| Title | Study on Microcrystals and Ceramics of Ferroelectric BaTaO2N Oxynitride Perovskite | |------------------|--| | Author(s) | 細野,新 | | Citation | 北海道大学. 博士(工学) 甲第14024号 | | Issue Date | 2020-03-25 | | DOI | 10.14943/doctoral.k14024 | | Doc URL | http://hdl.handle.net/2115/78317 | | Туре | theses (doctoral) | | File Information | Akira_HOSONO.pdf | # Study on Microcrystals and Ceramics of Ferroelectric BaTaO₂N Oxynitride Perovskite ペロブスカイト型酸窒化物強誘電体 BaTaO₂N の微結晶と焼結体に関する研究 #### Akira Hosono 細野 新 A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Engineering Hokkaido University March 2020 ## Study on Microcrystals and Ceramics of Ferroelectric BaTaO₂N Oxynitride Perovskite By Akira Hosono Hokkaido University 2020 Doctoral Supervisor: Professor Yuji Masubuchi #### **Abstract** The compounds consisted of metals, oxygen, and nitrogen are called "metal oxynitrides (hereafter oxynitrides)". Oxynitrides have attracted considerable attention of scientists and industry for their excellent mechanical, optical, electrical, and catalytic properties. To date, the variety of oxynitrides increased to about 1000 thanks for the development of synthetic technics. Most of them were studied from the respects of crystallography, photoluminescence property, catalytic property, and computational approaches. This is because of the difficulty in the fabrication of single crystals and fully-densified ceramics of oxynitrides for the studies of the properties of electricity, mechanical strength, heat conductivity, and so on. The target material of the present thesis is a perovskite-type oxynitride BaTaO₂N, which have been a subject of interest for its possible ferroelectricity induced by a local symmetry breaking due to its anisotropic anion ordering over centrosymmetric average structure. Sintering and microcrystal preparation of BaTaO₂N were studied in this research to elucidate the emergence of ferroelectric polar phase alternation. The present thesis is consisted of eight chapters. In **Chapter 1**, basic theories of dielectricity, sintering, crystal growth, and history of the researches of oxynitride materials are reviewed. In Chapter 2, secondary harmonic generation was observed on BaTaO₂N powder, which strongly supports the presence of non-centrosymmetric regions. Crystal structure of BaTaO₂N was reinvestigated by Rietveld fitting of powder X-ray and neutron diffraction data using both models of non-centrosymmetric and centrosymmetric structure. The fitting results suggested the formation of tiny asymmetric domains dispersed over centrosymmetric average structure. In Chapter 3, detail of thermal decomposition behavior and sinterability of BaTaO₂N were studied. BaTaO₂N partially released its nitrogen to be semiconducting BaTaO₂N_{0.85} during high temperature sintering, similarly to SrTaO₂N. Its nitrogen content was recovered by post-ammonolysis of BaTaO₂N_{0.85} ceramics. Relative dielectric constant of 620 was observed in the fully-annealed ceramics with relative density of 73.0% and piezoresponse signals were obtained for furtherly densified ceramic surface, although a serious current leakage occurred at the electrical voltage lower than ± 10 V. In **Chapter 4**, thermal properties of alkaline-earth metal carbodiimides were studied in pursuit of the flux for the sintering and crystal growth of oxynitride perovskites. The melting behavior and thermal stability are discussed on a series of alkaline-earth metal carbodiimides from the views of experimental and computational approaches. CaCN₂, alpha-phase of SrCN₂, and tetragonal phase of BaCN₂ have their respective melting points of 1340, 1020, and 910 °C. Only the melt of BaCN₂ could be maintained below its decomposition temperature of 912 °C estimated by density functional theory. This result indicated that BaCN₂ is a promising flux for oxynitride compounds. Afterwards Sr_{1-x}Ba_xTaO₂N ceramics with relative density of about 70% was fabricated using a BaCN₂ additive at approximately 900 °C, which is below the decomposition temperature of SrTaO₂N. Microcrystal growth of *A*-site substituted solid solution Sr_{1-x}Ba_xTaO₂N was discovered in the samples after cooling. The crystals contained a compositional gradation from Sr-rich interior to Ba-rich exterior regions. These results proved the occurrence of diffusion involving dissolution and recrystallization of oxynitrides via BaCN₂ flux. In Chapter 5, reddish cubic microcrystals of BaTaO₂N in size up to 3.1 μm were grown in a BaCN₂ flux. Crystalline phase identification and microstructure observation on the products disclosed that Ba-rich Ruddlesden-Popper type layered perovskites such as Ba₂TaO₃N were formed on a thin surface of BaTaO₂N crystals. That is, BaTaO₂N may not simply recrystallize from BaCN₂ solution. In **Chapter 6**, ferroelectric properties of the BaTaO₂N crystals were characterized. Piezoelectricity of micron-sized BaTaO₂N crystals fabricated in **Chapter** 5 was studied with a piezoresponse force microscope (PFM). Clear phase alternation of spontaneous polarization by applied AC electrical field was observed at 120 °C and electrical voltage of 90 V. This is the first-ever evidence of the presence of ferroelectricity observed with oxynitride single crystals. Polarization direction was switched more easily at high temperature, which is a prominent characteristic of ferroelectrics. In Chapter 7, liquid phase sintering of BaTaO₂N with a BaCN₂ additive was tried using a spark plasma sintering (SPS) equipment to apply high mechanical pressure. Dissolution and precipitation of BaTaO₂N via BaCN₂ flux, their chemical reactions at grain surface and boundaries, and uniaxial pressure of several tens of mega pascal assisted the rapid densification of BaTaO₂N powder at approximately 900 °C. This procedure enabled to obtain BaTaO₂N ceramics without nitrogen loss. Microstructure as well as electrical properties of the ceramic products were investigated. In Chapter 8, comprehensive explanation on the crystal structure, flux growth, and ferroelectricity of perovskite-type BaTaO₂N is given. Further suggestions targeting the application of oxynitride materials in the forms of ceramics and single crystals are mentioned in the last part as future perspectives. ## **Table of Contents** ### Chapter 1 | Pers | pect | ive of Dielectric Oxynitride Perovskites | 1 | |--------|--------------|---|----| | 1-1. | Ov | verview of perovskite-type oxide dielectric materials | 1 | | | -1. | Perovskite-type structure | | | 1-1 | -2. | Oxide dielectric materials | 2 | | 1-1 | -3. | Ferroelectricity | 4 | | 1-1 | -4. | Relaxor ferroelectrics | 8 | | 1-2. | Me | etal oxynitrides | 11 | | 1-2 | 2-1. | Syntheses of perovskite-type oxynitrides by ammonolysis | 12 | | 1-2 | 2-2. | Novel synthetic routes of oxynitride perovskites | 13 | | 1-3. | Di | electricity and crystal structure of oxynitride perovskites | 15 | | 1-3 | 3-1. | Local symmetry breaking involving anion ordering | 16 | | 1-3 | 3-2. | DFT structure optimizations on oxynitride perovskites | 17 | | 1-4. | De | ensification processes of oxynitride perovskites | 18 | | 1-4 | l-1. | Overview of sintering theory | 18 | | 1-4 | I-2. | Sintering procedures of metal nitrides and oxynitrides | 22 | | 1-4 | I-3. | Flux growth of metal nitride crystals | 23 | | 1-4 | 1- 4. | Densification processes of SrTaO ₂ N | 25 | | | | Sintering of SrTaO ₂ N at high temperature | 25 | | | | Densification of SrTaO ₂ N under high pressure | 27 | | | l-5. | Electrical properties of SrTaO ₂ N thin films | | | 1-5. | Pu | rpose of the present research | 29 | | Chapte | er 2 | | | | Rein | vest | igation of the Crystal Structure of BaTaO2N | 41 | | 2-1. | Int | roduction | 41 | | 2-2. | Ex | perimental | 42 | | 2-3. | Re | sults and discussion | 44 | | 2-4. | Co | nclusion | 49 | ## Chapter 3 | _ | Temperature Sintering, Post-ammonolysis, and Electrical Propert | | |-------------------|---|---------| | Pero | vskite-type BaTaO2N | 51 | | 3-1. | Introduction | 51 | | 3-2. | Experimental | 53 | | | Ceramics fabrication | 53 | | | Electrical property measurements | 55 | | 3-3. | Results and discussion | 57 | | | Thermal stability and sintering of BaTaO ₂ N | 57 | | | Dielectric properties of BaTaO ₂ N ceramics | 67 | | | Piezoelectricity of BaTaO ₂ N ceramic specimen | 71 | | 3-4. | Conclusion | 86 | | Chapte | er 4 | | | Melt | ing Behavior of Alkaline-Earth Metal Carbodiimides for the Preparat | tion of | | Sr _{1-x} | Ba _x TaO ₂ N ($x = 0.04 - 0.23$) Microcrystals | 89 | | 4-1. | Introduction | 89 | | 4-2. | Experimental | 95 | | | Syntheses and thermal studies of metal carbodiimides | 95 | | | Computational studies | 97 | | | Preparation of Sr _{1-x} Ba _x TaO ₂ N microcrystals | 98 | | | Characterization of the Sr _{1-x} Ba _x TaO ₂ N microcrystals | 99 | | 4-3. | Results and discussion | 101 | | | Melting and thermal decomposition of α-SrCN ₂ | 101 | | | Melting behavior and polymorphism of BaCN ₂ | 101 | | | Melting and thermal decomposition of CaCN ₂ | 109 | | | Computational study of the stability of alkaline-earth metal carbodiimide | s111 | | | Preparation of the microcrystals of Sr _{1-x} Ba _x TaO ₂ N using a BaCN ₂ melt | 115 | | 4-4. | Conclusion | 134 | | Chapte | er 5 | | | Prep | aration of BaTaO2N Microcrystals Using a BaCN2 Flux | 140 | | 5-1. | Introduction | 140 | | 5-2. | Experimental | 140 | | | Sample preparation | 140 | | | Microstructure observation | 142 | |--------|---|-----| | 5-3. | Results and discussion | 143 | | | Sample preparation | 143 | | | TEM observation | 144 | | | Growth of the BaTaO ₂ N
perovskite crystals | 152 | | 5-4. | Conclusion | 156 | | Chapte | er 6 | | | Ferr | oelectric Piezoresponse of BaTaO2N Microcrystals | 158 | | 6-1. | Introduction | 158 | | 6-2. | Experimental | 161 | | | Sample preparation | 161 | | | PFM measurements | 165 | | | Raman spectroscopy | 165 | | 6-3. | Results and discussion | 166 | | 6-4. | Conclusion | 174 | | Chapte | er 7 | | | Spar | k Plasma Sintering of BaTaO2N Using a Molten BaCN2 Additive | 177 | | 7-1. | Introduction | 177 | | 7-2. | Experimental | 179 | | | Sintering of BaTaO ₂ N powder | 179 | | | Characterization of the ceramic products | 180 | | 7-3. | Results and discussion | 182 | | | Effects of BaCN ₂ additive and applied mechanical pressure | 182 | | | Sintering mechanism of BaTaO ₂ N with BaCN ₂ | 186 | | | Electrical properties of BaTaO ₂ N ceramics | 191 | | 7-4. | Conclusion | 195 | | Chapte | er 8 | | | Conc | clusion | 197 | #### Chapter 1 #### **Perspective of Dielectric Oxynitride Perovskites** #### 1-1. Overview of perovskite-type oxide dielectric materials The most widely utilized inorganic materials are composed of metals and oxygen, which are metal oxides (hereafter oxides). One hot topic of their applications is electronic devices including capacitor, actuator, semiconductor, and so on. The developments of smaller size and higher device performances have been achieved in accordance with the increasing demands of higher device population on integrated circuits. Here, oxides with perovskite-type crystal structure are focused for their important electrical properties. #### 1-1-1. Perovskite-type structure Ternary metal oxides named perovskite-type oxides are expressed with a chemical formula of ABO_3 where A and B are large cations like alkaline-earth or rare earth metals and smaller cations like transition metals, respectively. Their respective coordination numbers of A and B sites are twelve and six. Its crystal structure is illustrated in **Fig. 1-1**. In an ideal cubic oxide perovskite, the bond lengths $(r_{A-O} \text{ and } r_{B-O})$ are related by the following equation; $$\sqrt{2}r_{A-O} = 2r_{B-O} \tag{1-1}$$ To discuss the structural deviations from ideal perovskite-type structure, a parameter called tolerance factor (t) shown in equation (1-2) is frequently used. [1] $$t = \frac{\sqrt{2}r_{A-O}}{2r_{B-O}} \tag{1-2}$$ #### 1-1-2. Oxide dielectric materials Dielectric materials (dielectrics) is a term that indicates electrical insulators. They do not allow to pass the direct electrical current by the applied voltage, but each ion show some displacement from their statistical positions to form dielectric polarization. When external electrical field is applied to a dielectric material, cations displace towards the direction of the field and anions with negative charges shift to the opposite direction. Such polarization is a target of various applications for capacitors, actuators, wavelength filters, and so on. Dielectrics are divided into several categories depending on their properties as illustrated in **Fig. 1-2**. The performances of dielectrics are evaluated with several kinds of parameters. The most important factors are relative dielectric constant (ε_r) and dielectric loss ($\tan \delta$), which mean the scale of polarization and electrical energy loss, respectively. These parameters express their potential for the application as capacitors. The performance of capacitors is described as their ability to hold the electrical energy (electrical charge Q) in the products as a function of the capacitance (C) and applied voltage (V). These parameters are related each other by the following equation. [1] $$O = CV \tag{1-3}$$ The capacitance of vacuum is defined as the following function of geometrical factors $$C_0 = \varepsilon_0 \frac{A}{d} \tag{1-4}$$ where ε_0 is the dielectric constant of vacuum (8.854 × 10⁻¹² F/m), A is the area of electrodes, and d is the thickness of monolayer capacitor sample. The intrinsic capacitance value of the dielectric sample is defined by the following equation. [1] $$C = C_0 \frac{\varepsilon}{\varepsilon_0} = C_0 \varepsilon_r \tag{1-5}$$ ε_r is called relative dielectric constant, which is unique to the compound. Another parameter, dielectric loss ($\tan \delta$) is the proportion of the imaginary part (ε '') and the real part (ε ') of dielectric constants. $$\varepsilon = \varepsilon' - i\varepsilon'' \tag{1-6}$$ $$\tan \delta = \frac{\varepsilon''}{\varepsilon'} \tag{1-7}$$ Smaller value of $\tan\delta$ is favorable because it exhibits the scale of energy loss mainly due to the presence of electrically conductive nature. #### 1-1-3. Ferroelectricity Among dielectrics, specific materials that can reorient their spontaneous polarization direction by external electrical field are called ferroelectrics. Ferroelectrics are industrially important for their applications such as ferroelectric random access memories (FeRAM, PbZr_{1-x}Ti_xO₃ (PZT), SrBi₂Ta₂O₉ (SBT), BiFeO₃), capacitors (BaTiO₃, PZT, LiNbO₃), ignition switches (PZT), and surface acoustic wave filters (SAW filters, LiTaO₃). They need to have a crystallographic characteristic; non-centrosymmetric structure with spontaneous polarization. A classical example, BaTiO₃ belongs to a space group of P4mm at room temperature and it has tetragonal symmetry with spontaneous polarization along c-axis at room temperature as shown in Fig. 1-3(a). However, its spontaneous polarization disappears at its phase transition of 120 °C to form centrosymmetric $Pm\bar{3}m$ cubic phase (Fig. 1-4(b)). [1] Its dielectric constants against temperature (Fig. 1-5) reflect this phenomenon, which is called ferroelectric phase transition. This structural characteristic is sometimes undesirable from the view point of application because of a serious change of device performance caused by temperature. Moreover, lead-free dielectric materials are desired for the concerns of environmental pollutions after their disposals. **Fig. 1-1.** Crystal structure model of cubic perovskite ABO_3 . The blue, green, and red balls are A, B, and O, respectively. This image was drawn by the crystallographic imaging software VESTA. [3] Fig. 1-2. Classification of the materials in insulators. [2] **Fig. 1-3. (a)** Crystal structure of tetragonal BaTiO₃, **(b)** polarization (P)-electrical field (E) hysteresis loop of ferroelectrics, and **(c)** a schematic image of polar directions of the domains. [1] P_s and P_r are saturated and remnant polarization, respectively. The crystal structure model was drawn by the crystallographic imaging software VESTA. [3] **Fig. 1-4.** Transformation of BaTiO₃ from **(a)** tetragonal to **(b)** cubic phase. [1] These crystal structure models were drawn by the crystallographic imaging software VESTA. [3] **Fig. 1-5.** Dielectric constants of BaTiO₃ ceramics against temperature. [4] The insets are grain size of ceramics. #### 1-1-4. Relaxor ferroelectrics Relaxors are ferroelectric materials that have moderate temperature coefficients of dielectric properties. In classical ferroelectrics like BaTiO₃, spontaneous polarization disappears by phase transition to symmetric structure with a sharp peak in dielectric constant-temperature graphs (Fig. 1-5). [1,4] On the other hand, some prototypical relaxors such as Pb(Mg_{1/3}Nb_{2/3})O₃ (PMN) maintain large relative dielectric constants even at high temperature without a sharp phase transition [2,5], as indicated in Fig. 1-6. Such materials show a huge dielectric response over wide frequency and temperature ranges. These characteristics originate from nano meter-sized polarized regions (Polar Nano Regions, PNRs) dispersed over averagely symmetric matrix as schematically depicted in Fig. 1-7. [2,5] PNRs are generally formed by the presence of different valence cations between neighboring crystalline cells. Chemically ordered region with Mg:Nb = 1:2 seems to be centrosymmetric, while disordering of Mg²⁺ and Nb⁵⁺ forms locally polarized regions. [2,5] In other words, PNRs are introduced by compositional inhomogeneity as in the crystalline lattice model of **Fig. 1-8**. [2,5] While the most attractive characteristic of relaxors is their large dielectric constants over wide temperature and frequency ranges, several unique behaviors were reported by Burns and other researchers. [6,7] Non-linear optical effect was reported on **Fig. 1-6.** Temperature dependences of the real and imaginary parts of the relative dielectric constants evaluated at various frequencies for a single crystal of $Pb(Mg_{1/3}Nb_{2/3})O_3$ (PMN). [5] **Fig. 1-7.** Schematic image of PNRs (gray ellipsoids) dispersed over averagely symmetric matrix (white region). [5] **Fig. 1-8.** Inhomogeneous *B*-site occupation model of Pb(Mg_{1/3}Nb_{2/3})O₃ (PMN). [5] Black and white circles indicate Nb⁵⁺ and Mg²⁺, respectively. For example, the average charge of the area enclosed with solid line is 4+, but there are disordering of the Nb⁵⁺ and Mg²⁺ cations to form PNRs. PMN single crystals even at the temperature higher than their phase transition point in the year of 1983. [6] It was attributed to the remnant polarization of thermally robust PNRs. In addition, polar domain sizes in relaxors decrease at the elevated temperature and their polar direction can be switched by relatively low electrical voltage because smaller domains were easily reoriented by the assist of thermal fluctuations. [2,8] The upper limit of the temperature for relaxor ferroelectrics to maintain PNRs is called Burns temperature. [6] #### 1-2. Metal oxynitrides To date, the most widely utilized inorganic materials are metal oxides for the easiness of synthesis and fabrication of their ceramics and bulk single crystals. On the other hand, many trials of modifying their properties have been made by substituting their oxide anions with other anions to form oxynitrides, oxyfluorides, fluoronitrides,
oxyfluoronitrides, oxysulfides, oxyselenides, and oxychlorides. [9-21] Among the candidates of mixed anion inorganic compounds, the combination of oxygen and nitrogen is appropriate for the similarities in their ionic radii and electronegativities [22,23] as summarized in **Table 1-1**. Metal nitrides and oxynitrides have attracted considerable attention for their promising optical, mechanical, superconducting, dielectric, and visible light-driven photocatalytic properties. [24-29] For example, GaN, AlN, TiN, and SiAlONs are industrially important materials for their applications as blue light emitting diodes [30-33], thermal conductive substrates in electrical circuits [34-36], structural **Table 1-1.** Average electronegativities and ionic radii of anionic elements. [22,23] | | В | С | N | О | F | P | |-------------------|------|------|------|------|------|------| | Electronegativity | 2.04 | 2.55 | 3.04 | 3.44 | 3.98 | 2.19 | | Ionic radii / pm | 25 | 29 | 132 | 124 | 117 | 31 | | | S | C1 | As | Se | Br | I | | Electronegativity | 2.58 | 3.16 | 2.18 | 2.55 | 2.96 | 2.66 | | Ionic radii / pm | - | - | 48 | 42 | - | - | Coordination number is four in the ionic radii on this Table. materials [37-44], and phosphors. [45-47] Such properties are attributed to the presence of nitrogen, which introduces higher covalency and narrower optical bandgaps compared with oxide materials. [48-50] A number of trials have been made to fabricate dense ceramics as well as single crystals of such materials for their industrial usages and evaluation of properties with high reliability. However, research field on the processing of oxynitrides have not been developed very much for the difficulty in the fabrication of highly-densified ceramics, single crystals, fine powders with uniformed particle sizes, and so on. There are some examples of the preparation of oxynitride thin films, but their chemical compositions especially nitrogen contents are not confirmed in most cases. [51-55] Hence, most of the researches on oxynitrides have been conducted on their crystal structure, fluorescence, and catalytic properties, all of them can be studied in the form of as-synthesized powder. #### 1-2-1. Syntheses of perovskite-type oxynitrides by ammonolysis Over the last 30 years, a variety of oxynitride compounds with perovskite-type crystal structure have been synthesized. Many examples such as AETaO₂N (AE = Ca, Sr, Ba), AENbO₂N, LnTaON₂ (Ln = lanthanoid), LnTiO₂N, NdVO₂N, non-stoichiometric compound SrMo(O,N)₃, BaTi(O,N)₃, and a series of Ruddlesden-Popper type layered perovskites have been reported. [48,50,56-70,72-74] Previously reported examples of oxynitride perovskites are summarized in Table 1-2. The most widely employed their synthetic route is the heating of their oxide precursors or oxide powder mixtures with stoichiometric metal ratios under flowing ammonia. This method called ammonolysis is conducted at approximately 900 – 1000 °C and yellow or reddish colored powders having decreased optical bandgaps introduced by the presence of nitrogen are obtained. It has been suggested that gaseous ammonia partially decomposes to highly reactive radical nitriding reagents (NH₂, NH) and molecular hydrogen, which reacts with oxide starting materials generating water. And nitrogen is inserted to the specific position where had been occupied by oxygen. The comprehensive study of the ammonolysis reaction mechanism has not been established, but in the case of the formation of BaTaO₂N, its nitridation process was closely investigated on the basis of the decomposition of NH₃. [71] #### 1-2-2. Novel synthetic routes of oxynitride perovskites In recent years, ammonia-free syntheses of oxynitride perovskites have been explored by several groups. Reactions between alkaline-earth monoxides and TaON at high temperature of 1400 °C were performed by the group of Clarke. [57] However, the **Table 1-2.** Oxynitride perovskites reported until the year of 2019. | Structure type | Compound name | Note | Refs. | |-------------------|------------------------------------|---------------------------------|-------| | Perovskite | BaTaO ₂ N | | 56 | | | $SrTaO_2N$ | | 57 | | | $SrTaO_{2}N_{0.7}$ | Nitrogen defects are contained. | 69 | | | $CaTaO_2N$ | | 48 | | | EuTaO ₂ N | | 70 | | | $Ca_{1-x}Eu_xTa(O,N)_3$ | | 70 | | | Ln TaON $_2$ | Ln = La, Ce, Pr, Nd, Sm, Gd, Eu | 58 | | | $LaNbON_2$ | | 58 | | | $BaNbO_2N$ | | 56 | | | $SrNbO_2N$ | | 60 | | | EuNb(O,N)3 | | 58 | | | $Ln TiO_2N$ | Ln = La, Nd | 58,72 | | | $La_{1-x}Sr_xTiO_{2+x}N_{1-x}$ | | 59 | | | $LaZrO_2N$ | | 72 | | | BaTi(O,N)3 | | 68 | | | $SrW(O,N)_3$ | | 66 | | | $LaW(O,N)_3$ | | 74 | | | $SrMo(O,N)_3$ | | 65,66 | | | $NdVO_2N$ | | 67 | | | LaV(O,N) ₃ | | 73 | | Ruddlesden-Popper | Ba ₂ TaO ₃ N | | 57 | | | $Sr_{1+n}Ta_nO_{2+n}N_n$ | n = 1, 2 | 57,61 | | | $Sr_{1+n}Nb_nO_{2+n}N_n$ | n = 1, 2 | 60,61 | | | Ln_2AlO_3N | Ln = Nd, Sm | 63,64 | | | $Gd_{1+x}Ca_{1-x}AlO_{4-x}N_x$ | | 62 | colors of such products are black or brown, which indicates that a number of anion defects are contained to reduce Ta⁵⁺ during the high temperature processes. In other works, solid state reactions of alkaline-earth carbonates and Ta₃N₅ at approximately 900 – 1100 °C were investigated using thermogravimetry in combination with gas chromatography. [75,76] Gaseous carbon dioxide generated by the decarboxylation from metal carbonates partially oxidizes Ta₃N₅ and reaction intermediate of TaON is formed. Then alkaline-earth monoxides react with TaON to generate oxynitride perovskites. Another synthetic procedure of SrTaO₂N from Sr₂Ta₂O₇ was performed using C₃N₄ as both of a reducing reagent for Sr₂Ta₂O₇ starting material and a nitrogen source. [77] Phase-pure SrTaO₂N was obtained by the reaction at 800 °C. Particle sizes of SrTaO₂N prepared in this process were very small (< 100 nm) and uniform because of the low temperature process compared to the conventional ammonolysis products at 1000 °C (> 100 nm). [77] #### 1-3. Dielectricity and crystal structure of oxynitride perovskites In 2004, unusually high relative dielectric constant values of BaTaO₂N ($\varepsilon_r \approx$ 4600) and SrTaO₂N ($\varepsilon_r \approx$ 3000) over a temperature range of 180 – 300 K were reported for their powder compacts with relative density (RD) of approximately 45% after annealing at 1050 °C in ammonia. [78] After this report, a number of trials were performed to fabricate dense ceramics and thin films targeting the evaluation of their intrinsic electrical properties for their applications as lead-free, environmentally friendly dielectric materials. #### 1-3-1. Local symmetry breaking involving anion ordering The emergence of large relative dielectric constant values cannot be explained in relation to their centrosymmetric space groups (tetragonal I4/mcm for SrTaO₂N (a = 0.569411(7) nm, c = 0.80658(2) nm) and cubic $Pm\bar{3}m$ for BaTaO₂N (a = 0.41128(1) nm) determined by powder X-ray and neutron diffractions. [56,57,78] In response to this enigma, local structure of BaTaO₂N was studied employing TEM, EXAFS, and neutron pair distribution functions and the different distances in Ta-O and Ta-N bonds were reported. [79-81] This suggests that each Ta atom slightly displaces in one direction from its averaged centrosymmetric positions in cubic BaTaO₂N, making one dimensional (linear) PNRs. [80] Distinguishing oxygen from nitrogen by X-ray diffraction is challenging due to their similar X-ray scattering powers. Neutron diffraction is a powerful means to identify the positions of these elements, due to the different neutron scattering length of oxygen (5.803 fm) and nitrogen (9.360 fm). [82] Using this approach, two independent research groups reported local *cis*-type anisotropic configurations of nitride anions in TaO_4N_2 and NbO_4N_2 octahedra in $SrTaO_2N$ and $SrNbO_2N$. [83,84] In addition, it was reported that $LaTiO_2N$, $La_{1-x}Sr_xTiO_{2+x}N_{1-x}$ (x = 0 - 0.2), and $NdVO_2N$ perovskites have similar *cis*-type O/N configuration in TiO_4N_2 octahedra. [67,69] Such anisotropic anion configuration is favored in many compounds of transition metals with d^0 electron configurations. [87] #### 1-3-2. DFT structure optimizations on oxynitride perovskites Density functional theory (DFT) calculations of both SrTaO₂N and BaTaO₂N with *cis*-type anion configuration model pointed out the formation of helical coil-like polar Ta-N-Ta-N chains with various lengths and directions. [88] The authors of this paper expected the presence of three-dimensional polar nano regions (PNRs) formed by polar Ta-N-Ta-N chains and relaxor-like ferroelectric properties in these oxynitride perovskites. [88] Such relaxor properties originate from anisotropic local structure in oxynitride materials with homogeneous chemical compositions are quite different from the prototypical oxide relaxors with compositional inhomogeneities shown in **Fig. 1-8**. [2,5] Additional DFT calculations of each crystal structure of oxynitride perovskites have been performed by several independent groups. Structure optimizations on CaTaO₂N, SrTaO₂N, and BaTaO₂N were performed by total-energy calculations and phonon-computations. [89] Interestingly enough, all of them were determined to be stable in the space group of orthorhombic Pnma, unlike previous their powder neutron diffraction results (I4/mcm for $SrTaO_2N$ and $Pm\overline{3}m$ for $BaTaO_2N$). [56,57] Further structure optimization was performed on $BaTaO_2N$ to find out that the most favored structure is non-centrosymmetric $Pmc2_1$ space group. [89] This result has been extended to a series of oxynitride perovskites such as $LnTaON_2$ (Ln = La, Ce, Pr) and $CaTaO_2N$. [86] These reports propose an explanation that polar local structure is present in a variety of oxynitride perovskites which had been believed to be centrosymmetric average structure by powder diffraction data. Because of these findings, fabrication of
