m)
(j) ](i) in Eq. (2.52)

satisfies.

[µ
(m)
(j) ](i) ≤ [µ̄

(m)
(j) ](i) = a2

A(i)C(i)

N
(m)
mol

∫
S
(m)
(i)

d2K, (2.54)

where A(i) and C(i) are constants which satisfy

A(i) ≥ n(m)Y [n(x(i) − aK/2, t)], (2.55)

for all K ∈ S
(m)
(i) and m, and

C(i) ≥ |ξ(m)
(j) − ξ(i)|, (2.56)

for all j and m. Here, we define a new quantity with the use of Eq. (2.54),

N̄coll =
1

2

Nmol∑
i

N ′
cell∑
m

N
(m)
cell∑
j

[µ̄
(m)
(j) ](i), (2.57)
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which is obtained by increasing [µ
(m)
(j) ](i) in accordance with Eq. (2.54); N̄coll is greater

than the actual collision number Ncoll, but N̄coll can be easily estimated as shown

below.

N̄coll =
1

2

Nmol∑
i

N ′
cell∑
m

a2A(i)C(i)

∫
S
(m)
(i)

d2K,

=
1

2

Nmol∑
i

4πa2A(i)C(i). (2.58)

As stated above, N̄coll is greater than Ncoll, but the probability of the actual collision

is invariant because excessive candidates are rejected as false collisions. This is the

essence of the majorant frequency method.

Let us explain how to determine the collision pair according to the majorant

frequency method. The contribution of the ith molecule to N̄coll is 4πa2A(i)C(i); the

actual or false collision are selected according to the following probability.

P̄(i) =
2πa2A(i)C(i)

N̄coll

. (2.59)

Once a molecule has been selected, the probability that it collides with the other

molecules in the mth cell is obtained as

P̄
(m)
(i) =

1

4π

∫
S
(m)
(i)

d2K. (2.60)

The collision pair can be selected by drawing a random vector K on the unit sphere.

The probability that the collision between the ith and jth molecules is selected as
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the actual collision is determined from the following expression.

[P̄
(m)
(j) ](i) =

[µ
(m)
(j) ](i)

[µ̄
(m)
(j) ](i)

=

∫
S
(m)
(i)

φ(K)d2K∫
S
(m)
(i)

d2K

, (2.61)

φ(K) =
n(m)Y [n(x(i) − aK/2, t)]H(ξr ·K)(ξr ·K)

A(i)C(i)

, (2.62)

where φ(K) holds 0 ≤ φ(K) ≤ 1. Eventually, the actual collision is accepted if the

uniform random number ru (0 ≤ ru ≤ 1) is smaller than φ(K), where K becomes

random vector uniformly distributed on S
(m)
(i) . If a collision between the ith and jth

molecules is accepted as the actual collision, the velocities of both molecules are

changed according to Eq. (1.20):

ξ′(i) = ξ(i) + (K · ξr)K, ξ
′(m)
(j) = ξ

(m)
(j) − (K · ξr)K. (2.63)

So far we have explained the concept of the procedure of the EV-DSMC simu-

lation. To summarize the contents of this section, the flowchart of the EV-DSMC

simulation in the steady system is as shown in Fig. 2.1. In the steady system, the

macroscopic variables and the fluxes are calculated by the time average. In contrast,

it is necessary to take an ensemble average in the unsteady system. The initial con-

dition and the boundary condition are explained for each simulation so that the

explanation is omitted here.

2.4 Test simulation for vapor–liquid equilibrium

As a test of the EV-DSMC simulation, we carry out the simulation for the vapor–

liquid equilibrium state. Through this test simulation, we examine whether the

EV-DSMC simulation is appropriate to investigate KBC, and then we calculate

some quantities to be used as reference values in the later simulation.
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Start

Assign initial condition:
Molecules positon and velocity

Move molecules during ∆t and
impose boundary condition

Sample flow properties:
Macroscopic variables and fluxes

Select collision pairs and perform
intermolecular collisions at ∆t

Yes

No
Steady flow?

Yes

Enough samples?
No

Return

Figure 2.1: Flowchart of the EV-DSMC algorithm.
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Center of liquid

Periodic BCPeriodic BC

Center of liquid

Vapor LiquidLiquid

TL1 TL2

LH

O z

Figure 2.2: Schematic of the simulation system; TL1 and TL2 indicate the temper-
atures of two liquids (TL1 = TL2 = T ) and LH indicates the half-length of the
simulation system.

2.4.1 Simulation settings

We simulate the system composed of vapor between two parallel liquid slabs (two-

surface problem) in the one-dimensional space and the three-dimensional molecular

velocity space. The schematic of the simulation system is shown in Fig. 2.2; TL1

and TL2 indicate the temperatures of two liquids and LH indicates the half-length

of the simulation system. The vapor–liquid equilibrium state is realized by keeping

the temperature of two liquids at TL1 = TL2 = T . We simulate such an equilibrium

(saturated) state in the range of the temperature, T/Tc, from 0.56 to 0.79 with the

increments of 0.01. Note that T/Tc = 0.56 represents a temperature near the triple

point if we refer to the critical temperature of argon. The cell size ∆z is set to 0.2a,

the time step ∆t is set to 0.001(
√

2RTc/a) ≈ 0.2µ̄−1
L , and the half-length of the

simulation system LH is set to 40a. We calculate the macroscopic variables and the

fluxes by taking 2,001 samples for each condition and averaging them over time.

Initial condition

In the EV-DSMC simulation, we give the positions and the velocities of molecules as

an initial condition. In this simulation, 600,000 molecules (total 1,200,000 molecules)

are arranged only around the center of each liquid where the liquid slab is to be

formed.

The velocities of molecules are given by the following normalized velocity distri-
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bution function.

f̂0 =
1

√
2πRTL

3 exp

(
− ξ2i

2RTL

)
, (2.64)

where T0 is the reference temperature. Since the EV-DSMC simulation does not

solve f , we cannot impose Eq. (2.64) directly. We give the velocities of molecules

sampled from Eq. (2.64). This method is called the random sampling. Equa-

tion (2.64) is the normalized velocity distribution function, but from another point

of view, it can be regarded as the probability density to find a certain molecular

velocity ξi in the molecular velocity space dξ. The probability density naturally

satisfied the following relation.

∫
all ξi

f̂0dξ = 1. (2.65)

According to Eq. (2.65), the velocity of the x-component of the ith molecule ξx(i) is

obtained from the following indefinite integral.

1√
2πRTL

∫ ξx(i)

−∞
exp

(
− ξ2x

2RTL

)
dξx = ru, (2.66)

where ru is the uniform random number (0 ≤ ru ≤ 1). The above indefinite integral

holds for ξy(i) and ξz(i) in the same way. Although we cannot solve this indefinite

integral, each component of ξ(i) can be found based on the Box–Muller method [82]

as follows:

ξz(i) =
√

−2RTL ln ru1 cos(2πru2), (2.67)

ξx(i) =
√

−2RTL ln ru1 sin(2πru2), (2.68)

ξy(i) =
√

−2RTL ln ru3 sin(2πru4), (2.69)

where ru1, ru2, ru3, and ru4 indicate the different uniform random numbers.

53



Chapter 2 Method

Boundary condition

Next, we describe the boundary condition in this simulation. As illustrated in

Fig. 2.2, we impose the periodic boundary condition at both ends of the system;

the molecules that flow out from one boundary after advection are inserted from

the other boundary. By imposing this boundary condition, the simulation system

as shown in Fig. 2.2 can be regarded as symmetric with respect to each center of

liquid. In the following, we show the results only in half the simulation system.

Velocity scaling method

In this simulation, we apply the velocity scaling method [76] to keep the constant

temperature. The velocity scaling method modifies the velocities of molecules at

each time step according to the following equation.

ξ(z, t+
1

2
dt) = (2Ψ − 1)ξ(z, t+

1

2
dt) + ΨFz(z, t)

dt

m
, (2.70)

where Ψ is a temperature modification factor defined by the desired temperature

Td and current temperature T : Ψ =
√
Td/T . In this simulation, we calculate Φ in

each cell at each time step.

This thermostat by the velocity scaling method is applied only near the center

of each liquid. The region where the thermostat is imposed is determined based on

the formula of the 10–90 thickness density transition layer,

ρ(z) =
ρV + ρL

2
+
ρV − ρL

2
tanh

(
z − zm
0.455δ

)
, (2.71)

where ρV and ρL indicate the vapor and liquid densities, respectively, zm indicates

the position of the center of the density transition layer, and δ is the thickness of

the density transition layer. Equation (2.71) shows that the density distribution in

the transition layer in vapor–liquid equilibrium can be described by the hyperbolic

tangent. Applying the nonlinear least square method to the density distribution in
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Figure 2.3: Spatial distribution of the density ρ obtained from the EV-DSMC simu-
lation in vapor–liquid equilibrium in the cases of the normalized temperature, T/Tc,
from 0.60 to 0.72; the abscissa is normalized by the molecular diameter a, and the
ordinate is normalized by the critical density ρc.

the vapor-liquid equilibrium by using Eq. (2.71), we can get the values of zm and δ.

The region where the thermostat is imposed is defined as 3.0a from each zm toward

each liquid; the length of the thermostat region is approximately ±3.0a from the

center of liquid. Note that since the position of zm depends on the temperature, the

length of the thermostat region slightly varies with the temperature.

2.4.2 Results

Density

First, we show the results of the density fields to confirm whether the EV-DSMC

simulation can qualitatively describe the vapor–liquid two-phase system. Figure 2.3

shows the density fields obtained from the EV-DSMC simulation in the region, z/a,

from 0 to 15. In Fig. 2.3, the higher density region is liquid, and lower density region

is vapor. The smooth density transition layer is formed between liquid and vapor.

As can be seen in Fig. 2.3, when the temperature becomes higher, the liquid density

becomes smaller, and the vapor density becomes larger; thus, the thickness of the

density transition layer becomes thicker. This tendency corresponds to the results
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Figure 2.4: Temperature characteristics of the density ρ: (a) the vapor–liquid coex-
istence curve compared with argon [83]: (b) the Clausius-Clapeyron equation fitting
for the vapor density; each abscissa is normalized by the critical temperature Tc,
and each ordinate is normalized by the critical density ρc.

of the monatomic molecules [33,83], such as argon and neon.

The enlarged view of Fig. 2.3 illustrates the mass flux relation at the vapor–liquid

interface. In Fig. 2.3, Jout is the mass flux related to fout (Jout =
∫
ξz>0

ξzfoutdξ) and

Jcoll is that related to fcoll (Jcoll =
∫
ξz<0

ξzfcolldξ). In vapor–liquid equilibrium,

Jout should be balanced by Jcoll; hence, the mass flux at the vapor–liquid interface

becomes zero.

Figure 2.4(a) shows the temperature characteristics of the density compared with

argon summarized in the NIST Chemistry Web Book [83]. In Fig. 2.4(a), the solid

lines denote the density of argon, the closed circles denote the density obtained from

the EV-DSMC simulation. The vapor density obtained from the EV-DSMC simula-

tion agrees with that of argon, while the liquid density obtained from the EV-DSMC

simulation is larger than that of argon near the triple point temperature, where the

maximum deviation is almost 20%. However, the temperature characteristics of the

liquid and vapor densities are well described by the EV-DSMC simulation.
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Clausius–Clapeyron equation

The Boltzmann equation is derived under the ideal gas condition (na3 → 0). The

ideal gas condition is known to be applicable to monatomic molecules at the low

temperature even for real molecules. Next, we examine whether the vapor density

in vapor–liquid equilibrium obtained by the EV–DSMC simulation satisfies the ideal

gas condition.

The relation between the pressure and the temperature of the ideal gas in vapor–

liquid equilibrium is given as follows:

dp

dT
=

∆h

RT 2
, (2.72)

where ∆h is the latent heat, and it can be assumed constant in the case of the ideal

gas. Solving this differential equation,

∫ p

p0

1

p
dp =

∆h

R

∫ T

T0

1

T 2
dT, (2.73)

we get

p = p0 exp

(
∆h

RT0

)
exp

(
− ∆h

RT0

)
= p′0 exp

(
− ∆h

RT0

)
, (2.74)

where T0, p0, and p′0 are the constants. Equation (2.74) is called the Clausius–

Clapeyron equation. Note that T0 and p0 can be regarded as the temperature and

the pressure near the triple point because we consider the vapor–liquid coexistence

region. Then, we derive the relation between the vapor density and the temperature

in vapor–liquid equilibrium. Substituting the equation of state for the ideal gas
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(p = ρRT ) into Eq. (2.74), we get

ρ =
p′0
RT

exp

(
−∆h

RT

)
. (2.75)

Equation (2.75) is also called the Clausius–Clapeyron equation. In this study, we

call Eq. (2.75) the Clausius–Clapeyron equation. For convenience, we normalize

Eq. (2.75) by critical density ρc and the critical temperature Tc:

ρ

ρc
=

p′0
RTc

Tc
T

exp

(
− ∆h

RTc

Tc
T

)
. (2.76)

Figure 2.4(b) shows the vapor density obtained from the EV-DSMC simulation;

the dashed line in Fig. 2.4(b) denotes the Clausius–Clapeyron equation obtained

by the nonlinear least square method with the use of Eq. (2.76). Two normalized

constants in Eq. (2.76), which are related to the pressure and the latent heat, are

obtained from this fitting as p′0/RTc = 79.72 and ∆h/RTc = 5.279, respectively. As

can be seen in Fig 2.4, the vapor density obtained by the EV-DSMC simulation is

well fitted by the Clausius–Clapeyron equation (Eq. (2.76)) in all the temperature

cases. Frezzotti et al. [43] also showed the similar result from the EV-DSMC sim-

ulation that the vapor density is well fitted by the Clausius–Clapeyron equation in

the low temperature range (T/Tc ≲ 0.80) with ∆h/RTc = 5.3776. We now conclude

that vapor can be regarded as the ideal gas in the range of the temperature, T/Tc,

from 0.56 to 0.79.

Velocity distribution function

To confirm the equilibrium solution of the Enskog–Vlasov equation, we examine the

velocity distribution function obtained from the EV-DSMC simulation. Figure 2.5

shows the velocity distribution functions normalized by the density at the positions

z/a = 0.1 (liquid) and z/a = 19.9 (vapor) in the cases of the temperature, T/Tc, 0.56

and 0.79. In Fig. 2.5, the solid lines denote the normalized Maxwellian distribution

58



Chapter 2 Method

(2
R
T

)1
/2
 f

( ζ
i)

^

0

0.1

0.2

0.3

0.4

0.5

0.6

-3 -2 -1 0 1 2 3

ζi

(2
R
T

)1
/2
 f

( ζ
i)

^

(2
R
T

)1
/2
 f

( ζ
i)

^

(2
R
T

)1
/2
 f

( ζ
i)

^

(a) (b)

(c) (d)

Normal

Tangential

ζi

0

0.1

0.2

0.3

0.4

0.5

0.6

-3 -2 -1 0 1 2 3

0

0.1

0.2

0.3

0.4

0.5

0.6

-3 -2 -1 0 1 2 3

Liquid

Normalized 
Maxwellian

Normal

Tangential

Normal

Tangential

Normal

Tangential

Vapor

0

0.1

0.2

0.3

0.4

0.5

0.6

-3 -2 -1 0 1 2 3

Normalized 
Maxwellian

Normalized 
Maxwellian

Normalized 
Maxwellian

0

0.1

0.2

0.3

0.4

0.5

0.6

-3 -2 -1 0 1 2 3

ζi

0

0.1

0.2

0.3

0.4

0.5

0.6

-3 -2 -1 0 1 2 3

ζi

Vapor

0

0.1

0.2

0.3

0.4

0.5

0.6

-3 -2 -1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

-3 -2 -1 0 1 2 3

Liquid

Figure 2.5: Velocity distribution function in the cases of (a) T/Tc = 0.56 and z/a =
0.1a, (b) T/Tc = 0.56 and z/a = 19.9, (c) T/Tc = 0.79 and z/a = 0.1, and (d)
T/c = 0.79 and z/a = 19.9.
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modified as

√
2RT f̂ ∗(ζi) =

1√
π

exp(−ζ2i ), (2.77)

where ζi = ξi/
√

2RT . The closed circles are the normalized velocity distribution

function obtained from the EV-DSMC simulation. In the EV-DSMC simulation,

the normalized velocity distribution function is obtained by the following proce-

dure. We set the upper and lower limits of the velocity space to ζi = −3 and

ζi = 3, respectively, and divide this velocity space into 30 cells. We can calculate

the normalized velocity distribution function at each cell of the physical space in

the simulation system by determining which cells molecular velocity belongs to and

counting the number of molecules.

As can be seen in Fig. 2.5, the normalized velocity distribution function at each

point and temperature agrees with the solid lines (Eq. (2.77)). In vapor at the

low temperature, the data obtained from the EV-DSMC simulation vary around the

normalized Maxwellian distribution because the number of molecules is smaller than

that in the high temperature case (see Fig. 2.4(b)). That is why it is hard to obtain

enough samples in vapor at the low temperature. It is an important result that

the normalized velocity distribution function becomes the normalized Maxwellian

distribution and the vapor density obeys the Clausius–Clapeyron equation for the

ideal gas; thus, we conclude that the equilibrium solution of the Enskog–Vlasov

equation in vapor is the same as that of the Boltzmann equation and it can be

obtained from the EV-DSMC simulation.

Mean free path

Hereafter, we calculate two quantities to be used as reference values in the later

simulation, namely, the mean free path and the thermal conductivity. Once the

density is obtained from the EV-DSMC simulation, we can determine the mean

free path ℓ from Eq. (2.21). We preliminarily estimate Y (n) from Eq. (2.30) in the
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Figure 2.6: Temperature characteristics of (a) the pair correlation function Y (n) and
(b) the mean free path ℓ; each abscissa is normalized by the critical temperature Tc,
and the ordinate of (b) is normalized by the molecular diameter a.

range of the temperature, T/Tc, from 0.56 to 0.79. Figure 2.6(a) shows the relation

between Y (n) obtained from the EV-DSMC simulation and the temperature T . As

can be seen, Y (n) in liquid becomes smaller with the increase of the temperature,

while Y (n) in vapor is almost constant and is equal to unity. In the case of Y (n) = 1

(the solid line in Fig. 2.6(a)), the mean free path of the Enskog–Vlasov equation

(Eq. (2.21)) is equivalent to that of the Boltzmann equation (Eq. (1.30)). This

result indicates that the mean free path of vapor is to be the same as that of the

Boltzmann equation in the range of the temperature, T/Tc, from 0.56 to 0.79.

We then estimate the mean free path ℓ defined in Eq. (2.21). Figure 2.6(b) shows

the relation between the mean free path ℓ and the temperature T . The mean free

path in vapor is larger than that in liquid and decreases with the increase in the

temperature, while that in liquid (see the enlarged view of Fig. 2.6(b)) increases

with the increase in the temperature.

