HOKKAIDO UNIVERSITY

Title	Studies on the Biosynthetic Machinery in Poly unsaturated Fatty－A cid Synthases
Author（s）	林，祥平
Citation	北海道大学．博士（工学）甲第14020号
Issue Date	2020－03．25
DOI	10．14943／doctoral．k14020
Doc URL	http：／hdl．handle．net／2115／88309
Type	theses（doctoral）
File Information	Shohei＿HAYASHI．pdf

Instructions for use

Studies on the Biosynthetic Machinery in Polyunsaturated Fatty－Acid Synthases （多価不飽和脂肪酸合成酵素における生合成機構に関する研究）

Shohei Hayashi

Graduate School of Chemical Sciences and Engineering

TABLE OF CONTENTS

Chapter 1. General introduction
1.1. The role of fatty acids and polyunsaturated fatty acids 2
1.2. Biosynthetic pathway of fatty acids in microorganisms 4
1.3. Biosynthetic pathway of polyunsaturated fatty acids in microorganisms 7
Chapter 2. Mechanism for control of PUFA productivity in PUFA synthases
2.1. Introduction 15
2.2. Results
2.2.1. Heterologous expression of PUFA synthase genes in Escherichia coli 18
2.2.2. The effect of the number of ACP domains on PUFA productivity 20
2.2.3. The effect of inactivation of ACP domain on PUFA productivity 23
2.3. Discussion 27
Chapter 3. Mechanism for control of cis double bond positions in PUFA synthases
3.1. Introduction 33
3.2. Results
3.2.1. Important domains for control of EPA or ARA production 35
3.2.2. Mechanism for control of first cis double bond positions in PUFA synthases 40
3.3. Discussion 53
Chapter 4. Mechanism for control of carbon chain length of final products in PUFA synthases
4.1. Introduction 594.2. Results
4.2.1. Important domains for control of EPA or DHA production 61
4.2.2. Mechanism for control of carbon chain lengths of final products in PUFA synthases 64
4.3. Discussion 74
Chapter 5. Off-loading mechanism of products in PUFA synthases
5.1. Introduction 79
5.2. Results
5.2.1. The effect of site-directed mutagenesis on AT domains 82
5.2.2. Off-loading reactions catalyzed by AT domains 83
5.3. Discussion 92
Chapter 6. Conclusion 98
Experimental section 102
Acknowledgements 143

Chapter 1

General introduction

1.1. The role of fatty acids and polyunsaturated fatty acids

Fatty acids are member of lipids and are one of the primary metabolites as with sugars, amino acids, and nucleosides (Figure 1-1-1). Due to their hydrophobic properties, phospholipids with fatty acids, in which palmitic acids $\left(\mathrm{C}_{16}\right)$ and stearic acids $\left(\mathrm{C}_{18}\right)$ are mostly involved, are used in cell membranes to separate inside and outside of cells in plants, animal, and microorganisms. Triglycerides, which are a neutral lipid and tri-esterified with fatty acids, are used as energy-storage, and β-oxidation of fatty acids provides more energy than that of carbohydrates and proteins.

```
saturated fatty acids
C14:0 HOOC
C16:0 HOOC'_
stearic acid C18:0 HOOC
18
```


Figure 1-1-1. Chemical structures of saturated and polyunsaturated fatty acids.

Fatty acids are classified into two groups. Former groups are saturated fatty acids that have no double bond in their structure. Latter groups are unsaturated fatty acids that have one or more cis double bond. Especially, unsaturated fatty acids containing more than two cis double bonds such as docosahexaenoic acids (DHA; C22:6 $\omega 3$), eicosapentaenoic acids (EPA; C20:5 $\omega 3$), and arachidonic acids (ARA; C20:4 $\omega 6$) are collectively called polyunsaturated fatty acids (PUFAs). These PUFAs are
mostly subdivided in omega-3 ($\omega 3$) and omega-6 ($\omega 6$) depending on position of the first cis double bond from methyl end. Because they showed lower melting points than those of saturated fatty acids, membrane phospholipids with PUFAs showed membrane fluidity at low-temperature. Deep-sea bacteria employ them to adapt to low-temperature environments. Indeed, growth of an EPA biosynthetic gene-disrupted Shewanella sp. was retarded at low temperature $\left(4^{\circ} \mathrm{C}\right)^{1,2}$. Furthermore, PUFAs are precursors of signal molecules such as prostaglandins and leukotrienes in eukaryotes ${ }^{3,4}$. Because human and animals don't have genes for PUFA biosynthesis, they ingest PUFAs from food such as fish and seafoods. $\omega 3$ PUFAs showed beneficial biological activities such as prevention of coronary heart diseases and hyperlipidemia. Also, PUFAs showed antibacterial activities against pathogen of stomach cancer Helicobacter pylori ${ }^{5-9}$. Therefore, the demands for these PUFAs are increasing in food and pharmaceutical industries. Fish and fish oils have been traditionally the PUFA sources. However, there is concern over the availability of PUFAs because of the unstable supply from marine resources and increasing demand. One of the alternative and sustainable sources of PUFAs are fermentative processes using microorganisms such as filamentous fungi (ARA producer), microalgae (DHA producer), and engineered yeast (EPA producer) ${ }^{10-12}$. In next two section, I described fatty acid and PUFA biosynthetic pathway to understand the biosynthetic system.

1.2. Biosynthetic pathway of fatty acids in microorganisms

All organisms de novo biosynthesize fatty acids using Fatty Acid Synthases (FASs), and the process of fatty acid biosynthesis has been well studied in animal, plants, fungi, and bacteria ${ }^{13-15}$. A FAS catalyzes repeated reaction cycles for elongation of fatty acyl chains; β-ketoacyl synthase (KS)mediated decarboxylative condensation of malonyl-acyl carrier protein (ACP) with acyl-ACP to form β-ketoacyl-ACP, β-ketoacyl reduction catalyzed by β-ketoacyl reductase (KR) using NADPH as a cofactor to form β-hydroxyacyl-ACP, α, β-dehydration catalyzed by dehydratase (DH), and enoyl reduction of 2-trans acyl-ACP by enoyl reductase (ER) using NADPH to form saturated acyl-ACP (Figure 1-2-1). These reactions are used for one cycle elongation on fatty acid biosynthesis. Animal FAS and fungal FAS are composed of one large polypeptide and two large polypeptides with several domains catalyzing reaction cycles, respectively. The multifunctional enzyme systems for fatty acid biosynthesis is termed as Type I FAS. In contrast, discreate enzymes catalyzing each reaction step in bacteria and plants. The monofunctional enzyme systems is termed as Type II FAS (Figure 1-2-2).

Figure 1-2-1. Schematic illustration of the common fatty acid biosynthetic cycle.

Figure 1-2-2. Domain organization of type I FAS and type II FAS enzymes.

Type I and II fatty acid biosynthetic systems employs common reaction cycle as mentioned above. But there are some differences in initiation and termination steps (Figure 1-2-3). In bacterial Type II FAS, KS III called FabH was responsible for the initial condensation of acetyl-CoA and malonyl-ACP to form 3-oxobutyryl-ACP while condensation of acetyl-ACP generated by the AT or MAT domain was normally catalyzed in Type I FAS ${ }^{16-18}$. As for the termination steps, type I FAS in animals employed thioesterase (TE) domain for off-loading reaction ${ }^{17}$. The TE domain catalyzed a hydrolysis of the thioester-bond of acyl-ACP to form free fatty acids. In fungi FAS, malonyl/palmitoyl$\mathrm{CoA} / \mathrm{ACP}$ transferase (MPT) domain was responsible for the direct transfer of palmitoyl unit to CoA ${ }^{18}$. Similarly, acyl units were directly transferred from acyl-ACPs to glycerol-3-phophate derivatives by acyltransferase genes pls in Escherichia coli Type II FAS ${ }^{19}$.

mammalian type I FAS biosynthesis system
KR

bacterial type II FAS biosynthesis system

Figure 1-2-3. Schematic illustration of the type I and II fatty acid biosynthesis cycles. Type I FAS in yeast (top), type I FAS in mammalian (middle), and type II FAS in bacteria (bottom). In type II FAS system, three KS enzymes, FabH, FabF, and FabB, and two DH enzymes, FabZ and FabA, are used.

1.3. Biosynthetic pathway of polyunsaturated fatty acids in microorganisms

In PUFAs biosynthesis in fungi, plants, and bacteria, two different pathways are known. One is the well-studied desaturase/elongase pathway found in fungi, plants, and bacteria ${ }^{20,21}$. In the pathway, PUFAs are biosynthesized from saturated fatty acids supplied from the fatty acid biosynthetic pathway through chain elongation and oxygen-dependent desaturation reactions (Figure 1-3-1). Each desaturase introduces site-specific cis double bond to saturated fatty acyl chains using molecular oxygen, ferrocytochrome b 5 , and NADH^{18}. The elongase enzymes, β-ketoacylCoA/ACP synthases, β-ketoacyl-CoA/ACP reductases, β-hydroxyacyl-CoA/ACP dehydratases, and enoyl-CoA/ACP reductase, catalyzes the same reaction cycles as fatty acid biosynthesis. $\omega 3$ and $\omega 6$ PUFAs are essential fatty acids for human and animals because they have no genes responsible for $\Delta 12$ and $\Delta 15$ desaturation reactions. As mentioned previous section, filamentous fungi (ARA producer) and engineered yeast (EPA producer) utilize this pathway for the PUFA biosynthesis ${ }^{10,11}$. Because the reaction in this pathway step-wisely occur, it is easy to perform pathway engineering for desired PUFA production. However, accumulation of intermediates is problem for industrial productions.

Figure 1-3-1. Schematic illustration of desaturase/elongase pathway

The other pathway is the PUFA synthase pathway, found in microalgae and marine bacteria in 2001^{22}. The PUFA synthase is a multi-protein complex composed of three or four polypeptides with catalytic domains like Type I FAS (Figure 1-3-2). PUFAs was believed to be de novo biosynthesized from acetyl units using malonyl-ACP as extender units in a similar manner to FAS reaction cycles ${ }^{22}$. However, in this system, β, γ-isomerization and α, β-isomerization of 2 -trans acyl-ACP are necessary to introduce cis double bonds depending on the carbon chain length of acyl-ACPs during reaction cycles (Figure 1-3-3). As mentioned previous section, microalgae Schizochytrium sp. (DHA producer) utilize this pathway ${ }^{12}$. From point of view for industrial production of PUFA, this pathway takes more advantage because it requires fewer reducing equivalents such as NADPH and produces smaller amounts of by-products with undesirable chain lengths and unsaturated positions. However, it is difficult to perform molecular engineering on this pathway. Because detailed biosynthetic machinery is still unknown though domain organizations of PUFA synthases suggests putative biosynthetic process.

Figure 1-3-2. PUFA synthase genes identified in marine microorganisms.

Figure 1-3-3. Schematic illustration of proposed biosynthetic cycles in PUFA synthases.

The PUFA synthase genes responsible for EPA, DHA, and ARA productions were identified not only in marine microorganisms such as Shewanella oneidensis, Photobacterium profundum, Moritella marina, Aureispira marina, and Schizochytrium sp., but also in terrestrial myxobacteria ${ }^{22-27}$ (Figure 1-3-2). Bioinformatic analysis of these genes showed that domain organizations were very similar to each other among all PUFA synthases though the enzymes produced different products (carbon chain length, C_{20} or C_{22}, and cis double bond positions, $\omega 3$ or $\omega 6$). These facts suggested that subtle functional difference of catalytic domains generate a structural diversity of final products. However, the mechanism for control of products is still unknown. Furthermore, PUFA synthases have unique features different from FAS enzymes. They have multiple tandem ACP domains ranging from 4 to 9 while FASs typically have one ACP domain. In addition, while FASs used the TE and MPT domain for chain release from ACP to produce free fatty acids (animal FAS) and fatty acyl-CoA (yeast FAS), respectively, PUFA synthases have no TE domain and hence the off-loading mechanism is unknown. These unveiled biosynthetic machineries are important and essential for molecular
engineering on PUFA synthases for industrial production of PUFAs.
In this study, I dissected the biosynthetic machinery in PUFA synthases. In chapter 2, I examined a mechanism for control of PUFA productivity and showed that unique tandem ACP domains were responsible for control of PUFA productivity. In chapter 3, I examined a mechanism for control of the first cis double bond formation on $\omega 3$ or $\omega 6$ position using EPA and ARA synthase, and showed that PUFA synthases utilized the two-type DH domains depending on the carbon chain length of acyl-ACPs to form cis double bonds or saturated form. In chapter 4, I also examined a mechanism for control of carbon chain length, C_{20} or C_{22}, using EPA and DHA synthase, and suggested that substrate recognitions of the KS domains are important for control of products. In chapter 5, I examined the off-loading mechanism in PUFA biosynthetic system and showed that the AT domain was responsible for a hydrolytic reaction of final products.

References

1. J. Kawamoto, T. Kurihara, K. Yamamoto, M. Nagayasu, Y. Tani, H. Mihara, M. Hosokawa, T. Baba, S. B. Sato, N. Esaki. Eicosapentaenoic acid plays a beneficial role in membrane organization and cell division of a cold-adapted bacterium, Shewanella livingstonensis Ac10. J. Bacteriol., 191, 632-640. (2009)
2. S. Sato, T. Kurihara, J. Kawamoto, M. Hosokawa, S. B. Sato, N. Esaki.Cold adaptation of eicosapentaenoic acid-less mutant of Shewanella livingstonensis Ac10 involving uptake and remodelling of synthetic phospholipids containing various polyunsaturated fatty acids. Extremophiles. 12, 753-761 (2008).
3. E. A. Dennis, P. C. Norris., Eicosanoid storm in infection and inflammation. Nat. Rev. Immunol., 15, 511-523 (2015).
4. C. D. Funk. Prostaglandins and leukotrienes: advances in eicosanoid biology., Science, 294, 1871-1875 (2001).
5. La Guardia, M., Giammanco, S., Di Majo, D., Tabacchi, G., Tripoli, E. \& Giammanco, M. Omega 3 fatty acids: biological activity and effects on human health. Panminerva Med. 47, 245257 (2005).
6. Swanson, D., Block, R. \& Mousa, S. A. Omega-3 fatty acids EPA and DHA: health benefits throughout life. Adv. Nutr. 3, 1-7 (2012).
7. Carlson, S. E., Werkman, S. H., Peeples, J. M., Cooke, R. J. \& Tolley, E. A. Arachidonic acid status correlates with first year growth in preterm infants. Proc. Natl. Acad. Sci. USA 90, 10731077 (1993).
8. Ander, B. P., Dupasquier, C. M., Prociuk, M. A. \& Pierce G. N. Polyunsaturated fatty acids and their effects on cardiovascular disease. Exp. Clin. Cardiol. 8, 164-172 (2003).
9. T. Yamamoto, H. Matsui, K. Yamaji, T. Takahashi, A. Øverby, M. Nakamura, A. Matsumto, K. Nonaka, T. Sunazuka, S. Omura, H. Nakano., Narrow-spectrum inhibitors targeting an alternative menaquinone biosynthetic pathway of Helicobacter pylori., J. Infect. Chemother., 22, 587-592 (2016).
10. Z. Xue, P. L. Sharpe, S. Hong, N. S. Yadav, D. Xie, D. R. Short, H. G. Damude, R. A. Rupert, J. E. Seip, J. Wang, D. W. Pollak, M. W. Bostick, M. D. Bosak, D. J. Macool, D. H. Hollerbach, H. Zhang, D. M. Arcilla, S. A. Bledsoe, K. Croker, E. F. McCord, B. D. Tyreus, E. N. Jackson, Q. Zhu, Production of omega-3 eicosapentaenoic acid by metabolic engineering of Yarrowia lipolytica. Nat. Biotechnol. 31, 734-740 (2013).
11. E. Sakuradani, A. Ando, S. Shimizu, J. Ogawa, Metabolic engineering for the production of polyunsaturated fatty acids by oleaginous fungus Mortierella alpina 1S-4. J. Biosci. Bioeng. 116, 417-422 (2013).
12. R. J. Winwood, Recent developments in the commercial production of DHA and EPA rich oils from micro-algae. $O C L$ 20, D604 (2013).
13. E. Schweizer, J. Hofmann., Microbial type I fatty acid synthases (FAS): major players in a network of cellular FAS systems., Microbiol. Mol. Biol. Rev., 68, 501-517 (2004).
14. D. I. Chan, and A. J. Vogel., Current understanding of fatty acid biosynthesis and acyl carrier protein., Biochem. J., 430, 1-19 (2010).
15. K. Finzel, D. J. Lee, M. D. Burkart., Using modern tools to probe the structure-function relationship of fatty acid synthases., ChemBioChem. 16, 528-547 (2015).
16. R. J. Heath, C. O. Rock., Inhibition of β-ketoacyl-acyl carrier protein synthase III (FabH) by acyl-acyl carrier protein in Escherichia coli. J. Biol. Chem., 271, 10996-11000 (1996).
17. S. Smith, A. Witkowski, A. K. Joshi., Structural and functional organization of the animal fatty acid synthase. Progress in Lipid Research. 42, 289-317 (2003).
18. F. Lynen., On the structure of fatty acid synthetase of yeast., Eur. J. Biochem., 112, 431-442 (1980).
19. J. H. Janßen, A. Steinbüchel., Fatty acid synthesis in Escherichia coli and its applications towards the production of fatty acid based biofuels. Biotechnol Biofuels 7, 7 doi:10.1186/1754-6834-7-7 (2014).
20. H. Kikukawa, E. Sakuradani, A. Ando, S. Shimizu, J. Ogawa, Arachidonic acid production by the oleaginous fungus Mortierella alpina 1S-4: A review. Journal of Advanced Research 11, 1522 (2018).
21. J. Shanklin, E. B. Cahoon, Desaturation and related modification of fatty acids. Annu. Rev. Plant Physiol. Plant Mol. Biol., 49, 611-641 (1998).
22. J. G. Metz, P. Roessler, D. Facciotti, C. Levering, F. Dittrich, M. Lassner, R. Valentine, K. Lardizabal, F. Domergue, A. Yamada, K. Yazawa, V. Knauf, J. Browse, Production of polyunsaturated fatty acids by polyketide synthases in both prokaryotes and eukaryotes. Science 293, 290-293 (2001).
23. J. S. Lee, S. Y. Jeong, U. D. Kim, W. J. Seo, K. B. Hur, Eicosapentaenoic acid (EPA) biosynthetic gene cluster of Shewanella oneidensis MR-1: cloning, heterologous expression, and effects of temperature and glucose on the production of EPA in Escherichia coli. Biotechnol. Bioprocess Eng., 11, 510-515 (2006).
24. E. E. Allen, H. D. Bartlett, Structure and regulation of the omega-3 polyunsaturated fatty acid synthase genes from the deep-sea bacterium Photobacterium profundum strain SS9. Microbiology 148, 1903-1913 (2002).
25. N. Morita, M. Tanaka, H. Okuyama, Biosynthesis of fatty acids in the docosahexaenoic acidproducing bacterium Moritella marina strain MP-1. Biochem. Soc. Trans. 28, 943-945 (2000).
26. T. Ujihara, M. Nagano, H. Wada, S. Mitsuhashi, Identification of a novel type of polyunsaturated fatty acid synthase involved in arachidonic acid biosynthesis. FEBS Lett. 588, 4032-4036 (2014).
27. K. Gemperlein, S. Rachid, O. R. Garcia, C. S. Wenzel, R. Müller, Polyunsaturated fatty acid biosynthesis in myxobacteria: different PUFA synthases and their product diversity. Chem. Sci. 5, 1733-1741 (2014).

Chapter 2

Mechanism for control of PUFA productivity in PUFA synthase

2.1. Introduction

As mentioned in chapter 1, PUFA synthases employ unique multi-tandem ACP domains in its biosynthesis while FASs and most of PKSs typically have single ACP domain for each reaction cycle (Figure 2-1-1). The carrier protein is expressed as apo-form. apo-ACP is activated by phosphopantetheinyl transferase to form holo-ACP, in which 4'-phosphopantetheine arm is attached to the active residue Ser, to shuttle growing acyl chains to appropriate catalytic domains (Figure 2-12).

Figure 2-1-1. Multi-tandem ACP domains in PUFA synthases.

Figure 2-1-2. Activation of apo-ACP to form holo-ACP by phosphopantetheinyl transferase and shuttling of growing acyl chain to appropriate catalytic domains.

Modular and iterative type I PKSs with a few tandem-repeated ACP domains have also been identified and their biological roles have been studied (Figure 2-1-3). First example was fungal iterative type I PKS with two ACP domains responsible for naphthopyrone biosynthesis. Site-directed mutation of each ACP domain showed that one of the two ACPs was enough to synthesize naphthopyrone but the effect of inactivated ACPs on productivity was not reported ${ }^{1}$. Modular PKS responsible for mupirocin biosynthesis ${ }^{2}$ and PKS-nonribosomal peptide synthase, a hybrid enzyme, for curacin biosynthesis ${ }^{3}$ also employed two and three ACPs, respectively. Site-directed mutation and in-frame deletion of ACP domains led to a decrease of their productivities. In 2008, Ben Shen's research group showed that inactivation of the ACP domains by site-directed mutagenesis of the active site Ser impacted on the PUFA productivity. They showed that its productivity was decreased depending on the number of inactive ACP domains. Furthermore, they revealed that each of the ACP domains was functionally equivalent for its biosynthesis ${ }^{4}$.
fungal iterative type I PKS

naphthopyrone
modular type I PKS

PKS/NRPS-hybrid

Figure 2-1-3. Examples of PKS enzymes with tandem ACP domains in secondary metabolites.

These results suggest that the number of the ACP domains in PUFA synthases/PKSs and polyketide productivity have a close relationship. Thus, enzyme engineering of ACP domain is an attractive approach for enhancement of its productivity in addition to metabolic engineering approach as described in discussion section. However, only disruption methods have been employed in the reported studies. In this chapter, I constructed bacterial and microalgae PUFA synthase derivatives with more active ACP domains than the native type and examined the effects on their productivities.

2.2. Results

2.2.1. Heterologous expression of PUFA synthase genes in Escherichia coli

I first constructed a heterologous expression system in Escherichia coli for evaluation of PUFA productivity because it is difficult to prepare recombinant whole PUFA synthase enzymes for in vitro assay. Metz et al. succeeded in DHA production in E. coli harbouring the orfABC genes from Schizochytrium sp. and phosphopantetheinyl transferase gene, hetI, from Nostoc sp. ${ }^{5}$. Furthermore, other groups also succeeded in PUFA productions in E. coli expressing bacterial PUFA synthase genes ${ }^{6,7}$. Therefore, I selected E. coli as heterologous hosts. For easy construction of engineered genes encoding more ACP domains than parental enzyme, PUFA synthase genes were cloned into different and compatible expression vectors, $\mathrm{pET}-21 \mathrm{a}, \mathrm{pCDF}-1 \mathrm{~b}, \mathrm{pCOLAD}$ uet -1 , and pSTV or $\mathrm{pACYCDuet}-1$. Microalgae PUFA synthase genes, orf $A B C$, and hetI were cloned to construct pET-orfA, pCDF-orfB, pCOLA-orfC, and pSTV-hetI. Bacterial EPA synthase genes of Shewanella oneidensis, SopfaABCDE, were also cloned to construct pET-SopfaA, pCDF-SopfaC, pCOLA-SopfaD, pACYC-SopfaE-SopfaB (Figure 2-2-1-1). To prevent degradation of the synthesized PUFAs, the fadE gene encoding an acylCoA dehydrogenase, responsible for the β-oxidation pathway in E. coli BLR(DE3), was disrupted as described in Experimental section, and the strains was used as host for following experiments.

Figure 2-2-1-1. (A) The plasmids set for expression of PUFA synthase genes of Schizochytrium sp. (B) The plasmids set for expression of PUFA synthase genes of S. oneidensis.

Then, I examined whether the expression system constructed worked well under the experimental conditions. After E. coli $\operatorname{BLR}(\mathrm{DE} 3) \Delta f a d E$ harbouring the all plasmids was cultured in terrific broth medium, the products were extracted and analysed by GC/MS. As shown in Figure 2-2-1-2, the transformants expressing orfABC and hetI produced both DHA and DPA $\omega 6$ and the yields of DHA and DPA $\omega 6$ were 4.5 ± 0.08 and $0.71 \pm 0.03 \mu \mathrm{~g} \mathrm{~mL}^{-1} \mathrm{OD}^{-1}$, respectively. I also confirmed that the transformants expressing SopfaABCDE produced EPA and DPA $\omega 3$ in addition to stearidonic acids (SDA, C18:4 $\omega 3$) and eicosatetraenoic acids (ETA, C20:4 ω, Figure 2-2-1-3). Because SDA and ETA are not produced by the original strain, S. oneidensis ${ }^{8}$, their production were caused by the heterologous expression in E. coli. The yields of EPA, DPA $\omega 3$, SDA, and ETA were 0.10 ± 0.002, $0.013 \pm 0.003,0.22 \pm 0.02$, and $0.044 \pm 0.004 \mu \mathrm{~g} \mathrm{~mL}{ }^{-1} \mathrm{OD}^{-1}$, respectively.

Fig. 2-2-1-2. GC-MS analysis (traced at m / z 79) of PUFA methyl esters produced in E. coli expressing orfABC and hetI genes. Upper trace: authentic standard of methyl ester of DHA, lower trace: E. coli expressing orfABC and hetI genes.

Fig. 2-2-1-3. GC-MS analysis (traced at $m / z 79$) of PUFA methyl esters produced in E. coli expressing SopfaABCDE genes. Top trace: E. coli expressing SopfaABCDE genes. Second, third, fourth, and bottom traces were authentic standards of methyl ester of DPA $\omega 3$, EPA, ETA, and SDA, respectively.

2.2.2. The effect of the number of ACP domains on PUFA productivity

I then constructed pET-orfA derivative plasmids with different numbers of ACP domains. Each of the ACP domains is highly conserved and separated by conserved and repeated regions with Ala and Pro rich sequences (Figure 2-2-2-1). This architecture suggested that the regions between the $\mathrm{Ala} /$ Pro rich sequences are each one functional ACP unit in the multi-tandem ACP domain of PUFA synthase. Therefore, I increased the number of the unit in a stepwise manner by the method shown in Experimental section. In brief, I first constructed a plasmid with one unit of the ACP domain. Then, this unit was inserted into each plasmid by step-by-step addition to construct all the plasmids. Consequently, I constructed seven engineered orf A plasmids with $4 \times, 5 \times, 6 \times, 7 \times, 8 \times, 10 \times$ and $11 \times$ ACP domains (Fig. 2-2-2-2).

OrfA ACP domain of Schizochytrium sp.
ACP1 APAPVKAAAPAAPVASAPAPA--------VSNELLEKAETVVMEVLAAKTGYETDMIEADMELETELGIDSIKRVEILSEVQAMLNVEAKDVDALSRTRTVGEVVNAMKAEIAGSS
ACP2 APAPAAAAPAPAKAAPAAAAPA-------VSNELLEKAETVVMEVLAAKTGYETDMIESDMELETELGIDSIKRVEILSEVQAMLNVEAKDVDALSRTRTVGEVVNAMKAEIAGGS
ACP3 APAPAAAAPGPAAAAPAPAAAAPA-----VSNELLEKAETVVMEVLAAKTGYETDMIESDMELETELGIDSIKRVEILSEVQAMLNVEAKDVDALSRTRTVGEVVDAMKAEIAGGS
ACP4 APAPAAAAPAPAAAAPAPAAPAPA-----VSSELLEKAETVVMEVLAAKTGYETDMIESDMELETELGIDSIKRVEILSEVQAMLNVEAKDVDALSRTRTVGEVVDAMKAEIAGGS ACP5 APAPAAAAPAPAAAAPAPAAPAPAAPAPAVSSELLEKAETVVMEVLAAKTGYETDMIESDMELETELGIDSIKRVEILSEVQAMLNVEAKDVDALSRTRTVGEVVDAMKAEIAGSS

ACP6 ASAPAAAAPAPAAAAPAPAAAAPA-----VSNELLEKAETVVMEVLAAKTGYETDMIESDMELETELGIDSIKRVEILSEVQAMLNVEAKDVDALSRTRTVGEVVDAMKAEIAGGS
ACP7 APAPAAAAPAPAAAAPA------------VSNELLEKAETVVMEVLAAKTGYETDMIESDMELETELGIDSIKRVEILSEVQAMLNVEAKDVDALSRTRTVGEVVDAMKAEIAGSS
ACP8 APAPAAAAPAPAAAAPAPAAAAPA-----VSSELLEKAETVVMEVLAAKTGYETDMIESDMELETELGIDSIKRVEILSEVQAMLNVEAKDVDALSRTRTVGEVVDAMKAEIAGGS
ACP9 APAPAAAAPAPAAAAPA-----------VSNELLEKAETVVMEVLAAKTGYETDMIESDMELETELGIDSIKRVEILSEVQAMLNVEAKDVDALSRTRTVGEVVDAMKAEIAGGS APAPAAAAPASAGAAPAVKIDS

Figure 2-2-2-1. Sequence alignment of the tandem acyl carrier protein domains of orff. The red box, yellow highlighting, and blue highlighting show the active sites of the ACP domains, Ala and Pro rich linkers, and ZraI sites, respectively.

Figure 2-2-2-2. Schematic illustration of engineered $\operatorname{orf} A$ s with $4 \times$ to $11 \times \mathrm{ACP}$ domains.

Using these plasmids, the PUFA productivity and profile were analysed as described above. As shown in Figure 2-2-2-3, DHA and DPA $\omega 6$ productivity decreased and increased depending on the number of ACP domains, while the profiles of the PUFA products were the same as those of the native type ($9 \times$ ACP domains). Notably, the PUFA yields of pET-orfA with more ACP domains ($10 \times$ and $11 \times$)
were higher than those of the native plasmid, pET-orfA (1.5-fold DHA and DPA $\omega 6$ for $10 \times$ ACPs, 2.0 fold DPA $\omega 6$ and 1.8 -fold DHA for $11 \times$ ACP $)$. These results indicated that the number of ACP domains in OrfA just controls productivity, and that the tandem ACP domain was important for controlling PUFA productivity.

Figure 2-2-2-3. DHA (left) and DPA $\omega 6$ (right) productivities by the engineered orfAs, orfBC, and hetI in E. coli.

I next carried out the same experiment with the EPA synthase genes, SopfaABCDE, of S. oneidensis. I constructed five plasmids carrying SopfaA genes (Figure 2-2-2-4) with increased numbers of ACP domains ($5 \times, 6 \times, 7 \times, 8 \times$, and $9 \times$) by essentially the same method used to construct the pET-orfA derivatives as described in Experimental section. The productivities and profiles of the PUFAs produced by E. coli $\operatorname{BLR}(\mathrm{DE} 3) \Delta f a d E$ carrying the $S o p f a A$ derivative genes together with the SopfaBCDE were analysed as described above. As shown in Figure 2-2-2-5, EPA productivity linearly increased with increased numbers of ACP domains $(5 \times \mathrm{ACPs}, 3.7$-fold; $6 \times \mathrm{ACPs}$, 5.1 -fold; $7 \times$ ACPs, 10 -fold; $8 \times$ ACPs, 16 -fold; $9 \times$ ACPs, 16 -fold). SDA, ETA, and DPA $\omega 3$ productivities also increased in the same manner. As for the profiles of the PUFA products, no differences between the SopfaA derivatives and the native gene were observed. These results again indicated that the number of ACP domains just controls the productivity.

Figure 2-2-2-4. Schematic illustration of the engineered SopfaAs with $4 \times$ to $9 \times$ ACP domains.

Figure 2-2-2-5. EPA and total PUFAs productivities by the engineered SopfaAs and SopfaBCDE in E. coli.