dense ceramics or single crystals are desired to evaluate the intrinsic electrical properties in oxynitrides. #### 1-4. Densification processes of oxynitride perovskites #### 1-4-1. Overview of sintering theory Sintering behavior of inorganic compounds is connection and consolidation of each powder particle to densify and strengthen the ceramic products. Here, the principles of the densification mechanism of inorganic compounds are briefly reviewed. The major mechanisms are surface diffusion, bulk (volumic) diffusion, dissolution-precipitation involving liquid phase, and evaporation-condensation process. Schematic image summarizing the diffusion procedure is depicted in Fig. 1-9. They are strongly related to the diffusion phenomena of target materials. Sintering proceeds using the decrease in the surface free energy on the interface between solid and gas phases as a driving force. The entire process can be divided into three steps, i.e. (i) particle rearrangement to realize the intimate packing of neighboring grains, (ii) some necking between grains by material diffusion via vapor phase, which is called surface diffusion, (iii) boundary and the volumic diffusions to densify the ceramics by eliminating voids towards the exterior of the bulks. The surface energy will be minimized by filling up the voids that ideally should be diminished to the exterior of the ceramics. Generally, the free energy change during diffusion is expressed as the following function of diffusion coefficient. [91,92] $$\frac{\mathrm{d}\rho}{\mathrm{d}t} \approx \frac{\Omega_i \gamma \delta_b^m D_{eff}}{kT d^n} F(\rho) \rho \tag{1-8}$$ Where ρ is density, t is time, Ω is atomic volume, γ is surface energy, δ_b is boundary diffusion width, D_{eff} is effective diffusion constant, k is Boltzmann constant, T is absolute temperature, d is grain size. Exponents m and n depend on the controlling diffusion medium. Sintering involving diffusion of solid phase is called solid state sintering. This process is known to proceed above 70% of the absolute melting points of the target materials. [90] However, this procedure is not applicable to the materials with extremely high melting points like metal nitrides, oxynitrides, borides, and carbides. Such covalent bonding crystals cannot be sintered by simple heating because most of them thermally decompose during high temperature processes. The materials difficult to sinter are densified by means of the diffusions assisted by other factors like molten solvent (liquid phase sintering) [92-103] and chemical reactions (reaction sintering). [99,102,104] The latter process is accelerated by the material transportation during chemical reactions between the starting materials in the green-compacts. As for the liquid phase sintering, fluxes that play a role of solvent for target materials to assist their rapid diffusions via dissolution and precipitation are employed. The merit of this procedure is that their sintering temperatures can be lowered if a sintering additive with a low melting point is employed. Diffusion in liquid phase sintering is significantly rapid compared to solid state sintering. It proceeds with a series of steps; (i) wetting on the surface of solid phase with melt of sintering additive (ii) reorientation of grains (iii) dissolution and precipitation via solvent. [92] Wetting of the material surface is a key factor to supply the diffusion medium to as many grains as possible. After the wetting and reorientation of grains, target materials diffuse via Fig. 1-9. Diffusion mechanism during sintering of powders. [91] densification of the ceramics, and grain growth proceed simultaneously. Important factor is that target materials are dissolved to the melt of a sintering additive. Three types of densification process are proposed in liquid phase sintering as illustrated in **Fig. 1-10**. These are; (a) smoothing of contacting points of solid particles, (b) dissolution of tiny particles and their reprecipitation on the surface of large grains, and (c) necking growth of grain boundaries. [92] The necking growth uses grain boundary as a material Fig. 1-10. The three mechanisms of (a) grain accommodation, (b) dissolution and reprecipitation, and (c) grain boundary diffusion in liquid phase sintering. [92] source as in solid state sintering and then straight boundaries are formed. Other sintering procedures that are effective for the materials difficult to sinter are hot press sintering [105-109], hot isostatic press sintering (HIP) [110-114], microwave sintering [104], spark plasma sintering (SPS) [115,116], and so on. These technics assist the grain growth, crack healing, densification, and lowering sintering temperatures to avoid thermal decompositions. #### 1-4-2. Sintering procedures of metal nitrides and oxynitrides Conventional sintering procedures for oxide materials are not applicable to nitrides and oxynitrides due to their extremely small diffusion constants. [117] Additional approaches using additives and high pressure are necessary to assist the diffusion of such covalent crystals. Well known examples are the fabrications of AlN [34-36,96-100,103], BN [34,42-44], Si₃N₄ [110-114,118-120], and TiN [38] ceramics and crystals. Liquid phase sintering of these nitride materials was achieved by employing the sintering additives of oxides of alkaline metals, boron, or rare earth metals as the sources of liquid phase. [92-103] The application of high pressure in hot pressing, hot isostatic pressing, and spark plasma sintering will be effective for further densification. [104-116] Sometimes oxynitride compounds are considered as the derivatives of oxides, but their sintering is difficult owing to the high covalency of the bonds between metals and nitrogen making their diffusion constants quite small. Al₃O₃N (AlON) with spinel-type structure and SiAlON oxynitrides are well known exceptional examples that can be sintered, but in both cases sintering additives of metal oxides and nitrides to generate liquid phase at lower temperature than their decomposition points are necessary to fabricate dense ceramics, as in the cases of the abovementioned typical main-group metal nitrides. [96-102,112,113,116] #### 1-4-3. Flux growth of metal nitride crystals Sigle crystal is the most desirable sample form for solid state chemistry because quite reliable information on their intrinsic properties can be obtained. Solvents for target materials are called fluxes and their crystals are grown via dissolution and recrystallization phenomena. Crystals larger than a certain size can be utilized for the evaluations of their intrinsic electrical, mechanical, heat-conducting properties, and so on. Single crystals are obtained by a cooling or flux evaporation to supersaturate the solutions that contain target materials as solutes. [121] The most common technique for realizing supersaturation is a slow cooling of solutions when the materials solubilities of which are strongly affected by temperature. The slower cooling rate is, the higher quality and the larger crystals are. Another process, flux evaporation, is suitable for the crystals of materials that show moderate solubilities to solvents against temperature. The loss of solvents assists the condensation of the solution at constant temperature. [121] Crystal growth of metal nitrides and oxynitrides is very challenging due to a lack of the knowledge of appropriate fluxes. To date, only a few examples of the fluxes are known. They are sodium metal or sodium azide (NaN₃) [122,123], Li₃N [124], Ca₃N₂ [36] for various nitrides of typical metals, and self-flux of Li₃BN₂ for the productions of *h*- and *c*-BN crystals. [43,44,125] Few production reports have been published for the fabrications of the crystals of oxynitrides containing transition metals due to the difficulty in maintaining their chemical compositions. #### 1-4-4. Densification processes of SrTaO2N #### Sintering of SrTaO₂N at high temperature There are few reports of sintering behaviors of oxynitrides containing transition metals owing to their strong tendency to be reduced during high temperature processes. Among such compounds, thermal stability and sinterability of SrTaO₂N involving its partial decomposition were studied in the group of Kikkawa. [69,126,127] SrTaO₂N begins releasing a part of its nitrogen at about 950 °C in an inert atmosphere. Approximately 30% of nitrogen is lost up to 1200 °C, but its perovskite-type crystalline lattice is maintained. [69] SrTaO₂N changes from orange insulator to black semiconductor reducing the oxidation state of Ta⁵⁺. [69,126,127] Further decomposition behaviors strongly depend on heating atmosphere. Perovskite-type structure of SrTaO₂N_{0.7} is thermally robust under nitrogen atmosphere and further decomposition is only a slight loss of SrO. [69] On the other hand, the perovskite-type phase completely decomposes to Sr_{1.4}Ta_{0.6}O_{2.73}, Ta₂N, and Sr₅Ta₄O₁₅ in helium. [69] SrTaO₂N can be sintered in nitrogen above 1400 °C losing some of its nitrogen and SrO. [69,126,127] Addition of a small amount of SrCO₃ to SrTaO₂N was performed to compensate for the loss of SrO and phase-pure SrTaO₂N_{0.7} ceramics can be sintered under 0.2 MPa of nitrogen above 1400 °C in BN crucible. [126,127] Resultant black SrTaO₂N_{0.7} ceramics were post-annealed in flowing ammonia to supply nitrogen for the ceramic products. Orange color and electrically insulating property were recovered by this post-ammonolysis. [126,127] SrTaO₂N ceramics with orange color even in their interiors were obtained only for the SrTaO₂N_{0.7} ceramics with RD values less than 84%. [127] On the other side, only the outermost surface in a thickness of several micrometers could be re-nitrided in the case of highly densified ceramics of RD > 90%. In this case, their interiors still remained as semiconducting SrTaO₂N_{0.7}. [127,128] Electrical resistivity of the post-annealed ceramic
products differs depending on the synthetic routes of the original SrTaO₂N powders. Zhang, who reported the sintering of SrTaO₂N for the first time [126], prepared the starting SrTaO₂N powder by the ammonolysis of Sr₂Ta₂O₇ precursor obtained by sol-gel synthesis using SrCl₂, TaCl₅, and citric acid. Residual carbon is suspected to have a negative influence on the insulating properties of ceramic products, which showed its high dielectric loss $tan\delta$ values larger than 0.4 even after postammonolysis. [126] Instead, Sun synthesized SrTaO₂N powder from Sr₂Ta₂O₇ obtained by the solid state reaction between SrO and Ta₂O₅. [127] The ceramic products showed much better electrical insulation. The post-annealed SrTaO₂N ceramics with RD = 83.3% had a relatively high ε_r of 450 with a low tan δ less than 0.1. These values are almost independent of frequency and temperature. [127] Piezoresponse as well as local capacitance hysteresis loops were also observed in the scratched off surface area of post-annealed dense $SrTaO_2N$ ceramics with RD > 90%. [128] The polarization signal increased by the applied voltage and its coercive electrical bias was estimated to be approximately ± 8 V. Further bias to saturate the polarization could not be applied because of an electrical current leakage. So, most importantly, invention of a densification technic of highly-insulating oxynitride perovskites is desired. ## Densification of SrTaO2N under high pressure Apart from the abovementioned pressureless sintering, several trials have been made to obtain oxynitride ceramics by the assist of applied pressure. Hot isostatic press (HIP) sintering has been a powerful tool to densify oxide ceramics. For nitride-based materials, it has also been utilized for Si₃N₄ ceramics by assisting their grain growth, crack healing, densification etc. [110-114] Zhang applied a glass capsule-HIP sintering to SrTaO₂N powder compacts under 196 MPa of Ar gas pressure at 1200, 1400, and 1600 °C for 3 h. [129] Their products were contaminated with tantalum carbide and Sr₂Ta₂O₇ impurities and partial nitrogen loss from SrTaO₂N occurred, similar to that observed during pressureless sintering under 0.2 MPa of nitrogen. [126,127] In another work, high nitrogen pressure of 190 MPa was directly applied to SrTaO₂N compacts and their sintering behavior was studied. [130] Perovskite phase was maintained up to 1450 °C for additive-free SrTaO₂N and rapid grain growth to larger than $10~\mu m$ was observed. [130] However, partial loss of nitrogen was inevitable even under the pressurized nitrogen, suggesting that nitrogen-deficient phase SrTaO₂N_{0.7} is more stable than SrTaO₂N at high temperature. [130] Densification of SrTaO₂N with mechanical pressure of 7 GPa applied by belt-type high pressure apparatus was also tried by Masubuchi. [131] Neither grain growth nor sintering behavior were observed in the ceramic products and the maximum RD value remained 83%. [131] Surprisingly, SrTaO₂N changed to black semiconductor in this high pressure treatment, indicating that anion defects are formed during this process. [131] The above results suggest that fabrication of oxynitride perovskite ceramics avoiding their partial nitrogen loss is quite difficult due to the mismatch of their high sintering temperature and low thermal stability. #### 1-4-5. Electrical properties of SrTaO₂N thin films Compressively strained SrTaO₂N thin films also showed ferroelectric behavior [51,54], which was observed only in tiny domains in the size of 10 - 100 nm. In addition to such inhomogeneity, they showed electrical leakage during P-E measurements as in the cases of ceramic specimens. [51] The author of this report proposed the *trans*-type anion configuration model by DFT calculation [51], which is not consistent with the *cis*-type local structure confirmed by powder neutron diffraction studies. [83,84] Self-standing bulks such as fully-densified ceramics or single crystals of oxynitride perovskites with high electrical insulation are much more desirable to remove such ambiguity of their electrical properties in previous researches. ## 1-5. Purpose of the present research Polarizations in thin SrTaO₂N ceramic specimens mentioned above could not be saturated because of their poor insulation. A contribution of semiconducting residue even after post-ammonolysis is suspected on such electrical current leakage. Fabrication of self-standing oxynitride ceramics or single crystals containing transition metals will be a valuable work in both aspects of solid state chemistry and industry. In the present research, BaTaO₂N was selected as a main target material expecting similar sinterability and dielectric properties to SrTaO₂N. The main scope of this work is sintering and crystal growth of BaTaO₂N maintaining its stoichiometry to elucidate the presence of ferroelectricity, which has been suggested by structural studies for a decade. This thesis is consisted of eight sections including general introduction (the present chapter), experimental results and discussion part (Chapters 2-7), and conclusion (Chapter 8). First of all, reinvestigation of the crystal structure of BaTaO₂N was performed considering non-centrosymmetric structural model as a candidate. Then, thermal stability and high temperature sintering of BaTaO₂N to form nitrogen-deficient BaTaO₂N_{0.85} ceramics followed by a post-ammonolysis were studied to observe the large relative dielectric constants that do not depend on temperature in BaTaO₂N ceramics. Afterwards thermal behaviors of alkaline-earth metal carbodiimides were investigated to find out that BaCN₂ has a low melting point of 910 °C and its melt is useful for the crystal growth of oxynitride perovskites. The effects of the amount of BaCN2 flux and heating/cooling conditions on the crystal growth were investigated with their microstructural studies. Piezoelectricity of micron-sized BaTaO2N crystals grown in a BaCN₂ flux was studied to observe ferroelectric polarization phase alternation. Such behavior of BaTaO₂N crystals is explained in conjunction with the theory of polar nano regions consisted of anisotropic anion ordering. In addition, BaCN2 was utilized as a sintering additive of BaTaO₂N and its ceramics were obtained avoiding partial decomposition in a spark plasma sintering (SPS) furnace. In the last chapter, comprehensive explanation of the densification processes, ferroelectricity, and crystal structure of BaTaO₂N is given. #### **Chapter 1 References** - [1] "Solid State Chemistry and Its Applications 2nd Ed.", A. R. West (Ed.), John Wiley & Sons, Ltd., United Kingdom (2014), p57. - [2] M. Itoh, "Handbook of Solid State Chemistry", Vol. 1, R. Dronskowski, S. Kikkawa, A. Stein (Eds.), Wiley-VCH, Weinheim, New York (2017). - [3] K. Momma, F. Izumi, "VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data", *J. Appl. Crystallogr.*, 2011, 44, 1272–1276. - [4] K. Kinoshita, A. Yamaji, "Grain-size effects on dielectric properties in barium titanate ceramics", *J. Appl. Phys.*, 1976, 47, 371–373. - [5] A. A. Bokov, Z. -G. Ye, "Recent progress in relaxor ferroelectrics with perovskite structure", *J. Mater. Sci.*, 2006, 41, 31–52. - [6] G. Burns, F. H. Dacol, "Glassy Polarization in Ferroelectric Compounds Pb (Mg_{1/3}Nb_{2/3})O₃ and Pb(Zn_{1/3}Nb_{2/3})O₃", *Solid State Commun.*, 1983, 48, 853–856. - [7] A. M. Pugachev, V. I. Kovalevskii, N. V. Surovtsev, S. Kojima, S. A. Prosandeev, I. P. Raevski, S. I. Raevskaya, "Broken Local Symmetry in Paraelectric BaTiO₃ Proved by Second Harmonic Generation", *Phys. Rev. Lett.*, 2012, 108, 247601. - [8] D. Fu, H. Taniguchi, M. Itoh, S. Koshihara, N. Yamamoto, S. Mori, "Relaxor Pb(Ma_{1/3}Nb_{2/3})O₃: A Ferroelectric with Multiple Inhomogeneities", *Phys. Rev. Lett.*, 2009, 103, 207601. - [9] T. A. Kodenkandath, J. N. Lalena, W. L. Zhou, E. E. Carpenter, C. Sangregorio, A, U. Falster, W. B. Simmons, C. J. O'Connor, J. B. Wiley, "Assembly of Metal-Anion Arrays within a Perovskite Host. Low-Temperature Synthesis of New Layered Copper-Oxyhalides, (CuX)LaNb₂O₇, X = Cl, Br", *J. Am. Chem. Soc.*, 1999, 121, 10743–10746. - [10] C. -Q. Jin, X. -J. Wu, P. Laffez, T. Tatsuki, T. Tamura, S. Adachi, H. Yamauchi, N. Koshizuka, S. Tanaka, "Superconductivity at 80 K in (Sr,Ca)₃Cu₂O₄+δCl_{2-y} induced by apical oxygen doping", *Nature*, 1995, 375, 301–303. - [11] C. Perrin, S. Cordier, S. Ihmaine, M. Sergent, "Recent investigations on the $(Me_6L_{18})^n$ unit based halides and oxyhalides (Me \square Nb, Ta and L \square Cl, Br, O) with rare earths as countercations: Electronic and steric effects", *J. Alloys Comp.*, 1995, 229, 123–133. - [12] S. -T. Hong, A. W. Sleight, "Crystal Structure of New 10-Layer Perovskite-Related Oxyhalide Ba₅Ru_{1.6}W_{0.4}Cl₂O₉", *J. Solid State Chem.*, 1997, 132, 407–410. - [13] I. O. Troyanchuk, N. V. Kasper, O. S. Mantytskaya, E. F. Shapovalova, "HIGH-PRESSURE SYNTHESIS OF SOME PEROVSKITE-LIKE COMPOUNDS WITH A MIXED ANION TYPE", *Mater. Res. Bull.*, 1995, 30, 421–425. - [14] D. Pauwels, A. Demourgues, H. Laronze, P. Gravereau, F. Guillen, O. Isnard, A. Tressaud, "Structural features of new rare earth-based mixed anions (O, S, F) compounds: relationships between optical absorption and rare earth environment", *Solid State Sci.*, 2002, 4, 1471–1479. - [15] B. L. Chamberland, "A NEW OXYFLUORIDE PEROVSKITE, KTiO₂F", *Mater. Res. Bull.*, 1971, 6, 311–316. - [16] M. T. Vandenborre, E. Husson, J. L. Fourquet, "Etude spectroscopique par absorption infra-rouge et diffusion Raman de composes oxyfluores de structure pyrochlore ANb₂O₅F (A = Rb, Cs, Tl) et RbTa₂O₅F", *Mater. Res. Bull.*, 1982, 17, 1359–1364. - [17] J. W. Fergus, H. -P. Chen, "Structure and Conductivity of Tetragonal and Rhombohedral Lanthanum Oxyfluoride Compounds", *J. Electrochem. Soc.*, 2000, 147, 4696–4704. - [18] J. Yang, J. Liang, G. Rao, Y. Qin, Y. Shi, W. Tang, "Synthesis and superconductivity of