Thermal conductivity

We now estimate the thermal conductivity λE as one of the characteristic trans-

port properties. As already shown, λE is obtained from Eq. (2.24) by using λB
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(Eq. (2.22)); λE normalized by the critical density ρc, the critical temperature Tc,

and the molecular diameter a is

λ̂E =
λETc

aρc
√

2RT 3
c

=
75

128
√

2π

1

Y (n)

[
1 +

5

6
(nbY (n)) +

(
9

25
+

32

25π

)
(nbY (n))2

]
ρ

ρc

√
T

Tc
. (2.78)

Figure 2.7 shows the relation between the normalized thermal conductivity λ̂E

and the temperature T . In Fig. 2.7, the closed circles denote λ̂E obtained from

the EV-DSMC simulation, and the solid lines denote that of argon summarized in

the NIST Chemistry Web Book, which is normalized by the critical values [83] and

Lennard-Jones intermolecular potential parameters [72]. As can be seen in Fig. 2.7,

although the slope of the thermal conductivity in liquid obtained from the EV-

DSMC simulation is larger than that of argon, the temperature characteristics of

thermal conductivity obtained from the EV-DSMC simulation in both liquid and

vapor show good agreement with those of argon. Also, this result is consistent with

that reported by Karkheck and Stell [72].
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3
Construction of kinetic boundary

condition

In this chapter, we examine the mass flux relation (Eq. (2.3)) to find a pair of

αe and αc defined by Eq. (1.42) by the EV-DSMC simulation explained in Chap-

ter 2. We perform the EV-DSMC simulation for the two-surface problem in 160

cases of the temperature differences between two liquids. First, we confirm whether

the normalized velocity distribution function of the KBC obeys Eq. (2.2) because

the results of the previous studies [34, 38, 39, 41] indicated that the normalized ve-

locity distribution function of the KBC deviates from Eq. (2.2) under strong net

evaporation/condensation. Next, we formulate the mass flux relation at each liquid

temperature by using ρvz obtained by the molecular simulation and corresponding σ

(Eq. (2.4)), and then we discuss αe and αc defined by Eq. (1.42) by comparing the

formulated mass flux relation with Eq. (2.3). In this way, we can find a pair of αe

and αc without explicitly defining the molecular processes illustrated in Fig. 1.1.

3.1 Simulation settings

As explained in Chapter 2 (Section 2.1.2), we simulate the system composed of vapor

between two parallel liquid slabs (two-surface problem) in the one-dimensional space

and the three-dimensional molecular velocity space. The schematic of the simulation

system is shown in Fig. 3.1; TL1 and TL2 indicate the temperatures of two liquids

(TL1 > TL2), LH indicates the half-length of the simulation system, and LV indicates
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Center of liquid
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O z

Figure 3.1: Schematic of the simulation system; TL1 and TL2 indicate the temper-
atures of two liquids (TL1 > TL2), LH indicates the half-length of the simulation
system, and LV indicates the length of the vapor phase.

the length of the vapor phase. As a consequence of the temperature difference

between two liquids, net evaporation occurs at the vapor–liquid interface on the

high-temperature side, and net condensation occurs at the vapor–liquid interface on

the low-temperature side.

We simulate the various cases of net evaporation and condensation by varying

the temperature difference between two liquids; one of the liquid temperatures is

fixed as a reference, and the other is varied. Seven cases of the reference liquid

temperature, TL/Tc, are set to 0.60, 0.62, 0.64, 0.66, 0.68, 0.70, and 0.72. For

example, in the case of TL/Tc = 0.60, TL2/Tc is varied in the range of 0.56 to 0.59

with the increments of 0.01 with TL1/Tc fixed to 0.60 (net evaporation cases), while

TL1/Tc is varied in the range of 0.61 to 0.76 with increments 0.01 with TL2/Tc fixed

to 0.60 (net condensation cases). In this manner, we perform the simulations under

160 cases of the temperature differences. All cases of the temperature differences

are summarized in Tables 3.1–3.7. The cell size ∆z is set to 0.2a, the time step ∆t

is set to 0.001(
√

2RTc/a) ≈ 0.2µ̄−1
L , and the half-length of the simulation system LH

is set to 40a. We calculate the macroscopic variables and the fluxes by taking 2,001

samples for each condition and averaging them over time.

3.1.1 Initial condition

We give the initial condition in the same way as in Chapter 2 (Section 2.4.1). In this

simulation, 600,000 molecules (total 1,200,000 molecules) are arranged only around
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the center of each liquid where the liquid slab is to be formed. The velocities of

molecules are determined by using the random sampling as

ξz(i) =
√

−2RTL1 ln ru1 cos(2πru2), (3.1)

ξx(i) =
√
−2RTL1 ln ru1 sin(2πru2), (3.2)

ξy(i) =
√

−2RTL1 ln ru3 sin(2πru4), (3.3)

for the left liquid slab and

ξz(i) =
√

−2RTL2 ln ru5 cos(2πru6), (3.4)

ξx(i) =
√
−2RTL2 ln ru5 sin(2πru6), (3.5)

ξy(i) =
√

−2RTL2 ln ru7 sin(2πru8), (3.6)

for the right liquid slab, where ru1–ru8 indicate the different uniform random num-

bers.

3.1.2 Boundary condition

We give the boundary condition in the same way as in Chapter 2 (Section 2.4.1). As

illustrated in Fig. 3.1, we impose the periodic boundary condition at both ends of the

system; the molecules that flow out from one boundary after advection are inserted

from the other boundary. By imposing this boundary condition, the simulation

system as shown in Fig. 3.1 can be regarded as symmetric with respect to each

center of liquid. In the following, we show the results only in half the simulation

system.
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3.1.3 Other settings

Velocity scaling method

We impose the thermostat in the same way as in Chapter 2 (Section 2.4.1). We apply

the velocity scaling method [76] to keep the constant temperature. The temperature

modification factor Φ in Eq. (2.70) is estimated in each cell at each time step. The

region where the thermostat is imposed is defined as 3.0a from each zm toward

each liquid, where zm indicates the position of the center of the 10–90 thickness

density transition layer in vapor–liquid equilibrium (Eq. (2.71)); the length of the

thermostat region is approximately ±3.0a from the center of liquid. Note that since

the position of zm depends on the temperature, the length of the thermostat region

slightly varies with the temperature.

Particle shifting method

To obtain the steady net evaporation/condensation system, we apply the parti-

cle shifting method [46]. The particle shifting method modifies the positions of

molecules in whole simulation system at each time step, fixing the position of each

vapor–liquid interface.

In half the simulation system whose length is LH as shown in Fig. 3.1, the number

of molecules that move from the left- to right-hand sides becomes larger due to net

evaporation and condensation. First, we define the difference between the number

of molecules in the right- and left-hand sides of one-quarter of the simulation system

as Nshift. Next, all molecules are shifted according to a distance ∆zshift toward the

right-hand side; ∆zshift is determined from

Nshift

2
= n(TL1)Uxy∆zshift, (3.7)

where Uxy is the unit area of the cross-section and n(TL1) is the number density of

liquid at TL1. Finally, molecules that go out of the simulation system by shifting
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are inserted on the left-hand side liquid at TL1. The simulation system shown in

Fig. 2.2 reaches steady net evaporation/condensation by both the velocity scaling

and particle shifting methods.

Positions of vapor–liquid interface

Although in the macroscopic point of view, the vapor–liquid interface can be re-

garded as zero thickness and its position can be uniquely determined, in the mi-

croscopic point of view, it is difficult to determine the position of the vapor–liquid

interface uniquely. As illustrated in Fig. 1.1, we refer to the boundary between the

interface layer and the Knudsen layer as the vapor–liquid interface in the micro-

scopic point of view. Since this vapor–liquid interface is equivalent to the boundary

at which the KBC is imposed in the molecular gas dynamics analysis, it has to satisfy

the ideal gas condition, which is a premise of the Boltzmann equation. Note that

the position of such a vapor–liquid interface is located on the vapor side compared

to that determined by the Gibbs dividing surface.

We determine the ideal gas region where the density of vapor–liquid equilibrium

obeys the Clausius–Clapeyron equation and define the end of the ideal gas region

as the vapor–liquid interface. In this simulation, the position of the vapor–liquid

interface is set to the position distanced 2.5δ from zm to vapor, where δ is deter-

mined by the density distribution in vapor–liquid equilibrium. In this simulation,

we examine the mass flux and the velocity distribution function at this position of

the vapor–liquid interface. Furthermore, LV in Fig. 3.1 indicates the length between

the two vapor–liquid interfaces. Since zm and δ depend on the liquid temperature,

LV is different in each condition of the liquid temperature difference as summarized

in Tables 3.1–3.7.
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Figure 3.2: (upper part) Schematic of half the simulation system and the mass
flux relations at each vapor–liquid interface. (lower part) Spatial distributions of
the density ρ, the mass flux M in vapor, and the energy flux E in vapor obtained
from the EV-DSMC simulation at TL1/Tc = 0.68 and TL2/Tc = 0.60; the abscissa is
normalized by the molecular diameter a, and the ordinates are normalized by the
critical values.

3.2 Results and discussion

3.2.1 Macroscopic variables and fluxes

We preliminarily show the results of the macroscopic variables and the fluxes ob-

tained from the EV-DSMC simulation. The upper part of Fig. 3.2 shows the

schematic of half the simulation system. Two liquids at TL1 and TL2 (TL1 > TL2) are

confined to the regions around the left and right edges of half the simulation system,

respectively. In Fig. 3.2, the bold dashed lines denote the vapor–liquid interface.

As illustrated in the enlarged view of Fig. 3.2, ρvz is obtained as the difference

between Jout and Jcoll. The red and blue arrows in Fig. 3.2 denote the directions

of ρvz; as a consequence of the temperature difference between two liquids, ρvz at

the left interface is induced in the direction outgoing from liquid (net evaporation),

and that at the right interface is induced in the direction colliding onto liquid (net

condensation).
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Figure 3.3: Spatial distributions of the density ρ, the velocity vz, and the temper-
ature T obtained from the EV-DSMC simulation in the cases of (a) TL1/Tc = 0.68
and TL2/Tc = 0.60, (b) TL1/Tc = 0.76 and TL2/Tc = 0.60, (c) TL1/Tc = 0.72 and
TL1/Tc = 0.64, and (d) TL1/Tc = 0.80 and TL2/Tc = 0.64; the abscissa is normalized
by the molecular diameter a, and the ordinates are normalized by the critical values.

The lower part of Fig. 3.2 shows the density field and the mass and energy

fluxes in vapor in the case of TL1/Tc = 0.68 and TL2/Tc = 0.60 obtained from the

EV-DSMC simulation; the thin solid line denotes the density field, the bold solid

line denotes the mass flux in vapor, and the dashed line denotes the energy flux in

vapor. Note that since we can assume that the effects of the collisional transfer and

the potential contribution are negligible in vapor, we calculate the energy flux from

Eq. (1.16). As shown in Fig. 3.2, the mass and energy fluxes in vapor take positive

values in the z-direction, and the mass flux is uniform and constant in vapor because

of steady net evaporation and condensation. We confirmed that this uniform and

constant mass flux in vapor is observed in other cases of liquid temperature [48].

Figure 3.3 shows the density, velocity, and temperature fields obtained from the

EV-DSMC simulation in the cases of the reference liquid temperature, TL/Tc, 0.60

and 0.64; the thin solid lines denote the density fields, the bold solid lines denote

the temperature fields, and dashed lines denote the velocity fields. Typical examples
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of weak net condensation (Figs. 3.3(a) and (c)) with the small liquid temperature

difference and strong net condensation (Figs. 3.3(b) and (d)) with the large liquid

temperature difference are presented. As can be seen in Fig. 3.3, a positive vapor

velocity in the z-direction is induced by net evaporation/condensation, and this va-

por velocity increases with the increase in the liquid temperature difference in all

cases. In Figs. 3.3(b) and (d), we can see a peak in the temperature near the refer-

ence liquid. This peak in temperature is also observed by the molecular dynamics

simulation [41] in the case of strong net condensation. Also, we can see that the

temperature at the vapor–liquid interface differs from that of liquid, which is called

temperature jump [20,27,29,34,36,84,85]. The temperature jump increases with the

increase in the liquid temperature difference in the both cases of the reference liquid

temperature; this increase in the temperature jump is related to the increase in the

velocity in the direction normal to the vapor–liquid interface [23].

As already mentioned in Chapter 2 (Section 2.1.2), in the two-surface problem, a

well-known characteristic phenomenon the inverted temperature gradient [24,54–56]

occurs in vapor as a consequence of the temperature jump. As can be seen in the

enlarged views of Fig. 3.3, the temperature gradient at the center of vapor becomes

positive in all cases. From this result, we can verify the occurrence of the inverted

temperature gradient by the EV-DSMC simulation. Several studies [86–88] have

indicated that the inverted temperature gradient also causes the negative mass flow.

We, however, could not observe the negative mass flow in this simulation because

the occurrence of this phenomenon is highly unlikely indicated by the necessary and

sufficient criteria [87,88].

3.2.2 Normalized velocity distribution function of kinetic

boundary condition

In the following, we show the main results of this chapter. First, we confirm whether

the normalized velocity distribution function of the KBC obeys the normalized
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Maxwellian distribution Eq. (2.2). This assumption is the basis of the definitions

of αe and αc (Eq. (1.42)). Several studies [34, 38, 39, 41] have pointed out that the

normalized velocity distribution function of the KBC deviates from the normalized

Maxwellian distribution at the liquid temperature f̂ ∗ (Eq. (2.2)) in the case of strong

net condensation. For example, Ishiyama et al. [34, 38] and Kobayashi et al. [39]

proposed the following expression for the normalized velocity distribution function

of the KBC by the molecular simulation:

f̂ =
1√

2πRTn(2πRTt)
exp

(
−
ξ2x + ξ2y
2RTt

− ξ2z
2RTn

)
, (3.8)

where Tn indicates the normal temperature composed of molecules having velocity

ξz > 0 at the vapor–liquid interface (Tn ≈ TL), and Tt indicate the tangential

temperature composed of molecules having the velocity ξz > 0 at the vapor–liquid

interface; according to Ishiyama et al. [38], Tt is formulated by using the thermal

accommodation coefficient. Hereafter, Eq. (3.8) is referred to as the anisotropic

Maxwellian distribution.

If the normalized velocity distribution function of the KBC depends on fcoll, we

cannot express the KBC by utilizing the linear scattering kernel KI (Eq. (1.34)) as

explained in Chapter 1 (Section 1.2.3). We can certainly define a nonlinear scattering

kernel because we know the functional form of the normalized velocity distribution

function of the KBC as in Eq. (3.8), but it is mathematically complex to be an-

alyzed and has never been precisely investigated. For that reason, we assume the

normalized Maxwellian distribution for the normalized velocity distribution function

of the KBC. However, it is important to examine how the normalized Maxwellian

distribution grades into anisotropic and how the anisotropic Maxwellian distribution

affects to the solution of the Boltzmann equation.
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Figure 3.4: Normalized velocity distribution function of the KBC at the vapor–
liquid interface of the reference liquid at TL/Tc = 0.60 obtained from the EV-DSMC
simulation in the cases of (a) TL1/Tc = 0.60 and TL2/Tc = 0.56 (net evaporation),
(b) TL1/Tc = 0.60 and TL2/Tc = 0.59 (net evaporation), (c) TL1/Tc = 0.68 and
TL2/Tc = 0.60 (net condensation), and (d) TL1/Tc = 0.76 and TL2/Tc = 0.76 (net
condensation).

Estimation of temperature in kinetic boundary condition

Here, we obtain the normalized velocity distribution function at the vapor–liquid

interface of the reference liquid composed of the outgoing molecules from there,

that is, the normalized velocity distribution function of the KBC. The calculation

procedure of the normalized velocity distribution function is the same as in Chapter 2

(Section 2.4.2). We set the upper and lower limits of the velocity space to ζi =

−3 and ζi = 3, respectively, and divide this velocity space into 30 cells, where

ζi = ξi/
√

2RTL1 or ζi = ξi/
√

2RTL2. Figure 3.4 shows the normalized velocity

distribution function of the KBC at the vapor–liquid interface of the reference liquid

at TL/Tc = 0.60. In Fig. 3.4, the closed circles denote the normalized velocity

distribution function in the direction normal to the vapor–liquid interface (i = n),

the open circles denote that in the tangential direction (i = t), and the dashed
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lines denote the normalized Maxwellian distribution function (Eq. (2.77)). In the

present system (Fig. 3.1), the normalized velocity distribution function of the KBC

is composed of molecules having the velocity ξz > 0 in the net evaporation cases

(Figs. 3.4(a) and (b)), while that is composed of molecules having the velocity ξz < 0

in the net condensation cases (Figs. 3.4(c) and (d)).

As can be seen in Fig. 3.4, the normalized velocity distribution functions of the

KBC agree with the normalized Maxwellian distribution (Eq. (2.77)) in the cases

of net evaporation and weak net condensation (Figs. 3.4(a), (b), and (d)). On the

other hand, those deviate from the normalized Maxwellian distribution and becomes

anisotropic in the case of strong net condensation (Fig. 3.4(d)). Furthermore, in

the case of strong net condensation (Fig. 3.4(d)), we can see that the normalized

velocity distribution function of the KBC in the direction normal to the vapor–

liquid interface deviates prominently in the vicinity of ζn = 0. This functional

form differs from the Maxwellian type distribution anymore, but it is referred to as

the anisotropic Maxwellian distribution here for convenience. These tendencies are

similar to the results of the previous study [41].

To investigate the normalized velocity distribution function of the KBC, we

estimate the normal temperature Tn and the tangential temperature Tt. These

temperatures in the KBC are defined by

Ti =
1

ρoutR

∫
ξz>0

ξ2i foutdξ, (3.9)

where i indicates the component in the direction normal or tangential to the vapor–

liquid interface (i = n or t) and ρout =
∫
ξz>0

foutdξ. In the present system (Fig. 3.1),

the domain of the integration of Eq. (3.9) becomes ξz < 0 in the case of net con-

densation because the KBC at the vapor–liquid interface with net condensation is

composed of molecules having the velocity ξz < 0. For example, in the case of

strong net condensation (Fig. 3.4(d)), Tn/Tc and Tt/Tc estimated from Eq. (3.9)

become 0.582 and 0.657, respectively, in which case the normalized velocity distri-
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scissa represents the index of the degree of net evaporation/condensation σ/ρ∗, and
the ordinate is normalized by the reference liquid temperature TL.

bution function of the KBC becomes the anisotropic Maxwellian distribution. This

tendency of the temperatures in the KBC is similar to those reported in the previous

studies [34,38,39,41].

Figure 3.5 shows the normal temperature Tn and the tangential temperature Tt

calculated from Eq. (3.9) in all 160 cases of the liquid temperature differences. In

Fig. 3.5, the closed circles denote Tt, and the closed triangles denote Tn; the ordinate

represents Tn and Tt normalized by the reference liquid temperature TL, and the

abscissa represents the index of the degree of net evaporation/condensation. In this

thesis, we define this index as Jcoll/J
∗
out, where J∗

out indicates Jout in vapor–liquid

equilibrium and J∗
out = J∗

coll = ρ∗
√
RTL/2π. From the definition of σ (Eq. (1.33)),

σ

√
RTL
2π

= −
∫
ξz<0

ξzfcolldξ = Jcoll, (3.10)

Jcoll/J
∗
out becomes σ/ρ∗. σ/ρ∗ = 1 represents the vapor–liquid equilibrium state,

σ/ρ∗ < 1 and σ/ρ∗ > 1 represent the net evaporation and net condensation states,
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respectively. Net evaporation or condensation becomes strong when σ/ρ∗ goes away

from unity.

As can be seen in Fig. 3.5, Tn increases with strong net evaporation and decreases

with strong net condensation. On the other hand, Tt decreases with strong net

evaporation and increases with strong net condensation. The previous studies have

reported that these temperatures deviate from the liquid temperature only when net

evaporation/condensation is strong. In contrast, Fig. 3.5 clearly shows that these

temperatures gradually deviate from TL when σ/ρ∗ goes away from unity.