2.2.3. The Effect of inactivation of ACP domain on PUFA productivity

As demonstrated by the PUFA synthases of both Schizochytrium sp . and S. oneidensis, which are a eukaryotic and a prokaryotic microorganism, respectively, an increased number of ACP domains up to 9 or 11 linearly enhanced PUFA productivity, suggesting that more ACP domains plausibly supply more substrates to synthesize PUFAs. Therefore, I next investigated the effect of inserting an inactive ACP domain, in which the active Ser residue was mutated to Ala by site-directed mutagenesis,
on PUFA productivity. I constructed five genes, SopfaA5-1M, SopfaA5-2M, SopfaA5-3M, SopfaA5$4 M$, SopfaA5-5M, which had the same gene structure as SopfaA with $5 \times \mathrm{ACP}$ domains except that each ACP domain was inactivated. (Figure 2-2-3-1).

Figure 2-2-3-1. Schematic illustration of the mutated SopfaAs. Black ACP showed the inactive ACP domain.

As shown in Figure 2-2-3-2, the transformants harbouring mutated genes produced approximately 18-39 \% EPA and 20-38 \% total PUFAs compared with those harbouring SopfaA5, but unexpectedly produced $230-300$ \% EPA and $170-220 \%$ total PUFAs compare with those harbouring native SopfaA with $4 \times$ ACP domains. These results suggested that PUFA productivity was enhanced not only by increasing the number of active ACP domains but also by the insertion of an inactivated ACP domain though the effects were smaller than those of active ACP domains, and that the location of the inactivated ACP in the tandem ACP domain region is not critical.

Figure 2-2-3-2. PUFA productivities by the mutated SopfaAs and SopfaBCDE in E. coli.

$$
\begin{aligned}
& \text { X = } \text { Inactive ACP domain from DHA synthase of } M \text {. marina (identity: } 71 \% \text {) } \\
& \text { Inactive ACP domain from DHA synthase of Schizochytrium sp (identity: 49\%) } \\
& \text { Inactive ACP domain from EPA synthase of P. profumdum (identity: 70\%) } \\
& \text { Inactive ACP domain from ARA synthase of A. marina (identity: 48\%) } \\
& \text { No relation amino acid sequence to ACP domain }
\end{aligned}
$$

Figure 2-2-3-3. Schematic illustration of the additional mutated SopfaAs.

I next constructed additional SopfaA5 derivatives. The inactivated ACP domain located at the third position of SopfaA5-3M was replaced with another inactive ACP domain of PUFA synthase from Moritella marina (a DHA producer), Photobacterium profundum (an EPA producer), Schizochytrium sp., or Aureispira marina (an ARA producer). Their ACP domains show 70\%, 71\%, 49% and 48% identities to that of SoPfaA, respectively (Figure 2-2-3-3). Each of the constructed plasmids, dhaAM, epaAM, orfAM, and araAM, was introduced into E. coli $\operatorname{BLR}(\mathrm{DE} 3) \Delta f a d E$ together with the $\operatorname{Sopfa} A C D E$ genes and PUFA productivity was examined. All the enzymes produced similar amounts of PUFAs but the productivities varied slightly depending on the similarity between the native and replaced ACP domains (Figure 2-2-3-2). In contrast, PUFA productivity was lost when third inactive ACP domain was replaced in-frame with sequence S 1 or S 2 that was a part sequences of ABC transporter HlyB of S. oneidensis identified in genome database and had approximately the same length as the native ACP (data not shown). These results suggested that the structure of the tandem

ACP domains is also a key factor controlling PUFA productivity in addition to the number of active ACP domains.

2.3. Discussion

As mentioned in chapter 1, the demand for PUFAs such as DHA and EPA in food and pharmaceutical industries are increasing because of their biological activities. Fermentative processes have been developed as alternative and sustainable sources of PUFAs ${ }^{9-11}$. As for improvement of its productivity, many approaches were reported, such as improvement of reducing equivalent (NADPH) flux, inhibition of the acyl-exchange reaction between phosphatidylcholine and acyl-CoA substrates, and prevention of PUFA degradation by β-oxidation ${ }^{9,12}$. Furthermore, co-expression of catalase ${ }^{13}$, addition of cerulenin ${ }^{14,15}$, an inhibiter of de novo fatty acid synthesis, and metabolic engineering to increase the substrate supply ${ }^{16}$ have been employed. However, all these attempts have focussed only on the metabolic flow and no examples of enzyme activation have been reported. In this study, I succeeded in improving PUFA productivity for the first time by the enzymatic engineering. The productivities were linearly increased depending on the number of ACP domains using both the eukaryotic PUFA synthase of Schizochytrium sp. and the prokaryotic PUFA synthase of S. oneidensis without PUFA product profile change. I believe that this enzymatic approach was useful for enhancement of product productivity to not only PUFA synthase but also FAS and PKSs. Recently, 1.6-fold higher production of total fatty acids in type II FAS were reported by expression of artificial tandem ACP containing three ACPs unit linked with Ala/Pro rich linker sequence ${ }^{17}$ (Figure 2-3-1). Furthermore, Wang et al. succeeded in 2.5-fold enhancement of polyketide productivity by increasing ACP domains in 6-deoxyerythronolide B synthase ${ }^{18}$ (Figure 2-3-1). However, the product profiles of the engineered enzymes were changed from those of native enzyme. The parental enzyme synthesized triketide lactone and triketide ketolactone in a ratio of 1:1.8 whereas the engineered enzyme synthesized only triketide ketolactone. The enzyme unexpectedly skipped β-ketoreduction reaction, suggesting, the quaternary structure of tandem ACP domain was also important for product productivity in addition to the number of ACP domains.
(A)
(B)

Figure 2-3-1. Enzyme engineering of type II FAS and modular type I PKS 6-deoxyerythronolide synthase with artificial three tandem ACP domains.

The solution structure of the five tandem ACP domains of PUFA synthase was previously investigated using several analytical methods. Small-angle X-ray scattering analysis suggested that the multi-ACP fragment was an elongated monomer with a beads-on-a-string like structure ${ }^{19}$ (Figure 2-3-2). This multi-tandem ACP domain structure enabled simultaneous access of other catalytic domains and enhancement of productivity without PUFA profile change. The results, which the mutated enzymes (SoPfaA5-1M to SoPfaA5-5M, dhaAM, epaAM, orfAM, and araAM) still produced more PUFAs, would support the beads-on-a-string structure. The structure of the tandem ACP
domains was a key factor controlling PUFA productivity besides the number of active ACP domains. However, the reasons why the mutated enzymes showed still higher PUFA production than parental enzyme ($4 \times \mathrm{ACP}$) and why the PUFA synthase complex could allow wide range of tandem ACP domains (4 to 11 ACP domains) to access catalytic domains are still unclear. High-resolution structural information of tandem ACP domains and PUFA synthase complex are needed to answer these questions.

Figure 2-3-2. Beads-on-a-string structure of tandem ACP domains. Each catalytic domain is simultaneously able to access to tandem ACP domains in PUFA synthase complex.

References

1. I, Fujii, A. Watanabe, U. Sankawa, Y. Ebizuka, Identification of Claisen cyclase domain in fungal polyketide synthase WA, a naphthopyrone synthase of Aspergillus nidulans. Chem. Biol. 8, 189-197 (2001).
2. S. A. Rahman, J. Hothersall, J. Crosby, J. T. Simpson, M. C. Thomas, Tandemly duplicated acyl carrier proteins, which increase polyketide antibiotics production, can apparently function either in parallel or in series. J. Biol. Chem. 280, 6399-6408 (2005).
3. L. Gu, E. B. Eisman, S. Dutta, T. M. Franzmann, S. Walter, W. H. Gerwick, G. Skiniotis, D. H. Sherman, Tandem acyl carrier proteins in the curacin biosynthesis pathway promote consecutive multienzyme reactions with a synergistic effect. Angew. Chem. Int. Ed. 50, 2795-2798 (2011).
4. H. Jiang, R. Zirkle, J. G. Metz, L. Braun, L. Richter, S. G. Van Lanen, B. Shen, The role of tandem acyl carrier protein domains in polyunsaturated fatty acid biosynthesis. J. Am. Chem. Soc. 130, 6336-6337 (2008).
5. A. Hauvermale, J. Kuner, B. Rosenzweig, D. Guerra, S. Diltz, J. G. Metz, Fatty acid production in Schizochytrium sp.: involvement of a polyunsaturated fatty acid synthase and a type I fatty acid synthase. Lipids 41, 739-747 (2006).
6. Y. Orikasa, T. Nishida, A. Yamada, R. Yu, K. Watanabe, A. Hase, N. Morita, H. Okuyama, Recombinant production of docosahexaenoic acid in a polyketide biosynthesis mode in Escherichia coli. Biotechnol. Lett. 28, 1841-1847 (2006).
7. J. S. Lee, S. Y. Jeong, U. D. Kim, W. J. Seo, K. B. Hur, Eicosapentaenoic acid (EPA) biosynthetic gene cluster of Shewanella oneidensis MR-1: cloning, heterologous expression, and effects of temperature and glucose on the production of EPA in Escherichia coli. Biotechnol. Bioprocess Eng., 11, 510-515 (2006).
8. R. Abboud, R. Popa, V. Souza-Egipsy, C. S. Giometti, S. Tollaksen, J. J. Mosher, R. H. Findlay, K. H. Nealson, Low-temperature growth of Shewanella oneidensis MR-1. Appl. Eonviron. Microbiol., 71, 811-816 (2005).
9. Z. Xue, P. L. Sharpe, S. Hong, N. S. Yadav, D. Xie, D. R. Short, H. G. Damude, R. A. Rupert, J. E. Seip, J. Wang, D. W. Pollak, M. W. Bostick, M. D. Bosak, D. J. Macool, D. H. Hollerbach, H. Zhang, D. M. Arcilla, S. A. Bledsoe, K. Croker, E. F. McCord, B. D. Tyreus, E. N. Jackson, Q. Zhu, Production of omega-3 eicosapentaenoic acid by metabolic engineering of Yarrowia lipolytica. Nat. Biotechnol. 31, 734-740 (2013).
10. E. Sakuradani, A. Ando, S. Shimizu, J. Ogawa, Metabolic engineering for the production of polyunsaturated fatty acids by oleaginous fungus Mortierella alpina 1S-4. J. Biosci. Bioeng. 116, 417-422 (2013).
11. R. J. Winwood, Recent developments in the commercial production of DHA and EPA rich oils from micro-algae. $O C L$ 20, D604 (2013).
12. Y. Gong, X. Wan, M. Jiang, C. Hu, H. Hu, F. Huang, Metabolic engineering of microorganisms to produce omega-3 very long chian polyunsaturated fatty acids. Prog. Lipid Res. 56, 19-35 (2014).
13. Y. Orikasa, Y. Ito, T. Nishida, K. Watanabe, N. Morita, T. Ohwada, I. Yumoto, H. Okuyama, Enhanced heterologous production of eicosapentaenoic acid in Escherichia coli cells that coexpress eicosapentaenoic acid biosynthesis pfa genes and foreign DNA fragments including a high-performance catalase gene, vktA. Biotechnol. Lett. 29, 803-809 (2007).
14. N. Morita, T. Nishida, M. Tanaka, Y. Yano, H. Okuyama, Enhancement of polyunsaturated fatty acid production by cerulenin treatment in polyunsaturated fatty acid-producing bacteria. Biotechnol. Lett. 27, 389-393 (2005).
15. J. Fang, C. Kato, T. Sato, O. Chan, D. McKay, Biosynthesis and dietary uptake of polyunsaturated fatty acids by piezophilic bacteria. Comp. Biochem. Physiol. B 137, 455-461 (2004).
16. K. Gemperlein, G. Zipf, H. S. Bernauer, R. Müller, S. C. Wenzel, Metabolic engineering of Pseudomonas putida for production of docosahexaenoic acid based on a myxobacterial PUFA synthase. Metab. Eng. 33, 98-108 (2016)
17. C. Rullan-Lind, M. Ortiz-Rosario, A. Garcia-Gonzalez, V. Stojanoff, N. E. Chorna, R. B. Pietri, A. Baerga-Ortiz. Artificial covalent linkage of bacterial acyl carrier proteins for fatty acid production. Sci. Rep., 9: 16011 (2019).
18. Z. Wang, S. R. Bagde, G. Zavala, T. Matsui, X. Chen, C. Y. Kim, De novo design and implementation of a tandem acyl carrier protein domain in a type I modular polyketide synthase. ACS Chem. Biol., 13, 3072-3077 (2018).
19. U. Trujillo, E. Vazque-Rosa, D. Oyola-Robles, L. J. Stagg, D. A. Vassallo, I. E. Vega, S. T. Arold, A. Baerga-Ortiz, Solution structure of the tandem acyl carrier protein domains from a polyunsaturated fatty acid synthase reveals bead-on-a-string configuration. PLoS One 8, e57859 (2013).

Chapter 3

Mechanism for control of cis double bond positions in PUFA synthases

3.1. Introduction

In chapter 2 , I showed that the number of tandem ACP domains and its structure were important factors for controlling PUFA productivity in PUFA synthases through in vivo experiments. I next tried to elucidate how the enzymes control cis double bond position of PUFA products with EPA and ARA synthases.

Figure 3-1-1. Chemical structures of DHA, EPA, ARA, and GLA. Yellow highlights show structural difference between $\omega 3$ and $\omega 6$ PUFAs

As mentioned in chapter 1, PUFAs are classified into $\omega 3$ or $\omega 6$ PUFAs depending on the first cis double bond position from methyl end. EPA and DHA are members of $\omega 3$ PUFAs whereas ARA and γ-linoleic acids (GLA) are members of $\omega 6$ PUFAs (Figure 3-1-1). From the first discovery of PUFA synthase genes, the genes responsible for $\omega 3$ PUFAs production have mainly been identified ${ }^{1-3}$. However, genes responsible for ARA production were identified in Aureispira marina in 2014 ${ }^{4}$. Interestingly, domain organization of the ARA synthase was similar to that of $\omega 3$ PUFAs synthases even though the enzymes synthesized different products (Figure 3-1-2). Based on a putative biosynthetic pathway, the branching reaction steps of $\omega 3$ and $\omega 6$ PUFAs would be brought during reactions of C_{6} to C_{8} intermediates. In $\omega 3$ PUFAs biosynthesis, a formation of cis double bond via $\beta, \gamma-$ isomerization of double bond would occur after dehydration of β-hydroxy groups. In contrast, enoyl reduction of trans double bond would occur in $\omega 6$ PUFAs biosynthesis (Figure 3-1-2). However,
detailed biosynthetic machinery was unclear. In this chapter, I examined the mechanism for controlling the first cis double bond positions, $\omega 3$ or $\omega 6$, of PUFA synthases by in vivo and in vitro experiments.
(A)

(B)

Figure 3-1-2. (A) Domain organizations of EPA and ARA synthases (B) Putative EPA and ARA biosynthetic pathway of C_{6} and C_{8} intermediates.

3.2. Results

3.2.1. Important domains for control of EPA or ARA production

To get clues how the enzymes control the formation of the first cis double bond positions, I carried out in vivo gene exchange assays with EPA synthase genes of Photobacterium. profundum and ARA synthase genes of A. marina using the same heterologous expression system as described in chapter 2. The EPA and ARA synthase genes were cloned into different and compatible expression vectors, $\mathrm{pET}-21 \mathrm{a}, \mathrm{pCDF}-1 \mathrm{~b}$, pACYCDuet-1, and pCOLADuet-1 to construct plasmids (Figure 3-2-11). Because a phosphopantetheinyl transferase gene for activation of ACP in Epa-A have not been identified, a phosphopantetheinyl transferase gene, SopfaE of S. oneidensis, were used as alternative.
(A)

Shewanella oneidensis EPA: C20:5 $\omega 3$

SopfaE

(B)

Figure 3-2-1-1. (A) The plasmids set for expression of EPA synthase genes of P. profundum. (B) The plasmids set for expression of ARA synthase genes of A. marina.

Then, the PUFA profiles were evaluated by replacing each epa gene with the corresponding ara gene. As shown in Figure 3-2-1-2, the PUFA profiles of transformants expressing epa-ABC with ara- D were almost the same as those of transformants expressing epa-ABCD. In contrast, the
transformants expressing epa- $A B D$ with ara-C produced both EPA and ARA, suggesting ara- C was important for ARA production. Moreover, the transformants expressing epa-AD with ara-BC produced ARA as major products. These results indicated both Ara-B and Ara-C were important for ARA production.

Figure 3-2-1-2. GC-MS analysis traced at $m / z 79$ by gene replacement of epa gene with ara gene. Top: authentic standard of methyl ester of ARA, EPA, DPA, and DHA.

I next examined which domain in Ara-C is essential for ARA production. The ara-C encoded KS, CLF, AT, and two $\mathrm{DH}_{\text {FabA }}$ domains. I first constructed ara- $C-A T^{0}$, in which the catalytic Ser residue estimated by sequence alignments of AT domains ${ }^{5}$ (Figure 3-2-1-3) was mutated to Ala, and coexpressed it with epa- $A B D$. Although PUFA productivity of the AT mutant was decreased compared with parental construct, the PUFA profile of the AT mutants was the same as that of parental construct (Figure 3-2-1-3). Thus, I concluded that the AT domain in Ara-C was unrelated to ARA production and the function was complemented by the AT domain in Epa-B.

Figure 3-2-1-3. (A) Sequence alignment of the AT domains in PUFA synthases. The red box and star show the catalytic GxSxG motif and the catalytic Ser residue, respectively. SoPfaB-AT: SoPfaB of Shewanella oneidensis MR-1, Epa-B-AT: Epa-B of P. profundum SS9, Dha-B-AT: Dha-B of M. marina, Ara-C-AT: Ara-C of A. marina, OrfB-AT: OrfB of Schizochytrium sp. ATCC 20888. (B) GCMS analysis traced at $m / z 79$ of the AT domain mutant (bottom).

I next constructed chimeric genes, epa-C-ara-DH $H_{F a b A-}$ chimeral and ara-C-epa-DH $H_{F a b A^{-}}$ chimera2, in which the $\mathrm{DH}_{\mathrm{FabA}}$ domains in Epa-C and Ara-C were swapped (Figure 3-2-1-4). When epa-C-ara-DH FabA-chimeral was co-expressed with epa- $A B D$, almost the same amounts of ARA and EPA were produced (Figure 3-2-1-4), suggesting that the $\mathrm{DH}_{\text {FabA }}$ domains in Ara-C are important for ARA production. Unexpectedly, ara-C-epa-DH FabA $^{-c h i m e r a} 2$ predominantly yielded ARA when coexpressed with epa-AD and ara-B (Figure 3-2-1-4), suggesting that the $\mathrm{KS}_{\mathrm{C}} / \mathrm{CLF}$ domains in Ara-C are also important. I then constructed dozens of chimeric genes fused at different points in the KS_{C} and CLF domains but none of the constructs showed activity.

Figure 3-2-1-4. (A) Domain organization of two chimeric genes. (B) GC-MS analysis traced at m / z 79 of the products by co-expressions of ara-C-epa-DH FabA-chimera2 with ara-B and epa-AD (middle) and of epa-C-ara-DH FabA-chimeral with epa-ABD (bottom). Asterisk showed minor uncharacterized PUFA products.

To investigate the essential domain in Ara-B for ARA production, I constructed mutated enzymes. Tyr in the KR domain and His in the DHPKS domain, which are plausibly catalytically essential amino acid residues ${ }^{6-9}$ estimated by sequence alignments (Figure 3-2-1-5), were mutated to Phe to construct $A R A-B-K R^{0}$ and $A R A-B-D H^{0}$ by site-directed mutagenesis. The transformant expressing $\operatorname{ara}-B-K R^{0}$ with epa-AD and ara-C produced ARA (Figure 3-2-1-6), plausibly because the function of Ara-B-KR ${ }^{0}$ was complemented by the KR domain in Epa-A, while ARA production was drastically decreased by expressing ara-B-DH ${ }^{0}$ with epa-AD and ara-C (Figure 3-2-1-6). These results showed that the $\mathrm{DH}_{\mathrm{PKS}}$ domain in Ara-B is important for ARA production. Taking these results together, I concluded that the $\mathrm{KS}_{\mathrm{C}} / \mathrm{CLF}$ and $\mathrm{DH}_{\mathrm{FabA}}$ domains in Ara-C and the $\mathrm{DH}_{\mathrm{PKS}}$ domain in Ara-B were responsible for ARA production.

Figure 3-2-1-5. Sequence alignments of $\mathrm{KR}(\mathrm{A})$ and $\mathrm{DH}_{\text {PKS }}(\mathrm{B})$ in PUFA synthases. (A) The blue box shows the NADPH binding motif. The red square and star show the catalytic YxxxN motif and the catalytic Tyr residue, respectively. (B) The blue box and star show the HxxxGxxxxP motif and the catalytic His residue, respectively. The red square and star show the catalytic DxxxQ motif and the catalytic Asp residue, respectively. From top to bottom; SoPfaA of S. oneidensis MR-1, Epa-A of P. profundum SS9, Dha-A of M. marina, Ara-B of A. marina, and OrfA of Schizochytrium sp. ATCC 20888.

Figure 3-2-1-6. GC-MS analysis traced at $m / z 79$ of the products by co-expression of ara-B-KR (middle) or ara-B-DH ${ }^{0}$ (bottom) with epa- $A D$ and ara-C.

3.2.2. Mechanism for control of first cis double bonds positions in PUFA synthases

In vivo experiments suggested that the two type DH domains, $\mathrm{DH}_{\mathrm{PKS}}$ and $\mathrm{DH}_{\mathrm{FabA}}$, were important for ARA production. While the $\mathrm{DH}_{\text {PKS }}$ showed a similarity to DH domain in modular type I PKS, the $\mathrm{DH}_{\text {FabA }}$ showed 30-40 \% identity to FabA, β-hydroxyacyl-ACP dehydratase in type II FAS. It is known that the FabA catalyzes β, γ-isomerization of 2 -trans decaenoyl-ACP to form 3-cis decaenoyl-ACP besides α, β-dehydration and is responsible for unsaturated fatty acid biosynthesis ${ }^{10-12}$ (Figure 3-2-2-1). As mentioned, the branching point between EPA and ARA biosynthesis would be brought by reactions during the carbon elongation from a $\mathrm{C}_{6}-$ to a $\mathrm{C}_{8}-\mathrm{ACP}$ intermediate. A saturation reaction of 2-trans hexenoyl-ACP would occur in ARA biosynthesis while a β, γ-isomerization reaction from 2-trans to 3-cis hexenoyl-ACP would take place in EPA biosynthesis. Taken together the information, I estimated that the $\mathrm{DH}_{\text {FabA }}$ would catalyze dehydration and isomerization reactions of 3-hydroxyhexanoyl-ACP in EPA biosynthesis while the $\mathrm{DH}_{\text {PKS }}$ catalyze dehydration and the ER domain catalyze enoyl reduction in ARA biosynthesis. To investigate the probability, I carried out in vitro experiments using acyl-ACP substrates and truncated recombinant enzymes.

Figure 3-2-2-1. The reaction catalyzed by β-hydroxyacyl-ACP dehydratase FabA in type II FAS

Acyl-ACP substrates were prepared by enzymatic reactions using apo-ACP of S. oneidensis and phosphopantetheinyl transferase Sfp of Bacillus subtilis because the Sfp is known to show promiscuous substrate specificity ${ }^{13}$ and could load various acyl-CoAs on apo-ACP to form acyl-ACPs. Recombinant apo-ACP and Sfp were obtained by expression of their genes in BL21(DE3) and purified as described in Experimental section. I also prepared recombinant DH enzymes, $\mathrm{DH}_{\text {PKS }}$ and $\mathrm{DH}_{\text {FabA }}$ of EPA and ARA synthases, but truncated enzymes containing only the $\mathrm{DH}_{\text {PKS }}$ domain were insoluble. Thus, Epa-A-KR-DH ${ }_{\text {PKS }}\left(E p a-K R-\mathrm{DH}_{\mathrm{PKS}}\right)$ and Ara-B-KR-DH ${ }_{\mathrm{PKS}}$ (Ara-KR-DH ${ }_{\mathrm{PKS}}$) were prepared as the $\mathrm{DH}_{\text {PKS }}$ domain (Figure 3-2-2-2).

Figure 3-2-2-2. SDS-PAGE analysis of recombinant enzymes. (A) 1, Marker; 2, Sfp (29 kDa); 3, apoACP (15 kDa). (B) 1, Epa-KR-DH ${ }_{\text {PKs }}(135 \mathrm{kDa}$); 2 and 3, marker; 4, Epa-DH FabA (99 kDa). (C) 1 ; Ara-DH $\mathrm{FabA}^{(134 \mathrm{kDa}) ; 2 \text {, Ara-KR-DH }}$ PKS (130 kDa); 3, Marker.

I measured a hydration activity of the DH domains instead of the forward reactions because 3-hydroxyacyl-ACP was more thermodynamically stable than 2-trans acyl-ACP under in vitro
reaction conditions ${ }^{10}$. Crotonyl-ACP, 2-trans hexenoyl-ACP, and 2-trans octenoyl-ACP were enzymatically synthesized, and the formation of the substrates were checked by HPLC-ESI-TOF-MS analysis (Figure 3-2-2-3).

Figure 3-2-2-3. Deconvoluted MS spectra of crotonyl-ACP (top), 2-trans hexenoyl-ACP (middle), and 2-trans octenoyl-ACP (bottom).

Then, crotonyl-ACP, a C_{4} substrate, was incubated with the Epa-KR-DHPKS or Epa-DH ${ }_{\text {FabA }}$. 3-Hydroxybutyryl-ACP was detected in both reaction mixture but the Epa-KR-DHPKS exhibited higher hydration activity than the Epa- $\mathrm{DH}_{\mathrm{FabA}}$ (Figure 3-2-2-4). The same tendency was also observed with the Ara-KR-DH ${ }_{\mathrm{PKS}}$ and Ara-DH DabA (Figure 3-2-2-4). In contrast, in the case of 2-trans hexenoyl-ACP, a C_{6} substrate, the Epa-KR-DH ${ }_{\text {PKS }}$ and Ara-DH DabA showed very weak activities while the EPA-DH DabA and ARA-KR-DH PKs showed high hydration activities (Figure 3-2-2-5). These results suggested that the two different DH domains strictly recognized different intermediates to create $\omega 3$ or $\omega 6$ PUFAs. I also checked whether the same trends were observed in DHA synthase. Recombinant Dha-KR-DH ${ }_{\text {PKS }}$ and Dha- $\mathrm{DH}_{\mathrm{FabA}}$ enzymes were prepared and used for in vitro assays. Both the enzymes showed the
same substrate specificities as the Epa enzymes (Figure 3-2-2-6).

Figure 3-2-2-4. HPLC traces (210 nm) of in vitro hydration reactions of crotonyl-ACP with Epa enzymes (A) or Ara enzymes (B). Without enzyme (top), with KR-DH ${ }_{\text {PKS }}$ (middle), or with $\mathrm{DH}_{\text {FabA }}$ (bottom). Deconvoluted MS spectra obtained by HPLC-ESI-TOF-MS analysis of in vitro reaction mixtures with crotonyl-ACP and Epa-KR-DHPKS (C) or $\mathrm{Ara-KR}-\mathrm{DH}_{\mathrm{PKS}}(\mathrm{D})$.

Figure 3-2-2-5. HPLC traces (210 nm) of in vitro hydration reactions of 2-trans hexenoyl-ACP with Epa enzymes (A) or Ara enzymes (B). Without enzyme (top), with KR-DH ${ }_{\text {PKs }}$ (middle), or with $\mathrm{DH}_{\text {FabA }}$ (bottom). Deconvoluted MS spectra obtained by HPLC-ESI-TOF-MS analysis of in vitro reaction mixtures with 2-trans hexenoyl -ACP and Epa-DH ${ }_{\text {FabA }}(\mathrm{C})$ or Ara-KR-DH PKS (D).

Figure 3-2-2-6. HPLC traces (210 nm) of in vitro hydration reactions of crotonyl- (A) or 2-trans hexenoyl-ACP (B) with Dha enzymes. Without enzyme (top), with KR-DH PKS (middle), or with $\mathrm{DH}_{\mathrm{FabA}}$ (bottom). Deconvoluted MS spectra obtained by HPLC-ESI-TOF-MS analysis of in vitro reaction mixtures with Dha-KR-DH ${ }_{\text {PKS }}$ (C) or Dha-DH $\mathrm{FabA}^{\text {(D) }}$. SDS-PAGE analysis of recombinants Dha enzymes, 1 and 3, Marker; 2, Dha-KR-DHpks (136 kDa); 4, Dha-DHFabA (142 kDa).

I also carried out in vitro reactions with 2-trans octenoyl-ACP, a C_{8} substrate, and Araenzymes. However, both the ARA-KR-DH PKS and Ara-DH FabA showed almost no hydration activity
when 2-trans octenoyl-ACP was used as the substrate (Figure 3-2-2-7). I next prepared, 3-hydroxyoctanoyl-ACP, a substrate for forward reaction and carried out in vitro reactions with the Ara enzymes. As shown in Figure 3-2-2-7, a dehydration product was detected in Ara-DH $\mathrm{DabA}_{\text {Fact }}$ reaction mixture and no products was detected in Ara-KR-DH ${ }_{\text {PKS }}$ reaction mixture. As geometry determination of the ACP-product is very difficult because of its high molecular weight, I used N -acetylcysteamine (SNAC) derivatives as substrates, widely used as mimics of acyl-ACPs substrates for in vitro experiments. When 3-hydroxyoctanoyl-SNAC was incubated with the Ara-DH $\mathrm{FabA}_{\mathrm{Fa}}$, a dehydrated product was detected, and the retention time of product was consistent with that of 2-trans octenoylSNAC but not of 2-cis octenoyl-SNAC (Figure 3-2-2-8). Taken together, these results suggested that the $\mathrm{DH}_{\text {PKS }}$ domain of EPA synthase recognized the C_{4} substrate while that of ARA synthase recognized both the C_{4} and C_{6} substrates for full reduction in the early biosynthetic stage. Moreover, the $\mathrm{DH}_{\text {FabA }}$ domain acted on substrates to which a cis double bond was introduced $\left(\mathrm{C}_{6}\right.$ and C_{8} intermediates in EPA while C_{8} intermediate in ARA biosynthesis).

Figure 3-2-2-7. (A) HPLC traces (UV 210 nm) of in vitro reaction products with 2-trans octenoylACP and Ara-KR-DH ${ }_{\text {PKS }}$ or Ara-DH ${ }_{\text {FabA }}$. Without enzyme (top), with Ara-KR-DH ${ }_{\text {PKS }}$ (middle), or with Ara- $\mathrm{DH}_{\mathrm{FabA}}$ domain (bottom). (B) HPLC traces (210 nm) of in vitro dehydration reactions of 3-hydroxyoctanoyl-ACP with Ara-KR-DH ${ }_{\text {PKS }}$ (middle), Ara- $\mathrm{DH}_{\text {FabA }}$ (bottom), or without enzyme (top). (C) Deconvoluted MS spectra obtained by HPLC-ESI-TOF-MS analysis of in vitro reaction mixtures with Ara-DHFaba.

Figure 3-2-2-8. UPLC traces (260 nm) of in vitro reaction products with Ara- $\mathrm{DH}_{\mathrm{FabA}}$ and 3-hydroxyoctanoyl-SNAC. Standards (top and $2^{\text {nd }}$) and without enzyme (bottom).