Nd_{0.7}Sr_{1.3}Cu(O,F)_{4- δ} with $T_c = 44$ K", *Physica C*, 1996, 270, 35–40. - [19] G. S. Case, A. L. Hector, W. Levason, R. L. Needs, M. F. Thomas, M. T. Weller, "Syntheses, powder neutron diffraction structures and Mossbauer studies of some complex iron oxyfluorides: Sr₃Fe₂O₆F_{0.87}, Sr₂FeO₃F and Ba₂InFeO₅F_{0.68}", *J. Mater. Chem.* 1999, 9, 2821–2827. - [20] F. Galasso, W. Darby, "PREPARATION AND PROPERTIES OF Sr₂FeO₃F", *J. Phys. Chem.*, 1963, 67, 1451–1453. - [21] K. Ueda, H. Hosono, "Band gap engineering, band edge emission, and p-type conductivity in wide-gap LaCuOS_{1-x}Se $_x$ oxychalcogenides", J. Appl. Phys., 2002, 91, 4768–4770. - [22] A. L. Allred, "Electronegativity values from thermochemical data", *J. Inorg. Nucl. Chem.*, 1961, 17, 215–221. - [23] R. D. Shannon, "Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides", *Acta Cryst.*, 1976, A32, 751–767. - [24] S. G. Ebbinghaus, H. -P. Abicht, R. Dronskowski, T. Muller, A. Reller, A. Weidenkaff, "Perovskite-related oxynitrides—recent developments in synthesis, characterization and investigations of physical properties.", *Prog. Solid State Chem.*, 2009, 37, 173–205. - [25] K. Maeda, T. Tanaka, M. Hara, N. Saito, Y. Inoue, H. Kobayashi, K. Domen, "GaN:ZnO Solid Solution as a Photocatalyst for Visible-Light-Driven Overall Water Splitting", *J. Am. Chem. Soc.*, 2005, 127, 8286–8287. - [26] K. Maeda, K. Teramura, D. Lu, T. Takata, N. Saito, Y. Inoue, K. Domen, "Photocatalyst releasing hydrogen from water", *Nature*, 2006, 440, 295. - [27] C. Pan, T. Takata, M. Nakabayashi, T. Matsumoto, N. Shibata, Y. Ikuhara, K. Domen, "A Complex Perovskite-Type Oxynitride: The First Photocatalyst for Water Splitting Operable at up to 600 nm", *Angew. Chem. Int. Ed.*, 2015, 54, 2955–2959. - [28] K. Maeda, "CO₂ reduction using oxynitrides and nitrides under visible light", *Prog. Solid State Chem.*, 2018, 51, 52–62. - [29] Y. Lee, H. Terashima, Y. Shimodaira, K. Teramura, M. Hara, H. Kobayashi, K. Domen, M. Yashima, "Zinc Germanium Oxynitride as a Photocatalyst for Overall Water Solitting under Visible Light", *Phys. Chem. C*, 2007, 111, 1042–1048. - [30] S. Nakamura, T. Mukai, M. Senoh, "In situ monitoring and Hall measurements of GaN grown with GaN buffer layers", J. Appl. Phys., 1992, 71, 5543–5549. - [31] J. I. Pankove, J. E. Berkeyheiser, E. A. Miller, "Properties of Zn-doped GaN. I. Photoluminescence", *J. Appl. Phys.*, 1974, 45, 1280–1286. - [32] S. Nakamura, T. Mukai, M. Senoh, "Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes", *Appl. Phys. Lett.*, 1994, 64, 1687–1689. - [33] I. Akasaki, "Nitride Semiconductors, –Evolution and Prospect–", *J. Cryst. Soc. Jpn.*, 2003, 30, 44–53. - [34] J. A. Sanjurjo, E. Lopez-Cruz, P. Vogl, M. Cardona, "Dependence on volume of the phonon frequencies and their effective charges of several III-V semiconductors", *Phys. Rev. B*, 1973, 28, 4579–4584. - [35] G. A. Slack, "NONMETALLIC CRYSTALS WITH HIGH THERMAL CONDUCTIVITY", *J. Phys. Chem. Sol.*, 1973, 34, 321–335. - [36] C. O. Dugger, "THE SYNTHESIS OF ALMINUM NITRIDE SINGLE CRYSTALS", *Mat. Res. Bull.*, 1974, 9, 331–336. - [37] H. P. Maruska, J. J. Tietjen, "THE PREPARATION AND PROPERTIES OF VAPOR-DEPOSITED SINGLE-CRYSTAL-LIKE GaN", *Appl. Phys. Lett.*, 1969, 15, 327–329. - [38] M. Fukuhara, T. Mitsuda, Y. Katsumura, A. Fukawa, "Sinterability and properties of $Ti(N_{1-x}, O_x)$ -(V, Ta)C-Ni sintered alloys having a golden colour", *J. Mat. Sci.*, 1985, 20, 710–717. - [39] T. Mills, "THERMODYNAMIC RELATIONS IN THE CHROMIUM- NITROGEN SYSTEM", *J. Less Common Met.*, 1972, 26, 223–234. - [40] T. Mills, "THE SOLUBILITY OF NITROGEN IN SOLID CHROMIUM", *J. Less Common Met.*, 1971, 23, 317–324. - [41] T. Mills, "PRESSURE-TEMPERATURE RELATIONS IN THE CHROMIUM-NITROGEN SYSTEM", J. Less Common Met., 1970, 22, 373–381. - [42] R. H. Wentorf, Jr., "Cubic Form of Boron Nitride", J. Chem. Phys., 1957, 26, 956. - [43] S. Nakano, H. Ikawa, O. Fukunaga, "Synthesis of Cubic Boron Nitride by Decomposition of Magnesium Boron Nitride", *J. Am. Ceram. Soc.*, 1992, 75, 240–243. - [44] S. Nakano, H. Ikawa, O. Fukunaga, "Synthesis of cubic boron nitride using Li₃BN₂, Sr₃B₂N₄, and Ca₃B₂N₄ as solvent–catalysis", *Diamond and Related Materials*, 1993, 3, 75–82. - [45] T. Takeda, R. Xie, T. Suehiro, N. Hirosaki, "Nitride and oxynitride phosphors for white LEDs: Synthesis, new phosphor discovery, crystal structure", *Prog. Solid State Chem.*, 2018, 51, 41–51. - [46] R. -J. Xie, N. Hirosaki, "Silicon-based oxynitride and nitride phosphors for white LEDs-A review", *Sci. Technol. Adv. Mater.*, 2007, 8, 588–600. - [47] K. Takahashi, R. -J. Xie, N. Hirosaki, "Toward Higher Color Purity and Narrower Emission Band β-sialon:Eu²⁺ by Reducing the Oxygen Concentration", *Electrochem. Solid State Lett.*, 2011, 14, E38–E40. - [48] M. Jansen, H. P. Letschert, "Inorganic yellow-red pigments without toxic metals", *Nature*, 2000, 404, 980–982. - [49] W. A. Harrison, "Electronic Structure and the Properties of Solids", Dover Publications (1980), p50. - [50] R. Aguiar, D. Logvinovich, A. Weidenkaff, A. Rachel, A. Reller, S. G. Ebbinghaus, "The vast colour spectrum of ternary metal oxyniride pigments", *Dyes Pigment.*, 2008, 76, 70–75. - [51] D. Oka. Y. Hirose, T. Fukumura, K. Sasa, S. Ishii, H. Matsuzaki, Y. Sato, Y. Ikuhara, T. Hasegawa, H. Kamisaka, "Possible ferroelectricity in perovskite oxynitride SrTaO₂N epitaxial thin films", *Sci. Rep.*, 2014, 4, 4987–4992. - [52] D. Oka, Y. Hirose, T. Fukumura, T. Hasegawa, "Heteroepitaxial Growth of Perovskite CaTaO₂N Thin Films by Nitrogen Plasma-Assisted Pulsed Laser Deposition", *Cryst. Growth Des.*, 2014, 14, 87–90. - [53] Y. -I. Kim, W. Si, P. M. Woodward, E. Sutter, S. Park, T. Vogt, "Epitaxial Thin-Film Deposition and Dielectric Properties of the Perovskite Oxynitride BaTaO₂N", *Chem. Mater.*, 2007, 19, 618–623. - [54] C. L. Paven, R. Benzerga, A. Ferri, D. Fasquelle, V. Laur, L. L. Gendre, F. Marlec, F. Tessier, F. Cheviré, R. Desfeux, S. Saitzek, X. Castel, A. Sharaiha, "Ferroelectric and dielectric study of strontium tantalum based perovskite oxynitride films deposited by reactive rf magnetron sputtering", *Mat. Res. Bull.*, 2017, 96, 126–132. - [55] S. Jacq, C. L. Paven, L. L. Gendre, R. Benzerga, F. Cheviré, F. Tessier, A. Sharaiha, "Deposition and dielectric characterization of strontium and tantalum-based oxide and - oxynitride perovskite thin films", Solid State Sci., 2016, 54, 22–29. - [56] F. Pors, R. Marchand, Y. Laurent, "Structural study of BaTaO₂N and BaNbO₂N oxynitrided perovskites", *Mat. Res. Bull.*, 1988, 23, 1447–1450. - [57] S. J. Clarke, K. A. Hardstone, C. W. Michie, M. J. Rosseinski, "High-temperature synthesis and structures of perovskite and n=1 Ruddlesden-Popper tantalum oxynitrides", *Chem. Mater.*, 2002, 14, 2664–2669. - [58] R. Marchand, F. Pors, Y. Laurent, "NOVELLES PEROVSKITES OXYNITRURES DE STOECHIOMETRIE ABO₂N (A = LANTHANIDE, B = Ti) ET ABON₂ (A = LANTHANIDE, B = Ta ou Nb)", *Ann. Chim. Fr.*, 1991, 16, 553–560. - [59] D. Habu, Y. Masubuchi, S. Torii, T. Kamiyama, S. Kikkawa, "Crystal structure study of dielectric oxynitride perovskites $La_{1-x}Sr_xTiO_{2+x}N_{1-x}$ (x = 0, 0.2)", *J. Solid State Chem.*, 2016, 237, 254–257. - [60] G. Tobías, D. -B. Porter, O. I. Lebedev, G. V. Tendeloo, J. R. Carvajal, A. Fuertes, "Anion Ordering and Defect Structure in Ruddlesden-Popper Strontium Niobium Oxynitrides", *Inorg. Chem.*, 2004, 43, 8010–8017. - [61] Tobías Rossell, Gerard; Fuertes Miquel, Amparo, dir.; Canadell Casanova, Enric, dir. Nuevos oxinitruros laminares de niobio y tántalo y sistemas relacionados : síntesis, cristaloquímica y estructura electrónica. Bellaterra: Universitat Autònoma de Barcelona, 2004. ISBN 8468891444. Tesi doctoral Universitat Autònoma de Barcelona, Facultat de Ciències, Departament de Química, 2004 https://ddd.uab.cat/record/37099 [Checked: 5 february 2020]. - [62] Y. Masubuchi, T. Hata, T. Motohashi, S. Kikkawa, "Synthesis and crystal structure of K₂NiF₄-type novel Gd_{1+x}Ca_{1-x}AlO_{4-x}N_x oxynitrides", *J. Alloy Compds.*, 2014, 582, 823–826. - [63] R. Marchand, Y. Laurent, J. Guyader, P. L'Haridon, P. Verdier, "Nitrides and Oxynitrides: Preparation, Crystal Chemistry and Properties", *J. Eur. Ceram. Soc.*, 1991, 8, 197–213. - [64] F. Chevire, A. Pallu, E. Ray, F. Tessier, "Characterization of Nd₂AlO₃N and Sm₂AlO₃N oxynitrides synthesized by carbothermal reduction and nitridation", *J. Alloy Compds.*, 2011, 509, 5839–5842. - [65] G. Liu, "The synthesis, structure and characterization of SrMoO_{2.6} 15 No₄", *J. Alloy Compds.*, 1992, 187, 145–156. - [66] I. D. Fawcett, K. V. Ramanujachary, M. Greenblatt, "SYNTHESIS, STRUCTURE AND PROPERTIES OF THE OXYNITRIDES SrWO₂N AND SrMoO_{2.5}N_{0.5}", *Mat. Res. Bull.*, 1997, 32, 1565–1570. - [67] J. Oró-Solé, L. Clark, W. Bonin, J. P. Attfield, A. Fuertes, "Anion-ordered chains in - a d¹ perovskite oxynitride: NdVO₂N", Chem. Comm., 2013, 49, 2430–2432. - [68] T. Bräuniger, T. Müller, A. Pampel, H. -P. Abicht, "Study of Oxygen-Nitrogen Replacement in BaTiO₃ by ¹⁴N Solid-State Nuclear Magnetic Resonance", *Chem. Mater.*, 2005, 17, 4114–4117. - [69] D. Chen, D. Habu, Y. Masusbuchi, S. Torii, T. Kamiyama, S. Kikkawa, "Partial nitrogen loss in SrTaO₂N and LaTiO₂N oxynitride perovskites", *Solid State Sci.*, 2016, 54, 2–6. - [70] T. Motohashi, Y. Hamade, Y. Masubuchi, T. Takeda, K. Murai, A. Yoshiasa, S. Kikkawa, "Structural phase transition in the perovskite-type tantalum oxynitride, Ca_{1-x}Eu_xTa(O,N)₃", *Mat. Res. Bull.*, 2009, 44, 1899–1905. - [71] M. R. Brophy, S. M. Pilgrim, W. A. Schulze, "Synthesis of BaTaO₂N Powders Utilizing NH₃ Decomposition", *J. Am. Ceram. Soc.*, 2011, 94, 4263–4268. - [72] S. J. Clarke, B. P. Guinot, C. W. Michie, M. J. C. Calmont, M. J. Rosseinsky, "Oxynitride Perovskites: Synthesis and
Structures of LaZrO₂N, NdTiO₂N, and LaTiO₂N and Comparison with Oxide Perovskites", *Chem. Mater.*, 2002, 14, 288–297. - [73] P. Antoine, R. Assabaa, P. L'Haridon, R. Marchand, Y. Laurent, "Transport Properties of the New Perovskite-type LaVO_{3-x}N_x Oxynitrides", *Mat. Sci. Eng.*, 1989, B5, 43–46. - [74] P. Antoine, R. Marchand, Y. Laurent, "ON THE ELECTRICAL PROPERTIES OF THE PEROVSKITES LnWO_xN_{3-x}", *Mat. Res. Bull.*, 1988, 23, 953–957. - [75] S. -K. Sun, T. Motohashi, Y. Masubuchi, S. Kikkawa, "Direct Synthesis of SrTaO₂N from SrCO₃/Ta₃N₅ involving CO evolution", *J. Eur. Ceram. Soc.*, 2014, 34, 4451–4455. - [76] S. -K. Sun, Y. Masubuchi, T. Motohashi, S. Kikkawa, "Direct Synthesis of nearly single-phase BaTaO₂N and CaTaO₂N powders", *J. Eur. Ceram. Soc.*, 2015, 35, 3289–3294. - [77] Y. Masubuchi, M. Tadaki, S. Kikkawa, "Synthesis of the Perovskite SrTaO₂N Using C₃N₄ for Both Reduction and Nitridation", *Chem. Lett.*, 2018, 47, 31–33. - [78] Y. -I. Kim, P. M. Woodward, C. -W. Tai, "Characterization of the Structural, Optical, and Dielectric Properties of Oxynitride Perovskites $AMO_2N(A = Ba, Sr, Ca; M = Ta, Nb)$ ", *Chem. Mater.*, 2004, 16, 1267–1276. - [79] K. Page, M. W. Stoltzfus, Y. -I. Kim, T. Proffen, P. M. Woodward, A. K. Cheetham, R. Seshadri, "Local atomic ordering in BaTaO₂N studied by neutron pair distribution function analysis and density function theory", *Chem. Mater.*, 2007, 19, 4037–4042. - [80] R. L. Withers, Y. Liu, P. M. Woodward, Y. I. Kim, "Structurally frustrated polar nanoregions in BaTaO₂N and the relationship between its high dielectric permittivity and that of BaTiO₃", *App. Phys. Lett.*, 2008, 92, 102907. - [81] B. Ravel, Y. I. Kim, P. M. Woodward, C. M. Fang, "Role of local disorder in the - dielectric response of BaTaO₂N", Phys. Rev. B, 2006, 73, 184121. - [82] V. F. Sears, "Neutron scattering lengths and cross sections", *Neutron News*, 1992, 3, 26–37. - [83] Y. -R. Zhang, T. Motohashi, Y. Masubuchi, S. Kikkawa, "Local anionic ordering and anisotropic displacement in dielectric perovskite SrTaO₂N", *J. Ceram. Soc. Jpn.*, 2011, 119, 581–586. - [84] M. Yang, J. Oró-Solé, J. A. Rodgers, A. B. Jorge, A. Fuertes, J. P. Attfield, "Anion order in perovskite oxynitrides", *Nat. Chem.*, 2011, 3, 47–52. - [85] J. P. Attfield, "Principles and Applications of Anion Order in Solid Oxynitrides", *Cryst. Growth Des.*, 2013, 13, 4623–4629. - [86] S. H. Porter, X. Huang, P. M. Woodward, "Study of Anion Order/Disorder in RTaN₂O (R = La, Ce, Pr) Perovskite Nitride Oxides", *Cryst. Growth Des.*, 2014, 14, 117–125. - [87] K. Tatsumi, R. Hoffmann, "Bent Cis d⁰ MoO₂²⁺ vs. Linear Trans d⁰f⁰ UO₂²⁺: A Significant Role for Nonvalence 6p Orbitals in Uranyl", Inorg. Chem., 1980, 19, 2656–2658. - [88] Y. Hinuma, H. Moriwake, Y. Zhang, T. Motohashi, S. Kikkawa, I. Tanaka, "First principles study on relaxor-type ferroelectric behavior without chemical inhomogeneity in BaTaO₂N and SrTaO₂N", *Chem. Mater.*, 2012, 24, 4343–4349. - [89] H. Wolff, R. Dronskowski, "First-Principles and Molecular-Dynamics Study of Structure and Bonding in Perovskite-Type Oxynitrides ABO_2N (A = Ca, Sr, Ba; B = Ta, Nb)", J. Comput. Chem., 2008, 29, 2260–2267. - [90] Z. Shen, M. Nygren, "Microstructural Prototyping of Ceramics by Kinetic Engineering: Applications of Spark Plasma Sintering", *Chem. Rec.*, 2005, 5, 173–184. - [91] "Sintering of Ceramics", M. N. Rahaman (Ed.), CRC Press, Florida (2008) pp. 46, 67. - [92] R. M. German, P. Suri, S. J. Park, "Review: liquid phase sintering", *J. Mater. Sci.*, 2009, 44, 1–39. - [93] G. R. Terwilliger, F.F. Lange, "Pressureless sintering of Si₃N₄", *J. Mat. Sci.*, 1975, 10, 1169–1174. - [94] E. B. Pickens, R. W. Trice, "Pressureless sintering of silicon nitride/boron nitride laminate composites", *J. Mater. Sci.*, 2005, 40, 2101–2103. - [95] F. L. Riley, "Silicon Nitride and Related Materials", J. Am. Ceram. Soc., 2000, 83, 245–265. - [96] E. A. Maguire, T. M. Hartnett, R. L. Gentilman, "Method of Producing Aluminum Oxynitride Having Improved Optical Characteristics", United States Patent Number - 4686070 (1984). - [97] R. L. Gentilman, E. A. Maguire, L. E. Dolhert, "Transparent Aluminum Oxynitride and Method of Manufacture", United States Patent Number 4520116 (1985). - [98] I. U. Kim, V. L. Richards, "High-Temperature Electrical Conductivity of Aluminum Oxynitride Spinel", *J. Am. Ceram. Soc.*, 1985, 68, C210–212. - [99] N. D. Corbin, "Aluminum Oxynitride Spinel: A Review", J. Eur. Ceram. Soc., 1989, 5, 143–154. - [100] J. W. McCauley, P. Pater, M. Chen, G. Glide, E. Strassburger, B. Paliwal, K. T. Ramesh, D. P. Dandekar, "AlON: A brief history of its emergence and evolution", *J. Eur. Ceram. Soc.*, 2009, 29, 223–236. - [101] G. X. Cao, R. Metselaar, "α'-Sialon Ceramics: A Review", *Chem. Mater.*, 1991, 3, 242–252. - [102] S. Bandyopadhyay, G. Rixecker, F. Aldinger, S. Pal, K. Mukherjee, H. S. Maiti, "Effect of Reaction Parameters on γ -AlON Formation from Al₂O₃ and AlN", *J. Am. Ceram. Soc.*, 2002, 85, 1010–1012. - [103] K. Komeya, H. Inoue, A. Tsuge, "Effect of Various Additives on Sintering of Aluminum Nitride", *Yogyo-Kyokai-Shi*, 1981, 89, 330–336. - [104] J. Cheng, D. Agrawal, R. Roy, "Microwave synthesis of aluminum oxynitride", *J. Mat., Sci. Lett.*, 1999, 18, 1989–1990. - [105] R. W. Trice, J. W. Halloran, "Investigation of the Physical and Mechanical Properties of Hot-Pressed Boron Nitride/Oxide Ceramic Composites", *J. Am. Ceram. Soc.*, 1999, 82, 2563–2565. - [106] M. Mitomo, "Pressure sintering of Si₃N₄", J. Mater. Sci., 1976, 11, 1103–1107. - [107] G. E. Gazza, "Hot-Pressed Si₃N₄", J. Am. Ceram. Soc., 1973, 56, 662. - [108] G. G. Deeley, J. M. Herbert, N. C. Moore, "DENSE SILICON NITRIDE", *Powder Metallurgy*, 1961, 4, 145–151. - [109] X. Su, P. Wang, W. Chen, B. Zhu, Y. Cheng, D. Yan, "Translucent α -Sialon Ceramics by Hot Pressing", *J. Am. Ceram. Soc.*, 2004, 87, 730–732. - [110] H. F. Priest, G. L. Priest, G. E. Gazza, "Sintering of Si₃N₄ Under High Nitrogen Pressure", *J. Am. Ceram. Soc.*, 1977, 60, 81. - [111] I. Iturriza, J. Echeberria, I. Gutierrez, F. Castro, "Densification of silicon nitride ceramics under sinter-HIP conditions", *J. Mat. Sci.*, 1990, 25, 2539–2548. - [112] T. Ekstöm, P. O. Olsson, "β-Sialon Ceramics Prepared at 1700 °C by Hot Isostatic Pressing", *J. Am. Ceram. Soc.*, 1989, 72, 1722–1724. - [113] T. Ekstöm, P. O. Olsson, "O'-Sialon Ceramics Prepared by Hot Isostatic Pressing", J. Eur. Ceram. Soc., 1993, 12, 165–176. - [114] I. Tanaka, G. Pezzotti, T. Okamoto, Y. Miyamoto, M. Koizumi, "Hot Isostatic Press Sintering and Properties of Silicon Nitride without Additives", *J. Am. Ceram. Soc.*, 1989, 72, 1656–1560. - [115] M. J. Li, L. M. Zhang, Q. Shen, T. Li, M. Q. Yu, "Microstructure and properties of spark plasma sintered AlN ceramics", *J. Mater. Sci.*, 2006, 41, 7934–7938. - [116] D. Salamon, Z. Shen, P. Pavol, Sajgalik, "Rapid formation of α-sialon during spark plasma sintering: Its origin and implications", *J. Eur. Ceram. Soc.*, 2007, 27, 2541–2547. [117] H. Nakajima, M. Koiwa, "Duffusion in Titanium", *ISIJ International*, 1991, 31, 757–766. - [118] K. Hirao, T. Nagaoka, M. E. Brito, S. Kanzaki, "Microstructure Control of Silicon Nitride by Seeding with Rodlike β -Silicon Nitride Particles", *J. Am. Ceram. Soc.*, 1994, 77, 1857–1862. - [119] A. Tsuge, K. Nishida, M. Komatsu, "Effect of Crystallizing the Grain-Boundary Glass Phase of the High-Temperature Strength of Hot-Pressed Si₃N₄ Containing Y₂O₃", *J. Am. Ceram. Soc.*, 1975, 58, 323–326. - [120] A. V. Virkar, "Thermodynamic and Kinetic Effects of Oxygen Removal on the Thermal Conductivity of Aluminum Nitride", *J. Am. Ceram. Soc.*, 1989, 72, 2031–2042. - [121] D. Klimm, "Handbook of Solid State Chemistry", Vol. 2, R. Dronskowski, S. Kikkawa, A. Stein (Eds.), Wiley-VCH, Weinheim, New York (2017). - [122] H. Yamane, M. Shimada, S. J. Clarke, F. J. DiSalvo, "Preparation of GaN Single Crystals Using a Na Flux", *Chem. Mater.*, 1997, 9, 413–416. - [123] H. Yamane, F. J. DiSalvo, "Sodium flux synthesis of nitrides", *Prog. Solid State Chem.*, 2018, 51, 27–40. - [124] G. Wang, J. Jian, W. Yuan, X. Chen, "Growth of GaN Single Crystals Using Ca-Li₃N Composite Flux", *Cryst. Growth Des.*, 2006, 6, 1157–1160. - [125] M. Kagamida, H. Kanda, M. Akaishi, A. Nukui, T. Osawa, S. Yamaok, "Crystal growth of cubic boron nitride using Li₃BN₂ solvent under high temperature and pressure", *J. Cryst. Growth*, 1989, 94, 261–269. - [126] Y. -R. Zhang, T. Motohashi, Y. Masubuchi, S. Kikkawa, "Sintering and Dielectric Properties of Perovskite SrTaO₂N Ceramics" *J. Eur. Ceram. Soc.*, 2012, 32, 1269–1274. [127] S. -K. Sun, Y. -R. Zhang, Y. Masubuchi, T. Motohashi, S. Kikkawa, "Additive sintering, postannealing, and dielectric properties of SrTaO₂N", *J. Am. Ceram. Soc.*, 2014, - [128] S. Kikkawa, S. -K. Sun, Y. Masubuchi, Y. Nagamine, T. Shibahara, "Ferroelectric response induced by *cis*-type anion ordering in SrTaO₂N oxynitride perovskite", *Chem. Mater.*, 2016, 28, 1312–1317. 97, 1023-1027. - [129] Y. -R. Zhang, Y. Masubuchi, T. Motohashi, S. Kikkawa, K. Hirota, "Hot isostatic press sintering and dielectric properties of SrTaO₂N ceramics", *Ceram. Int.*, 2013, 39, 3377–3380. - [130] A. Hosono, Y. Masubuchi, S. Kikkawa, "Sintering behavior of dielectric SrTaO₂N under high pressure of nitrogen", *Ceram. Int.*, 2017, 43, 2737–2742. - [131] Y. Masubuchi, F. Kawamura, T. Taniguchi, S. Kikkawa, "High pressure densification and dielectric properties of perovskite-type oxynitride SrTaO₂N", *J. Eur. Ceram. Soc.*, 2015, 35, 1191–1197. # Chapter 2 ## Reinvestigation of the Crystal Structure of BaTaO₂N #### 2-1. Introduction Space group of BaTaO₂N has been reported to be centrosymmetric $Pm\bar{3}m$ (a =0.41128 nm) based on powder neutron diffraction. [1,2] On the other hand, some deviations from centrosymmetric structure to form one-dimensional PNRs were suggested by TEM, EXAFS, and neutron pair
distribution functions. [3-5] Furthermore, DFT calculations in combination with molecular dynamic calculations indicated that cistype anisotropic anion configuration in TaO₄N₂ octahedra are favored in BaTaO₂N. [6] In such structural model, three-dimensional polar clockwise and anti-clockwise coil-like helical Ta-N-Ta-N chains in various directions and lengths are believed to behave as PNRs to originate relaxor-like ferroelectric properties. [6] Another first principle study indicated that crystal structure with *Pnma* space group is favorable among $Pm\bar{3}m$, I4/mcm, and Pnma for BaTaO₂N and furtherly optimized structure is non-centrosymmetric orthorhombic *Pmc*2₁ with *cis*-type nitrogen configuration. [7] By summing up the above reports, tiny regions with non-centrosymmetric structure composed of polar Ta-N-Ta-N chains may be dispersed over $Pm\bar{3}m$ average structure in BaTaO₂N. Analysis of a powder diffraction profile of BaTaO₂N considering the presence of *Pmc*2₁ region will provide an important suggestion regarding the presence of non-centrosymmetric parts in average centrosymmetric structure. In the present chapter, secondary harmonic generation (SHG) measurement was conducted to obtain several clues indicating the breaking of centrosymmetry, which is consistent with the presence of ferroelectricity. Additionally, Rietveld fitting of the powder neutron diffraction profile of BaTaO₂N was also performed based on both of $Pm\overline{3}m$ and $Pmc2_1$ structural models. ## 2-2. Experimental Reddish powder of BaTaO₂N was obtained by the ammonolysis of the mixture of BaCO₃ and Ta₂O₅ (99.9%, FUJIFILM Wako Pure Chemical) with a molar ratio of 1.03: 1 as mentioned in the previous publication. [8] Both of the starting materials were mixed in an agate mortar with an ethanol. The mixture on an alumina boat was heated under flowing ammonia (99.9%, Sumitomo Seika) with a total duration at 930 °C of 60 h. Starting with slightly Ba-rich composition was effective to avoid the formation of Ta₃N₅ impurity probably due to a slight loss of BaO by the reaction with alumina. Chemical composition was studied with X-ray fluorescent spectroscopy (XRF, SEA6000VX-SII, Hitachi) for Ba and Ta molar ratios and the combustion analysis for oxygen and nitrogen contents (EMGA-620W, Horiba) using Gd₂O₃ (99.9%, FUJIFILM Wako Pure Chemical) after calcination at 1000 $^{\circ}$ C and Si₃N₄ (JCRM R004, Ceramic Society of Japan) as references. The crystalline phase and composition of the synthesized powder were confirmed to be pure BaTaO₂N. A spectroscopic analysis of secondary harmonic generation (SHG) by the BaTaO₂N aggregates was performed to elucidate the presence of a non-centrosymmetric structure. The excitation source was an acousto-optically Q-switched Nd:YAG laser (T40-X30S-106Q, Spectra Physics) with a 1064 nm wavelength, an average power of 0.6 mW and a pulse width of 30 ns at a repetition rate of 4 kHz. The laser beam was focused by a lens with a 150 mm focal length on the surface of an aggregate of as-prepared BaTaO₂N powder or microcrystals (prepared with 46 mol% BaCN₂ flux by keeping at 910 °C for 30 min and subsequent cooling at 1.8 °C/h. More detail is explained in the crystal growth section of Chapter 5). This technique purposely used a low excitation power to avoid thermal decomposition of the BaTaO₂N during irradiation and to allow data accumulation over a long time span of 4 h. Powder neutron diffraction was performed on approximately 10 g of BaTaO₂N powder obtained by the ammonolysis. Neutron diffraction data was obtained at beamline BL20 (iMATERIA) at the Japan Proton Accelerator Research Complex (J-PARC) and analyzed using the Z-Rietveld software (Windows Ver. 1.0.2.0). Preliminary assessment of XRD profile fitting was conducted for the data obtained with a Cu K α radiation over an angular range $2\theta = 10 - 120^{\circ}$ with a scanning speed of 0.2° /min using either structural models of $Pm\overline{3}m$ or $Pmc2_1$ space groups. [1,7,9] Lattice parameters were calculated using a Rietveld program RIETAN-FP. [10] #### 2-3. Results and discussion SHG assessments were performed for BaTaO₂N aggregates to confirm the presence of non-centrosymmetric structure. In these trials, a 1064 nm laser beam with a diameter of approximately 100 μ m was irradiated to the surface of the BaTaO₂N powder at 30 °C, to avoid the partial loss of nitrogen from the crystals as a result of laser heating. In response, a weak secondary harmonic wave at 532 nm was observed (**Fig. 2-1(a)**), confirming the presence of non-centrosymmetric regions in the BaTaO₂N crystals. This result demonstrates that local symmetry was disturbed by the co-presence of oxygen and nitrogen atoms in the reported centrosymmetric $Pm\overline{3}m$ crystal structure. SHG was observed on both of the as-prepared BaTaO₂N powder and microcrystals. Preliminary assessments of the powder XRD profile fitting of BaTaO₂N are performed using Rietveld refinement. Two types of structural models of BaTaO₂N perovskite were proposed according to the powder neutron diffraction and DFT **Fig. 2-1.** SHG spectra acquired from **(a)** BaTaO₂N microcrystal aggregate and **(b)** reference amorphous silicon dioxide powder at room temperature. structure optimizations. [1,7] One is centrosymmetric, cubic $Pm\overline{3}m$ model [1] and another one is non-centrosymmetric orthorhombic $Pmc2_1$ space group model with the cis-type nitrogen configurations in TaO₄N₂ octahedra. [7] In the present study, structural model of $Pmc2_1$ phase was constructed by using a data for CaTaO₂N with $Pmc2_1$ space group suggested in Ref. 9. Each structure model and structural data are presented in **Fig. 2-2** and **Table 2-1**, respectively. It should be noted that only the lattice parameters were refined in this process. Neutron diffraction profile fitting was subsequently performed assuming that the BaTaO₂N powder is a mixture of $Pm\overline{3}m$ and $Pmc2_1$ phases. The weight ratios of these two phases were changed to improve the fitting convergence. The variance values (s^2) against the phase ratios are plotted in **Fig. 2-3** and the minimum value was Table 2-1. Structural parameters of BaTaO₂N calculated with powder XRD profile. | Space group | $Pm\overline{3}m$ | | | | | |-----------------------|-------------------|---------|---------|---------|-------| | a / Å | 4.11144(10) | | | | | | $lpha$ / $^{\circ}$ | 90 | | | | | | $V/\mathrm{\AA}^3$ | 69.4995(28) | | | | | | Z | 1 | | | | | | R_{wp} / % | 8.6 | | | | | | S | 1.3 | | | | | | Atom | Site | x | У | Z | Occ. | | Ba | 1 <i>a</i> | 0.00000 | 0.00000 | 0.00000 | 1.000 | | Ta | 1 <i>b</i> | 0.50000 | 0.50000 | 0.50000 | 1.000 | | O | 3 <i>c</i> | 0.50000 | 0.50000 | 0.00000 | 0.667 | | N | 3 <i>c</i> | 0.50000 | 0.50000 | 0.00000 | 0.333 | | Space group | $Pmc2_1$ | | | | | | a / Å | 8.21719(30) | | | | | | b / Å | 5.81897(23) | | | | | | c / Å | 5.81404(29) | | | | | | α / $^{\circ}$ | 90 | | | | | | β / $^{\circ}$ | 90 | | | | | | γ/° | 90 | | | | | | V/ Å ³ | 278.0017(204) | | | | | | Z | 4 | | | | | | R_{wp} | 7.8 | | | | | | S | 1.2 | | | | | | Atom | Site | X | У | z | Occ. | | Ba | 2 <i>a</i> | 0.00000 | 0.25010 | 0.50000 | 1.000 | | Ba | 2b | 0.50000 | 0.75000 | 1.00000 | 1.000 | | Ta | 4c | 0.75000 | 0.75000 | 0.50000 | 1.000 | | O | 2 <i>a</i> | 0.00000 | 0.75000 | 0.50000 | 1.000 | | O | 2b | 0.50000 | 0.25000 | 0.00000 | 1.000 | | O | 4 <i>c</i> | 0.75000 | 0.50000 | 0.25000 | 1.000 | | N | 4 <i>c</i> | 0.75000 | 1.00000 | 0.25000 | 1.000 | Fig. 2-2. Rietveld profile fitting results of powder XRD data of BaTaO₂N calculated with (a) $Pm\overline{3}m$ and (b) $Pmc2_1$ space group with cis-type anion configuration models. Red dots, green line, green vertical bars, and blue lines are observed and calculated intensity, Bragg positions, and the residual errors, respectively. The insets are crystal structure models drawn using the VESTA software package. [11] Brown, green, blue, and purple balls indicate Ba, Ta, O, and N, respectively. **Fig. 2-3.** Variance values (s^2) of the profile fitting as functions of the weight ratio of BaTaO₂N with $Pmc2_1$ space group. The content of $Pmc2_1$ phase was changed from 0 to 10 wt% and *vice versa*. Fig. 2-4. Rietveld refinement result of the powder neutron profile for BaTaO₂N powder. The weight ratio of $Pm\overline{3}m$ and $Pmc2_1$ is 93 : 7. Red crosses and light blue line indicate the observed intensity and simulated profile, respectively. Upper and lower green vertical bars indicate Bragg positions for $Pm\overline{3}m$ and $Pmc2_1$ models, respectively. obtained with 7 wt% of $Pmc2_1$ phase. The fitted profile with 7 wt% of $Pmc2_1$ phase is shown in Fig. 2-4 and such non-centrosymmetric regions are considered to behave as PNRs without compositional inhomogeneity. The real structure of BaTaO₂N may belong to polar $Pmc2_1$ space group, but the connections of most of the polar cis-type Ta-N-Ta-N linkage can be partly disturbed in BaTaO₂N, only to be detected as $Pm\bar{3}m$ "average" structure. This is the reason why the apparent structure of BaTaO₂N had been identified as $Pm\bar{3}m$ space group in the diffraction measurements. #### 2-4. Conclusion The presence of non-centrosymmetric region in BaTaO₂N was confirmed by SHG measurements. Better profile fitting was achieved by assuming that BaTaO₂N powder is a mixture of 93 wt% of $Pm\bar{3}m$ and 7 wt% of $Pmc2_1$ phases, compared with the calculation assuming the single phase of $Pm\bar{3}m$ space group. This indicates that the trace of polar regions was detected in powder neutron diffraction, which is consistent with the emergence of SHG. However, most part is detected as centrosymmetric average structure in diffraction studies, as in the previous reports. #### **Chapter 2 References** - [1] F. Pors, R. Marchand, Y. Laurent, "Structural study of BaTaO₂N and BaNbO₂N oxynitrided perovskites", *Mat. Res.