Influence of anisotropic Maxwellian distribution

In the former section, we find that the normal and tangential temperatures in

the KBC gradually change with the degree of net evaporation/condensation, and

the normalized velocity distribution function of the KBC becomes an anisotropic

Maxwellian distribution. Here, we investigate how such an anisotropic Maxwellian

distribution affects the macroscopic variables and the fluxes in vapor. The goal here

is to determine the range to which the normalized Maxwellian distribution can be

applied as the normalized velocity distribution function of the KBC.

To examine the influence of the anisotropic Maxwellian distribution on the

macroscopic variables and the fluxes in vapor, we perform the numerical simulation

of the Boltzmann equation for the two-surface problem. In this numerical simula-

tion, we utilize the ES-BGK model Boltzmann equation (ES-BGK equation) [89]

that is one of the models of the Boltzmann equation. We explain the ES-BGK

equation and its numerical simulation method in Chapter 5; only the outline of this

numerical simulation is shown here. The reference values for the nondimensionaliza-

tion are the mean temperature of two liquids T0 = (TL1 +TL2)/2, the mean free path

ℓ0 at T0, and the mean free time µ̄−1
0 at T0. We perform the numerical simulation in

the one-dimensional physical space and three-dimensional molecular velocity space,

but the molecular velocity space is treated as a pseudo-one-dimensional by using a
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simulation technique. We discretize the time, the physical space, and the molecular

velocity space and solve the ES-BGK equation by the finite difference method. The

cell size in the physical space ∆z is set to 1.0×10−4ℓ0, that in the molecular velocity

space ∆ξz is set to 1.0 × 10−2
√

2RT0 near ξz = 0 and 1.0 × 10−4
√

2RT0 far from

ξz = 0, and the time step ∆t is set to 0.01µ̄−1
0 .

In the numerical simulation of the ES-BGK equation, we impose the KBC rewrit-

ten in the following procedure. We solve the mass flux relation at the vapor–liquid

interface (Eq. (2.3)) for A,

A = ρvz

√
2π

RTL
+ σ, (3.11)

and then we substitute the above expression into the generalized KBC (Eq. (2.1))

to get

fout =

(
ρvz

√
2π

RTL
+ σ

)
f̂ ∗. (3.12)

In Eq. (3.12), the normalized Maxwellian distribution is assumed for the normal-

ized velocity distribution function of the KBC. On the other hand, the EV-DSMC

simulation does not use the assumption for the vapor–liquid interface; hence, the

result of this simulation encloses the influence of the anisotropic Maxwellian distri-

bution. We investigate the influence of the anisotropic Maxwellian distribution by

comparing the macroscopic variables and the fluxes in vapor obtained by these two

simulations.

Figure 3.6 shows the mass and energy fluxes, the density, the velocity, and the

temperature in vapor obtained from the EV-DSMC simulation and the numerical

simulation of the ES-BGK equation in the cases of (1) TL1/Tc = 0.76 and TL2/Tc =

0.60, (2) TL1/Tc = 0.68 and TL2/Tc = 0.60, (3) TL1/Tc = 0.61 and TL2/Tc = 0.60,

and (4) TL1/Tc = 0.60 and TL2/Tc = 0.56. In Fig. 3.6, the solid lines denote the

results of the numerical simulation of the ES-BGK equation, the open circles and
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Figure 3.6: Comparison of the mass flux M and the energy flux E , the density
ρ, the velocity vz, and the temperature T in vapor obtained from the EV-DSMC
simulation and the numerical simulation of the ES-BGK equation in the cases of
(1) TL1/Tc = 0.76 and TL2/Tc = 0.60, (2) TL1/Tc = 0.68 and TL2/Tc = 0.60, (3)
TL1/Tc = 0.61 and TL2/Tc = 0.60, and (4) TL1/Tc = 0.60 and TL2/Tc = 0.56; the
abscissa χ is the spatial coordinate in vapor (χ = 0 indicates the left vapor–liquid
interface in Fig. 3.2, and χ = 1 indicates that of the right side), and the ordinates
are normalized by the critical values.

triangles denote the results of the EV-DSMC simulation.

As can be seen in Fig. 3.6, the mass fluxes in vapor obtained by the two

different simulations show excellent agreement even in the strong net evapora-

tion/condensation case induced by the larger temperature difference between two

liquids. This is because the change in the normal temperature Tn is smaller than

that in the tangential temperature Tt as shown in Fig. 3.5. When Tn = TL, Jout

obtained by Eq. (3.12) becomes ρvz + σ
√
RTL/(2π), and ρvz at the vapor–liquid

interface in the two simulations are completely identical. In contrast, the deviations

of the energy flux, the density, the velocity, and the temperature between these two

simulations become larger with strong net evaporation/condensation. In particular,
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the slope of the temperature obtained from these two simulations is reversed when

net evaporation/condensation is extremely strong (Case (1) in Fig. 3.6).

We here decide the applicable range of the normalized Maxwellian based on the

macroscopic variables which have larger deviations between these two simulations

than the fluxes. In this simulation, the range to which the difference of the macro-

scopic variables obtained from these two simulations is within 5% is defined as the

applicable range. To determine the applicable range for each reference liquid temper-

ature, we perform such a comparison for all 160 cases of the temperature difference.

As a result, we find that the applicable range of the normalized Maxwellian distri-

bution is 0.5 ≲ σ/ρ∗ ≲ 2.3 for all reference liquid temperatures. The gray region

in Fig. 3.5 represents this applicable range. As can be seen in Fig. 3.5, when the

normal and tangential temperatures in the KBC deviate by approximately 5–10%

from the liquid temperature, the difference of the macroscopic variables obtained

by two different simulations reaches 5%. On the basis of this result, we discuss

the mass flux relation in the range of this degree of net evaporation/condensation

(0.5 ≲ σ/ρ∗ ≲ 2.3).

3.2.3 Formulation of mass flux relation

Next, we investigate the mass flux relation at the vapor–liquid interface (Eq. (2.3)):

ρvz = (A− σ)

√
RTL
2π

. (2.3)

As stated in Chapter 1 (Section 1.3.1), A satisfies the following conditions: (1)

A is the nonnegative function, (2) A is allowable to be the function of the liquid

temperature TL and/or σ (Eq. (1.33)), and (3) A is independent of the molecular

velocity. Under this condition, ρvz is the function of TL and σ. Here, we obtain

ρvz under the various cases of TL and σ to investigate Eq. (2.3). In the simulation

system shown in Fig. 3.1, ρvz and corresponding σ vary with the change of the
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temperature difference between two liquids. We can calculate σ corresponding to

ρvz from the numerical simulation of the ES-BGK equation with the KBC rewritten

with ρvz (Eq. (3.12)). The values of ρvz and corresponding σ are summarized in

Tables 3.1–3.7.

Figure 3.7 shows the relation between ρvz and σ, that is, the mass flux relation,

at each reference liquid temperature. In Fig. 3.7, we show the results only in the

applicable range of the normalized Maxwellian distribution (0.5 ≲ σ/ρ∗ ≲ 2.3). In

the abscissa, we subtract one from the degree of net evaporation/condensation σ/ρ∗

for convenience. Also, the ordinate is normalized by J∗
out to match the reference

value of the abscissa. When the liquid temperature difference becomes larger, the

deviation of σ/ρ∗ − 1 from zero increases and net evaporation and condensation

become stronger. Although in the simulation system (Fig. 3.1), ρvz in both net

evaporation and condensation cases have the positive values, we plot Fig. 3.7 with

ρvz > 0 for net evaporation and ρvz < 0 for net condensation for convenience.

As can be clearly seen in Fig. 3.7, ρvz is the linear function of σ at each reference

liquid temperature. Similar mass flux relations for water and methanol are observed

in the shock-tube experiment [90]. In this simulation, we succeed to show the mass

flux relation more clearly owing to the small statistical errors. The open square in

the enlarged view of Fig. 3.7(a) denotes ρvz obtained in the system whose length

is doubled (LH = 80a) in the case of TL1/Tc = 0.68 and TL2/Tc = 0.60. From this

result, we find that even in the system with the doubled length, the linear mass flux

relation is maintained.

We formulate the mass flux relation by applying the linear regression analysis to

the relation between ρvz and σ at each reference liquid temperature. The dashed

lines in Fig. 3.7 denote the results of applying the linear regression analysis separately

for the cases of net evaporation and net condensation. The accuracy of this analysis

is very high, in which case the coefficient of the determination R2 is more than 0.999.

The slopes of the linear function obtained from this analysis are referred to as βne
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∗
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for net evaporation and βnc for net condensation. The values of βne and βnc are

summarized in Tables 3.1–3.7. In all cases of the reference liquid temperature, βne

and βnc are slightly different. For example, βne = 0.871 and βnc = 0.927 in the case

of TL/Tc = 0.60. Also, the difference between βne and βnc becomes smaller with the

higher reference liquid temperature.

Unfortunately, the cause of the difference between βne and βnc is unclear. It may

be due that the mass flux relation is formulated at each liquid temperature despite

the temperatures in the KBC change with σ/ρ∗ as shown in Fig. 3.5. At least, the

generalized KBC (Eq. (2.1)), which is considered in this thesis, does not permit

such formulation according to σ. It may be possible to perform the molecular gas

dynamics analysis by defining the nonlinear scattering kernel, but such an analysis

is mathematically complex and has never been precisely investigated. Furthermore,

the difference between βne and βnc shows the existence of the asymmetry in net evap-

oration and condensation near vapor–liquid equilibrium. As shown in Tables 3.1–3.7,

although the difference between βne and βnc is small, the vapor–liquid equilibrium

may not achieve asymptotically stable because of this asymmetry.

For these reasons, we modify the slope of the mass flux relation at each reference
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liquid temperature as

β =
βne + βnc

2
. (3.13)

The solid lines in Fig. 3.7 denote the linear function with the slope β. As shown in

Fig. 3.7, the solid lines slightly differ from the data as compared with the dashed

lines, but we confirm that this is a reasonable approximation in which R2 calculated

according to its definition is more than 0.999. The values of β at the reference

liquid temperatures are summarized in Tables 3.1–3.7. Furthermore, the liquid

temperature dependence of β is shown in Fig. 3.8. As can be seen in Fig. 3.8, β

is a decreasing function of the liquid temperature. From the above discussion, we

formulate the mass flux relation as

ρvz
J∗
out

= β

(
1 − σ

ρ∗

)
, (3.14)

where J∗
out = ρ∗

√
RTL/(2π).

3.2.4 Examination of evaporation/condensation coefficients

We then discuss the evaporation coefficient αe and the condensation coefficient αc

defined by Eq. (1.42) by comparing the formulated mass flux relation (Eq. (3.14))

with Eq. (1.44). In this way, we can find a pair of αe and αc without explicitly

defining the molecular processes illustrated in Fig. 1.1.

We transform Eq. (2.3) as

ρvz

√
2π

RTL
= A− σ. (3.15)

Also, we transform the formulated mass flux relation (Eq. (3.14)) as

ρvz

√
2π

RTL
= β(ρ∗ − σ). (3.16)
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From the result of the former section (Figs. 3.7 and 3.8), we find that β depends

only on the liquid temperature and is independent of σ. Hereafter, we express such

β as β(TL). Equalizing the right-hand side of Eq. (3.15) and that of Eq. (3.16), we

get

B(TL)

ρ∗
= 1 − A− B(TL)

σ
, (3.17)

where B is defined as

B = ρ∗β(TL). (3.18)

Since ρ∗ is the saturated vapor density at TL, B is only the function of the liq-

uid temperature. We also express such B as B(TL). As explained in Chapter 1

(Section 1.3.1), αe and αc are defined by

αe =
A0(TL)

ρ∗
, αc = 1 − A−A0(TL)

σ
. (1.42)

In Eqs. (3.17) and (1.42), A0(TL) is equivalent to B(TL), and thus we get the relation

αe = αc = β(TL). In other words, αe and αc depend only on the liquid temperature

and are independent of σ.

3.3 Summary

In this chapter, we examined the mass flux relation (Eq. (2.3)) to find a pair of αe

and αc defined by Eq. (1.42) by the EV-DSMC simulation explained in Chapter 2.

We preliminarily performed the EV-DSMC simulation for the two-surface problem

in 160 cases of the temperature differences between two liquids.

First, we confirmed whether the normalized velocity distribution function of

the KBC obeys the normalized Maxwellian distribution, which is the basis of the

definitions of αe and αc (Eq. (1.42)). From the result, we found that the tempera-
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tures in the KBC gradually change with strong net evaporation/condensation, and

the normalized velocity distribution function of the KBC becomes the anisotropic

Maxwellian distribution (Fig. 3.5). We then investigated how such an anisotropic

Maxwellian distribution affects the macroscopic variables and the fluxes in vapor

by comparing the results obtained from the EV-DSMC simulation and the numeri-

cal simulation of the ES-BGK equation. From this comparison, we determined the

range to which the normalized Maxwellian distribution can be applied as the nor-

malized velocity distribution function of the KBC. From the result, we found that

the applicable range of the normalized Maxwellian distribution is 0.5 ≲ σ/ρ∗ ≲ 2.3

for all reference liquid temperatures.

Next, we formulated the mass flux at each reference liquid temperature relation

by using ρvz obtained by the molecular simulation and corresponding σ (Eq. (2.4)).

From the result, we found that ρvz is the linear function of σ (Fig. 3.7). We formu-

lated the mass flux relation by applying the linear regression analysis to the relation

between ρvz and σ at each reference liquid temperature. The slope of the linear

function βne for net evaporation and that of βnc for net condensation are slightly

different. For example, βne = 0.871 and βnc = 0.927 in the case of TL/Tc = 0.60.

Also, the difference between βne and βnc becomes smaller with the higher reference

liquid temperature. Unfortunately, the cause of the difference between βne and βnc

is unclear. At least, the generalized KBC (Eq. (2.1)), which is considered in this

thesis, does not permit such formulation according to σ. Hence, we modified the

slope of the mass flux relation as β = (βne + βnc)/2. We then discussed αe and αc

defined by Eq. (1.42) by comparing the formulated mass flux relation (Eq. (3.14))

with Eq. (2.3). From the result, we found the relation αe = αc = β(TL) without

explicitly defining the molecular processes illustrated in Fig. 1.1.

Let us summarize the significance of the results so far. An important result is

that we can find the relation αe = αc = β(TL) by formulating the mass flux relation

at the vapor–liquid interface with high accuracy. On the basis of this result, the
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following KBC at the vapor–liquid interface can be obtained.

fout = [β(TL)ρ∗ + (1 − β(TL))σ]f̂ ∗. (3.19)

This KBC is essentially equivalent to what we set A = αeρ
∗ + (1 − αc)σ in the

generalized KBC (Eq. (2.1)) because of the relation αe = αc = β(TL). However, the

results in this chapter have only found a pair of αe and αc defined by Eq. (1.42) at

each liquid temperature, and the relation between these coefficients and the molec-

ular processes shown in Fig. 1.1 is not clear. In the next chapter, to investigate

the physical meaning of obtained αe and αc, we discuss these coefficients under the

assumption proposed by Ishiyama et al. [33].

85



Chapter 3 Construction of kinetic boundary condition

Table 3.1: Results of the EV-DSMC simulation at TL/Tc = 0.60.
# TL1/Tc TL2/Tc LV/a ρvz/J

∗
out σ/ρ∗ βne βnc β

1 0.60 0.56 21.2 0.3607 0.5849

0.871

—

0.900

2 0.60 0.57 21.0 0.2821 0.6773 —
3 0.60 0.58 20.8 0.1934 0.7782 —
4 0.60 0.59 20.8 0.1014 0.8848 —
5 0.61 0.60 20.4 -0.1086 1.1265 —

0.928

6 0.62 0.60 20.4 -0.2376 1.2561 —
7 0.63 0.60 20.2 -0.3696 1.4021 —
8 0.64 0.60 20.0 -0.5069 1.5526 —
9 0.65 0.60 19.8 -0.6595 1.7157 —
10 0.66 0.60 19.8 -0.8262 1.8909 —
11 0.67 0.60 19.6 -0.9988 2.0747 —
12 0.68 0.60 19.4 -1.1863 2.2715 —
13 0.69 0.60 19.2 -1.3910 2.4828 — — —
14 0.70 0.60 19.0 -1.5897 2.6969 — — —
15 0.71 0.60 18.8 -1.8177 2.9321 — — —
16 0.72 0.60 18.6 -2.0326 3.1667 — — —
17 0.73 0.60 18.4 -2.2806 3.4248 — — —
18 0.74 0.60 18.2 -2.5354 3.6930 — — —
19 0.75 0.60 18.0 -2.8078 3.9771 — — —
20 0.76 0.60 17.8 -3.0871 4.2714 — — —

Table 3.2: Results of the EV-DSMC simulation at TL/Tc = 0.62.
# TL1/Tc TL2/Tc LV/a ρvz/J

∗
out σ/ρ∗ βne βnc β

21 0.62 0.56 21.0 0.4530 0.4616 — — —
22 0.62 0.57 20.8 0.3969 0.5342

0.857

—

0.881

23 0.62 0.58 20.6 0.3313 0.6141 —
24 0.62 0.59 20.6 0.2567 0.7015 —
25 0.62 0.60 20.4 0.1770 0.7946 —
26 0.62 0.61 20.2 0.0955 0.8922 —
27 0.63 0.62 20.0 -0.0990 1.1129 —

0.906

28 0.64 0.62 19.8 -0.2068 1.2340 —
29 0.65 0.62 19.8 -0.3282 1.3656 —
30 0.66 0.62 19.6 -0.4490 1.5013 —
31 0.67 0.62 19.4 -0.5800 1.6464 —
32 0.68 0.62 19.2 -0.7273 1.8039 —
33 0.69 0.62 19.0 -0.8780 1.9678 —
34 0.70 0.62 18.8 -1.0339 2.1391 —
35 0.71 0.62 18.6 -1.2006 2.3207 —
36 0.72 0.62 18.4 -1.3852 2.5164 — — —
37 0.73 0.62 18.2 -1.5613 2.7127 — — —
38 0.74 0.62 18.0 -1.7614 2.9267 — — —
39 0.75 0.62 17.8 -1.9713 3.1510 — — —
40 0.76 0.62 17.6 -2.1833 3.3819 — — —
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Table 3.3: Results of the EV-DSMC simulation at TL/Tc = 0.64.
# TL1/Tc TL2/Tc LV/a ρvz/J

∗
out σ/ρ∗ βne βnc β

41 0.64 0.56 20.6 0.5147 0.3707 — — —
42 0.64 0.57 20.4 0.4716 0.4300 — — —
43 0.64 0.58 20.2 0.4183 0.4963

0.838

—

0.862

44 0.64 0.59 20.2 0.3613 0.5670 —
45 0.64 0.60 20.0 0.3021 0.6416 —
46 0.64 0.61 19.8 0.2378 0.7214 —
47 0.64 0.62 19.8 0.1611 0.8098 —
48 0.64 0.63 19.6 0.0860 0.9008 —
49 0.65 0.64 19.4 -0.0903 1.1043 —