I next examined whether trans to cis isomerization occurs after the dehydration reaction by the $\mathrm{DH}_{\text {FabA }}$. However, detection of isomerization with trans-substrates was reported to be difficult ${ }^{10}$. I therefore examined whether the $\mathrm{DH}_{\mathrm{FabA}}$ domains catalyzed the reverse β, γ - and α, β-isomerization reactions with cis-acyl-SNAC substrates. When 3-cis hexenoyl-SNAC was incubated with the Epa$\mathrm{DH}_{\mathrm{FabA}}$, 2-trans hexenoyl-SNAC was clearly detected (Figure 3-2-2-9). Moreover, the Ara-DH DabA
catalyzed the conversion of 2-cis octenoyl-SNAC to 2-trans octenoyl-SNAC although the activity was very weak compared with the β, γ-isomerization activity of EPA enzyme (Figure 3-2-2-9). These results suggested that the $\mathrm{DH}_{\text {FabA }}$ domains catalyze trans to cis isomerization besides dehydration reactions. Although the reaction mechanisms of β, γ - and α, β-isomerization were unclear, β, γ-isomerization might occur by the same reaction mechanism as that of FabA in type II FAS ${ }^{11,12}$. First, the FabA abstracts a C-2 proton of 3-hydroxy acyl-ACP concomitant with the C-3 hydroxyl group elimination from the same face and then isomerizes to generate β, γ double bond with cis configuration by abstracting the pro- R proton from C_{4} of the substrate (Figure 3-2-2-10).

Figure 3-2-2-9. UPLC analysis of in vitro isomerization reaction mixtures. (A) UPLC traces (260 nm) of the β, γ-isomerization reaction of 3-cis hexenoyl-SNAC with Epa-DH ${ }_{\text {FabA }}$. Standard (top) and without enzyme (bottom). (B) UPLC traces (260 nm) of the α, β-isomerization reaction of 2-cis octenoyl-SNAC with Ara-DH $\mathrm{FabA}\left(2^{\text {nd }}\right)$. Standard (top and bottom) and without enzyme ($3^{\text {rd }}$).

Figure 3-2-2-10. Reaction mechanisms of β-hydroxyacyl-ACP dehydratase FabA.

To deepen understanding of reaction mechanism, I also carried out the geometrical analysis of a product by KR domain in PUFA synthases. Because chiral analysis of 3-hydroxyacyl-ACP products was unsuccessful, I utilized SNAC thioester derivatives, 3-oxobutyryl-SNAC, 3-oxohexanoyl-SNAC, and 3-oxooctanoyl-SNAC as substrates. When 3-oxobutyryl-SNAC was incubated with the Epa-KR-DHPKs and NADPH, 3-hydroxybutyryl-SNAC was clearly detected by UPLC-ESI-MS analysis (Figure 3-2-2-11). Chiral analysis showed that the retention time of the reaction product was consistent with that of the product produced by β-ketoacyl reductase EcFabG of E. coli (Figure 3-2-2-12), suggesting the formation of (3R)-hydroxybutyryl-SNAC. Furthermore, I also confirmed that the Epa-KR-DHPKS products from 3-oxohexanoyl-SNAC and 3-oxooctanoylSNAC were (3R)-hydroxyhexanoyl-SNAC and (3R)-hydroxyoctanoyl-SNAC, respectively. These results suggested that the KR domain in PUFA synthase catalyzed the formation of $(3 R)$-hydroxy forms regardless of the carbon chain lengths of the substrates in the same manner as FAS.

Figure 3-2-2-11. UPLC traces (UV 234 nm) of reaction products with the KR domain in Epa-A and 3-oxobutyryl-SNAC (A), 3-oxohexanoyl-SNAC (B), or 3-oxooctanoyl-SNAC (C). Standards (top), with the KR domain in Epa-A $\left(2^{\text {nd }}\right)$, with EcFabG (E. coli) $\left(3^{\text {rd }}\right)$, or without enzyme (bottom).
(A)

(B)

(C)

Figure 3-2-2-12. Chiral analysis (UV 234 nm) of reaction products with the KR domain in Epa-A and 3-oxobutyryl-SNAC (A), 3-oxohexanoyl-SNAC (B), or 3-oxooctanoyl-SNAC (C). (3R) and (3S)-hydroxyacyl-SNAC standards (top), with the KR domain in Epa-A (middle), or with EcFabG (E. coli) (bottom)

3.3. Discussion

In this chapter, I studied the mechanism for the formation of the first cis double bond by PUFA synthases through in vivo and in vitro experiments. PUFA synthases utilize the two types of DH domains, $\mathrm{DH}_{\mathrm{PKS}}$ and $\mathrm{DH}_{\mathrm{FabA}}$, depending on the carbon chain length to introduce saturation or cis double bonds to growing acyl chains (Figure 3-3-1). In ARA biosynthesis, dehydration by the $\mathrm{DH}_{\mathrm{PKS}}$ and subsequent enoyl reduction by the ER domain would occur to form hexanoyl-ACP from ($3 R$)-hydroxyhexanoyl-ACP. Then, condensation of hexanoyl-ACP with malonyl-ACP by the KS domain, reduction by the KR domain, and dehydration and α, β-isomerization of the C_{8} intermediate by the $\mathrm{DH}_{\text {FabA }}$ would occur (Figure 3-3-1). In contrast, in EPA biosynthesis, dehydration and $\beta, \gamma-$ isomerization of a C_{6} intermediate would be catalyzed by the $\mathrm{DH}_{\text {FabA }}$ to form 3-cis hexenoyl-ACP. The KS domains would strictly recognize 3-cis form and catalyze a condensation of 3-cis hexenoyl-ACP with malonyl-ACP to form 5-cis 3-oxooctenoyl-ACP (Figure 3-3-1). The $\mathrm{DH}_{\text {FabA }}$ catalyzes the interconversion of 3-hydroxyacyl-ACP, 2-trans acyl-ACP, and 3-cis or 2-cis acyl-ACP. Therefore, condensation reactions catalyzed by the KS domains is the driving force for the forward reactions and selection of the appropriate intermediates by the KS domains is also important for controlling cis double position of PUFA products.

Figure 3-3-1. Proposed biosynthetic pathway of $\omega 3$ and $\omega 6$ PUFAs on C_{6} to C_{8} intermediates

There are a few examples of α, β-isomerization of double bond in natural products biosynthesis. In 11-cis retinol biosynthesis, all-trans retinol is first esterified to create leaving group. Nucleophilic attack of the active site residue of isomerohydrolase on C -11 position of substrate followed by elimination of ester group would allow a rotation of C-C bond. Then, nucleophilic attack of water molecule gives 11-cis retinol ${ }^{14}$ (Figure 3-3-2). Although a α, β-isomerization was proposed to go through radical mechanisms induced by sunlight in coumarins biosynthesis ${ }^{15}$, the coumarin derivatives were synthesized in darkness environments ${ }^{16}$. Kai et al., proposed a mechanism that deprotonation of hydroxy group of CoA thioester intermediate would proceed to form enolate and then lactonization reaction occurs after α, β-isomerization ${ }^{16}$ (Figure 3-3-3). The $\mathrm{DH}_{\mathrm{FabA}}$ catalyzed both $\beta, \gamma-$ and α, β-isomerization of double bond of acyl-ACPs. The reaction mechanism of β, γ-isomerization was speculated to be same mechanism of FabA in type II FAS. α, β-Isomerization mechanism might be also similar to that of FabA as mentioned above. However, in this case, a rotation of C-C bond in transition state may be necessary for the formation of 2-cis acyl-ACP from 2-trans acyl-ACP in the similar manner to the coumarin biosynthesis (Figure 3-3-4).

Figure 3-3-2. Reaction mechanisms of α, β-isomerization in 11-cis retinol biosynthesis.

Figure 3-3-3. Reaction mechanisms of α, β-isomerization in coumarin biosynthesis.

Figure 3-3-4. Proposed mechanisms of α, β - (top) and β, γ - (bottom) isomerization catalyzed by $\mathrm{DH}_{\mathrm{FabA}}$ in PUFA biosynthesis

References

1. J. G. Metz, P. Roessler, D. Facciotti, C. Levering, F. Dittrich, M. Lassner, R. Valentine, K. Lardizabal, F. Domergue, A. Yamada, K. Yazawa, V. Knauf, J. Browse, Production of polyunsaturated fatty acids by polyketide synthases in both prokaryotes and eukaryotes. Science 293, 290-293 (2001).
2. E. E. Allen, H. D. Bartlett, Structure and regulation of the omega-3 polyunsaturated fatty acid synthase genes from the deep-sea bacterium Photobacterium profundum strain SS9. Microbiology 148, 1903-1913 (2002).
3. N. Morita, M. Tanaka, H. Okuyama, Biosynthesis of fatty acids in the docosahexaenoic acidproducing bacterium Moritella marina strain MP-1. Biochem. Soc. Trans. 28, 943-945 (2000).
4. T. Ujihara, M. Nagano, H. Wada, S. Mitsuhashi, Identification of a novel type of polyunsaturated fatty acid synthase involved in arachidonic acid biosynthesis. FEBS Lett. 588, 4032-4036 (2014).
5. S. Poust, I. Yoon, P. D. Adams, L. Katz, C. J. Petzold, J. D. Keasling, Understanding the Role of Histidine in the GHSxG Acyltransferase Active Site Motif: Evidence for Histidine Stabilization of the Malonyl-Enzyme Intermediate. PLoS ONE 9, e109421. (2014)
6. R. Reid, M. Piagentini, E. Rodriguez, G. Ashley, N. Viswanathan, J. Carney, D. V. Santi, C. R. Hutchinson, R. McDaniel, A model of structure and catalysis for ketoreductase domains in modular polyketide synthases. Biochemistry 42, 72-79 (2003).
7. A. T. Keatinge-Clay, A tylosin ketoreductase reveals how chirality is determined in polyketides. Chem. Biol., 14, 898-908 (2007).
8. A. T. Keatinge-Clay, Crystal structure of the erythromycin polyketide synthase dehydratase. J. Mol. Biol., 384, 941-953 (2008).
9. D. L. Akey, J. R. Razelun, J. Tehranisa, D. H. Sherman, W. H. Gerwick, J. L. Smith, Crystal structure of dehydratase domains from the curacin polyketide biosynthetic pathway. Structure 18, 94-105 (2010).
10. R. J. Heath, C. O. Rock, Roles of the FabA and FabZ β-hydroxyacyl-acyl carrier protein dehydratases in Escherichia coli fatty acid biosynthesis. J. Biol. Chem. 1996, 271, 27795-27801.
11. J. M. Schwab, J. B. Klassen, Steric course of the allylic rearrangement catalysed by β hydroxydecanoylthioester dehydrase. Mechanistic implications. J. Am. Chem. Soc. 106, 72177227 (1984).
12. L. Moynie, S. M. Leckie, S. A. McMahon, F. G. Duthie, A. Koehnke, J. W. Taylor, M. S. Alphey, R. Brenk, A. D. Smith, J. H. Naismith, Structural insights into the mechanism and inhibition of
the β-hydroxydecanoyl-acyl carrier protein dehydratase from Pseudomonas aeruginosa. J. Mol. Biol., 425, 365-377 (2013).
13. M. R. Mofid, R. Finking, L. O. Essen, M. A. Marahiel, Structure-based mutational analysis of the 4'-phosphopantatheinyl transferases Sfp from Bacillus subtilis: Carrier protein recognition and reaction mechanism. Biochemistry 43, 4128-4136 (2004).
14. G. Moiseyev, R. K. Crouch, P. Goletz, J. Oatis, Jr., T. M. Redmond, J. X. Ma, Retinyl esters are the substrate for isomerohydrolase. Biochemistry 42, 2229-2238 (2003).
15. F. A. Haskins, L. G. Williams, H. J. Gorz, Light-induced trans to cis conversion of β-D-Glucosyl ohydroxycinnamic acid in Melilotus alba leaves. Plant Physiol., 39, 777-781 (1964).
16. K. Kai, M. Mizutani, N. Kawamura, R. Yamamoto, M. Tamai, H. Yamaguchi, K. Sakata, B. Shimizu, Scopoletin is biosynthesized via ortho-hydroxylation of feruloyl CoA by a 2-oxoglutarate-dependent dioxygenase in Arabidopsis thaliana. The Plant Journal 55, 989-999 (2008).

Chapter 4

Mechanism for control of carbon chain length of final products in PUFA synthases

4.1. Introduction

In chapter 3, I studied the mechanism for control of the first cis double bond position in PUFA products, and showed that the two type DH domains, $\mathrm{DH}_{\mathrm{PKS}}$ and $\mathrm{DH}_{\mathrm{FabA}}$, were responsible for the control through in vivo and in vitro experiments. I next examined how the enzymes control carbon chain length $\left(\mathrm{C}_{22}\right.$ or $\left.\mathrm{C}_{20}\right)$ of the products using DHA and EPA synthases (Figure 4-1-1).
(A)

(B)

Figure 4-1-1. (A) Domain organizations of DHA and EPA synthase genes (B) Chemical structures of DHA and EPA

In 2009, Orikasa et al. suggested that subunit B gene encoding AT domain would be responsible for control of EPA and DHA production through gene knockout and complementation experiments ${ }^{1}$. However, detail role of the AT domain was still unclear (the role of AT domain was examined in chapter 5). Furthermore, the branching point would be brought by reactions during C_{20} and C_{22} intermediates considering the later stage of putative DHA and EPA biosynthetic pathways (Figure 4-1-2). In the pathways, a reaction catalyzed by the AT domain is unnecessary. Thus, the mechanism for control of carbon chain length remained obscure. In this chapter, I investigated important genes and domains responsible for controlling EPA and DHA production using the heterologous expression system and in vitro experiments.

Figure 4-1-2. Putative DHA and EPA biosynthetic pathway of C_{20} to C_{22} intermediates

4.2. Results

4.2.1. Important domains for control of EPA or DHA production

I first carried out gene exchange experiments to identify important gene(s) responsible for EPA and DHA productions. The EPA synthase genes (epa) of P. profundum and DHA synthase genes (dha) of M. marina, both of which comprise four genes (A to D) were used in the experiments. Because EPA genes had already been cloned as mentioned above, the $d h a$ genes were cloned into vectors with T7 promoters and introduced into E. coli (Figure 4-2-1-1). I confirmed that the transformant harboring dha- $A B C D E$ genes produced DHA as the main product concomitant with small amounts of ETA (Figure 4-2-1-2).

Figure 4-2-1-1. The plasmids set for expression of DHA synthase genes of M. marina.

Then, each EPA synthase gene was replaced with the corresponding DHA synthase gene. When epa-$A,-B$ or $-D$ was replaced with the corresponding DHA gene, the PUFA profiles (EPA production) were almost the same as that of the transformant expressing epa- $A B C D$, although the PUFA productivities tended to decrease. By replacing epa-C with dha-C, however, the major product was changed to DHA (Figure 4-2-1-2). Similarly, by replacing $d h a-C$ with epa-C, EPA was produced and DHA production was lost. However, PUFA profiles were almost same as that of the transformant expressing $d h a-A B C D$ when $d h a-A,-B$ or $-D$ was replaced with the corresponding EPA gene (Figure 4-2-1-2). The same result was also obtained with the EPA synthase genes (SopfaABCD) of Shewanella oneidensis (Figure 4-2-$1-3)$. These results suggested that the "C" gene is the important subunit gene for controlling the carbon
chain length of final products.

Figure 4-2-1-2. GC/MS analysis traced at $m / z 79$ of products produced in the gene exchange assay. (left) Gene replacement of epa genes with dha genes (from 2nd to 5th). Standards (top) and epa- $A B C D$ (bottom). (right) Gene replacement of dha genes with epa genes (from 2nd to 5th). Standards (top) and $d h a-A B C D$ (bottom).

Figure 4-2-1-3. GC/MS analysis traced at $m / z 79$ of products produced in the gene exchange assay. (left) Gene replacement of Sopfa genes with dha genes (from 2nd to 5th). Standards (top) and SopfaABCD (bottom). (right) Gene replacement of dha genes with Sopfa genes (from 2nd to 5th). Standards (top).

I next constructed chimeric "C" genes to narrow down the chain length control domain. Based on the sequence alignment of C genes, I constructed two chimeric genes, epa-C-dha-Cchimeral and dha-C-epa-C-chimera2, as shown in Figure 4-2-1-4. In the case of epa-C-dha-Cchimeral, EPA was produced by co-expression with dha-ABD or epa-ABD (Figure 4-2-1-5). The transformant expressing dha-C-epa-C-chimera2 together with epa- $A B D$ or dha- $A B D$ produced both

EPA and DHA (Figure 4-2-1-6). These results clearly indicated that the KS_{C} or CLF-like domain controlled the carbon chain length. To examine which domain is responsible for this control, I constructed dozens of chimeric genes in which the $d h a-C$ gene and epa- C gene were fused at different points between the KS_{C} domain and CLF-like domain. However, all the constructs lost PUFA productivity, suggesting that the quaternary structure of $\mathrm{KS}_{\mathrm{C}} / \mathrm{CLF}$-like domains are important. Indeed, the recent study showed that the KS_{C} was interacted with the CLF-like domain and formed as a heteromultimer ${ }^{2}$. Thus, I concluded that both the KS_{C} and CLF-like domains were important for control of DHA and EPA productions.

Figure 4-2-1-4. Domain organizations of chimeric "C" genes.

Figure 4-2-1-5. GC/MS analysis trace at $m / z 79$ of products produced by expressing chimeric " C " gene with epa- $A B D$ (middle) or $d h a-A B D$ (bottom).

Figure 4-2-1-6. GC/MS analysis trace at $m / z 79$ of products produced by expressing chimeric "C" gene with $d h a-A B D$ (middle) or epa- $A B D$ (bottom).

4.2.2. Mechanism for control of carbon chain length of final products in PUFA synthases

I next carried out in vitro experiments using recombinant $\mathrm{KS}_{\mathrm{C}} /$ CLF-like domains with acylACPs. Because the functions of the KS_{A} domain in the "A" subunit were also still unclear, I prepared both truncated KS enzymes to investigate their roles in PUFA biosynthesis. I tried to express a truncated enzyme containing only the KS_{A} domains in EPA and DHA enzymes, but no soluble protein was obtained. Instead, I prepared truncated $\mathrm{KS}_{\mathrm{A}}-\mathrm{MAT}$ domains as soluble proteins (Figure 4-2-2-1). I also enzymatically prepared various acyl-ACPs as substrates by the same method in chapter 3 . Then, I carried out in vitro condensation reactions with each four truncated enzymes, Epa-KS ${ }_{\mathrm{A}}-\mathrm{MAT}$ (EpaKS $_{A}$), Epa-KS ${ }_{C}-$ CLF $\left(E p a-K S_{C}\right)$, Dha-KS ${ }_{A}-$ MAT (Dha-KS ${ }_{A}$), and Dha-KS ${ }_{C}-C L F\left(\right.$ Dha-KS $\left.{ }_{C}\right)$.

Figure 4-2-2-1. SDS-PAGE analysis of recombinant enzymes. (A) 1, Epa-KS $\mathrm{A}_{\mathrm{A}}-\mathrm{MAT}(128 \mathrm{kDa}) ; 2$ and 4, Marker; 3, Epa-KS C_{C} CLF (108 kDa). (B) 1 and 3, Marker; 2, Dha-KS $\mathrm{A}_{\mathrm{A}}-\mathrm{MAT}$ (133 kDa); 4, Dha-KS ${ }_{C}$-CLF (160 kDa).

When acetyl-ACP and malonyl-ACP were incubated with the Epa- KS_{A} or Dha- $\mathrm{KS}_{\mathrm{A}}, 3$-oxobutyrylACP was clearly detected by LC-MS, while no product was formed with the KS_{C} enzymes (Figure 4-2-2-2). The results indicated that the KS_{A} domain was responsible for the first condensation reactions in EPA and DHA biosynthesis. Then, I examined the subsequent elongation steps. When malonyl-ACP and butyryl-ACP or 3-cis hexenoyl-ACP were used as substrates, the KS_{A} enzymes showed high activities to form 3-oxohexanoyl-ACP and 5-cis 3-oxooctenoyl-ACP (Figure 4-2-2-3) while the KS_{C} enzymes weakly catalyzed these reactions. In contrast, a condensation reaction was not observed when 2-trans hexenoyl-ACP was used as substrate (data not shown). These results suggested that the KS_{A} accepted the short acyl chains and functioned in early biosynthesis steps, and the KS_{A} strictly recognized geometry of double bonds in substrates.

Figure 4-2-2-2. Deconvoluted MS spectra obtained by HPLC-ESI-TOF-MS analysis (left) and their enlarged spectra from $m / z 15634$ to 15654 (right) of reaction mixtures with acetyl-ACP/malonyl-ACP and KS_{A} (middle), KS_{C} (bottom) or without enzyme (top).

Figure 4-2-2-3. Deconvoluted MS spectra obtained by HPLC-ESI-TOF-MS analysis of reaction mixtures with butyryl-ACP/malonyl-ACP (left) or 3-cis hexenoyl-ACP/malonyl-ACP (right) and EpaKS_{A} (middle), Epa-KS S_{C} (bottom) or without enzyme (top).

I next examined the functions of the two KS domains during middle to late biosynthetic stages. However, none of the predicted fatty acid substrates were commercially available and their chemical synthesis was also difficult. 4,7-Cis decadienoyl-ACP and 3,6,9,12,15-cis octadecapentaenoyl-ACP were the only substrates that I could chemically synthesize. I performed in vivo analysis for functional analysis of KS_{C} domains besides the in vitro assay. When 4,7-cis decadienoyl-ACP and malonyl-ACP were used as the substrates, the Epa-KS A_{A} and Epa-KS S_{C} showed almost the same activities and formed 6,9-cis 3-oxododecadienoyl-ACP (Figure 4-2-2-4). Similarly, both the Dha- KS_{A} and Dha- KS_{C} showed the same activities (Figure 4-2-2-4).

Figure 4-2-2-4. Deconvoluted MS spectra obtained by HPLC-ESI-TOF-MS analysis of reaction mixtures with 4,7-cis decadienoyl-ACP/malonyl-ACP and Epa-KS A $\left.^{(2}{ }^{\text {nd }}\right)$, Epa-KS $_{C}\left(3^{\text {rd }}\right)$, Dha-KS ${ }_{A}$ $\left(4^{\text {th }}\right)$, or Dha- $\mathrm{KS}_{\mathrm{C}}\left(5^{\text {th }}\right)$. Without enzyme (top).

To get more insight about the role of the KS_{C} domain, I then constructed two mutated enzymes, Epa-C-KS ${ }^{0}$ and Dha-C-KS ${ }^{0}$, in which the catalytic Cys residues estimated by the sequence alignments (Figure 4-2-2-5) in the KS_{C} domains were mutated to Ala, and were co-expressed with epa- $A B D$. In the case of epa-C-KS ${ }^{0}$ expression, α-linoleic acid (ALA; C18:3 $\omega 3$) and 7,10,13-cis hexadecatrienoic acid (C16:3 $\omega 3$) were produced as major and minor products, respectively (Figure 4-2-2-6). Similarly, DHA production was completely abolished and ALA was produced as the major product with dha-C-KS ${ }^{0}$ (Figure 4-2-2-6). Considering that ALA was produced as the major product
in both cases, the products including ALA were shunt products probably formed by chain elongation
from C12:3 $\omega 3$ intermediate. Therefore, the KS_{C} domain was suggested to catalyze the intrinsic chain
elongation during the middle biosynthetic stage.

Figure 4-2-2-5. Sequence alignments of $K S_{C}$ domains in PUFA synthases. Red stars show catalytic Cys/His residues. From top to bottom, KS_{C} domain of SoPfaC in EPA synthase of S. oneidensis MR$1, \mathrm{KS}_{\mathrm{C}}$ domain of Epa-C of P. profundum $\mathrm{SS} 9, \mathrm{KS}_{\mathrm{C}}$ domain of Dha-C of M. marina, KS_{C} domain of Ara-C of A. marina., and KS_{B} domain of OrfB of Schizochytrium sp .

Figure 4-2-2-6. GC-MS analysis traced at $m / z 79$ of products produced by co-expression of epa-C$K S^{0}$ or $d h a-C-K S^{0}$ with epa- $A B D$. (A) co-expression of epa-C (wild type) (middle) or epa-C-KS ${ }^{0}$ (KS mutant) (bottom) with epa-ABD. (B) co-expression of $d h a-C$ (wild type) (middle) or $d h a-C-K S^{0}$ (KS mutant) (bottom) with epa-ABD. Authentic standards of methyl esters of GLA (C18:3 $\omega 6$), ALA (C18:3 $\omega 3$), and SDA (C18:4 ω) (top). GC-MS analysis of the pyrrolidine derivative of 7,10,13-cis hexadecatrienoic acid. MS spectrum ranging from 50 to $310 \mathrm{~m} / \mathrm{z}$ of the pyrrolidine derivative of 7,10,13-cis hexadecatrienoic acid (C) and enlarged MS spectrum from 140 to $310 \mathrm{~m} / \mathrm{z}$ (D).

I next carried out in vitro reactions with 3,6,9,12,15-cis octadecapentaenoyl-ACP as the substrate to investigate the final condensation reaction of EPA. Surprisingly, when the Epa-KS S_{A} and Dha- KS_{A} were used as catalysts, the estimated $5,8,11,14,17$-cis 3 -oxoeicosapentaenoyl-ACP was detected by LC-MS while no product was observed when the Epa-KS C_{C} and Dha-KS ${ }_{C}$ were used (Figure 4-2-2-7), indicating that the KS_{A} domain again participated in the last chain elongation in EPA biosynthesis (from C_{18} to C_{20}).

Figure 4-2-2-7. Deconvoluted MS spectra obtained by HPLC-ESI-TOF-MS analysis of reaction mixtures with $3,6,9,12,15$-cis octadecapentaenoyl-ACP/malonyl-ACP and Epa-KS $A_{A}\left(2^{\text {nd }}\right)$, Epa-KS C_{C} $\left(3^{\text {rd }}\right)$, Dha-KS $\mathrm{S}_{\mathrm{A}}\left(4^{\text {th }}\right)$, Dha-KS $\mathrm{C}_{\mathrm{C}}\left(5^{\text {th }}\right)$. Without enzyme (top).

To investigate the final chain elongation in DHA biosynthesis (from C_{20} to C_{22}), I employed a combination enzyme assay (Figure 4-2-2-9) because preparation of the predicted substrate, 2,5,8,11,14,17-cis eicosahexaenoyl-ACP, was difficult. After addition of the Epa-KR-DH ${ }_{\text {PKS }}$ into the abovementioned reaction mixture using 3,6,9,12,15-cis octadecapentaenoyl-ACP and the Dha-KS S_{A}, a product whose molecular weight was identical to the estimated product, 3-hydroxy-5,8,11,14,17-cis eicosapentaenoyl-ACP, was detected. By further addition of the Epa-DH FabA and $\mathrm{Dha}-\mathrm{KS}_{\mathrm{C}}$, a plausible 2,4,7,10,13,16,19-docosaheptaenoyl-ACP (Figure 4-2-2-9) was also detected, suggesting that the KS_{C} domain in Dha-C catalyzed the chain elongation from C_{20} to C_{22}. Taken these results together, I proposed EPA and DHA biosynthesis pathway as shown in Figure 4-2-2-10. The KS_{A} accepted short
acyl chains while the KS_{C} did middle acyl chains in the early and middle biosynthetic stage, respectively. In the late stage, the condensation of $3,6,9,12,15$-cis octadecapentaenoyl-ACP (from C_{18} to C_{20}), the last condensation in EPA biosynthesis, was catalyzed by the KS_{A} domain in both DHA and EPA biosynthesis. In EPA biosynthesis, a 5,8,11,14,17-cis 3-oxoeicosapentaenoyl-ACP intermediate would be hydrolyzed after the reactions catalyzed by the $\mathrm{KR}, \mathrm{DH}_{\mathrm{PKS}}$, and ER domains. In contrast, 2,5,8,11,14,17-cis eicosahexaenoyl-ACP formed by the KR and $\mathrm{DH}_{\mathrm{FabA}}$ domains would be used as the substrate of the KS_{C} domain to form 4,7,10,13,16,19-cis docosahexaenoyl-ACP in DHA biosynthesis. After reduction, dehydration, and enoyl reduction of the intermediate, the product would be released.

(B)

Figure 4-2-2-9. In vitro combination reactions. (A) Reaction scheme of in vitro combination reactions. (B) HPLC analysis (UV 210 nm) of in vitro combination reactions using 3,6,9,12,15-cis octadecapentaenoyl-ACP, Dha-KS $_{\mathrm{A}}$, and Epa-KR-DH PKS (top), plus Epa-DH FabA and Dha-KS C_{C} (bottom).

Figure 4-2-2-10. Proposed DHA and EPA biosynthetic pathway from acetyl- $\left(\mathrm{C}_{2}\right)$ to C_{20} or C_{22} products

4.3. Discussion

In this chapter, I studied the mechanism for controlling carbon chain length of the products, EPA $\left(\mathrm{C}_{20}\right)$ and DHA $\left(\mathrm{C}_{22}\right)$, through in vivo and in vitro experiments. The in vitro reactions with various acyl-ACPs showed that PUFA synthases used the two KS domains depending on carbon chain length of acyl-ACPs for chain elongation reactions. In the early biosynthetic stage, the KS_{A} was responsible for chain elongation reactions to form elongated β-oxoacyl-ACPs. Then, as described in chapter 3, the $\mathrm{KR}, \mathrm{DH}_{\mathrm{PKS}}, \mathrm{DH}_{\mathrm{FabA}}$, ER domains catalyze the proper reactions depending on carbon chain length to form saturated or cis double bond form. In the middle biosynthetic stage, the elongation domain responsible was switched to the KS_{C}. In the late biosynthetic stage, surprisingly, the elongation domain responsible was switched again to the KS_{A} at C_{18} to C_{20} step. The difference between EPA and DHA biosynthesis was the elongation reaction from C_{20} to C_{22} catalyzed by the KS_{C} domain (Figure 4-2-210). The facts that a substrate with trans double bond was not accepted by the KS domains as a substrate suggested the KSs recognized geometry and position of double bond of intermediates for appropriate PUFA productions.

When PUFA synthase genes were identified in 2001, a domain located at next to KS_{C} domain was called as "CLF" domains because it showed a similarity to β-ketoacyl synthase but had no active residue Cys like a CLF in Type II PKS. In type II PKS system, active KS and CLF showed a heterodimeric structure and biosynthesized poly- β-keto chains (Figure 4-3-1). One of the roles of the CLF was priming reaction, decarboxylation of malonyl unit to form acetyl unit ${ }^{3,4}$. Another role of the CLF was determination of chain length of polyketide products ${ }^{3,5-7}$. It was proposed that the chain length of polyketides is controlled by the size of the catalytic pocket in a KS/CLF interface (Figure 4-3-2). Recent studies showed that highly reducing polyketide polyene was also produced by type II PKS enzymes (Figure 4-3-1) ${ }^{8,9}$. The intermediates were modified by discrete KR and DH in this type II PKS system. The chemical structures of the products would be strictly controlled by KS/CLF during
elongation reactions. In other words, the KS/CLF functioned as gatekeeper and selected an appropriate intermediate for next elongation reaction (Figure 4-3-3). I proposed that the role of CLF-like domain in PUFA synthase is a gatekeeper and the $\mathrm{KS}_{\mathrm{C}} /$ CLF strictly select the intermediate for next elongation.

Figure 4-3-1. Biosynthetic pathway of aromatic and high reducing polyketides by type II PKS enzymes
role of CLF in aromatic Type II PKS

1. priming reaction

2. chain length control

Figure 4-3-2. Roles of CLF in aromatic type II PKS system.
role of CLF in high reducing Type II PKS

Figure 4-3-3. Putative role of CLF in high reducing type II PKS system

As mentioned in introduction, Orikasa et al. suggested that the AT domain in subunit B was important for EPA and DHA production ${ }^{1}$ although the detailed function was unclear. Recently, Santin et al. carried out in vitro experiments for analysis of function of MAT and AT domains ${ }^{10}$. They showed MAT domains expectedly showed loading activity against malonyl-CoA to form malonyl-ACP while AT domains showed no and weak loading activities against acetyl-CoA and malonyl-CoA, respectively. These evidences indicated that the AT domain was not involved in an initiation step in PUFA biosynthesis and suggested that it would be important for termination steps. Thus, I next examined the role of the AT domain in as described chapter 5.