Bull.*, 1988, 23, 1447–1450. - [2] Y. -I. Kim, P. M. Woodward, C. -W. Tai, "Characterization of the Structural, Optical, and Dielectric Properties of Oxynitride Perovskites $AMO_2N(A = Ba, Sr, Ca; M = Ta, Nb)$ ", *Chem. Mater.*, 2004, 16, 1267–1276. - [3] K. Page, M. Stoltzfus, Y. -I, Kim, T. Proffen, P. M. Woodward, A. K. Cheetham, R. Seshadri, "Local atomic ordering in BaTaO₂N studied by neutron pair distribution function analysis and density function theory", *Chem. Mater.*, 2007, 19, 4037–4042. - [4] R. L. Withers, Y. Liu, P. M. Woodward, Y. I. Kim, "Structurally frustrated polar nanoregions in BaTaO₂N and the relationship between its high dielectric permittivity and that of BaTiO₃", *App. Phys. Lett.*, 2008, 92, 102907. - [5] B. Ravel, Y. I. Kim, P. M. Woodward, C. M. Fang, "Role of local disorder in the dielectric response of BaTaO₂N", *Phys. Rev. B*, 2006, 73, 184121. - [6] Y. Hinuma, H. Moriwake, Y. Zhang, T. Motohashi, S. Kikkawa, I. Tanaka, "First principles study on relaxor-type ferroelectric behavior without chemical inhomogeneity in BaTaO₂N and SrTaO₂N", *Chem. Mater.*, 2012, 24, 4343–4349. - [7] H. Wolff, R. Dronskowski, "First-Principles and Mollecular-Dynamics Study of Structure and Bonding in Perovskite-Type Oxynitrides ABO_2N (A = Ca, Sr, Ba; B = Ta, Nb)", J. Comput. Chem., 2008, 29, 2260–2267. - [8] M. R. Brophy, S. M. Pilgrim, W. A. Schulze, "Synthesis of BaTaO₂N Powders Utilizing NH₃ Decomposition", *J. Am. Ceram. Soc.*, 2011, 94, 4263–4268. - [9] S. H. Porter, Z. Huang, P. M. Woodward, "Study of Anion Order/Disorder in RTaN₂O (R = La, Ce, Pr) Perovskite Nitride Oxides", *Cryst. Growth Des.*, 2014, 14, 117–125. - [10] F. Izumi, K. Momma, "Three-dimensional visualization in powder diffraction", *Solid State Phenom.*, 2007, 130, 15–20. - [11] K. Momma, F. Izumi, "VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data", *J. Appl. Crystallogr.*, 2011, 44, 1272–1276. ## Chapter 3 High Temperature Sintering, Post-ammonolysis, and Electrical Properties of Perovskite-type $BaTaO_2N$ #### 3-1. Introduction Oxynitride perovskites such as SrTaO₂N and BaTaO₂N are promising lead-free dielectric materials. [1-4] As mentioned in the last chapter, a clear SHG signal and neutron diffraction profile fitting for BaTaO2N powder indicate the presence of noncentrosymmetric structure. Further study on this compound is necessary to disclose more detail of its dielectricity especially ferroelectric behaviors. However, fabrication of highdensity oxynitride ceramics keeping stoichiometric composition is known to be difficult in general. Sintering of SrTaO₂N was performed by high temperature process [2,3] and its thermal behavior was studied in a nitrogen atmosphere in relation to its sintering conditions. [2,5] SrTaO₂N begins releasing approximately 30% of its nitrogen at 950 °C even under nitrogen atmosphere to form a nitrogen deficient perovskite SrTaO₂N_{0.7} and loses a trace amount of SrO during sintering at 1400 °C. [2,3,5] Addition of a small amount of SrCO₃ was necessary to maintain the perovskite-type phase of SrTaO₂N_{0.7} during the high temperature sintering. SrTaO₂N changes from orange insulator to black semiconductor during sintering due to a partial reduction of Ta⁵⁺. [2,3,5] Post-annealing of SrTaO₂N_{0.7} ceramics in NH₃ flow is effective to recover the original nitrogen contents of SrTaO₂N. The sintered SrTaO₂N_{0.7} ceramics with RD \leq 84% completely recovered their nitrogen contents and electrically insulating property after annealing. The post-annealed SrTaO₂N ceramics with RD = 83.3% had high relative dielectric constant (ε_r) of 450 with a low dielectric loss of less than 0.1 at 100 Hz, almost independent of frequency and temperature. [2] However, the interior of the well-sintered ceramics with RD = 95.1% exhibited semiconducting behavior and a black color, even after post-ammonolysis. [2,4] Atomic force microscopy (AFM)-based technique has enabled to evaluate electrical properties of nano-sized materials. Piezoresponse force microscopy (PFM) has been used to explore nanoscale ferro/piezoelectric phenomena over the past two decades. The imaging mechanism of PFM is based on the detection of the electromechanical response between a small tip and a ferroelectric surface. [6,7] Piezoresponse as well as ferroelectric hysteresis were observed for the clacked off surface of the dense SrTaO₂N ceramics with RD > 95% in a thickness of approximately 8 μm, although current leakage was inevitable at high voltages. [4] Higher relative dielectric constant values of BaTaO₂N compared to SrTaO₂N are suggested by the investigations on their porous bulks with RD \approx 45% [1], but further detail is still unclear. The thermal behavior and sinterability of the BaTaO₂N should be investigated, to obtain densified ceramics in order to investigate its dielectric properties. In the present chapter, thermal stability of $BaTaO_2N$ powder in both He and N_2 atmospheres is investigated using TG-MS in comparison with that of $SrTaO_2N$. $BaTaO_2N$ mixed with a small amount of $BaCO_3$ was sintered in nitrogen atmosphere and post-ammonolysis was then applied to recover the stoichiometric composition. The ceramics were characterized in their crystalline phases, microstructure, and dielectric properties. PFM measurements were also applied on the thin specimens sliced from the dense $BaTaO_2N$ ceramics with RD > 90% after their post ammonolysis. The piezoelectric behaviors are discussed in relation to their chemical compositions and microstructure. ### 3-2. Experimental #### Ceramics fabrication Phase-pure BaTaO₂N perovskite powder was synthesized as mentioned in Chapter 2. X-ray diffraction (XRD) with Cu K α radiation at 40 kV and 40 mA (Ultima IV, Rigaku) was used for phase identification. The data were collected over the 2θ angular range of $10-90^{\circ}$, with each step of 0.02° and scanning speed of 10° /min. Thermal stability of BaTaO₂N powder was studied by using TG-DTA-MS (STA2500-QMS403 Aeolos, Netzsch) in helium or nitrogen flow at 200 mL/min. The sample chamber was evacuated to 10 Pa prior to the measurements. Approximately 40 mg of the sample was heated in an alumina crucible to 1400 °C at a rate of 20 or 5 °C/min. Excess BaCO₃ powder (2.5 – 5.0 wt%) was mixed with the reddish BaTaO₂N powder product as in the previous reports of the sintering of SrTaO₂N. [2,3] Mixtures containing different amounts of BaCO₃ additive were uniaxially pressed into pellets with a diameter of 5.9 mm at 46 MPa and then cold isostatically pressed at 150 MPa. These green-compacts were placed in a BN crucible and sintered at 1350, 1400, or 1450 °C for different holding times under 0.2 MPa of N₂ gas pressure (> 99.999% purity, AIR WATER Inc.) in a carbon furnace (High Multi 5000, Fuji Dempa Kogyo). The heating rates were 20 °C/min below 1200 °C and 10 °C/min at higher temperature. After holding at the desired temperature, the samples were cooled down to room temperature in the furnace. After cooling, the ceramic surfaces were polished with a sandpaper with SiC particle size of $2-3 \mu m$, and the relative densities were measured using a water vacuum penetration technique in combination with Archimedes method. [2] The crystalline phases present on the polished surface were studied using XRD. The BaTaO₂N ceramics lost approximately 15 at% of nitrogen and changed to black BaTaO₂N_{0.85} during sintering. The color change was assumed to be induced by the partial reduction of Ta⁵⁺ in BaTaO₂N because of its partial loss of nitrogen, as is observed in SrTaO₂N. [2,3,5] The black ceramics were electrically semiconducting and did not show dielectric properties. The as-sintered BaTaO₂N_{0.85} ceramics were post-annealed at 1000 - 1030 °C in an NH₃ flow of 100 mL/min. The fracture surfaces of ceramics sintered at 1350 and 1400 °C for 3 h was studied by scanning electron microscope (SEM, JSM-6390 LVS, JEOL) and field emission SEM (FE-SEM, JSM-6500F, JEOL). Chemical analyses were conducted for each fabrication process. X-ray fluorescent spectroscopy (XRF, SEA6000VX-SII, Hitachi) was used for Ba and Ta molar ratios, and the oxygen and nitrogen contents were determined by combustion oxygen/nitrogen analyzer (EMGA-620W, Horiba) using Gd₂O₃ (99.9%, FUJIFILM Wako Pure Chemical) after calcination at 1000 °C and Si₃N₄ (JCRM R004, Ceramic Society of Japan) as references. #### **Electrical property measurements** Ag pasted electrodes (4922N, DuPont) were applied on the surfaces of the fully-annealed BaTaO₂N ceramics with RD = 73.0 and 59.5%. Dielectric behaviors were investigated with an LCR meter (4274A, Hewlett Packard) in the frequency range of $10^2 - 10^5$ Hz and with an impedance/material analyzer (E4991A / 16453A, Agilent) in the range of $3\times10^6 - 10^8$ Hz at temperatures of 30 - 150 °C. Effects of electrodes had been confirmed to be insignificant between the pasted Ag and the sputter-deposited Pt on the sintered pellets with RD ~ 75% in the previous study. [3] PFM measurements were conducted on the post-annealed BaTaO₂N ceramics with RD of approximately 94.6%, which was obtained by a sintering at 1400 °C for 8 h. The sample recovered its original red color of stoichiometric BaTaO₂N on its outermost surface from black by the post-ammonolysis in NH₃. The post-annealed ceramics was sliced into two pieces by a diamond cutter. The specimens were fixed on a conductive ceramic block and then polished by a lapping sheet (Lapping Film, 3M) in order to reduce their thickness to less than 20 μm, which is appropriate to obtain a sufficient electrical field for observing a piezoresponse. Appearance of the polished slice was observed using an optical microscope (SZ61, Olympus). Microstructure of the specimens was observed by SEM (JSM-7001F, JEOL) and STEM (Titan G2, FEI). The STEM sample was prepared using a focused ion beam (FIB) of gallium (Nova200i NanoLab, FEI). The
conductive ceramic block with the lapped BaTaO₂N specimen was attached on a 10 × 10 mm² copper plate of AFM apparatus observation by a conductive silver paste (DOTITE, Fujikura). Both AFM and PFM measurements were performed by using a scanning microscope (E-sweep with NanoNavi Probe Station, SII Nano Technology). A Rh-coated silicon cantilever (Si-DF3-R (100), SII Nano Technology) with a stiffness of 1.7 N/m was employed for the measurement in a resonance frequency of 27 kHz. PFM measurement was performed at the driving AC electric field frequency of 5 kHz and the applied AC field amplitude of 1-10 V. The domain poling was performed by applying biases of -10 and 10 V to each measurement area. #### 3-3. Results and discussion #### Thermal stability and sintering of BaTaO2N The thermal stability of BaTaO₂N powder in a helium atmosphere was investigated at a heating rate of 20 °C/min. A slight initial weight loss due to the desorption of adsorbed water and carbon dioxide was observed below 750 °C and a small amount of nitrogen (0.88 wt%) was released, starting around 800 °C as confirmed by the TG-MS results shown in Fig. 3-1. The above weight loss in wt% corresponds to 16 at% of the theoretical nitrogen content of BaTaO₂N. Another, larger nitrogen release began around 1150 °C as the sample began to decompose. A mixture of mainly Ta₂N (JCPDS 26-985) and β -Ba₄Ta₂O₉ (JCPDS 32-80) with an unknown impurity in a trace amount were observed after the thermal analysis up to 1550 °C as in the XRD profiles of Fig. 3-2. The decomposition at higher temperatures was strongly suppressed in a nitrogen atmosphere and thermally robust nitrogen-deficient perovskite BaTaO₂N_{0.85} still remained as a main phase. These thermal behaviors are very similar, and the observed temperature, especially that of the first nitrogen loss, was slightly lower than that of SrTaO₂N (950 °C). [5] Additional TG measurement with a slow heating at 5 °C/min was conducted to determine more precise decomposition temperature of BaTaO₂N. The result shown in **Fig. 3-3** indicates that BaTaO₂N begins releasing its nitrogen at 920 °C. The lower thermal stability of BaTaO₂N may be related to the lower lattice enthalpy of the barium compounds than that of the strontium homologues. [8-10] The perovskite-type structure remained even after the first nitrogen loss and the cubic lattice parameter was a = 0.4107(3) nm, compared to 0.4112(2) nm before the nitrogen loss. Nitrogen was selected for the sintering atmosphere of the BaTaO₂N compacts because the decomposition of the perovskite-type structure is suppressed. The green-compacts were sintered in a BN crucible using a BaTaO₂N powder bed. The sintering was performed at 1350 or 1400 °C for 1 – 8 h, similar to the conditions used in previous SrTaO₂N research [2,3], by changing the amount of BaCO₃ additive. All of the sintered bodies were black or brown in color. The crystalline phases observed on the ceramic surface were studied by XRD. A rock-salt type TaO impurity appeared with BaTaO₂N_{0.85} perovskite in ceramics prepared without BaCO₃ additive, as shown in **Fig. 3-4(a)**. This impurity disappeared, and phase-pure BaTaO₂N_{0.85} was obtained in ceramics sintered with 2.5 wt% of BaCO₃, as shown in **Fig. 3-4(b)**. Another impurity, Ba₅Ta₄O₁₅, appeared in ceramics sintered with 5 wt% of BaCO₃, as shown in **Fig. 3-4(c)**. Thus, the **Fig. 3-1.** Weight loss of BaTaO₂N oxynitride perovskite powder during heating in a helium (solid line) or nitrogen (dot-dashed line) atmosphere and nitrogen evolution detected in mass spectrometer (helium atmosphere, broken line). Heating rate in both atmospheres is 20 °C/min. **Fig. 3-2.** Powder XRD profiles and photographs of **(a)** as-prepared BaTaO₂N, **(b)** and **c)** samples after TG measurements up to 1550 °C under nitrogen and helium atmospheres, respectively. Diamonds, circles, daggers, squares, inverse triangles, and question marks indicate BaTaO₂N(ICSD 202763), θ -TaN(ICSD 76455), δ -TaN(ICSD 76456), β -Ba₄Ta₂O₉(JCPDS 32-80), Ta₂N(JCPDS 26-985), and unknown phases, respectively. Fig. 3-3. TG curve of BaTaO₂N under flowing nitrogen at a heating rate of 5 °C/min. 2.5 wt% BaCO₃ additive enabled the production of phase-pure BaTaO₂N_{0.85} ceramics under the present sintering conditions. Further densification occurred with increases in the sintering temperature and duration. The RD was only 59.4% after sintering at 1350 °C for 3 h, and reached 93% after 1400 °C for 6 h, as summarized in **Table 3-1**. A sintering temperature of 1450 °C was necessary to obtain SrTaO₂N ceramics with RD > 90%. [2] On the contrary BaTaO₂N can densify at lower temperatures than SrTaO₂N probably because the diffusion of BaTaO₂N was assisted by its partial decomposition reaction that begins slightly lower temperature than SrTaO₂N. [5] SEM images of the fracture surfaces of each BaTaO₂N_{0.85} ceramics are depicted in Fig. 3-5. The grains were grown to several hundred nanometers in size, and some grain necking was observed in ceramics sintered at 1350 °C for 3 h as shown in Fig. 3-5(b). The grains grew furtherly and the voids became smaller in ceramics sintered at a higher temperature of 1400 °C for 3 h as depicted in Fig. 3-5(c). These voids might have been formed due to the partial release of nitrogen during sintering. On the other hand, they are useful in post-annealing process under flowing ammonia to recover the partially lost nitrogen. Voids shrank in size and the microstructure of the ceramics became denser by the long duration at 1400 °C as in the images of Fig. 3-5 (d – f). The BaTaO₂N_{0.85} ceramics sintered at 1400 °C for 3 h were post-annealed in ammonia at 1000 - 1030 °C. The black as-sintered ceramics became red during the post-ammonolysis and the electrical conductivity decreased, changing from semiconductor to insulator in a manner similar to that of the annealing of SrTaO₂N ceramics. [2-4] A trace amounts of Ba₃Ta₄O₁₅ impurity in the as-sintered BaTaO₂N_{0.85} ceramics prepared with 2.5 wt% BaCO₃ at 1400°C for 3 h disappeared after post-ammonolysis, and the annealed product was phase-pure stoichiometric BaTaO₂N according to XRD profiles of the ground sample as shown in **Fig. 3-6**. The cubic lattice parameter expanded slightly from a = 0.4109(1) nm to a = 0.4113(2) nm in the ceramics processed by post-annealing, probably because of the recovery in the nitrogen stoichiometry of the BaTaO₂N. The latter value is comparable to a = 0.4112(1) nm observed in the as-prepared BaTaO₂N powder and a reference value (0.41128 nm). [12] The crystallinity was considerably improved by the sintering because of the much higher temperature of 1400 °C, compared to the preparation temperature of 930 °C. The nitrogen content slightly decreased by the sintering process but it was recovered in the post-ammonolysis, although the barium, tantalum, and oxygen contents almost unchanged by these processes as shown in **Table 3-2**. **Fig. 3-4.** X-ray diffraction patterns for the polished surface of BaTaO₂N ceramics sintered at 1400 °C for 6 h with **(a)** 0 wt%, **(b)** 2.5 wt%, and **(c)** 5.0 wt% of BaCO₃ additive. The inset is an expansion around the diffraction angle of $2\theta = 30 - 45^{\circ}$. Diamonds, inverse triangles, and arrows represent diffractions for BaTaO₂N_{0.85} (BaTaO₂N, ICSD 202763), Ba₅Ta₄O₁₅ (JCPDS 18-195), and TaO (ICSD 105549), respectively. Fig 3-5. SEM micrographs of the fracture surfaces of (a) green-powder compact of BaTaO₂N and as-sintered BaTaO₂N_{0.85} ceramics fabricated with 2.5 wt% of BaCO₃ sintered (b) at 1350 °C for 3 h and (c) – (f) at 1400 °C for 3, 4, 5, 6 h, respectively. **Table 3-1.** Relative densities and crystalline phases of BaTaO₂N ceramics. | Amount of | Heating
condition | Relative density (RD) / % | | C | RD of SrTaO ₂ N _{0.7} | |----------------------------|----------------------|---------------------------|----------|---|---| | BaCO ₃ additive | | as-sintered | Annealed | Crystalline phases | ceramics / % [2] | | 5 wt% | 1450 °C-4 h | 86.8 | - | BaTaO ₂ N _{0.85} | - | | 5 wt% | 1450 °C-3 h | 84.0 | - | $\mathrm{BaTaO_2N_{0.85}}$ | - | | 2.5 wt% | 1450 °C-3 h | 88.7 | - | $BaTaO_2N_{0.85}/TaO$ | 94.5 | | 3 wt% | 1400 °C-8 h | 94.6 | - | $\mathrm{BaTaO_2N_{0.85}}$ | - | | 2.5 wt% | 1400 °C-8 h | 90.0 | - | $BaTaO_2N_{0.85}/TaO$ | - | | 0 wt% | 1400 °C-6 h | 89.8 | - | $BaTaO_2N_{0.85}/TaO$ | - | | 5.0 wt% | 1400 °C-6 h | 92.0 | - | $BaTaO_{2}N_{0.85}/Ba_{5}Ta_{4}O_{15} \\$ | - | | 2.5 wt% | 1400 °C-6 h | 93.0 | - | $\mathrm{BaTaO_2N_{0.85}}$ | 84.0 | | 2.5 wt% | 1400 °C-5 h | 87.6 | - | $\mathrm{BaTaO_2N_{0.85}}$ | 80.6 | | 2.5 wt% | 1400 °C-4 h | 80.1 | - | $\mathrm{BaTaO_2N_{0.85}}$ | - | | 2.5 wt% | 1400 °C-3 h | 74.6 | 73.0 | $BaTaO_{2}N_{0.85}/Ba_{5}Ta_{4}O_{15} \\$ | 61.6 | | 2.5 wt% | 1400 °C-1 h | powder | - | $BaTaO_{2}N_{0.85}/Ba_{5}Ta_{4}O_{15}$ | - | | 2.5 wt% | 1350 °C-3 h | 59.4 | 59.0 | $BaTaO_2N_{0.85}$ | 59.5 | The full recovery of the red color and chemical composition was difficult for the ceramics sintered for longer time in order to obtain higher RD values. The outer surface returned to red color and the interior remained black in ceramics with RD > 75%. Photographs of the fracture surfaces of the post-annealed BaTaO₂N ceramics are depicted in **Fig. 3-7**. The residual black regions in a total sample volume increased with an increasing of RD. As for the dense ceramics with RD = 93.0%, the recovered outermost surface was observed as a layer in the cross-section image, the thickness of which was approximately 7 μ m. # Dielectric properties of BaTaO2N ceramics Electrical conductivity was estimated before and after post-annealing using Cole-Cole plots for BaTaO₂N ceramics sintered at 1400 °C for 3 h. As-sintered BaTaO₂N_{0.85} ceramics showed an arc of a semicircle in these plots, as depicted in **Fig. 3-8**. An electrical
resistance of less than 1 M Ω cm was predicted by extrapolating the arc. The value is comparable to the one reported for BaTaO₂N by Kim et al. [1] and slightly larger than those for SrTaO₂N ceramics before annealing. [2,3] This extrapolation was impossible for post-annealed ceramics, suggesting insulating property. ε_r value was 620 at 10² Hz and decreased slightly to 320 at 10⁸ Hz in post-annealed ceramics sintered at 1400 °C for 3 h with RD = 73.0%, as shown in **Fig. 3-9**. Lower ε_r values of 120 and 80 **Fig. 3-6.** Powder XRD profiles and photographs of **(a)** as-prepared BaTaO₂N, **(b)** ground as-sintered BaTaO₂N_{0.85} ceramics fabricated at 1400 °C for 3 h with 2.5 wt% of BaCO₃, and **(c)** homogeneously post-annealed BaTaO₂N ceramics. Diamonds and triangles indicate BaTaO₂N (ICSD 202763) and Ba₅Ta₄O₁₅ (JCPDS 18-195), respectively. **Table 3-2.** Elemental contents of BaTaO₂N samples at various processing steps. The ceramics were sintered with 2.5 wt% BaCO₃ at 1400 °C for 3 h. | | Ba/wt% | Ta/wt% | O / wt% | N / wt% | |-----------------------|---------|---------|---------|---------| | As-prepared powder | 38.5(1) | 50.0(2) | 8.0(3) | 3.5(1) | | As-sintered ceramic | 38.8(1) | 49.2(2) | 9.0(4) | 3.0(1) | | Post-annealed ceramic | 38.5(1) | 49.4(2) | 8.8(3) | 3.3(1) | | Theoretical value | 37.7 | 49.7 | 8.8 | 3.8 | | RD | Photograph | Color of interior | |-------|------------|-------------------| | 93.0% | | Black | | 73.0% | | Red | | 59.0% | | Red | $\textbf{Fig. 3-7.} \ Photographs \ of the \ fracture \ surfaces \ of the \ post-annealed \ BaTaO_2N \ ceramics.$ were obtained for the respective frequencies in post-annealed ceramics sintered at 1350 °C for 3 h with lower RD = 59.4%. These ceramics were well annealed and more homogeneous, even in their interiors, due to the high porosity. The dielectric loss was less than 0.4 for well-annealed ceramics sintered at 1400 °C for 3 h with a relatively high RD = 73%. It is comparable to the reported value of less than 0.1 for SrTaO₂N. [2] ε_r values were 620 – 320 for BaTaO₂N and 300 – 80 for SrTaO₂N in the same frequency range. [2] Larger ε_r values were observed in the present BaTaO₂N than in SrTaO₂N. Electronic contribution is suspected for the very large ε_r values of more than thousand in the preliminary experiments of BaTaO₂N bulks. [1] The temperature dependence of dielectric properties of post-annealed $BaTaO_2N$ ceramics sintered at 1400 °C for 3 h with RD=73.0% was also investigated at temperatures up to 150 °C. The values did not change by the temperature very much, as shown in **Fig. 3-10**. # Piezoelectricity of BaTaO2N ceramic specimen Piezoresponse was studied on the BaTaO₂N ceramic obtained by sintering at $1400 \,^{\circ}$ C for 8 h and successive post-ammonolysis. XRD of the ceramic surface confirmed that the sintered body was phase-pure BaTaO₂N belonging to the space group of $Pm\overline{3}m$ with a = 0.4117(1) nm (see **Fig. 3-11**), which is comparable to the lattice parameter of ICSD 202763 (a = 0.41128 nm). [12] Only the surface was recovered to an original red color from black of the electrically conductive as-sintered dense ceramics during the post ammonolysis. Color was purple at rim of the thinner surface slice and dark purple in its thicker inside as shown in **Fig. 3-12**. Both topological and piezoresponse measurements were performed in two regions of a squared area of the thin specimen. Microstructure of the region **A** in **Fig. 3-12** was porous and low in density. There was no piezoresponse due to the porous nature of specimen. Microstructure was relatively dense in the region **B**, which was slightly interior of the slice, and piezoresponse slightly appeared as represented in **Fig. 3-13**. The area where did not show piezoresponse is porous probably due to the decomposition of a small amount of Ruddlesden-Popper type Ba₂TaO₃N impurity formed by the reaction of BaO and BaTaO₂N during sintering. [11] Some of the post-annealed ceramics had higher densities in its exterior sides along diameter than interiors just below its outermost surface as shown in Fig. 3-14(a). Necking was more pronounced between grains in the former part to have much higher density and less porosity than the latter. STEM image showed that grains in size of less than 500 nm were closely packed each other in the former and there were many vacancies between the relatively grown grains in the latter as depicted in Fig. 3-15. No response **Fig. 3-8.** Complex impedance spectra for post-annealed BaTaO₂N ceramics sintered at $1400 \, ^{\circ}\text{C}$ for 3 h (open square) and just-sintered BaTaO₂N_{0.85} ceramics (filled square). The measurements were conducted at a frequency range from 10^2 to 10^5 Hz at room temperature. **Fig. 3-9.** Room temperature relative dielectric constants (red) and losses (blue) as functions of frequency for the post-annealed BaTaO₂N ceramics sintered at 1400 °C for 3 h (open square). Open circles represent the values for post-annealed BaTaO₂N ceramics sintered at 1350 °C for 3 h. The error bars are smaller than the symbols. **Fig. 3-10.** Relative dielectric constant and loss values as functions of temperature for post-annealed BaTaO₂N ceramics sintered at 1400 °C for 3 h at various frequencies. The error bars are smaller than the symbols. Fig. 3-11. XRD pattern of an annealed BaTaO₂N ceramic surface used for PFM measurements. Fig. 3-12. Optical micrographs of a thin surface slice of an annealed $BaTaO_2N$ ceramics. PFM specimens **A** and **B** were prepared from the area indicated by the red square in the upper image. Fig. 3-13. Topographic (a) and PFM (b) images of region B in Fig. 3-12. DC biases of ± 10 V were applied alternately in a vertical stripe pattern in the center. Fig. 3-14. SEM micrographs on (a) the perimeter and (b) central area of the annealed BaTaO₂N ceramics. Fig. 3-15. STEM images on (a) the perimeter and (b) central area of the annealed BaTaO₂N ceramics. was observed on a specimen from the latter part in PFM measurement. A specimen from the dense part clearly showed polarized patterns in an applied bias voltage between -10 V and +10 V as represented in Fig. 3-16. The piezoresponse was most clear at the voltage between ± 4 V and 7 V, and it was continuously observed even at ± 9 V. It had been reported that the response was most clear in the lower voltages of ± 3 – 4 V and became less clear at ± 8 V on SrTaO₂N ceramics. [4] The clear response was observed at higher voltage in BaTaO₂N than in SrTaO₂N. The present response observed at an applied voltage of ± 6 V gradually disappeared with time similarly to the case of SrTaO₂N. The response amplitude in 15 min decreased to almost a half in 150 min as shown in Fig. 3-17. This may be because the polarization is not saturated at the poling voltage of ± 10 V. The piezoresponse contrast was strongest at voltages between ± 4 and 7 V and continued to be observed even at ± 9 V. This behavior was quantified by plotting the contrast against the measuring voltage (see **Fig. 3-18**). The contrast was defined as the difference between the average responses in the positively and negatively poled regions. It increased up to a measuring voltage of ± 7 V and then decreased slightly, owing to the elapsed measuring time. Similar PFM measurements could not be made while decreasing the measuring voltage, presumably because current leakage occurred, similarly to the case for SrTaO₂N. [4] There was no apparent change in the topographic images taken Fig. 3-16. AFM topograph (upper left) and PFM images taken at various voltages. These were polarized by applying DC biases of ± 10 V according to the pattern shown in the lower leftmost image. Fig. 3-17. AFM images scanned (a) 15, (b) 80, and (c) 150 min after initial polarization. (d) is the AFM signals taken at the area indicated with gray square in (a). Fig. 3-18. Quantified PFM contrast against measuring voltage. Fig. 3-19. Topographic images taken at increasing measuring voltages during PFM. during PFM measurements (see **Fig. 3-19**). The abovementioned decrease in contrast is not due to wear of the conductive coating on the tip. It has previously been reported that the PFM contrast for SrTaO₂N was strongest at ±3 – 4 V, weakening at ±8 V. [4] At higher voltages (±7 V), a clearer contrast was observed on BaTaO₂N compared to SrTaO₂N, possible suggesting a higher coercivity. Current leakage occurred at ± 1 V in its *P-E* measurement using Pt-deposited electrode in size of $15 \times 15 \times 0.6 \ \mu m^3$ probably because of its slightly conductive nature even after post-ammonolysis. BaTaO₂N ceramics or crystals with higher electrical insulation are desired for further investigation on their ferroelectric properties enabling to apply higher electrical voltages for polarization saturation. ### 3-4. Conclusion Thermal decomposition behavior of BaTaO₂N powder synthesized by ammonolysis of the BaCO₃ and Ta₂O₅ mixture was similar to SrTaO₂N and it was sintered above 1350 °C. Both of the addition of BaCO₃ and post-ammonolysis were necessary to obtain phase-pure BaTaO₂N ceramics by compensating for the partial loss of barium and nitrogen during sintering. Stoichiometric BaTaO₂N ceramics with RD = 73.0% had relative dielectric constants of 620 at 10^2 Hz and 320 at 10^8 Hz, slightly higher than the values reported for SrTaO₂N. These values were relatively unaffected in the applied frequency and temperature, up to 150 °C. The dielectric loss was less than 0.1 at higher frequency range than 10 kHz and it was nearly independent of frequency and temperature. Clear piezoresponse was observed at the applied voltage between $\pm 4-7$ V on the surface slice of dense BaTaO₂N ceramics with RD > 90%, which is consistent with the results of SHG and structural reinvestigations mentioned in the last chapter. Piezoresponse was
