
 

Instructions for use

Title Fast 3-D Analysis of Eddy Current in Litz Wire Using Integral Equation

Author(s) Hiruma, Shingo; Igarashi, Hajime

Citation IEEE Transactions on Magnetics, 53(6), 1-4
https://doi.org/10.1109/TMAG.2017.2658679

Issue Date 2017-01

Doc URL http://hdl.handle.net/2115/77542

Rights
© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works.

Type article (author version)

File Information hiruma_fast_3d_analysis.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp


> TP022-1< 

 

0018-9464 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. 
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information. (Inserted by IEEE.) 

1 

Fast Three-Dimensional Analysis of Eddy Current in Litz Wire 

Using Integral Equation  
 

Shingo Hiruma1, Hajime Igarashi1, IEEE Member 
 

1Graduate School of Information Science and Technology, Hokkaido University, 060-0814 Sapporo, Japan. 

 

Eddy current loss in a Litz wire which has three-dimensional structure is analyzed using the integral equation method considering 

the proximity effect. In the present method, each wire is modeled as a polygonal line. One-dimensional integral equation is solved for the 

dipole magnetization generated by the anti-parallel eddy currents in the wire. The discretized integral equation can effectively be solved 

using an iterative method solver to compute the eddy current distribution in the wire due to the proximity effect. 

 

 
Index Terms— Litz wire, complex permeability, integral equation, eddy current, proximity effect, two potential method 

 

I. INTRODUCTION 

T has become important to evaluate the eddy current losses 

in multi-turn coils and Litz wires used in the electric 

machines and devices because of increase in the driving 

frequency. The eddy current losses in the multi-turn coils and 

Litz wires are caused by the skin and proximity effects. When 

analyzing the eddy currents by finite element method (FEM), 

we have to discretize the wires into fine elements in order to 

consider these effects. Heavy computational burden is, 

therefore, required to solve the resulting FE equation. 

A homogenization method for analysis of multi-turn coils 

and Litz wires have been proposed in Ref.[1]. In this method, 

the coil region is modeled as a uniform material which has the 

same macroscopic characteristic as the original coil. Because 

the element size does not have to be smaller than the skin depth 

when using this method, the computational time can be made 

extremely shorter than that of the conventional method. 

However, it remains to be difficult to analyze twisted or woven 

structures which Litz wires have because the homogenization 

method is formulated assuming for simplicity that wires are 

parallel to each other.  

We propose here a fast computational method for three 

dimensional analyses of Litz wires and multi-turn coils. In this 

method, each wire is modeled as a polygonal line. The one-

dimensional integral equation is solved for the dipole 

magnetizations perpendicular to the wire axis which are 

generated by the anti-parallel eddy currents due to the proximity 

effect. The integral equation can effectively be solved by the 

iterative method such as Jacobi and Gauss-Seidel methods. One 

of the advantages of this method is that it does not need to 

discretize wire cross section into elements because the eddy 

currents inside the wire are analytically evaluated. As the result, 

the number of the unknowns and the computational time can be 

considerably reduced in comparison with the conventional 

FEM. Moreover, we can apply this method to any wires with 

complicated structures like the Litz wire. 

In this paper, it will be shown that the complex powers of a 

multi-turn coil computed by the present method agree well with 

those computed by the conventional FEM. By using two 

potentials method [2], this method can also be applied to the 

coil wound around a magnetic core. This method is also applied 

to the analysis of three different wire models, that is, parallel 

wires, multiple strands, and rope lay, where the second and third 

models correspond to the Litz wire. It will be shown that the 

Litz wire models have smaller eddy current losses in 

comparison with the parallel wires. 

II. FORMULATION 

A. Complex permeability 

Let us consider an isolated round wire, radius a, conductivity 

, relative permeability , immersed in a time-harmonic 

magnetic field of angular frequency . The curvature of the 

wire is assumed to be negligible so that the field is two 

dimensional. Then the eddy currents and corresponding dipole 

fields due to the proximity effect can be obtained by analytically 

solving the two-dimensional Helmholtz equation. The wire has 

diamagnetic property due to the anti-parallel eddy currents 

flowing along the wire. This property can be represented by 

introducing the complex permeability 𝜇̇ given by [1] 
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where 𝑧 = 𝑎√−𝑗𝜔𝜎𝜇 and J1 is the first-order Bessel function. 

B. Integral equation 

Now we consider a bundle of round wires along which carry 

alternating currents. The eddy current losses in the wire due to 

the skin and proximity effects can be separately determined 

because of the orthogonality between them [3]. The former can 

easily be computed by the analytical method. The anti-parallel 

eddy currents due to the proximity effect in a wire are induced 

by the alternating magnetic field generated by the currents 

carried by the surrounding wires. The eddy current distribution 

in the wires has to be determined self-consistently. To do so, we 
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employ the complex permeability (1) assuming that the wire 

cross-sectional radius is much smaller than the curvature radius. 