References

1. Y. Orikasa, M. Tanaka, S. Sugihara, R. Hori, T. Nishida, A. Ueno, N. Morita, Y. Yano, K. Yamamoto, A. Shibahara, H. Hayashi, Y. Yamada, A. Yamada, R. Yu, A. Watanabe, H. Okuyama, pfaB products determine the molecular species produced in bacterial polyunsaturated fatty acid biosynthesis. FEMS Microbiology Letters 295, 170-176 (2009).
2. M. Naka, K. Ikeuchi, S. Hayashi, Y. Satoh, Y. Ogasawara, T. Dairi. Subtle control of carbon chain length in polyunsaturated fatty acid synthases. ACS Chem. Biol. doi.org/10.1021/acschembio.9b00803.
3. C. Hertweck, A. Luzhetskyy, Y. Rebets, A. Bechthold, Type II polyketide synthases: gaining a deeper insight into enzymatic teamwork. Nat. Prod. Rep., 24, 162-190 (2007).
4. C. Bisang, P. F. Long, J. Cortes, J. Westcott, J. Crosby, A. L. Matharu, R. J. Cox, T. J. Simpson, J. Staunton, P. F. Leadlay. A chain initiation factor common to both modular and aromatic polyketide synthases. Nature 401, 502-505 (1999).
5. Y. Tang, S. C. Tsai, C. Khosla, Polyketide chain length control by chain length factor. J. Am. Chem. Soc., 125, 12708-12709 (2003).
6. K. K. Burson, C. Khosla, Dissecting the chain length specificity in bacterial aromatic polyketide synthases using chimeric genes. Tetrahedron 56, 9401-9408 (2000).
7. R. McDaniel, S. E. Khosla, D. A. Hopwood, C. Khosla, Engineered biosynthesis of novel polyketides: Manipulation and analysis of an aromatic polyketide synthase with unproven catalytic specificities. J. Am. Chem. Soc., 115, 11671-11675 (1993).
8. G. L. C. Grammbitter, M. Schmalhofer, K. Karimi, Y. Shi, T. A. Schoner, N. J. Tobias, N. Morgner, M. Groll, H. B. Bode, An uncommon type II PKS catalyzes biosynthesis of aryl polyene pigments. J. Am. Chem. Soc., 141, 16615-16623 (2019).
9. D. Du, Y. Katsuyama, K. Shin-ya, Y. Ohnishi, Reconstitution of a type II polyketide synthase that catalyzes polyene formation. Angew. Chem. Int. Ed., 57, 1954-1957 (2018).
10. O. Santin, G. Moncalian, Loading of malonyl-CoA onto tandem acyl carrier protein domains of polyunsaturated fatty acid synthases. J. Biol. Chem., 293, 12491-12501 (2018).

Chapter 5

Off-loading mechanism of products in PUFA synthases

5.1. Introduction

In chapter 4, I studied the mechanism for control of carbon chain length of PUFA products and showed that PUFA synthase utilized the two KS domains, KS_{A} and KS_{C}, for elongation reactions depending on carbon chain length of acyl-ACPs. The substrate specificity of the $\mathrm{KS}_{\mathrm{C}} / \mathrm{CLF}$ was important for controlling EPA and DHA productions. After condensation and modification reactions catalyzed by KSs, KR, DHs, and ER domains, PUFA-intermediates believed to be released from ACP to produce final products. However, PUFA synthases had no TE domain and the off-loading mechanism was unclear. In this chapter, I examined the mechanism.

All PUFA synthases have two AT domains in subunit A and B/C. Both AT domains showed similarity to malonyl-CoA/ACP transacylases. As discussed in chapter 4, the AT domain in subunit A showed an efficient loading activity of malonyl-CoA onto holo-ACP but the AT domain in subunit B / C showed weak and no loading activity to malonyl-CoA and acetyl-CoA ${ }^{1}$, respectively. The results suggested that the AT domain in subunit B was not involved in the initiation step in PUFA biosynthesis. Considering the results, which KS_{A} catalyzed condensation of acetyl-ACP with malonylACP , I proposed that acetyl-ACP is generated by decarboxylation of malonyl-ACP and condensed with malonyl-ACP to form 3-oxobutyryl-ACP by the KS_{A} domain in the initiation step. Thus, I carried out in vitro reactions using the KS_{A} and malonyl-ACP as preliminary experiments. As the results, 3-oxobutyryl-ACP were detected when malonyl-ACP was used as the sole substrate, indicating that an initiation reaction in PUFA synthase was decarboxylation catalyzed by the KS_{A} domain and that C_{2} unit, acetyl-ACP, was generated (Figure 5-1-1 and -2).

Figure 5-1-1. Proposed priming reactions in PUFA biosynthesis pathway by PUFA synthases.

Figure 5-1-2. Deconvoluted MS spectra obtained by HPLC-ESI-TOF-MS analysis (left) and their enlarged spectra from m/z 15634 to 15654 (right) of reaction mixtures with enzymes and malonylACP. Without enzyme (top), with Epa-KS ${ }_{A}$ (2nd), with Epa-KS ${ }_{C}$ (3rd), with Dha-KS ${ }_{A}$ (4th), or with Dha-KS ${ }_{C}$ (bottom).

As for the termination step in PUFA synthases, it was reported that DHA synthase of microalgae Schizochytrium sp. produced DHA as free fatty acids 2, suggesting that a catalytic domain encoded in subunit gene would be responsible for hydrolysis of final products. Other group identified a discrete gene orf6 encoding TE homologous upstream of PUFA synthase of P. profundum gene operon and showed that Orf6 had a hydrolytic activity on long-chain acyl-CoA ${ }^{3}$. However, disruption of the gene effected on a decrease of PUFA productivity in native strains, but no effect on the productivity and PUFA profiles was observed when the gene was co-expressed with PUFA synthase genes in E. coli ${ }^{4}$. Therefore, they proposed it as the Orf6 was functioned as type II TE, which was accessory enzyme and could be used to enhance product yields ${ }^{5}$. Therefore, a gene and domain responsible for off-loading of products from ACP is not identified. As mentioned in chapter 4, the AT domain in subunit B was important for EPA and DHA production ${ }^{6}$. Furthermore, the AT domain belongs to α / β-hydrolase superfamily, which includes α / β-hydrolase TE. Thus, I proposed the AT domain catalyze hydrolysis reaction of acyl-ACPs and is involved in the off-loading of final products.

5.2. Results

5.2.1. The effect of site-directed mutagenesis on AT domains

I first confirmed whether the AT domain was essential in PUFA biosynthesis. As described in chapter 2 and 3, I have already cloned the DHA synthase genes orfA, B, C of Schizochytrium sp., EPA synthase genes, epa-A, B, C, D of P. profundum, and DHA synthase genes dha-A,-B,-C,-D of M. marina and succeeded in PUFA productions using E. coli as the heterologous host. Thus, I carried out in vivo inactivation experiments. Based on the sequence alignment of the AT domains as described in chapter 3, the active residue Ser in GxSxG motif was mutated to Ala by sire-directed mutagenesis to construct AT mutant genes, orfB-AT ${ }^{0}$, epa- $B-A T^{0}$, and $d h a-B-A T^{0}$. Each mutant gene was coexpressed with corresponding gene sets in E. coli, and PUFA products were analyzed by GC-MS. The GC-MS analysis showed that the DHA productivity of transformants expressing orfB-AT was drastically decreased by about 90% compared with that of wild type (Figure 5-2-1-1). The similar results were obtained using the mutant gene of EPA synthase of P. profundum and DHA synthase of M. marina, indicating that the AT domain was important for PUFA biosynthesis (Figure 5-2-1-2).

Figure 5-2-1-1. GC/MS analysis traced at $m / z 79$ of the products produced by the transformants expressing orfAC, hetI, and $\operatorname{orf} B$ (middle) or orfB- $A T^{0}$ (bottom), authentic standards (top).

Figure 5-2-1-2. GC/MS analysis traced at $m / z 79$ of the products produced by the transformants expressing epa genes (top) or dha genes (bottom), authentic standards (top trace).

5.2.2. Off-loading reactions catalyzed by AT domains

I next carried out in vitro hydrolytic reactions of the AT domain with acyl-ACP substrates. The AT domain was encoded in middle of orfB gene between the CLF-like and ER domain. I first tried to obtain a truncated recombinant AT protein using E. coli BL21(DE3). But any of trial failed because all the truncated proteins were insoluble. Thus, whole OrfB fused with maltose-binding protein was obtained as a soluble protein and used for in vitro reactions (Figure 5-2-2-1). I prepared
docosahexaenoyl-CoA by organic synthesis and docosahexaenoyl-ACP was enzymatically synthesized as the same method described in chapters 3 and 4 . The formation of docosahexaenoylACP was confirmed by HPLC-ESI-MS analysis (Figure 5-2-2-2). After docosahexaenoyl-ACP was incubated with $1 \mu \mathrm{M} \mathrm{OrfB}$ for 1 h at $30^{\circ} \mathrm{C}$, the reaction mixture was analyzed by HPLC. The HPLC analysis showed that docosahexaenoyl-ACP was mostly hydrolyzed to holo-ACP, indicating that the OrfB catalyzed the release reaction of the final product (Figure 5-2-2-2). Furthermore, free fatty acids of DHA was observed in the reaction mixture (Figure 5-2-2-2). Then, I prepared recombinant OrfBAT^{0}, in which the active residue Ser in the AT domain was mutated to Ala, and the enzyme was incubated with docosahexaenoyl-ACP under the same conditions. HPLC analysis showed that no hydrolytic reactions were observed in the AT mutant reaction mixture. Thus, the AT domain in OrfB catalyzed a hydrolysis reaction and functioned as TE domain in microalgal PUFA synthase.

Figure 5-2-2-1. SDS-PAGE analysis of OrfB enzymes (A) and Epa-B enzymes (B). Left, 1: Epa-B $(117 \mathrm{kDa}), 2$: Epa-B-AT ${ }^{0}(117 \mathrm{kDa}), 3$: Markers. Right, 1: Markers, 2: OrfB (260 kDa), 3: OrfB-AT ${ }^{0}$ $(260 \mathrm{kDa})$.

Figure 5-2-2-2. (A) HPLC analysis (UV 210 nm) of in vitro reactions using DHA-ACP and OrfB$\mathrm{AT}^{0}\left(2^{\text {nd }}\right)$ or OrfB ($\left.3^{\text {rd }}\right)$. Substrate (top) and holo-ACP (bottom). (B) HPLC analysis (UV 210 nm) of in vitro reactions using DHA-ACP and $\operatorname{OrfB}-\mathrm{AT}^{0}\left(2^{\text {nd }}\right)$ or $\operatorname{OrfB}\left(3^{\text {rd }}\right)$. No enzyme (top) and standards of free fatty acids of DHA (bottom)

To confirm the role of the AT domain, I carried out the same experiments using AT domain in EpaB of the EPA synthase of P. profundum. I successfully obtained recombinant EpaB fused with MBP as a soluble protein and enzymatically synthesized eicosapentaenoyl-ACP from eicosapentaenoyl-CoA (Figure 5-2-2-3). The hydrolytic reaction was carried out with $5 \mu \mathrm{M} \mathrm{EpaB}$ for 1 h at $20^{\circ} \mathrm{C}$. HPLC analysis showed holo-ACP and free fatty acids of EPA were clearly detected in the reaction mixture. When EpaB-AT ${ }^{0}$, in which the Ser residue was mutated to Ala, was used, no hydrolysis reaction was observed (Figure 5-2-2-3).

As mentioned in chapter 1, acyltransferases in FASs were reported to catalyze the direct acyl transfer of fatty acids to accepter molecules. To examine the possibility of direct transfer from acylACP to CoA or glycerol-3-phosohate in bacterial PUFA synthases, these acceptors were added into the reaction mixtures. No effects on reaction activities were observed (Figure 5-2-2-4), suggesting that

PUFAs were transferred on phospholipids via re-activation by acyl-CoA synthetases after de novo synthesis.

Figure 5-2-2-3. (A) HPLC analysis (UV 210 nm) of in vitro reactions using EPA-ACP and Epa-B$\mathrm{AT}^{0}\left(2^{\text {nd }}\right)$ or Epa-B ($3^{\text {rd }}$). Substrate (top) and holo-ACP (bottom). (B) HPLC analysis (UV 210 nm) of in vitro reactions using EPA-ACP and Epa-B-AT ${ }^{0}\left(2^{\text {nd }}\right)$ or Epa-B ($\left.3^{\text {rd }}\right)$. No enzyme (top) and standards of free fatty acids of EPA (bottom)

Figure 5-2-2-4. HPLC analysis (UV 210 nm) of in vitro reactions using EPA-ACP and Epa-B (top), Epa-B/CoA (2 $\left.2^{\text {nd }}\right)$, Epa-B/glycerol-3-phosphate ($\left.3^{\text {rd }}\right)$, or $\mathrm{CoA}\left(4^{\text {th }}\right)$. holo-ACP (bottom).

Using various acyl-ACPs as substrates, I examined the substrate specificity of the AT domain in OrfB. When short chain length substrates, butyryl-ACP and hexanoyl-ACP, were used, almost no hydrolytic activities were observed. As for middle chain length substrates, 4,7-cis decadienoyl-ACP, myristoyl-ACP $\left(\mathrm{C}_{14}\right)$, and palmitoyl-ACP $\left(\mathrm{C}_{16}\right)$ were also not hydrolyzed (Figure 5-2-2-5). In the case of long acyl chain length substrates, saturated substrate, stearoyl-ACP $\left(\mathrm{C}_{18}\right)$ was accepted by the AT domain in OrfB as substrate but unsaturated substrate, 3,6,9,12,15-cis octadecapentaenoyl-ACP $\left(\mathrm{C}_{18}\right)$, was not. The AT domain also catalyzed hydrolysis of eicosapentaenoyl-ACP (Figure 5-2-2-5). In case of the AT domain in Epa-B, weak hydrolytic activities were detected when butyryl-, hexanoyl-, myristoyl-, palmitoyl-, stealoyl-ACP were used as substrates. In contrast, when $3,6,9,12,15-$ cis octadecapentaenoyl- and docosahexaenoyl-ACP were used as substrates, holo-ACP were clearly detected (Figure 5-2-2-6). The Epa-B showed promiscuous substrate specificity although the activities were weak compared with the intrinsic substrate. This
broad substrate specificity would allow the transformants expressing epa- $A B C D$ to produce ETA and DPA $\omega 3$ besides intrinsic product EPA as described in chapter 3 and 4 . Taken these results together, the AT domain recognized long chain length $\left(\mathrm{C}_{18}\right.$ to $\left.\mathrm{C}_{22}\right)$ acyl-ACP with cis double bonds as substrates. From view points of the product profiles of PUFA synthases, PUFA synthases showed high product specificity and produced specific products without undesired by-products. These facts suggested that the condensation and modification reactions at the late biosynthetic steps would be much faster than the release reaction catalyzed by the AT domain in PUFA biosynthetic process.

Figure 5-2-2-5. HPLC analysis (UV 210 nm) of in vitro reactions using butyryl- (A), hexanoyl- (B), 4,7-cis decadienoyl- (C), myristoyl- (D), palmitoyl- (E), stearoyl- (F), 3,6,9,12,15-cis octadecapentaenoyl- (G), or EPA-ACP (H) and $\operatorname{OrfB}-\mathrm{AT}^{0}\left(2^{\text {nd }}\right)$ or OrfB ($\left.3^{\text {rd }}\right)$. Substrate (top) and holoACP (bottom).

Figure 5-2-2-5. Continued.

Figure 5-2-2-6. HPLC analysis (UV 210 nm) of in vitro reactions using butyryl- (A), hexanoyl- (B), 4,7-cis decadienoyl- (C), myristoyl- (D), palmitoyl- (E), stearoyl- (F), 3,6,9,12,15-cis octadecapentaenoyl- (G), or DHA-ACP (H) and Epa-B-AT ${ }^{0}\left(2^{\text {nd }}\right)$ or Epa-B ($\left.3^{\text {rd }}\right)$. Substrate (top) and holo-ACP (bottom).

Figure 5-2-2-6. Continued.

5.3. Discussion

In this chapter, I showed that the AT domain in PUFA synthases had hydrolytic activities on long chain fatty acyl-ACP through in vitro experiments and concluded that the AT domain was responsible for an off-leading reaction in both eukaryotic and prokaryotic PUFA biosynthesis systems. The termination step in PUFA biosynthesis was shown in Figure 5-3-1. Although the AT domain showed a similarity to malonyl-CoA/ACP transacylase, the domain utilized water molecule as acyl accepter and the hydrolytic reaction proceeded in a similar manner to that of α / β-hydrolase type thioesterase ${ }^{7}$. Once acyl-ACP product was transferred on the Ser residue in the AT domain for the formation of thioester, the nucleophilic attack of a water molecule would occur to form a carboxylic acid.

Figure 5-3-1. Proposed mechanism of hydrolysis reaction catalyzed by AT domain.

Most off-loading reactions are TE domain-mediated hydrolysis or macrolactamization reactions in FASs, PKSs, and nonribosomal peptide synthetases. However, some of other types of chain release mechanisms were reported in secondary metabolites biosynthetic system (Figure 5-32), such as reductive release ${ }^{8}$, condensation release ${ }^{9,10}$, and dehydratase domain-mediated hydrolytic release ${ }^{11}$. Furthermore, acyltransferase-mediated off-loading system has also been reported. In rifamycin biosynthesis, RifF, homologue of arylamine: acetyl-CoA transferase, was involved in the off-loading reaction to generate intramolecular amide bond in its macrocyclic structure ${ }^{12}$. A discrete
acyltransferase, LovD, catalyzed a release reaction of the product and transferred the product to monacolin J acid as accepted molecule in lovastatin biosynthesis system ${ }^{13}$. In the case of FAS, malonyl/palmitoyl transferase domain mediated the direct acyl transfer of fatty acids to acyl acceptor CoA^{14} (Yeast FAS system as described in chapter 1). In this chapter, I showed that the AT domain mediated the off-loading reaction using water molecule as the acyl accepter in PUFA synthase biosynthetic system.

Interestingly, Gemperlein et al. recently suggested a different off-loading reaction in terrestrial myxobacterium PUFA synthase ${ }^{15}$. 1-Acylglycerol-3-phosphate O-acyltransferase (AGPAT) domain encoded in its PUFA synthase gene catalyzed the direct acyl transfer of PUFAs on 1-acylglycerol-3-phosphate as acceptor molecule (Figure 5-3-3), suggesting that phospholipids with PUFAs would be biosynthesized by this domain in the strains. In contrast, the biosynthesis pathway of the phospholipids is probably different in marine eukaryotic and prokaryotic microorganisms. The facts that microalgae DHA synthase produced DHA as free fatty acids ${ }^{2}$ suggest that free acid DHA would be reactivated by acyl-CoA synthetases and transferred on glycerides and phospholipids. In bacterial PUFA synthase, the results obtained in this chapter and the report that one of $p l s C$ gene was responsible for incorporation of EPA into phospholipids in Shewanella sp 16., suggested the same mechanisms for its biosynthesis pathway.

1) reductive release

2) condensation release

2-oxoamine synthase

3) dehydratase domain-mediated hyrolysis

Figure 5-3-2. Various chain release mechanisms in secondary metabolite biosynthesis

4) acyltransferase-mediated releases

Figure 5-3-2. Continued.
(A) Sorangium cellulosum So ce56 Aetherobacter sp.

(B)

Figure 5-3-3. (A) Domain organizations of PUFA synthases in myxobacterium. (B) Proposed reaction catalyzed by AGPAT domain in myxobacterium PUFA synthases.

References

1. O. Santin, G. Moncalian, Loading of malonyl-CoA onto tandem acyl carrier protein domains of polyunsaturated fatty acid synthases. J. Biol. Chem., 293, 12491-12501 (2018).
2. J. G. Metz, J. Kuner, B. Rosenzweig, J. C. Lippmeier, P. Roessler, R. Zirkle, Biochemical characterization of polyunsaturated fatty acid synthesis in Schizochytrium: Release of the products as free fatty acids. Plant Physiology and Biochemistry 47, 472-478 (2009).
3. M. Rodriguez-Guilbe, D. Oyola-Robles, E. R. Schreiter, A. Baerga-Ortiz, Structure, activity, and substrate selectivity of the Orf6 thioesterase from Photobacterium profundum. J. Biol. Chem., 288, 10841-10848 (2013).
4. M. N. Allemann, C. N. Shulse, E. E. Allen, Linkage of marine bacterial polyunsaturated fatty acid and long-chain hydrocarbon biosynthesis. Front. Microbiol., 10, 702 (2019)
5. M. Kotowska, K. Pawlik, Roles of type II thioesterases and their application for secondary metabolite yield improvement. Appl. Microbiol. Biotechnol. 98, 7735-7746 (2014).
6. Y. Orikasa, M. Tanaka, S. Sugihara, R. Hori, T. Nishida, A. Ueno, N. Morita, Y. Yano, K. Yamamoto, A. Shibahara, H. Hayashi, Y. Yamada, A. Yamada, R. Yu, A. Watanabe, H. Okuyama, pfaB products determine the molecular species produced in bacterial polyunsaturated fatty acid biosynthesis. FEMS Microbiology Letters 295, 170-176 (2009).
7. K. Finzel, D. J. Lee, M. D. Burkart., Using modern tools to probe the structure-function relationship of fatty acid synthases., ChemBioChem. 16, 528-547 (2015).
8. M. W. Mullowney, R. A. McClure, M. T. Robey, N. L. Kelleher, R. J. Thomson, Natural products from thioester reductase containing biosynthetic pathways. Nat. Proc. Rep., 35, 847-878 (2018)
9. R. Gerber, L. Lou, L. Du, A PLP-dependent polyketide chain releasing mechanism in the biosynthesis of mycotoxin fumonisins in Fusarium verticillioides. J. Am. Chem. Soc., 131, 3148-3149 (2009).
10. J. Masschelein, P. K. Sydor, C. Hobson, R. Howe, C. Jones, D. M. Roberts, Z. L. Yap, J. Parkhill, E. Mahenthiralingam, G. L. Challis, A dual transacylation mechanism for polyketide synthase chain release in enacyloxin antibiotic biosynthesis. Nat. Chem., 11, 906-912 (2019).
11. T. Moriguchi, Y. Kezuka, T. Nonaka, Y. Ebizuka, I. Fujii, Hidden function of catalytic domain in 6-methylsalicylic acid synthase for product release. J. Biol. Chem., 285, 15637-15643 (2010)
12. T. Yu, Y. Shen, Y. Doi-Katayama, L. Tang, C. Park, B. S. Moore, C. R. Hutchinson, H. G. Floss, Direct evidence that the rifamycin polyketide synthase assembles polyketide chains processively. PNAS, 96, 9051-9056 (1999).
13. X. Xie, M. J. Meehan, W. Xu, P. C. Dorrestein, Y. Tang, Acyltransferase mediated polyketide release from a fungal megasynthase. J. Am. Chem. Soc., 131, 8388-8389 (2009).
14. F. Lynen., On the structure of fatty acid synthetase of yeast., Eur. J. Biochem., 112, 431-442 (1980).
15. K. Gemperlein, S. Rachid, O. R. Garcia, C. S. Wenzel, R. Müller, Polyunsaturated fatty acid biosynthesis in myxobacteria: different PUFA synthases and their product diversity. Chem. Sci. 5, 1733-1741 (2014).
16. T. Ogawa, A. Tanaka, J. Kawamoto, T. Kurihara, Purification and characterization of 1-acyl-sn-glycerol-3-phosphate acyltransferase with a substrate preference for polyunsaturated fatty acyl donors from the eicosapentaenoic acid-producing bacterium Shewanella livingstonensis Ac10.J. Biochem., 164, 33-39 (2018).

Chapter 6

Conclusion

PUFAs such as DHA and EPA are typically synthesized from saturated fatty acids by elongase and desaturase enzymes in plants, fungi, bacteria. However, PUFA synthase enzyme complex composed of three or four polypeptides with catalytic domains like structure of Type I FAS synthesized de novo PUFAs using malonyl-CoA in some marine microorganisms and terrestrial myxobacteria. After discovery of this biosynthetic pathway in 2001, detailed biosynthetic machineries of PUFA synthase are still obscure.

In this study, I investigated the biosynthetic machinery in PUFA synthases of marine microorganisms. In chapter 2, I first examined the role of multi-tandem ACP domains in the enzymes. Typically, FAS and PKS system employed single ACP domain whereas all PUFA synthases identified had tandem ACP domains ranging from 3 to 9. I showed that the number of ACP domains impacted on PUFA productivities without the PUFA profile change and the structure of the domains were also important for its productivity through in vivo experiments.

In chapter 3, I examined the mechanism for controlling cis double bond position, $\omega 3$ or $\omega 6$, of PUFA products using EPA and ARA synthases. Gene exchange and domain swapping experiments showed that the two type DH domains, $\mathrm{DH}_{\mathrm{PKS}}$ and $\mathrm{DH}_{\mathrm{FabA}}$, were important for the control. Therefore, I carried out in vitro reactions with the DH domains and various acyl-ACP to get further information. It was demonstrated that PUFA synthase utilized the two type DH domains depending on carbon chain length of acyl-ACP intermediates to construct cis double bond or saturation and the $\mathrm{DH}_{\mathrm{FabA}}$ catalyzed double bond isomerization reactions besides the dehydration reaction.

In chapter $4, I$ investigated the mechanism for controlling carbon chain length, C_{20} or C_{22}, of PUFA products using EPA and DHA synthases. I showed that the $\mathrm{KS}_{\mathrm{C}} / \mathrm{CLF}$ domains in subunit C were important for DHA and EPA production through the gene exchange and domain swapping
experiments. I carried out the in vitro reactions using the $\mathrm{KS}_{\mathrm{A}} / \mathrm{KS}_{\mathrm{C}}$ and acyl-ACP substrates with wide range of chain length. These experiments showed that PUFA synthases utilized the two KS domains depending on carbon chain length of acyl-ACP intermediates and the substrate specificity of the KS_{C} domain against C_{20} intermediate was important for controlling carbon chain length, C_{20} or C_{22}, of PUFA products.

Finally, I showed the initiation and termination steps in PUFA biosynthetic machinery through the in vitro experiments in chapter 5. The decarboxylation reaction of malonyl-ACP catalyzed by the KS_{A} domain was initiation step to form acetyl-ACP in the system. As for the termination reaction, it was demonstrated that the AT domain catalyzed hydrolytic reactions of acyl-ACPs in both microalgae and marine bacteria PUFA synthases and accepted the long chain acyl-ACPs with cis double bonds as substrates.

Taken together all the results, I proposed the PUFA synthase biosynthetic machinery as shown in Figure 7-1. First, malonyl-CoA were loaded on the tandem ACP domains catalyzed by the MAT domain and acetyl-ACP was generated via decarboxylation of malonyl-ACP catalyzed by the KS_{A} domain. Acyl-ACPs were elongated by the KS_{A} and $\mathrm{KS}_{\mathrm{C}} / \mathrm{CLF}$ domains. While the KS_{A} domain accepted short (from C_{2} to C_{12}) and long (from C_{18} to C_{20}) acyl chains, the $\mathrm{KS}_{\mathrm{C}} / \mathrm{CLF}$ domains accepted middle (from C_{12} to C_{16}) and very long acyl chains (from C_{20} to C_{22}, specific pathway in DHA biosynthesis). The single KR domain catalyzed β-ketoreduction of elongated acyl-ACPs to form ($3 R$)-hydroxyacyl-ACPs regardless of carbon chain lengths. Then, the $\mathrm{DH}_{\text {PKs }}$ recognized hydroxyacylACPs and catalyzed α, β-dehydration reactions, followed by enoyl reduction catalyzed by the ER domain to form α, β-saturated acyl-ACPs. Conversely, the $\mathrm{DH}_{\text {FabA }}$ accepted hydroxyacyl-ACPs and catalyzed α, β-dehydration reactions, α, β - or β, γ-isomerization of trans double bond to form cis double bond. After formation of EPA- or DHA-ACP, the AT domain catalyzed off-loading reactions,
hydrolytic reactions of PUFA-ACP, to produce PUFAs as free fatty acids. Based on the proposed pathway, it will be possible to perform molecular engineering for desired PUFA production in PUFA synthases.

Figure 7-1. Proposed PUFA biosynthetic machinery in PUFA synthases.

Experimental section

1. General

Authentic standards, methyl esters of DHA (C22:6 $\omega 3$), docosapentaenoic acid $\omega 3$ (DPA $\omega 3$, C22:5 ω), EPA (C20:5 $\omega 3$), eicosatetraenoic acids (ETA, C20:4 $\omega 3$), vaccenic acid (C18:1 $\omega 7$), palmitic acid (C16:0), α-linoleic acids (ALA, C18:3 $\omega 3$), gamma-linoleic acids (GLA, C18:3 $\omega 6$), stearidonic acids (SDA, C18:4 ω 3), were purchased from Sigma-Aldrich Japan K.K. (Tokyo, Japan) or Cayman Chemical Company (Ann Arbor, MI, USA). Free fatty acids, DHA (C22:6 $\omega 3$), EPA (C20:5 $\omega 3$) and heptadecanoic acids (C17:0), were purchased from Cayman Chemical Company and Tokyo Chemical Industry Co. Ltd. (Tokyo, Japan). Acyl-CoAs, crotonyl-CoA, acetyl-CoA, butyryl-CoA, hexanoyl-CoA, malonyl-CoA, myristoyl-CoA, palmitoyl-CoA, stearoyl-CoA, were purchased from Sigma-Aldrich Japan K.K. 3-cis Hexenoyl-CoA, 2-trans hexenoyl-CoA, 2-trans octenoyl-CoA, 3-hydroxyoctanoyl-CoA, 4,7-cis decadienoyl-CoA, 3,6,9,12,15-cis octadecapentaenoyl-CoA, eicosapentaenoyl-CoA, docosahexaenoyl-CoA were prepared by organic synthesis as shown in synthetic methods. N-Acetyl cysteamine (SNAC) thioesters were also prepared by organic synthesis. Other chemicals were purchased from Sigma-Aldrich Japan K.K., Cayman Chemical Company, Tokyo Chemical Industry Co. Ltd., or Wako Pure Chemical Industries, Ltd. (Osaka, Japan). Primers were purchased from FASMAC Co. Ltd. (Kanagawa, Japan). Enzymes and kits for DNA manipulation were purchased from Takara Bio Inc. (Shiga, Japan) or New England Biolabs Japan Inc. (Tokyo, Japan). PCR reactions were carried out using a GeneAmp PCR System 9700 thermal cycler (Thermo Fisher Scientific Inc., Waltham, MA, USA) with Tks Gflex DNA polymerase (Takara Bio). General genetic manipulations of E. coli were performed according to standard protocols. NMR spectra were obtained using a JEOL ECS-400 spectrometer. Chemical shifts are reported relative to TMS or the appropriate solvent peak. High-Resolution-MS (HR-MS) data for acyl-CoA were obtained using a Thermo Scientific Exactive mass spectrometer.

2. Bacteria strains and media

The strains used in this study are summarized in Table 2-1. Escherichia coli XL1-Blue (Nippon Gene Co. Ltd., Tokyo, Japan) was routinely used for plasmid construction. A β-oxidationdeficient E. coli mutant, BLR(DE3) $\Delta f a d E$, was used as the heterologous host for PUFA production. E. coli BL21(DE3) (Nippon Gene Co. Ltd.) was used to prepare recombinant enzymes. The media used were LB broth medium (Sigma-Aldrich Japan) and terrific broth (TB) medium (Becton, Dickinson and Company, NJ, USA). For growth on plates, 1.5% agar was added into the media. Ampicillin (Ap), chloramphenicol (Cm), kanamycin (Km), and streptomycin (Sm), were added to the media at concentrations of $100,30,25$, and $20 \mu \mathrm{~g} / \mathrm{ml}$, respectively, if necessary.