slightly present on another thin slice prepared from inside of the electrically conductive ceramics. This poor electrical insulation disturbed the elucidation of ferroelectricity. Its outermost surface did not show any piezoresponse because high porosity was easily induced due to the more hygroscopic nature of BaTaO₂N than SrTaO₂N. Further target is the fabrication of stoichiometric and dense oxynitride perovskite ceramics or, more desirably, grain boundary-free single crystals to make it possible to investigate their intrinsic electrical properties by enabling to apply higher electrical voltage to the samples. # **Chapter 3 References** [1] Y. -I. Kim, P. M. Woodward, K. Z. Baba-Kishi, C. W. Tai, "Characterization of the Structural, Optical, and Dielectric Properties of Oxynitride Perovskites AMO_2N (A = Ba, Sr, Ca; M = Ta, Nb)", Chem. Mater., 2004, 16, 1267–1276. [2] S. -K. Sun, Y. -R. Zhang, Y. Masubuchi, T. Motohashi, S. Kikkawa, "Additive - sintering, postannealing, and dielectric properties of SrTaO₂N", *J. Am. Ceram. Soc.*, 2014, 97, 1023–1027. - [3] Y. -R. Zhang, T. Motohashi, Y. Masubuchi, S. Kikkawa, "Sintering and Dielectric Properties of Perovskite SrTaO₂N Ceramics", *J. Eur. Ceram. Soc.*, 2012, 32, 1269–1274. - [4] S. Kikkawa, S. -K. Sun, Y. Masubuchi, Y. Nagamine, T. Shibahara, "Ferroelectric response induced by *cis*-type anion ordering in SrTaO₂N oxynitride perovskite", *Chem. Mater.*, 2016, 28, 1312–1317. - [5] D. Chen, D. Habu, Y. Masusbuchi, S. Torii, T. Kamiyama, S. Kikkawa, "Partial nitrogen loss in SrTaO₂N and LaTiO₂N oxynitride perovskites", *Solid State Sci.*, 2016, 54, 2–6. - [6] S. V. Kalinin, D. A. Bonnell, "Imaging mechanism of piezoresponse force microscopy of ferroelectric surface", *Phys. Rev. B*, 2002, 65, 125408/1–11. - [7] D. A. Bonnell, S. V. Kalinin, A. L. Kholkin, A. Gruverman, "Piezoresponse Force Microscopy: A Window into Electromechanical Behavior at the Nanoscale", *MRS Bulletin*, 2009, 34, 648–657. - [8] Fig. EC-131, ACerS-NIST Phase Equilibria Diagrams. Originally from W. Wong-Ng, R. S. Roth, B. H. Toby, J. Y. Chan, J. Dillingham, T. A. Canderah, National Institute of Standards and Technology, Gaitherburg, Maryland; Private comm. (2002). - [9] Fig. 92-002, ibid. Originally from L. M. Kovba, L. N. Lykova, M. V. Paromova, L. M. Lopato, A. V. Shevchenko, Zh. Neorg. Khim., 1977, 22, 2845–2847. - [10] "Shriver & Atkins Inorganic Chemistry", P. Atkins, T. Overton, J. Rourke, M. Weller, F. Armstrong (Eds.), Oxford University Press, United Kingdom (2005). - [11] S. J. Clarke, K. A. Hardstone, C. W. Michie, M. J. Rosseinski, "High-temperature synthesis and structures of perovskite and n=1 Ruddlesden-Popper tantalum oxynitrides", *Chem. Mater.*, 2002, 14, 2664–2669. - [12] F. Pors, R. Marchand, Y. Laurent, "Structural study of BaTaO₂N and BaNbO₂N oxynitrided perovskites", *Mat. Res. Bull.*, 1988, 23, 1447–1450. # Chapter 4 Melting Behavior of Alkaline-Earth Metal Carbodiimides for the Preparation of $Sr_{1-x}Ba_xTaO_2N$ (x = 0.04 - 0.23) Microcrystals #### 4-1. Introduction In the last chapter, thermal stability, sinterability, and dielectricity of BaTaO₂N were studied. It partially releases its nitrogen during high temperature sintering to become electrically conductive. Post-ammonolysis is required to recover their stoichiometric compositions. Large relative dielectric constants $\varepsilon_r = 290 - 620$ and piezoresponse were observed for the annealed ceramics, but a serious current leakage made it impossible to apply high electrical voltage to elucidate the emergence of ferroelectricity. Fabrication of oxynitride ceramics and crystals avoiding their thermal decomposition is necessary to obtain highly-insulating samples. SrTaO₂N and BaTaO₂N begin releasing a part of their nitrogen at 950 and 920 °C, respectively. [1] This nitrogen release from SrTaO₂N could not be suppressed during the sintering even under 190 MPa nitrogen. [2] The purpose of the present chapter is sintering or crystal growth of oxynitride materials at the temperatures below their nitrogen releasing. Liquid phase sintering and flux growth are very sensible strategies to solve this problem and fluxes with melting points lower than the nitrogen releasing points of oxynitride perovskites are desirable. Fluxes have been employed to grow various oxide crystals. For example, single crystals of BaTiO₃, BaTa₂O₆, BaFe₁₂O₁₉, Sr₂Ta₂O₇, and SrTiO₃ were grown with fluxes mainly containing B₂O₃, PbO, Na₂O, SrCl₂, and KF, respectively. [3-7] In this process, the material of interest is partially soluble to the flux and the molten flux contains one of the constituents of the crystals and needs to be entirely removed from the product. There have been only several reports regarding the flux growth of oxynitride crystals. As for oxynitride perovskites, BaTaO₂N and LaTiO₂N submicron crystals were synthesized using KCl and K₂MoO₄ as the fluxes and cubic microcrystals reflecting the euhedral form of the perovskite-type structure were obtained. [11,12] It should be noted that residual potassium was detected in the product even after the removal of flux by evaporation. Ammonothermal method was employed to grow micron-sized oxynitride perovskite crystallites such as ABO_2N (A = Sr, Ba, B = Nb, Ta) [13], $LnTaON_2$ (Ln = La, Ce, Pr, Nd, Sm, Gd) [14], and LaNbON₂ [15]. However, there is no reports on the electrical properties of such crystals. Moreover, some contamination of the mineralizer like NaN₃ and NaOH is concerned. In other cases, many researches on the preparations of nitride crystals and oxynitride powders have been conducted in the groups of DiSalvo and Jansen by using Na metal and sodium azide (NaN₃). [8-10] 100 μm-sized single crystals of Ba₃ZnN₂O, Ba₄GaN₃O, and Sr₄GaN₃O have been grown by the reactions of a Na flux with several metals and oxides at 750 °C in a nitrogen atmosphere. [16-18] Most of sodium evaporated during the synthetic processes and the residual sodium was completely removed by washing the product with liquid ammonia to obtain pure oxynitride single crystals. [16] Fluxes with rich nitrogen contents are beneficial to obtain single crystals of nitrides and oxynitrides. The author focused on metal carbodiimides as the candidates of the flux for the crystal growth and sintering of oxynitride perovskites. Metal carbodiimides are composed of metal cations and symmetric [N=C=N]²⁻ anionic units, which is distinguished from asymmetric cyanamide anions [N-C≡N]²⁻. Solid-state research on metal carbodiimides and cyanamides has a long history, and a large number of syntheses have been reported up to the present day, including alkaline metals (Li, Na, K, Cs) [19-22], alkaline-earth metals (Ca, Sr, Ba) [23,24], typical main-group elements (Mg, Si, Tl, Pb) [23,25-27], transition metals (Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Ag, Cd) [26,28-34], and also rare earth metals (Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb). [33,35] In recent years, ternary metal carbodiimides such as $SrZn(CN_2)_2$ and $LiM(CN_2)_2$ (M = Al, In, Yb) were also synthesized. [36,37] Most of them, especially thermally unstable metal carbodiimide compounds, have been effectively synthesized by the metathesis reactions between metal halides and carbodiimides. [28,29,31-33,35,37] Ammonolysis reaction was also applied on metal carbonates. [38-40] This route can be applied in the cases the starting materials of alkaline-earth metal carbonates are stable up to the nitridation temperature by ammonia (c.a. $500 \, ^{\circ}$ C). Alkaline-earth metal carbodiimides CaCN2, SrCN2, and BaCN2 have been investigated on their crystal structures. [23,24,40,41] The alkaline-earth metal cations are coordinated by several nitrogen atoms in their carbodiimide anion units. SrCN₂ has two polymorphs as shown in Fig. 4-1. β -type low temperature rhombohedral phase of SrCN₂, which is isomorphic to CaCN₂ [24,41], transforms to α-type high temperature orthorhombic phase [41] at approximately 630 °C according to in-situ XRD study conducted in argon atmosphere. However, thermal behavior of SrCN₂ above 800 °C has not been reported yet. Rhombohedral BaCN₂ (r-BaCN₂, Fig. 4-2(a)) was synthesized by the reaction of barium nitride with melamine at 740 °C. [23] Tetragonal BaCN₂ polymorph (t-BaCN₂, Fig. 4-2(b)) was recently obtained by the ammonolysis of BaCO₃ at 900 °C and its crystal structure and optical properties were studied. [40] Each Ba^{2+} ion in r-BaCN₂ is coordinated by six nitrogen atoms forming significantly distorted BaN₆ octahedra. [23] For t-BaCN₂, the coordination number of Ba^{2+} is eight, resulting in a symmetric BaN₈ square-antiprism. [40] **Fig. 4-1.** Crystal structures of (a) β - and (b) α -SrCN₂. [41] The structure models were drawn with a crystallographic imaging software VESTA. [42] **Fig. 4-2.** Crystal structures of **(a)** *r*- and **(b)** *t*-BaCN₂. [23,40] The structure models were drawn with a crystallographic imaging software VESTA. [42] Interestingly enough, the thermodynamical stability of the BaCN₂ polymorphs has not been investigated. This is not surprising since precise thermogravimetry on the metal carbodiimides is not so easy because they thermally decompose around their melting points. Also, their high reactivity against oxygen and humidity also makes any such measurement quite difficult. On the other side, density functional theory (DFT) calculations are useful to get a first clue as regards the thermal properties of unstable and reactive materials. [41] In this chapter, thermochemical studies were performed experimentally and then total-energy was calculated on a series of alkaline-earth metal carbodiimides. Their melting behaviors were discussed in relation to their thermal decomposition around their melting points. The stabilities of *r*- and *t*-BaCN₂ were also compared based on their theoretical Gibbs free energies as derived from the quasi-harmonic phonon simulations. Furthermore, SrTaO₂N was heated with various
quantities of molten BaCN₂ at approximately 900 °C, which is about 50 °C below the nitrogen release temperature of SrTaO₂N. [1] After cooling, the dielectric properties, crystalline phases, chemical compositions, and microstructure of the resulting solids were investigated. # 4-2. Experimental # Syntheses and thermal studies of metal carbodiimides CaCN₂, α -SrCN₂, and t-BaCN₂ powders were synthesized by ammonolysis of their respective carbonates. [38-40] In each case, more than 100 mg of the carbonate powder (99.9%, FUJIFILM Wako Pure Chemical) was heated on an alumina boat under a flowing ammonia (50 mL/min) in an alumina tube furnace at about 600 °C for CaCN₂ and 900 °C for both of α-SrCN₂ and t-BaCN₂ with a duration of 10 h. Chemical compositions of the ammonolysis products α -SrCN₂ and t-BaCN₂ were confirmed with inductively coupled plasma atomic emission spectroscopy (ICP-AES, ICPE9000, Shimadzu) for metal element contents in combination with combustion CHN analysis (MICROCORDER JM10, J-Science Lab.) for carbon and nitrogen contents. Chemical formulas for the metal carbodiimides were determined as SrC_{1.01}N_{2.02} and BaC_{0.99}N_{1.99}, respectively. The obtained white CaCN₂ powder contained 18 wt% of CaO as a secondary phase as shown in the XRD profile Fig. 4-10(a) discussed in the latter part of this chapter. The amount of CaCN₂ and CaO were estimated using Rietveld calculation. [43] Preparation of phase-pure CaCN₂ was challenging because both of the ammonolysis reaction and decarboxylation of CaCO3 on an alumina ceramics start at similar temperature range (approximately 550 °C and 610 °C [44]). Nitridation of CaCO₃ at only 550 °C did not proceed very much and not realistic heating time will be necessary to increase phase purity of $CaCN_2$ in the products. Crystalline phases of powder products were identified using X-ray diffraction (XRD, Ultima IV, Rigaku) with Cu K α radiation over the 2θ range of 10 to 90° with a step size of 0.02° and a scanning rate of 10°/min. Thermal behaviors were investigated on more than 10 mg of the samples of the metal carbodiimides using thermogravimetry in combination with differential thermal analysis (TG-DTA, STA 2500, Netzsch). The sample chamber was evacuated to about 3 Pa prior to the measurement, after which nitrogen gas (> 99.999%, Airwater Inc.) was introduced. The temperature was raised at a rate of 10 °C/min to 1000 or 1100 °C under a 200 mL/min of nitrogen flow. To reduce background noise, the DTA analysis for t-BaCN₂ was conducted with a hand-made alumel-chromel thermocouple (Nilaco) under a flowing nitrogen, using α -Al₂O₃ (99%, High Purity Chemicals) as a reference. In addition, approximately 100 mg of each metal carbodiimide powder was uniaxially pressed into a pellet with a diameter of 5.9 mm at about 46 MPa to study their melting behaviors. This process was conducted in a glove box filled with a dry nitrogen to avoid their reaction with moisture and oxygen in air. Each pellet on an alumina boat was heated in an alumina tube furnace under a flowing nitrogen at 800, 900, 1000, 1100, 1330, or 1350 °C for 5 h. # **Computational studies** DFT calculations were carried out employing the program VASP (*Vienna ab initio simulation package*) [45] in order to obtain optimized structures and electronic total energies. Plane-wave basis sets with an energetic cut-off of 500 eV were used. Exchange and correlation were treated following the generalized gradient approximation. [46] To account for van-der-Waals like interactions, the D3 method of Grimme was applied. [47] All the unit cells were allowed to change their volumes and shapes during the relaxation process but keeping the initial symmetry. Phonon computations were conducted using the program PHONOPY [48] based on the Hellmann-Feynman forces calculated using VASP. The supercells for the force calculations were set up by multiplying the unit cells in each direction such that the lattice parameters of the supercells were well above 1 nm. Thermodynamic potentials were obtained in the framework of the quasi-harmonic approximation following the procedure described in Refs. 49 and 50. The calculations were conducted for the crystal structures of all the alkaline-earth metal carbodiimides, alkaline-earth metals, graphite, and crystalline nitrogen. [23,40,41,51-58] # Preparation of Sr_{1-x}Ba_xTaO₂N microcrystals Phase-pure orange SrTaO₂N perovskite powder was obtained by ammonolysis of the Sr₂Ta₂O₇ precursor obtained by solid state reaction of SrCO₃ and Ta₂O₅ (FUJIFILM Wako Pure Chemical, 99.9%), using a previously reported procedure. [59] SrTaO₂N powder was mixed with t-BaCN₂ at its concentrations of 5, 10, 30, or 50 wt% in a glovebox filled with a dry nitrogen. About 200 mg of each mixture was uniaxially pressed into a pellet in a diameter of 5.9 mm at approximately 46 MPa. Then they were heated under flowing nitrogen at around 900 °C and were kept at this temperature for 5, 10, 30, or 50 h. Both heating and cooling were conducted at a rate of 200 °C/h. Reddish solids were obtained after cooling. Weight losses during annealing were small enough to be ignored. Fracture surface of each product was polished with 1000-grit sandpaper having SiC particle sizes in the range of 2 to 3 µm. The polished surface was etched with 1 M citric acid for 2 days to remove excess solidified BaCN₂ and soluble impurities on the surface, after which the surface was washed with distilled water and hexane (96%, FUJIFILM Wako Pure Chemical). The microstructures of the etched surface were observed using scanning electron microscope (SEM, JSM-6390 LVS, JEOL). Afterwards, grown up crystals were separated from the solids by their washing in 1 M nitric acid for one day. They were then washed with distilled water to remove the residual acid. Orangered perovskite crystals were obtained by their filtration using filter paper with pore diameters smaller than 110 µm (Toyo Roshi K. K.). ## Characterization of the Sr_{1-x}Ba_xTaO₂N microcrystals Crystalline phases of the solid surface and the orange-red powder products obtained by filtration were identified with XRD of Cu K α radiation. Lattice parameters were refined for the $\sqrt{2}\times\sqrt{2}\times2$ tetragonal superlattice of a primitive perovskite cell using the XRD data obtained from 2θ values of $10^\circ-120^\circ$ measured with a 0.02° step size and a count time of 5.0 sec. The Rietveld calculations [43] were employed for lattice parameter calculations. The solid products contained oxynitride perovskite $Sr_{1-x}Ba_xTaO_2N$ as their main crystalline phase, together with a trace amount of residual BaCN₂. The electrical properties of the solid fabricated using 30 wt% of BaCN₂ at 900 °C for 30 h were studied under nitrogen atmosphere using an LCR meter (4274A, Hewlett Packard) over a frequency range of $10^2 - 10^5$ Hz at room temperature. Ag paste (4922N, Du Pont) was applied to the polished flat surfaces of the solid product as electrodes. X-ray fluorescence spectroscopy (XRF, SEA 6000, Hitachi) was used for the analyses of cations, and combustion analyzer (EMGA-620W, Horiba) was employed for the oxygen/nitrogen contents using Si₃N₄ and Gd₂O₃ as references. Nitrogen content of Si₃N₄ was certificated to be 38.5 wt% by Ceramic Society of Japan. Commercially available Gd₂O₃ (99.9%, FUJIFILM Wako Pure Chemical) was used after its calcination up to 1000 °C to remove its adsorbates. CHN analyses were also performed to determine carbon contents. An electron probe micro analyzer (EPMA, JXA-8530F, JEOL) was used for preliminary compositional analyses. ICP-AES was employed to analyze the acidic solutions after removing the powder product by filtration. The microstructures of both the solid products and the powders after washing in acidic solution were examined by using SEM, scanning transmission electron microscope (STEM, HD-2000, Hitachi), and transmission electron microscope (TEM, JEM-2010, JEOL). Thin specimens for STEM and TEM observations were obtained using a focused gallium ion beam (FIB, JIB-4600F/HKD, JEOL). Each sample was mounted on a molybdenum grid with a trace amount of epoxy resin after which tungsten was deposited on the sample surface prior to slicing. Elemental distributions in the grains were determined with energy dispersive X-ray spectroscopy (EDX, JEM-2010F, JEOL) attached to TEM. #### 4-3. Results and discussion ## Melting and thermal decomposition of α-SrCN₂ Powder XRD patterns of the as-prepared α -SrCN₂ and its annealing products are depicted in Fig. 4-3. Single phase of white α -SrCN₂ powder was obtained by ammonolysis reaction of SrCO₃. Thermal behavior of α -SrCN₂ was examined using TG-DTA under flowing nitrogen. The α -SrCN₂ showed a large endothermic peak starting at 1020 °C without weight loss, as shown in DTA graph of Fig. 4-4. The shoulder of the lower temperature region (indicated with an asterisk) is attributed to melting of α -SrCN₂ and the larger endothermic peak may be due to the melting of Sr metal. After the melting, a slight weight loss began at 1070 °C. The black annealed product after TG-DTA measurement contained SrC₂ and Sr(OH)₂ as the main phases. SrC₂ was generated by the decomposition beginning at slightly higher temperature than the melting point of SrCN₂. Sr(OH)₂ may have been generated due to the hydrolysis reaction of SrCN₂ or the decomposition products such as strontium metal after taking out from furnace. # Melting behavior and polymorphism of BaCN₂ Crystal structure of BaCN₂ prepared by ammonolysis is tetragonal phase. [40] An endothermic DTA peak was observed at 910 °C on the *t*-BaCN₂ upon heating under N₂, as depicted in **Fig. 4-5**. This sample also showed a slight weight loss less than 0.3% above 910 °C, which is either due to a thermal decomposition of a residual BaCO₃ or a slight vaporization of BaCN₂. These data confirm that *t*-BaCN₂ melts at a
temperature slightly below the nitrogen release from oxynitride perovskites such as SrTaO₂N and BaTaO₂N. Decomposition of BaCN₂ to a mixture of BaC₂ and Ba metal was not observed below 1000 °C. Its decomposition temperature could not be determined because molten BaCN₂ gradually evaporated during experiments. The Gibbs energies were calculated for both the rhombohedral and tetragonal phases of BaCN₂. *t*-BaCN₂ was more stable than the *r*- phase by approximately 20 kJ/mol over the entire temperature range of -273.15 to 1227 °C (0 to 1500 K) as shown in **Fig. 4-6**. Because the rhombohedral phase with distorted BaN₆ octahedra [23] is less stable than the tetragonal phase [40], only the more stable *t*-BaCN₂ was taken into account in the following discussion. White solidified product after annealing and cooling of *t*-BaCN₂ at a rate of 10 °C/min contained *r*-BaCN₂ as shown in **Figs. 4-7(a)** and **(b)**. The transformation mechanism between these crystal structures is still unclear. Several XRD peaks of Ba(OH)₂ were detected in the annealed product. Ba(OH)₂ was formed probably because of the reaction of BaO generated by thermal decomposition of residual BaCO₃ in the asprepared BaCN₂ after taking out from furnace. Simple hydrolysis reaction of BaCN₂ **Fig. 4-3.** XRD patterns of **(a)** α -SrCN₂ powder and **(b)** its annealed sample. α -SrCN₂ was annealed at approximately 1100 °C for 5 h. Indexed diffraction peaks shown in **(a)** are α -SrCN₂ (JCPDS 51-541). Inverse triangles, diamonds, circles, and question marks indicate Sr(OH)₂ (ICSD 26029), graphite (ICSD 53781), SrC₂ (JCPDS 3-0542), and unknown phases, respectively. Fig. 4-4. TG-DTA curves obtained from α -SrCN₂ under a nitrogen flow. Asterisk indicates the endothermic event associated with melting. **Fig. 4-5.** TG-DTA curves obtained from *t*-BaCN₂ under a nitrogen flow. Asterisk indicates the endothermic event associated with melting. **Fig. 4-6.** Calculated Gibbs energy values of r- and t-BaCN₂ as functions of temperature. Broken and solid lines are r- and t- phases, respectively. **Fig. 4-7.** XRD patterns of t-BaCN₂ powders for (**a**) the as-prepared and (**b**) the annealed samples at approximately 900 °C for 5 h. Indexed diffraction peaks in (**a**) are t-BaCN₂ [40] and those in (**b**) are t-BaCN₂ (JCPDS 51-542). [23] Arrows and question marks indicate Ba(OH)₂ (ICSD 56828) and unknown phase (probably orthorhombic phase of BaCN₂, which has not been published yet), respectively. **Fig. 4-8.** Powder XRD profile of the $BaCN_2$ sample cooled down from 910 °C at a rate of 1.8 °C/h. Filled circles, diamonds, inverse triangles, and question marks indicate r-BaCN₂ (JCPDS 51-542) [23], t-BaCN₂ [40], unpublished orthorhombic $BaCN_2$, and unknown phases, respectively. is also a possible way to give Ba(OH)₂. Considering the fact calculation results indicate that t- phase is more stable one (**Fig. 4-6**), formation of r- phase upon heating and cooling of BaCN₂ melt seems to be contradictory. Additional slow cooling experiment from 910 °C at a rate of 1.8 °C/min was performed for the BaCN₂ melt on an alumina boat and tetragonal phase as well as one more novel polymorph of BaCN₂, orthorhombic BaCN₂ were generated in the solidified sample, as shown in **Fig. 4-8**. This suggests that the tetragonal phase is more stable than rhombohedral one. It seems to take very long time to increase the phase purity of t-BaCN₂ by cooling BaCN₂ melt. A similar phase transition of nitrogen-containing compound influenced by the cooling rate is reported in the α and β phases of Li₃BN₂. [60] ## Melting and thermal decomposition of CaCN₂ TG measurement under nitrogen flow was conducted on CaCN₂ powder containing 18 wt% of CaCO₃ mentioned above in an alumina crucible using a TG-DTA equipment. There was no significant weight change between 600 and 1000 °C as shown in **Fig. 4-9**, although a slight weight loss related to a desorption of the surface adsorbate was observed below 600 °C. Thermogravimetry at higher temperature was not conducted because the decomposition reaction of CaCN₂ is so intense that the TG equipment can be broken. Additional thermal studies were conducted by heating approximately 100 mg of CaCN₂ powder compacts in an alumina tube furnace. CaCN₂ compacts with a diameter of 5.9 mm were fabricated by uniaxial pressing at 46 MPa and then they were put on an alumina boat in a flowing nitrogen. The samples were heated either to 1330 or 1350 °C, which were slightly lower or higher than the reported melting point of CaCN₂ (1340 °C) [61] for 5 h. The sample changed from white powder to black solidified mass in the heating at 1350 °C. It was a mixture of CaCN₂ and CaO, but the CaO amount increased from the starting material as depicted in Fig. 4-10(b). The Ca metal in the thermally decomposed product was oxidized to CaO in picking up the product from the furnace. A trace amount of CaC₂ was also detected in the black solidified product. There was no apparent change on the heated product at 1330 °C. CaCN2 was assumed to melt at approximately 1340 °C as previously reported [61] and almost simultaneously decomposed to a mixture of CaC₂, Ca metal, and nitrogen. The thermal decomposition was not completed at 1350 °C and much amount of CaCN2 remained. Similar decomposition behavior was observed in the case of α -SrCN₂. The possibilities of side reactions were considered by some researchers and they reported the experimental results of the formation of a trace amount of Ca₃N₂ during heating CaCN₂ at 1000 – 1200 °C, but its proportions in the fired products are very small (less than 2%). [62] Moreover, no generation of Ca₃N₂ was observed in heating CaCN₂ at above 1250 °C [62], which does not contradict to our experimental results. So, we would like to assume that the amount of Ca_3N_2 formed in the heating procedure is small enough to ignore. The CaCN₂ and α-SrCN₂ powder compacts completely melted losing their original shape when they were annealed at 1350 and 1100 °C, respectively. However, their color changed from original white to black due to thermal decomposition. Conversely, *t*-BaCN₂ melted slightly above 900 °C but it remained as a white BaCN₂ solid mass at the bottom of alumina boat after cooling. These results also confirm that *t*-BaCN₂ starts to melt at approximately 900 °C without decomposition. It is suitable for the sintering and crystal growth of oxynitride perovskites. ## Computational study of the stability of alkaline-earth metal carbodiimides Thermal decomposition reaction of alkaline-earth metal carbodiimides can be expressed as follows; $$2AECN_2 \rightarrow AEC_2 + AE + 2N_2 \tag{4-1}$$ where AE indicates alkaline-earth metal. Decomposition temperature of metal carbodiimides will be able to be estimated by calculating the Gibbs energy values of the reaction (4-1). The parameters of the stability of crystal structure of ionic crystals are very useful to compare their melting points and decomposition temperatures. Pseudo-bonding dissociation energy values (H_{bond}) were calculated at -273.15 °C (0 K) and 0 Pa **Fig. 4-9.** TG curve of CaCN₂ powder contaminated with approximately 18 wt% of CaO. The sample was heated at a rate of 10 °C/min under flowing nitrogen. **Fig. 4-10.** XRD patterns and photographs of the mixture of CaCN₂ and CaO. **(a)** the asprepared powder obtained by the ammonolysis of CaCO₃ powder at 600 °C for 10 h. **(b)** ground powder of the black solid after heating at 1350 °C for 5 h. Diamonds, arrows, and circles indicate CaCN₂ (ICSD 25763), CaO (PDF 00-037-1497), and CaC₂ (ICSD 252755), respectively. by the total-energy calculations of AECN₂ and single atoms of alkaline-earth metal, carbon, and nitrogen. $$H_{\text{bond}} = E_0(AECN_2) - \{E_0(AE) + E_0(C) + 2E_0(N)\}$$ (4-2) Where E_0 values indicate the calculated potential energies of the metal carbodiimide and single atoms of its constituents. Calculated bonding energy values (H_{bond}) are summarized in **Table 4-1**. It gradually decreased with the experimentally determined melting points in an order of CaCN₂, α -SrCN₂, and t-BaCN₂ with an increase in ionic radii of alkalineearth metal ions. Gibbs energy values of each material at high temperature were obtained with phonon simulation in combination with quasi-harmonic approximation. [48] Calculation for gaseous nitrogen was performed by summing up the electronic total-energy E_0 , vibrational zero-point Helmholtz free energy $A_{\rm ph,0}$ calculated for crystalline α -nitrogen [55], literature values of the sublimation enthalpy $\Delta H_{\rm sub}$, entropy S, and the heat capacity $C_p(T)$ of gaseous nitrogen. [61] The following equation was employed as in previous publication. [63] $$G(N_2) = E_0 + A_{ph,0} + \Delta H_{sub} - TS + \int C_p(T) dT$$ (4-3) Gibbs energy values are plotted for the decomposition reaction (4-1) in **Fig. 4-**11. The temperature where the spontaneous decomposition of the alkaline-earth metal carbodiimide begins is the point of $\Delta G_r = 0$. The estimated decomposition temperatures of CaCN₂, α -SrCN₂, and t-BaCN₂ were 997, 951, and 912 °C, respectively. This means that both of CaCN₂ and α -SrCN₂ decompose below their melting points shown in **Table 4-1**. It is well known that the thermochemical behaviors of solid strongly depend on the lattice enthalpy values. [64] The decomposition temperature changed with the ionic size of alkaline-earth metals similarly to the melting points. The melts of CaCN₂ and α -SrCN₂ were not stable and they decompose rapidly in the present experimental study. The calculated decomposition temperature of t-BaCN₂ was 912 °C, which was slightly higher than the melting point (910 °C). Only the BaCN₂ melt is stable above its melting point to be used as a flux for crystal growth and sintering of alkaline-earth oxynitrides. ## Preparation of the microcrystals of
