The Pathogenesis of Joint Destruction in Patients with Rheumatoid Arthritis and its Potential Therapeutic Agents

(関節リウマチにおける関節破壊の病態解明と治療ターゲットに関する研究)

2020年3月
リー ウェン シー
LEE WEN SHI
The Pathogenesis of Joint Destruction in Patients with Rheumatoid Arthritis and its Potential Therapeutic Agents

(関節リウマチにおける関節破壊の病態解明と治療ターゲットに関する研究)

2020年3月
リー ウェン シー
LEE WEN SHI
Background and Purposes:

Chapter 1: Optineurin (OPTN) is an autophagy receptor which has been reported to act as a negative regulator of osteoclast differentiation in vitro where loss of OPTN increased osteoclast activity and bone turnover. OPTN regulates nuclear factor-kappa B (NF-κB) signaling, one of the most important inflammatory pathways in RA. Rheumatoid arthritis fibroblast-like synoviocytes (RA-FLS) is one of the major effector cells in RA. Receptor activator of nuclear factor-κB ligand (RANKL)-RANK signaling regulates osteoclastogenesis and involves in bone erosions in RA. Further, RANKL expressed on RA-FLS is primarily responsible for bone erosions in RA. Given the possible involvement of OPTN in RA, we investigated the role of OPTN in RA-FLS, particularly its role in the expression of RANKL on FLS and subsequent osteoclast differentiation.

Chapter 2: The miR-9 has lower expression in RA compared to healthy controls. The miR-9 has been reported to target NF-κB1/p50 gene in bone marrow-derived mesenchymal stem cells (BMSCs) and hence inhibit the NF-κB signaling pathway. In RA synovium, RANKL contributes to articular destruction as well as to NF-κB signaling-induced inflammatory pathway. Therefore, we speculated that miR-9 might suppress NF-κB pathway in RA-FLS and preserve cartilage in inflammatory arthritis.

Materials and Methods:

Synovial tissues were obtained during synovectomy or total joint replacement surgery from patients with RA in Hokkaido University Hospital.

Chapter 1: RA-FLS with passages 4 to 8 were used in this study. Tumor necrosis factor-alpha (TNF-α) or interferon-gamma (IFN-γ) were treated in RA-FLS for their major involvement in the pathogenesis of RA. RA-FLS were incubated with/without TNF-α or IFN-γ at a concentration of 10 ng/ml or 100 ng/ml and the expression of OPTN was analyzed using real-time quantitative polymerase chain reaction (RT-qPCR) for mRNA levels and western blot for protein levels. RANKL and osteoprotegerin (OPG) mRNA expression were analyzed by RT-qPCR in RA-FLS transfected with OPTN siRNA with/without 4 hours/24 hours treatment of 10 ng/ml TNF-α, 100 ng/ml IFN-γ or both. Cell surface RANKL expression was analyzed by flow cytometry in OPTN-reduced RA-FLS after 3 days after the stimulation with TNF-α/IFN-γ. OPTN-reduced RA-FLS were cocultured with CD14+ monocytes isolated from healthy individuals for 10 days and stained with Tartrate-Resistant Acid Phosphatase (TRAP). TRAP-positive cells with 3 or more nuclei were considered as osteoclasts. Matrix metallopeptidase-3 (MMP-3), interleukin-6 (IL-6), GATA-3, carbohydrate sulfotransferase 15 (CHST15), and hyaluronan synthase 1 (HAS1) mRNA levels were analyzed by RT-qPCR. Cytosolic IκBα and nuclear NF-κB1 were analyzed by western blotting to evaluate NF-κB signaling.
Chapter 2: RA-FLS with passages 3 to 8 were used in this study. 10 ng/ml TNF-α or/and 100 ng/ml IFN-γ were selected for treatment of RA-FLS. The binding of miR-9 to NF-κB1 3'-UTR was analyzed by luciferase reporter assay and immunoprecipitation. Chromatin immunoprecipitation (ChIP) assay was performed to identify the binding of NF-κB1 to RANKL promoter. Promoter activity of RANKL induced by NF-κB1 was evaluated using luciferase assay. FLS were treated with miR-9 or anti-miR-9 to evaluate cell proliferation using bromodeoxyuridine (BrdU) assay, the expression of RANKL mRNA by RT-qPCR and cell surface RANKL by flow cytometry. Therapeutic effect of intra-articular administration of miR-9 was evaluated in type-II collagen-induced arthritis (CIA) in rats.