Then, we consider the complex magnetization vector M 

perpendicular to the wire axis which is generated by the anti-

parallel eddy currents. We assume that M is constant in the 

cross section of the wire, and it has one-dimensional 

distribution along the wire. The relation between M and the 

magnetic field H perpendicular to the wire is given by 𝑴 =
( 𝜇̇𝑟 − 1)𝑯 . The magnetic field H is composed of H0 generated 

by external currents and component due to the complex 

magnetization M distributed along the wire. Then, we obtain 

the following one-dimensional integral equation for M: 
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which is a natural extension of the magnetostatic integral 

equation [4], where Ω𝑐 is the domain where the magnetization 

M exists, x and x’ are the observation and source points in Ω𝑐, 

𝝉 is the tangential unit vector parallel to the wire at x, 𝑹 = 𝒙 −
𝒙′ , and  𝑅 =  |𝑹| . The external magnetic field H0 can be 

calculated by Biot Savart’s law. 

Discretizing the wire into line segments as shown in Fig.1, 

we obtain the discretized form of the integral equation as 
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where 𝑹𝑖 = 𝒙𝑖 − 𝒙′, 𝑅𝑖 = |𝑹𝑖|,  xi is the center of the i-th line 

segment, and 𝝉𝑖  is the tangential unit vector of the i-th line 

segment. The domain Ω𝑐𝑗  is now a cylinder of the height li and 

the radius a. Note that we do not need to discretize the wire 

cross section into elements. If 𝑖 = 𝑗 , the integration can be 

analytically evaluated as 
 

 
   

22

2

0 0
2522

3

2322

42

234

4

i

ii

il a
i

ci

ii

la

l

zr

r

zr

r
rdzdvd



























  



M

M
M




G

 (4) 

 
Otherwise the integration is computed numerically. If the 

segments are adjacent to one another, the integration (3) can be 

nearly singular. In this case, the accuracy of the numerical 

integration would significantly be deteriorated. To overcome 

this difficulty, we apply Log-L1 transformation [5] and DE 

formula [6] to the integration. If the segments are far apart, the 

volume integration is approximated to the line integration along 

the line segment in order to reduce the computational time.  

The integral equations obtained in this manner lead to a dense 

matrix system. It would take long time to solve the equation 

when we use direct methods such as the LU decomposition. 

Therefore, we use the iterative methods such as Jacobi and 

Gauss-Seidel method to solve the equation. 

C. Computation of complex power 

We first consider the current-input problem. The complex 

power of the wire can be represented as [1] 
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where I and J are the total current and corresponding current 

density carried by each wire, and R0 is the DC resistance of the 

wire, * represents complex conjugate and Ω𝑐 is the wire region. 

In the evaluation of the first term in (5), J is assumed to be 

uniform in the wire cross section for simplicity. The first term 

in (5) includes stored magnetic power and power relevant to the 

proximity effect, while the second term represents the power 

relevant to the skin effect. When evaluating the integration, the 

vector potential is assumed to be constant in the line segment. 

The vector potential in (5) is computed from 
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After discretization, the first term (6) cancels out, if 𝑖 = 𝑗. In 

this case, the contribution from the second term to the complex 

power (5) is represented as [7] 
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Because the integration becomes nearly singular for the 

adjacent segments, the same technique mentioned above is 

employed. 

    Note that the proximity and skin effects are considered by 

introducing 𝜇̇ and the second term in (5), respectively. For this 

reason, we can obtain the eddy currents by magnetostatic 

analysis. If there are other conductors, we have to modify (2) to 

include the eddy current terms. 

D. Treatment of magnetic core 

When magnetic core exists near the coil, the magnetic field 

generated by the magnetization in the core has to be also 

considered. Hence, we do not know H0 a priori in (2). To 

 
Fig.1. Wire model. The unknowns Mi are assigned to each line segment. 
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determine the magnetic fields in a consistent way, we use here 

the two potentials method [2]. In this method, the analytical 

domain is divided into two sub-domains, total potential sub-

domain Ωt and reduced potential sub-domain Ωr, as shown in 

Fig.2. The magnetic core exists in Ωt, and the coils exist in Ω𝑟 . 

The boundary of these sub-domains is denoted by Γtr . The 

magnetic field generated by the current in Ωr is computed by 

the Biot-Savart law. In each domain, the following equations 

based on A method 
 

ttt ,0rotrot  inj AA   (9a) 

rr0 ,0rotrot  inA  (9b) 
 
are solved using FEM. Then the following boundary conditions 

are imposed onΓtr: 
 

  nAAnA  srt  (10a) 

  nHHnH  srt  (10b) 
 
where 𝑯t = 𝜈rot𝑨t, 𝑯r = 𝜈rot𝑨r , Hs and As are the magnetic 

field and magnetic vector potential on Γtr  generated by the 

source currents.  

In this method, the magnetic field in Ωr  is assumed to be 

generated by the magnetized magnetic core. Therefore, by 

adding the magnetic field Hr to the magnetic field H0 in (2), we 

can take account of the effect of the magnetic core. Then the 

magnetic field is modified to 
 

r0 HHH   (11) 
 
Similarly, the vector potential is modified to 
 

rAAA   (12) 
 

The distribution of the magnetic dipole obtained by the 

integral equation also changes the magnetic field. In order to 

determine the fields self-consistently, eqs. (2) and (9) are solved 

alternatively.  