Sr_{1-x}Ba_xTaO₂N using a BaCN₂ melt Compacts made of mixtures of SrTaO₂N with *t*-BaCN₂ powder at various ratios were annealed. Their color changed from orange to reddish-orange or red during heating. The volume of the initial green-SrTaO₂N powder compact mixed with 30 wt% of oxynitride perovskite with the chemical composition of Sr_{0.83}Ba_{0.17}TaO₂N. The molar ratios of cations were determined using XRF. Oxynitride powder compacts without BaCN₂ did not densify during heating at 900 °C and their relative densities remained about 50%. This indicates that addition of BaCN₂ is effective to promote the densification **Fig. 4-11.** Decomposition reaction Gibbs energies of alkaline-earth metal carbodiimides as functions of temperature. Red, green, and blue lines indicate CaCN₂, α -SrCN₂, and t-BaCN₂, respectively. **Table 4-1.** Pseudo-bonding energy values (H_{bond}) and melting points of alkaline-earth metal carbodiimides. | Compound | H _{bond} / kJ mol ⁻¹ | Melting point / °C | |---------------------|--|--------------------| | CaCN ₂ | 2045 | 1340 [61] | | $lpha ext{-SrCN}_2$ | 2014 | 1020 | | $t ext{-BaCN}_2$ | 2012 | 910 | of oxynitride perovskite bulks. Some improvements of sintering process such as applying pressure will be necessary to achieve further densification of oxynitrides. Electrical properties of the ceramics with RD of 68.9% were investigated. A complex impedance plot was obtained for the abovementioned product, and it is depicted in Fig. 4-12. This plot exhibits only a part of a large circle, suggesting the large electrical resistivity of the solid. The data in Fig. 4-13 demonstrate that relative dielectric constant values of the solid ranged 68 – 90 over the frequency range of 10² – 10⁵ Hz. These values are slightly lower than those previously reported for post-ammonolysis products of SrTaO₂N ceramics sintered at high temperature. [59] This may be because the presence of a small amount of residual BaCN₂ flux lowered the volume fraction of SrTaO₂N in the present ceramic product. Dielectric loss values of the ceramics were less than 0.11. These dielectric loss values, together with the Cole-Cole impedance plot described above, indicate that an electrically insulating ceramics was obtained without losing nitrogen from oxynitride perovskite by using BaCN₂ flux at approximately 900 °C. Microstructures of the as-prepared $SrTaO_2N$ powder and fracture surface of the solid product fabricated with 30 wt% t-BaCN $_2$ were observed. The observations were performed before and after etching in citric acid. The as-prepared $SrTaO_2N$ powder was found to be composed of irregularly shaped, rounded particles 40-200 nm in size, as **Fig. 4-12.** Complex impedance plot of the solid product with a relative density of 68.9% at room temperature. The associated error bars are smaller than the symbol sizes and so are not provided. **Fig. 4-13.** Relative dielectric constant and loss values of the solid product with a relative density of 68.9% as functions of frequency at room temperature. The associated error bars are smaller than the symbol sizes and so are not provided. shown in **Fig. 4-14(a)**. After heating SrTaO₂N together with 30 wt% *t*-BaCN₂ at 900 °C for 30 h under nitrogen flow, the shape changed to be slightly angular and the particles were embedded in the solidified mass, as depicted in **Fig. 4-14(b)**. Cuboid or cubic particle shapes became evident after the citric acid etching as shown in **Fig. 4-14(c)**. Its higher magnification image in **Fig. 4-14(d)** demonstrates that the angular crystals were connected with one other along their straight boundaries. The color of the products obtained after washing in nitric acid gradually changed from orange in the original SrTaO₂N to red with increase in the amount of BaCN₂ flux in the starting mixtures, as shown in Fig. 4-15. The chemical compositions of these powder products were estimated using XRF in combination with combustion analysis, and the results are summarized in Table 4-2. These data indicate that total amount of strontium and barium in each sample was almost equivalent to that of tantalum in atomic percent. So the products can be represented by the formula Sr_{1-x}Ba_xTaO₂N. No carbon was identified based on a detection limit of CHN analysis (0.3 wt%) in the products after the nitric acid washing. The crystalline phases of each compound were oxynitride perovskites as shown in the XRD profiles of Fig. 4-16. In each case, all the diffraction peaks were shifted to lower angles compared to those of the as-prepared SrTaO₂N, and it is evident that the perovskite crystalline lattice expanded with increases **Fig. 4-14.** SEM images of **(a)** the as-prepared SrTaO₂N powder, **(b)** the fracture surface of the solid obtained after heating a mixed compact made with 30 wt% of BaCN₂, **(c)** the polished surface of the same sample after citric acid etching, and **(d)** a high magnification image of the same etched surface. **Fig. 4-15.** Photographic images of **(a)** the as-prepared SrTaO₂N, and the products obtained after washing from heated mixtures made with **(b)** 5, **(c)** 10, **(d)** 30, and **(e)** 50 wt% of BaCN₂. **Table 4-2.** Elemental contents of the powder products obtained from the mixtures made with various amount of BaCN₂ after heating at 900 °C for 30 h. Pure SrTaO₂N and BaTaO₂N were prepared by a solid state reaction under a flow of ammonia. The barium content is represented by x in Sr_{1-x}Ba $_x$ TaO₂N. | Preparation condition | Sr/wt% | Ba/wt% | Ta/wt% | O / wt% | N / wt% | Barium content x | |--|---------|---------|---------|---------|---------|------------------| | 5 wt% BaCN ₂ | 18.9(1) | 0.8(0) | 19.7(3) | 41.1(2) | 19.5(1) | 0.04 | | $10 \text{ wt}\% \text{ BaCN}_2$ | 18.2(2) | 1.8(2) | 19.5(1) | 40.6(3) | 19.9(1) | 0.07 | | $30 \text{ wt}\% \text{ BaCN}_2$ | 17.0(3) | 3.4(2) | 19.9(2) | 40.0(1) | 19.7(1) | 0.17 | | $50 \text{ wt}\% \text{ BaCN}_2$ | 16.3(1) | 4.2(2) | 19.8(2) | 39.3(3) | 20.4(2) | 0.23 | | SrTaO ₂ N(solid state reaction) | 19.7(1) | 0.0 | 19.8(2) | 41.4(3) | 19.1(1) | 0.0 | | BaTaO ₂ N(solid state reaction) | 0.0 | 21.2(2) | 21.0(1) | 39.4(2) | 18.4(1) | 1.0 | in the amount of BaCN₂ in the initial mixtures. The filtrate obtained from the nitric acid washing was found to contain strontium, barium, and tantalum. These results suggest that a portion of strontium in the original SrTaO₂N perovskite was exchanged with barium in the BaCN₂ flux to form perovskite-type solid solution Sr_{1-x}Ba_xTaO₂N. The color change of the products supports this hypothesis since there is a gradual change in color from orange in the case of SrTaO₂N to red in the case of BaTaO₂N. The refined lattice parameters for the tetragonal $\sqrt{2}\times\sqrt{2}\times2$ superlattice of the perovskite (Z=4) are plotted against the barium content (x) in Fig. 4-17. These plots indicate a linear transition of lattice parameters between the values for SrTaO₂N and BaTaO₂N. Barium ions in the products are in A-site of the perovskite oxynitride. Diffraction peaks were slightly broad and asymmetric on the cation substituted products in Fig. 4-16. It may suggest that the strontium exchange to barium was not homogeneous in the oxynitride grains. The particle shapes and sizes of the products heated at 900 °C for 30 h after the removal of residual BaCN₂ were examined and shown in **Fig. 4-18**. Grain growth was not observed in the case of the sample synthesized with 5 wt% of BaCN₂, probably because there was insufficient molten BaCN₂ to cover the surface of the original SrTaO₂N particles, and an equilibrium between solid and liquid phases was not attained. Angular and cubic particle shapes appeared with increase in the amount of BaCN₂ and the particles **Fig. 4-16.** XRD patterns of the Sr_{1-x}Ba_xTaO₂N powder products obtained by heating at 900 °C for 30 h with **(b)** 5, **(c)** 10, **(d)** 30, and **(e)** 50 wt% of BaCN₂. Patterns **(a)** and **(f)** are from SrTaO₂N and BaTaO₂N synthesized by the ammonolysis of their respective oxides. **Fig. 4-17.** The tetragonal perovskite superlattice parameters as functions of the barium content(x) in $Sr_{1-x}Ba_xTaO_2N$. simultaneously became larger, as shown in Figs. 4-18(b) - (d). The average grain sizes in the powders were estimated based on analyses of more than 100 particles in SEM images, and these values are summarized in Table 4-3. A sufficient amount of molten BaCN₂ evidently enhanced the crystal growth of the oxynitride perovskite, likely because the product precipitated more slowly from the more dilute BaCN2 solution. A longer heating duration was also effective at promoting crystal growth, and the maximum grain size of 3.7 µm was obtained after heating mixture made with 50 wt% of BaCN₂ for 50 h (Fig. 4-18(f)). Some faceting was observed on the surfaces of large crystals. The crystals grew to sizes that were 20 to 100 times those of the as-prepared SrTaO₂N particles (40 – 200 nm), as shown in Figs. 4-18(d) – (f). The crystals were either cuboid or cubic, in agreement with the perovskite-type structure of Sr_{1-x}Ba_xTaO₂N. It appears that a portion of the original irregular SrTaO₂N particles dissolved to the BaCN₂ melt, after which perovskite crystals with barium-rich compositions precipitated on the undissolved SrTaO₂N core reflecting a chemical composition of the melt. The larger crystals had more barium-rich compositions when larger amounts of the BaCN₂ flux was employed. The chemical composition of the melt also gradually changed with the crystal growth and as noted, the BaCN2 flux removed by washing with nitric acid was found to contain strontium and tantalum. **Fig. 4-18.** SEM images of $Sr_{1-x}Ba_xTaO_2N$ powders prepared by heating at 900 °C for 30 h with **(a)** 5, **(b)** 10, **(c)** 30, and **(d)** 50 wt% of $BaCN_2$, and by heating at 900 °C for **(e)** 10 and **(f)** 50 h with 50 wt% of
$BaCN_2$. Table 4-3. The average grain sizes of $Sr_{1-x}Ba_xTaO_2N$ crystals. | Preparation condition | Average grain size / nm | | | | |---------------------------------------|-------------------------|--|--|--| | SrTaO ₂ N(As-prepared) | 90 | | | | | BaCN ₂ 5 wt%, 900 °C-30 h | 130 | | | | | BaCN ₂ 10 wt%, 900 °C-30 h | 180 | | | | | BaCN ₂ 30 wt%, 900 °C-30 h | 310 | | | | | BaCN ₂ 50 wt%, 900 °C-5 h | 160 | | | | | BaCN ₂ 50 wt%, 900 °C-10 h | 440 | | | | | BaCN ₂ 50 wt%, 900 °C-30 h | 660 | | | | | BaCN ₂ 50 wt%, 900 °C-50 h | 920 | | | | High magnification STEM images of the oxynitride crystals grown in 30 wt% BaCN₂ at 900 °C for 30 h are depicted in **Figs. 4-19(a)** and **(b)**. The primary grains are connected with one another through straight boundaries. Grain surfaces evidently became smoother as a result of boundary diffusion during the liquid phase sintering process. The grains and grain boundaries were assessed using electron diffraction analysis. Electron diffraction was observed on the two encircled areas in **Fig. 4-19(c)**. The diffraction pattern generated by the grain in circle(1) was indexed as tetragonal $Sr_{1-x}Ba_xTaO_2N$ with an incident electron beam along <110>. The lattice parameters were estimated to be a = 0.571(2) nm and c = 0.811(1) nm. They are in agreement with the values obtained from **Fig. 4-17** using the chemical composition x = 0.17. Additional diffraction spots were observed as represented in **Fig. 4-19(2)** at their grain boundary in the circle(2) of **Fig. 4-19(c)**. The product crystals were observed to grow in size during their recrystallization from the molten BaCN₂. TEM-EDX mapping showed that all of the strontium, barium, and tantalum are contained at grain boundary, as shown in **Fig. 4-20**. The relatively large amount of these elements was present in the interiors of both grains and deposited tungsten weakened the signal intensity of all the three elements near the crystal edges especially at the lower right side of the image. The strontium-rich area inside of the crystal Fig. 4-19. (a and b) STEM, (c) TEM, and (1 and 2) electron diffraction images of $Sr_{1-}xBa_xTaO_2N$ particles prepared by heating at 900 °C for 30 h with 30 wt% of $BaCN_2$. Images (1) and (2) were obtained from the regions indicated in (c). Fig. 4-20. (a) TEM and (remainder) EDX mapping images of oxynitride grains prepared by heating at 900 $^{\circ}$ C for 30 h with 30 wt% of BaCN₂. contained a less amount of barium while exterior was barium-rich. This observation suggests that the reaction to form $Sr_{1-x}Ba_xTaO_2N$ occurred inhomogeneously from the outside to the inside of the grain. The slight asymmetry in the XRD peaks in **Fig. 4-16** supports this inhomogeneity. It is believed that the exteriors of the $SrTaO_2N$ grains dissolved to the $BaCN_2$ melt, after which the barium-rich oxynitride perovskite recrystallized around the residual $SrTaO_2N$ cores. The diffusion of Ba^{2+} ions may also have contributed to an exchange with Sr^{2+} ions in the perovskite crystal lattice during the heating at approximately 900 °C. #### 4-4. Conclusion In conclusion, *t*-BaCN₂ melts at 910 °C, which is slightly below its theoretically estimated decomposition temperature of 912 °C in DFT calculation. It will be a promising flux for the crystal growth and sintering of nitrides and oxynitrides. Melts of other alkaline-earth metal carbodiimides were not stable and they decompose to the mixtures of their metals, carbides, and nitrogen at high temperature. The molten BaCN₂ was found to be useful as a flux and the electrically insulating Sr_{1-x}Ba_xTaO₂N ceramics were obtained. These materials maintained their stoichiometric nitrogen contents. The molten BaCN₂ partially dissolved SrTaO₂N and formed the solid solution precipitant Sr_{1-x}Ba_xTaO₂N from the melt upon cooling. Cubic Sr_{1-x}Ba_xTaO₂N crystals were reddish orange in color. The compositional gradient in a single crystal suggests that the crystals grew from the melt in nonequilibrium condition in nitrogen flow. Hereafter, BaTaO₂N was selected as a target material to obtain homogeneous crystals using a BaCN₂ flux. #### **Chapter 4 References** - [1] D. Chen, D. Habu, Y. Masusbuchi, S. Torii, T. Kamiyama, S. Kikkawa, "Partial nitrogen loss in SrTaO₂N and LaTiO₂N oxynitride perovskites", *Solid State Sci.*, 2016, 54, 2–6. - [2] A. Hosono, Y. Masubuchi, S. Kikkawa, "Sintering behavior of dielectric SrTaO₂N under high pressure of nitrogen", *Ceram. Int.*, 2017, 43, 2737–2742. - [3] I. Burn, "Flux-sintered BaTiO₃ dielectrics", *J. Mater. Sci.*, 1982, 17, 1398–1408. - [4] G. K. Layden, "Polymorphism of BaTa₂O₆", Mat. Res. Bull., 1967, 2, 533–539. - [5] R. J. Gambino, F. Leonhard, "Growth of barium ferrite single crystals", *J. Am. Ceram. Soc.*, 1961, 44, 221–224. - [6] Y. Mizuno, H. Wagata, K. Yubuta, N. Zettsu, S. Oishi, K. Teshima, "Flux growth of Sr₂Ta₂O₇ crystals and subsequent nitridation to form SrTaO₂N crystals", *CrystEngComm*, 2013, 15, 8133–8138. - [7] T. Sugai, S. Hasegawa, G. Ohara, "Growth of strontium titanate single crystals from molten salts", *Jpn. J. Appl. Phys.*, 1968, 7, 358–362. - [8] H. Yamane, M. Shimada, S. J. Clarke, F. J. DiSalvo, "Preparation of GaN single crystals using a Na flux", *Chem. Mater.*, 1997, 9, 413–416. - [9] H. Yamane, F. J. DiSalvo, "Sodium flux synthesis of nitrides", *Prog. Solid State Chem.*, 2017, 51, 27–40. - [10] N. Arumugam, A. Honnerscheid, M. Jansen, "A new oxynitride compound of molybdenum, Na₃MoO₃N –synthesis via the azide route and structure", *Z. Anorg. Allg. Chem.*, 2003, 629, 939–941. - [11] M. Hojamberdiev, K. Yubuta, J. J. M. Vequizo, A. Yamanaka, S. Oishi, K. Domen, - K. Teshima, "NH₃-assisted flux growth of cube-like BaTaO₂N submicron crystals in a completely ionized nonaqueous high-temperature solution and their water splitting activity", *Cryst. Growth Des.*, 2015, 15, 4663–4671. - [12] M. Hojamberdiev, A. Yamaguchi, K. Yubuta, S. Oishi, K. Teshima, "Fabrication of La₂Ti₂O₇ Crystals Using an Alkali-Metal Molibdate Flux Growth Method and Their Nitridability To Form LaTiO₂N Crystals under a High-Temperature NH₃ atmosphere", *Inorg. Chem.*, 2015, 54, 3237–3244. - [13] N. Cordes, T. Bräuniger, W. Schnick, "Ammonothermal Synthesis of $EAMO_2N$ (EA = Sr, Ba; M = Nb, Ta) Perovskites and ¹⁴N Solid-State NMR Spectroscopic Investigations of $AM(O,N)_3$ (A = Ca, Sr, Ba, La)", Eur. J. Inorg. Chem., 2018, 5019–5026. - [14] N. Cordes, W. Schnick, "Ammonothermal Synthesis of Crystalline Oxonitride Perovskites LnTaON₂ (Ln = La, Ce, Pr, Nd, Sm, Gd)", Chem. Eur. J., 2017, 23, 11410–11415. - [15] C. Izawa, T. Kobayashi, K. Kishida, T. Watanabe, "Ammonothermal Synthesis and Photocatalytic Activity of Lower Valence Cation-Doped LaNbON₂", *Adv. Mat. Sci. Engin.*, 2014, 465720. - [16] H. Yamane, F. J. DiSalvo, "Synthesis and crystal structure of new oxynitride, Ba₃ZnN₂O", *J. Alloys Compd.*, 1996, 234, 203–206. - [17] T. Hashimoto, H. Yamane, "Ba₄GaN₃O", Acta Cryst., 2014, E70, i28. - [18] P. M. Mallinson, Z. A. Gàl, S. J. Clarke, "Two New Structurally Related Strontium Gallium Nitrides: Sr₄GaN₃O and Sr₄GaN₃(CN₂)", *Inorg. Chem.*, 2006, 45, 419–423. - [19] M. Down, M. Haley, P. Hubberstey, J. Pulham, E. Thunder, "Solutions of lithium salts in liquid lithium: preparation and X-ray crystal structure of the dilithium salt of carbodi-imide (cyanamide)", *J. Chem. Soc. Dalton Trans.*, 1978, 10, 1407–1411. - [20] A. Harper, P. J. Hubberstey, "Alkali Metal Salts of Cyanamide: Synthesis and Characterization of Na(HNCN), Na₄H₂(NCN)₃, and Na₂(NCN)", *J. Chem. Res.*, 1989, 7, 194–195. - [21] M. Becker, M. Jansen, "Synthesis of potassium cyanamide, and crystal structure determination by pareto optimization of the cost functions 'lattice energy' and 'powder intensities'", *Solid State Sci.*, 2000, 2, 711–715. - [22] P. Guido, G. James, "Metal amide catalyzed amination of olefins", *Pure & Appl. Chem.*, 1985, 57, 1917–1926. - [23] U. Berger, W. Schnick, "Synthesis, crystal structures, and vibrational spectroscopic properties of MgCN₂, SrCN₂, and BaCN₂", *J. Alloys Compd.*, 1994, 206, 179–184. - [24] N. -G. Vannerberg, "The Crystal Structure of Calcium Cyanamide", *Acta Chem. Scand.*, 1962, 16, 2263–2266. - [25] R. Riedel, A. Greiner, G. Miehe, W. Dressler, H. Fuess, J. Bill, F. Aldinger, "The First Crystalline Solids in the Ternary Si-C-N System", *Angew. Chem. Int. Ed. Engl.*, 1997, 36, 603–606. - [26] S. K. Deb, A. D. Yoffe, "Inorganic cyanamides. Physical and optical properties, and decomposition", *Trans. Faraday Soc.*, 1959, 55, 106–113. - [27] M. Cooper, "The Structures of Some Inorganic Cyanamides. II. The Structure of Lead Cyanamide", *Acta Cryst.*, 1964, 17, 1452–1456. - [28] X. Tang, H. Xiang, X. Liu, M. Speldrich, R. Dronskowski, "A Ferromagnetic Carbodiimide: Cr₂(NCN)₃", *Angew. Chem. Int. Ed.*, 2010, 49, 4738–4742. - [29] X. Liu, M. Krott, P. Muller, C. Hu, H. Lueken, R. Dronskowski, "Synthesis, Crystal Structure, and Properties of MnNCN, the First Cabodiimide of a Magnetic Transition Metal", *Inorg. Chem.*, 2005, 44, 3001–3003. - [30] X. Liu, L. Stork, M. Speldrich, H. Lueken, R. Dronskowski, "FeNCN and Fe(NCNH)₂: Synthesis, Structure, and Magnetic Properties of a Nitrogen-Based Pseudo-Oxide and -Hydroxide of Divalent Iron", *Chem. Eur. J.*, 2009, 15, 1558–1561. - [31] M. Krott, X. Liu, B. Fokwa, M. Speldrich, H. Lueken, R. Dronskowski, "Synthesis, Crystal-Structure Determination and Magnetic Properties of Two New Transition-Metal Carbodiimides: CoNCN and NiNCN", *Inorg. Chem.*, 2007, 46, 2204–2207. - [32] M. Krott, "Neue Carbodiimide der 3d-Übergangsmetalle", Shaker Verlag, Aachen (2009). - [33] M. Neukirch, S. Tragl, H. Meyer, "Syntheses and Structural Properties of Rare Earth Carbodiimides", *Inorg. Chem.*, 2006, 45, 8188–8193. - [34] G. Baldinozzi, B. Malinowska, M. Rakib, G. Durand, "Crystal structure and characterization of cadmium cyanamide", *J. Mater. Chem.*, 2002, 12, 268–272. - [35] O.
Reckeweg, F. DiSalvo, "EuCN₂ The First, but Not Quite Unexpected Ternary Rare Earth Metal Cyanamide", *Z. Anorg. Allg. Chem.*, 2003, 629, 177–179. - [36] A. Corkett, P. Konze, R. Dronskowski, "The Ternary Post-transition Metal Carbodiimide SrZn(NCN)₂", *Z. Anorg. Allg. Chem.*, 2017, 643, 1456–1461. - [37] M. Kubus, R. Heinicke, M. Ströbele, D. Enseling, T. Jüstel, H. -J. Meyer, "Synthesis of new structurally related cyanamide compounds $LiM(CN_2)_2$ where M is Al^{3+} , In^{3+} or Yb^{3+} ", Mat. Res. Bull., 2015, 62, 37–41. - [38] A. Perret, A. M. Krawezynski, "Recherches sur les cyanamides metalliques", *Helvetica Chimica Acta*, 1932, 15, 1009–1022. - [39] S. Nagai, G. Yamaguchi, "Studies on Synthesis of Calcium Cyanamide from Calcium Carbonate and Ammonia, I", *J. Soc. Chem. Ind. Japan*, 1940, 43, 219B. - [40] Y. Masubuchi, S. Nishitani, A. Hosono, Y. Kitagawa, J. Ueda, S. Tanabe, H. Yamane, - M. Higuchi, and S. Kikkawa, "Red-emission over a wide range of wavelength at various temperatures from tetragonal BaCN₂:Eu²⁺", *J. Mater. Chem. C*, 2018, 6, 6370–6377. - [41] M. Krings, M. Wessel, W. Wilsmann, P. Müller, R. Dronskowski, "Temperature-dependent synthetic routes to and thermochemical ranking of α and β SrNCN", *Inorg. Chem.*, 2010, 49, 2267–2272. - [42] K. Momma, F. Izumi, "VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data", *J. Appl. Crystallogr.*, 2011, 44, 1272–1276. - [43] F. Izumi, K. Momma, "Three-Dimensional Visualization in Powder Diffraction", *Solid State Phenom.*, 2007, 130, 15–20. - [44] S. -K. Sun, Y. Masubuchi, T. Motohashi, S. Kikkawa, "Direct synthesis of nearly single-phase BaTaO₂N and CaTaO₂N powders", *J. Eur. Ceram. Soc.*, 2015, 35, 3289–3294. - [45] G. Kresse and J. Furthmüller, "Efficiency of *ab-initio* total energy calculations for metals and semiconductors using a plane-wave basis set", *Comput. Mater. Sci.*, 6, 15–50. - [46] J. P. Perdew, K. Burke and M. Ernzerhof, "Generalized Gradient Approximation Made Simple", *Phys. Rev. Lett.*, 1996, 77, 3865–3868. - [47] S. Grimme, J. Antony, S. Ehrlich, S. Krieg, "A consistent and accurate *ab initio* parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu", *J. Chem. Phys.*, 2010, 132, 154104/1–19. - [48] A. Togo, I. Tanaka, "First principles phonon calculations in materials science", *Scr. Mater.*, 2015, 108, 1–5. - [49] R. P. Stoffel, C. Wessel, M. -W. Lumey, R. Dronskowski, "Ab initio thermochemistry of solid-state materials", *Angew. Chem. Int. Ed.*, 49, 2010, 5242–5266. - [50] R. P. Stoffel, R. Dronskowski, "Handbook of Solid State Chemistry", Vol. 5, R. Dronskowski, S. Kikkawa, A. Stein (Eds.), Wiley-VCH, Weinheim, New York (2017). - [51] Y. Yamamoto, K. Kinoshita, K. Tamaru, T. Yamanaka, "Redetermination of the Crystal Structure of Calcium Cyanamide", *Bull. Chem. Soc. Jpn.*, 1958, 31, 501–502. - [52] J. D. Hanawalt, H. W. Rinn, L. K. Frevel, "Chemical Analysis by X-Ray Diffraction", *Anal. Chem.*, 1938, 10, 457–512. - [53] A. J. King, G. L. Clark, "The Crystal Structure of Barium", *J. Am. Chem. Soc.*, 1929, 51, 1709–1711. - [54] J. Howe, C. Rawn, L. Jones, H. Ow, "Improved crystallographic data for graphite", *Powder Diffr.*, 2003, 18, 150–154. - [55] J. Donohue, "A refinement of the positional parameter in α -nitrogen", *Acta Crystallogr.*, 1961, 14, 1000–1001. - [56] M. Knapp, U. Ruschewitz, "Structural Phase Transitions in CaC₂", Chem. Eur. J., - 2001, 7, 874–880. - [57] V. Vohn, M. Knapp, U. Ruschewitz, "Synthesis and Crystal Structure of SrC₂", *J. Solid State Chem.*, 2000, 151, 111–116. - [58] V. Vohn, W. Kockelmann, U. Ruschewitz, "On the synthesis and crystal structure of BaC₂", *J. Alloys Compds.*, 1999, 284, 132–137. - [59] S. -K. Sun, Y. -R. Zhang, Y. Masubuchi, T. Motohashi, S. Kikkawa, "Additive sintering, postannealing, and dielectric properties of SrTaO₂N", *J. Am. Ceram. Soc.*, 2014, 97, 1023–1027. - [60] H. Yamane, S. Kikkawa, M. Koizumi, "High- and Low-Temperature Phases of Lithium Boron Nitride, Li₃BN₂: Preparation, Phase Relation, Crystal Structure, and Ionic Conductivity", *J. Solid State Chem.*, 1987, 71, 1–11. - [61] "CRC Handbook of Chemistry and Physics 97th Edition", W. M. Haynes (Ed.), CRC Press, Florida (2016). - [62] H. Krase, Y. Yee, "The mechanism and thermochemistry of the reaction between calcium carbide and nitrogen", *J. Am. Chem. Soc.*, 1924, 46, 1358–1366. - [63] M. Gilleßen, M. Lumeij, J. George, R. P. Stoffel, T. Motohashi, S. Kikkawa, R. Dronskowski, "Oxygen-storage materials BaYMn₂O_{5+δ} from the quantum-chemical point of view", *Chem. Mater.*, 2012, 24, 1910–1916. - [64] "Shriver & Atkins Inorganic Chemistry", P. Atkins, T. Overton, J. Rourke, M. Weller, F. Armstrong (Eds.), Oxford University Press, United Kingdom (2005). # Chapter 5 ## Preparation of BaTaO₂N Microcrystals Using a BaCN₂ Flux #### 5-1. Introduction Perovskite-type $BaTaO_2N$ has been expected to show relaxor-like ferroelectricity. [1,2] Highly-insulating single crystals are necessary to study its intrinsic electrical properties. The flux growth method is considered to be suitable for obtaining crystals of such thermally unstable materials. The use of molten $BaCN_2$ at approximately 900 °C for the preparation of $Sr_{1-x}Ba_xTaO_2N$ (x=0.04-0.23) microcrystals was mentioned in the last chapter. The crystal products were inhomogeneous and there was a compositional gradient from Sr-rich interior to Ba-rich exterior in the grains. Selecting $BaTaO_2N$ as a target material will be more sensible strategy to obtain homogeneous oxynitride crystals. In the present chapter, crystals of perovskite-type $BaTaO_2N$ were grown with molten $BaCN_2$ and the crystal growth mechanism is discussed through the microstructural analysis of the product using TEM. ## 5-2. Experimental ## Sample preparation Reddish BaTaO₂N powder with particle size of approximately 0.1 μm was synthesized by heating a powder mixture of BaCO₃ and Ta₂O₅ as mentioned in **Chapter**2. White tetragonal BaCN₂ (*t*-BaCN₂) powder was prepared by ammonolysis of BaCO₃ powder (FUJIFILM Wako Pure Chemical, 99.9%) at 900 °C for 10 h. [3] The BaTaO₂N powder was mixed with BaCN₂ of 17 – 67 mol% ratios in an agate mortar in a glove box filled with a dry nitrogen to avoid the oxidation and hydrolysis of BaCN₂ by the reaction with air. The powder mixture in an alumina crucible was enclosed in a hand-made tantalum container with a thickness of approximately 0.1 mm (Nilaco, > 99%) in a nitrogen atmosphere to suppress the loss of BaCN₂ flux due to its partial decomposition or vaporization above 910 °C. The tantalum container was then heated to 910 °C at a rate of 300 °C/h and then held for 30 min in an alumina tube furnace. The sample was slowly cooled to 880 °C at a rate of 1.8 °C/h. The effect of the cooling rate was studied by changing it to 300 °C/h in an additional experiment. The duration time at 910 °C was changed to 24 h to investigate the effect of flux loss above the melting point of BaCN₂. The sample was cooled down at a rate of 1.8 °C/h in this trial. The products were either reddish powder or solidified lumps, depending on the amount of t-BaCN₂ in the starting mixture. The products were washed with 1 M nitric acid and distilled water to remove the soluble residue, which was mainly excess BaCN₂. Reddish powder was obtained after filtration using filter paper with a pore size of less than 50 µm (Toyo Roshi K. K.). The sample preparation conditions, the product appearance after being taken out from the furnace, and the particle sizes of the washed products are summarized in **Table 5-1**. The crystalline phases of the samples were identified using powder X-ray diffraction (XRD; Ultima IV, Rigaku) with Cu K α radiation over the 2θ range of 10 to 90° with a step size of 0.02° and a scanning rate of 10°/min. Electron probe microanalysis (EPMA; JXA-8530F, JEOL) was conducted to analyze the elemental contents in the final washed product with grain size larger than 2 μ m. The average molar ratio was Ba:Ta:O:N = 23.0:22.1:37.0:17.9, which roughly corresponds to a ratio of 1:1:2:1, i.e., the crystal products are BaTaO₂N. The residual carbon contents in the BaTaO₂N crystal products were less than the detection limit (< 0.3 wt%) of combustion CHN analysis (CE440, Exeter Analytical Inc.). #### Microstructure observation Thin slice of the BaTaO₂N crystals embedded in the solidified BaCN₂ less than 100 nm in thickness was prepared with a focused ion beam (FIB) of gallium ion (SMI 3050SE, Hitachi High-Technologies). Transmission electron microscope (TEM, Titan3 G2 60-300, FEI Company) with Cs-spherical aberration corrector was employed for microstructure observation of the crystals. Energy dispersive X-ray spectroscopy (EDX) analysis was also performed to investigate the fluctuation in the molar ratio of Ba and Ta in the crystals. Furthermore, high angle annular dark-field scanning TEM (HAADF-STEM) images were acquired using the same TEM machine. The BaTaO₂N particle sizes and their surfaces were analyzed using a scanning electron microscope (SEM; JSM-6390 LVS, JEOL). The shapes of relatively large BaTaO₂N crystals were observed with an optical microscope (VHX-2000, KEYENCE). #### 5-3. Results and discussion ## Sample preparation Some grain growth was observed on the reddish products for all preparation conditions, as summarized in **Table 5-1**. **Fig. 5-1** shows powder XRD patterns for the grown product prepared with 67 mol% of BaCN₂. Secondary phases were most easily observed with XRD among the products prepared with various amounts of *t*-BaCN₂. Perovskite-type BaTaO₂N was the main phase in the annealed sample (**Fig. 5-1(a)**), which was contaminated with a trace amount of Ba-rich Ruddlesden-Popper (RP) type layered perovskite Ba₂TaO₃N and an unidentified impurity. Ba₂TaO₃N may have been formed by the reaction of BaTaO₂N perovskite with an excess Ba in the BaCN₂
flux. Oxygen was supplied from surface adsorbates both on BaTaO₂N and BaCN₂. The excess Ba was supplied as BaO to the BaTaO₂N perovskite, which formed Ba₂TaO₃N. Ba₂TaO₃N has been reported to easily decompose and react with oxygen and humidity in the air. [4] The Ba₂TaO₃N impurity thus disappeared and formed another impurity of BaCO₃ during the reaction with air for 1 h (Fig. 5-1(b)). The crystallinity of BaTaO₂N was significantly improved after a leaching procedure of the as-grown product in nitric acid (Fig. 5-1(c)). The full width at half maximum (FWHM) of the (321) diffraction peak for BaTaO₂N was significantly reduced from 0.31° to 0.22° by the leaching process. The leached product was highly crystalline BaTaO₂N without any impurities. The lattice parameter (a =0.4111(1) nm) of BaTaO₂N was consistent with the literature value (a = 0.41128 nm). [5] These results suggest some structural defects in the perovskite were removed by the nitric acid treatment, which resulted in the formation of highly-crystalline BaTaO₂N. Generally, oxynitride perovskites are stable to nitric acid, but Ruddlesden-Popper phases (e.g. Sr₂TaO₃N and Ba₂TaO₃N) containing rock-salt layers like SrO and BaO are decomposed by acid and humidity. #### **TEM observation** The microstructure of the product prepared with 67 mol% of BaCN₂ before nitric acid leaching was assessed. Square-shaped grains surrounded by a solidified BaCN₂ flux are apparent in the TEM bright field image of a thin slice of the as-grown product, as shown in Fig. 5-2(a). A selected area electron diffraction (SAED) pattern was obtained from the region indicated in this figure, and the presence of cubic BaTaO₂N was confirmed by applying an incident electron beam along the <110> direction, as shown in Fig. 5-2(b). No additional diffraction spots were observed. The lattice parameter was a = 0.415(3) nm, which was in good agreement with that of the acid-washed powder sample shown in Fig. 5-1(c) (a = 0.4111(1) nm) within experimental error. A high-magnification HAADF-STEM image (Fig. 5-2(c)) shows cation ordering in a portion of the encircled area in Fig. 5-2(a). Ba and Ta atoms can be distinguished in this image because their brightness levels are different depending on atomic numbers. This phenomenon is known as *Z*-contrast. Specifically, the Ta atoms appear to be slightly brighter than the Ba atoms. The atomic arrangement in Fig. 5-2(c) is consistent with a cubic perovskite-type structure observed from the <110> direction. The crystalline lattice was not well developed in the areas around the grain edges. The encircled area in Fig. 5-3(a) is observed along the <111> zone axis. The atomic arrangement of BaTaO₂N along this direction is clearly observed for the area labeled 1 at the bottom right of the higher-magnification image in Fig. 5-3(b). However, it is not clearly observed in the areas labeled 2 - 4, which have different atomic arrangements over ranges of approximately 3 - 10 nm. Fourier transformations of these Table 5-1. Crystal growth conditions, appearance of the products, and maximum grain sizes of BaTaO₂N crystals. | Product name | BaCN ₂ amount / mol% | Duration time at | Cooling rate | Appearance | Maximum | |----------------|---------------------------------|------------------|----------------------|----------------|-----------------| | | | 910 °C / h | / °C h ⁻¹ | after cooling | grain size / μm | | As-prepared(a) | - | - | - | Reddish powder | 0.15 | | (b) | 17 | 0.5 | 1.8 | Reddish powder | 0.2 | | (c) | 22 | 0.5 | 1.8 | Reddish powder | 0.7 | | (d) | 36 | 0.5 | 1.8 | Reddish powder | 2.2 | | (e) | 46 | 0.5 | 1.8 | Reddish solid | 3.1 | | (f) | 67 | 0.5 | 1.8 | Reddish solid | 0.9 | | (g) | 46 | 0.5 | 300 | Reddish solid | 0.5 | | (h) | 46 | 24 | 1.8 | Reddish solid | 0.4 | **Fig. 5-1.** Powder XRD patterns for BaTaO₂N grown with 67 mol% of BaCN₂. (a) Asgrown product, (b) that after exposure to air for 1 h, and (c) that after leaching in nitric acid and water. Diamonds, arrows, inverse triangles, and question marks indicate diffraction peaks for BaTaO₂N (ICSD 202763), Ba₂TaO₃N (JCPDS 47-1388), BaCO₃ (PDF 01-071-2394), and an unknown phase, respectively. images were performed using the Digital Micrograph software package (Gatan) for the areas 1-4 in Fig. 5-3(b). The (01-1) lattice spacing was estimated from the lattice fringes indicated by the yellow arrows in the same figure. The average spacing in area 1 was 0.293 nm, which was consistent with the literature value of 0.291 nm. [5] The average spacing estimated for area 3 was 0.316 nm, which is slightly larger than that for area 1. For area 4, the crystal orientation could not be identified from the Fourier transform image. The average lattice spacing in area 4 was approximately 0.333 nm, which is larger than that for area 1. One possible explanation is that the fringes in area 4 correspond to (004) plane of RP-type Ba₂TaO₃N with space group I4/mmm together with a = 0.411508(3) nm and c = 1.33778(1) nm. The c/4 value was calculated to be 0.334 nm (JCPDS 47-1388). The area out of BaTaO₂N crystals therefore consists primarily of a solidified BaCN₂ flux and BaTaO₂N containing a large amount of BaO in the form of stacking defects, similar to the results obtained in the work with SrTaO₂N-Sr₂TaO₃N system. [6] The chemical compositions of these areas were investigated using EDX. Measurement at each point was conducted for a short duration of 10 s to avoid sample drift. The Ba/Ta molar ratios are plotted in Fig. 5-4(b). The ratio was normalized for positions 2 – 4 against the value for the BaTaO₂N single crystal at position 1 in Fig. 5-4(a). A much greater amount of Ba was detected at the edge positions 2 – 4 than at the Fig. 5-2. (a) TEM bright-field image of a thin specimen. (b) SAED image of the encircled area in (a). (c) High-magnification HAADF-STEM image of the area encircled in (a). Green, yellow, and red circles in (c) indicate Ba, Ta, and O/N anions, respectively. The crystal structure model was drawn by the crystallographic imaging software VESTA. [7] Fig. 5-3. (a) TEM blight-field image of $BaTaO_2N$ crystals in the solidified $BaCN_2$ specimen. (b) HAADF-STEM image of the area encircled in (a). (1) – (4) Fourier transformation images generated from the respective areas in (b). highly-crystalline position 1. Ba-rich phases such as RP type Ba₂TaO₃N identified in powder XRD (Fig. 5-1(a)) are contained at the positions 2 – 4. Ba₂TaO₃N was generated as a thin skin layer around the BaTaO₂N perovskite crystals recrystallized from the BaCN₂ melt. The Ba-rich phase layers such as BaO were randomly inserted between the BaTaO₂N perovskite layers, stacking around the edges of the perovskite crystals. These phenomena explain why the crystallinity of the as-grown BaTaO₂N was slightly low and why a trace amount of Ba₂TaO₃N was evident in the powder XRD pattern in Fig. 5-1(a). These data suggest that the starting BaTaO₂N powder was dissolved in molten BaCN₂, followed by recrystallization of BaTaO₂N single crystals with a uniformed perovskite-type atomic arrangement and precipitation of solid phases including Ruddlesden-Popper type Ba₂TaO₃N, which partially contain an insertion of BaO layers. The formation mechanism of Ba-rich oxynitrides such as Ba₂TaO₃N can be surmised in several routes. (1) they were formed as metastable phases at the beginning of the recrystallization from the flux. These phases were generated at the interfaces between solid BaTaO₂N and molten BaCN₂ during the growth of BaTaO₂N crystals at high temperatures. That is, crystals of BaTaO₂N did not directly recrystallize from the solute of this compound in the BaCN₂ flux. (2) BaTaO₂N simply recrystallized from the BaCN₂ solvent, and then Ba-rich phases were formed by decomposition of BaCN₂ during heating. ## Growth of the BaTaO2N perovskite crystals The primary particles in as-prepared BaTaO₂N powder after ammonolysis were rounded form and 40 - 150 nm in size. They formed irregular aggregates approximately $2-3 \mu m$ in size, as depicted in Fig. 5-5(a). The shape and size of the aggregates changed with increases in the amount of BaCN₂ in the flux during heating at 910 °C for 30 min. A slight grain growth occurred in the cases of precipitation of BaTaO₂N from the 17 mol% BaCN₂ flux (Fig. 5-5(b)). Cubic crystals reflecting the euhedral form of the perovskitetype structure appeared at 22 mol\% as shown in Fig. 5-5(c). These powder products with small amount of BaCN₂ (≤ 22 mol%) are composed of submicron-sized tiny particles due to a lack of flux enough to grow BaTaO2N crystallites. Larger red crystals were observed when 46 mol% BaCN₂ was used, and the particle size increased to 3.1 µm at 46 mol% BaCN₂, as can be seen in Fig. 5-5(e). Micron-sized BaTaO₂N crystals were grown only in the cases in which the exterior region of the original BaTaO₂N particles were dissolved in the BaCN₂ flux and the interior of the BaTaO₂N particles are remained as the nucleus for crystal growth. In the samples containing micron-sized BaTaO₂N crystals (Figs. 5-5(d) and (e)), large crystals several microns in size coexisting with many submicron particles were observed. Slow precipitation from a dilute BaTaO₂N solution in the BaCN₂ flux was expected to increase the crystal size. Reddish color, which is the characteristic of stoichiometric BaTaO₂N [8,9], was confirmed by optical microscope observation of large grains (**Fig. 5-5(e)-2**). Rather, aggregates of small cubic crystals were present when high BaCN₂ concentrations (\geq 67 mol%) were used, as depicted in **Fig. 5-5(f)**. The original BaTaO₂N powder was completely dissolved in a large amount of molten BaCN₂ at high temperatures, and tiny particles recrystallized by homogeneous nucleation. In one trial, the cooling rate was increased from 1.8 to 300 °C/h using 46 mol% BaCN₂. Under these conditions, the crystal size was found to decrease to less than 0.5 μ m, as shown in Fig. 5-5(g). This suggests that slow cooling is
