

HOKKAIDO UNIVERSITY

| Title                  | Development of Pd Based Alloy Catalysts Highly Selective for deNOx reactions [an abstract of dissertation and a summary of dissertation review] |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| Author(s)              | 全, 載完                                                                                                                                           |
| Citation               | 北海道大学. 博士(工学) 甲第14018号                                                                                                                          |
| Issue Date             | 2020-03-25                                                                                                                                      |
| Doc URL                | http://hdl.handle.net/2115/78161                                                                                                                |
| Rights(URL)            | https://creativecommons.org/licenses/by/4.0/                                                                                                    |
| Туре                   | theses (doctoral - abstract and summary of review)                                                                                              |
| Additional Information | There are other files related to this item in HUSCAP. Check the above URL.                                                                      |
| File Information       | JEON_Jaewan_abstract.pdf (論文内容の要旨)                                                                                                              |



## 学 位 論 文 内 容 $\mathcal{O}$ 要 旨 博士の専攻分野の名称 博士 (工学) 氏名 全 載完 学 位 論 文 題 名

Development of Pd-Based Alloy Catalysts Highly Selective for  $deNO_x$  reactions

(deNO<sub>x</sub>反応に高い選択性を示すPd系合金触媒の開発)

Three-way catalysts simultaneously purify HC, CO and NO<sub>x</sub>, and are essential for gasoline vehicles. Threeway catalyst applied to the gasoline engine is composed of platinum group metals (Pt, Rh, and Pd) as the main active site, and is supported on a support (SiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>, CeO<sub>2</sub>) having excellent thermal and mechanical stability. In the case of Pd catalyst, its prominent oxidation activity for hydrocarbons and CO. However, the controlling the selectivity of NO reduction to N<sub>2</sub> remains a significant challenge because a significant amount of undesired by-products, such as N<sub>2</sub>O, which is a powerful greenhouse effect gas, are particularly generated when CO is used as a reductant under low temperature. I propose catalyst design based on Pd-based alloy that is effective for catalyst preparation to solve the problems (low activity and selectivity in low temperature region) in three-way catalysts. Furthermore, this catalyst design was employed to improve NO conversion to N<sub>2</sub> under lean conditions. This thesis efforts on purification of NO<sub>x</sub> gas by using three Pd-based alloy catalysts. 1) Pd-based pseudo-binary alloy catalyst, 2) Cu-Pd single atom alloy, and 3) Pd-Pt based pseudobinary alloy catalyst. Three different types of alloy systems are developed for efficient reduction of NO<sub>x</sub>.

Chapter 2 presents the development of Pd-based pseudo-binary alloy catalyst for selective reduction of NO without emission of N<sub>2</sub>O at low temperatures, which has been unprecedented previously by conventional Pd based catalysts. First, I screened various Pd based bi-metallic catalysts for NO–CO reaction. The results showed that a Pd-Cu alloy catalyst, PdCu/Al<sub>2</sub>O<sub>3</sub>, gave high NO conversion at low temperature region and Pd-In intermetallic catalysts, PdIn/Al<sub>2</sub>O<sub>3</sub>, gave high N<sub>2</sub> selectivity below 250°C. PdIn/Al<sub>2</sub>O<sub>3</sub> catalyst displayed excellent N<sub>2</sub> selectivity even at low temperatures (100% at 200°C). The catalytic activity of PdIn was further improved by substituting a part of In with Cu, where a Pd(In<sub>1-x</sub>Cu<sub>x</sub>) pseudo-binary alloy structure was formed. The optimized catalyst, Pd(In<sub>0.33</sub>Cu<sub>0.67</sub>)/Al<sub>2</sub>O<sub>3</sub>, facilitated the complete conversion of NO to N<sub>2</sub> (100% yield) even at 200°C and higher, which has never been achieved using metallic catalysts. The formation of the pseudo-binary alloy structure was confirmed by the combination of HAADF-STEM-EDS, EXAFS, and CO-FT-IR analyses. A detailed mechanistic study based on kinetic analysis, operando XAFS, and DFT calculations revealed the roles of In and Cu in the significant enhancement of catalytic performance.

Chapter 3 presents the Cu-Pd single atom alloy catalyst for reduction of NO, which minimizes th e use of precious metal. A series of Cu–Pd alloy nanoparticles supported on  $Al_2O_3$  were prepared by a deposition-precipitation method using urea and tested as catalysts for deNO<sub>x</sub> reactions. XRD, HAADF-STEM, XAFS, and FT-IR analyses revealed that single-atom alloy structure was formed when the Cu/Pd

ratio was 5, where Pd atoms were well isolated by Cu atoms. Compared with  $Pd/Al_2O_3$ ,  $Cu_5Pd/Al_2O_3$  exhibited outstanding catalytic activity and  $N_2$  selectivity in NO reduction by CO: the complete conversion of NO to  $N_2$  was achieved even at 175°C for the first time, with long-term stability for at least 30 h. High catalytic performance was also obtained in the presence of  $O_2$  and  $C_3H_6$  (model exhaust gas), where a 90% decrease in Pd use was achieved with minimum evolution of  $N_2O$ . Kinetic and DFT studies demonstrated that N–O bond breaking of the (NO)<sub>2</sub> dimer was the rate-determining step and was kinetically promoted by the isolated Pd.

Chapter 4 shows Pd-Pt based pseudo-binary alloy catalyst efficient for deNO<sub>x</sub> reaction under excess O<sub>2</sub> lean conditions, which has never been achieved by three-way catalysts. The catalytic performance of PdIn catalyst was further improved by substituting a part of Pd with Pt, where a (Pd<sub>x</sub>Pt<sub>1-x</sub>)In pseudo-binary alloy structure was formed. The optimized catalyst, namely, (Pd<sub>0.5</sub>Pt<sub>0.5</sub>)In/CeO<sub>2</sub>, improved the N<sub>2</sub> yield (>80%) even in the presence of excess oxygen ( $\lambda$ ~1.50), where the operating  $\lambda$  window was significantly expanded toward the lean side. The long-term stability and lean-rich cycle tests were performed to evaluate the catalytic performance. The formation of the pseudo-binary alloy structure was confirmed by the combination of HAADF-STEM-EDS, and CO-FT-IR analyses.

Chapter 5 shows the general conclusion of the thesis. Chapter 2 conclude that a Pd based pseudo binary alloy catalysts,  $Pd(In_{1-x}Cu_x)/Al_2O_3$ , three improved point of redox properties: (1) N<sub>2</sub>O adsorption and decomposition (N<sub>2</sub>O  $\rightarrow$  N<sub>2</sub> + O) were drastically enhanced by In, thus resulting in high N<sub>2</sub> selectivity; (2) CO oxidation was promoted by In, thus leading to enhanced low-temperature activity; and (3) Cu substitution improved NO adsorption and dissociation (NO  $\rightarrow$  N + O). Chapter 3 conclude that N–O bond breaking of the (NO)<sub>2</sub> dimer was the rate-determining step and was kinetically promoted by the isolated Pd. Chapter 4 conclude that a PdPt based alloy, (Pd<sub>0.5</sub>Pt<sub>0.5</sub>)In, effectively react the NO reduction by CO in excess O<sub>2</sub> lean condition. Substituted Pt of this alloy structure provided an expanded operating window of three-way catalytic system. And, the combination of the positive effect of Pt and PdIn enabled the development of a highly active and selective NO reduction by CO at various O<sub>2</sub> concentration and temperatures.