0.886

50 0.66 0.64 19.2 -0.1872 1.2153 —
51 0.67 0.64 19.0 -0.2875 1.3314 —
52 0.68 0.64 18.8 -0.4024 1.4583 —
53 0.69 0.64 18.6 -0.5257 1.5930 —
54 0.70 0.64 18.4 -0.6492 1.7318 —
55 0.71 0.64 18.2 -0.7771 1.8768 —
56 0.72 0.64 18.0 -0.9069 2.0268 —
57 0.73 0.64 17.8 -1.0556 2.1903 —
58 0.74 0.64 17.6 -1.2116 2.3618 —
59 0.75 0.64 17.4 -1.3700 2.5389 — — —
60 0.76 0.64 17.2 -1.5420 2.7273 — — —
61 0.77 0.64 17.0 -1.7076 2.9158 — — —
62 0.78 0.64 16.8 -1.8916 3.1216 — — —
63 0.79 0.64 16.6 -2.0797 3.3328 — — —
64 0.80 0.64 16.4 -2.2865 3.5559 — — —

Table 3.4: Results of the EV-DSMC simulation at TL/Tc = 0.66.
# TL1/Tc TL2/Tc LV/a ρvz/J

∗
out σ/ρ∗ βne βnc β

65 0.66 0.56 20.4 0.5587 0.3021 — — —
66 0.66 0.57 20.2 0.5219 0.3525 — — —
67 0.66 0.58 20.0 0.4822 0.4064 — — —
68 0.66 0.59 20.0 0.4343 0.4661 — — —
69 0.66 0.60 19.8 0.3889 0.5271

0.827

—

0.845

70 0.66 0.61 19.6 0.3348 0.5944 —
71 0.66 0.62 19.6 0.2765 0.6661 —
72 0.66 0.63 19.4 0.2181 0.7406 —
73 0.66 0.64 19.2 0.1480 0.8229 —
74 0.66 0.65 19.0 0.0757 0.9092 —
75 0.67 0.66 18.8 -0.0799 1.0955 —

0.863

76 0.68 0.66 18.6 -0.1687 1.1982 —
77 0.69 0.66 18.4 -0.2632 1.3067 —
78 0.70 0.66 18.2 -0.3588 1.4191 —
79 0.71 0.66 18.0 -0.4603 1.5375 —
80 0.72 0.66 17.8 -0.5728 1.6647 —
81 0.73 0.66 17.6 -0.6879 1.7966 —
82 0.74 0.66 17.4 -0.8071 1.9341 —
83 0.75 0.66 17.2 -0.9313 2.0776 —
84 0.76 0.66 17.0 -1.0640 2.2290 —
85 0.77 0.66 16.8 -1.2030 2.3873 — — —
86 0.78 0.66 16.6 -1.3473 2.5521 — — —
87 0.79 0.66 16.4 -1.5018 2.7259 — — —
88 0.80 0.66 16.2 -1.6550 2.9029 — — —
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Table 3.5: Results of the EV-DSMC simulation at TL/Tc = 0.68.
# TL1/Tc TL2/Tc LV/a ρvz/J

∗
out σ/ρ∗ βne βnc β

89 0.68 0.56 20.0 0.5854 0.2513 — — —
90 0.68 0.57 19.8 0.5558 0.2938 — — —
91 0.68 0.58 19.6 0.5234 0.3393 — — —
92 0.68 0.59 19.6 0.4887 0.3878 — — —
93 0.68 0.60 19.4 0.4486 0.4405 — — —
94 0.68 0.61 19.4 0.4038 0.4974

0.811

—

0.828

95 0.68 0.62 19.2 0.3593 0.5563 —
96 0.68 0.63 19.0 0.3094 0.6198 —
97 0.68 0.64 18.8 0.2553 0.6874 —
98 0.68 0.65 18.6 0.1996 0.7581 —
99 0.68 0.66 18.6 0.1354 0.8352 —
100 0.68 0.67 18.4 0.0715 0.9146 —
101 0.69 0.68 18.0 -0.0745 1.0893 —

0.845

102 0.70 0.68 17.8 -0.1535 1.1834 —
103 0.71 0.68 17.6 -0.2360 1.2820 —
104 0.72 0.68 17.4 -0.3254 1.3867 —
105 0.73 0.68 17.2 -0.4166 1.4951 —
106 0.74 0.68 17.0 -0.5126 1.6088 —
107 0.75 0.68 16.8 -0.6156 1.7289 —
108 0.76 0.68 16.6 -0.7177 1.8516 —
109 0.77 0.68 16.4 -0.8337 1.9842 —
110 0.78 0.68 16.2 -0.9470 2.1187 —
111 0.79 0.68 16.0 -1.0699 2.2612 —
112 0.80 0.68 15.8 -1.1912 2.4062 — — —

Table 3.6: Results of the EV-DSMC simulation at TL/Tc = 0.70.
# TL1/Tc TL2/Tc LV/a ρvz/J

∗
out σ/ρ∗ βne βnc β

113 0.70 0.56 19.6 0.5985 0.2142 — — —
114 0.70 0.57 19.4 0.5746 0.2503 — — —
115 0.70 0.58 19.2 0.5465 0.2897 — — —
116 0.70 0.59 19.0 0.5172 0.3313 — — —
117 0.70 0.60 19.0 0.4886 0.3746 — — —
118 0.70 0.61 18.8 0.4523 0.4225 — — —
119 0.70 0.62 18.8 0.4152 0.4729 — — —
120 0.70 0.63 18.6 0.3770 0.5255

0.800

—

0.812

121 0.70 0.64 18.4 0.3348 0.5818 —
122 0.70 0.65 18.2 0.2861 0.6429 —
123 0.70 0.66 18.2 0.2340 0.7076 —
124 0.70 0.67 18.2 0.1820 0.7745 —
125 0.70 0.68 17.8 0.1247 0.8458 —
126 0.70 0.69 17.6 0.0654 0.9204 —
127 0.71 0.70 17.2 -0.0656 1.0820 —

0.823

128 0.72 0.70 17.0 -0.1386 1.1696 —
129 0.73 0.70 16.8 -0.2134 1.2607 —
130 0.74 0.70 16.6 -0.2928 1.3564 —
131 0.75 0.70 16.4 -0.3752 1.4561 —
132 0.76 0.70 16.2 -0.4600 1.5595 —
133 0.77 0.70 16.0 -0.5496 1.6679 —
134 0.78 0.70 15.8 -0.6406 1.7796 —
135 0.79 0.70 15.6 -0.7422 1.8992 —
136 0.80 0.70 15.4 -0.8414 2.0203 —
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Table 3.7: Results of the EV-DSMC simulation at TL/Tc = 0.72.
# TL1/Tc TL2/Tc LV/a ρvz/J

∗
out σ/ρ∗ βne βnc β

137 0.72 0.56 19.2 0.6066 0.1855 — — —
138 0.72 0.57 19.0 0.5872 0.2165 — — —
139 0.72 0.58 18.8 0.5654 0.2499 — — —
140 0.72 0.59 18.6 0.5428 0.2850 — — —
141 0.72 0.60 18.6 0.5151 0.3237 — — —
142 0.72 0.61 18.4 0.4872 0.3640 — — —
143 0.72 0.62 18.4 0.4575 0.4068 — — —
144 0.72 0.63 18.2 0.4228 0.4531 — — —
145 0.72 0.64 18.0 0.3847 0.5025

0.780

—

0.793

146 0.72 0.65 17.8 0.3472 0.5535 —
147 0.72 0.66 17.8 0.3063 0.6078 —
148 0.72 0.67 17.6 0.2647 0.6642 —
149 0.72 0.68 17.4 0.2175 0.7248 —
150 0.72 0.69 17.2 0.1648 0.7898 —
151 0.72 0.70 17.0 0.1140 0.8560 —
152 0.72 0.71 16.8 0.0566 0.9271 —
153 0.73 0.72 16.4 -0.0613 1.0769 —

0.805

154 0.74 0.72 16.2 -0.1261 1.1577 —
155 0.75 0.72 16.0 -0.1914 1.2408 —
156 0.76 0.72 15.8 -0.2631 1.3291 —
157 0.77 0.72 15.6 -0.3392 1.4217 —
158 0.78 0.72 15.4 -0.4167 1.5173 —
159 0.79 0.72 15.2 -0.4966 1.6163 —
160 0.80 0.72 15.0 -0.5816 1.7201 —
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Chapter

4
Physical consideration of kinetic

boundary condition

In Chapter 3, we found a pair of αe and αc defined by Eq. (1.42) at each liquid

temperature. In this chapter, we consider the physical meaning of these coefficients

obtained in Chapter 3. To determine αe and αc uniquely, we have to clarify the

definitions of the molecular processes illustrated in Fig. 1.1. Although this definition

has not been clarified, if we assume a certain condition, these molecular processes

can be distinguished. We here consider a hypothesis of the spontaneous evaporation

[33,44]. According to this hypothesis, αe and αc are defined by the mass fluxes related

to the molecular processes. αe and αc according to this hypothesis can be obtained

from the virtual vacuum simulation [26,33] and the net evaporation and condensation

simulation [34]. However, the virtual vacuum simulation is inappropriate when the

liquid temperature becomes relatively high; hence, we apply a new method, which is

called the two-boundary method, proposed by Kobayashi et al. [30] to estimate αe and

αc according to the hypothesis of the spontaneous evaporation. First, we confirm

whether the normalized velocity distribution function of the evaporation molecules

obeys the normalized Maxwellian distribution (Eq. (1.32)), which is the premise of

the hypothesis of the spontaneous evaporation. Next, we discuss the correspondence

of the hypothesis of the spontaneous evaporation with αe and αc obtained in Chapter 3

by examining the mass fluxes of evaporation and condensation molecules in both the

vapor–liquid equilibrium and net evaporation/condensation cases. In this way, we

can find the relation among αe, αc obtained in Chapter 3, and the molecular processes

illustrated in Fig. 1.1.
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4.1 Spontaneous evaporation

We preliminarily explain a hypothesis of the spontaneous evaporation proposed by

Ishiyama et al. [33, 44]. The hypothesis of the spontaneous evaporation is an as-

sumption that the evaporation molecules have only the information of liquid. We

call such molecules the spontaneous evaporation molecules. Ishiyama et al. [33, 44]

applied this assumption to the single component monatomic molecules (argon) and

polyatomic molecules (water and methanol). We here consider only this assumption

on the monatomic molecules. We examine the following KBC in which we set to

A = αeρ
∗ + (1 − αc)σ in the generalized KBC (Eq. (2.1)).

fout = [αeρ
∗ + (1 − αc)σ]f̂ ∗, (4.1)

where f̂ ∗ is assumed the normalized Maxwellian distribution (Eq. (2.2)). Accord-

ing to Ishiyama et al. [33], αeρ
∗f̂ ∗ in Eq. (4.1) is defined as the velocity distribu-

tion function of the spontaneous evaporation molecules, f ∗
evap, and (1 − αc)σf̂

∗ in

Eq. (4.1) is defined as the velocity distribution function of the reflection molecules,

fref . These definitions are not obvious because the division of f̂ ∗ is arbitrary in

Eq. (4.1). The velocity distribution functions of the spontaneous evaporation and

reflection molecules support the molecular processes illustrated in Fig. 1.1.

By considering the molecular processes, the mass fluxes composed of molecules

having ξz > 0 at the vapor–liquid interface satisfy the following relation.

Jout = J∗
evap + Jref , (4.2)

where Jout =
∫
ξz>0

ξzfoutdξ, J∗
evap indicates the spontaneous evaporation mass flux

obtained as J∗
evap =

∫
ξz>0

ξzf
∗
evapdξ, and Jref indicates the reflection mass flux ob-

tained as Jref =
∫
ξz>0

ξzfrefdξ. In the same way, the mass fluxes composed of
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molecules having ξz < 0 at the vapor–liquid interface satisfy the following relation.

Jcoll = Jcond + Jref , (4.3)

where Jcoll =
∫
ξz<0

ξzfcolldξ, and Jcond indicates the condensation mass flux ob-

tained from the velocity distribution function of condensation molecules, fcond, as

Jcond =
∫
ξz<0

ξzfconddξ. αe and αc according to the hypothesis of the spontaneous

evaporation are defined based on these molecular mass fluxes.

As explained above, since the normalized velocity distribution function of f ∗
evap

has to be the normalized Maxwellian distribution (Eq. (2.2)), J∗
evap can be obtained

as

J∗
evap =

∫
ξz>0

ξzf
∗
evapdξ = αeρ

∗

√
RTL
2π

. (4.4)

With the use of J∗
evap, the definition of αe can be given as

αe =
J∗
evap

ρ∗
√
RTL/(2π)

=
J∗
evap

J∗
out

. (4.5)

In this definition of αe, J
∗
evap depends only on the liquid temperature. This definition

is synonymous with specifying A0(TL) = J∗
evap/

√
RTL/(2π) in Eq. (1.42).

If the normalized velocity distribution function of f ∗
evap is the normalized Maxwellian

distribution, that of fref is also the same, and Jref can be obtained as

Jref =

∫
ξz>0

ξzfrefdξ = (1 − αc)σ

√
RTL
2π

. (4.6)

Substituting Eq. (4.6) into Eq. (4.3), we get the definition of αc as follows:

αc =
Jcond

σ
√
RTL/(2π)

=
Jcond
Jcoll

. (4.7)

In vapor–liquid equilibrium, σ = ρ∗ and Jcond = J∗
evap, and thus αc is identical to αe

92



Chapter 4 Physical consideration of kinetic boundary condition

and is defined as J∗
evap/J

∗
out.

As is clear from Eqs. (4.2) and (4.3), the mass fluxes related to the molecular

processes (J∗
evap, Jref , and Jcond) can be determined if one of them is uniquely deter-

mined, and then αe and αc can be estimated from Eqs. (4.5) and (4.7). An idea to

distinguish these mass fluxes is a virtual vacuum simulation [26, 33], which realizes

a situation that all vapor molecules near the vapor–liquid interface have outgoing

velocities from liquid (ξz > 0) by eliminating the molecules colliding with the vapor–

liquid interface. By this simulation, we can obtain the spontaneous evaporation flux

J∗
evap, which depends only on the liquid temperature. Ishiyama et al. [33] estimated

J∗
evap by the virtual vacuum simulation to obtain αe. They also obtained f ∗

evap from

this simulation. Then, Ishiyama et al. [34] estimated Jcoll by the net evaporation

and condensation simulation to obtain αc.

The results of the virtual vacuum simulation [33] indicated that the normalized

velocity distribution function of f ∗
evap obeys the normalized Maxwellian distribution

function only at the low liquid temperature near the triple point. Zhakhovskii and

Anisimov [26] also proposed the virtual vacuum simulation, and they pointed out

that the normalized Maxwellian distribution can be adopted for the KBC only in

the case of lower vapor density with the relatively low liquid temperature. Also,

the density profile during the virtual vacuum simulation differs markedly from that

of vapor–liquid equilibrium when the liquid temperature becomes relatively high

[26, 33]. These results implied that the virtual vacuum simulation is inappropriate

in the case of the relatively high liquid temperature.

In this thesis, we utilize a new method to estimate f ∗
evap and J∗

evap. In this

method, we set the two boundaries between liquid and vapor, which are the con-

trol surfaces, and count the number of molecules which pass through these two

boundaries. Hereafter, we call this method the two-boundary method. The original

two-boundary method is proposed by Meland et al. [27]. This method has a problem

that the boundary on the liquid side can not be uniquely determined. In contrast,
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O z

Figure 4.1: Schematic of the simulation system; TL1 and TL2 indicate the temper-
atures of two liquids (TL1 > TL2), LH indicates the half-length of the simulation
system, and LV indicates the length of the vapor phase.

Kobayashi et al. [30, 91] proposed a procedure to determine the liquid boundary

according to the hypothesis of the spontaneous evaporation. We call this method

the improved two-boundary method by contrast with the original one. Kobayashi

et al. [30, 91] applied the improved two-boundary method only at the low liquid

temperature. However, since the improved two-boundary method has fewer artifi-

cial operations than the virtual vacuum simulation, we expect that this method can

be applied to the high liquid temperature. We detail the improved two-boundary

method in the next section.

4.2 Simulation settings

As explained in Chapter 2 (Section 2.1.2), we simulate the system composed of vapor

between two parallel liquid slabs (two-surface problem) in the one-dimensional space

and the three-dimensional molecular velocity space. The schematic of the simulation

system is shown in Fig. 4.1; TL1 and TL2 indicate the temperatures of two liquids

(TL1 > TL2), LH indicates the half-length of the simulation system, and LV indicates

the length of the vapor phase. As a consequence of the temperature difference

between two liquids, net evaporation occurs at the vapor–liquid interface on the

high-temperature side, and net condensation occurs at the vapor–liquid interface on

the low-temperature side.

We simulate various cases of net evaporation and condensation by varying the
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temperature difference between two liquids; one of liquid temperature is fixed as

a reference, and the other is varied. Three cases of reference liquid temperature,

TL/Tc, are set to 0.60, 0.64, and 0.68. In the manner explained in Chapter 3 (3.1),

we perform the simulations under 21 cases of the temperature differences. All cases

of the temperature differences and the reference values of the mean free path ℓ0

at the mean temperature of two liquids are summarized in Table 4.1. Since the

degree of net evaporation/condensation under each temperature difference is in the

applicable range of the normalized Maxwellian distribution obtained in Chapter 3

(0.5 ≲ σ/ρ∗ ≲ 2.3), we assume that the normalized velocity distribution function

of the KBC is the normalized Maxwellian distribution. The cell size ∆z is set to

0.2a, the time step ∆t is set to 0.001(
√

2RTc/a) ≈ 0.2µ̄−1
L , and the half-length of

the simulation system LH is set to 40a.

4.2.1 Improved two-boundary method

Let us explain the improved two-boundary method. In this method, we set the

two boundaries between liquid and vapor, which are the control surfaces, and count

the number of molecules which pass through these two boundaries. Hereafter, we

refer to these two boundaries as the liquid boundary and the vapor boundary. The

schematic of the two boundaries in this simulation system is shown in Fig. 4.2; the

dashed lines denote the liquid and vapor boundaries. The positions of the liquid

and vapor boundaries are defined in the latter part of this section. As illustrated

in Fig. 4.2, the evaporation molecules are identified as molecules passing through

Table 4.1: The temperature differences between two liquids and the reference values
of the mean free path at the mean temperature of two liquids.

# TL1/Tc TL2/Tc ℓ0/a # TL1/Tc TL2/Tc ℓ0/a # TL1/Tc TL2/Tc ℓ0/a
1 0.56 0.60 58.7 8 0.62 0.66 27.4 15 0.64 0.68 22.0
2 0.58 0.60 51.1 9 0.64 0.66 24.5 16 0.66 0.68 19.8
3 0.60 0.60 44.7 10 0.66 0.66 22.0 17 0.68 0.68 17.8
4 0.60 0.62 39.3 11 0.66 0.68 19.8 18 0.68 0.70 16.1
5 0.60 0.64 34.7 12 0.66 0.70 17.8 19 0.68 0.72 14.7
6 0.60 0.66 30.8 13 0.66 0.72 16.1 20 0.68 0.74 13.3
7 0.60 0.68 27.4 14 0.66 0.74 14.7 21 0.68 0.76 12.2
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Figure 4.2: Schematic of the two boundaries in the present simulation system; the
dashed lines denote the liquid and vapor boundaries.

the liquid boundary to the vapor boundary, the reflection molecules are identified

as molecules passing through the vapor boundary twice without passing through

the liquid boundary, and the condensation molecules are identified as molecules

passing through the vapor boundary to the liquid boundary. The molecular mass

fluxes related to these molecular processes obviously satisfy the relation Eqs. (4.2)

and (4.3) if we regard the evaporation molecules as the spontaneous evaporation

molecules.