Table 2-1. The strains used in this study.

Strains	Descriptions	Source
E. coli XL1-Blue	hsdR17, recA1, endA1, gyrA96, thi-1, supE44, relA1, lac[F', proAB, lacr ${ }^{1} \mathrm{Z} \Delta$	Nippon Gene Co.
	M15, $\left.\operatorname{Tn10(tet~}{ }^{\mathrm{R}}\right)$]	
E. coli BLR(DE3)	F^{-}, ompThsdS $\mathrm{B}_{\mathrm{B}}\left(\mathrm{r}_{\mathrm{B}}{ }^{-} \mathrm{m}_{\mathrm{B}}{ }^{-}\right)$gal dcm (DE3) $\Delta($ srl-recA $) 306:: \mathrm{Tn} 10\left(\right.$ tet $\left.^{\mathrm{R}}\right)$	Merck
E. coli $\mathrm{BLR}(\mathrm{DE} 3) \quad \triangle f a d E$	$\operatorname{BLR}(\mathrm{DE} 3)$ derivative, \triangle fadE	This study
		Nippon Gene Co.
E. coli BL21(DE3)	$\mathrm{F}^{-}, d c m, o m p \mathrm{~T}, h s d \mathrm{~S}_{\mathrm{B}}\left(\mathrm{r}_{\mathrm{B}}{ }^{-} \mathrm{m}_{\mathrm{B}}{ }^{-}\right), \operatorname{gal}, \lambda(\mathrm{DE} 3)$	Ltd.
Schizochytrium sp.	orfABC (AF378327, AF378328, AF378329), ATCC20888	ATCC
	epa- $A B C D$ (CR354531), ATCC BAA-1252	ATCC
profundum SS9		
Shewanella oneidensis		
MR-1	SopfaABCDE (NC_004347), ATCC BAA-1096	ATCC
Moritella marina MP-1	$d h a-A B C D E$ (AB025342), ATCC 15381	ATCC
Aureispira marina	ara- $A B C D E$ (AB980240), JCM23201	JCM
Nostoc sp. PCC 7120	hetI (L22883), ATCC27893	ATCC

ATCC; American Type Culture Collection, JCM; Japan Collection of Microorganisms, RIKEN Bioresource Center.

3. Deletion of the fadE gene in Escherichia coli BLR(DE3)

To construct a fadE disruptant, the Quick \& Easy Escherichia coli Gene Deletion Kit was used according to the manufacturer's protocol (Figure 3-1). In brief, DNA fragments possessing a Kmresistance gene cassette flanked with FRT sites and 50-bp homologous arms whose sequences were identical to the target regions were amplified by PCR with primers (KO01/KO02). The amplified DNA fragments were used to transform E. coli BLR(DE3). Gene disruption in the Km-resistant colonies was confirmed by PCR using appropriate sets of primers that hybridized approximately 300 bp upstream and downstream of the target genes. The sequences of the amplicons were then analysed to confirm the deletion. After that, the selection marker in the obtained mutant was removed with FLPrecombinase and the gene deletion was confirmed by PCR and direct sequencing of the amplicons.

Figure 3-1. Deletion of the $\boldsymbol{f a d E}$ gene in Escherichia coli BLR(DE3). The fadE regions of the wild type (upper) and $\Delta f a d E$ strain (middle) are shown schematically. Arrows indicate the primers used for PCR analysis. Disruption was confirmed by PCR (bottom), W, wild type; E, $\Delta f a d E$ disruptant; M, marker

4. PUFA production

To prevent degradation of the synthesized PUFAs, E. coli BLR(DE3) $\Delta f a d E$ was used as a host.
The PUFA biosynthetic gene sets were co-introduced into the host with the corresponding phosphopantetheinyl transferase gene (hetI for orfA, SopfaE for SopfaA and epa-A, ara-E for ara-A, or $d h a-E$ for $d h a-A)$. The transformants were cultured at $30^{\circ} \mathrm{C}$ in TB broth medium for 24 h , and then 1 mL of the broth was inoculated into $200-\mathrm{mL}$ baffled flasks containing 20 mL of TB medium and 1 mM IPTG. After cultivation for 48 h at $20^{\circ} \mathrm{C}$ with agitation (230 rpm), 5 mL of the culture broth were collected and centrifuged. Total lipids were extracted from the pelleted cells following Bligh and Dyer ${ }^{1}$. For methyl esterification, the lipid fraction was dissolved in hexane (1 mL), to which methanol containing $14 \mathrm{wt} \%$ boron trifluoride (1 mL , Sigma-Aldrich Japan) was added, and incubated at $60^{\circ} \mathrm{C}$ for 10 min . After the reaction mixture was evaporated, the pellet was dissolved with 0.2 mL of hexane and analysed with a Shimadzu GCMS-QP2010 Ultra system (Kyoto, Japan) equipped with a VF-23ms column $(0.25 \mathrm{~mm} \times 60 \mathrm{~m}$, film thickness $0.25 \mu \mathrm{~m}$, Agilent Technologies Inc., Santa Clara, CA, USA). The analytical conditions were as follows; carrier gas, helium with constant flow rate at $1.4 \mathrm{~mL} \mathrm{~min}^{-1}$; injection temperature, $250{ }^{\circ} \mathrm{C}$; column temperature, $150{ }^{\circ} \mathrm{C}(5 \mathrm{~min})-250^{\circ} \mathrm{C}\left(2^{\circ} \mathrm{C} \mathrm{min}{ }^{-1}\right)-250^{\circ} \mathrm{C}(15$ min); ion source temperature, $250^{\circ} \mathrm{C}$; detection, scan mode ($\mathrm{m} / \mathrm{z} 50$ to 500) for qualitative analysis and selected ion mode $(m / z 79)$ for quantitative analysis. Heptadecanoic acid was used as an internal standard for quantitative analysis. To determine the double bond positions of the PUFAs, pyrrolidide derivatives of fatty acid methyl esters were prepared ${ }^{2}$ and analysed by GC-MS.

5. Purification of recombinant enzymes.

The transformant BL21(DE3) harboring the expression vector was cultured at $37{ }^{\circ} \mathrm{C}$ in LB broth medium containing $25 \mu \mathrm{~g} / \mathrm{ml} \mathrm{Km}$ for 16 h , and the overnight culture was inoculated into 100 ml LB medium containing $25 \mu \mathrm{~g} / \mathrm{ml} \mathrm{Km}$. Protein expression was induced by addition of 0.5 mM IPTG when the optical density at 600 nm reached 0.5 to 1.0 . After cultivation for 16 h at $16^{\circ} \mathrm{C}$, the culture broth was collected and centrifuged at $8,000 \mathrm{rpm}$ for 5 min . After the pellet was resuspended with phosphate buffer ($50 \mathrm{mM} \mathrm{NaH}{ }_{2} \mathrm{PO}_{4}, 300 \mathrm{mM} \mathrm{NaCl}, 20 \mathrm{mM}$ imidazole, pH 8.0), the cells were disrupted with sonication. Recombinant enzymes were purified using a Ni-NTA agarose column or amylose affinity column with elution buffer ($50 \mathrm{mM} \mathrm{NaH} \mathrm{NO}_{4}, 300 \mathrm{mM} \mathrm{NaCl}, 250 \mathrm{mM}$ imidazole, pH 8.0 for the Ni-NTA agarose column or 50 mM Tris- $\mathrm{HCl}, 500 \mathrm{mM} \mathrm{NaCl}, 10 \mathrm{mM}$ maltose, pH 7.5 for the amylose affinity column). The Epa-KR-DH ${ }_{\text {PKS }}$ and Dha-KR-DH ${ }_{P K S}$ enzymes were purified by two-step purification using a Ni-NTA agarose column, followed by an amylose affinity column. Enzymes were rebuffered with 100 mM Tris- $\mathrm{HCl}, 100 \mathrm{mM} \mathrm{NaCl}, \mathrm{pH} 7.5$ using an Amicon Ultra 3 K , 30K, or 100K (Merck KGaA, Darmstadt, Germany). Enzyme purities were analyzed by SDS-PAGE on $5-12 \%$ gels. Enzyme concentration was determined by the Bradford method using bovine serum albumin as a standard.

6. Plasmids constructions

The plasmids used in this study are summarized in Table 6-1. DNA fragments were amplified by PCR with the primers shown in Table 6-2. The amplified fragments were digested with appropriate restriction enzymes and inserted into the corresponding restriction sites of the expression vectors. Detailed processes for plasmid construction are described below.

Table 6-1. Plasmids list used in this study.

Name	Description	Source
pET-21a	protein expression vector, T7 promoter, Ap ${ }^{\mathrm{r}}$	Merck
pCDF-1b	protein expression vector, T7 promoter, Sm^{r}	Merck
pCOLADuet-1	protein co-expression vector, T7 promoter, Km^{r}	Merck
pACYCDuet-1	protein co-expression vector, T7 promoter, Cm^{r}	Merck
pSTV28	cloning vector, lac promoter, Cm^{r}	Takara Bio
pET-orfA	pET-21a derivative with orfA from Schizochytrium sp.	This study
pCDF-orfB	pCDF-1b derivative with orfB from Schizochytrium sp.	This study
pCOLA-orfC	pCOLADuet-1 derivative with orfC from Schizochytrium sp.	This study

pSTV-hetI	expression in E. coli.	This study
pET-orfA 4	pET-orfA derivative possessing $4 \times$ ACP domains	This study
pET-orfa	pET-orfA derivative possessing $5 \times \mathrm{ACP}$ domains	This study
pET-orfA6	pET-orfA derivative possessing $6 \times \mathrm{ACP}$ domains	This study
pET-orfA7	pET-orfA derivative possessing $7 \times \mathrm{ACP}$ domains	This study
pET-orfA8	pET-orfA derivative possessing $8 \times$ ACP domains	This study
pET-orfalo	pET-orfA derivative possessing $10 \times$ ACP domains	This study
pET-orfall	pET-orfA derivative possessing $11 \times \mathrm{ACP}$ domains	This study
pET-Sopfa A	pET-21a derivative with SopfaA from S. oneidensis	This study
pACYC-SopfaE-		
Sopfa	pACYCDuet-1 derivative with SopfaE and SopfaB from S. oneidensis	This study
pCDF-SopfaC	pCDF-1b derivative with SopfaC from S. oneidensis	This study
pCOLA-SopfaD	pCOLADuet-1 derivative with SopfaD from S. oneidensis	This study
pET-SopfaA5	pET-SopfaA derivative possessing $5 \times \mathrm{ACP}$ domains	This study
pET-SopfaA6	pET-SopfaA derivative possessing $6 \times$ ACP domains	This study
pET-SopfaA7	pET-SopfaA derivative possessing $7 \times$ ACP domains	This study
pET-SopfaA8	pET-Sopfa A derivative possessing $8 \times$ ACP domains	This study
pET-SopfaA9	pET-SopfaA derivative possessing $9 \times$ ACP domains	This study
pET-SopfaA5-	pET-SopfaA derivative possessing one inactivated ACP domains (1 ${ }^{\text {st }}$ position) and four	
$1 M$	active ACP domains (2nd to 5th positions)	
pET-SopfaA5-	pET-SopfaA derivative possessing one inactivated ACP domains ($2^{\text {nd }}$) and four active ACP	
$2 M$	domains (1st and 3rd to 5th)	
pET-SopfaA5-	pET-SopfaA derivative possessing one inactivated ACP domains ($3^{\text {rd }}$) and four active ACP	
$3 M$	domains (1st, 2nd, 4th and 5th)	This study
pET-SopfaA5-	pET-SopfaA derivative possessing one inactivated ACP domains ($\left.4^{\text {th }}\right)$ and four active ACP	
$4 M$	domains (1st to 3rd and 5th)	This study
pET-SopfaA5-	pET-SopfaA derivative possessing one inactivated ACP domains ($5^{\text {th }}$) and four active ACP	
$5 M$	domains (1st to 4th)	This study
pET-SopfaA-	pET-SopfaA derivative possessing one inactivated ACP domains ($3^{\text {rd }}$) of araA and four	
araAM	active ACP domains (1st, 2nd, 4th and 5th)	This study
pET-SopfaA-	pET-SopfaA derivative possessing one inactivated ACP domains (${ }^{\text {rd }}$) of epaA and four	
epaAM	active ACP domains (1st, 2nd, 4th and 5th)	This study

pET-SopfaA-	pET-SopfaA derivative possessing one inactivated ACP domains ($3^{\text {rd }}$) of dhat and four	
dhaAM	active ACP domains (1st, 2nd, 4th and 5th)	This study
pET-SopfaA-	pET-SopfaA derivative possessing one inactivated ACP domains ($3^{\text {rd }}$) of orfA and four	
orfAM	active ACP domains (1st, 2nd, 4th and 5th)	This study
	pET-SopfaA derivative possessing four active ACP domains ($1^{\text {st }}, 2^{\text {nd }}, 4^{\text {th }}$ and $\left.5^{\text {th }}\right)$ and	
pET-Sopfa A-S1	"sequence 1" (between 2nd and 4th ACP domain)	This study
	pET-SopfaA derivative possessing four active ACP domains ($1^{\text {st }}, 2^{\text {nd }}, 4^{\text {th }}$ and $\left.5^{\text {th }}\right)$ and	
pET-SopfaA-S2	"sequence 2" (between 2nd and 4th ACP domain)	This study
pET-araA	pET-21a derivative with araA from A. marina	This study
pCDF-araC	$\mathrm{pCDF}-1 \mathrm{~b}$ derivative with araC from A. marina	This study
pCOLA-araD	pColADuet-1 derivative with araD from A. marina	This study
pACYC-araE-		
araB	pACYCDuet-1 derivative with araE and araB from A. marina	This study
pACYC-SopfaE-		
araB	pACYCDuet-1 derivative with SopfaE and araB	This study
pET-epa-A	pET-21a derivative carrying epa- A from P. profundum.	This study
pACYC-SopfaE-	pACYCDuet-1 derivative carrying epa-B from P. profundum and SopfaE from S.	This study
epa-B	oneidensis	
pCDF-epa-C	pCDF-1b derivative carrying epa-C from P. profundum.	This study
pCOLA-epa-D	pCOLADuet-1 derivative carrying epa-D from P. profundum.	This study
	pACYC-SopfaE-ara-B derivative carrying the inactivated KR domain in ara-B	This study
pACYC-SopfaE-		
	pACYC-SopfaE-ara- B derivative carrying the inactivated DHPKS domain in ara- B	This study
pCDF-ara-C-AT ${ }^{0}$	pCDF-ara- C derivative carrying the inactivated AT domain in ara-C	This study
pCDF-epa-C-		
	pCDF-epa-C derivative carrying the KS and CLF domains from epa-C and the double	This study
ara-DHFaba-	$\mathrm{DH}_{\text {FabA }}$ domain from ara-C	
chimeral		
pCDF-ara-C-		
epa-DH ${ }_{\text {FabA }}{ }^{-}$	pCDF-ara- C derivative carrying the KS, CLF, and AT domains from ara- C and the double	This study
chimera2		
pET-28a (+)	protein expression vector, T 7 promoter, $\mathrm{Km}^{\text {r }}$	Merck
	pET-28a (+) derivative for expression of C-terminal epa- A encoding the KR and DHPKS	
pET28-epa- A -	domains with N -terminal maltose binding protein-fused and C -terminal $6 \times$ His tags-fused	This study
$K R-D H_{P K S}$		

pET28-epa-C-	pET-28a (+) derivative for expression of C-terminal epa-C encoding the consecutive	This study
$D H_{\text {FabA }}$	DHFabA domain with N-terminal $6 \times$ His tag.	
pET28-dha- A -	pET-28a (+) derivative for expression of C-terminal dha- A encoding the KR and DHPLS	This study
	domain with N-terminal maltose binding protein-fused and C-terminal $6 \times$ His tags-fused	
KR-DHPKS		
	enzyme.	
pET28-dha-C-	pET-28a $(+)$ derivative for expression of C-terminal dha-C encoding the double DHFabA	This study
$D H_{\text {FabA }}$	domain was fused with N -terminal maltose binding protein tag.	
pET28-ara-B	pET-28a $(+)$ derivative for expression of ara-B with N-terminal maltose binding protein	This study
	tag.	
pET28-ara-C-	pET-28a $(+)$ derivative for expression of C-terminal ara- C encoding the consecutive	
$D H_{\text {Fab } A}$	$\mathrm{DH}_{\text {FabA }}$ domain with N-terminal maltose binding protein tag.	his study
pET28-sfp	pET-28a (+) derivative for expression of sfp from Bacillus subtilis with N - and C-terminal	This study
	$6 \times$ His tags	
pET28-ACP	pET-28a $(+)$ derivative for expression of a single $A C P$ domain gene from S. oneidensis	This study
	with N - and C-terminal $6 \times$ His tags.	
pET28-EcfabG	pET-28a (+) derivative for expression of 3-ketoacyl reductase EcfabG gene of E. coli with	This study
pET-dha-A	pET-21a derivative carrying dha- from M. marina.	This study
pACYC-dha-E-		This study
	pACYCDuet-1 derivative carrying dha-B and dha-E from M. marina.	
pCDF-dha-C	pCDF-1b derivative carrying dha-C from M. marina.	This study
pCOLA-dha-D	pCOLADuet-1 derivative carrying dha-D from M. marina.	This study
pACYC-dha-E-		This study
	pACYC-dha-E derivative carrying SopfaB from S. oneidensis	
Sopfa ${ }^{\text {a }}$		
pACYC-SopfaE-		This study
	pACYC-SopfaE derivative carrying dha-B from M. marina	
pACYC-dha-E-		This study
epa-B	pACYC-dha- E derivative carrying epa-B from P. profundum	
pCDF-epa-C-KS ${ }^{0}$	pCDF-epa-C derivative carrying the inactivated KS_{C} domain in epa-C	This study
pCDF-dha-C-		This study
	pCDF-dha-C derivative carrying the inactivated KS_{C} domain in dha-C	
$K S^{0}$		
pCDF-epa-C-	pCDF-epa-C derivative carrying the KS_{C} and CLF domains from epa-C and the double	This study
dha-C-chimeral	$\mathrm{DH}_{\text {FabA }}$ domain from dha-C	
pCDF-dha-C-	pCDF-dha-C derivative carrying the KS_{C} and CLF domains from dha-C and double	This study
epa-C-chimera 2	DHFaba domain fromepa-C	

pET28-epa-A-	pET-28a (+) derivative for expression of N-terminal epa- A encoding the KS_{A} and MAT	This study
$K S_{A}-M A T$	domains was fused with N-terminal $6 \times$ His tag.	
pET28-epa-C-	pET-28a $(+)$ derivative for expression of N-terminal epa-C encoding the KS_{C} and CLF	This study
$K S C-C L F$	domains with N-terminal $6 \times$ His tag.	
pET28-dha- -	pET-28a (+) derivative for expression of N-terminal dha- A encoding the KS_{A} and MAT	This study
KS ${ }_{\text {A }}$ MAT	domains with N-terminal $6 \times$ His tag.	
pET28-dha-C-	pET-28a $(+)$ derivative for expression of N-terminal dha-C encoding the KS ${ }_{\mathrm{C}}$ and CLF	This study
$K S_{C-C L F}$	domains with N-terminal maltose binding tag.	
pCDF-orfB-AT ${ }^{0}$	$\mathrm{pCDF}-$ orf B derivative carrying the inactivated AT domain in orfB	This study
pACYC-SopfaE-	pACYC-SopfaE-epa- B derivative carrying the inactivated AT domain in epa-B	This study
epa-B-AT ${ }^{0}$		
pET28-maltose-		This study
	pET28-maltose derivative with epa-B from P. profundum.	
pET28-maltose-		This study
$e p a-B-A T^{0}$	pET28-maltose-epa- B derivative carrying the inactivated AT domain in epa-B	
pET28-maltose-		This study
	pET28-maltose derivative with orfB from Schizochytrium sp.	
pET28-maltose-		This study
	pET28-maltose-orfB derivative carrying the inactivated AT domain in orfB	

Table 6-2. Primers list used in this study.

Name	Sequences (5^{\prime} to 3^{\prime})
KO primers	
KO01	TATCATCACAAGTGGTCAGACCTCCTACAAGTAAGGGGCTTTTCGTTATGGAATTAACCCTCACTAAA
	GGGCGGC
KO02	GAGCCTTTCGGCTCCGTTATTCATTTACGCGGCTTCAACTTTCCGCACTTTAATACGACTCACTATAGG
	GCTCG
KO03	GCGTTTCCGCCGCTTCGTTCAGTTCG
KO04	CCTGGGTGATGAAAGGCGGTACTTATACTCC
OP primers	
OP01	GAGATATACATATGGCGGCCCGTCTGCAGGAGCAAAAGG
OP02	ATAGAATTCTTAGAAGGCAAGGCTGTCCGTGGCGATGACCGAAG
OP03	AAACAATTCATATGCTTCGGCCCCCGTGCAAAAGAAGG
OP04	ATAGAATTCTTACAGCTTCTCGGCCGGGACGTATGTGTCATC
OP05	AAAGAATTCGGATCCGCGCCTGCAGGTCGACAAGCTTGC

SP primers

```
                                    GTGATGTGCCATATGTATATCTCCTTATTAAAGTTAAACAAAATTATTTCTACAGGG
                                    AAAGAATTCATATGATTGAAATGTTCCGTCTTGGAATCCTCAC
                                    GCGCACTGCGGTGCTACGGTGGTTGTTG
                                    GCGTCAGCCGAAGCAACAGCCTTGG
                                    GAGATATACATATGGCCGCTCGGAATGTGAGCGCCGCGCATGAGATG
                                    GGTCGGAGATGAGACCGTTCTTCTTGG
                                    GAGATATACATATGGCGCTCCGTGTCAAGACGAACAAGAAGC
                                    ATAGAATTCTTAGAGCGCGTTGGTGGGCTCGTAGACAAAG
                                    CATATGTATATCTCCTTCTTGTGAAATTGTTATCCGCTCACAATTCC
                                    ACCATGATTACGAATTCGAGCTCGGTACC
                                    TATAAGCTTCACGTGGACGCTCTCAGCCGCACTCGCACTGTTG
                                    ATACTGCAGACGTCCTTGGCCTCGACGTTGAGCATGG
                                    GGCCAGTGCCAAGCCGTACGAGCGTGAG
                                    GGAGATGACATCCTTGAAGGCCGACGAGG
                                    CAAGGATGTCATCTCCAAGGTCTCCTTCC
                                    GGGATCCTCTAGAGTCGACCTGGTCGACGTCCTTGGCCTCG
                                    CAGGTCGACTCTAGAGGATCCCCG
                                    CGGCTTGGCACTGGCCGTCGTTTTAC
                                    TGTGGATCCGAGGGAAGCCTTGGCGAACTTG
                                    CAAGGACGTCGACGCTCTCAGCC
                                    ACGGAATTCATGAGCCATACCCCTTCACAG
                                    ACGCTCGAGTCACTTAACACTTACCTC
                                    GCACTCCAGTCGCCTTCCCGTT
                                    CTGTGAAGGGGTATGGCTCATATGTATATCTCCTTCTTAAAGTTAAACAAAATTATTTC
                                    GAGCCATACCCCTTCACAG
                                    GGCAGGTCGATGGTTTCCTC
                                    ACGCACGTGATGAGTTCTCAAATGCATACTCACCC
                                    ACGCTCGAGCTATGCCTCTTCGATGCAGATG
                                    GTCGGGTGAGTATGCATTTGAGAACTCATGGTATATCTCCTTATTAAAGTTAAAC
                                    AGTTCTCAAATGCATACTCACCC
                                    CCATTGTCGATACCCAACTGG
```

```
GCTTACATATGACGAATACCACACTCGATAATAACGC
TGTGAGGATCCTTAGCAGCGTTGCAGAGGTTTCC
GCGATACCATGGATGAAGATTGAGCTTTTTTTTATACC
TATATGGATCCTTAGTCAGCCAAACTAGCCGC
CTACATCATATGACACTCAACCCAATCGCACAT
TGTGCGGATCCTCAAAGGGGTTCTCCTTCTTGGAATACG
AATTGCGGCCGCGAGAGTAGGGAACTGCCAGGCATC
CGATTATGCGGCCGTGTACAATACGCAAAAAGGCCATCCGTCAG
CGTATTGTACACGGCCGCATAATCG
GCTAGTTATTGCTCAGCGG
GCCCTTGGATCCAACGCAGTGATGATACG
TTTAAGAAATTCCGGATACGGCCGCAATTGGCGTGACAGCGCTGGCGACAACCTGAGGATTCG
GCTACACAATGCGCAGTAGCAGCAAGTGCAGCAGTTTCCAATGATGAGATTGAGCG
CCTATCGATGCCAACGCC
CTTTATGCTTCCGGCTCGTATGTTGTGTG
CCGATTCATTAATGCAGCTGGCACGACAG
CTTAGGGATCGATGCTATTAAGCGCGTAGAAATTCTAGGCACAGTG
AATAGCATCGATCCCTAAGTCCGCTTCCATATC
CCACACGTTTAATTGCGTCAATGCCAAGGTCGGCTTCC (FX07
GGCATTGACGCAATTAAACGTGTGGAAATTCTAGGCACAGTGCAGG (FX06)
GAATTGACGCCATTAAACGGGTGGAGATTTTAGG
CGTTTAATGGCGTCAATTCCAAGGTCGGCTTCC
GGTATCGATGCCATTAAGCGCGTGGAAATTCTAGG
CGCTTAATGGCATCGATACCAAGGTCGGCTTCC
TTAAGCAGCGCTCCAGTAACGTCAGCATCAAAC
CAACACGCTTAATAGCGTCGATACCCAAATCTGCTTCCATATCC
GGGTATCGACGCTATTAAGCGTGTTGAAATTCTTGGTACG
TTACGGCCGCTGACGCGACTGGAGCAGAAGCAAC
TTAAGAGCGCTACTACTGCTAACACTAACAACGGTCTTTC
CTCTTTTGATAGCATCAATACCCAAATCTGCTTCCATATCCATGTC
GATTTGGGTATTGATGCTATCAAAAGAGTAGAAATCTTTGGTGCTATGACC
TTGATCGGCCGTTTGTCGTACAGGAGCAGGTG
```

AP primers

AP01 TATGAATTCTTTAAGAAGGAGATATACATATGAATTTAAACCACTCGCTTCGCAAAACTCCTG
AP02 CTGGCGAAAGGGGGATGTGCTGCAAGG
P01 GACAGTGAAATGCTGATTAAGAAATTCCAAG

GTTATGCGCACCGTCTATCGATTTGAACCACATTC CCACACGTTTGATAGCATCGATACCTAAATCAGCTTCCATGTC GGTATCGATGCTATCAAACGTGTGGAAATATTAGGTGCAG TTTAACGGCCGGAGAGCTTGTTGCTACAGAAGCCGTC TTTAATGCGCAGCCGCCGCCCCTGCTGTC GCTTGATCGCGTCAATGCCGAGCTCGGTCTC CTCGGCATTGACGCGATCAAGCGTGTCGAGATTCTCTCCG TTAATCGGCCGGCGCAGGGGCGGCAGCAG TTGTCAGCTGCCTTCCCTCAATCAAAAAAGGAGTCGC TTAATCGGCCGAGGGCATACTGAGGAGTTGATTAAAGG TTAATCAGCTGAATCAGAGCATTTCACCCGGC TTAAACGGCCGTGCCATTAGGGCCGATAATGGCG AAACTGCAGCATATGAAAATAGCAATCATAGGCTTATCTGGTTTGTTTC ATAGGATCCTTAAGCTTCTTCTATACCTAGAGCCAAGTCCG TATCTCGAGCTAGCTAATTGCTAGAGAAAAATTAGGGACTGGATTGG AGAAGGAGCATATGATTACTTTTTCTGGAATAAAACAGCAGTTGTATTGG AGACCATGGTTCATTTGCTTTATATCAACTCTGCTGTGGTTC CGCGAATTCCTAGAATAAAGAATCTACATCTAGTAAATTAATAGAAAAATCTTTGAC GAGTCAGCATATGATGCCTCAACCAGATTACCTAGACTTCACCCTC GACGGATCCGCAAGCTTGTCGAGCTACCAAGTTAGTTCC

GACAGTGAAATGCTGATTAAGAAATTCCAAG TTTGGATCCCTATGACAGAAGCTCCTTCTCTGGCTC TTTGGTCATATGGGTGTTAAGCGGAGACTCATGATG CTTGTGCCACTAGGAAGCTGCCAG TTTTCCCATATGCCATTGCGCATCGCTCTTTTAG TTTGGATCCTCACACTGGCTCTCCTTGTGTAGTGTTC TTCCTTCATATGCATTGCCCAGTTAATTACGCACC CCGACTTCAAGCTTTGCATCG

CCTGCGAACGGTTCTGCGGC TTCGGATCCTCAGGCTTCTTCAATACAGATTGCAATGTC TTCACTCATATGACAACGCAAACTATGAATAATGAAAAGCTG TTCGGATCCTTAAATCATTTTCTCAACAGGCTTCCAACG GAGTCAGCATATGATGCCTCAACCAGATTACCTAGACTTCACCCTC GCAATGGCÁAAATCTGTTTGTCCTACATTACCATAAAAACC GGACAAACAGATTTTGCCATTGCTAATGAAATTCTAAGCAAAG GCTAGTTATTGCTCAGCGGTGG CTTGAATAACGAAATGTTGTAAGAAAGGATTCTCAGAAGGTTCTAATG TTTCTTACAACATTTCGTTATTCAAGGGCAAGCCG AAACACTAGAGCCACAACAAGCCCTCATTC GTTATGCCATGGGCGAAAGTGCGGGCATGTG CGCACTTTCGCCCATGGCATAACCAAATGCCAAATCTGG ATAGGATCCTTAAGCTTCTTCTATACCTAGAGCCAAGTCCG GCACTCCAGTCGCCTTCCCGTT AGCGAATTCTACTAAATCTTCGTAATCCCAGATACAAG TTCCGAATTCGCAACAGGCAAAATTGCTAAAGTATTTG TGCGAATTCTTCCAAATCTTCCTGAGAAAAGATAATCGTC GAGATGTTACAGAAATGAÁTCCATTTCTGATTTCTTTGC GCAAAGAAATCAGAAATGGAGTTCATTTCTGTAACATCTCC TTTGAATTCGCTGAAGGCGATATCGCCAATG TAGACCATGGAAATCGAAGAAGGTAAACTGGTAATCTGG ATAGGTACCTGGACATATGTGAAATCCTTCCCTCGATCC GGCGCATATGGTTGAAAACCTTGTAGAAGCGATTGCAGAA TTCCGCTCGAGTGACAGAAGCTCCTTCTCTGGCTCAGAC TGGCCGGCTAGCATTCGCAAACCTTGTATCTGGGATTACGAAG TTAGGCCATATGCCGAGCGCAACCGTTGCTATCTC TTCTCTCGAGTGACATATCGTTCAAAATGTCACTGACACTGAC GGCTAAGCTAGCGCTGCTACACAAGCTGGTTTTCAGATAAAAGGACC TTTAA $\underline{G G A T C C T T A C G C T T C A A C A A T A C T T A A A A C G A T G T T T T T A A C T T C ~}$ GGGGCCCATATGCAAGGAAAGACGATTATCTTTTCTCAGGAAG TTATGCCATATGGCAGTAGCAGCAAGTGCAGCAGTTTCC

P41	TTGCTCGAGGGCCGCAATTGGCGTGAC
P42	CGGCATATGAATTTTGAAGGAAAAATCGCACTG
P43	TTAAGGATCCTCAGACCATGTACATCCCGCC
PM primers	
PM01	TTTAAACATATGGCTAAAAAGAACACCACATCGATTAAGCACG
PM02	TTTAAGCTTATCATGACATATCGTTCAAAATGTCACTGACACTGAC
PM03	TTCCCCATGGATGTACAGCGGCGTAAAAGATAAGCTCACCC
PM04	TTTCGGATCCCTATTTAGCGTCAGGTTTAAAATTAGTCTCAGG
PM05	GGTTGTCATATGACGGAATTAGCTGTTATTGGTATGGATG
PM06	CCTAAACCAACATAAGTAGCACCAATACCTGGGTACATGAAGG
PM07	ATTGGTGCTACTTATGTTGGTTTAGGGCGTGATCTATTTCATC
PM08	CATGTGGTATAGCTCAACCATGTGATCGTATTCGGCATAAGCTGGC
PM09	GATCACATGGTTGAGCTATACCACATGGATGTTACTCCACGTATTAATACCAAGATG
PM10	TTAAGGATCCCTATTTGTTCGTGTTTGCTATATGGCCTGC
PM11	TTTAAACCATGGAAAATATTGCAGTAGTAGGTATTGCTAATTTGTTC
PM12	TTTAAGGATCCTTACGCTTCAACAATACTTAAAACGATGTTTTTAACTTC
PM13	GTGGTTCATATGTCGAGTTTAGGTTTTAACAATAACAACGCAATTAACTGGG
PM14	CACCTTTAAGCATGTGCAAAGCAACATCTACAGCGCC
PM15	GGGGGATCCTTAATCACTCGTACGATAACTTGCCAATTCTG
PM16	GATGTTGCTTTGCACATGCTTAAAGGTGCTGCGTATTTACAACGTG
PM17	AGCGAATTCTACTAAATCTTCGTAATCCCAGATACAAG
PM18	GCACTCCAGTCGCCTTCCCGTT
PM19	TTTGAATTCGCTGAAGGCGATATCGCCAATG
PM20	TTCGGATCCTCAGGCTTCTTCAATACAGATTGCAATGTC
PM21	TTCCTTCATATGCATTGCCCAGTTAATTACGCACC
PM22	CTGAACTTGCAGCTGCTGCATCTAGGCTAAGCTGTACG
PM23	GATGCAGCAGCTGCAAGTTCAGTCTATTCTCTGAAATTAGCC
PM24	TTAGGATCCTTATGCAGAGTTAGCTGAATGAGCTTCAAGC
PM25	CAAGATGAAGCTGCAGCCGCATCCAGTGCAAAATGTGAAC
PM26	GATGCGGCTGCAGCTTCATCTTGTTATAGCGTTAAGTTAGCGTG
PM27	AAAGTGACAAGGGAAATACCAATGCTCAGGGTCTAAATCTTTCTG
PM28	TTTGGTCATATGGGTGTTAAGCGGAGACTCATGATG

```
PM29
    TTCGGATCCTTACTTAATTGGCGTAGGTGTCGCGACTG
PM30
                                    GCGTTCAAGCAACACATGTTGCAATCTGTTCGTTTCAGC
PM31
                                    GCAACATGTGTTGCTTGAACGCTTTCTTAATGGC
PM32
                                    TTCGGATCCTTAAGCAACGGGTTTAGCAATAGCTTGAATG
PM33
                                    TTCGGATCCTTATGCTGGCGTAGTAGCGACTGTTGG
PM34
PM35
PA primers
PA01 GCACCAACGCCCATGCCGTCTTTGAGG
PA02 CAAGTGCGAGGCCAAAAGCAGCCTTGGGCGTGATGTTGAGAACG
PA03 GGCTGCTTTTGGCCTCGCACTTGGCGAGATTTCCATGATTTTTGC
    GCTAGTTATTGCTCAGCGGTGG
    CGCTTTAGGTTACGCTAAAGGTGAAGCATCGATGTGG
PA07
GCTTCACCTTTAGCGTAACCTAAAGCGAAATCAGGCTTAACG
```

Underline showed restriction sites or mutation sites.

