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Abstract

We investigate a two-orbital Hubbard model on a honeycomb structure, with

a special focus on the antisymmetric spin-orbit coupling (ASOC) induced by

symmetry breaking in the electronic degrees of freedom. By investigating the

ground-state phase diagram by the mean-field approximation in addition to

the analysis in the strong correlation limit, we obtain a variety of symmetry-

broken phases that induce different types of effective ASOCs by breaking of

spatial inversion symmetry. We find several unusual properties emergent from

the ASOCs, such as a linear magnetoelectric effect in a spin-orbital ordered

phase at 1/4 filling and a spin splitting in the band structure in charge ordered

phases at 1/4 and 1/2 fillings. We also show that a staggered potential on

the honeycomb structure leads to another type of ASOC, which gives rise to a

valley splitting in the band structure at 1/2 filling. We discuss the experimen-

tal relevance of our results to candidate materials including transition metal

dichalcogenides and trichalcogenides.
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1. Introduction

The relativistic spin-orbit coupling (SOC) in solids can acquire a particular

spin and wave-number dependence when the system breaks spatial inversion

symmetry. This is called the antisymmetric SOC (ASOC), which has recently

attracted much attention in condensed matter physics, such as noncentrosym-5

metric superconductors, topological insulators, and multiferroics [1, 2, 3, 4].

The peculiar spin and wave-number dependence leads to fascinating electronic

properties, such as unconventional superconductivities, the spin Hall effect, and

magnetoelectric effects [1, 5, 6, 7]. Such interesting phenomena associated with

the ASOC have drawn considerable attention for potential applications to elec-10

tronics and spintronics devices.

Recently, the possibility of ASOCs on a centrosymmetric lattice structure

has been explored, such as on a zigzag chain, a honeycomb structure, and a

triangular lattice [8, 9, 10, 11, 12, 13, 14, 15, 16]. In these situations, the ASOC

is effectively induced by the spontaneous formation of an electronic order with15

spatial inversion symmetry breaking. Such emergent ASOCs are intriguing as

they result in the asymmetry in the electronic structures [17, 18, 8, 9, 13],

spin-wave excitations [19, 20, 21], and nonreciprocal optical responses [22]. Fur-

thermore, these types of ASOC are more flexibly controlled than those in non-

centrosymmetric systems: in stark contrast to the latter usually fixed by the20

lattice and electronic structures, the ASOCs induced by electron correlations

are controllable in their spin and wave-number dependence, even switched on

and off, by external parameters, such as temperature and pressure. Thus, such

correlation-induced ASOCs are expected to bring about new spin-orbital entan-

gled phenomena.25

In the previous studies [11, 23, 15], the authors have demonstrated how elec-

tronic orderings can induce the effective ASOCs, taking a fundamental model, a

two-orbital Hubbard model defined on a honeycomb structure. Through these

studies, the nature of the correlation-induced ASOCs were elucidated by the

symmetry analysis and the linear response theory. It was shown that the emer-30
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gent ASOCs are a source of peculiar properties, such as the spin and valley

splittings in the band structure and unconventional cross correlations among

spin, charge, and orbital degrees of freedom. However, the stability of the

symmetry-broken phases and the phase transitions were not fully investigated.

It is desired to systematically study the phase diagram for clarifying when and35

how the effective ASOCs are activated.

In the present study, we investigate what types of electronic orderings are

realized in the ground state for the two-orbital model on the honeycomb struc-

ture [11]. By the mean-field approximation, we construct the ground-state phase

diagram at two commensurate electron fillings, 1/4 and 1/2 fillings. We find40

several different types of ordered phases that break spatial inversion symmetry

by staggered-type electronic ordering: for instance, a spin-orbital ordered phase

for the large onsite Coulomb interaction at 1/4 filling, and charge ordered phases

for the large nearest-neighbor Coulomb interaction at 1/4 and 1/2 fillings. We

show that these staggered orders activate different types of ASOCs, which lead45

to different unusual properties, such as a linear magnetoelectric response and a

spin splitting in the band structure. We also show that a staggered potential on

the honeycomb structure gives rise to a valley splitting in the band structure at