In this simulation, we label all molecules in the simulation system and count the

number of the evaporation, reflection, or condensation molecules at each time step.

We hereby can estimate each molecular mass fluxes as

J

ρc
√

2RTc
=

1

Ns

∑
Ns

∆z∆N

∆tN0

, (4.8)

where Ns indicates the number of counting molecules, ∆N indicates the number of

the evaporation, reflection, or condensation molecules during ∆t, N0 indicates the

number of molecules in ∆z at the critical point. In the present simulation, Ns and

N0 are set to 500000 and 3000, respectively.

Then, we explain the positions of the liquid and vapor boundaries. We set the

center of the density transition layer zm and the thickness of the density transition

layer δ obtained from Eq. (2.71) in vapor–liquid equilibrium as the reference to

determine the liquid and vapor boundaries. For convenience, we utilize a new spatial
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coordinate z∗:

z∗ =
z − zm
δ

. (4.9)

The vapor boundary is equivalent to the vapor–liquid interface as illustrated

in Fig. 4.2. According to the positions of the vapor–liquid interface as explained

in Chapter 3 (Section 3.1), we determine the ideal gas region where the density

of vapor–liquid equilibrium obeys the Clausius–Clapeyron equation and define the

end of the ideal gas region as the vapor–liquid interface. In this simulation, the

position of the vapor–liquid interface is set to z∗ = 2.5. This definition of the

vapor boundary is similar to that proposed by Meland et al. [27] in the original two-

boundary method. Alternatively, Ishiyama et al. [33] proposed that the position

of the vapor–liquid interface has to be located in 2.0 ≲ z∗ where the vapor phase

is well developed. Kobayashi et al. [30, 91] set the position of the vapor boundary

to z∗ = 3.0 in accordance with Ishiyama et al. [33] in the improved two-boundary

method. The methods for determining the vapor boundary have some differences

between studies, but the positions can be regarded as almost the same.

In contrast with the vapor boundary, the liquid boundary has no condition that

should satisfy. In the original two-boundary method, Meland et al. [27] stated that

“Lacking any better criterion, the liquid boundary is here defined from a similar

construction” and defined the position of the liquid boundary by the analogy to

the definition of shock wave thickness. Kobayashi et al. [30, 91] pointed out that

the mass fluxed calculated by the original two-boundary method changes with the

position of the liquid boundary, but they took advantage of this ambiguity in the

improved two-boundary method.

To determine the position of the liquid boundary, Kobayashi et al. [91] applied the

two-boundary method in both the vapor–liquid equilibrium and the virtual vacuum

simulations for argon at 85K. The temperature 85K is near the triple point of argon,

in which case the virtual vacuum simulation is appropriate. The schematics of both
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Figure 4.3: Schematic of (a) the vapor–liquid equilibrium simulation and (b) the vir-
tual vacuum simulation with the liquid and vapor boundaries proposed by Kobayashi
et al. [91].

Figure 4.4: Evaporation and spontaneous evaporation molecular mass fluxes at the
vapor boundary proposed by Kobayashi et al. [91]; the abscissa represents the spatial
coordinate defined by z∗ = (z−zm)/δ, and the ordinate represents the time averaged
molecular mass flux.
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simulations with the liquid and vapor boundaries are shown in Fig. 4.3. In both two

simulations, the position of the vapor boundary is set to z∗ = 3.0, and that of the

liquid boundary is varied within the range −3.0 ≤ z∗ ≤ 0.

Figure 4.4 shows the results of the vapor–liquid equilibrium and the virtual vac-

uum simulations; the abscissa represents the spatial coordinate defined by Eq. (4.9),

and the ordinate represents the time-averaged molecular mass flux. In Fig. 4.4, the

triangles denote the spontaneous evaporation mass flux obtained from the virtual

vacuum simulation with the liquid and vapor boundaries, and the circles denote the

mass flux obtained from the vapor–liquid equilibrium simulation with the liquid and

vapor boundaries. As can be seen in Fig. 4.4, the results of these two simulations are

crossed at z∗ ≈ −1.0. On the basis of this result, Kobayashi et al. [30] suggested that

the spontaneous evaporation mass flux J∗
evap can be obtained from the vapor–liquid

equilibrium simulation by setting the position of the liquid boundary to z∗ ≈ −1.0.

According to this result, we also set to this position as the liquid boundary.

4.2.2 Initial condition

In this simulation, for the initial condition, we set to the positions and the velocities

of molecules when the simulation, which started from the settings explained in

Chapter 3 (Section 3.1), reaches the steady state. In the initial condition, we set

the liquid and vapor boundaries and label all molecules in the system. To track all

molecules, we perform an idling simulation until the molecules that in the region

between the liquid and vapor boundary at the initial condition passing through either

boundary. After this idling simulation, we start to count the number of molecules

and calculate the velocity distribution function and the mass flux.

4.2.3 Boundary condition

We give the boundary condition in the same way as in Chapter 2 (Section 2.4.1). As

illustrated in Fig. 4.1, we impose the periodic boundary condition at both ends of the
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system; the molecules that flow out from one boundary after advection are inserted

from the other boundary. By imposing this boundary condition, the simulation

system as shown in Fig. 4.1 can be regarded as symmetric with respect to each

center of liquid. In the following, we show the results only in half the simulation

system.

4.2.4 Other settings

Velocity scaling method

We impose the thermostat in the same way as in Chapter 2 (Section 2.4.1). We apply

the velocity scaling method [76] to keep the constant temperature. The temperature

modification factor Φ in Eq. (2.70) is estimated in each cell at each time step. The

region where the thermostat is imposed is defined as 3.0a from each zm toward

each liquid, where zm indicates the position of the center of the 10–90 thickness

density transition layer in vapor–liquid equilibrium (Eq. (2.71)); the length of the

thermostat region is approximately ±3.0a from the center of liquid. Note that since

the position of zm depends on the temperature, the length of the thermostat region

slightly varies with the temperature.

Two boundaries tracking method

In this simulation, we label all molecules and track these molecules at each time

step. Hence, it is hard to realize the steady net evaporation/condensation system

by the shifting method, which modifies the positions of molecules at each time

step, as explained in Chapter 3 (Section 3.1). We realize a quasi-steady system by

changing the positions of the liquid and vapor boundaries at each time step. Since

the liquid slab diminishes/grows with time due to net evaporation/condensation, we

subtracted the offset amount from each zm at each simulation time step, where the
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Chapter 4 Physical consideration of kinetic boundary condition

offset amount ∆zm is estimated by

∆zm =
Jout − Jcoll

ρL
∆t, (4.10)

where Jout > Jcoll at the vapor–liquid interface with net evaporation, whereas Jout <

Jcoll at the vapor–liquid interface with net condensation; hence, the positions of zm

in both cases move toward the negative z-direction. Since the positions of the liquid

and vapor boundaries are based on zm, we can determine the position of these two

boundaries at each time step.

4.3 Results and discussion

4.3.1 Modification of formulated mass flux relation

As a preparation, we modify the formulated mass flux relation (Eq. (3.14)) as prepa-

ration for comparing αe and αc defined by Eqs. (4.5) and (4.7) with those obtained

in Chapter 3. According to the hypothesis of the spontaneous evaporation, the

spontaneous evaporation mass flux J∗
evap depends only on the liquid temperature,

regardless of the value of Jcoll. To obtain the expression of J∗
evap from the formulated

mass flux relation (Eq. (3.14)), we consider a situation that Jcoll is set to zero at the

vapor–liquid interface. This situation is equivalent to that in the virtual vacuum

simulation. When Jcoll = 0, Eq. (3.14) becomes

ρvz
J∗
out

= β(TL). (4.11)

From Eqs. (4.2) and (4.3), we can obtain the relation ρvz = Jout−Jcoll = J∗
evap−

Jcond. Furthermore, since Jref obviously becomes zero when Jcoll is set to zero,
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Chapter 4 Physical consideration of kinetic boundary condition

Eq. (3.14) becomes

J∗
evap

J∗
out

= β(TL). (4.12)

The left-hand side of Eq. (4.12) is equivalent to the definition of αe according to the

hypothesis of the spontaneous evaporation (Eq. (4.5)). From the result in Chap-

ter 3, we obtain the relation αe = αc = β(TL); thus, the following relation can be

obtained with the use of the definition of αc according to the spontaneous evapora-

tion (Eq. (4.7)).

Jcond
Jcoll

= β(TL). (4.13)

On the basis of Eqs. (4.12) and (4.13), we can estimate J∗
evap and Jcond according

to Eq. (3.14) as

J∗
evap = J∗

outβ(TL), Jcond = Jcollβ(TL). (4.14)

We hereafter discuss J∗
evap and Jcond obtained from Eq. (4.14) and those calculated

by the improved two-boundary method. Note that since J∗
out and Jcoll in Eqs. (4.5)

and (4.7) are given values, we can examine αe and αc by discussing J∗
evap and Jcond.

4.3.2 Velocity distribution function of evaporation molecules

In the following, we show the main results of this chapter. First, we confirm the nor-

malized velocity distribution function of the evaporation molecules obtained from

the improved two-boundary method. According to the hypothesis of the sponta-

neous evaporation, the normalized velocity distribution function of the evaporation

molecules has to be the normalized Maxwellian distribution (Eq. (2.2)). However,

the previous studies [26, 33] showed that the normalized velocity distribution func-

tion of the evaporation molecules obtained from the virtual vacuum simulation obeys

102



Chapter 4 Physical consideration of kinetic boundary condition

the normalized Maxwellian distribution only at the low liquid temperature near the

triple point. Furthermore, the density profile during the virtual vacuum simulation

differs markedly from that of vapor–liquid equilibrium when the liquid temperature

becomes relatively high. In the improved two-boundary method, we do not have

to mind the extraordinary density profile because we do not realize an artificial

situation like the virtual vacuum simulation. In contrast, the normalized velocity

distribution function of the evaporation molecules has to be examined, especially in

the cases of net evaporation/condensation and the high liquid temperature.

The calculation procedure of the normalized velocity distribution function of

the evaporation molecules by the improved two-boundary method is shown below.

We set the upper and lower limits of the velocity space to ζi = −4 and ζi = 4,

respectively, and divide this velocity space into 40 cells, where ζi = ξi/
√

2RTL1 or

ζi = ξi/
√

2RTL2. We can obtain the velocity distribution function of the evaporation

molecules by determining which cells the velocities of the evaporation molecules

belongs to and counting the number of molecules.

Figure 4.5 shows the normalized velocity distribution function of the evapo-

ration molecules in the case of the reference liquid temperature TL/Tc = 0.68; the

closed circles denote the normalized velocity distribution function of the evaporation

molecules in vapor–liquid equilibrium, the open circles denote those in net evapo-

ration and condensation, and the dashed lines denote the normalized Maxwellian

distribution (Eq. (2.77)) in the tangential direction and that times ζi in the normal

direction. In Fig. 4.5, we show only cases of vapor–liquid equilibrium, strongest net

evaporation, and strongest net condensation at the highest reference liquid temper-

ature in this simulation.

As can be seen in Fig. 4.5, the normalized velocity distribution function of the

evaporation molecules in vapor–liquid equilibrium seems to agree with the normal-

ized Maxwellian distribution, and those in net evaporation and condensation also

seem to agree with the normalized Maxwellian. These results show that the premise
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Figure 4.5: Normalized velocity distribution functions of the evaporation molecules
in the cases of TL1/Tc = TL2/Tc = 0.68 (vapor–liquid equilibrium), TL1/Tc = 0.68
and TL2/Tc = 0.64 (net evaporation), and TL1/Tc = 0.76 and TL2/Tc = 0.68 (net
condensation).

of the hypothesis of the spontaneous evaporation holds even in the case of the high-

est liquid temperature accompanied with net evaporation/condensation. On the

basis of this result, we find that the velocity distribution function of the evapora-

tion molecules calculated by the improved two-boundary method can be regarded as

that of the spontaneous evaporation molecules f̂ ∗
evap. Consequently, the evaporation

mass flux calculated by this method can also be regarded as that of the spontaneous

evaporation molecules J∗
evap. In other words, these results indicate that the improved

two-boundary method can be applied in the cases of the high liquid temperature.

4.3.3 Spontaneous evaporation and condensation mass fluxes

Vapor–liquid equilibrium

Next, we compare J∗
evap and Jcond obtained from Eq. (4.14) and those calculated by

the improved two-boundary method in the vapor–liquid evaporation cases. Note
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that since Jcond = J∗
evap in vapor–liquid equilibrium, we show only the result of

J∗
evap. In Table 4.1, TL1/Tc = TL2/Tc = 0.60, TL1/Tc = TL2/Tc = 0.64, and TL1/Tc =

TL2/Tc = 0.68 are the vapor–liqud equilibrium cases.

Figure 4.6 shows the spontaneous evaporation mass flux J∗
evap; the closed circles

denote J∗
evap calculated by the improved two-boundary method in vapor–liquid equi-

librium, and the open diamonds denote those obtained from Eq. (4.14). As can be

seen in Fig. 4.6, J∗
evap increases with the increase in the liquid temperature. Also,

we can find that J∗
evap obtained from two different methods show an excellent agree-

ment, in which case the maximum deviation is approximately 2%. From this result,

in vapor–liquid equilibrium, we conclude that β(TL) follows the definition of αe

according to the hypothesis of the spontaneous evaporation: αe = αc = J∗
evap/J

∗
out.

Net evaporation and condensation

Next, we compare J∗
evap and Jcond obtained from Eq. (4.14) and those calculated

by the improved two-boundary method in the net evaporation/condensation cases.

Figure 4.7 shows the spontaneous evaporation mass flux J∗
evap and the condensation

mass flux Jcond; the closed circles denote J∗
evap and Jcond calculated by the improved

two-boundary method in net evaporation and condensation, and the dashed lines
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denote those obtained from Eq. (4.14).

As can be seen in Fig. 4.7, J∗
evap is constant at each reference liquid temperature,

while Jcond increases with the increase in σ/ρ∗ at each reference liquid temperature.

It is most striking finding that J∗
evap and Jcond obtained from two different methods

show good agreement even in the cases of net evaporation and condensation. From

these results, we conclude that β(TL) follows the definitions of αe and αc according to

the hypothesis of the spontaneous evaporation: αe = J∗
evap/J

∗
out and αc = Jcond/Jcoll.

4.3.4 Comment on original two-boundary method

As a supplement, we comment on the result obtained from the original two-boundary

method. Meland et al. [27] implied that αe and αc in net evaporation and condensa-

tion obtained from the original two-boundary method varies with the Mach number

of the vapor flow. This result overtly contradicts the result shown in Fig. 4.7. This

contradiction is due to the difference in the position of the liquid boundary between

the original and improved two-boundary methods. Meland et al. [27] calculated

the temperature at the liquid boundary as the liquid temperature and obtained αe
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and αc by using this liquid temperature. The liquid boundary of the original two-

boundary method is inside the density transition layer by approximately a compared

to the improved one. It seems that this difference is very small, but the influence is

considered to be large because the characteristics length scale at this position is a.

As shown in Fig.3.3, the temperature in the vicinity of the density transition

layer has a spatial distribution, and this distribution varies with the degree of net

evaporation/condensation even if we impose the thermostat under the same con-

dition. Meland et al. [27] showed that the deviation between the temperature of

bulk liquid, which is a region where the thermostat is imposed, and the temperature

at the liquid boundary becomes approximately 8%. In contrast, we find that the

deviation between the temperature of the thermostat region and temperature at the

liquid boundary is reduced less than 2% by utilizing the improved two-boundary

method. We conclude that it is one of the reasons why we can obtain such clear

results shown in Fig. 4.7.

4.4 Summary

In Chapter 3, we found a pair of αe and αc defined by Eq. (1.42) at each liquid

temperature. In this chapter, we considered the physical meaning of αe and αc

obtained in Chapter 3. To determine αe and αc uniquely, we have to clarify the

definitions of the molecular processes illustrated in Fig. 1.1. Although this definition

has not been clarified, if we assume a certain condition, these molecular processes

can be distinguished. We here consider a hypothesis of the spontaneous evaporation

[33, 44]. According to this hypothesis, αe and αc are defined by the mass fluxes

related to the molecular processes, such as J∗
evap and Jcond. We calculated J∗

evap and

Jcond by the improved two-boundary method proposed by Kobayashi et al. [30,91] to

examine αe and αc according to the hypothesis of the spontaneous evaporation. As

a preparation, we modified the formulated mass flux relation (Eq. (3.14)) to obtain

the expressions of J∗
evap and Jcond by using β(TL) (Eq. (4.14)).
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First, we confirmed whether the normalized velocity distribution function of the

evaporation molecules obeys the normalized Maxwellian distribution (Eq. (2.2)),

which is the premise of the hypothesis of the spontaneous evaporation. From the

result, we found that the normalized velocity distribution function of the evapo-

ration molecules in vapor–liquid equilibrium seems to agree with the normalized

Maxwellian distribution, and those in net evaporation and condensation also seem

to agree with the normalized Maxwellian (Fig. 4.5). These results showed that the

premise of the hypothesis of the spontaneous evaporation holds even in the case of

the highest liquid temperature accompanied with net evaporation/condensation.

Next, we discussed the correspondence of the hypothesis of the spontaneous

evaporation with αe and αc obtained in Chapter 3 by comparing J∗
evap and Jcond ob-

tained from Eq. (4.14) and those calculated by the improved two-boundary method.

From the result, we found that J∗
evap and Jcond obtained from two different meth-

ods show an excellent agreement in both vapor–liquid equilibrium and net evap-

oration/condensation (Figs. 4.6 and 4.7). We concluded that β(TL) follows the

definitions of αe and αc according to the hypothesis of the spontaneous evapora-

tion: αe = αc = J∗
evap/J

∗
out in vapor–liquid equilibrium, while αe = J∗

evap/J
∗
out and

αc = Jcond/Jcoll in net evaporation/condensation.

Let us summarize the significance of the results so far. In Chapter 3, we found

that A0(TL) in Eq. (1.42) is identified as B(TL) = ρ∗β(TL). In this chapter, we

found that β(TL) follows the definitions of αe and αc according to the hypothesis of

the spontaneous evaporation. On the basis of this result, the following definition of

A0(TL) can be obtained.

A0(TL) = B(TL) ≡
J∗
evap√

RTL/(2π)
. (4.15)

Although this result includes some assumptions, we succeeded to clarify the relation

between β(TL) and the molecular processes illustrated in Fig. 1.1 by specifying

A0(TL).
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5
Validation of kinetic boundary

condition

In this chapter, we verify the accuracy of αe and αc obtained in Chapter 3 and

Chapter 4. We perform the EV-DSMC simulation for the different two vapor–liquid

two-phase systems, which are distinct from that considered in the preceding chapters.