Plasmid construction of pET-orfA

The orfA gene ($8,733 \mathrm{bp}$; accession number AF378327) of PUFA synthase from Schizochytrium sp. ATCC20888 was amplified by PCR with primers (OP01/OP02) and genomic DNA of Schizochytrium sp. according to the manufacturer's protocol. The amplified DNA fragment was digested with $N d e$ I and EcoRI, and inserted into the corresponding sites of pET-21a (Merck).

Plasmid construction of pCDF -orfB

Previously, Metz et al. succeeded in expressing orfB with altered Ser codons suitable for E. coli though orfB encoded by the native codons was hardly expressed in E. coli ${ }^{3}$. Therefore, I constructed a plasmid carrying the $\operatorname{orf} B$ gene ($6,180 \mathrm{bp}$; accession number AF378328) with the same altered Ser codons. The scheme is shown in Figure 6-1. First, DNA fragment $1(4,568$ bp to end of orfB) was amplified by PCR with primers (OP03/OP04) and genomic DNA of Schizochytrium sp. as a template. A pCDF-1b (Merck) derivative possessing NdeI and EcoRI sites was also constructed by PCR with two primers (OP05/OP06) and pCDF-1b as a template. The amplified fragment 1 was inserted into the NdeI and EcoRI sites of the pCDF derivative vector to obtain pCDF-orfB1.

Second, DNA fragment 2 (4,123 to $4,705 \mathrm{bp}$), which has the same altered Ser codons as those reported previously, was purchased from Thermo Fisher Scientific Inc. (Waltham, MA, USA). DNA fragment 3 (3,390 to $4,151 \mathrm{bp}$) was obtained by PCR with primers (OP07/OP08) and genomic DNA.

To obtain DNA fragment 4 (3,390 to 4,705 bp), DNA fragments 2 and 3 were assembled by overlap extension PCR with primers (OP07/OP09). Fragment 4 was digested with NdeI and SacII, and then inserted into the corresponding sites of $\mathrm{pCDF}-$ orfB1 to construct $\mathrm{pCDF}-$ orfB4.

Finally, DNA fragment 5 (1 to $3,478 \mathrm{bp}$) was amplified by PCR with primers (OP10/OP11), digested with $N d e I$ and $M f e I$, and inserted into the same sites of $\mathrm{pCDF}-o r f B 4$ to yield pCDF-orfB.

Figure 6-1. Strategy for pCDF-orfB construction.

Plasmid construction of pCOLA-orfC

The orfC gene $(4,509 \mathrm{bp}$; accession number AF378329) was amplified by PCR with primers (OP12/OP13) and Schizochytrium sp. genomic DNA as a template. The fragment was digested with NdeI and EcoRI, and then inserted into the NdeI and MfeI sites of pCOLADuet-1 vector (Merck).

Plasmid construction of pSTV-hetI

A 4'-phosphopantetheinyl transferase (PPTase) is required to activate acyl carrier proteins (ACPs). Though no genes encoding PPTase have been reported from Schizochytrium sp., Metz et al. successfully used a PPTase gene, hetI, from Nostoc sp. as an alternative ${ }^{3}$. I therefore used the hetI gene (accession number L22883), the codons of which were optimized for E. coli expression (Thermo Fisher Scientific). The DNA fragment was digested with NdeI and EcoRI and then inserted into the same sites of pSTV28N, which is a derivative of the pSTV28 vector (Takara Bio Inc., Shiga, Japan) and was constructed by inverse PCR with pSTV28 as a template and primers (OP14/OP15), to create an NdeI site at the start codon for protein expression. The plasmid thus obtained was designated pSTVhetI.

Plasmid construction of pET-SopfaA

The SopfaA gene (7,596 bp; accession number NC_004347) of PUFA synthase from Shewanella oneidensis MR-1 was amplified by PCR with primers (SP01/SP02) and S. oneidensis MR1 genomic DNA as a template. The fragment was digested with EcoRI and XhoI, and inserted into the same sites of pET-21a (Merck) to obtain pET-Sopfa A^{\prime}. Then, the N-terminal His-tag sequences of the plasmid were deleted by overlap PCR extension with two sets of primers (SP03/SP04 and SP05/SP06) and pET-SopfaA' as a template. Thus, the DNA region between the ApaI and SalI sites in pET-SopfaA' was replaced with the assembled DNA fragment to yield pET-SopfaA.

Plasmid construction of pCDF-SopfaC

The SopfaC gene ($5,892 \mathrm{bp}$; accession number NC_004347) was amplified by PCR with primers (SP07/SP08) and genomic DNA as a template. The fragment was digested with PmlI and XhoI, and inserted into the same sites of $\mathrm{pCDF}-1 \mathrm{~b}$ (Merck) to make pCDF-SopfaC'. The N-terminal His-tag sequences of the plasmid were deleted as described above with primers (SP03/SP09 and SP10/SP11).

Plasmid construction of pCOLA-SopfaD

The SopfaD gene ($1,644 \mathrm{bp}$; accession number NC_004347) was amplified by PCR with primers (SP12/SP13) and genomic DNA as a template. The fragment was digested with NdeI and $B a m \mathrm{HI}$, and inserted into the NdeI and $\mathrm{Bg} / \mathrm{II}$ sites of pCOLADuet-1.

Plasmid construction of pACYC-SopfaE-SopfaB

For co-expression of SopfaB and SopfaE (accession number NC_004347), pACYCtrm, a derivative of pACYCDuet-1 (Merck), was constructed by inserting the $r r n B$ terminator from pTr 99 A between the first multi-cloning site and the second T 7 promoter in pACYCDuet-1. Two DNA fragments possessing r rnB terminators and the second T7 promoter were prepared by PCR with primers (SP18/SP19 and SP20/SP21) and pACYCDuet-1 and pTrc99A as templates, and then assembled by overlap extension PCR. The DNA fragment thus obtained was digested with NotI and NdeI, and inserted into the same sites of pACYCDuet-1 to construct pACYCtrm.

The SopfaE gene was amplified by PCR with primers (SP14/SP15) and genomic DNA as a template, and then the NcoI and BamHI fragment was inserted into the same sites of pACYCtrm to obtain pACYC-SopfaE. Then, the SopfaB gene was amplified by PCR with primers (SP16/SP17) and genomic DNA as a template, digested with $N d e \mathrm{I}$ and BamHI, and inserted into the $N d e \mathrm{I}$ and $B g l \mathrm{II}$ sites of pACYC-SopfaE to construct pACYC-SopfaE-SopfaB.

Plasmid construction of pET-araA

The araA gene (4,671 bp; accession number AB980240) of PUFA synthase from Aureispira marina was amplified by PCR with primers (AP01/AP02) and pSTV29-Plac-pfaAB ${ }^{4}$ as a template. The fragment was digested with NdeI and BamHI, and inserted into the same sites of pET-21a.

Plasmid construction of pCDF-araC

The araC gene ($6,726 \mathrm{bp}$; accession number AB980240) was amplified with primers (AP03/AP04) and pMW219-Plac-pfaCD ${ }^{4}$ as a template. The fragment digested with NdeI and BamHI was replaced with that of pCDF -orfB.

Plasmid construction of pCOLA-araD

The araD gene ($1,629 \mathrm{bp}$; accession number AB980240) was amplified with primers (AP05/AP06) and pMW219-Plac-pfaCD ${ }^{4}$ as a template. The NdeI and BamHI digested fragment was inserted into the NdeI and BglII sites of pACYCDuet-1.

Plasmid construction of pACYC-araE-araB and pACYC-SopfaE-araB

The araE gene (660 bp ; accession number AB980240) and araB gene ($2,406 \mathrm{bp}$; accession number AB980240) were each amplified with primers (AP07/AP08 and AP09/AP10, respectively) and template DNA (pUC19-Plac-pfaE and pSTV29-Plac-pfaAB4 ${ }^{4}$, respectively). The former and latter fragments were digested with $N c o I / B a m H I$ and $N d e \mathrm{I} /$ BamHI, respectively, and inserted into the $\mathrm{NcoI} / B a m \mathrm{HI}$ and $\mathrm{NdeI} / \mathrm{Bg} g \mathrm{II}$ sites of pACYCtrm to construct pACYC-araE-araB.

To construct pACYC-SopfaE-araB, pACYC-araE-araB was digested with NdeI and XhoI, and inserted into the same sites of pACYC-SopfaE.

Plasmids Construction of orfA genes with 4 to 11 acyl carrier protein domains

To investigate the relationship between PUFA productivity and the number of ACP domains in the orfA gene, I constructed orfA genes possessing $4 \times 5 \times, 6 \times, 7 \times, 8 \times, 9 \times, 10 \times$, and $11 \times$ ACP domains. Each of the ACP domains is highly conserved and separated by conserved and repeated regions with Ala and Pro rich sequences. I therefore considered the region between Ala/Pro rich sequences one ACP domain unit.

To construct the plasmids, I used the following technique. ZraI sites exist in every ACP domain except the first one (Figure 6-2). A PmII site is also located downstream of the last ACP domain.

Deletion of the internal region between either ZraI or PmlI in the orfA gene results in no frame shift of codons. Moreover, the DNA fragment obtained by ligation at the ZraI and PmlI sites cannot be redigested with either of the restriction enzymes.

First, each of the single ACP domains was randomly amplified by PCR with primers (OP16/OP17) using pET-orfA as a template. The fragment was digested HindIII/PstI and inserted into the same sites of pUC18 (Takara Bio). By sequencing, I identified the original ACP domain and consequently obtained plasmids possessing each of the ACP domains (pUC18-ACP2 ${ }^{\text {nd }}, 3^{\text {rd }}, 4^{\text {th }}, 5^{\text {th }}, 6^{\text {th }}$, $7^{\text {th }}, 8^{\text {th }}$ and $\left.9^{\text {th }}\right)$.

Next, an orfA gene fragment from 1,976 to $2,469 \mathrm{bp}$ was amplified with pET-orfA as a template and primers (OP18/OP19); the primers were designed to remove the additional ZraI site located at $2,469 \mathrm{bp}$. An orfA gene fragment from $2,469 \mathrm{bp}$ to $3,858 \mathrm{bp}$ was amplified with primers (OP20/OP21) and pET-orfA as a template. A pHSG298 (Takara Bio) derivative plasmid possessing BsiWI and ZraI sites was also constructed by inverse PCR with primers (OP22/OP23) and pHSG298 as a template. The three fragments thus obtained were assembled by in-fusion recombination (Takara Bio) to obtain pHSG298-ACP2 ${ }^{\prime}$.

Next, I obtained the ACP fragment by digesting pUC18-ACP3 with PmlI and BamHI. The fragment was inserted into the ZraI and BamHI sites of $\mathrm{pHSG} 298-\mathrm{ACP} 2^{\prime}$. This operation was repeated to construct plasmids possessing the desired number of ACP domains (pHSG298-4' to 11'). Then, an orfA gene fragment from 6,162 to $6,503 \mathrm{bp}$ was amplified with primers (OP24/OP25) and pET-orfA as a template. The fragment was digested with ZraI and BamHI, and inserted into the same sites of pHSG298-ACP4' to 11^{\prime} to construct pHSG298-ACP4 to 11 . Finally, the orfA genes carrying the desired number of ACP domains were digested with $B s i \mathrm{WI}$ and $P m l \mathrm{I}$, and replaced with those of pETorfA to make pET-orfA4 to 11 , respectively.

Figure 6-2. Strategy for construction of orfAs with $4 \times$ to $11 \times$ acyl carrier protein domains.

Plasmid construction of SopfaA genes with 5 to 9 acyl carrier protein domains

I also constructed SopfaA genes possessing $5 \times, 6 \times, 7 \times, 8 \times$, and, $9 \times \mathrm{ACP}$ domains. In this case, I employed the same technical strategy as that used to construct orfA genes with 4 to 11 ACP domains (Figure 6-3).

First, a fragment from the BamHI to EagI site was amplified by PCR with pET-SopfaA as a template and primers (SP22/SP23); the primers were designed to create an AfeI site in the Ser1431 and Ala1432 codons. The fragment was digested with BamHI and EcoRI, and inserted into the same sites of pHSG298 to obtain pHSG298-ACP2. Then, a fragment carrying the second ACP domain was
amplified with primers (SP24/SP23) and pET-SopfaA as a template. In this case, the primer SP24 was designed to create a FspI site in the Ser1323 and Ala1324 codons. The fragment was digested with FspI and EcoRI, and inserted into the AfeI and EcoRI sites of pHSG298-ACP2 to obtain pHSG298ACP3. This operation was repeated to construct plasmids with the desired number of ACP domains (pHSG298-ACP3 to 7). Finally, the SopfaA genes possessing the desired number of ACP domains were digested with BamHI and EagI, and replaced with the corresponding region of pET-SopfaA to construct pET-SopfaA5 to 9 .

(A)

SoPfaA ACP domain of S. oneidensis
ACP1 QPPLAQPQVQTVAAQTSALQVKPALQQIEHAMLSVVADKTGYPVEMLELSMDMEADLGIDSIKRVEILGTVQDELPNLPELSPEDLAECRTLGEIVALFSQAAPVT-----_SATT ACP2 VSHATQSAVAASAAVSN------DEIERTMMAVVADKTGYPVEMLELSMDMEADLGIDSIKRVEILGTVQDELPNLPELSPEDLAECRTLGEIVALFSQAVPVAAQTFAAMAAT ACP3 NPQVVASAVTPIAAVSD----GEIEHTMMAVVADKTGYPVEMLELSMDMEADLGIDSIKRVEILGTVQDKLPNLPELSPEDLAECRTLGEIAALFSQAAPVT------AAAT ACP4 VSHATQSAIAARAAVSN-----DEIERTMMAVVADKTGYPVEMLELSMDMEADLGIDSIKRVEILGTVQDQLPNLPELSPEDLAECRTLGEIVALYAGSQSSSEALQQNHAAT
(B)

Figure 6-3. Strategy for construction of SopfaA genes with $5 \times$ to $9 \times$ acyl carrier protein domains. (A) Sequence alignment of the tandem acyl carrier protein domains of SopfaA. The red box, blue highlighting, and green highlighting show the active sites of the ACP domains, the EagI site, and the boundary of one unit of ACP, respectively. (B) Plasmid construction is shown schematically.

Plasmid construction of pET-SopfaA5-1M

A DNA fragment, in which the first ACP was inactivated by replacing the active Ser with an Ala residue, was amplified by overlap PCR with primers (SP28/SP29/SP25/SP26) and pHSG298ACP2 as a template. The fragment was digested with $N d e I$ and EcoRI, and replaced with the corresponding region of $\mathrm{pHSG} 298-\mathrm{ACP} 2$ to obtain $\mathrm{pHSG} 298-\mathrm{ACP} 2-1 \mathrm{M}$. A DNA fragment with active ACP domains was amplified with primers (SP24/SP23) and pHSG298-ACP2 as a template, digested with FspI and EcoRI, and inserted into the AfeI and EcoRI sites of pHSG298-ACP2-1M. The EagI and BamHI fragment of the plasmid thus obtained was replaced with that of pET-SopfaA.

Plasmid construction of pET-SopfaA5-2M

A DNA fragment, in which the second ACP was inactivated, was obtained as described above with primers (SP30/SP31/SP25/SP26) and pHSG298-ACP2 as a template. The fragment was digested with NdeI and EcoRI, and replaced with the corresponding fragment of pHSG298-ACP2 to construct pHSG298-ACP2-2M. After this, the protocol for pET-SopfaA5-1M construction was employed; that is, the preparation of a DNA fragment with active ACP domains by PCR with primers (SP24/SP23), the cloning of the FspI and EcoRI fragment into pHSG298-ACP2-2M, and the replacement of the EagI and BamHI fragments.

Plasmid construction of pET-SopfaA5-3M

A DNA fragment, in which the third ACP was inactivated, was obtained as described above with primers (SP24/SP23/SP30/SP31) and pHSG298-ACP2 as a template. The fragment was digested with FspI and EcoRI, and replaced with the AfeI and EcoRI fragment of pHSG298-ACP2 to make pHSG298-ACP3-3M. After this, the protocol described above was employed.

Plasmid construction of pET-SopfaA5-4M

The EagI and XhoI fragment possessing the C-terminal half region was inserted into the same sites of the pBluescript II SK (+) vector (Agilent Technologies Inc., Santa Clara, CA, USA) to make pBlue-ACP34. A DNA fragment, in which the fourth ACP was inactivated, was obtained as described above with primers (SP32/SP33/SP27/AP02) and pBlue-ACP34 as a template. The EagI and SacI fragment of the constructed plasmid was replaced with that of pBlue-ACP34 to obtain pBlue-ACP3M4. Finally, the EagI and SacI fragment of pET-SopfaA was replaced with that of pBlue-ACP3M4.

Plasmid construction of pET-SopfaA5-5M

A DNA fragment, in which the fifth ACP was inactivated, was obtained as described above with primers (SP34/SP35/SP27/AP02) and pBlue-ACP34 as a template. The fragment was digested with EagI and SacI, and replaced with that of pBlue-ACP34 to make pBlue-ACP34M. Then, the EagI
and SacI fragment of pET-SopfaA was replaced with that of pBlue-ACP34M.

Plasmid construction of pET-SopfaA-epaAM

A DNA fragment carrying the second mutated ACP domain of epaA (accession number CR354531) from Photobacterium profundum SS9 was amplified by overlap PCR with primers (SP36/SP37/SP38/SP39) and the P. profundum SS 9 genome as a template. The fragment was digested with AfeI and EagI, and inserted into the same sites of pHSG298-ACP2. Then, the EagI and BamHI fragment of the constructed plasmid was replaced with that of pET-SopfaA.

Plasmid construction of pET-SopfaA-araAM

A DNA fragment carrying the second mutated ACP domain of araA from A. marina was amplified by overlap PCR with primers (SP40/SP41/SP42/SP43) and pET-araA as a template. After this, the method for pET-SopfaA-epaAM construction was employed.

Plasmid construction of pET-SopfaA-dhaAM

A DNA fragment carrying the second mutated ACP domain of dhat (accession number AB025342) from Moritella marina was amplified by overlap PCR with primers (SP44/SP45/SP46/SP47) and the M. marina genome as a template. The fragment was digested with FspI and EagI, and inserted into the AfeI and EagI sites of pHSG298-ACP2. The replacement of the EagI and BamHI fragments was carried out using the method described above.

Plasmid construction of pET-SopfaA-orfAM

A DNA fragment carrying the third mutated ACP domain of orfA from Schizochytrium sp. was amplified by overlap PCR with primers (SP48/SP49/SP50/SP51) and pET-orfA as a template. The fragment was digested with FspI and EagI, and inserted into the AfeI and EagI sites of pHSG298ACP2. The replacement of the $E a g I$ and $B a m H I$ fragments was done as described above.

Plasmid construction of pET-SopfaA-S1

A DNA fragment carrying $h l y B$ sequence S 1 (accession number NC_004347, $118^{\text {th }}$ to $224^{\text {th }}$ amino acids of HlyB), which is an ABC transporter from S. oneidensis, was amplified by PCR with primers (SP52/SP53) and the S. oneidensis genome as a template. The fragment was digested with PvuII and EagI, and inserted into the AfeI and EagI sites of pHSG298-ACP2. The replacement of the $E a g \mathrm{I}$ and Bam HI fragments was done as described above.

Plasmid construction of pET-SofaA-S2

A DNA fragment carrying $h l y B$ sequence S 2 (accession number NC_004347, $383^{\text {rd }}$ to $489^{\text {th }}$
amino acids of HlyB) was amplified by PCR with primers (SP54/SP55) and the S. oneidensis genome as a template. After this, the protocol for pET-SopfaA-S1 was employed.

Plasmid construction of pET-epa- A

First, C-terminal DNA fragments carrying epa- A (from 633 bp to the end of epa- A) were amplified by PCR with primers ($\mathrm{P} 01 / \mathrm{P} 02$) and genomic DNA of Photobacterium profundum SS9. The amplified fragments were inserted into the BamHI and EagI sites of pBluescript II SK $(+$) (Agilent Technologies Inc.) to obtain pBlue-epa- A-C-terminus. Second, DNA fragments of epa- A (from 1 to 633 bp) were amplified with primers ($\mathrm{P} 03 / \mathrm{P} 04$), digested with $N d e \mathrm{I}$ and $E a g \mathrm{I}$, and inserted into the same sites of pET-21a (Merck) to obtain pET-epa- A - N-terminus. Finally, C-terminal DNA fragments obtained by digestion of pBlue-epa-A-C-terminus with EagI and XhoI were inserted into the corresponding sites of pET-epa- A - N-terminus to obtain pET-epa- A.

Plasmid construction of pACYC-SopfaE-epa-B

DNA fragments carrying the epa-B gene were amplified with primers ($\mathrm{P} 05 / \mathrm{P} 06$) and genomic DNA of P. profundum SS9. The fragments obtained were digested with NdeI and BamHI, and inserted into the $N d e \mathrm{I}$ and $B g l \mathrm{II}$ sites of pACYC-SopfaE to obtain pACYC-SopfaE-epa-B.

Plasmid construction of pCDF-epa-C

DNA fragments carrying the N-terminus of the epa-C gene (from 1 to 993 bp of epa-C) were amplified with primers ($\mathrm{P} 07 / \mathrm{P} 08$) and genomic DNA of P. profundum SS9. The fragments obtained were digested with $N d e \mathrm{I}$ and Xba I and inserted into the corresponding sites of pUC18 (Takara Bio Inc.). The plasmid thus constructed was digested with NdeI and BamHI and inserted into the same sites of pCDF-orfB to obtain pCDF-epa-C-N-terminus. DNA fragments carrying the C-terminus of the epa-C gene (from 993 to $6,021 \mathrm{bp}$ of epa-C) were amplified with primers (P09/P10), digested with $N c o \mathrm{I}$ and BamHI, and inserted into the corresponding sites of pCDF-epa-C-N-terminus to yield pCDF-epa-C.

Plasmid construction of pCOLA-epa-D

DNA fragments carrying the epa-D gene were amplified with primers ($\mathrm{P} 11 / \mathrm{P} 12$) and genomic DNA. The fragments obtained were digested with $N d e \mathrm{I}$ and BamHI, and inserted into the $N d e \mathrm{I}$ and $B g l$ II sites of pCOLADuet-1 (Merck) to get pCOLA-epa-D.

Plasmid construction of pACYC-SopfaE-ara-B-KR

DNA fragments carrying a mutated ara-B gene, which encoded a mutated KR domain in which the catalytically essential Tyr432 was replaced with Phe, were amplified by overlap extension

PCR with primers (P13/P14/P15/P16) and pACYC-SopfaE-ara-B as a template. The amplified fragments were digested with $N d e \mathrm{I}$ and XhoI and used to replace the original fragment of pACYC-SopfaE-ara-B to construct pACYC-SopfaE-ara-B-KR ${ }^{0}$.

Plasmid construction of pACYC-SopfaE-ara-B-DH ${ }^{0}$

DNA fragments carrying a mutated ara-B gene, which encoded a mutated $\mathrm{DH}_{\text {PKS }}$ domain in which the catalytically essential His544 was replaced with Phe, were amplified by overlap extension PCR with primers (P13/P16/P17/P18) and pACYC-SopfaE-ara-B as a template. After this, the same protocol as for the construction of pACYC -SopfaE-ara- $B-K R^{0}$ was employed.

Plasmid construction of pCDF-ara-C-AT

DNA fragments carrying a mutated ara-C gene, which encoded a mutated AT domain in which the catalytically essential Ser1094 was replaced with Ala, were amplified by overlap extension PCR with primers (P19/P20/P21/P22) and pCDF-ara-C as a template. The amplified fragments were digested with BglII and AfeI and used to replace the original fragment of $\mathrm{pCDF}-a r a-C$.

Plasmid construction of pCDF-epa-C-ara-DH Faba-chimeral $^{\text {F }}$

DNA fragments carrying the KS-CLF genes of epa-C were amplified with primers ($\mathrm{P} 23 / \mathrm{P} 24$) and pCDF-epa-C as a template. The amplified fragments were digested with NdeI and EcoRI and inserted into the same sites of pCDF-orfB to obtain pCDF-epa-C-KS-CLF. A DNA fragment carrying the ara-C $\mathrm{DH}_{\mathrm{FabA}}$ gene was also amplified by PCR with primers ($\mathrm{P} 25 / \mathrm{P} 16$) and $\mathrm{pCDF}-a r a-C$ as a template. The primer P25 was designed to create an artificial EcoRI site. The amplified fragments were digested with EcoRI and BamHI and inserted into the corresponding sites of pCDF-epa-C-KSCLF to construct pCDF-epa-C-ara-DH ${ }_{\text {FabA-chimeral }}$.

Plasmid construction of pCDF-ara-C-epa-DH $H_{\text {Faba-chimera } 2}$

DNA fragments carrying the KS, CLF, and AT genes of ara-C were amplified by overlap extension PCR with primers (P26/P27/P23/P28) to remove the native EcoRI site at $1,028 \mathrm{bp}$ in ara-C. The amplified fragments were digested with $N d e \mathrm{I}$ and EcoRI and used to replace the corresponding fragment of pCDF-epa-C-KS-CLF to obtain pCDF-ara-C-KS-CLF-AT. We also amplified a DNA fragment carrying a $\mathrm{DH}_{\mathrm{FabA}}$ gene of epa-C with primers ($\mathrm{P} 29 / \mathrm{P} 10$). The amplified fragment was digested with EcoRI and BamHI and inserted into the corresponding sites of pCDF-ara-C-KS-CLF$A T$ to obtain pCDF-ara-C-epa-DH $H_{\text {Faba-chimera2 }}$.

Plasmid construction of pET28-epa- $A-K R-D H_{P K S}$

To insert a gene encoding a maltose binding protein into pET-28a(+) (Merck), DNA fragments
were amplified with primers ($\mathrm{P} 30 / \mathrm{P} 31$), digested with $N c o \mathrm{I}$ and NdeI , and inserted into the same sites of pET-28a to obtain pET28-maltose. DNA fragments carrying the KR and DHPKS genes of epa- A were amplified with primers ($\mathrm{P} 32 / \mathrm{P} 33$) and $\mathrm{pET}-e p a-A$ as a template. The amplified fragments were digested with NdeI and XhoI and inserted into the same sites of pET28-maltose to construct pET28-epa- $A-K R-D H_{P K S}$.

Plasmid construction of pET28-epa-C-DH FabA

DNA fragments carrying the consecutive $\mathrm{DH}_{\text {FabA }}$ genes of epa- C were amplified with primers (P34/P16) and pCDF-epa-C as a template. The fragments were digested with NheI and XhoI, and inserted into the corresponding sites of pET-28a to obtain pET28-epa-C-DH $H_{\text {Faba }}$.

Plasmid construction of pET28-dha- $A-K R-D H_{P K S}$

The same method as for pET28-epa- $A-K R-D H_{P K S}$ construction was employed with the primers P35/P36 using M. marina genome DNA.

Plasmid construction of pET28-dha-C-DH FabA

DNA fragments carrying the consecutive $\mathrm{DH}_{\text {FabA }}$ genes of $d h a-C$ were amplified with primers (P37/P38) and M. marina genome DNA as a template. The amplified fragments were digested with NheI and BamHI and inserted into the same sites of pET28-maltose to construct pET28-dha-C-DH $H_{\text {Faba }}$.

Plasmid construction of pET28-ara-B

pACYC-SopfaE-ara-B was digested with NdeI and XhoI and the fragment carrying the araB gene was inserted into the corresponding sites of pET28-maltose to construct pET 28 -ara- B.

Plasmid construction of pET28-ara-C-DH FabA

DNA fragments carrying the consecutive $\mathrm{DH}_{\mathrm{FabA}}$ genes of $\operatorname{ara}-C$ were amplified with primers (P39/P16) and pCDF-ara-C as a template. The amplified fragments were digested with NdeI and XhoI and inserted into the same sites of pET28-maltose to obtain pET28-ara-C-DH FabA.

Plasmid construction of pET28-sfp

pACYC-sfp p^{5} was digested with $N d e \mathrm{I}$ and XhoI, and the DNA fragment carrying the phosphopantetheinyl transferase sfp gene of the Bacillus subtilis was inserted into the corresponding sites of pET-28a.