1/2 filling. Finally, we discuss the implication of our results in several candidate

materials.50

2. Model and method

We consider the model discussed in the previous studies [11, 23, 15, 22]:

the two-orbital Hubbard model on the honeycomb structure under a crystalline

electric field with the trigonal or trigonal prismatic symmetry. The Hamiltonian
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is given by55

H = −t0
∑
k

∑
m

∑
σ

(γ0kc
†
AkmσcBkmσ +H.c.)

−t1
∑
k

∑
m

∑
σ

(γmkc
†
AkmσcBk−mσ +H.c.)

+
λ

2

∑
s

∑
k

∑
m

∑
σ

c†skmσ(mσ)cskmσ

+
∑
i

∑
mnm′n′

∑
σσ′

Umnm′n′

2
c†imσc

†
inσ′cin′σ′cim′σ

+
∑
⟨i,j⟩

∑
mm′

∑
σσ′

V nimσnjm′σ′ , (1)

where c†skmσ (cskmσ) is the creation (annihilation) operator for two sublattice

on the honeycomb structure s = A or B, wave number k, orbital m = ±1, and

spin σ =↑ or ↓; c†imσ (cimσ) is the real-space counterpart of c†skmσ (cskmσ).

The first and second terms in equation (1) represent the intra- and inter-

orbital hoppings between nearest-neighbor sites, respectively; γnk =
∑3

i ω
(i−1)neik·ηi

60

(n = 0, ±1), where ω = ei2π/3 and ηi represents the nearest-neighbor bonds

between A and B sublattices on the honeycomb structure. The third term in

equation (1) represents the atomic SOC; it has a nonzero matrix element only

for the diagonal z component in terms of the orbital m, as we consider only

m = ±1. The fourth term stands for the onsite Coulomb interaction; we take65

Ummmm = U , and Umnmn = U − 2JH, and Umnnm = Ummnn = JH (m ̸= n),

where U is the onsite repulsion and JH is the Hund’s-rule coupling, respec-

tively. The fifth term is the Coulomb interaction between nearest-neighbor

sites; nimσ = c†imσcimσ. We define the electron density as ne =
∑

imσ⟨nimσ⟩/N ,

where N is the number of lattice sites; the electron filling is defined by the70

electron density per spin and orbital degrees of freedom in each site, namely,

ne/4.

We study the ground state of the model in equation (1) by the mean-field ap-

proximation. We adopt the Hartree-Fock approximation to decouple the onsite

Coulomb interaction, while the nearest-neighbor Coulomb repulsion is treated75

by the Hartree approximation. We employ two-site unit cell, and calculate the
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mean fields by taking the sum over 64×64 grid points in the first Brillouin zone.

3. Ground-state phase diagram

In this section, we discuss what types of electronic orders are stabilized in the

model in equation (1). We present the mean-field results at two commensurate80

fillings, 1/4 (ne = 1) and 1/2 (ne = 2), in sections 3.1 and 3.2, respectively. See

also [11] for the result at 1/4 filling with different parameters.

3.1. 1/4 filling
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Figure 1: Ground-state phase diagram of the model in equation (1) at 1/4 filling obtained by

the mean-field calculations. The results are calculated for t0 = t1 = λ = 0.5 and JH = 0.2U .

PM, CO, SO, SOO, and Ferri represent the paramagnetic, charge ordered, spin ordered, spin-

orbital ordered, and ferrimagnetic states. The prefix xy for the Ferri-SO denotes that the

spins are polarized in the xy plane. Schematic pictures for the ordering patterns except for

SOO are shown. See the text for SOO in detail.