First, in these two systems, we confirm whether the normalized velocity distribution

function of the KBC obeys the normalized Maxwellian distribution (Eq. (2.2)). Next,

we compare the macroscopic variables in vapor, namely, the velocity and the temper-

ature, in these two systems obtained from the numerical simulation of the Boltzmann

equation with the KBC (Eq. (3.19)), which is specified by αe = αc = β(TL), and those

obtained from the EV-DSMC simulation. Since it has been pointed out that the KBC

significantly affects the macroscopic variables in the numerical simulation of the

Boltzmann equation [45–47], the proper specification of the KBC is critical. In other

words, the KBC at the vapor–liquid interface with net evaporation/condensation is

validated if and only if the macroscopic variables in vapor obtained from these two

simulations accurately agree with each other. This simple validation method has

often been performed in the molecular dynamics simulation [45, 46]. Finally, we

compare the liquid temperature dependence of αe and αc in these two systems with

those obtained in Chapter 3. In this way, we can verify whether αe and αc obtained

in the preceding chapters depend on the simulation systems.
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5.1 ES-BGK model Boltzmann equation

In this validation, we carry out the numerical simulation of the ES-BGK model

Boltzmann equation (ES-BGK equation) [89] that is one of the models of the Boltz-

mann equation, which can fit an arbitrary Prandtl number; the Prandtl number of

the hard-sphere molecules is Pr = 0.6607 [12]. This model is proven to hold the

H-theorem [89]. The ES-BGK equation is written as

∂f

∂t
+ ξ · ∂f

∂x
=

p

κ(1 − ψ)
[G(f) − f ], (5.1)

where κ is the viscosity coefficient and ψ is the constant value used to fit the Prandtl

number Pr:

Pr =
1

1 − ψ
. (5.2)

The value of ψ is set as 1/2 in this simulation. G(f) is written as

G(f) =
ρ√

det(2πΥij)
exp

(
−1

2
(ξi − vi)Υ

−1
ij (ξj − vj)

)
, (5.3)

where Υij is defined as

Υij = (1 − ψ)RTδij + ψΘij, (5.4)

where δij is the Kronecker’s delta, and ρΘij is the stress tensor.

The mean collision frequency of the ES-BGK equation is obtained as

µ̄ =
p

κ
=
ρRT

κ
. (5.5)

The substitution of this mean collision frequency (Eq. (5.5)) and the average molec-
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ular speed (Eq. (1.27) into the definition of the mean free path (Eq. (1.26)) yields

ℓ =

√
8

πRT

κ

ρ
. (5.6)

Equation (5.6) is the mean free path of the ES-BGK equation. Also, the mean free

time of the ES-BGK equation is obtained as µ̄−1.

In this numerical simulation, we discretize the time, the physical space, and the

molecular velocity space and solve the ES-BGK equation by the finite difference

method. The reference values for the nondimensionalization are the mean temper-

ature of two liquids T0 = (TL1 + TL2)/2, the mean free path ℓ0 at T0, and the mean

free time µ̄−1
0 at T0. In the spatially one-dimensional problem, we can eliminate the

molecular velocity components ξx and ξy by multiplying the velocity distribution

function f by 1 or ξ2x + ξ2y and integrating over the whole space of ξx and ξy [92]:


fz(z, ξz, t) =

∫∫∞
−∞ f(z, ξ, t)dξxdξy,

hz(z, ξz, t) =
∫∫∞

−∞(ξ2x + ξ2y)f(z, ξ, t)dξxdξy.

(5.7)

The numerical simulation is performed for the distribution functions fz and hz, and

the macroscopic variables are given by

• Velocity vz

vz =
1

ρ

∫ ∞

−∞
ξzfzdξz. (5.8)

• Temperature T

T =
1

3ρR

(∫ ∞

−∞
(ξz − vz)

2fzdξz +

∫ ∞

−∞
hzdξz

)
. (5.9)

In the numerical simulation of the ES-BGK equation, 500 and 2000 cells are

utilized for the velocity space and physical space, respectively (a total of one million
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Figure 5.1: Schematic of the simulation system in the cases of (a) the quasi-steady
pseudo half-space problem and (b) the unsteady two-surface problem; TL indicates
liquid temperature, TL1 and TL2 indicate the temperatures of two liquids (TL1 > TL2
at initial condition), and LH indicates the half-length of the simulation system.

cells). The cell size in the physical space ∆z is set to 1.0 × 10−4ℓ0, that in the

molecular velocity space ∆ξz is set to 1.0 × 10−2
√

2RT0 near ξz = 0 and 1.0 ×

10−4
√

2RT0 far from ξz = 0, and the time step ∆t is set to 0.01µ̄−1
0 . For the KBC

at the vapor–liquid interface, we impose that proposed in Chapter 3 (Eq. (3.19)):

fout = [β(TL)ρ∗ + (1 − β(TL))σ]f̂ ∗, (3.19)

where αe = αc = β(TL) and the values of β(TL) are summarized in Tables 3.1–3.7.

5.2 Simulation settings

We simulate the two different systems composed of vapor and liquid in the one-

dimensional space and the three-dimensional molecular velocity space, which are

distinct from that considered in the preceding chapters. The schematics of one of

the simulation system is shown in Fig. 5.1(a); TL indicates the liquid temperature

and LH indicates the half-length of the simulation system. This system is imitated
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the half-space problem which is well examined in molecular gas dynamics. In the

half-space problem, we consider the infinite vapor region, but since it is impossible

to realize this situation in the molecular simulation, we impose an arbitrary velocity

distribution function at the end of vapor. We can realize the quasi-steady net

evaporation or condensation system depending on the vapor boundary condition.

Since we here consider the quasi-steady net evaporation/condensation, we call this

problem the quasi-steady pseudo half-space problem. We simulate such a system

in two cases of liquid temperature, TL/Tc, 0.60 and 0.68. The cell size ∆z is set to

0.2a, the time step ∆t is set to 0.001(
√

2RTc/a) ≈ 0.2µ̄−1
L , and the half-length of

the simulation system LH is set to 30a. We calculate the macroscopic variables and

the fluxes by taking 408 samples for each condition and averaging them over time.

The schematics of the other simulation system is shown in Fig. 5.1(b); TL1 and

TL2 indicate the temperatures of two liquids (TL1 > TL2), LH indicates the half-

length of the simulation system. This system is excluded the velocity scaling and

the particle shifting in the system considered in Chapter 3. In this system, unsteady

net evaporation/condensation accompanied by the temporal evolution of the liquid

temperature occurs, and after a sufficient time, the system reaches vapor–liquid

equilibrium at TL1 = TL2. We call this problem the unsteady two-surface prob-

lem. We set the temperatures of two liquids to TL1/Tc = 0.72 and TL2/Tc = 0.60

at the initial state. The cell size ∆z is set to 0.2a, the time step ∆t is set to

0.001(
√

2RTc/a) ≈ 0.2µ̄−1
L , and the half-length of the simulation system LH is set

to 40a. We estimate the macroscopic variables by taking the ensemble average of

200 scenes which start from the different initial conditions. To obtain each initial

condition having different microstates, we simulate the steady two-surface problem

considered in Chapter 3.
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5.2.1 Initial condition

Quasi-steady pseudo half-space problem

We give the initial condition in the same way as in Chapter 2 (Section 2.4.1). In

this simulation, 1,200,000 molecules are arranged only around the center of each

liquid where the liquid slab is to be formed. The total number of molecules de-

creases/increases with time according to the mass flux related to the vapor boundary

condition. The velocities of molecules are determined by using the random sampling

as

ξz(i) =
√

−2RTL ln ru1 cos(2πru2), (5.10)

ξx(i) =
√

−2RTL ln ru1 sin(2πru2), (5.11)

ξy(i) =
√

−2RTL ln ru3 sin(2πru4), (5.12)

where ru1–ru4 indicate the different uniform random numbers.

Unsteady two-surface problem

As already explained, the unsteady simulation requires the initial conditions which

have the different microstates. In this simulation, for the initial condition, we set to

the positions and velocities of molecules when the simulation, which started from the

settings explained in Chapter 3 (Section 3.1), reaches the steady state. After this

simulation reaches the steady state, we extract the initial conditions for 200 scenes.

Note that since the initial condition is required to have the different microstates, we

extract these scenes with a sufficient time interval.
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5.2.2 Boundary condition

Quasi-steady pseudo half-space problem

In this problem, we impose an arbitrary velocity distribution function at the end of

vapor (Fig. 5.1(a)) to realize the quasi-steady net evaporation/condensation system.

This method is based on that proposed by Ishiyama et al. [34] for the molecular

dynamics simulation. We impose the following vapor boundary condition, fV, at

the end of vapor.

fV =
νρ∗

(
√

2πRνTL)3
exp

(
− ξ2i

2RνTL

)
for ξz < 0, (5.13)

where ν is a constant parameter (ν > 0) and is set to 0.5 or 1.5; net evaporation

occurs at the vapor–liquid interface in the case of ν = 0.5, while net condensation

occurs at the vapor–liquid interface in the case of ν = 1.5. By imposing this bound-

ary condition, the simulation system as shown in Fig. 5.1(a) can be regarded as

symmetric with respect to the center of liquid. In the following, we show the results

only in half the simulation system. Furthermore, the number of outgoing/incoming

molecules are determined according to the following mass flux at the end of vapor.

JV = νρ∗
√
RνTL

2π
. (5.14)

Unsteady two-surface problem

In this problem, we give the boundary condition in the same way as in Chapter 2

(Section 2.4.1). As illustrated in Fig. 5.1(b), we impose the periodic boundary con-

dition at both ends of the system; the molecules that flow out from one boundary

after advection are inserted from the other boundary. By imposing this boundary

condition, the simulation system as shown in Fig. 5.1(a) can be regarded as sym-

metric with respect to each center of liquid. In the following, we show the results

only in half the simulation system.
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5.2.3 Other settings

Velocity scaling method

In the quasi-steady pseudo half-space problem, we impose the thermostat in the same

way as in Chapter 2 (Section 2.4.1). We apply the velocity scaling method [76] to

keep the constant temperature. The temperature modification factor Φ in Eq. (2.70)

is estimated in each cell at each time step. The region where the thermostat is im-

posed is defined as 3.0a from each zm toward each liquid, where zm indicates the

position of the center of the 10–90 thickness density transition layer in vapor–liquid

equilibrium (Eq. (2.71)); the length of the thermostat region is approximately ±3.0a

from the center of liquid. Note that since the position of zm depends on the tem-

perature, the length of the thermostat region slightly varies with the temperature.

5.3 Results and discussion

5.3.1 Quasi-steady pseudo half-space problem

Macroscopic variables

We preliminarily show the results of the macroscopic variables obtained from the

EV-DSMC simulation in the quasi-steady pseudo half-space problem. Figure 5.2

shows the density, velocity, and temperature fields obtained from the EV-DSMC

simulation for the quasi-steady pseudo half-space problem; the thin solid lines denote

the density fields, the bold solid lines denote the temperature fields, and dashed lines

denote the velocity fields. In Fig. 5.2, the abscissas represent the spatial coordinate

(z′ = (z−zm)/a). These macroscopic variables are obtained in the sampling window

illustrated in Fig. 5.2. Also, the bold dashed lines denote the vapor–liquid interface.

We determine the position of the vapor–liquid interface in the same way as in the

preceding chapters and set to the position distanced 2.5δ from zm to vapor. Since

the liquid slab diminishes/grows with time due to net evaporation/condensation,
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Figure 5.2: Spatial distributions of the density ρ, the velocity vz, and the tem-
perature T obtained from the EV-DSMC simulation for the quasi-steady pseudo
half-space problem in the cases of (a) TL/Tc = 0.60 and ν = 0.5 (net evaporation),
(b) TL/Tc = 0.60 and ν = 1.5 (net condensation), (c) TL/Tc = 0.68 and ν = 0.5 (net
evaporation), and (d) TL/Tc = 0.68 and ν = 1.5 (net condensation); the abscissas
represent the spatial coordinate (z′ = (z− zm)/a), and the ordinates are normalized
by the critical values.

we subtracted the offset amount from zm at each simulation time step according to

Eq. (4.10). Note that the length between the right-side end of the sampling window

and the end of vapor is smaller than the mean free path. Thus, we regard that the

velocity distribution function at the right-side end of the sampling window is to be

the same as the vapor boundary condition (Eq. (5.13)).

As can be seen in Fig. 5.2, a positive vapor velocity in the z-direction is induced

by net evaporation (Figs. 5.2(a) and (c)), while a negative vapor velocity in the z-

direction is induced by net condensation (Figs. 5.2(b) and (d)). Furthermore, we can

see a drop in the temperature near the vapor–liquid interface due to net evaporation

(Figs. 5.2(a) and (c)) and a rise in the temperature near the vapor–liquid interface

due to net condensation (Figs. 5.2(b) and (d)). From these results, we confirm that

net evaporation/condensation occurs according to the value ν in this simulation
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Figure 5.3: Normalized velocity distribution function of the KBC at the vapor–liquid
interface obtained from the EV-DSMC simulation for the quasi-steady pseudo half-
space problem in the cases of (a) TL/Tc = 0.60 and ν = 0.5 (net evaporation), (b)
TL/Tc = 0.68 and ν = 0.5 (net evaporation), (c) TL/Tc = 0.60 and ν = 1.5 (net
condensation), and (d) TL/Tc = 0.68 and ν = 1.5 (net condensation).

system.

Normalized velocity distribution function of kinetic boundary condition

In the following, we show the main results on the quasi-steady pseudo half-space

problem. First, we examine the normalized velocity distribution function at the

vapor–liquid interface composed of the outgoing molecules from there, that is, the

normalized velocity distribution function of the KBC, in the quasi-steady pseudo

half-space problem. The calculation procedure of the normalized velocity distribu-

tion function is the same as in Chapter 2 (Section 2.4.2). We set the upper and

lower limits of the velocity space to ζi = −3 and ζi = 3, respectively, and divide this

velocity space into 30 cells, where ζi = ξi/
√

2RTL. Figure 5.3 shows the normal-

ized velocity distribution function of the KBC at the vapor–liquid interface. The

closed circles denote the normalized velocity distribution function in the direction
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normal to the vapor–liquid interface (i = n), the open circles denote that in the

tangential direction (i = t), and the dashed lines denote the normalized Maxwellian

distribution (Eq. (2.77)).

As can be seen in Fig. 5.3, the normalized velocity distribution function of the

KBC more or less agrees with the normalized Maxwellian distribution (Eq. (2.77))

in all cases, especially in the direction normal to the vapor–liquid interface. For

the tangential direction, especially in the case of TL/Tc = 0.68, we can see that the

temperature is slightly lower than TL under net evaporation, while that is slightly

higher than TL under net condensation. This tendency has also been observed in

Fig. 3.5. However, since these deviations are sufficiently small, we conclude that

the normalized velocity distribution function of KBC can be assumed to be the

normalized Maxwellian distribution in the quasi-steady pseudo half-space problem.
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Comparison of velocity and temperature fields

Next, we compare the macroscopic variables in vapor, namely, the velocity and the

temperature, in the quasi-steady pseudo half-space problem obtained from the nu-

merical simulation of the ES-BGK equation and those obtained from the EV-DSMC

simulation. In the numerical simulation of the ES-BGK equation, we consider a

system composed of vapor between two boundaries; one of the boundaries is the

vapor–liquid interface, and the other is the end of vapor. At the vapor–liquid in-

terface, we imposed the KBC (Eq. (3.19)), which is specified by β(TL = αe = αc),

while at the end of vapor, we imposed the vapor boundary condition fV (Eq. (5.13)).

The reference temperature in the numerical simulation of the ES-BGK equation is

set to T0 = TL. After the velocity distribution function f in vapor is obtained from

the numerical simulation of the ES-BGK equation, the velocity and the temperature

in vapor are estimated by Eqs. (5.8) and (5.9), respectively. Figure 5.4 shows the

comparison between the velocity and the temperature in vapor obtained from the

EV-DSMC simulation and the numerical simulation of the ES-BGK equation; the

solid lines denote the results of the ES-BGK equation, and the open diamonds and

circles denote those of the EV-DSMC simulation.

We can see that the velocity and temperature fields in vapor obtained from two

different simulations are in almost agreement except for a region near the vapor–

liquid interface in some cases. As shown in the former section, the normalized

velocity distribution function of the KBC obeys almost the normalized Maxwellian

distribution; hence, this is not the cause of the deviation of the macroscopic variables.

There are two possible causes. The one is that the value of β(TL), which is set in the

KBC in the numerical simulation of the ES-BGK equation, is inappropriate, in which

case the KBC proposed in Chapter 3 is also inappropriate. As referred to the result

in the latter section, the values of β(TL) in this simulation is almost identical with

those obtained in Chapter 3, and thus that is unlikely the cause of the deviation of

the macroscopic variables. The other is that the difference of the simulation system
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Figure 5.5: Spatial distributions of the density ρ, the velocity vz, and the tem-
perature T obtained from the EV-DSMC simulation for the unsteady two-surface
problem at (a) the initial state and (b) the final state; the abscissa is normalized by
the molecular diameter a, and the ordinates are normalized by the critical values.

between the EV-DSMC simulation and the numerical simulation of the ES-BGK

equation. The quasi-steady simulation is carried out in the EV-DSMC simulation,

whereas in the numerical simulation of the ES-BGK equation, the complete steady

simulation is carried out. To realize the steady system by the molecular simulation,

we have to perform some artificial operations, which makes it difficult to realize a

complete steady system except in the case of vapor–liquid equilibrium. However,

the deviation of the macroscopic variables obtained from these two simulations is

sufficiently small except for a region near the vapor–liquid interface. From these

results, we conclude that the KBC (Eq. (3.19)) is guaranteed to be applicable even

in the quasi-steady pseudo half-space problem.

5.3.2 Unsteady two-surface problem

Macroscopic variables and mass flux

We preliminarily show the results of the macroscopic variables and the mass flux

obtained from the EV-DSMC simulation in the unsteady two-surface problem. Fig-

ure 5.5 shows the density, velocity, and temperature fields obtained from the EV-
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Figure 5.6: Temporal evolution of the mass flux at the vapor–liquid interface.

DSMC simulation for the unsteady two-surface problem at t∗ = t(a/
√

2RTc) = 0

(initial state) and t∗ = 500 (final state). In Fig. 5.5, the thin solid lines denote the

density fields, the bold solid lines denote the temperature fields, and the dashed

lines denote the velocity fields. Also, the bold dashed lines denote the vapor–liquid

interface. We determine the position of the vapor–liquid interface in the same way

as in the preceding chapters and set to the position distanced 2.5δ from zm to vapor.

Hereafter, we refer to the left liquid slab at TL1 as liquid 1 and the right liquid slab

at TL2 as liquid 2.

As can be seen in Fig. 5.5(a), the velocity field in the z-direction takes a positive

value, which is induced by net evaporation/condensation. Furthermore, we can see a

drop in the temperature near the left vapor–liquid interface due to net evaporation,

while a rise in the temperature near the right vapor–liquid interface due to net

condensation. Also, in Fig. 5.5(b), the velocity field in the z-direction becomes zero

in the whole simulation system, and the temperature field becomes uniform and

constant (TL1/Tc = TL2/Tc ≈ 0.69) as a consequence of the drop and rise in the

temperatures accompanied with net evaporation and condensation.

Figure 5.6 shows the temporal evolution of the mass flux ρvz at each vapor–liquid

interface, where ρvz is obtained as the difference between Jout and Jcoll. As can be

seen, ρvz at each vapor–liquid interface decreases drastically until t∗ = 200; after
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that time, ρvz at each vapor–liquid interface decreases gently and converges to zero

eventually. These results indicate that the vapor–liquid two-phase system achieves

vapor–liquid equilibrium at t∗ = 500.

Normalized velocity distribution function of kinetic boundary condition

In the following, we show the main results on the unsteady two-surface problem.