Results:

Chapter 1: OPTN levels were upregulated after TNF-α or IFN-γ stimulation at mRNA and protein levels. Cell surface RANKL was significantly increased following treatment with TNF-α, IFN-γ or both and the effect was further pronounced in OPTN-reduced RA-FLS compared to control RA-FLS. The mRNA levels of RANKL were also increased in OPTN-reduced RA-FLS while OPG levels remained unchanged. CD14+ monocytes cocultured with OPTN-reduced RAFLS had higher levels of differentiation into TRAP+ multinucleated cells (MNCs) compared to those cocultured with control RA-FLS. MMP3 and IL-6 were upregulated while GATA-3, CHST15 and HAS1 were downregulated in OPTN-reduced RA-FLS. IκBα degradation and the translocation of NF-κB1 into nuclei following TNF-α treatment was prolonged in OPTN-reduced RA-FLS.

Chapter 2: The miR-9 bound to the 3'-UTR of NF-κB1 and downregulated NF-κB1. NF-κB1 directly bound to RANKL promoter and increased the promoter activity of RANKL. The expression of RANKL in mRNA/protein levels in RA-FLS were negatively regulated by miR-9. Proliferation rate of FLS increased by inhibiting miR-9 in RA-FLS. Intra-articular injection of miR-9 mimics dampened experimental arthritis by lowering the inflammatory state and by reducing RANKL and osteoclasts formation.

Discussion:

Chapter 1: We newly identified the role of OPTN in one of the RANKL-expressing cells, RA-FLS. The proliferation rate had no difference in OPTN-downregulated and control RA-FLS which suggest that the increased osteoclast formation was mediated by the increased RANKL expression at single cell level. Our further investigation by downregulating OPTN in RA-FLS confirmed the protective role of OPTN against joint destruction as the pathogenic molecules MMP-3 and IL-6 were increased while GATA3, CHST15 and HAS1 were decreased. Among them, the expression of MMP-3 was most obviously changed in OPTN-downregulated RA-FLS with approximately 5-fold higher mRNA levels compared to control RA-FLS. These findings suggest the direct role of OPTN to protect the joint by inhibiting expression and activity of MMPs. Previous studies have already shown the
regulation of NF-κB signaling by OPTN in nerve cells and indicated its involvement in neurodegenerative diseases. Our current study has confirmed this regulation in RA-FLS.

Chapter 2: We confirmed the binding of miR-9 to the 3'-UTR sites of NF-κB1 and hence the reduction of NF-κB1 expression in RA-FLS. Thus, miR-9 suppresses inflammatory nature of RA-FLS via degradation of NF-κB1 transcripts. Our ChIP analysis revealed that NF-κB1 binds onto the promoter region of RANKL and acts as a transcription factor that enhances RANKL promoter activity. In luciferase assay, wildtype RANKL promoter had the highest level of activity when it was co-transfected with NF-κB1. We further analyzed the effects of miR-9 on the expressions of RANKL in RA-FLS. We identified that miR-9 has the ability to reduce RANKL expression which we considered as an indirect effect via the reduction of NF-κB1. Finally, we aimed to confirm the protective effect of miR-9 against destructive arthritis using CIA rat model. TRAP⁺ osteoclasts and RANKL expression were significantly dampened in miR-9 treated joints compared to those treated with control miRNA. The intact cartilage in miR-9 treated CIA rats suggests the proliferative effect of miR-9 on chondrocytes, in consistency to the previous report. The inflammatory parameters in clinical, micro-CT images and histology specimens further emphasized the importance of miR-9 regulation in RA. RANKL expression in RA-FLS is suppressed, resulting in impaired osteoclastogenesis by miR-9. We also demonstrated the protective effects of miR-9 in preventing joint destruction and reducing inflammation in vivo arthritis model.

Conclusion:

Chapter 1: OPTN plays a protective role against joint destructions in RA with its upregulation when immersing with pro-inflammatory cytokines in RA-FLS. Absence of OPTN might worsen RA by generating joint destructive state including increased RANKL expression on RA-FLS, subsequent osteoclast differentiation, and the dysregulation of molecules involved in joint homeostasis. These roles of OPTN may contribute to our understanding of the mechanisms of joint destructions in RA.

Chapter 2: Our findings reveal a previously unrecognized regulatory network mediated by NF-κB1-RANKL axis in RA-FLS and miR-9 deactivates the inflammatory arthritis by downregulation of NF-κB signaling. These findings propose therapeutic implications of miR-9 in RA.