E. Voltage-input problem 

In the above-mentioned formulation, we consider the 

current-input problem where the same currents are assumed in 

all the wires although the currents would differ from each other 

in the actual Litz wires. Thus, we here consider the voltage-

input problem. In this problem, the voltage at the terminals of 

each wire is set to a given voltage V. Because the integral 

equation cannot be solved if J is not given, we employ the 

following iterative method. First, the initial currents are 

assumed to each wire, and a system of the integral equations is 

solved. Then the impedance of each wire is evaluated from  
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where Pi the complex power of i-th wire. Then the currents are 

redistributed by AC Ohm’s law: 
 

i

new
i

Z

V
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The integral equations including the new currents are solved 

again for M. After the iteration, we can determine the currents 

Ii for given V self-consistently. 

III. NUMERICAL RESULTS 

A. Validation on a coil composed of parallel wires 

We apply the proposed method and conventional FEM based 

on the homogenization method described in [1] to the 100-turn 

coil model shown in Fig.3. The radius of the wire is 0.5 mm, 

and the conductivity of the wire is 5.76 × 107 S/m. In 

discretization, each wire is subdivided into 100 line segments 

with equal length. Fig.4 shows the frequency characteristic of 

the complex powers obtained by both methods. We can see that 

the active powers are in good agreement from low frequency to 

high frequency. The maximum difference is 3%. 

We also apply the proposed method to the analysis of the 

100-turn coil model wound around a magnetic core. The 

relative permeability of the magnetic core is 1000. Three 

iterations to solve (2) and (9) are required to obtain the 

convergent solution. The frequency characteristic of the active 

powers is shown in Fig.4. We again see that the results obtained 

by proposed method and FEM are in good agreement. The 

maximum difference is 5%. 

B. Analysis of Litz wire model 

We apply the proposed method to the analysis of three wire 

models, that is, parallel, multiple strands and rope lay. Each 

 
Fig.2. Domains in the two potentials method 

  
Fig.3. 100-turn coil and 100-turn coil wound around a magnetic core 

 
Fig.4. Frequency characteristic of the active powers obtained by the FEM 

and proposed method  
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model consists of 49 wires, radius 0.15 mm, pitch 15 mm and 

conductivity 5.76×107 S/m. The wires are assumed to form a 

straight Litz wire, one period of which is analyzed. In the 

parallel strands, wires are not twisted and bundled up. Wires are 

twisted in the multiple strands, while the groups of twisted 

wires are twisted in the rope lay [8] as shown in Fig.5. The total 

number of unknowns is 2,450. 

Assuming that a net current, 1 A, is imposed to each wire, the 

active powers in the three types of strands are computed. The 

results are plotted against frequency in Fig.6. We can see the 

active power of the parallel wires is the highest, while other two 

powers have no significant differences and are lower than that 

for the parallel wires. This result is consistent with the result 

obtained by conventional FEM with “Earth simulator”, highly 

parallel supercomputer [8]. These results are due to the fact that 

the twist of wires reduces the proximity effect. This tendency 

can be verified when we see the eddy current distributions in 

the parallel and rope lay models shown in Fig.7. 

The resultant active powers for the voltage-input problem 

mentioned in III.E are plotted against frequency in Fig 8. We 

can see that the active power in the parallel strands is the highest 

in low frequency because the DC resistance of the parallel 

model is the lowest of the three model. The active powers 

decrease as frequency becomes higher because the impedance 

of the wire increases due to the proximity effect. 

C. Computational time 

The dependence of the computational time and memory 

usage of the proposed method on the number of wires are shown 

in Fig.9, where each wire is discretized into 50 segments. We 

can see that the computational time increases almost linearly, 

while the memory usage increases quadratically. It is because 

the equation includes the dense matrix. 

IV. CONCLUSION 

In this paper, we have proposed a novel method based on the 

one-dimensional integral equation for the magnetization 

generated by eddy currents due to the proximity effect. By using 

this method, we can easily model complicated windings 

because we do not need to discretize the wire cross section and 

the insulator between the coils into elements. It has been shown 

that the active powers computed by the proposed method are in 

good agreement with those computed by the conventional FEM 

which needs fine discretization of wire and insulators. It has 

been numerically shown that the eddy current losses in the Litz 

wire models are smaller in comparison with the parallel strands. 
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Fig.5. Difference between the multiple strands (left) and rope lay (right) 

 
Fig.6. Frequency characteristic of active powers for three models when unit 
current is imposed 

 
Fig.7. Distribution of eddy current density in parallel (left) and rope lay 

(right) models at 100 kHz. The eddy currents are computed as follows: the 

external magnetic field 𝑯 which is applied to the wire can be computed 

from 𝑯 = 𝑴(𝜇̇r + 1)/2(𝜇̇r − 1). The eddy currents in the wire immersed 

in 𝑯 is then determined analytically as shown in Ref.[1]. 
 

 
Fig.8. Frequency characteristic of active powers for three models when unit 

voltage is imposed 

  
Fig.9. Computational time (left) and memory usage (right) 
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