First, we examine the normalized velocity distribution function at the vapor–liquid

interface composed of the outgoing molecules from there, that is, the normalized

velocity distribution function of the KBC in the unsteady two-surface problem. As

a preparation, we estimate a delay time caused by molecules traveling in the interface

layer. As shown in Fig. 1.1, the interface layer has a finite thickness; hence, a delay

time arises from molecules traveling in this finite interface layer in unsteady net

evaporation/condensation. It is hereby not obvious that the normalized velocity

distribution function of the KBC is the same as that in steady net evaporation and

condensation. We determine the position of the boundary between the liquid and

interface layer to specify the thickness of the interface layer, and then we estimate

the delay time.

Figure 5.7 shows the temperature fields at the initial state (t∗ = 0); the solid

line denotes the temperature defined by Eq. (1.9), the dotted line is the temperature

in the direction tangential to the vapor–liquid interface (x-direction) estimated as

Tx = 1
ρR

∫
ξ2xfdξ, and the dashed line denotes that in the direction normal to the

vapor–liquid interface (z-direction) estimated as Tz = 1
ρR

∫
(ξz − vz)

2fdξ. It should

be emphasized that the tendencies of these temperatures (T , Tx and Tz) are in good

agreement with those obtained from the molecular dynamics simulation for the two-

surface problem [45, 46]. These are important result showing the validity of the

EV-DSMC simulation.

In Fig. 5.7, BL1 and BL2 denote the positions of the boundaries between each

liquid and each interface layer. Their positions are defined distanced 3.0a from each
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in liquid 2.

zm to each liquid. As can be seen in Fig. 5.7, Tx and Tz agree with T , indicating that

the temperature of each liquid is isotropic. In addition, BV1 and BV2 denote the

positions of each vapor–liquid interface. The distance between BL1 and BV1 or BL2

and BV2 represents the thickness of the interface layer illustrated in Fig. 1.1. The

delay time, tI, caused by molecules traveling in the interface layer can be expressed

from the characteristic velocity,
√

2RT0, at the mean temperature of two liquids

T0 = (TL1 + TL2)/2 = 0.66Tc and the thickness of the interface layer, LI, as tI =

LI/
√

2RT0. Since LI of each interface layer is approximately 6a or 8a at t∗ = 0 found

in Fig. 5.7, the delay time normalized by the molecular diameter and the critical

temperature, t∗I = tI
√

2RT0/a, becomes approximately 7.4 or 9.8; hence, we find

that the normalized delay time is smaller than 10.

We here examine the normalized velocity distribution function at BV1, BV2,

BL1, and BL2. The calculation procedure of the normalized velocity distribution

function is the same as in Chapter 2 (Section 2.4.2). We set the upper and lower

limits of the velocity space to ζi = −6 and ζi = 6, respectively, and divide this

velocity space into 60 cells, where ζi = ξi/
√

2RTref and Tref is set to 0.60Tc, As with

the estimation of the macroscopic variables, the normalized velocity distribution
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function is estimated from the ensemble average of 200 simulations obtained from

the different initial conditions.

Figure 5.8 shows the normalized velocity distribution function composed of molecules

outgoing from BL1 or BV1 and having velocity ξz > 0 at t∗ = 0, 100, 200 and 500.

The closed circles denote the normalized velocity distribution function composed of

the outgoing molecules from BL1 into the interface layer, and the open circles denote

that composed of the outgoing molecules from BV1 into vapor, that is, the normal-

ized velocity distribution function of the KBC because BV1 indicates the position

of the vapor–liquid interface of liquid 1. In Fig. 5.8, the dashed lines denote the

normalized Maxwellian distribution at TL1 obtained as

√
2RTref f̂

∗(ζi) =

√
Tref
πTL1

exp

(
−ζ2i

Tref
TL1

)
, (5.15)

where i indicates the component in the direction normal or tangential to the vapor–

liquid interface (i = n or t).

As can be seen in Fig. 5.8, the closed circles are in excellent agreement with

the dashed lines at each normalized time. This result shows that the outgoing

normalized velocity distribution function from BL1 into the interface layer are well

described by the normalized Maxwellian distribution at TL1. As can be seen in

Fig. 5.8, the closed circles are in excellent agreement with the dashed lines at each

normalized time. This result shows that the outgoing normalized velocity distribu-

tion function from BL1 into the interface layer are well described by the normalized

Maxwellian distribution at TL1. Also, the open circles are in excellent agreement

with the dashed lines except for that at t∗ = 0. In the initial state (t∗ = 0), the

degree of net evaporation/condensation is slightly larger than the applicable range

of the normalized Maxwellian distribution given in Chapter 3. Consequently, this

deviation is inevitable, but it decreases with time.

Figure 5.9 shows the normalized velocity distribution function composed of molecules

outgoing from BL2 or BV2 and having velocity ξz < 0 at t∗ = 0, 100, 200 and 500.
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The closed circles denote the normalized velocity distribution function composed of

the outgoing molecules from BL2 into the interface layer, and the open circles denote

that composed of the outgoing molecules from BV2 into vapor, that is, the normal-

ized velocity distribution function of the KBC because BV2 indicates the position

of the vapor–liquid interface of liquid 2. In Fig. 5.9, the dashed lines denote the

normalized Maxwellian distribution at TL2 obtained as

√
2RTref f̂(ζi) =

√
Tref
πTL2

exp

(
−ζ2i

Tref
TL2

)
. (5.16)

As can be seen in Fig. 5.9, similar to Fig. 5.8, the closed circles are in excellent

agreement with the dashed lines at each normalized time. This result shows that

the outgoing normalized velocity distribution function from BL2 into the interface

layer are well described by the normalized Maxwellian distribution at TL2. Also,

the open circles are in excellent agreement with the dashed lines except for that at

t∗ = 0. Similar to Fig. 5.8, this deviation is inevitable, but it decreases with time.

On the basis of Figs. 5.8 and 5.9, the outgoing normalized velocity distribution

functions from BL1 and BL2 into the interface layer are well described as the nor-

malized Maxwellian distributions at TL1 and TL2, while the outgoing normalized

velocity distribution functions from BV1 and BV2 into vapor slightly differ from the

normalized Maxwellian distribution at TL1 and TL2 at t∗ = 0. However, the outgoing

normalized velocity distribution functions from BV1 and BV2 into vapor correspond

to the normalized Maxwellian distributions at TL1 and TL2 with time. We conclude

that the normalized velocity distribution function of the KBC can be assumed to be

the normalized Maxwellian distribution in the unsteady two-surface problem even

though the interface layer has a finite thickness and the delay time, t∗I ≲ 10, arises

from molecules traveling in this finite interface layer.
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Figure 5.9: Normalized velocity distribution functions composed of the outgoing
molecules from the liquid into vapor phase (ξz < 0) at BL2 and BV2.
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Estimation of liquid temperature

We here estimate the temporal evolution of the liquid temperature because β(TL)

in Eq. (3.19) can be specified the liquid temperature. The enlarged view of Fig. 5.7

shows the temperature field in liquid 2 from t∗ = 0 to 200; we focus only on liquid

2 because its temperature change is larger than that of liquid 1 (see Fig. 5.10: a

detailed explanation is given in the next paragraph). In general, the liquid temper-

ature changes spatiotemporally with time on the basis of a one-dimensional heat

conduction equation; hence, we should estimate the liquid temperature at the posi-

tion BL1 or BL2 to specify the KBC. In contrast, the liquid temperature of liquid 2

changes keeping a spatially almost uniform distribution with time as shown in the

enlarged view of Fig. 5.7.

To examine the accuracy of this spatially uniform temperature distribution, we

analytically solve the one-dimensional heat conduction equation with the temporal

evolution of the temperature of liquid 2 fitted by the exponential function, and then

we define the index of uniformity of the spatial temperature distribution. As a

result, we confirm that the spatial temperature distribution is to be approximately

spatially uniform because the characteristic time of thermal diffusion in liquid 2

(t∗d = td
√

2RTc/a = 2.00 in this study) is much smaller; therefore, we can estimate

each liquid temperature as the spatial average. A detailed explanation of thermal

diffusion in liquid 2 is given in Appendix A.

Figure 5.10 shows the temporal evolution of each liquid temperature. Similar to

the temporal evolution of net mass flux ρvz shown in Fig. 5.6, each liquid temper-

ature changes drastically until t∗ = 200; after that time, each liquid temperature

changes gently and eventually converges to approximately 0.69. In Fig. 5.10, we can

observe that the temperature of liquid 1 slightly rises from around t∗ = 350. In this

simulation system, the thickness of the liquid slab is relatively thin (approximately

6a), and the length of the vapor phase is small (approximately ℓ0). We expect that

the cause of this temperature rise is that the energy incident from liquid 2 exceeds
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Figure 5.10: Temporal evolution of the temperatures of liquid 1 and liquid 2; the
abscissa is normalized by the critical value and the molecular diameter a/

√
2RTc,

and the ordinates is normalized by the critical temperature Tc.

the temperature drop due to the energy release by net evaporation. It is also found

that the temperature change of liquid 2 is larger than that of liquid 1. In this sim-

ulation, we observe the maximum local Mach number (|Ma| ≈ 0.2) at BV2 of the

initial state (t∗ = 0). We expect that this maximum Mach number causes the larger

temperature change in liquid 2.

Comparison of velocity and temperature fields

Next, we compare the macroscopic variables in vapor, namely, the velocity and the

temperature, in the unsteady two-surface problem obtained from the numerical sim-

ulation of the ES-BGK equation and those obtained from the EV-DSMC simulation.

In the numerical simulation of the ES-BGK equation, we considered a system com-

posed of vapor between two vapor–liquid interfaces. At the vapor–liquid interface,

we imposed the KBC (Eq. (3.19)), which is specified by αe = αc = β(TL). The

reference temperature in the numerical simulation of the ES-BGK equation is set to

T0 = (TL1 + TL2)/2 = 0.66Tc. After the velocity distribution function f in vapor is

obtained from the numerical simulation of the ES-BGK equation the velocity and

the temperature are estimated by Eqs. (5.8) and (5.9), respectively. The values of
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β(TL) in Eq. (3.19) vary with the temporal evolution of each liquid temperature as

shown in Fig. 5.10; the liquid temperature dependence of β(TL) is explicitly clarified

in Chapter 3 (Fig. 3.8).

Figure 5.12 shows the comparison between the velocity and the temperature in

vapor obtained from the numerical simulation of the ES-BGK equation and the

EV-DSMC simulation. The open diamonds and circles denote the results of the

EV-DSMC simulation, and the solid lines denote those of the numerical simulation

of the ES-BGK equation. Note that we added the proper offset to the data for

legibility. As can be seen in Fig. 5.12, the velocity fields in vapor obtained from

these two simulations are in excellent agreement at each time, while the slope of the

temperature field at t∗ = 0 obtained from the EV-DSMC simulation is slightly larger

than that obtained from the numerical simulation of the ES-BGK equation. These

results imply that the difference of the temperature fields between two different

simulations is related to the normalized velocity distribution function of the KBC

(see Figs. 5.8 and 5.9). The difference of the temperature field at t∗ = 0, however, is
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sufficiently small and decreases with time as shown in Fig. 5.12. From these results,

we conclude that the macroscopic variables obtained from these two simulations

are in good agreement even in the unsteady two-surface problem, and the KBC

(Eq. (3.19)) is guaranteed to be accurate by considering the time evolution of liquid

temperature.

Evaporation/condensation coefficients

Finally, we compare the liquid temperature dependence of αe and αc in the quasi-

steady pseudo half-space and unsteady two-surface problems with those obtained

in Chapter 3. We calculate these coefficients from the relation αe = αc = β(TL)

based on the result in Chapter 3. We here assume that the mass flux relation is the

linear function (Eq. (3.14)) in which β(TL) is obtained from the slope. In the quasi-

steady pseudo half-space problem, we can obtain two sets of ρvz and σ at each liquid

temperature. Also, in the unsteady two-surface problem, we can obtain one set of

ρvz and σ at the liquid temperature at each time. We can estimate β(TL) by linear

approximation passing through these points and the vapor–liquid equilibrium point

(ρvz = 0 and σ = ρ∗ ). Note that in the unsteady two-surface problem, ρvz decreases

with time and the influence of the statistical error on ρvz becomes large near vapor–

liquid equilibrium. For that reason, we calculate β(TL) for the normalized time less

than t∗ = 200 in which the liquid temperature changes drastically.

Figure 5.12 shows the temperature dependence of β(TL) in the quasi-steady

pseudo half-space and unsteady two-surface problems. In Fig. 5.12, the open circles

denote αe = αc = β(TL) obtained in Chapter 3 (Fig. 3.8). As can be seen in

Fig. 5.12, in the quasi-steady pseudo half-space problem, β(TL) agrees with that

obtained in Chapter 3 at each liquid temperature. In contrast, we can observe that

β(TL) has high variation in the unsteady two-surface problem. This is because the

sample number in the unsteady two-surface problem is only one hundredth of that

in the steady two-surface problem considered in Chapter 3. Although it is difficult

132



Chapter 5 Validation of kinetic boundary condition

0.4

0.5

0.6

0.7

0.9

1.0

0.8

1.1

1.2

0.60 0.62 0.64 0.66 0.68 0.70 0.72

TL/Tc

β

αe = αc = β

Unsteady two-surface problem

Quasi-steady pseudo half-space problem

Figure 5.12: Liquid temperature dependence of β(TL) in the quasi-steady pseudo
half-space problem and the unsteady two-surface problem; the abscissa is normalized
by the critical temperature Tc.

to discuss from this result on the value of β(TL), we can see that the temperature

dependencies are roughly in agreement.

5.4 Summary

In this chapter, we verified the accuracy of αe and αc obtained in Chapter 3 and

Chapter 4. We preliminarily performed the EV-DSMC simulation for the different

two vapor–liquid two-phase systems, which are distinct from that considered in the

preceding chapters.

First, in these two systems, we confirmed whether the normalized velocity distri-

bution function of the KBC obeys the normalized Maxwellian distribution (Eq. (2.2)).

In the quasi-steady pseudo half-space problem, the normalized velocity distribution

function of the KBC more or less agrees with the normalized Maxwellian distribu-

tion (Eq. (1.32)) in all four cases of net evaporation and condensation (Fig. 5.3).

In the unsteady two-surface problem, the normalized velocity distribution function

of the KBC agrees with the normalized Maxwellian distribution except for that at

t∗ = 0. However, this deviation at t∗ = 0 decreases with time (Figs. 5.8 and 5.9).

From these result, we concluded that the normalized velocity distribution functions
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of the KBC can be assumed the normalized Maxwellian distribution in both the

quasi-steady pseudo half-space and unsteady two-surface problems.

Next, we compared the macroscopic variables in vapor, namely, the velocity and

the temperature, in these two systems obtained from the numerical simulation of the

ES-BGK equation with the KBC (Eq. (3.19)), which is specified by αe = αc = β(TL),

and those obtained from the EV-DSMC simulation. In the quasi-steady pseudo

half-space problem, the velocity and temperature fields in vapor obtained from two

different simulations are in almost agreement except for a region near the vapor–

liquid interface in some cases (Fig. 5.4). A cause of this deviation of the macroscopic

variables is not due to the inappropriate KBC but due to the difference of the

simulation system between the EV-DSMC simulation and the numerical simulation

of the ES-BGK equation. The quasi-steady simulation is carried out in the EV-

DSMC simulation, whereas in the numerical simulation of the ES-BGK equation, the

complete steady simulation is carried out. However, the deviation of the macroscopic

variables obtained from these two simulations is sufficiently small except for a region

near the vapor–liquid interface. In the unsteady two-surface problem, the velocity

fields in vapor obtained from these two simulations are in excellent agreement at

each time, while the slope of the temperature field at t∗ = 0 obtained from the EV-

DSMC simulation is slightly larger than that obtained from the numerical simulation

of the ES-BGK equation (Fig. 5.12). The difference of the temperature field at

t∗ = 0, however, is sufficiently small and decreases with time as shown in Fig. 5.12.

From these results, we concluded that the macroscopic variables obtained from the

EV-DSMC simulation and the numerical simulation of the ES-BGK equation are in

good agreement in both the quasi-steady pseudo half-space and unsteady two-surface

problems; thus, the KBC (Eq. (3.19)) is guaranteed to be accurate.

Finally, we compared the liquid temperature dependence of αe and αc in these

two systems with those obtained in Chapter 3. We calculated these coefficients as

αe = αc = β(TL) based on the result in Chapter 3. In the quasi-steady pseudo
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half-space problem, β(TL) agrees with that obtained in Chapter 3 at each liquid

temperature. In contrast, β(TL) has high variation in the unsteady two-surface

problem. This is because the sample number in the unsteady two-surface problem is

only one hundredth of that in the steady two-surface problem considered in Chap-

ter 3. Although it is difficult to discuss from this result on the value of β(TL), the

liquid temperature dependencies are roughly in agreement.

Let us summarize the significance of the results so far. In this chapter, we sug-

gested that the KBC (Eq. (3.19)), which is specified by αe = αc = β(TL), can be

applied to not only a specific system but also other systems, namely, the quasi-

steady pseudo half-space and unsteady two-surface problems. Needless to say, these

results do not indicate that the KBC (Eq. (3.19)) can be applied to all net evapora-

tion/condensation problems. For example, we set the length of the vapor phase to

approximately the mean free path in all simulation systems. If we set this length as

a variable, further investigation should be required. Furthermore, in the molecular

gas dynamics analysis, the solution of the Boltzmann equation have been examined

on exhaustively various net evaporation/condensation problems. It is almost impos-

sible to verify the KBC in all the net evaporation/condensation problems by using

the molecular simulation. Therefore, we examined only some of the typical prob-

lems and conditions here. However, we emphasize that if we consider the formulated

mass flux relation (Eq. (3.14)) is a fundamental physical law, the KBC proposed in

this thesis can be established regardless the systems.
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6
Conclusion

The target of this thesis is heat and mass transfer in a two-phase system composed

of single-component monatomic vapor and its condensed phase (liquid). We espe-

cially examined heat and mass transfer associated with a mass flux in the direction

normal to the vapor–liquid interface (net evaporation/condensation). The objective

of this thesis is to propose a physically proper boundary condition at the vapor–

liquid interface. What we have to do to propose the boundary condition are (i)

to conduct the molecular simulation to construct the boundary condition for the

Boltzmann equation (KBC) and (ii) to conduct the Knudsen layer analysis to derive

the boundary condition for the fluid dynamic equations. As for (ii), it has been

systematically investigated by Sone et al. [12,23]; hence, as long as these results are

available, the only thing we should study in this thesis is (i).

To construct the KBC, we have to specify the unknown parameters included in

the KBC, namely, the evaporation coefficient αe and condensation coefficient αc. In

this thesis, to specify these coefficients, we investigated a fundamental rule at the

vapor–liquid interface by the molecular simulation based on the mean-field kinetic

theory (the EV-DSMC simulation). This fundamental rule holds regardless of any

condition, that is, the conservation law of the mass flux extended to the microscopic

point of view (the mass flux relation). A feature of this thesis is to utilize the

EV-DSMC simulation for the molecular simulation. The EV-DSMC simulation for
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the spatially one-dimensional flow runs about 50–60 times faster than an equivalent

molecular dynamics simulation, which is well-used simulation method for the vapor–

liquid two-phase system, with the same number of molecules. In the following, we

summarize the results of the main chapters and propose the boundary condition at

the vapor–liquid interface based on these results.