Figure 1 shows the ground-state phase diagram at 1/4 filling (ne = 1). The

model parameters are t0 = t1 = λ = 0.5 and JH = 0.2U . As shown in the85

figure, the phase diagram includes four phases: paramagnetic (PM) state in the

small U and V region, the charge ordered (CO) phase in the large V region,

the coexisting phase of charge order and ferrimagnetic order with the magnetic
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moments in the xy plane (xy-Ferri SO) in the large U and V region, and the

spin-orbital ordered (SOO) phase in the large U region. All the four phases are90

insulating. We note that the PM state exhibits a quantized Hall conductance

σSH
xy = 2 [23].

In the CO state, an effective ASOC is induced, whose asymptotic form in

the limit of λ → ∞ and k → 0 is given by [15]

HCO
ASOC(k) ∝

hCOt21
λ2

ky(3k
2
x − k2y)ρ0σ0τz. (2)

Here, hCO is proportional to the order parameter of the CO state, and ρα, σα,95

and τα are the unit matrix (α = 0) and the Pauli matrices (α = x, y, z) for

the sublattice, spin, and orbital degrees of freedom, respectively. The ASOC in

equation (2) leads to a spin splitting in the band structure similar to the Rashba

SOC [24], since it is an odd function with respect to k and includes the orbital

momentum polarization τz [see also figure 3(a)].100

The coexisting phase (CO+xy-Ferri SO) in the large U and V region also

shows a spin splitting in the band structure associated with the breaking of

spatial inversion symmetry by the charge order. Meanwhile, the additional

breaking of time-reversal symmetry by the ferrimagnetic order does not bring

about unusual phenomena, such as asymmetry in the band structure and linear105

magnetoelectric effects. This is because the effective ASOC induced in this

phase is proportional to ky(3k
2
x − k2y) in the k → 0 limit, which preserves the

three-fold rotational symmetry around the z axis.

In contrast, the SOO phase in the large U region exhibits a linear magneto-

electric effect by the breaking of time-reversal symmetry in addition to spatial110

inversion symmetry. The SOO is characterized by the spin and orbital entangled

order parameter given by c1(⟨σxτx⟩+ c3⟨σyτy⟩) + c2(⟨σxτy⟩+ c3⟨σyτx⟩), where

−1 ≤ c1 ≤ 1, −1 ≤ c2 ≤ 1, and −1 ≤ c3 ≤ 1. This spin-orbital entangled order

induces the effective ASOC with a linear-k contribution in the limit of k → 0,

which is given by [15]115

HSOO
ASOC(k) ∝ −hSOOt0t1

λ2
ρ0 [c1(kyσxτz + c3kxσyτz) + c2(kxσxτz + c3kyσyτz)] . (3)
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Here, hSOO is proportional to the order parameter of the SOO state. This effec-

tive ASOC can lead to a linear magnetoelectric effect because all the symmetries

on the honeycomb structure are broken [11]. Especially, the nonzero c1 (c2) in-

duces the longitudinal (transverse) magnetoelectric effect, in which an electric

polarization is induced in the parallel (perpendicular) direction to that of the120

magnetization.

In the phase diagram in figure 1, the SOO phase showing the linear magne-

toelectric effect is stable in the large U region. This is understood from strong

correlation limit as follows. Let us consider the second-order perturbation with

respect to t0/U and t0/λ
1. The effective Hamiltonian in the strong correlation125

limit can be obtained by

Heff = Ht
1

HU +Hλ
Ht = Heff(0) +Heff(1) + . . . , (4)

where Ht, Hλ, and HU represent the first, third, and fourth terms in equa-

tion (1), respectively. Here, the right hand side of equation (4) is obtained by

expanding the result in terms of λ/U ; Heff(ℓ) represents the effective Hamilto-

nian in the ℓ-th order with respect to λ. Specifically, Heff(0) and Heff(1) for an130

ij bond are obtained as

Heff(0)
ij = − 4t20

U − 3JH

(
1

4
− Ti · Tj

)(
Si · Sj +

3

4

)
− 4t20
U − JH

(
1

2
+ 2T y

i T
y
j

)(
1

4
− Si · Sj

)
− 4t20
U + JH

(
1

4
+ Ti · Tj − 2T y

i T
y
j

)(
1

4
− Si · Sj

)
, (5)