required to obtain larger BaTaO₂N crystals from a BaCN₂ flux. The effect of the hold duration at 910 °C was also investigated by changing the hold time from 30 min to 24 h using the 46 mol% BaCN₂. The maximum particle size from this trial was only 0.4 μ m, as is evident in Fig. 5-5(h). The formation of much smaller crystals compared to those obtained after 30 min (Fig. 5-5(e)) is attributed to a partial loss of the molten BaCN₂ flux by evaporation and decomposition during the heating process. Heating the reaction system to the melting point of tetragonal BaCN₂ (910 °C) is necessary to dissolve BaTaO₂N powder, but the duration at 910 °C should be as short as possible because BaCN₂ flux is lost above 910 °C, which results in a condensation of the solution to form only tiny crystallites. Therefore, it is important to maintain a sufficient amount of the BaCN₂ melt during crystal growth, Fig. 5-4. (a) HAADF-STEM image of the same area as in Fig. 5-3(b). (b) Ba/Ta molar ratio plots at the respective points in (a). Each value was determined by EDX quantification. Ba/Ta ratios of positions 2 – 4 were normalized with respect to that for position 1 (BaTaO₂N single crystal). **Fig. 5-5.** SEM micrographs of BaTaO₂N particles: **(a)** As-prepared ammonolysis product; **(b)** – **(f)** products generated in the flux at 910 °C for 30 min with 17, 22, 36, 46, and 67 mol% BaCN₂, respectively, after cooling at 1.8 °C/h and acid/water washing, and similar products obtained using 46 mol% BaCN₂ at 910 °C **(g)** for 30 min with cooling at 300 °C/h and **(h)** for 24 h at the rate of 1.8 °C/h. **[(e)-2]** Optical micrograph of the product **(e)**. even though this is difficult in practice. #### 5-4. Conclusion Cubic crystals of perovskite-type BaTaO₂N were grown to approximately 3.1 µm in size in molten BaCN₂. Micron-size is enough to investigate the piezoelectricity using piezoresponse force microscopy (PFM). TEM observations of BaTaO₂N crystals in solidified BaCN₂ suggested that crystals were grown through several nanometer-sized crystalline areas with a slightly larger lattice spacing than BaTaO₂N, such as RP phases like Ba₂TaO₃N. Further growth would be possible by maintaining the BaCN₂ melt. Growing furtherly larger BaTaO₂N crystals is expected to help clarify their intrinsic properties by allowing dielectric measurements. #### **Chapter 5 References** - [1] R. L. Withers, Y. Liu, P. M. Woodward, Y. I. Kim, "Structurally frustrated polar nanoregions in BaTaO₂N and the relationship between its high dielectric permittivity and that of BaTiO₃", *App. Phys. Lett.*, 2008, 92, 102907. - [2] Y. Hinuma, H. Moriwake, Y. Zhang, T. Motohashi, S. Kikkawa, I. Tanaka, "First principles study on relaxor-type ferroelectric behavior without chemical inhomogeneity in BaTaO₂N and SrTaO₂N", *Chem. Mater.*, 2012, 24, 4343–4349. - [3] Y. Masubuchi, S. Nishitani, A. Hosono, Y. Kitagawa, J. Ueda, S. Tanabe, H. Yamane, M. Higuchi, and S. Kikkawa, "Red-emission over a wide range of wavelength at various temperatures from tetragonal BaCN₂:Eu²⁺", *J. Mater. Chem. C*, 2018, 6, 6370–6377. - [4] S. J. Clarke, K. A. Hardstone, C. W. Michie, M. J. Rosseinski, "High-temperature - synthesis and structures of perovskite and n=1 Ruddlesden-Popper tantalum oxynitrides", *Chem. Mater.*, 2002, 14, 2664–2669. - [5] F. Pors, R. Marchand, Y. Laurent, "Structural study of BaTaO₂N and BaNbO₂N oxynitrided perovskites", *Mat. Res. Bull.*, 1988, 23, 1447–1450. - [6] Y. Suemoto, Y. Masubuchi, Y. Nagamine, A. Matsutani, T. Shibahara, K. Yamazaki, S. Kikkawa, "Intergrowth between the Oxynitride Perovskite SrTaO₂N and the Ruddlesden-Popper Phase Sr₂TaO₃N", *Inorg. Chem.*, 2018, 57, 9086–9095. - [7] K. Momma, F. Izumi, "VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data", *J. Appl. Crystallogr.*, 2011, 44, 1272–1276. - [8] M. Jansen, H. P. Letschert, "Inorganic yellow-red pigments without toxic metals", *Nature*, 2000, 404, 980–982. - [9] R. Aguiar, D. Logvinovich, A. Weidenkaff, A. Rachel, A. Reller, S. G. Ebbinghaus, "The vast colour spectrum of ternary metal oxyniride pigments", *Dyes Pigment.*, 2008, 76, 70–75. # Chapter 6 ## Ferroelectric Piezoresponse of BaTaO₂N Microcrystals #### 6-1. Introduction In the last chapter, BaTaO₂N crystals in several micrometer size were grown in a BaCN₂ melt and further knowledge about their dielectricity is expected to be provided from the evaluation of these crystals. In the last decade, some atomic force microscopy (AFM)-based electrical property measurement techniques suitable for the samples in nano and micron-size have been developed. This method called piezoresponse force microscopy (PFM) is useful for the investigation on the piezoelectricity in small dielectric samples through the displacement of AFM cantilever. In the measurements, the contact of the electrical power source to the sample is achieved by placing a conductive cantilever on the sample surface. [1-3] A schematic image of a measurement setup is depicted in Fig. 6-1(a). PFM technique has been employed for some measurements of oxynitride perovskite materials. Piezoresponses were studied on the thin ceramic surfaces of $SrTaO_2N$ and $BaTaO_2N$ in thicknesses of less than 10 μ m scratched off from their bulks in the applied voltage range of ± 10 V. Clear piezoresponse images were obtained over the range of ± 3 to 4 V for $SrTaO_2N$ [4] and ± 7 V for $BaTaO_2N$ as mentioned in **Fig. 6-1.** (a) A schematic image of PFM device system and (b) PFM signal graph of ferroelectrics with a complete polarization phase switching drawn with sample stretching (S) and electrical field bias (E). Where E_c and S_r are coercive field and remnant strain, respectively. Chapter 3. Local hysteresis polarization (P)-electrical field (E) loops were also acquired from a thin specimen of SrTaO₂N ceramic using a micron-sized Pt-deposited electrode over the applied voltage range of ± 12 V. [4] The signal intensity was found to increase with increasing voltage and showed a maximum in the range of approximately ± 8 V. However, its polarization could not be saturated because a serious current leakage appeared at high voltage range. This is presumably because a trace amount of electrically conductive nature is present even after post-ammonolysis of nitrogen-deficient oxynitride ceramics. [4] Highly-insulating oxynitride samples are desired to elucidate the occurrence of polarization phase alternation by making it possible to apply high electrical field to the samples. In other works, compressively strained SrTaO₂N, LaTiO₂N, and Sr_{1-x}La_xTa_{1-x}Ti_xO₂N ($x \approx 0.01$) thin films deposited on oxide perovskite crystal substrates also showed ferroelectric behaviors [5-8] below the bias voltage range of ± 8 V in the PFM measurements. They were observed only in very small domains with the sizes of 10-100 nm and a serious current leakage occurred during the measurements as in the cases of the abovementioned ceramic specimens. [4] The origin of the ferroelectricity in such inhomogeneous films is considered to be the compressive stress induced by the crystalline lattice size mismatches between the films and oxide substrates. [5-8] Most importantly, investigation on the electrical properties in self-standing single crystals is necessary to elucidate the emergence of ferroeletricity in oxynitride perovskites. In the present chapter, piezoresponse measurements were conducted on BaTaO₂N crystals using a piezoresponse force microscope (PFM). Ferroelectric behavior of BaTaO₂N is discussed with a concept of polar nano regions (PNRs) in the crystal structure of BaTaO₂N. Additionally, Raman spectroscopic measurements were conducted on a BaTaO₂N microcrystal to discuss its crystal structure in relation to the piezoresponse and the presence of non-centrosymmetric regions discussed in **Chapter 2**. ## 6-2. Experimental ### Sample preparation Reddish BaTaO₂N microcrystals were grown as mentioned in **Chapter 5**. Cubic crystals in size larger than 3 μ m were obtained with 46 mol% BaCN₂, heating at 910 °C for 30 min, and subsequent cooling at 1.8 °C/h. The sample after cooling was washed in 1 M nitric acid to remove soluble impurities mainly BaCN₂ and an obvious square shape of reddish crystal was observed as shown in an inset of **Fig. 6-2**. The single phase of perovskite-type $Pm\overline{3}m$ was confirmed using powder XRD with Cu K α radiation as in the profile shown in **Fig. 6-2**. Its lattice parameter of cubic perovskite a = 0.41118(3) nm well matches with the literature value (a = 0.41128 nm). [9] Piezoresponse measurements were conducted on micron-scaled BaTaO2N single crystals. Very recently, it has been pointed out that some false detections of piezoresponse may occur due to electrostatic force on the bared surfaces of dielectric samples as schematically depicted in Fig. 6-3. [10-12] In the present study, top electrodes were applied to the surfaces of the crystals to remove static electrons as shown in Fig. 6-4 (a). The crystals after leaching in nitric acid were dispersed by sonication in ethanol (99.5%, FUJIFILM Wako Pure Chemical). The suspension was then dropped on an Au bottom electrode deposited by sputtering with a thickness of approximately 100 nm on a Cu plate. The Cu plate was then annealed at 500 °C for 5 h in nitrogen atmosphere to complete a contact between the Au film and the bottom of BaTaO₂N crystals. Top electrode was fabricated by sputtering Pt (JFC-1100E, JEOL) in a thickness of approximately 150 nm on the entire surface of the Cu plate. The surroundings of each BaTaO₂N crystal were grooved with focused ion beam (FIB, JIB-4600F/HKD, JEOL) of gallium to separate top and bottom electrodes, as depicted in the SEM images of Figs. 6-4(b, c). **Fig. 6-2.** Powder XRD pattern of BaTaO₂N crystals prepared with 46 mol% BaCN₂, duration time at 910 °C for 30 min, and a cooling rate of 1.8 °C/h. The sample was
leached in 1 M nitric acid. The inset is an optical image of a crystal grain. Its lattice parameter of cubic perovskite a = 0.41118(3) nm well matches with the literature value (a = 0.41128 nm). [9] **Fig. 6-3.** A schematic image of the false detection of piezoresponse caused by electrostatic force on the surface of dielectric materials. [11] Fig. 6-4. (a) A schematic image of the processed BaTaO₂N sample and (b,c) SEM micrographs of the crystals after FIB grooving. #### **PFM** measurements The piezoelectricity of the BaTaO₂N crystals was investigated using a PFM technique that is applicable to nano-sized areas in tiny samples. [1-3] Electrical voltage was applied to BaTaO₂N crystals with electrodes on both sides as mentioned above. Switching spectroscopy piezoresponse force microscope with DART technique (SS-PFM, ASYLUM MFP-3D, Oxford Instruments) was employed in an electrical field bias of up to ± 100 V through a silicon probe coated with Ir metal (ASYELEC-01) and a stiffness of 0.77 N/m. SS-PFM was measured in a temperature range of up to 120 °C. The maximum applied electric field was roughly estimated as 460 kV/cm. ## Raman spectroscopy Subsequently Raman spectroscopic measurements were conducted on a BaTaO₂N crystal at room temperature. Nd:YAG laser beam with a wavelength of 514.5 nm and a diameter of 1 μm was irradiated on the surface of a BaTaO₂N crystal with a size larger than 2 μm. The energy output was optimized to be less than 150 mW to avoid the decomposition of BaTaO₂N during measurements. Measurements were conducted using monochromaters (Triple Monochromator, PDPX, Photon Design for ~200 cm⁻¹ and Triple Monochrometer, T64000, Jobin Yvon for ~800 cm⁻¹). #### 6-3. Results and discussion Electrical short was avoided by forming an island capacitor structure, which was fabricated by the FIB grooving of a Pt deposited side-wall connected to the bottom Au electrode and copper substrate (see Fig. 6-4). A square region with dimensions of 2.5 × 2.0 μm² was found out in the AFM topographical image of a BaTaO₂N single crystal covered with a Pt top electrode, as shown in Fig. 6-5(a). An AC electrical voltage of 2Vpp (peak to peak voltage) was subsequently applied to the present crystal at various temperatures. It was found that a much higher electrical voltage could be applied to the present highly-insulating crystals than the previous ceramic samples, which showed serious current leakage at voltages as low as 10 V as mentioned in Chapter 3. [4] Deformations were observed in the PFM measurements over the temperature range of 30 to 90 °C under an electrical voltage of less than 40 V, but there was no polarization switching over the voltage range applied. A PFM phase hysteresis loop and a PFM amplitude butterfly curve originating from the ferroelectricity were clearly observed at 120 °C in an applied electrical voltage of $\pm 100~V$ (that corresponds to the approximate electrical field of ±460 kV/cm), as shown in Fig. 6-5(b) and (c). The coercive field was estimated to be 250 kV/cm, according to the phase and amplitude signals, although a higher voltage was required to induce clear piezoresponse phase switching. In a preliminary experiment on another crystal, polarization phase alternation was observed at high temperature (e.g. 100 °C), while no phase switching was detected in the same voltage range at 30 °C as shown in **Fig. 6-6**. This suggests that polarization phase in PNRs could be more easily altered by the assist of heat as in the cases of typical relaxor ferroelectrics like Pb(Mg_{1/3}Nb_{2/3})O₃. [13] The difference of coercive fields of the samples shown in **Figs. 6-5(b,c)** and **6-6(c)** may be due to the difference of the sizes and polarization directions of PNRs contained in the crystals. Note that an electrostrictive effect was observed in the amplitude curve due to application of a very high voltage. Here, the polarization(P)-electric field(E) hysteresis loop should be measured; however, it is very difficult to execute for the following reasons; (1) enough charge could not be obtained using an island system because of the very small top electrode size, and (2) artificial charge from the air capacitor between the cantilever and top electrode might be included in the measurement. A reliable capacitance value could not be obtained due to the same reason with as that given in (1). Although we could not exactly measure the P-E hysteresis loop, clear polarization switching was obtained in this SS-PFM measurement, indicating that BaTaO₂N single crystal is truly a ferroelectric material. The observed ferroelectric polar phase alternation is consistent with the presence of PNRs in BaTaO₂N, which has previously been suggested by many researchers as indicated by the favorability of cis-type anisotropic anion configurations and the formation of spontaneous polarization in oxynitride perovskites (Fig. 6-7(a)). [14-20] The nitrogen atoms form the *cis*-type configurations to consist the helical Ta-N chain motifs in the apical linkages to TaO₄N₂ octahedra. The PNRs in Fig. 6-7(a) are formed by the interaction between two kinds of helical Ta-N chain coil motifs; clockwise and anti-clockwise. These are present in the domain structures of PNRs even at room temperature, which is considered to be below the Burns temperature for this compound (Fig. 6-7(b)). [21] The concentration of these PNRs may be low, as suggested by the weak intensity of the SHG signal shown in Fig. 2-1 in Chapter 2, probably because of the disordering between oxygen and nitrogen atoms at 3c site. Also, the presence of noncentrosymmetric *Pmc2*₁ phase discussed in **Chapter 2** is consistent with the present ferroelectric piezoresponse. The polar domain size gradually grows with increases in the applied electrical field bias, as summarized schematically in Figs. 6-7(c) and (d). In the crystal in Fig. 6-5, the polarization was saturated above ± 250 kV/cm in the applied electric field to show the clear ferroelectric piezoresponse. The present crystals were sufficiently insulating so as to allow the application of electrical fields as high as ± 460 kV/cm, which is by far higher than the maximum values for ceramic samples reported in **Fig. 6-5. (a)** AFM topographical image of a BaTaO₂N crystal (indicated by the dotted red square), **(b)** piezoresponse amplitude curve obtained at 120 °C, and **(c)** its ferroelectric phase signal graph. **Fig. 6-6.** (a) AFM topograph of a thin BaTaO₂N crystal after FIB grooving process (indicated by the dotted red square), its piezoresponse at (b) 30 °C, and (c) 100 °C. Chapter 3 (up to approximately ± 10 V (= 12.5 kV/cm)). This characteristic enabled to saturate the polarization of BaTaO₂N crystals to produce clear butterfly-like PFM signal. Raman spectroscopy was performed on a BaTaO₂N microcrystal depicted in an optical image of **Fig. 6-8(a)**. Raman spectra obtained on a BaTaO₂N crystal is shown in **Fig. 6-8(b)**. It shows at least five Raman peaks. The profile appearance is completely different from the one of perovskite-type SrTiO₃ single crystal with a cubic $Pm\bar{3}m$ space group [23], which has only three Raman tensor elements. [24] This may suggest the presence of more distorted structure in BaTaO₂N. More detail regarding the Raman spectra is now under investigation. The situation that non-centrosymmetric regions are contained over the "average" centrosymmetric phase matches with the model of relaxor ferroelectrics with spontaneous polarization originating from PNRs. Here, the presence of PNRs was demonstrated by PFM measurements on BaTaO₂N single crystals. **Fig. 6-7. (a)** Two sets of polar nano regions in the crystal structure of BaTaO₂N with *cis*-type anion ordering, as simulated by molecular dynamics calculations. [17] Brown, green, blue, and purple spheres indicate Ba, Ta, O, and N, respectively. **(b)** Polar nano regions present in the average $Pm\bar{3}m$ cubic crystal lattice in which most of the oxygen and nitrogen atoms are randomly distributed at 3c sites. **(c)** Polar nano regions growing along the applied electric field. **(d)** Polarization saturated at applied bias higher than coercive field. Structural models were drawn using the VESTA software package. [22] **Fig. 6-8.** (a) Optical micrograph of a BaTaO₂N microcrystal (indicated with a red circle, approximately 2 μm in size), (b) Raman spectroscopic profile of a BaTaO₂N crystal. #### 6-4. Conclusion Highly-insulating BaTaO₂N microcrystals showed clear ferroelectric piezoresponses, indicating the presence of spontaneous polarizations that could be switched by applying an external electrical field at high temperature about 100 °C. The polarization switching without electrical leakage was observed in self-standing oxynitride perovskite solid samples for the first time. This finding clearly confirmed the presence of the ferroelectricity in this material, as a result of the formation of polar nano regions by anisotropic anion configurations without compositional inhomogeneity. The polar nano regions are believed to be generated in association with polar crystal structural units introduced by the cis-type TaO_4N_2 octahedra linkages. This hypothesis was supported by SHG measurement and the Rietveld fitting of a powder neutron diffraction profile using a polar structure model of $Pmc2_1$. The results of the PFM measurements are consistent with these structural studies. Furthermore, Raman spectroscopic studies on the $BaTaO_2N$ crystal provided a possibility of the presence of some distorted structure other than $Pm\overline{3}m$ space group. ## **Chapter 6 References** [1] D. A. Bonnell, S. V. Kalinin, A. L. Kholkin, A. Gruverman, "Piezoresponse Force - Microscopy: A Window into Electromechanical Behavior at the Nanoscale", *MRS Bulletin*, 2009, 34, 648–657. - [2] E. Soergel, "Piezoresponse force microscopy (PFM)", J. Phys. D: Appl. Phys., 2011, 44, 464003. - [3] A. Gruverman, M. Alexe, D. Meier,
"Piezoresponse force microscopy and nanoferroic phenomena", *Nat. Commun.*, 2019, 10, 1661. - [4] S. Kikkawa, S. -K. Sun, Y. Masubuchi, Y. Nagamine, T. Shibahara, "Ferroelectric response induced by *cis*-type anion ordering in SrTaO₂N oxynitride perovskite", *Chem. Mater.*, 2016, 28, 1312–1317. - [5] D. Oka, Y. Hirose, T. Fukumura, K. Sasa, S. Ishii, H. Matsuzaki, Y. Sato, Y. Ikuhara, T. Hasegawa, "Possible ferroelectricity in perovskite oxynitride SrTaO₂N epitaxial thin films", *Sci. Rep.*, 2014, 4, 4987. - [6] C. L. Paven, R. Benzerga, A. Ferri, D. Fasquelle, V. Laur, L. L. Gendre, F. Marlec, F. Tessier, F. Cheviré, R. Desfeux, S. Saitzek, X. Castel, A. Sharaiha, "Ferroelectric and dielectric study of strontium tantalum based perovskite oxynitride films deposited by reactive rf magnetron sputtering", *Mat. Res. Bull.*, 2017, 96, 126–132. - [7] F. Marlec, C. L. Paven, L. L. Gendre, R. Benzerga, F. Cheviré, F. Tessier, F. Gam, A. Sharaiha, "Deposition and dielectric study as function of thickness of perovskite oxynitride SrTaO₂N thin films elaborated by reactive sputtering", *Surf. Coat. Technol.*, 2017, 324, 607–613. - [8] N. Vonrüti, U. Aschauer, "Anion Order and Spontaneous Polarization in LaTiO₂N Oxynitride Thin Films", *Phys. Rev. Lett.*, 2018, 120, 046001. - [9] F. Pors, R. Marchand, Y. Laurent, "Structural study of BaTaO₂N and BaNbO₂N oxynitrided perovskites", *Mat. Res. Bull.*, 1988, 23, 1447–1450. - [10] J. Seidel, L. W. Martin, Q. He, Q. Zhan, Y. -H. Chu, A. Rother, M. E. Hawkridge, P. Maksymovych, P. Yu, M. Gajek, N. Balke, S. V. Kalinin, S. Gemming, F. Wang, G. Catalan, J. F. Scott, N. A. Spaldin, J. Orestein, R. Ramesh, "Conduction at domain walls in oxide multiferroics", *Nat. Mater.*, 2009, 8, 229–234. - [11] D. Seol, B. Kim, Y. Kim, "Non-piezoelectric effects in piezoresonse force microscopy", *Curr. Appl. Phys.*, 2017, 17, 661–674. - [12] N. Faraji, Z. Yan, J. Seidel, "Electrical conduction at domain walls in lead titanate (PbTiO₃) single crystals", *Appl. Phys. Lett.*, 2017, 110, 213108. - [13] D. Fu, H. Taniguchi, M. Itoh, S. Koshihara, N. Yamamoto, S. Mori, "Relaxor Pb(Mg_{1/3}Nb_{2/3})O₃: A Ferroelectric with Multiple Inhomogeneities", *Phys. Rev. Lett.*, 2009, 103, 207601. - [14] K. Page, M. Stoltzfus, Y. -I, Kim, T. Proffen, P. M. Woodward, A. K. Cheetham, R. - Seshadri, "Local atomic ordering in BaTaO₂N studied by neutron pair distribution function analysis and density function theory", *Chem. Mater.*, 2007, 19, 4037–4042. - [15] R. L. Withers, Y. Liu, P. M. Woodward, Y. I. Kim, "Structurally frustrated polar nanoregions in BaTaO₂N and the relationship between its high dielectric permittivity and that of BaTiO₃", *App. Phys. Lett.*, 2008, 92, 102907. - [16] B. Ravel, Y. I. Kim, P. M. Woodward, C. M. Fang, "Role of local disorder in the dielectric response of BaTaO₂N", *Phys. Rev. B*, 2006, 73, 184121. - [17] Y. Hinuma, H. Moriwake, Y. Zhang, T. Motohashi, S. Kikkawa, I. Tanaka, "First principles study on relaxor-type ferroelectric behavior without chemical inhomogeneity in BaTaO₂N and SrTaO₂N", *Chem. Mater.*, 2012, 24, 4343–4349. - [18] H. Wolff, R. Dronskowski, "First-Principles and Mollecular-Dynamics Study of Structure and Bonding in Perovskite-Type Oxynitrides ABO_2N (A = Ca, Sr, Ba; B = Ta, Nb)", J. Comput. Chem., 2008, 29, 2260–2267. - [19] M. Yang, J. Oro-Sole, J. A. Rodgers, A. Jorge, A. Fuertes, J. P. Attfield, "Anion order in perovskite oxynitrides", 2011, *Nat. Chem.*, 3, 47–52. - [20] Y. -R. Zhang, T. Motohashi, Y. Masubuchi and S. Kikkawa, "Local anionic ordering and anisotropic displacement in dielectric perovskite SrTaO₂N", *J. Cer. Soc. Jpn.*, 2011, 119, 581–586. - [21] G. Burns, F. H. Dacol, "Crystalline ferroelectrics with glassy polarization behavior", *Phys. Rev. B*, 2008, 28, 2527–2530. - [22] K. Momma, F. Izumi, "VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data", *J. Appl. Crystallogr.*, 2011, 44, 1272–1276. - [23] V. I. Merkulov, J. R. Fox, H. –C. Li, W. Si, A. A. Sirenkol, X.X. Xi, "Metal-oxide bilayer Raman scattering in SrTiO₃ thin films" *Appl. Phys. Lett.*, 1998, 72, 3291–3293. - [24] S. J. Cyvin, J. E. Rauch, J. C. Decius, "Theory of Hyper-Raman Effects (Nonlinear Inelastic Light Scattering): Selection Rules and Depolarization Ratios for the Second-Order Polarizability", *J. Chem. Phys.*, 1965, 43, 4083–4095. # Chapter 7 # Spark Plasma Sintering of BaTaO₂N Using a Molten BaCN₂ Additive #### 7-1. Introduction In the last chapter, an evidence of the ferroelectricity of BaTaO₂N crystals grown in a BaCN₂ melt was presented. The melting point of BaCN₂ (910 °C) is slightly lower than the nitrogen releasing temperature of BaTaO₂N (920 °C), and stoichiometric, excellently insulating microcrystals were obtained. Further target is the fabrication of polycrystalline BaTaO₂N ceramics without nitrogen loss during sintering to simplify the sample fabrication process and improve electrical insulation in the products compared to the high temperature sintering reported in **Chapter 3**. As mentioned in Chapters 4 and 5, the melt of BaCN₂ dissolves oxynitride perovskites and cubic oxynitride crystals precipitate. The BaCN₂ melt may be also useful to fabricate polycrystalline BaTaO₂N ceramics without nitrogen loss in the sintering process. It will wet the BaTaO₂N powder surface assisting the solute diffusion through the BaCN₂ solvent similarly to the case of liquid phase sintering. Spark plasma sintering (SPS) method will be beneficial in rapid sintering under pressure to avoid the thermal decomposition of BaTaO₂N. [1-5]. SPS is a densification technique on a pressurized powder compact assisted by external electrical field. Rapid heating can be performed through the Joule heating of conductive die and punches. [1-5] A typical equipment setup is depicted in **Fig. 7-1**. In the present chapter, BaTaO₂N powder was sintered with a BaCN₂ additive under a uniaxial mechanical pressure applied with an SPS equipment. The crystalline phases, microstructure, and electrical properties of the ceramic products were studied, to find out a possibility to obtain dielectric BaTaO₂N ceramics without the partial loss of nitrogen from the perovskite-type crystalline lattice. **Fig. 7-1.** An example of a tool setup of SPS furnace. [1] ## 7-2. Experimental ## Sintering of BaTaO2N powder BaTaO₂N and BaCN₂ powders were obtained by the ammonolysis of either powder mixture of BaCO₃ and Ta₂O₅ or BaCO₃, as mentioned in Chapters 2 and 4. The prepared BaTaO₂N powder of 0.8 g was then mixed with 0 - 20 wt% of BaCN₂ in a planetary ball milling system using zirconia balls with a diameter of 5 mm and 5 mL of hexane (> 95%, FUJIFILM Wako Pure Chemical) as a dispersion medium in a 45 mL zirconia pot. Mixing was performed at a rotation rate of 570 rpm for 10 min. This procedure was performed in nitrogen atmosphere to avoid the oxidation and hydrolysis of BaCN₂. The milled powder mixture was sintered into 1 mm-thick disc shape with a diameter of 1 cm using an SPS equipment (Spark plasma sintering system LABOX-1575, SinterLand Inc.). A schematic image of its sintering procedure is illustrated in Fig. 7-2. Approximately 500 mg of BaTaO₂N/BaCN₂ powder mixture was sandwiched between additive-free BaTaO₂N powder parts of about 150 mg. They were inserted into carbon punches and die covered with graphite sheet to avoid BaCN₂ contamination. The sample chamber was evacuated and then nitrogen gas (> 99.999%) was introduced up to 0.08 MPa prior to heating. Uniaxial mechanical pressure was applied to 100 MPa on the samples and the chamber was heated to approximately 900 °C at a rate of 200 °C/min and kept for the desired time of 1 – 10 min. Mechanical pressure was applied over the entire SPS process. First of all, the temperature of the carbon die was investigated. The temperature of carbon die slightly exceeded the melting point of BaCN₂ (910 °C) with a temperature setting of 900 °C. When only BaCN₂ powder was heated with the same temperature setting, it completely melted even in a short keeping time of a few minutes, confirming the presence of BaCN₂ melt for liquid phase sintering during heating. The sample preparation conditions and properties of the ceramic products are summarized in ### **Table 7-1**. # Characterization of the ceramic products The sintered ceramics were polished with a 1000-grit sandpaper to remove excess BaTaO₂N powder adhered to the ceramic surface. Their bulk densities were calculated with geometric method and relative density (RD) values were obtained assuming the products are pure BaTaO₂N (theoretical density = 8.69 g cm⁻³). [6] The amount of BaCN₂ in the ceramic products cannot be quantified because of a partial loss of molten BaCN₂ by its vaporization and partial decomposition at high temperature. Moreover, molten BaCN₂ reacts with the surface of BaTaO₂N grains to form Ba-rich Ruddlesden-Popper type oxynitride perovskites. The Archimedes method was not applicable in the present case because the ceramics in the present work contain a number of open pores, which makes it impossible to obtain the precise density values of the ceramic products. The crystalline phases of the polished ceramic surfaces were identified with XRD with Cu K α radiation over the 2θ range of $20 - 80^{\circ}$ with a scanning rate and step size of 10° /min and 0.02° . XRD profile fitting and the phase proportion calculation were conducted with a Rietveld software package (RIETAN-FP). [7] Chemical compositions of the ceramic products were studied using XRF for the molar ratios of Ba/Ta and combustion O/N analyzer for oxygen/nitrogen contents. Carbon contents were ignored for its small weight ratios less than the detection limit of CHN combustion analyzer (< 0.3 wt%, MICROCORDER JM10, J-Science Lab.). A thin slice of the ceramic product obtained with 5 wt% BaCN₂, keeping at 900 °C for 1 min, and uniaxial pressure of 70 MPa was prepared using FIB (SMI