Chapter 3

In Chapter 3, we examined the mass flux relation (Eq. (2.3)) to find a pair of αe

and αc defined by Eq. (1.42) by the EV-DSMC simulation explained in Chapter 2.

We preliminarily performed the EV-DSMC simulation for the two-surface problem

in 160 cases of the temperature differences between two liquids.

First, we confirmed whether the normalized velocity distribution function of the

KBC obeys the normalized Maxwellian distribution, which is the basis of the defi-

nitions of αe and αc (Eq. (1.42)). From the result, we found that the temperatures

in the KBC gradually change with the strong net evaporation/condensation, and

the normalized velocity distribution function of the KBC becomes an anisotropic

Maxwellian distribution (Fig. 3.5). We then investigated how such an anisotropic

Maxwellian distribution affects the macroscopic variables and the fluxes in vapor by

comparing the results obtained from the EV-DSMC simulation and the numerical

simulation of a model of the Boltzmann equation (the ES-BGK equation). From this

comparison, we determined the range to which the normalized Maxwellian distri-

bution can be applied as the normalized velocity distribution function of the KBC.

From the result, we found that the applicable range of the normalized Maxwellian

distribution is 0.5 ≲ σ/ρ∗ ≲ 2.3 for all reference liquid temperatures.

Next, we formulated the mass flux relation at each reference liquid temperature

by using ρvz obtained by the EV-DSMC simulation and corresponding σ (Eq. (2.4)).

From the result, we found that ρvz is the linear function of σ (Fig. 3.7). We formu-

lated the mass flux relation by applying the linear regression analysis to the relation
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between ρvz and σ at each reference liquid temperature. The slope of the linear

function βne for net evaporation and that of βnc for net condensation are slightly

different. For example, βne = 0.871 and βnc = 0.927 in the case of TL/Tc = 0.60.

Also, the difference between βne and βnc becomes smaller with the higher reference

liquid temperature. Unfortunately, the cause of the difference between βne and βnc

is unclear. At least, the generalized KBC (Eq. (2.1)), which is considered in this

thesis, does not permit such formulation according to σ. Hence, we modified the

slope of the mass flux relation as β = (βne + βnc)/2. We then discussed αe and αc

defined by Eq. (1.42) by comparing the formulated mass flux relation (Eq. (3.14))

with Eq. (2.3). From the result, we found the relation αe = αc = β(TL) without

explicitly defining the molecular processes illustrated in Fig. 1.1.

On the basis of the results in Chapter 3, we proposed the following KBC at the

vapor–liquid interface by using obtained αe and αc.

fout = [β(TL)ρ∗ + (1 − β(TL))σ]f̂ ∗. (3.19)

This KBC is essentially equivalent to what we set A = αeρ
∗ + (1 − αc)σ in the

generalized KBC (Eq. (2.1)) because of the relation αe = αc = β(TL). An important

result is that we can find the relation αe = αc = β(TL) by formulating the mass

flux relation at the vapor–liquid interface with high accuracy. However, the results

in this chapter have only found a pair of αe and αc defined by Eq. (1.42) at each

liquid temperature, and the relation between these coefficients and the molecular

processes illustrated in Fig. 1.1 is not clear.

Chapter 4

In Chapter 4, we considered the physical meaning of αe and αc obtained in Chapter 3.

To determine αe and αc uniquely, we have to clarify the definitions of the molecular

processes illustrated in Fig. 1.1. Although this definition has not been clarified, if

138



Chapter 6 Conclusion

we assume a certain condition, these molecular processes can be distinguished. We

here consider a hypothesis of the spontaneous evaporation [33, 44]. According to

this hypothesis, αe and αc are defined by the mass fluxes related to the molecular

processes, such as J∗
evap and Jcond. We calculated J∗

evap and Jcond by the improved

two-boundary method proposed by Kobayashi et al. [30, 91] to examine αe and αc

according to the hypothesis of the spontaneous evaporation. As a preparation, we

modified the formulated mass flux relation (Eq. (3.14)) to obtain the expressions of

J∗
evap and Jcond by using β(TL) (Eq. (4.14)).

First, we confirmed whether the normalized velocity distribution function of the

evaporation molecules obeys the normalized Maxwellian distribution (Eq. (2.2)),

which is the premise of the hypothesis of the spontaneous evaporation. From the

result, we found that the normalized velocity distribution function of the evapo-

ration molecules in vapor–liquid equilibrium seems to agree with the normalized

Maxwellian distribution, and those in net evaporation and condensation also seem

to agree with the normalized Maxwellian (Fig. 4.5). These results showed that the

premise of the hypothesis of the spontaneous evaporation holds even in the case of

the highest liquid temperature accompanied with net evaporation/condensation.

Next, we discussed the correspondence of the hypothesis of the spontaneous

evaporation with αe and αc obtained in Chapter 3 by comparing J∗
evap and Jcond ob-

tained from Eq. (4.14) and those calculated by the improved two-boundary method.

From the result, we found that J∗
evap and Jcond obtained from two different meth-

ods show an excellent agreement in both vapor–liquid equilibrium and net evap-

oration/condensation (Figs. 4.6 and 4.7). We concluded that β(TL) follows the

definitions of αe and αc according to the hypothesis of the spontaneous evapora-

tion: αe = αc = J∗
evap/J

∗
out in vapor–liquid equilibrium, while αe = J∗

evap/J
∗
out and

αc = Jcond/Jcoll in net evaporation/condensation.

On the basis of the results of Chapter 4, the following definition of A0(TL) in
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Eq. (1.42) can be obtained.

A0(TL) = B(TL) ≡
J∗
evap√

RTL/(2π)
. (4.15)

Although this result includes some assumptions, we succeeded to clarify the relation

between β(TL) and the molecular processes illustrated in Fig. 1.1 by specifying

A0(TL).

Chapter 5

In Chapter 5, we verified the accuracy of αe and αc obtained in Chapter 3 and

Chapter 4. We preliminarily performed the EV-DSMC simulation for the different

two vapor–liquid two-phase systems, which are distinct from that considered in

the preceding chapters (quasi-steady pseudo half-space problem and unsteady two-

surface problem).

First, in these two systems, we confirmed whether the normalized velocity distri-

bution function of the KBC obeys the normalized Maxwellian distribution (Eq. (2.2)).

In the quasi-steady pseudo half-space problem, the normalized velocity distribution

function of the KBC more or less agrees with the normalized Maxwellian distribu-

tion (Eq. (1.32)) in all four cases of net evaporation and condensation (Fig. 5.3).

In the unsteady two-surface problem, the normalized velocity distribution function

of the KBC agrees with the normalized Maxwellian distribution except for that at

t∗ = 0. However, this deviation at t∗ = 0 decreases with time (Figs. 5.8 and 5.9).

From these result, we concluded that the normalized velocity distribution functions

of the KBC can be assumed the normalized Maxwellian distribution in both the

quasi-steady pseudo half-space and unsteady two-surface problems.

Next, we compared the macroscopic variables in vapor, namely, the velocity and

the temperature, in these two systems obtained from the numerical simulation of the

ES-BGK equation with the KBC (Eq. (3.19)), which is specified by αe = αc = β(TL),
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and those obtained from the EV-DSMC simulation. In the quasi-steady pseudo

half-space problem, the velocity and temperature fields in vapor obtained from two

different simulations are in almost agreement except for a region near the vapor–

liquid interface in some cases (Fig. 5.4). A cause of this deviation of the macroscopic

variables is not due to the inappropriate KBC but due to the difference of the

simulation system between the EV-DSMC simulation and the numerical simulation

of the ES-BGK equation. The quasi-steady simulation is carried out in the EV-

DSMC simulation, whereas in the numerical simulation of the ES-BGK equation, the

complete steady simulation is carried out. However, the deviation of the macroscopic

variables obtained from these two simulations is sufficiently small except for a region

near the vapor–liquid interface. In the unsteady two-surface problem, the velocity

fields in vapor obtained from these two simulations are in excellent agreement at

each time, while the slope of the temperature field at t∗ = 0 obtained from the EV-

DSMC simulation is slightly larger than that obtained from the numerical simulation

of the ES-BGK equation (Fig. 5.12). The difference of the temperature field at

t∗ = 0, however, is sufficiently small and decreases with time as shown in Fig. 5.12.

From these results, we concluded that the macroscopic variables obtained from the

EV-DSMC simulation and the numerical simulation of the ES-BGK equation are in

good agreement in both the quasi-steady pseudo half-space and unsteady two-surface

problems; thus, the KBC (Eq. (3.19)) is guaranteed to be accurate.

Finally, we compared the liquid temperature dependence of αe and αc in these

two systems with those obtained in Chapter 3. We calculated these coefficients as

αe = αc = β(TL) based on the result in Chapter 3. In the quasi-steady pseudo

half-space problem, β(TL) agrees with that obtained in Chapter 3 at each liquid

temperature. In contrast, β(TL) has high variation in the unsteady two-surface

problem. This is because the sample number in the unsteady two-surface problem is

only one hundredth of that in the steady two-surface problem considered in Chap-

ter 3. Although it is difficult to discuss from this result on the value of β(TL), the
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liquid temperature dependencies are roughly in agreement.

On the basis of the results in Chapter 5, we suggested that the KBC (Eq. (3.19)),

which is specified by αe = αc = β(TL), can be applied to not only a specific system

but also other systems, namely, the quasi-steady pseudo half-space and unsteady

two-surface problems. Needless to say, these results do not indicate that the KBC

(Eq. (3.19)) can be applied to all net evaporation/condensation problems. For ex-

ample, we set the length of the vapor phase to approximately the mean free path

in all simulation systems. If we set this length as a variable, further investigation

should be required. Furthermore, in the molecular gas dynamics analysis, the so-

lution of the Boltzmann equation have been examined on exhaustively various net

evaporation/condensation problems. It is almost impossible to verify the KBC in

all the net evaporation/condensation problems by using the molecular simulation.

Therefore, we examined only some of the typical problems and conditions in this

thesis. However, we emphasize that if we consider the formulated mass flux relation

(Eq. (3.14)) is a fundamental physical law, the KBC proposed in this thesis can be

established regardless the systems.

Boundary condition at vapor–liquid interface

We succeeded to propose the KBC at the vapor–liquid interface based on the results

in Chapter 3–5. The pressure p and the temperature T at the end of the Knud-

sen layer can eventually be obtained by the Knudsen layer analysis with the KBC

proposed in this thesis,

p− p∗

p∗
=

(
C∗

4 − 2
√
π

1 − β(TL)

β(TL)

)
(vi − vwi)ni√

2RTL
,

T − TL
TL

= d∗4
(vi − vwi)ni√

2RTL
.
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Furthermore, the mass flux at the end of the Knudsen layer can also be obtained as

MMGD =
1

2
√
π 1−β(TL)

β(TL)
− C∗

4

√
2

R

(
p∗√
TL

− p√
TL

)
.

Although these expressions seem to be the same as Eqs. (1.37), (1.38), and (1.39),

it is advantageous in that these expressions is derived by using the KBC that is

constructed based on the precise investigation by the molecular simulation. With

the use of this mass flux, or the pressure, and the temperature as the boundary

conditions, the fluid dynamic equations can be closed and then the solution that

takes into account the molecular interactions in the interface layer and the Knudsen

layer can be obtained.
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Appendix

Thermal diffusion in medium bounded by two par-

allel planes

Note that some characters other than the liquid temperature TL and the thermal

conductivity λE are defined differently from the main chapters. Our proposed KBC:

Eq.(3.19), requires the liquid temperature, TL. It is widely accepted that the tem-

perature field in liquid phase can be assumed to be uniform in the case of steady

net evaporation or condensation [34, 39, 48–51]; hence, TL can be defined without

ambiguity. However, the uniformity of the temperature field is no longer necessarily

guaranteed in the case of unsteady net evaporation or condensation; hence, we need

to evaluate TL with extra caution. In Chapter 5, we calculated the spatial averaged

temperature over liquid; then, we define this averaged temperature: TA, as the liq-

uid temperature TL. This definition can be accepted only if the temperature field is

uniform enough. In this appendix, we discuss the legitimacy of this definition.

Under the assumption of no advection, the unsteady temperature field of bulk

liquid is governed by the one-dimensional heat conduction equation:

∂T

∂t
= θ

∂2T

∂z2
, (A.1)
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where θ is thermal diffusivity, which can be obtained with the use of the Chapman–

Enskog approximation of the Enskog-Vlasov equation [72],

θ =
λ

Cρ
, (A.2)

where C is the specific heat and λE is thermal conductivity obtained from Eq. (2.24)

(temperature characteristics of λE is given in Fig. 2.7). The liquid thermal diffusivity

θ = 5.77a(2RTc)
1
2 is obtained at TL/Tc = 0.60 from Eq. (A.2) The temporal bulk

liquid temperature field obtained from Eq. (A.1) with appropriate boundary and

initial conditions, in general, is spatially nonuniform; however, the temperature of

liquid 2 obtained from the EV-DSMC simulation changes keeping spatially almost

uniform distribution as shown in the enlarged view of Fig. 5.7. Note that we also

observed that the temperature of liquid 1 changes keeping spatially almost uniform

distribution. These results suggest that the use of TA for TL may be accepted in

the range of the present calculation. We discuss the legitimacy the use of TA for TL

further by considering the solution of Eq. (A.1).

We investigate the temporal change of the spatial temperature distribution in

liquid. We consider the following problem following the textbook of Carslaw and

Jaeger [93]. Liquid is bounded by two parallel planes: the region −L < z < L

with zero initial temperature. The surfaces temperature TS changes with time. It

should be noted here that the uniformity of the spatial temperature distribution

is greatly dependent on the rate of change of TS. In order to solve Eq. (A.1), we

properly prepare the boundary condition TS. We assume that TS can be roughly

approximated by TA. The temporal change of TA is shown in Fig. A.1. We found

that the data can be well fitted by the exponential function:

TS(t : ω) = T0[1 − exp(−ωt)], (A.3)

where t is time, T0 is the temperature difference, and ω is the fitting parameter rang-

145



Chapter A Appendix

0 100 200 300 400 500

 t(2RTc)1/2/a

t* = 0–500 (ω = 0.00514) 

t* = 0–200 (ω = 0.00641)

t* = 0–100 (ω = 0.00767)

Liquid 2

0

0.02

0.04

0.06

0.08

 T
S
/T

c

Figure A.1: Fitting results of the temporal evolution of the temperature of liquid 2.

ing 0.005 ≤ ω ≤ 0.008. The temperature distribution with the boundary condition

(Eq. (A.3)) can be found in p.104 of the literature [93]:

T (t;ω) =T0 − T0 exp(−ωt)
cos(x

√
ω/θ)

cos(L
√
ω/θ)

− 16T0ωL
2

π

∞∑
n=0

(−1)l exp [−(2l + 1)2π2θt/(4L2)]

(2l + 1) [4ωL2 − (2l + 1)2π2θ]
cos

[
(2l + 1)πx

2L

]
.

(A.4)

We introduce the characteristic time td:

td =
L2

θ
, (A.5)

and the following nondimensional variables:

T ∗ =
T

T0
, T ∗

S =
TS
T0
, τ =

t

td
, ζ =

z

L
, b = ωtd, (A.6)
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then, Eqs. (A.3) and (A.4) can be rewritten:

T ∗
S (τ ; b) =1 − exp(−bτ), (A.7)

T ∗(τ ; b) =1 − exp(−bτ)
cos(ζ

√
b)

cos(
√
b)

(A.8)

+
16b

π

∞∑
n=0

(−1)n exp [−(2l + 1)2π2τ/4]

(2l + 1) [(2l + 1)2π2 − 4b]
cos

[
(2l + 1)πζ

2

]
. (A.9)

Integration of Eq. (A.10) on 0 ≤ ζ ≤ 1 gives the averaged temperature T ∗
A:

T ∗
A(τ ; b) = 1 − exp(−bτ)

sin(
√
b)√

b cos(
√
b)

+ 32b
∞∑
n=0

exp [−(2l + 1)2π2τ/4]

(2l + 1)2π2 [(2l + 1)2π2 − 4b]
.

(A.10)

It should be noted here that td = 2.00 in the present calculation; then, 0.01 ≤ b ≤

0.016.

Now, we define the index of uniformity κ(τ, b):

κ(τ, b) = 1 − T ∗
A(τ ; b)

T ∗
S (τ ; b)

. (A.11)

κ(τ, b) provides the base to discuss the legitimacy of the use of TA for TL. We can

secure the legitimacy if κ(τ, b) is sufficiently small. Figure A.2 shows the temporal

change of κ(τ, b) for various b. κ(τ, b) monotonously converges to zero with the

increase in τ , regardless of the magnitude of b; hence for any given ν such that

0 ≤ ν ≤ 1, there exists τν(b) that satisfies κ(τν , b) = ν. The smaller b is, the larger

τν(b) is, i.e., the slower κ(τ, b) converges to zero.

The temporal change of κ0(τ) = κ(τ, b→ 0) that is written as

κ0(τ) = lim
b→0

κ(τ, b) = 1 − 1

τ

[
1

3
− 32

∞∑
n=0

exp [−(2l + 1)2π2τ/4]

(2l + 1)4π4

]
, (A.12)

is also shown in Fig. A.2. τ 0ν that satisfies κ0(τ 0ν ) = ν provides the upper limit
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Figure A.2: Temporal change of the averaged temperature and required time.

of τν(b). It should be noted here that b obtained from the present calculation is

small enough that τν(b) can be well approximated by τ 0ν as observed in Fig. A.2.

The typical values of τ 0ν for ν = 0.05 and 0.02 are τ 00.05 = 6.67 and τ 00.02 = 16.67,

respectively. Therefore, as far as t > 33.4 (td = 2.00), We can regard that the

unsteady temperature field in the liquid 2 is approximately spatially uniform (see

the enlarged view of Fig. 5.7) since κ(τ, b) < 0.02 from the analytical solution of

one-dimensional heat conduction equation. The above investigation ensures that

the heat transfer defined in the present study can be described by one-dimensional

heat conduction equation when there is no advection in liquid; that is, we can

carry out the numerical simulation of vapor–liquid two-phase flow with unsteady

net evaporation/condensation in large spatial scale by coupling the one-dimensional

heat conduction equation (Eq. (A.1)) and the Boltzmann equation, without carrying

out the molecular simulation of bulk liquid that contains enormously larger number

of molecules than those in bulk vapor.

148



References

[1] S. Fujikawa, T. Akamatsu, Effects of the non-equilibrium condensation of

vapour on the pressure wave produced by the collapse of a bubble in a liq-

uid, Journal of Fluid Mechanics 97 (03) (1980) 481–512.

[2] I. Akhatov, O. Lindau, A. Topolnikov, R. Mettin, N. Vakhitova, W. Lauterborn,

Collapse and rebound of a laser-induced cavitation bubble, Physics of Fluids

13 (10) (2001) 2805–2819.

[3] Y. Jinbo, T. Ogasawara, H. Takahira, Influence of the nonequilibrium phase

transition on the collapse of inertia nonspherical bubbles in a compressible

liquid, Experimental Thermal and Fluid Science 60 (2015) 374–384.

[4] J. G. Leidenfrost, On the fixation of water in diverse fire, International Journal

of Heat and Mass Transfer 9 (11) (1966) 1153–1166.

[5] H. Linke, B. Alemán, L. Melling, M. Taormina, M. Francis, C. Dow-Hygelund,

V. Narayanan, R. Taylor, A. Stout, Self-propelled leidenfrost droplets, Physical

Review Letters 96 (15) (2006) 154502.
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