Heff(1)
ij =

4t20J
2
Hλ

(U − JH)2(U − 3JH)2

[
P+
Ti
P−
Tj
P−
Si
P+
Sj

+ P−
Ti
P+
Tj
P+
Si
P−
Sj

−(T−
i T+

j S+
i S−

j + T+
i T−

j S−
i S+

j )

]
, (6)

respectively. Here, Si and Ti are the spin and orbital operators, which are

1In this analysis, we ignore t1 as the SOO phase remains stable for small t1. We also omit

the nearest-neighbor repulsion V .
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represented by

Si =
1

2

∑
m

∑
σσ′

c†imσσσσ′cimσ′ , Ti =
1

2

∑
mm′

∑
σ

c†imστmm′cim′σ, (7)

respectively. In equation (6), P±
Λi

(Λ = T or S) are the projection operators

defined as P±
Λi

= 1
2 ± Λz

i . Heff(0)
ij describes the spin-orbital exchange interac-135

tions, similar to that for the twofold-degenerate eg orbitals, where the SOC

is irrelevant [25]. On the other hand, Heff(1)
ij , which is the leading contribution

from the SOC, includes characteristic terms, T−
i T+

j S+
i S−

j +T+
i T−

j S−
i S+

j . These

off-diagonal components favor the spin-orbital orders of SOO type. Indeed, for a

two-site problem,Heff(1)
ij has the lowest energy for the state (1/

√
2)(c†A−1↑c

†
B+1↓−140

c†A+1↓c
†
B−1↑)|0⟩, where |0⟩ is the vacuum. This state is a constituent of the SOO

discussed above. Thus, the analysis in the strong correlation limit explains the

stability of the SOO phase in the large U limit.

3.2. 1/2 filling

 5

3

4

1

0

2
U

V
0.0 0.4 0.6 0.8 1.00.2

PM CO

xy-SO

(b)(a)

 0.0

 0.2

 0.4

 0.6

 0.0  0.5  1.0  1.5  2.0

Figure 2: (a) Ground-state phase diagram of the model in equations (1) at 1/2 filling

obtained by the mean-field calculations. The results are calculated for t0 = t1 = λ = 0.5 and

JH = 0.1U . Schematic picture for the ordering pattern is shown for each phase. (b) Inplane

and out-of-plane magnetic moments mxy and mz , respectively, as functions of the staggered

potential ∆ in equation (8) at U = 3 and V = 0.5.

Figure 2(a) shows the ground-state phase diagram for the model in equa-145

tion (1) at 1/2 filling (ne = 2) obtained by the mean-field calculation for
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t0 = t1 = λ = 0.5 and JH = 0.1U . There are three phases: the PM phase

in the small U and V region, the CO phase in the large V region, and the stag-

gered magnetic ordered phase with the xy-spin component (xy-SO) in the large

U region. All the three phases are insulating. As in the 1/4 filling case, the PM150

state is a topological insulator, where the spin Hall conductivity is quantized at

σSH
xy = 2 [23]. As increasing V , the PM state changes into the CO state, which

shows the antisymmetric spin splitting in the band structure, similar to the CO

state at 1/4 filling.

The xy-SO phase in the large U region is characterized by the spin order155

parameter given by c1⟨σx⟩ + c2⟨σy⟩, where −1 ≤ c1 ≤ 1 and −1 ≤ c2 ≤ 1.