3050SE, Hitachi High-Technologies). The microstructure and composition of the specimen in a thickness less than 100 nm was observed with a TEM (Titan3 G2 60-300, FEI Company) with Cs-spherical aberration corrector and EDS. Electrical properties of the ceramic product sintered with 5 wt% BaCN₂, at 70 MPa, and duration at 900 °C for 3 min (sample (e) in **Table 7-1**) were investigated with an impedance analyzer (4294A, Agilent Technologies, Inc.) through the electrodes applied by sputtering Pt (JFC-1100E, JEOL) in a thickness larger than 100 nm. Measurements were conducted at room temperature over a frequency range of $10^2 - 10^6$ Hz. #### 7-3. Results and discussion ## Effects of BaCN₂ additive and applied mechanical pressure Preliminary SPS processing was applied on BaTaO₂N powder with or without BaCN₂ additive to elucidate the effect of BaCN₂ on its densification. All the samples were heated at approximately 900 °C, which corresponds to the melting point of BaCN₂. No densification was observed on the additive-free BaTaO₂N powder. The powder mixtures containing some amount of BaCN₂ rapidly densified to the RDs larger than 66.5%. The RD values are plotted against BaCN₂ amount for the products SPSed for 5min or less in Fig. 7-3(a). BaCN₂ additive is obviously effective for rapid densification compared with the high temperature sintering mentioned in Chapter 3. In **Fig. 7-3**, samples sintered with 7 wt% BaCN₂ tend to show slightly lower RD values. This may be because BaTaO₂N solid particles are sometimes separated by molten BaCN₂, which disturbs the densification of BaTaO₂N. As for the case of the addition of 5 wt% BaCN₂, the distance between solid particles is appropriate due to the absence of too much amount of molten BaCN₂, to make the ceramic products a little Table 7-1. Sintering conditions and BaTaO₂N ceramic products fabricated by SPS method. | Name | Dwell time at 900 °C | Pressure | BaCN ₂ amount | RD | Nitrogen content (compared with the sample before sintering) | Note | |--------------|----------------------|----------|--------------------------|--------|--|-------------------| | a | 1 min | 30 MPa | 5wt% | 68.7% | Stoichiometric | Red, insulating | | b | 1 min | 70 MPa | 5wt% | 80.7% | Stoichiometric | Red, insulating | | c | 3 min | 30 MPa | 7wt% | 66.5% | Stoichiometric | Red, insulating | | d | 3 min | 30 MPa | 10wt% | 70.5% | Stoichiometric | Red, insulating | | e | 3 min | 70 MPa | 5wt% | 79.8% | Stoichiometric | Red, insulating | | \mathbf{f} | 3 min | 70 MPa | 7wt% | 72.1% | Stoichiometric | Red, insulating | | g | 3 min | 70 MPa | 10wt% | 83.0% | Stoichiometric | Red, insulating | | h | 3 min | 100 MPa | 5wt% | 80.1% | Stoichiometric | Red, insulating | | i | 3 min | 100 MPa | 7wt% | 76.9% | Stoichiometric | Red, insulating | | j | 3 min | 100 MPa | 10wt% | 82.4% | Stoichiometric | Red, insulating | | k | 5 min | 70 MPa | 5wt% | 84.1% | Stoichiometric | Red, insulating | | 1 | 10 min | 30 MPa | 3wt% | 78.6% | - | Black, conductive | | m | 10 min | 30 MPa | 5wt% | 97.6% | - | Black, conductive | | n | 10 min | 30 MPa | 10wt% | 98.0% | Deficient in 9.5% | Black, conductive | | 0 | 10 min | 30 MPa | 20wt% | Broken | - | Black, conductive | | p | 10 min | 70 MPa | 10wt% | 78.0% | - | Brown, conductive | | q | 60 min | 30 MPa | 5wt% | 93.5% | Deficient in 11.0% | Black, conductive | Fig. 7-2. A schematic image of the sample setup for the present SPS procedure. Fig. 7-3. Relative densities of BaTaO₂N ceramics as functions of (a) the amount of BaCN₂ additive and (b) applied uniaxial pressure. The plotted data are for the samples with stoichiometric nitrogen contents. denser. However, the reason why the 10 wt% samples became slightly denser than 7 wt% ceramics still remains unclear. Some penetration of molten BaCN2 into the BaTaO2N powder beds was detected by analyzing Ba/Ta molar ratios of the powder beds using XRF. Excess amount of Ba (by more than 5 mol%) compared with Ta was contained. This, evacuation of BaCN2 out of the main BaTaO2N/BaCN2 mixture, was significant when large amount of BaCN2 additive of 7 wt% or more was mixed before heating and high pressure was applied. So, the effect of BaCN2 amount in the initial mixtures on RD values cannot be compared quantitatively because a rich amount of molten BaCN2 was not utilized for densification effectively. Too much amount of BaCN2 (20 wt%, sample (o) in **Table 7-1**) resulted in ceramic products broken into tiny particles. The preferable BaCN2 amount was less than 10 wt% to keep the disk shape of the products. The effect of the applied mechanical pressure was studied as shown in Fig. 7-3(b). The powder mixture of BaTaO₂N with 10 wt% BaCN₂ did not densify at all in a heating without mechanical pressure at 900 °C for 1 h. The RD values increased to exceed 66.5% under the pressures higher than 30 MPa. Molten BaCN₂ was infiltrated between the BaTaO₂N particles to wet their particle surface in the squeezing under mechanical pressure. The RD values did not increase furthermore above 70 MPa. This may be because BaCN₂ melt was squeezed out from the main BaTaO₂N/BaCN₂ sample body to the upper and lower BaTaO₂N powder beds under the high pressures. BaTaO₂N powder was densified with 5 wt% BaCN₂ by changing heating duration at approximately 900 °C. Photographs of BaTaO₂N ceramics sintered for 3 min (sample (e)) and 60 min (sample (q)) are shown in **Fig. 7-4**. Red, and electrically insulating BaTaO₂N ceramics were obtained in the duration shorter than 5 min as shown in **Fig. 7-4(a)**. The heating for longer than 5 min resulted in black semiconductors (**Fig. 7-4(b)**). A part of nitrogen was lost from the oxynitride perovskite by a reducing atmosphere produced in the presence of graphite sheets, die, and punches. Keeping duration time up to 5 min is appropriate to obtain BaTaO₂N dielectric ceramics. Maximum RD value of the stoichiometric BaTaO₂N ceramics was 84.1% in sample (k). ## Sintering mechanism of BaTaO2N with BaCN2 XRD profile was observed on the polished BaTaO₂N ceramic surface sintered with 5 wt% BaCN₂ at 70 MPa and 900 °C for 5 min (sample (k)). The main crystalline phase is perovskite-type BaTaO₂N with a lattice parameter a = 0.411009(11) nm, which well matches with the literature value (a = 0.41128 nm). [6] A Ba-rich Ruddlesden-Popper type Ba₂TaO₃N appeared as a side phase about 5.8 wt% as shown in **Fig. 7-5**. Similar Ba₂TaO₃N impurity was observed in the crystal growth study on BaTaO₂N in a reaction between BaTaO₂N and BaCN₂. The excess oxygen in Ba₂TaO₃N impurity is supplied from the adsorbed oxygen and/or moisture on the surfaces of BaTaO₂N/BaCN₂ mixture and the inside of SPS equipment. The presence of Ba₂TaO₃N impurity suggests that the present densification of BaTaO₂N is not a simple liquid phase sintering. The material diffusion in densification is assisted by chemical reactions in which the perovskite dissolves and recrystallizes in molten BaCN₂ as it was between the BaTaO₂N main phase and the BaO intermediate formed in a partial oxidation of BaCN₂ as mentioned in Chapter 5. TEM blight field image was obtained on a thin specimen of the ceramics (sample (b) with RD = 80.7%) as depicted in Fig. 7-6(a). Compared with the primary particle size of as-prepared BaTaO₂N powder shown in Fig. 7-6(d) and (e), a slight grain growth seems to have occurred during SPS processes, although it is not significant. Grains in ceramics are connected via thin boundaries and some voids are observed in its microstructure. Large voids in the approximate grain size are present probably because the packing of starting powder was insufficient. Further increase in RD values will be attained by improving starting BaTaO₂N powder contacts by changing their particle sizes. EDS compositional analyses were conducted on several parts across a grain boundary in a high magnification high-angle annular dark field scanning TEM (HAADF-STEM) image (Fig. 7-6(b)). Molar ratios of Ba/Ta at each point were normalized with the value **Fig. 7-4.** Photographs of BaTaO₂N ceramics (e) and (q) sintered with 5 wt% BaCN₂ additive 900 °C for (a) 3 min and (b) 60 min, respectively. **Fig. 7-5.** XRD pattern of the polished ceramic surface sintered with 5 wt% $BaCN_2$, at 70 MPa and 900 °C for 5 min (sample (k), RD = 84.1%). Diamonds and arrows indicate $BaTaO_2N$ (ICSD 202763) and Ba_2TaO_3N (JCPDS 47-1388), respectively. **Fig. 7-6.** (a) TEM blight field and (b) HAADF-STEM images of a BaTaO₂N ceramic specimen with RD = 80.7% (sample (b)). (c) is Ba/Ta molar rations observed with EDS at several points in (b). (d) and (e) are blight field images of as-prepared BaTaO₂N particles obtained by ammonolysis. of the point 1 (an interior of BaTaO2N grain). The proportion of Ba gradually increased from the grain interior to the exterior and the maximum value was at the triple point (point 4 in Fig. 7-6(b)). The molten BaCN₂ spread out into the narrow grain boundary area by a mechanical pressure and wetted the surface of BaTaO2N grains. The BaCN2 flux is concentrated in triple points of the solidified BaTaO₂N grains. Sintering process in the present study can be explained as schematically illustrated in Fig. 7-7. The surface of BaTaO₂N grains is wetted by molten BaCN₂ to cover the boundaries as shown in Fig. 7-7(a). BaTaO₂N grains are then dissolved to the molten BaCN₂ and precipitates forming Ba-rich side phases like Ba₂TaO₃N on the surface region of the grains. This step is accompanied by a slight grain growth to connect BaTaO₂N particles as in Fig. 7-7(b). Finally, each BaTaO₂N grain is connected via thin boundaries of BaTaO₂N itself containing a small amount of Ba-rich components mainly the residual BaCN2 and Ba₂TaO₃N. Sometimes such Ba-rich constituents are confined in the triple points of the grown BaTaO₂N grains as shown in Fig. 7-7(c). SEM micrographs were observed on the as-prepared $BaTaO_2N$ powder and the
fracture surfaces of sintered $BaTaO_2N$ ceramics (sample (k)). Grains are well connected each other in the ceramics, but neither significant necking between the grains nor apparent grain growth are observed, despite its high RD = 84.1% as depicted in **Fig. 7-8**. All the grains were just bonded at their boundaries formed through the molten BaCN₂. Grain growth is not well enough generally in a short duration of SPS process even in sintering of oxide inorganic materials. [2] # Electrical properties of BaTaO2N ceramics The electrical properties were studied on the BaTaO₂N ceramic sample (e) at room temperature over a frequency range of $10^2 - 10^6$ Hz. The sample was relatively dense (RD = 79.8%) among the present products and well-characterized as mentioned above. Complex impedance plots shown in Fig. 7-9(a) indicate only a small part of a giant arc, suggesting the present ceramics is an insulator, even without post-ammonolysis. Fig. 7-9(b) shows its relative dielectric constants ε_r of 320 – 650 and dielectric loss tan δ of 0.04 - 0.19. These values are comparable with the best ones reported on the postannealed ceramics with RD = 73.0% sintered at high temperature (ε_r = 290 – 620 and tan δ = 0.04 - 0.4). Partial nitrogen loss was eliminated in the present sintering at 900 °C. The temperature is below the nitrogen releasing from BaTaO₂N and around the melting point of BaCN₂. In summary, fabrication of BaTaO₂N ceramics maintaining its nitrogen contents and electrically insulating properties was achieved by relatively low temperature sintering at 900 °C, without post-ammonolysis process required after the high temperature sintering accompanied by a partial decomposition. **Fig. 7-7.** Schematic images of the sintering process of BaTaO₂N involving molten BaCN₂. **(a)** wetting on the surface of BaTaO₂N grains, **(b)** grain growth in the dissolution and precipitation of BaTaO₂N via molten BaCN₂ flux, and **(c)** formation of a triple point after the sintering. Fig. 7-8. SEM micrographs of (a) as-prepared $BaTaO_2N$ powder and (b) fracture surface of a $BaTaO_2N$ ceramics with RD = 84.1% sintered with 5 wt% $BaCN_2$, 70 MPa mechanical pressure, and 5 min keeping at 900 °C (sample (k)). Fig. 7-9. (a) Cole-Cole complex impedance plots and (b) dielectric properties as functions of frequency of a BaTaO₂N ceramics (sample (e), RD = 79.8%) at room temperature. #### 7-4. Conclusion BaTaO₂N powder was sintered at the lowest temperature (approximately 900 °C) among its sintering studies, using a BaCN₂ additive under mechanical pressure in SPS equipment to avoide a partial nitrogen loss. BaTaO₂N grains were bonded through their dissolution and precipitation around their surface in BaCN2 melt. Minor reaction product, Ba-rich compound such as Ruddlesden-Popper type Ba₂TaO₃N, was present in grain boundaries and triple points of the ceramics. Rapid heating and cooling process in an SPS furnace were also effective to avoid a partial nitrogen loss from BaTaO₂N. The maximum relative density of 84.1% was observed on the BaTaO₂N ceramics maintaining the original nitrogen content. Both relative dielectric constants of 320-650 and losses of 0.04 - 0.19 in the present ceramics with RD = 79.8% are comparable with the previously reported values for post-ammonolysis product with RD = 73.0% sintered at high temperature ($\varepsilon_r = 290 - 620$, $\tan \delta = 0.04 - 0.4$). The present sintering process at around the melting point of BaCN₂ additive will be useful to fabricate commercially available relaxor ferroelectric ceramics based on BaTaO₂N oxynitride. # **Chapter 7 References** [1] W. Li, E. Olevski, J. McKittrick, A. L. Maximenko, R. M. German, "Densification mechanisms of spark plasma sintering: multi-step pressure dilatometry", *J. Mater. Sci.*, - 2012, 47, 7036–7046. - [2] R. Chaim, G. Chevallier, A. Weidel, C. Estournés, "Grain growth during spark plasma and flash sintering of ceramic nanoparticles: a review", *J. Mater. Sci.*, 2018, 53, 3087–3105. - [3] M. J. Li, L. M. Zhang, Q. Shen, T. Li, M. Q. Yu, "Microstructure and properties of spark plasma sintered AlN ceramics", *J. Mater. Sci.*, 2006, 41, 7934–7938. - [4] D. Salamon, Z. Shen, P. Pavol Sajgalik, "Rapid formation of α -sialon during spark plasma sintering: Its origin and implications", *J. Eur. Ceram. Soc.*, 2007, 27, 2541–2547. - [5] Z. Shen, M. Nygren, "Microstructural Prototyping of Ceramics by Kinetic Engineering: Applications of Spark Plasma Sintering", *Chem. Rec.*, 2005, 5, 173–184. - [6] F. Pors, R. Marchand, Y. Laurent, "Structural study of BaTaO₂N and BaNbO₂N oxynitrided perovskites", *Mat. Res. Bull.*, 1988, 23, 1447–1450. - [7] F. Izumi, K. Momma, "Three-dimensional visualization in powder diffraction", *Solid State Phenom.*, 2007, 130, 15–20. # Chapter 8 ## Conclusion This thesis is mainly focused on the development of sintering and crystal preparation procedures for perovskite-type BaTaO₂N to elucidate the emergence of ferroelectricity in oxynitride perovskites. The average crystal structure of BaTaO2N has been reported to be centrosymmetric $Pm\bar{3}m$ space group. Structural reinvestigation using SHG measurement and powder neutron diffraction profile fitting suggested that the real structure is noncentrosymmetric phase like *Pmc*2₁ forming PNRs, but most of the polar domains may be too small to be clearly detected in diffraction studies. Thermal decomposition and sintering behaviors of BaTaO₂N are similar to those of SrTaO₂N. TG-MS studies on BaTaO₂N disclosed that it releases a part of its nitrogen above 920 °C to form BaTaO₂N_{0.85} semiconductor. Further decomposition behaviors are strongly affected by its atmosphere. Most of perovskite-type lattice of BaTaO₂N_{0.85} was maintained above 1400 °C in nitrogen, whereas it completely decomposed to its component oxides and nitrides in helium. BaTaO₂N powder mixed with a small amount of a BaCO₃ additive was sintered in nitrogen atmosphere above 1350 °C in a BN crucible and subsequent postannealing in ammonia flow was necessary to recover stoichiometric nitrogen content and electrical insulation. The completely post-annealed ceramics with RD = 73.0% showed relative dielectric constants of 620 at 10^2 Hz and 320 at 10^8 Hz, slightly higher than the values reported for SrTaO₂N. These values were not affected in the applied frequency and temperature up to 150 MHz and 150 °C, respectively. The dielectric loss was less than 0.1 at higher frequency range than 10 kHz and it was nearly independent of frequency and temperature. For dense BaTaO₂N ceramics, a clear piezoresponse was observed at the applied voltages between $\pm 4 - 7$ V on the surface slice of dense BaTaO₂N ceramics with RD > 90%, confirming the presence of spontaneous polarization in BaTaO₂N as suggested in **Chapter 2**. However, a serious current leakage occurred during the measurements. To find out appropriate fluxes for the sintering and crystal growth of BaTaO₂N, melting behaviors of a series of alkaline-earth metal carbodiimides were investigated by experimental and computational approaches. CaCN₂ and alpha-phase of SrCN₂ melted at 1340 and 1020 °C, respectively, and both of them rapidly decomposed to their metals and carbides releasing nitrogen. On the other side tetragonal BaCN₂ melts at 910 °C and its melt was maintained without decomposition. This tendency is consistent with the DFT calculation results on the Gibbs energies of their decomposition reactions. Low melting point of BaCN₂ is attributed to its small lattice enthalpy. Micron-sized crystals of $Ba_{1-x}Sr_xTaO_2N$ (x = 0.04 - 0.23) oxynitride solid solutions and $BaTaO_2N$ were effectively grown up using $BaCN_2$ as a solvent at approximately 910 °C. For $Ba_{1-x}Sr_xTaO_2N$, a compositional gradient from Sr-rich interior to Ba-rich exterior was observed. On the other side homogeneous $BaTaO_2N$ crystals were obtained by using a powder mixture of $BaTaO_2N$ and $BaCN_2$ as the starting materials. Cubic $BaTaO_2N$ crystals were obtained through the formation of Ruddlesden-Popper type Ba-rich side phases as a skin layer of crystals. Hence, crystals of $BaTaO_2N$ did not grow by a simple dissolution and recrystallization. Crystal size reached 3.1 μ m, which is enough for the piezoelectric measurements. A clear ferroelectric piezoresponse with a coercivity of $50-60~V~(\approx 250~kV/cm)$ of micron-sized BaTaO2N crystals was investigated using the PFM technique. BaTaO2N crystals showed by far higher electrical insulation than the post-annealed ceramics fabricated by high temperature sintering. This enabled to apply high electrical voltage enough to saturate its polarization. Polarization phase alternation was observed at high temperature of $100~^{\circ}$ C, while no polarization switching was observed at $30~^{\circ}$ C in the same voltage range. This is consistent with the temperature dependence of coercive field values of ferroelectrics. In summary, this research is the first demonstration of the ferroelectric polar phase alternation of excellently insulating oxynitride crystals. Its ferroelectricity can be explained by the formation of polar nano regions originate from anisotropic anion configurations. Sintering of BaTaO₂N at approximately 900 °C, which is below its nitrogen release temperature, was also tried using a BaCN₂ additive in a spark plasma sintering furnace. Both the presence of molten BaCN₂ and uniaxial pressure were effective to achieve densification of the ceramic products. Densification of the powder mixture of BaTaO₂N and BaCN₂ proceeded by dissolution and precipitation via BaCN₂ flux and a chemical reaction to form Ba₂TaO₃N. The ceramic product with a RD = 79.8% showed insulating behaviors and its dielectric properties are consistent with those of the post-annealed BaTaO₂N ceramics sintered at 1400 °C. Further research target of this category of oxynitrides will be the crystal growth of oxynitrides
to the size larger than several hundred micrometers and sintering of their fully-densified ceramics. These will be achieved by controlling the loss of molten fluxes and oxynitride particle morphologies. Such dense samples will enable to obtain a clear *P*- *E* ferroelectric hysteresis loops and reliable dielectric constant values. The author hopes this thesis will be a key for the future scientific researches and industrial applications of non-oxide solid state materials especially oxynitrides. # Acknowledgements I show sincere appreciations to everyone who has supported me over the nine years I spent at Hokkaido University. I especially would like to express my deep appreciation to my supervisors Professor Yuji Masubuchi, Emeritus Professor Shinichi Kikkawa, and Professor Mikio Higuchi for their invaluable guidance, discussions, and encouragements all the time over six years I belonged to the Laboratory of Structural Inorganic Chemistry. It is a pity that I cannot share such precious days with them as a group member anymore, and I thank everything I learned from them. I cannot forget the greatest cooperation for the piezoresponse measurements on my small crystal samples by Professors Mitsuru Itoh and Shintaro Yasui in Tokyo Institute of Technology. Also Professor Hisanori Yamane in Tohoku University provided me very productive advices for my crystal growth experiments. I am also grateful for Professor Richard Dronskowski, Dr. Ralf Peter Stoffel, Dr. Arno Görne, Dr. Ryky Nelson, Dr. Markus Mann, Mrs. Christina Ertural, and Mr. Damian Patrick Mroz in RWTH Aachen University in Germany, for their warm supports on both my computational thermochemical studies and daily life in Aachen. I am extremely grateful for invaluable comments and technical supports from Professors Yukio Hinatsu, Kiyoharu Tadanaga, Toshihiro Shimada, Yasuchika Hasegawa, Makoto Wakeshima, Masaki Takesada, Akira Miura, and Dr. Takashi Endo in Hokkaido University. Professors Tetsuo Uchikoshi and Takashi Takeda in National Institute for Material Science also gave me various important suggestions on my research works. Spark plasma sintering furnace was operated by Mr. Masashi Inoguchi in Murata Manufacturing Co., Ltd. and I thank Mr. Koji Murayama, Mr. Michiaki Iha, Dr. Hideaki Niimi, and Mr. Hiroshige Adachi for many discussions to develop the sintering method of oxynitrides. Piezoelectric measurements on a thin BaTaO₂N ceramic specimen were performed by the helps of Mrs. Kumiko Yamazaki, Mr. Takeshi Shibahara, and Mr. Yuki Nagamine in TDK Corporation. Their valuable experimental data and comments were quite helpful for me to polish my research works. I also thank Dr. Shi-Kuan Sun and Professor Teruki Motohashi, whose respective present affiliations are the University of Sheffield in UK and Kanagawa University, for supervising my experiments as the staffs of Kikkawa Laboratory in the year of 2014. Of course I appreciate all the supports by the students in my research group. Additionally, I am grateful for the financial supports by Asahi Glass Scholarship Foundation, Japan Society for the Promotion of Science (JSPS) Research Fellowship (grant no. 19J10301), and Hokkaido University International Collaborative Chemical Science Program (Scholarship for my visit to Aachen). Finally, I'd like to express my highest appreciation to my family for their generous supports. Without them, it was impossible for me to insist on my research to the end. #### **Publications** # Original papers for the present thesis - 1. <u>A. Hosono</u>, S. -K. Sun, Y. Masubuchi, S. Kikkawa, "Additive sintering and post-ammonolysis of dielectric BaTaO₂N oxynitride perovskite", *J. Eur. Ceram. Soc.*, 2016, 36, 3341–3345. - 2. <u>A. Hosono</u>, Y. Masubuchi, T. Endo, S. Kikkawa, "Molten BaCN₂ for the sintering and crystal growth of dielectric oxynitride perovskites $Sr_{1-x}Ba_xTaO_2N$ (x = 0.04 0.23)", *Dalton Trans.*, 2017, 46, 16837–16844. - 3. <u>A. Hosono</u>, Y. Masubuchi, Y. Nagamine, T. Shibahara, S. Kikkawa, "Piezoresponse and microstructure of BaTaO₂N ceramics", *J. Eur. Ceram. Soc.*, 2018, 38, 3478–3482. - 4. <u>A. Hosono</u>, R. P. Stoffel, Y. Masubuchi, R. Dronskowski, S. Kikkawa, "Melting Behavior of Alkaline-Earth Metal Carbodiimides and Their Thermochemistry from First-Principles", *Inorg. Chem.*, 2019, 58, 8938–8942. - 5. <u>A. Hosono</u>, Y. Masubuchi, S. Yasui, M. Takesada, T. Endo, M. Higuchi, M. Itoh, S. Kikkawa, "Ferroelectric BaTaO₂N Crystals Grown in a BaCN₂ Flux", *Inorg. Chem.*, 2019, 58, 16752–16760. - 6. <u>A. Hosono</u>, M. Inoguchi, Y. Masubuchi, K. Murayama, M. Iha, M. Higuchi, S. Kikkawa, "Spark Plasma Sintering of Dielectric BaTaO₂N close to the Melting Point of the BaCN₂ Additive", *J. Eur. Ceram. Soc.*, 2020, 40, 2317–2322. ## Other papers - 1. <u>A. Hosono</u>, Y. Masubuchi, S. Kikkawa, "Sintering behavior of dielectric SrTaO₂N under high pressure of nitrogen", *Ceram. Int.*, 2017, 43, 2737–2742. - 2. S. Kikkawa, <u>A. Hosono</u>, Y. Masubuchi, "Remarkable effects of local structure in tantalum and niobium oxynitrides", *Prog. Solid State Chem.*, 2018, 51, 71–80. - 3. Y. Masubuchi, S. Nishitani, <u>A. Hosono</u>, Y. Kitagawa, J. Ueda, S. Tanabe, H. Yamane, M. Higuchi, and S. Kikkawa, "Red-emission over a wide range of wavelengths at - various temperatures from tetragonal BaCN₂:Eu²⁺", *J. Mater. Chem. C*, 2018, 6, 6370–6377. - 4. H. Yamane, R. Yagi, <u>A. Hosono</u>, Y. Masubuchi, "Synthesis, crystal structure and properties of a quaternary oxide with a new structure type, BiGaTi₄O₁₁", *Acta Cryst.*, 2019, C75, 702–706. #### **Presentations** # Presentations on the achievements related to the present thesis - 1. <u>A. Hosono</u>, Y. Masubuchi, S. Kikkawa, "Sintering of perovskite-type SrTaO₂N using SrCN₂", CSJ Chemical Festival, Tokyo, Japan (October 2015). - 2. <u>A. Hosono</u>, Y. Masubuchi, T. Motohashi, S. Kikkawa, "Sintering of SrTaO₂N oxynitride perovskite by using SrCN₂ sintering aid", The 2015 International Chemical Congress of Pacific Basin Societies (PACIFICHEM 2015), Honolulu, USA (December 2015). - 3. Y. Masubuchi, <u>A. Hosono</u>, S. -K. Sun, D. Chen, S. Kikkawa, "Thermal stability and densification of perovskite type dielectric oxynitrides, *A*TaO₂N (*A* = Sr, Ba)", The 13th International Conference on Ceramic Processing Science (ICCPS-13), Nara, Japan (May 2016). - 4. <u>A. Hosono</u>, Y. Masubuchi, S. Kikkawa, "Sintering and dielectricity of BaTaO₂N perovskite oxynitride" Annual Meeting of the Chemical Society of Japan 2016, Hokkaido Branch, Muroran, Japan (July 2016). - A. Hosono, Y. Masubuchi, S. Kikkawa, "Additive sintering and post-annealing of dielectric BaTaO₂N oxynitride perovskite", The 18th International Symposium on Eco-materials Processing and Design (ISEPD2017), Naha, Japan (February 2017). - 6. Y. Masubuchi, D. Habu, S. -K. Sun, <u>A. Hosono</u>, S. Kikkawa, "Crystal structure and dielectric property of perovskite-type oxynitrides", The 18th International Symposium on Eco-materials Processing and Design (ISEPD2017), Naha, Japan (February 2017). - 7. <u>A. Hosono</u>, Y. Masubuchi, Y. Nagamine, T. Shibahara, S. Kikkawa, "Thermal stability and dielectricity of perovskite oxynitride BaTaO₂N", Annual Meeting of the Ceramic Society of Japan 2017, Tokyo, Japan (March 2017). - 8. <u>A. Hosono</u>, Y. Masubuchi, S. Kikkawa, "Flux Growth of $Sr_{1-x}Ba_xTaO_2N$ ($x = 0.05 \sim 0.25$) Oxynitride", The 9th International Symposium on Nitrides (ISNT2017), Sapporo, Japan (August 2017). - 9. <u>A. Hosono</u>, Y. Masubuchi, M. Higuchi, S. Kikkawa, "Growth of perovskite-type oxynitride BaTaO₂N small crystals in BaCN₂ melt", Annual Meeting of the Ceramic Society of Japan, Tokyo, Japan (March 2019). - 10. <u>A. Hosono</u>, M. Inoguchi, Y. Masubuchi, K. Murayama, M. Iha, M. Higuchi, S. Kikkawa, "Spark Plasma Sintering of Dielectric BaTaO₂N Using Molten BaCN₂ Additive", The 13th Pacific Rim Conference of Ceramic Societies (PACRIM13), Ginowan, Japan (October 2019). - 11. <u>A. Hosono</u>, Y. Masubuchi, S. Yasui, M. Takesada, M. Higuchi, M. Itoh, S. Kikkawa, "Preparation of ferroelectric BaTaO₂N perovskite microcrystals", Japan Society of Applied Physics Spring Meeting 2020, Tokyo, Japan (March 2020). ## Other presentations - 1. <u>A. Hosono</u>, Y. Masubuchi, S. Kikkawa, "The effect of hot isostatic pressing on the sintering behavior of dielectric SrTaO₂N", Annual Meeting of the Ceramic Society of Japan, Tohoku and Hokkaido Branch 2016, Sapporo, Japan (October 2016). - 2. <u>A. Hosono</u>, Y. Masubuchi, M. Higuchi, S. Kikkawa, "Preparation of BaTaO₂N crystals using BaCN₂ melt", Annual Meeting of the Ceramic Society of Japan 2018, Sendai, Japan (March 2018). - 3. R. Yagi, T. Yamada, H. Yamane, <u>A. Hosono</u>, Y. Masubuchi, "Synthesis, crystal structure and properties of novel compounds BiGaTi₄O₁₁ and (Bi_{1-x}Ga_x)_{2-δ}Ti₂O_{7-3δ/2}", Annual Meeting of the Ceramic Society of Japan, Touhoku and Hokkaido Branch 2018, Koriyama, Japan (November 2018).