Plasmid construction of pET28-ACP

DNA fragments carrying a single ACP gene from SopfaA of S. oneidensis MR-1 were
amplified with primers ($\mathrm{P} 40 / \mathrm{P} 41$) and $\mathrm{pHSG} 298-A C P 3$ as a template. The amplified fragments were digested with NdeI and XhoI and inserted into the same sites of pET-28a.

Plasmid construction of pET28-EcfabG

DNA fragments carrying a $E c f a b G$ gene of E. coli were amplified with primers $(\mathrm{P} 42 / \mathrm{P} 43)$ and genomic DNA of E. coli BL21(DE3) as a template. The amplified fragments were digested with NdeI and BamHI and inserted into the same sites of pET-28a.

Plasmid construction of pET- $d h a-A$

DNA fragments carrying $d h a-A$ were amplified with primers (PM01/PM02) and genomic DNA of M. marina. The fragments obtained were digested with NdeI and HindIII, and inserted into the same sites of pET-21a to construct pET-dha- A.

Plasmid construction of pACYC-dha-E-dha-B

DNA fragments carrying a PPTase gene ($d h a-E$) were amplified with primers (PM03/PM04), digested with NcoI and BamHI, and inserted into the same sites of pACYCrrm to construct pACYC-dha-E. DNA fragments carrying dha-B were amplified by overlap extension PCR with primers (PM05/PM06/PM07/PM08/PM09/PM10). After digestion with NdeI and BamHI, the fragments were inserted into the $N d e \mathrm{I}-B g l \mathrm{II}$ sites of pACYC-dha-E to obtain pACYC-dha-E-dha-B.

Plasmid construction of pCDF-dha-C

DNA fragments carrying dha-C were amplified with primers (PM11/PM12). The fragments obtained were digested with NcoI and BamHI , and inserted into the same sites of pCDF-1b (Merck) to obtain pCDF-dha-C.

Plasmid construction of pCOLA-dha-D

DNA fragments carrying the N-terminus and C-terminus of $d h a-D$ were amplified with primers (PM13/PM14/PM15/PM16). The whole $d h a-D$ gene was obtained by overlap extension PCR with primers (PM13/PM15). The fragments obtained were digested with NdeI and BamHI, and inserted into the NdeI and $B g l I I$ sites of pCOLADuet-1 (Merck) to construct pCOLA-dha-D.

Plasmid construction of pACYC-dha-E-SopfaB

pACYC-SopfaE-SopfaB was digested with NdeI and XhoI and the DNA fragments carrying the SopfaB gene were inserted into the same sites of pACYC-dha-E to obtain pACYC-dha-E-SopfaB.

Plasmid construction of pACYC-SopfaE-dha-B

pACYC-dha-E-dha-B was digested with NdeI and XhoI and the DNA fragments carrying dhaB were inserted into the same sites of pACYC-SopfaE to construct pACYC-SopfaE-dha-B.

Plasmid construction of pACYC-dha-E-epa-B

pACYC-SopfaE-epa-B was digested with $N d e \mathrm{I}$ and $X h o \mathrm{I}$ and the DNA fragments carrying $e p a-B$ were inserted into the same sites of $\mathrm{pACYC}-d h a-E$ to construct $\mathrm{pACYC}-d h a-E-e p a-B$.

Plasmid construction of pCDF-epa-C-dha-C-chimeral

DNA fragments carrying the KS_{C} and CLF genes of epa-C were amplified with primers (PM17/PM18) and pCDF-epa-C as a template. The primer PM17 was designed to create an artificial EcoRI site without amino acid changes of Epa-C. The amplified fragments were digested with ApaI and EcoRI and inserted into the same sites of pCDF-dha-C.

Plasmid construction of pCDF-dha-C-epa-C-chimera2

DNA fragments carrying the consecutive $\mathrm{DH}_{\text {FabA }}$ genes of epa- C were amplified with primers (PM19/PM20) and pCDF-epa-C as a template. The primer PM19 was designed to introduce an artificial EcoRI site without amino acid changes of Epa-C. The amplified fragments were digested with EcoRI and BamHI and inserted into the same sites of pCDF-dha-C.

Plasmid construction of pCDF-epa-C-KS

DNA fragments carrying a mutated epa-C gene, which encoded a mutated KS_{C} domain in which the catalytically essential Cys 257 was replaced with Ala, were amplified by overlap extension PCR with primers (PM21/PM22/PM23/PM24). The amplified fragments were digested with NsiI and $N c o \mathrm{I}$ and used to replace the original fragment of pCDF-epa-C.

Plasmid construction of pCDF-dha-C-KS

DNA fragments carrying a mutated $d h a-C$ gene, which encoded a mutated K_{C} domain in which the catalytically essential Cys 196 was replaced with Ala, were amplified by overlap extension PCR with primers (PM11/PM25/PM26/PM27). The amplified fragments were digested with $N c o \mathrm{I}$ and $E c o$ RI and used to replace the original fragment of pCDF-dha-C.

Plasmid construction of pET28-epa- $A-K S_{A}-M A T$

DNA fragments carrying the KS_{A} and MAT genes of epa- A were amplified by overlap extension PCR with primers (PM28/PM29/PM30/PM31) and pET-epa- A as a template to remove the NdeI site at $2,588 \mathrm{bp}$ in epa-A. The amplified fragments were digested with $N d e \mathrm{I}$ and $B a m \mathrm{HI}$ and
inserted into the corresponding sites of pET-28a to obtain pET28-epa- $A-K S_{A}-M A T$.

Plasmid construction of pET28-epa-C-KS C_{C}-CLF

DNA fragments carrying the KS_{C} and CLF genes of epa-C were amplified by PCR with primers (PM21/PM32) and pCDF-epa-C as a template. The amplified fragments were digested with $N d e \mathrm{I}$ and BamHI and inserted into the corresponding sites of pET-28a to obtain pET28-epa-C-KS C^{-} CLF.

Plasmid construction of pET28-dha-A-KS

DNA fragments carrying the KS_{A} and MAT genes of $d h a-A$ were amplified by PCR with primers (PM01/PM33) and pET- $d h a-A$ as a template. The same protocol used for the construction of pET28-epa- $A-K S_{A}-M A T$ was employed to obtain pET28-dha- $A-K S_{A}-M A T$.

Plasmid construction of pET28-dha-C-KS $C_{C}-C L F$

DNA fragments carrying the KS_{C} and CLF genes of $d h a-C$ were amplified by PCR with primers (PM34/PM35) and pCDF-dha-C as a template. The amplified fragments were digested with $N d e \mathrm{I}$ and BamHI and inserted into the same sites of pET28-maltose to construct pET28-dha-C-KS C^{-} CLF.

Plasmid construction of $\mathrm{pCDF}-$ orf $B-A T^{0}$

DNA fragments carrying a mutated orfB gene, which encoded a mutated AT domain in which catalytically essential residue Ser1140 was mutated to Ala, were amplified by overlap PCR extension with primers (PA01/PA02/PA03/PA04) and pCDF-orfB as a template. The Amplified fragments was digested with $B a m H I$ and $M f e I$ and used to replace the original fragment of $\mathrm{pCDF}-o r f B$.

Plasmid construction of pACYC-SopfaE-epa-B-AT

DNA fragments of a mutated epa-B gene in which catalytically essential residue Ser403 was mutated to Ala were amplified by overlap PCR extension with primes (PA04/PA05/PA06/PA07) and pACYC-SopfaE-epa-B as a template. The DNA obtained was digested with NdeI and XhoI and replaced with the original fragment of pACYC-SopfaE-epa-B.

pET28-maltose-orfB and pET28-maltose-orfB- $A T^{0}$.

Whole DNA fragments of $\operatorname{orf} B$ or $\operatorname{orf} B-A T^{0}$ was obtained by digestion of pCDF-orf B or pCDF$\operatorname{orf} B-A T^{0}$ with $N d e \mathrm{I}$ and EcoRI, respectively. The fragments obtained was inserted into a same restriction site of pET 28 -maltose to construct $\mathrm{pET28}$-maltose-orfB or $\mathrm{pET28}$-maltose-orfB- $A T^{0}$.

pET28-maltose-epa-B and pET28-maltose-epa-B-AT ${ }^{0}$

I used the same strategy for construction of pET28-maltose-orfB. Whole DNA fragments of epa-B or epa-B-AT ${ }^{0}$ was obtained by digestion of pACYC-SopfaE-epa-B or pACYC-SopfaE-epa-B$A T^{0}$ with NdeI and XhoI. The fragments obtained was inserted into a same restriction site of pET28maltose.

7. Synthetic methods

3-Oxobutyryl-SNAC.

3-Oxobutyryl-SNAC was synthesized according to a previous report ${ }^{6}$. Spectrum data: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 3.63 (s, 2H, H-2), 3.32 (m, 2H, H-2'), 2.99 (t, $6.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-1^{\prime}$), 2.17 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-$ 4), 1.91 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-4$), ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 199.8 (C-3), 191.7 (C-1), 170.2 (C-3'), 57.6 (C2), 42.2 (C-2'), 38.6 (C-1'), 30.1 (C-4), 24.0 (C-4').

3-Hydroxybutyryl-SNAC.

3-Hydroxybutyryl-SNAC was synthesized according to a previous report ${ }^{7}$. Spectrum data: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.52(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}), 4.19(\mathrm{~h}, \mathrm{~J}=5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 3.36\left(\mathrm{q}, \mathrm{J}=6.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}\right)$, $2.96\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 2.65(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2), 1.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 1.17(\mathrm{dd}, \mathrm{J}=6.2,1.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-4),{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 199.1$ (C-1), 171.1 (C-3'), 65.0 (C-3), 52.7 (C-2), 39.2 (C-2'), 28.8 (C-1'), 23.2 (C-4'), 22.9 (C-4).

3-Oxohexanoyl-SNAC. 3-Oxohexanoyl-SNAC was synthesized according to a previous report ${ }^{8}$. Spectrum data: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.01$ (br s, $1 \mathrm{H}, \mathrm{NH}$), 3.69 (s, 2H, H-2), 3.45 (q, J = 6.1 $\left.\mathrm{Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 3.08\left(\mathrm{t}, \mathrm{J}=6.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 2.51(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-4), 1.97$ (s, 3H, H-4'), 1.61 (q, $\mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-5), 0.92(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-6),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 202.4(\mathrm{C}-3), 192.6$ (C-1), 170.6 (C-3'), 57.3 (C-2), 45.4 (C-4), 39.3 (C-2'), 29.3 (C-1'), 23.3 (C-4'), 17.0 (C-5), 13.6 (C$6)$.

3-Oxooctanoyl-SNAC. 3-Oxooctanoyl-SNAC was synthesized according to the method used to synthesize 3 -oxohexanoyl-SNAC from hexanoyl chloride. Spectrum data: ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, CDCl_{3}): $\delta 6.05$ (br s, 1H, NH), 3.68 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{H}-2$), 3.44 (q, J = $6.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}$), 3.07 (t, J = 6.3 Hz , $2 \mathrm{H}, \mathrm{H}-1^{\prime}$), 2.51 (t, J = $7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-4$), 1.96 (s, 3H, H-4'), 1.57 (m, 2H, H-5), 1.37-1.23 ($4 \mathrm{H}, \mathrm{H}-6$ and $\mathrm{H}-7), 0.87$ (t, J = $7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-8$), ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 202.5$ (C-3), 192.6 (C-1), 170.6 (C-3'), 57.3 (C-2), 43.5 (C-4), 39.3 (C-2'), 31.2 (C-6), 29.3 (C-1'), 23.3 (C-4'), 23.2 (C-5), 22.5 (C-7), 14.0 (C-8).

3-Oxooctanoyl-CoA and 3-hydroxyoctanoyl-CoA. 3-hydroxyoctanoyl-CoA was synthesized via 3-oxooctanoyl-CoA (Scheme 1).

3-Oxooctanoyl-CoA was synthesized according to a previous report ${ }^{9}$. 4Dimethylaminopyridine (4-DMAP, $41.7 \mathrm{mmol}, 2.0 \mathrm{eq}$) and Meldrum's acid ($20.7 \mathrm{mmol}, 1.0 \mathrm{eq}$) were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{ml})$ under a N_{2} atmosphere. After the reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$, hexanoyl chloride ($20.7 \mathrm{mmol}, 1.0 \mathrm{eq}$) was added dropwise over 30 min with stirring. After 16 h reaction at room temperature, the reaction was quenched by adding $1 \mathrm{M} \mathrm{HCl}(30 \mathrm{ml})$ and the product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times, washed with brine, dried over anhydrous sodium sulphate, and concentrated. The crude mixture was dissolved in methanol $(20 \mathrm{ml})$ and heated to $90^{\circ} \mathrm{C}$ for 16 h under reflux. The reaction was evaporated and purified by column chromatography (ethyl acetate) to obtain 3-oxooctanoyl methyl ester. Spectrum data: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.38(\mathrm{~s}, 2 \mathrm{H})$, $2.46(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.52(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.25-1.18(4 \mathrm{H}), 0.81(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 203.0,167.8,52.3,49.0,43.0,31.1,23.2,22.4,13.9$.

To a solution of 3-oxooctanoyl methyl ester ($4.38 \mathrm{mmol}, 1.0 \mathrm{eq}$) and ethylene glycol (124.1 mmol, 28 eq) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{ml})$, chlorotrimethylsilane (26.3 mmol , 26 eq) was added dropwise and stirred at room temperature for 4 days. After the reaction was quenched with water, the organic layer was evaporated and the residue was used for the following reaction. The crude sample was dissolved in a solution (1 M aqueous sodium hydroxide:ethanol $=1: 4,20 \mathrm{ml}$) and heated under reflux for 16 h . After adjusting the pH to 5 with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution and formic acid, the reaction mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and purified by column chromatography (ethyl acetate) to obtain 3-oxooctanoic acid ethylene acetal. Spectrum data: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.99(\mathrm{~m}, 4 \mathrm{H}), 2.69(\mathrm{~s}, 2 \mathrm{H}), 1.76$ $(\mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.37(\mathrm{~m}, 2 \mathrm{H}), 1.34-1.23(4 \mathrm{H}), 0.88(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 175.3,109.4,65.2,42.5,37.6,31.9,23.2,22.7,14.1$.

CDI ($0.28 \mathrm{mmol}, 2.2 \mathrm{eq}$) and 3-oxooctanoic acid ethylene acetal ($0.25 \mathrm{mmol}, 2.0 \mathrm{eq}$) were dissolved in THF (10 ml) under a N_{2} atmosphere and stirred for 1 h . After evaporation of the solvent, a $\mathrm{CoA}(0.13 \mathrm{mmol}, 1.0 \mathrm{eq})$ solution (THF: $\mathrm{H}_{2} \mathrm{O}=1: 2,1.0 \mathrm{ml}$) was added. After 2 h reaction, the solvent was evaporated, and the aqueous solution was acidified with formic acid. The CoA product was purified by HPLC using the following conditions: column, RP-18 GP Aqua ($5 \mu \mathrm{~m}, 250 \mathrm{~mm} \times 10 \mathrm{~mm}$ KANTO CHEMICAL Co. Inc.); flow rate, $3.0 \mathrm{ml} / \mathrm{min}$; temperature, $35{ }^{\circ} \mathrm{C}$; mobile phase, 5 mM $\mathrm{CH}_{3} \mathrm{COONH}_{4}(\mathrm{~A})$ and methanol (B); gradient conditions, $10 \% \mathrm{~B}(0-10 \mathrm{~min})$ and $10-80 \% \mathrm{~B}(10-40$ min); detection, 260 nm .

3-Oxooctanoyl-CoA ethylene acetal (2.85 mg) was stirred at room temperature in a solution $\left(\mathrm{H}_{2} \mathrm{O} 8.0 \mathrm{ml}\right.$, acetone $\left.10 \mathrm{ml}, 1 \mathrm{M} \mathrm{HCl} 1.0 \mathrm{ml}\right)$ for 2 days, and the product was purified by the same method as described above to obtain 3-oxooctanoyl-CoA. HR-MS: [M+Na] ${ }^{+}$: observed 930.19098 $[\mathrm{M}+\mathrm{Na}]^{+}$: theo $930.18816\left(\mathrm{C}_{29} \mathrm{H}_{48} \mathrm{O}_{18} \mathrm{~N}_{7} \mathrm{P}_{3} \mathrm{SNa}^{+}\right)$. Spectrum data: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 8.50(\mathrm{~s}$, $\left.1 \mathrm{H}, \mathrm{H}-14^{\prime}\right), 8.21$ (s, 1H, H-15'), 6.12 (d, J = $6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-13^{\prime}$), 4.52 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-10^{\prime}$), 4.18 (br s, 2H, H-
9^{\prime}), 3.96 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}$), 3.95 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{H}-2$), 3.77 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-8^{\prime}$), 3.49 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-8^{\prime}$), 3.40 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-4^{\prime}$), 3.30 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}$), 2.99 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-1^{\prime}$), 2.54 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-4$), 2.40 ($\left.\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 1.45$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-5$), 1.30-1.09 (4H, H-6 and H-7), 0.83-0.78 (6H, H-6' and H-8), 0.69 (s, 3H, H-7').

Finally, 3-hydroxyoctanoyl-CoA was enzymatically prepared by in vitro reaction with Epa-KR-DHPKS, which was expressed as an N-terminus maltose binding protein-fused and C-terminus Histagged enzyme and purified by amylose column. The mixture containing HEPES 100 mM , NADPH 1 mM , 3-oxooctanoyl-CoA $500 \mu \mathrm{M}$, Epa-KR-DHPKS $5 \mu \mathrm{M}$ was incubated at $20^{\circ} \mathrm{C}$ for 1 h . The formation of 3-hydroxyoctanoyl-CoA was confirmed by UPLC-ESI-MS and HR-MS. HR-MS: $[\mathrm{M}+\mathrm{H}]^{+}$: observed $910.22382[\mathrm{M}+\mathrm{H}]^{+}$: theo $910.22186\left(\mathrm{C}_{29} \mathrm{H}_{51} \mathrm{O}_{18} \mathrm{~N}_{7} \mathrm{P}_{3} \mathrm{~S}^{+}\right)$.

Scheme 1. Synthesis of 3-hydroxyoctanoyl-CoA.

3-Hydroxyhexanoyl-SNAC. 3-Oxohexanoyl-SNAC ($0.1 \mathrm{mmol}, 1.0 \mathrm{eq}$) was dissolved in methanol $(5.0 \mathrm{ml})$ and $\mathrm{NaBH}_{4}(0.1 \mathrm{mmol}, 1.0 \mathrm{eq})$ was added to the mixture. After stirring at room temperature for 1 h , the reaction was quenched by adding saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(10 \mathrm{ml})$. The methanol was evaporated, and the compound was extracted with ethyl acetate three times, washed with brine, and purified by column chromatography (ethyl acetate). Spectrum data: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 5.90 (br, 1H, NH), 4.07 (br s, 1H, H-3), 3.45 (m, 2H, H-2'), 3.04 (m, 2H, H-1'), 2.72 (m, 2H, H-2), 1.96 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-4{ }^{\prime}$), $1.56-1.32$ ($4 \mathrm{H}, \mathrm{H}-4$ and $\mathrm{H}-5$), 0.93 (t, J $=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-6$), ${ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 199.8$ (C-1), 170.6 (C-3'), 68.7 (C-3), 51.2 (C-2), 39.4 (C-4), 38.9 (C-2'), $29.0\left(\mathrm{C}-1^{\prime}\right), 23.4$ (C-4'), 18.8 (C-5), 14.1 (C-6).

3-Hydroxyoctanoyl-SNAC. 3-Oxooctanoyl-SNAC ($0.1 \mathrm{mmol}, 1.0 \mathrm{eq}$) was dissolved in methanol (5.0 $\mathrm{ml})$, and $\mathrm{NaBH}_{4}(0.1 \mathrm{mmol}, 1.0 \mathrm{eq})$ was added. After stirring at room temperature for 1 h , the reaction was quenched by adding saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (10 ml). After removing the methanol by evaporation, the product was extracted with ethyl acetate three times, washed with brine, and purified by column chromatography (ethyl acetate) and by HPLC using the following conditions: column, RP-

18 GP Aqua ($5 \mu \mathrm{~m}, 250 \mathrm{~mm} \times 10 \mathrm{~mm}$ KANTO CHEMICAL Co. Inc.); flow rate, $1.0 \mathrm{ml} / \mathrm{min}$; temperature, $35^{\circ} \mathrm{C}$; mobile phase, water (A) and methanol (B); gradient conditions, $50 \% \mathrm{~B}(0-5 \mathrm{~min})$ and $50-90 \%$ B ($5-30 \mathrm{~min}$); detection, 234 nm . Spectrum data: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 5.85 (br $\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$), 4.06 (dt, J = 7.7 Hz, 4.1 Hz, 1H, H-3), 3.45 (dt, J = $10.2 \mathrm{~Hz}, 5.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}$), 3.04 (m, $\left.2 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 2.74(\mathrm{dd}, \mathrm{J}=15.4,3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 2.67(\mathrm{dd}, \mathrm{J}=15.4,8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 1.97(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-$ 4^{\prime}), 1.57-1.39 (8H, H-4, H-5, H-6, and H-7), $0.88(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-8),{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 199.8(\mathrm{C}-1), 170.6\left(\mathrm{C}-3^{\prime}\right), 69.0(\mathrm{C}-3), 51.1(\mathrm{C}-2), 39.4$ (C-2'), 36.8 ($\left.\mathrm{C}-1^{\prime}\right), 31.8(\mathrm{C}-4), 29.0$ (C-6), 25.2 (C-5), 23.4 (C-4'), 22.7 (C-7), 14.2 (C-8).

2-trans Hexenoyl-SNAC. 2-trans Hexenoyl-SNAC was synthesized according to a previous report ${ }^{10}$. Spectrum data: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.84(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 6.07(\mathrm{~d}, \mathrm{~J}=15.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 3.36$ (m, 2H, H-2'), 3.02 (m, 2H, H-1'), 2.12 (m, 2H, H-4), $1.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 1.44$ (m, 2H, H-5), 0.87 (t, J $=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-6),{ }^{13} \mathrm{C}$ NMR (100MHz, CDCl_{3}): $\delta 190.5(\mathrm{C}-1), 170.5(\mathrm{C}-3$ '), $146.6(\mathrm{C}-3), 128.5(\mathrm{C}-$ 2), 39.8 ($\mathrm{C}-2^{\prime}$), 34.3 ($\left.\mathrm{C}-1^{\prime}\right), 28.3$ (C-4), 23.3 (C-4'), 21.3 (C-5) 13.8 (C-6).

2-trans Hexenoyl-CoA. 2-trans Hexenoyl-CoA was prepared according to a previous report ${ }^{11}$. Spectrum data: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 8.63\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-14^{\prime}\right), 8.38(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-15$ '), $6.90(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-$ 3), 6.17-6.13 (m, 2H, H-2 and H-13'), 4.55 (s, 1H, H-10'), 4.20 (br s, 2H, H-9'), 3.97 (s, 1H, H-5'), 3.83 (m, 1H, H-8'), 3.56 (m, 1H, H-8'), 3.39 (t, J = 6.7 Hz, 2H, H-4'), $3.30\left(\mathrm{t}, \mathrm{J}=6.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}\right)$, 2.98 (t, J = 6.2 Hz, 2H, H-1'), 2.37 (t, J = 6.4 Hz, 2H, H-3'), 2.12 (m, 2H, H-4), 1.39 (m, 2H, H-5), 0.89 (s, 3H, H-6'), 0.81 (t, J = 7.4 Hz, 3H, H-6), 0.75 (s, 3H, H-7').

3-cis Hexenoyl-SNAC. 3-cis Hexenoic acid was synthesized according to a previous report ${ }^{12}$. Spectrum data: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.59(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{COOH}), 5.59(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 5.51(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{H}-4), 3.11(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2), 2.02(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-5), 0.95(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-6),{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 179.0(\mathrm{C}-1), 135.8(\mathrm{C}-4), 119.5$ (C-3), 32.7 (C-2), 20.8 (C-5), 14.0 (C-6).

3-cis Hexenoic acid ($0.88 \mathrm{mmol}, 1.0 \mathrm{eq}$) and 1,1-carbodiimidazole (CDI, $171 \mathrm{mg}, 1.2 \mathrm{eq}$) were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml})$ and stirred for 2 h . Then, N-acetylcysteamine ($0.1 \mathrm{ml}, 1.0 \mathrm{eq}$) was added and stirred at room temperature for 16 h . The reaction mixture was quenched by adding saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(30 \mathrm{ml})$ and the compound was extracted with ethyl acetate three times. After washing the organic layer with water and brine, the product was purified by column chromatography (ethyl acetate). Spectrum data: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.02(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 5.62(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3)$, 5.47 (m, 1H, H-4), 3.39 (q, J = 6.3 Hz, 2H, H-2'), 3.31 (d, 2H, H-2), $3.00\left(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-1^{\prime}\right)$, 2.06 (p, J = 7.5 Hz, 2H, H-5), $1.94\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-4{ }^{\prime}\right), 0.97(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-6),{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 198.5(\mathrm{C}-1), 170.4(\mathrm{C}-3 '), 136.9(\mathrm{C}-4), 119.4$ (C-3), 42.5 (C-2), 39.7 (C-2'), $28.6\left(\mathrm{C}-1^{\prime}\right), 23.3$ (C-4'), 20.9 (C-5), 13.9 (C-6).

2-trans Octenoyl-SNAC. 2-trans Octenoyl-SNAC was prepared according to a previous report ${ }^{13}$. Spectrum data: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.90$ (dt, J $=15.2,7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), 6.13 (d, J = 15.2 $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-2), 3.44\left(\mathrm{q}, \mathrm{J}=5.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 3.08\left(\mathrm{t}, \mathrm{J}=6.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 2.18(\mathrm{q}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-$ 4), $\left.1.95(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-4)^{\prime}\right), 1.46(\mathrm{p}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-5), 1.39-1.24(6 \mathrm{H}, \mathrm{H}-6$ and $\mathrm{H}-7), 0.88(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}$, $3 \mathrm{H}, \mathrm{H}-8),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 190.6$ (C-1), 170.4 (C-3'), 147.0 (C-3), 128.3 (C-2), 40.0 (C-2'), 32.3 (C-1'), 31.4 (C-4), 28.3 (C-5), 27.7 (C-6), 23.4 (C-4'), 22.5 (C-7), 14.1 (C-8).

2-trans Octenoyl-CoA. 2-trans Octenoyl-CoA was synthesized according to a previous report using 2-trans octenoic acid ${ }^{14}$. HR-MS: $[\mathrm{M}-2 \mathrm{H}]^{2-}$: observed 444.59510 theo $444.59473\left(\mathrm{C}_{29} \mathrm{H}_{46} \mathrm{O}_{17} \mathrm{~N}_{7} \mathrm{P}_{3} \mathrm{~S}^{2-}\right)$. Spectrum data: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 8.48$ (s, 1H, H-14'), 8.18 (s, 1H, H-15'), 6.86 (m, 1H, H3), 6.10 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-2$ and $\mathrm{H}-13^{\prime}$), 4.52 ($\left.\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-10^{\prime}\right), 4.19$ (br s, 2H, H-9'), 3.96 (s, 1H, H-5'), 3.77 (m, $\left.1 \mathrm{H}, \mathrm{H}-8^{\prime}\right), 3.50$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-8^{\prime}$), 3.37 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-4^{\prime}$), 3.28 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}$), 2.96 (t, J = $6.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-1^{\prime}$), 2.35 (t, J = 6.3 Hz, 2H, H-3'), 2.10 ($\mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-4$), 1.33 (p, J = 7.3 Hz, 2H, H-5), 1.24-1.11 ($4 \mathrm{H}, \mathrm{H}-6$ and H-7), 0.83 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-6^{\prime}$), 0.77 (t, J $=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-8$), 0.70 ($\left.\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-7^{\prime}\right)$.

2-cis Octenoyl-SNAC. 2-cis Octenoic acid methyl ester was synthesized with the Horner-WadsworthEmmons reaction. To a suspension of $\mathrm{NaH}(1.0 \mathrm{eq}, 10 \mathrm{mmol})$ in THF (30 ml), trimethyl phosphonoacetate ($1.0 \mathrm{eq}, 10 \mathrm{mmol}$) was added dropwise at $0^{\circ} \mathrm{C}$ over 30 min with stirring. Hexanal $(0.9 \mathrm{eq}, 9 \mathrm{mmol})$ was then added dropwise at $0^{\circ} \mathrm{C}$ and the mixture was stirred at room temperature for 16 h . The reaction was quenched by adding $\mathrm{H}_{2} \mathrm{O}$ and extracted with ethyl acetate. After washing with brine, the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude product (2-trans:2cis form $=9: 1$) was purified with column chromatography (hexane : ethyl acetate $=20: 1$) to yield 2cis octenoic acid methyl ester. Spectrum data: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.20(\mathrm{dt}, \mathrm{J}=11.5,7.5$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-3), 5.73(\mathrm{dt}, \mathrm{J}=11.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 3.68\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.61(\mathrm{qd}, \mathrm{J}=7.5,1.8 \mathrm{~Hz}, 2 \mathrm{H}$, H-4), 1.41 (m, 2H, H-5), 1.34-1.23 (4H, H-6 and H-7), $0.87(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz} 3 \mathrm{H}, \mathrm{H}-8),{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.0(\mathrm{C}-1), 151.2(\mathrm{C}-3), 119.2(\mathrm{C}-2), 51.0\left(\mathrm{OCH}_{3}\right), 31.5(\mathrm{C}-4), 29.0(\mathrm{C}-5), 28.8(\mathrm{C}-$ 6), 22.5 (C-7), 14.1 (C-8).

To a solution of 2-cis octenoic acid methyl ester (1.28 mmol) in THF (10 ml), a mixture of 1.0 M LiOH solution $(10 \mathrm{ml})$ and methanol $(10 \mathrm{ml})$ was added. After 16 h reaction at room temperature, the solution was acidified by adding formic acid and the product was extracted with diethyl ether three times, washed with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution, water, and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. 2-cis Octenoic acid was purified by column chromatography (ethyl acetate). Spectrum data: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.36$ (dt, J = 11.5, $7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), 5.78 (dt, J = 11.5, 1.8 Hz, 1H, H-2), 2.66 (qd, J = 7.5, $1.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-4), 1.46(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-5), 1.37-1.20(4 \mathrm{H}, \mathrm{H}-6$ and $\mathrm{H}-7), 0.89(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}$, $3 \mathrm{H}, \mathrm{H}-8),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.7$ (C-1), 153.8 (C-3), 119.2 (C-2), 31.6 (C-4), 29.3 (C5), 28.8 (C-6), 22.6 (C-7), 14.1 (C-8).

2-cis Octenoic acid ($0.42 \mathrm{mmol}, 1.0 \mathrm{eq}$) and triethylamine ($0.5 \mathrm{mmol}, 1.2 \mathrm{eq}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 ml) kept for 30 min at room temperature under a N_{2} atmosphere was cooled to $4{ }^{\circ} \mathrm{C}$, and ethyl chloroformate ($0.5 \mathrm{mmol}, 1.2 \mathrm{eq}$) was added dropwise. After $2 \mathrm{~h}, N$-acetylcysteamine ($0.42 \mathrm{mmol}, 1.0$ eq) was added and stirred at room temperature for 30 min . The reaction was quenched by adding saturated NaHCO_{3} solution (20 ml). The compound was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times. The organic layer was washed with water and brine, and then dried with anhydrous sodium sulphate. The product was purified by column chromatography (ethyl acetate). Spectrum data: ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta 6.08-6.04(2 \mathrm{H}, \mathrm{H}-2$ and $\mathrm{H}-3), 5.90(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 3.47\left(\mathrm{q}, \mathrm{J}=5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 3.08(\mathrm{t}, \mathrm{J}$ $\left.=6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 2.63(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4), 1.96\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-4{ }^{\prime}\right), 1.45(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-5), 1.36-1.28(4 \mathrm{H}, \mathrm{H}-6$ and $\mathrm{H}-7), 0.88(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-8),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 190.1(\mathrm{C}-1), 170.1\left(\mathrm{C}-3^{\prime}\right), 148.6$ (C-3), 125.9 (C-2), 39.9 (C-2'), 31.6 (C-1'), 30.1 (C-4), 28.8, 28.7 (C-5 and C-6), 23.4 (C-4'), 22.6 (C7), 14.1 (C-8).