Unfortunately, the xy-SO phase does not show peculiar electronic structure,

magnetotransport, and magnetoelectric phenomena within the linear response

theory. However, an interesting band structure appears when the magnetic

moment acquires the z component. Although this state is not obtained in the160

parameter space we studied, we find that it is stabilized by introducing an

additional symmetry-breaking field in the charge sector given by

Hpot = ∆
∑
skmσ

(ρz)ssc
†
skmσcskmσ, (8)

where ∆ denotes the magnitude of the staggered potential. Figure 2(b) shows

the ∆ dependence of the magnetic order parameters mxy =
√
m2

x +m2
y and

mz for U = 3 and V = 0.5, where mµ is the magnetization per site in the µ165

direction (µ = x, y, z). The mxy component is suppressed as ∆ increases and

becomes zero for ∆ ≳ 0.8. Instead, the mz component becomes nonzero in the

intermediate ∆ region for 0.8 ≲ ∆ ≲ 1.1. For ∆ ≳ 1.1, the system loses both

spin and orbital orders, just leaving a charge disproportionation (CD) by the

staggered potential.170

We show the band structures for the three phases in figure 3. The staggered

magnetic ordering with the z-spin component (z-SO) in the intermediate ∆ re-

gion induces a valley splitting in the band structure, as shown in figure 3(b) [18],

while only a spin splitting due to the staggered potential in equation (8) is ob-

served in the xy-SO state in the small ∆ region [figure 3(a)] and the PM state175
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in the large ∆ region [figure 3(c)].
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Figure 3: Electronic band structures for (a) xy-SO, (b) z-SO, and (c) PM states at ∆ = 0.8,

1.0, and 1.2, respectively. CD represents the charge disproportionation due to the staggered

potential. The blue (red) curves show the bands with up(down)-spin polarization in the z

direction. In the inset of (a), the first Brillouin zone is shown.

4. Summary and concluding remarks

We have investigated the stability of electronic orders which spontaneously

break the spatial inversion symmetry for a minimal two-band model on the hon-

eycomb structure. By studying the ground state of the model by the mean-field180

approximation, we have found several insulating phases, such as the CO states

at 1/4 and 1/2 fillings and the SOO state at 1/4 filling. The obtained staggered

phases activate different type of effective ASOCs by breaking of spatial inversion

symmetry, which gives rise to the fascinating physical properties, such as the

spin splitting in the band structure in the CO state and linear magnetoelectric185

effects in the SOO state. In addition, we have investigated the stability of the

SOO state in the strong correlation limit. We have also shown that the stag-

gered potential can switch the magnetic ordered phases, and results in another

type of effective ASOC leading to a valley splitting in the band structure.

Let us comment on relevant materials for future studies. There are several190

candidate materials with the honeycomb structures from d electron systems to

f electron systems, such as trichalcogenides MX ′X3 (M : transition metal, X:

chalcogen, X ′ = P, Si, Ge) [26, 27] and a Yb-based heavy-fermion compound
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β-YbAlB4 [28, 29, 30]. From a symmetry point of view, it is expected that

similar ASOC physics is realized for these materials once a staggered electronic195

order occurs. Especially, the interesting SOO state, which shows linear magne-

toelectric effects, may be achieved when the electron correlations and the SOC

are sufficiently large.

An extension of our results to noncentrosymmetric systems is also an in-

teresting future problem. As demonstrated in the last part of Sec. 3.2, the200

staggered potential, which breaks the spatial inversion symmetry, leads to the

spin splitting in the band structure. As an effect of the two different atoms in

the different sublattices can be mimicked by the staggered potential, this situ-

ation corresponds to monolayer transition metal dichalcogenides MX2 with 2H

structure [31, 32, 33, 34] where the alignment of the transition metal M and the205

chalcogen X forms the honeycomb structure. Indeed, a similar spin splitting in

the band structure is observed in the monolayer 2H-MX2 [35]. Our results sug-

gest that a valley splitting is expected in addition to the spin splitting once the

z-SO is stabilized for a sufficiently large staggered potential in the monolayer

2H-MX2 [18]. Further studies from both theoretical and experimental sides are210

desired for such exploration.
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