Doctoral Dissertation Evaluation Review

Degree requested Doctor of Life Science Applicant’s name Aimi Suhaily Binti Saaidin

Examiner :
Chief examiner Professor Kenji Monde
Associate examiner Professor Hiroshi Hinou
Associate examiner Professor Nobuyuki Tamaoki
Associate examiner Assistant Professor Yuta Murai

Title of Doctoral Dissertation

Design and Synthesis of a Multi-tag Exchangeable Nosyl-type Diazirine in Photoaffinity Labeling
(マルチタグ交換可能な新規ジアジリン光アフィニティープロブの創製)

Results of Evaluation of the Doctoral Dissertation (Report)

In early stage of drug discovery, identifying the molecular interactions between the bioactive compound and its target protein is one of the crucial steps. For these purposes, some strategies have been implemented such as genetics approach, 3D structure determination involving solution state NMR and X-ray crystallography. Although these approaches can provide a detailed structural information of target biomolecule, an abundant purified molecule is always required. As an alternative, chemical method using affinity-based chemical probe such as photoaffinity labeling (PAL) has also been used for direct identification and visualization of target biomolecules in complex systems without having to undergo purification process. Phenyl diazirines are one of the important photolabile moieties used in photoaffinity labeling due to their superior photo labeling characteristic. Despite that, identification of the cross-linked target molecules often involves complexity of reaction mixtures and resulting in small quantity of the photolabeled molecules. Therefore, the photolabeled molecule requires its enrichment by using fluorous tags, biotin-avidin system and clickable group. Besides that, multi-functional crosslinkers having high sensitive functions such as scissile, fluorescence and stable isotope also showed an excellent performance with multiple steps. Ideally, analysis of photolabeled molecules should be more direct and reliable.

With regard to this, the author focuses on the design and synthesis of novel nosyl bearing diazirines with scissile function which can simultaneously exchange various tags by S_NAr with an effort to provide more direct and reliable analysis. Intrigued by works done by Fukuyama et al. on the nosyl protection group, the photoaffinity probe was designed with Ns scaffold with two functional properties which 1) form a cross-linked and 2) install different tags. Also, the installation of the trifluoromethyl diazirine on the meta position enhances photolysis and facilitates the S_NAr reaction.

In order to evaluate the feasibility of this approach, model compounds Ns diazirine and modified thiol tags were synthesized. Key intermediate of benzyl mercaptan diazirine was synthesized through 8 steps before coupled with aminoethanol, biotin and methotrexate via oxidative chlorination using 2,4-dichloro-5,5-dimethylhydantoin (DCDMH). Aminoethanol bearing Ns diazirines was used as model compound to prove its superiority in terms of photoreactive and kinetic photolysis in comparison with the normal trifluoromethyl diazirine. These compounds were irradiated under black light (30W) in methanol. The results revealed that Ns diazirine was found out to be photolyzed more rapidly in comparison to normal
diazirine as the half life ($t_{1/2}$) of these compounds were calculated as 2.5 and 4.5 min respectively. This strengthen the fact that Ns diazirine exhibited suitable characteristics for the photoaffinity reagent.

Next, the evaluation on the properties of exchangeability were performed by using thiol coumarin as tag with the presence of different bases such as triethylamine, NaHCO$_3$ and CsCO$_3$ in several organic solvents and H$_2$O. Based on these results, the SN$_2$ reaction proceeded effectively with the presence of CsCO$_3$ in aqueous media which means it is further applicable under physiological conditions. Further examination on the utilities of Ns diazirines using BSA as the model protein. Thus, biotinylated diazirine was incubated with BSA, photoirradiated and further subjected to 10% SDS-page gel. Then, the author performed chemiluminescence detection using horseradish peroxidase (HRP)-conjugated avidin after blotting on PVDF membrane. Based on the emission intensity, the cross-linking efficiency was calculated as approximately maximum of 20% determined by comparing it with the calibration curve of biotinylated BSA. Subsequently, The photolabeled BSA was subjected to SN$_2$ with bodipy thiol. Based on the emission intensity of the bodipy-thioether BSA band, the formation of photolabeled BSA was obtained with estimated value of approximately 78% yield after 24h.

Finally, methotrexate (MTX), a known inhibitor for dihydrofolate reductase (DHFR) was used as a bioactive ligand. The author successfully modified the MTX and coupled it with diazirinyl benzyl mercaptan. Next the MTX bearing Ns diazirine was incubated with DHFR and photo-irradiated under UV lamp before it was subjected to thiol-BODIPY. The detection of DHFR cross-linked photoprobe fluorescence band was detected at 21 KDa.

In conclusion, the author has new findings in designing and synthesizing the novel bi-functional Ns diazirine based photoaffinity labeling which exhibit higher photoreactivity than normal phenyl diazirine. The author also proved the feasibility of the tag-exchangeable reaction via formation of Meisenheimer complex by installing various tag. These results will contribute to the enhancement of photoaffinity labeling efficiency for identifying the specific ligand-protein binding mode. Therefore, we acknowledge that the author is qualified to be granted a Doctorate of Life Sciences. From Hokkaido University.