3-cis Hexenoyl-CoA. 3-cis Hexenoic acid ($0.44 \mathrm{mmol}, 1.0 \mathrm{eq}$) and CDI ($0.53 \mathrm{mmol}, 1.2 \mathrm{eq}$) were dissolved in THF (5.0 ml) and the mixture was stirred for 2 h . After evaporation of the solvent, a CoA $(0.088 \mathrm{mmol}, 0.2 \mathrm{eq})$ solution $\left(\mathrm{H}_{2} \mathrm{O}: \mathrm{THF}=1: 2,1.0 \mathrm{ml}\right)$ was added, and the reaction was stirred for 1 h. THF was evaporated and the solution was acidified by adding 0.1% aqueous acetic acid. The mixture was stirred at room temperature for 16 h . The CoA product was purified by HPLC using the following conditions: column, RP-18 GP Aqua ($5 \mu \mathrm{~m}, 250 \mathrm{~mm} \times 10 \mathrm{~mm}$ KANTO CHEMICAL Co. Inc.); flow rate, $3.0 \mathrm{ml} / \mathrm{min}$; temperature, $35^{\circ} \mathrm{C}$; mobile phase, $5 \mathrm{mM} \mathrm{CH}_{3} \mathrm{COONH}_{4}$ (A) and methanol (B); gradient conditions, 10\% B ($0-10 \mathrm{~min}$) and $10-80 \%$ B ($10-40 \mathrm{~min}$); detection, 260 nm . HR-MS: $[\mathrm{M}+\mathrm{H}]^{+}$: observed 864.17985 theo $864.18000\left(\mathrm{C}_{27} \mathrm{H}_{45} \mathrm{O}_{17} \mathrm{~N}_{7} \mathrm{P}_{3} \mathrm{~S}^{+}\right)$. Spectrum data: ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{D}_{2} \mathrm{O}\right) \delta 8.50\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-14^{\prime}\right), 8.16\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-15^{\prime}\right), 6.10\left(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-13^{\prime}\right), 5.65(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3)$, 5.40 (m, 1H, H-4), 4.52 (s, 1H, H-10'), 4.18 (br s, 2H, H-9'), 3.96 (s, 1H, H-5'), 3.77 (m, 1H, H-8'), $3.59\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-8^{\prime}\right), 3.39\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 3.25\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 3.01(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2), 2.69(\mathrm{t}, \mathrm{J}=$ 6.3 Hz, 2H, H-1'), 2.37 (m, 2H, H-3'), 2.00 (d, J = 9.6 Hz, 2H, H-5), 0.90 (t, J = 7.5 Hz, 3H, H-6), 0.82 (s, 3H, H-6'), 0.68 (s, 3H, H-7').

4,7-cis Decadienoyl-CoA. 4,7-cis Decadienoyl-CoA was synthesized by the same method as for 3-cis hexenoyl-CoA with 4,7-cis decadienoic acids. HR-MS: $[\mathrm{M}+\mathrm{H}]^{+}$: observed 918.22857 theo 918.22695 $\left(\mathrm{C}_{31} \mathrm{H}_{51} \mathrm{O}_{17} \mathrm{~N}_{7} \mathrm{P}_{3} \mathrm{~S}^{+}\right)$. Spectrum data: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 8.50\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-14{ }^{\prime}\right), 8.20(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-$ $\left.15^{\prime}\right), 6.11\left(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-13^{\prime}\right), 5.44-5.20(4 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-5, \mathrm{H}-7$, and $\mathrm{H}-8), 4.54$ ($\left.\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-10^{\prime}\right)$, 4.18 (br s, 2H, H-9'), 3.97 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}$), 3.79 (dd, J = 9.4, 4.6 Hz, 1H, H-8'), 3.50 (dd, J = 9.7, 4.5 Hz, $\left.1 \mathrm{H}, \mathrm{H}-8^{\prime}\right), 3.39\left(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 3.26\left(\mathrm{t}, \mathrm{J}=6.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 2.91\left(\mathrm{t}, \mathrm{J}=6.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-1^{\prime}\right)$, 2.71-2.55 (4H, H-2 and H-6), 2.36 (m, $\left.4.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 2.31$ (m, 2H, H-3), 1.97 (p, J = $7.2 \mathrm{~Hz}, 2 \mathrm{H}$, H-9), 0.86 (m, 3H, H-10), 0.84 (s, 3H, H-6'), 0.70 (s, 3H, H-7').

3,6,9,12,15-cis Octadecapentaenoyl-CoA. 3,6,9,12,15-cis Octadecapentaenoic acid was synthesized according to previous reports (scheme 2$)^{15,16}$. Spectrum data: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.68-$ 5.54 (2H, H-3 and H-4), 5.46-5.28 (8H, H-6, H-7, H-9, H-10, H-12, H-13, H-15, and H-16), 3.18 (m, 2H, H2), 2.88-2.79 (8H, H-5, H-8, H-11, and H-14), 2.07 (q, J = $7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-17$), 0.97 (t, J = 7.5 $\mathrm{Hz}, 3 \mathrm{H}, \mathrm{H}-18),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.0(\mathrm{C}-1), 132.2,132.0,128.9,128.7,128.5,128.0$, 127.9, 127.3, 127.1, 120.7 (C-3, C-4, C-6, C-7, C-9, C-10, C-12, C-13, C-15, and C-16), 32.7 (C-2), 25.9, 25.8, 25. 7 (C-5, C-8, C-11, and C-14), 20.7 (C-17), 14.4 (C-18).

Scheme 2. Synthesis scheme of 3,6,9,12,15-cis octadecapentaenoyl-CoA.

3,6,9,12,15-cis Octadecapentaenoyl-CoA was synthesized by the same method as that for 3-cis hexenoyl-CoA with 3,6,9,12,15-cis octadecapentaenoic acid. 3,6,9,12,15-cis OctadecapentaenoylCoA was purified by HPLC. Analytical conditions were as follows: column, RP-18 GP Aqua ($5 \mu \mathrm{~m}$, $250 \mathrm{~mm} \times 10 \mathrm{~mm}$ KANTO CHEMICAL Co. Inc.); flow rate, $3.0 \mathrm{ml} / \mathrm{min}$; temperature, $35^{\circ} \mathrm{C}$; mobile phase, $5 \mathrm{mM} \mathrm{CH}_{3} \mathrm{COONH}_{4}(\mathrm{~A})$ and methanol (B); gradient conditions, $50 \% \mathrm{~B}(0-10 \mathrm{~min})$ and $50-$ 80\% B (10-40 min); detection, 260 nm. HR-MS: $[\mathrm{M}+\mathrm{H}]^{+}$: observed 1024.30621 theo 1024.30520 $\left(\mathrm{C}_{39} \mathrm{H}_{61} \mathrm{O}_{17} \mathrm{~N}_{7} \mathrm{P}_{3} \mathrm{~S}^{+}\right)$. Spectrum data: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 8.50\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-14{ }^{\prime}\right), 8.20(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-$ $\left.15^{\prime}\right), 6.11\left(\mathrm{~d}, \mathrm{~J}=5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-13^{\prime}\right), 5.69-5.53(2 \mathrm{H}, \mathrm{H}-3$ and H-4), 5.51-5.22 (8H, H-6, H-7, H-9, H10, H-12, H-13, H-15, and H-16), 4.53 (s, 1H, H-10'), 4.18 (br s, 2H, H-9'), 3.97 (s, 1H, H-5'), 3.79 (m, 1H, H-8'), $3.50\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-8^{\prime}\right), 3.38\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 3.33-3.214 \mathrm{H}, \mathrm{H}-2$ and $\left.\mathrm{H}-2^{\prime}\right), 2.91(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-$ 1^{\prime}), 2.76-2.71 (8H, H-5, H-8, H-11, H-14), 2.35 (m, 2H, H-3'), 1.98 (m, 2H, H-17), 0.88-0.84 (6H, H18 , and H-6'), 0.69 (s, 3H, H-7').

Docosahexaenoyl-CoA. 1,1-Carbodiimidazole (CDI, 0.18 mmol) and docosahexaenoic acids (0.15 $\mathrm{mmol})$ were stirred in dry THF $(1 \mathrm{ml})$ for 40 min at room temperature. A CoA $(0.075 \mathrm{mmol})$ in water $(1 \mathrm{ml})$ was added into the mixture, and the reaction mixture was stirred for 30 min . Excess fatty acids was removed by extraction with EtOAc three times. The water layer was evaporated, and the residues
were dissolved in MeOH. Docosahexaenoyl-CoA was purified by HPLC (SHIMADZU) on RP-18 GP Aqua ($5 \mu \mathrm{~m}, 250 \mathrm{~mm} \times 10 \mathrm{~mm}$ KANTO CHEMICAL Co., Inc). Flow rate, $3.0 \mathrm{ml} / \mathrm{min}$; temperature, $35^{\circ} \mathrm{C}$; mobile phase $\mathrm{A}, 5 \mathrm{mM} \mathrm{CH}_{3} \mathrm{COONH}_{4}: \mathrm{MeOH}=9: 1$; mobile phase $\mathrm{B}, 5 \mathrm{mM}$ $\mathrm{CH}_{3} \mathrm{COONH}_{4}: \mathrm{MeOH}=2: 8$; gradient conditions, $50 \% \mathrm{~B}(0-10 \mathrm{~min}) ; 50-90 \%$ (10-40 min); $90 \% \mathrm{~B}(40-$ $45 \mathrm{~min})$; detection, 260 nm . HR-ESI-MS: $[\mathrm{M}+\mathrm{H}]^{+}: 1078.35437\left(\mathrm{C}_{43} \mathrm{H}_{67} \mathrm{~N}_{7} \mathrm{O}_{17} \mathrm{P}_{3} \mathrm{~S}: 1078.35215\right)$.

Eicosapentaenoyl-CoA. Eicosapentaenoyl-CoA was synthesized and purified by the same methods for docosahexaenoyl-CoA using eicosapentaenoic acids. HR-ESI-MS: [M+H] ${ }^{+}$: 1052.33850 ($\mathrm{C}_{41} \mathrm{H}_{65} \mathrm{~N}_{7} \mathrm{O}_{17} \mathrm{P}_{3} \mathrm{~S}: 1052.33650$).

8. In vitro analysis of the KR domain

A mixture containing 1 mM 3-oxobutyryl-SNAC, 3-oxohexanoyl-SNAC, or, 3-oxooctanoylSNAC, 2 mM NADPH, 100 mM HEPES, and $5 \mu \mathrm{M}$ purified Epa-KR-DHPKS or ketoacyl reductase EcFabG of E. coli was incubated for 1 h at $20^{\circ} \mathrm{C}$. Then, the reaction mixture was boiled and analyzed by LC-ESI-MS to examine the ketoacyl reductase activity. Analytical conditions were as follows: Waters ACQUITY UPLC system equipped with a SQ Detector2 (Waters, MA, USA); column, InertSustain C18 ($2.1 \times 150 \mathrm{~mm}, 3.0 \mu \mathrm{~m}$, GL Science Inc., Tokyo, Japan); flow rate, $0.2 \mathrm{ml} / \mathrm{min}$; temperature, $35^{\circ} \mathrm{C}$; mobile phase, water (A) and methanol (B); gradient conditions, $5 \% \mathrm{~B}(0-5 \mathrm{~min})$ and $5-80 \%$ B ($5-50 \mathrm{~min}$); detection, 234 nm and positive ion mode; injection volume, $2 \mu \mathrm{l}$. For chiral analysis, the reaction mixture was extracted with ethyl acetate three times and the extracts were dissolved in isopropanol. Stereochemical analysis of the reaction products was carried out with a Waters ACQUITY UPLC system equipped with a SQ Detector2. Analytical conditions were as follows: column, CHIRALPAK IA-3 $(2.1 \times 150 \mathrm{~mm}, 3.0 \mu \mathrm{~m}$, DAICEL CORPORATION, Tokyo, Japan); flow rate, $0.2 \mathrm{ml} / \mathrm{min}$; temperature, $25^{\circ} \mathrm{C}$; mobile phase, isopropanol (A) and hexane (B); isocratic conditions, $\mathrm{A}: \mathrm{B}=10: 90$, detection, 234 nm ; injection volume, 2μ.

9. In vitro hydration reaction with DH domains and acyl-ACP substrates

A mixture containing $100 \mu \mathrm{M}$ apo-ACP, $20 \mu \mathrm{M}$ phosphopantetheinyl transferase (Sfp), 80 mM Tris- $\mathrm{HCl}, 80 \mathrm{mM} \mathrm{NaCl}, 25 \mathrm{mM} \mathrm{MgCl} 2$ and $300 \mu \mathrm{M}$ crotonyl-CoA, 2-trans hexenoyl-CoA, or 2trans octenoyl-CoA was incubated for 10 min at $20^{\circ} \mathrm{C}$. Then, a purified dehydratase, Ara-KR-DH ${ }^{\text {PKS }}$, Ara-DH Faba , Epa-KR-DH ${ }_{\text {PKS }}$, Epa-DH ${ }_{\text {FabA }}$, Dha-KR-DHPKS, or Dha-DH ${ }_{\text {FabA }}$, was added into the mixture at a concentration of $0.91 \mu \mathrm{M}$. After incubation for 1,10 , or 60 min at $20^{\circ} \mathrm{C}$, the reaction was quenched by adding the same volume of 1% trifluoroacetic acid (TFA) solution. The reaction mixtures were analyzed on an HPLC instrument (Shimadzu, Kyoto, Japan) equipped with an amaZon SL DB1 (Bruker, MA, USA). Analytical conditions were as follows: column, ZORBAX 300SB-C8 ($2.1 \times$ $150 \mathrm{~mm}, 3.5 \mu \mathrm{~m}$, Agilent Technologies Inc., CA, USA); flow ratio, $0.2 \mathrm{ml} / \mathrm{min}$; temperature, $40^{\circ} \mathrm{C}$;
mobile phase, 0.1% TFA in water (A) and 0.1% TFA in acetonitrile (B); gradient conditions, 20-70\% B (40 min); detection, 210 nm and positive ion mode; injection volume, 10μ l. The reaction products were also analyzed with an HPLC instrument (Agilent Technologies Inc.) equipped with a Maxis Plus (Bruker) for HR-MS. Analytical conditions were as follows: column, Sunshell C8-30HT (2.1×150 $\mathrm{mm}, 3.4 \mu \mathrm{~m}$, ChromaNik Technologies Inc., Osaka, Japan); flow ratio, $0.3 \mathrm{ml} / \mathrm{min}$; temperature, $70^{\circ} \mathrm{C}$; mobile phase, 0.1% TFA in water (A) and 0.1% TFA in acetonitrile (B); gradient conditions, 30-60\% B (30 min); detection, 280 nm and positive ion mode; injection volume, 5μ. The mass spectra of multiply charged ions were deconvoluted using the DataAnalysis ver. 4.0 software (Bruker) to provide molecular weight information of proteins.

10. In vitro dehydration reaction with DH domains and 3-hydroxyoctanoyl-ACP

A mixture containing $50 \mu \mathrm{M}$ apo-ACP, $20 \mu \mathrm{M} \mathrm{Sfp}, 80 \mathrm{mM}$ Tris- $\mathrm{HCl}, 80 \mathrm{mM} \mathrm{NaCl}, 25 \mathrm{mM}$ MgCl_{2} and $100 \mu \mathrm{M}$ 3-hydroxyoctanoyl-CoA was incubated for 10 min at $20^{\circ} \mathrm{C}$. Then, purified Ara-KR-DH ${ }_{\text {PKS }}$ or Ara- $\mathrm{DH}_{\text {FabA }}$ was added into the mixture at a concentration of $0.91 \mu \mathrm{M}$. After incubation for 60 min at $20^{\circ} \mathrm{C}$, the product was analyzed by the same method of in vitro hydration reaction assay.

11. In vitro isomerization reaction with Epa-DH ${ }_{F a b A}$ and 3-cis hexenoyl-SNAC

A reaction mixture containing 1 mM 3 -cis hexenoyl-SNAC, 100 mM HEPES, and $5 \mu \mathrm{M}$ Epa$\mathrm{DH}_{\mathrm{FabA}}$ was incubated for 1 h at $20^{\circ} \mathrm{C}$. Then, the reaction mixture was extracted with ethyl acetate and analysed with an ACQUITY UPLC system equipped with a SQ Detector2 (Waters). Analytical conditions were as follows: column, InertSustain C18 ($2.1 \times 150 \mathrm{~mm}, 3.0 \mu \mathrm{~m}$, GL Science Inc.); flow rate, $0.2 \mathrm{ml} / \mathrm{min}$; temperature, $35^{\circ} \mathrm{C}$; mobile phase, water (A) and methanol (B); gradient conditions, $5 \% \mathrm{~B},(0-5 \mathrm{~min})$ and $5-80 \% \mathrm{~B}(5-50 \mathrm{~min})$; detection, 260 nm and positive ion mode; injection volume, 2μ.

12. In vitro analysis of Ara-DH ${ }_{\text {FabA }}$ with 3-hydroxyoctanoyl-SNAC or 2-cis octenoyl-SNAC

A reaction mixture containing 1 mM 3-hydroxyoctanoyl-SNAC or 2-cis octenoyl-SNAC, 100 mM HEPES, and $50 \mu \mathrm{M}$ Ara- $\mathrm{DH}_{\text {FabA }}$ was incubated for 16 h at $20^{\circ} \mathrm{C}$. Then, the reaction mixture was analyzed by the same method as that for the ketoacyl reductase assay.

13. In vitro reactions with the KS domains and acyl-ACPs

A mixture containing $100 \mu \mathrm{M}$ apo-ACP of EPA synthase of Shewanella oneidensis MR-1, 20 $\mu \mathrm{M}$ phosphopantetheinyl transferase $\mathrm{Sfp}, 80 \mathrm{mM}$ Tris- $\mathrm{HCl}, 80 \mathrm{mM} \mathrm{NaCl}, 25 \mathrm{mM} \mathrm{MgCl}_{2}$ and $300 \mu \mathrm{M}$ acyl-CoA was incubated for 10 min at $20^{\circ} \mathrm{C}$ to prepare acyl-ACP substrates. Malonyl-ACP was also prepared by the same method. Into the mixture containing acyl-ACP substrates $(50 \mu \mathrm{l})$ and malonylACP ($50 \mu \mathrm{l}$), dithiothreitol (DTT) and the recombinant KS domains were added at concentrations of $250 \mu \mathrm{M}$ and $4.5 \mu \mathrm{M}\left(\right.$ Epa-KS ${ }_{\mathrm{A}}$, Epa-KS C_{C}, Dha- KS_{A}, or Dha-KS ${ }_{\mathrm{C}}$), respectively. After incubation for

1 h at $20^{\circ} \mathrm{C}$, the reactions were quenched by adding the same volume of $1 \% \mathrm{TFA}$ solution. The reaction mixtures were analyzed on an HPLC instrument (Shimadzu, Kyoto, Japan) equipped with an amaZon SL DB-1 (Bruker, MA, USA). Analytical conditions were as follows: column, ZORBAX 300SB-C8 ($2.1 \times 150 \mathrm{~mm}, 3.5 \mu \mathrm{~m}$, Agilent Technologies Inc., CA, USA); flow ratio, $0.2 \mathrm{ml} / \mathrm{min}$; temperature, $40^{\circ} \mathrm{C}$; mobile phase, 0.1% TFA in water (A) and 0.1% TFA in acetonitrile (B); gradient conditions, $20-70 \%$ B (40 min); detection, 210 nm and positive ion mode; injection volume, 10μ. The reaction products were also analyzed with an HPLC instrument (Agilent Technologies Inc.) equipped with a Maxis Plus (Bruker) for HR-MS. Analytical conditions were as follows: column, Sunshell C8-30HT $(2.1 \times 150 \mathrm{~mm}, 3.4 \mu \mathrm{~m}$, ChromaNik Technologies Inc., Osaka, Japan); flow ratio, $0.3 \mathrm{ml} / \mathrm{min}$; temperature, $70^{\circ} \mathrm{C}$; mobile phase, 0.1% TFA in water (A) and 0.1% TFA in acetonitrile (B); gradient conditions, $30-60 \%$ B (30 min); detection, 280 nm and positive ion mode; injection volume, 5μ l. The mass spectra of multiply charged ions were deconvoluted using the DataAnalysis ver. 4.0 software (Bruker) to provide molecular weight information of proteins.

14. In vitro reaction of the KS domains with malonyl-ACP.

A mixture containing $100 \mu \mathrm{M}$ apo-ACP, $20 \mu \mathrm{M} \mathrm{Sfp}, 80 \mathrm{mM}$ Tris- $\mathrm{HCl}, 80 \mathrm{mM} \mathrm{NaCl}, 25 \mathrm{mM}$ MgCl_{2}, and $300 \mu \mathrm{M}$ malonyl-CoA was incubated for 10 min at $20^{\circ} \mathrm{C}$, and then $4.5 \mu \mathrm{M}$ Epa-KS K_{A}, EpaKS_{C}, Dha-KS A_{A}, or Dha-KS K_{C} was added and incubated in the presence of DTT $(250 \mu \mathrm{M})$ for 1 h at $20^{\circ} \mathrm{C}$. The reaction mixture was quenched by adding the same volume of 1% TFA solution and analyzed by the same methods as those for the in vitro reaction with KS domains.

15. In vitro combination reaction with Dha-KS S_{C} and $3,6,9,12,15-$ cis octadecapentaenoyl-ACP.

Epa-KR-DH ${ }_{\text {PKs }}(3.8 \mu \mathrm{M})$ and NADPH $(1 \mathrm{mM})$ were added to a reaction mixture containing Dha- KS_{A} and $3,6,9,12,15-$ cis octadecapentaenoyl-ACP and incubated for 1 h at $20^{\circ} \mathrm{C}$. Then, Epa$\mathrm{DH}_{\text {FabA }}(5.3 \mu \mathrm{M})$, Dha-KS $(4.7 \mu \mathrm{M})$ and malonyl-ACP $(100 \mu \mathrm{M})$ were added and incubated for 1 h at $20^{\circ} \mathrm{C}$. The reaction mixture was quenched by adding the same volume of 1% TFA solution. The reaction products were analyzed by the same methods as the abovementioned in vitro reactions of KS domains.

16. In vitro reactions of AT domains with acyl-ACPs.

A mixture containing $50 \mu \mathrm{M}$ apo-ACP, $10 \mu \mathrm{M} \mathrm{Sfp} 5 \mathrm{mM} \mathrm{MgCl} 2,,80 \mathrm{mM}$ Tris- $\mathrm{HCl}, 80 \mathrm{mM}$ NaCl , and 1 mM butyryl-CoA, $600 \mu \mathrm{M}$ hexanoyl-CoA, $1 \mathrm{mM} 4,7$-cis decadienoyl-CoA, 1 mM myristoyl-CoA, 1 mM palmitoyl-CoA, 1 mM stealoyl-CoA, 1 mM 3,6,9,12,15-cis octadecapentaenoyl-CoA, $600 \mu \mathrm{M}$ eicosapentaenoyl-CoA, or $600 \mu \mathrm{M}$ docosahexaenoyl-CoA were incubated for 10 min at $20^{\circ} \mathrm{C}$ to prepare acyl-ACPs. Then, recombinant enzymes, Epa-B, Epa-B-AT ${ }^{0}$, OrfB, or OrfB-AT ${ }^{0}$ was added into the mixture at concentration or $1 \mu \mathrm{M}$ (OrfB enzymes) or $5 \mu \mathrm{M}$
(Epa-B enzymes). The reaction mixture was incubated for 1 h at $20^{\circ} \mathrm{C}$ (Epa-B enzymes) or $30^{\circ} \mathrm{C}(\mathrm{OrfB}$ enzymes). The reaction was quenched by addition of three times the volume of solution (acetonitrile:water $=2: 1$) to mixture. The reaction mixtures were analyzed by the same methods as the abovementioned in vitro reactions of KS domains.

For analysis of free fatty acids, excess free fatty acids in the mixture was removed using Amicon Ultra 3 K after preparation of DHA- and EPA-ACPs. Recombinant enzymes, EpaB, EpaBAT^{0}, OrfB, or OrfB- AT^{0} was added into the mixture at concentration of $1 \mu \mathrm{M}$ (OrfB enzymes) or 5 $\mu \mathrm{M}$ (EpaB enzymes). The reaction mixture was incubated for 1 h at $20^{\circ} \mathrm{C}$ (Epa-B enzymes) or $30^{\circ} \mathrm{C}$ (OrfB enzymes). The reaction was quenched by addition of twice volume of solution (acetonitrile:water $=2: 1$) to mixture. The reaction mixtures were analyzed on an HPLC instrument equipped with an amaZon SL DB-1 (Bruker). Analytical conditions were as follows: column, InertSustain C18 ($2.1 \times 150 \mathrm{~mm}, 3.0 \mu \mathrm{~m}$, GL Science Inc.) ; flow ratio, $0.2 \mathrm{ml} / \mathrm{min}$; temperature, $40^{\circ} \mathrm{C}$; mobile phase, 0.1% formic acid in water (A) and 0.1% formic acid in acetonitrile (B); gradient conditions, $50-90 \%$ B ($0-40 \mathrm{~min}$); detection, 210 nm and positive ion mode; injection volume, $5 \mu 1$.

References

1. E. G. Bligh, W. J, Dyer, A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol., 37, 911-917 (1959).
2. B. Andersson, R. Holman, Pyrrolidides for mass spectrometric determination of the position of the double bond in monounsaturated fatty acids. Lipids 9, 185-190 (1974).
3. A. Hauvermale, J. Kuner, B. D. Guerra, S. Diltz, J. G. Metz, Fatty acid production in Schizochytrium sp.: Involvement of a polyunsaturated fatty acid synthase and a type I fatty acid synthase. Lipids 41, 739-747 (2006).
4. T. Ujihara, M. Nagano, H. Wada, S. Mitsuhashi, Identification of a novel type of polyunsaturated fatty acid synthase involved in arachidonic acid biosynthesis. FEBS Lett. 588, 4032-4036 (2014).
5. K. Takeda, K. Kemmoku, Y. Satoh, Y. Ogasawara, K. Shin-Ya, T. Dairi, N-Phenylacetylation and nonribosomal peptide synthetases with substrate promiscuity for biosynthesis of heptapeptide variants, JBIR-78 and JBIR-95. ACS Chem. Biol. 12, 1813-1819 (2017).
6. S. K. Piasecki, C. A. Taylor, J. F. Detelich, J. Liu, J. Zheng, A. Komsoukaniants, D. R. Siegel, A. T. Keatinge-Clay, Employing modular polyketide synthase ketoreductases as biocatalysts in the preparative chemoenzymatic syntheses of diketide chiral building blocks. Chem. Biol. 18, 13311340 (2011).
7. S. Gruschow, T. J. Buchholz, W. Seufert, J. S. Dordick, D. H. Sherman, Substrate profile analysis and ACP-mediated acyl transfer in Streptomyces coelicolor type III polyketide synthases. ChemBioChem 8, 863-868 (2007).
8. R. A. Cacho, J. Thuss, W. Xu, R. Sanichar, Z. Gao, A. Nguyen, J. C. Vederas, Y. Tang, Understanding programming of fungal iterative polyketide synthases: The biochemical basis for regioselectivity by the methyltransferase domain in the lovastatin megasynthase. J. Am. Chem. Soc., 137, 15688-15691 (2015).
9. C. Kanchanabanca, W. Tao, H. Hong, Y. Liu, F. Hahn, M. Samborskyy, Z. Deng, Y. Sun, P. F. Leadlay, Unusual acetylation-elimination in the formation of tetronate antibiotics. Angew. Chem. Int. Ed., 52, 5785-5788 (2013).
10. C. R. Huitt-Roehl, E. A. Hill, M. M. Adams, A. L. Vagstad, J. W. Li, C. A. Townsend, Starter unit flexibility for engineered product synthesis by the nonreducing polyketide synthase PksA. ACS Chem. Biol., 10, 1443-1449 (2015).
11. B. B. Bond-Watts, A. M. Weeks, M. C. Y. Chang, Biochemical and structural characterization of the trans-enoyl-CoA reductase from Treponema denticola. Biochemistry 51, 6827-6837 (2012).
12. J. A. Gurak Jr., K. S. Yang, Z. Liu, K. M. Engle, Directed, regiocontrolled hydroamination of unactivated alkenes via protodepalladation. J. Am. Chem. Soc., 138, 5805-5808 (2016).
13. M. L. Tse, R. E. Watts, C. Khosla, Substrate tolerance of module 6 of the epothiline synthetase. Biochemistry 46, 3385-3393 (2007).
14. M. Yang, K. E. Guja, S. T. Thomas, M. Garcia-Diaz, N. S. Sampson, A distinct MaoC-like enotlCoA hydratase architecture mediates cholesterol catabolism in Mycobacterium tuberculosis. ACS Chem. Biol. 2014, 9, 2632-2645.
15. S. Flock, M. Lundquist, L. Skattebol, Syntheses of Some Polyunsaturated Sulfur- and Oxygencontaining Fatty Acids Related to Eicosapentaenoic and Docosahexaenoic Acids. Acta. Chemica. Scandinavica., 53, 436-445 (1999).
16. D. V. Kuklev, N. A. Latyshev, V. V. Bezuglov, A simple synthesis of all-cis-3,6,9,12,15octadecapentaenoic acid. Russian Journal of Bioorganic Chemistry 17, 1433-1436 (1991).

Acknowledgements

This study "Studies on the Biosynthetic machinery in Polyunsaturated Fatty-Acid Synthases" was supervised by Prof. Tohru Dairi (Division of Applied Chemistry, Faculty of Engineering, Hokkaido University). This work was done from April 2014 to March 2020 in laboratory of Applied BioChemistry in Hokkaido University.

First, I would like to express the deepest appreciation to Prof. Tohru Dairi. His invaluable advises and great guidance led this project forward, and his warm encouragements always supported and motivated me. Thank you for giving me a chance to work on this project. I learned important and essential things as a researcher from him.

I also would like to express my gratitude to Assistant Professors, Dr. Yasuharu Satoh and Dr. Yasushi Ogasawara. Dr. Yasuharu Satoh gave me a lot of helpful advises and taught me biological techniques and knowledge. Dr Yasushi Ogasawara taught me chemical techniques and knowledge, and his helpful discussion about chemistry of natural products led this study forward.

I carried out this study with cooperation of some researchers. I want to thank Prof. Yoshimitsu Hamano and Associate Prof. Chitose Maruyama (Graduate School of Bioscience and Biotechnology, Fukui Prefectural University) for helpful discussion and technical helps about high-resolution MS analysis. I also thank Dr. Ujihara Tetsuro (Kyowa Hakko Bio. Co., Ltd.) for cooperation on this study.

I also thank previous and current lab members, Ms. Mai Naka, Mr. Kota Kobayashi, Mr. Kenshin Ikeuchi, and Mr. Makoto Ohtsuka, for contributions to this project, and the other members for discussion, encouragement, and enjoyable time.

I have received a support from Japan Society for the Promotion of Science (JSPS) Research Fellowship DC2 since April 2018. This work was supported by a Grant-in-Aids for Scientific Research from JSPS.

Finally, I am deeply grateful to my parents, Dr. Tsuguo Hayashi, Mrs. Yukie Hayashi, and my older brother and sisters, Dr. Kenichi Hayashi, Mrs Hiroko Saitoh, Ms. Nami Hayashi, for all encouragements and supports.

March 2020
Sapporo

Shohei Hayashi

