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Abstract

As many people have enjoyed their well-beings and comfortable lives owing to the

industrial expansion, we are faced with new problems such as population growth, envi-

ronmental pollution, and aging infrastructure. In order to continue safe and sustainable

life in the future, increasing social e�ciency and convenience is the major issues. For

this purpose, spatial information processing attracts much attention because it helps

us to analyze and understand mobility of people and things as well as accompanying

consumption of resource and investment by using advanced computation and device

technologies.

This includes the following technologies: the �rst technology is the Global Position-

ing System (GPS) which is a geographical measurement system using satellites. The

United States developed the GPS with which smartphones, car navigation systems,

digital cameras, and activity trackers are equipped to measure time and coordinates

every moment. Although the GPS was opened for commercial use in 1993, advanced

countries developed and have operated their own Global Navigation Satellite System

(GNSS). The second technology is Digital Road Maps (DRM). Governments and pri-

vate companies have developed their own DRMs for political and commercial use,

respectively. Furthermore, some of the DRMs are socially maintained and distributed

under an open source license.

Real-time and wide-range positioning data made yielded by these technologies is

less informative on its own. However, using those technologies could help us to change

9



10 Abstract

demographic and tra�c behavior in such a way that can improve the e�ciency and

convenience of society. In this context, we focused on two problems in spatio-temporal

data analysis on people and things. One is discovery of areas with high ratio of events

against observed coordinates. For example, by considering the stay, in�ow, and out�ow

of people and things as events, it becomes possible to analyze the �ow of people in an

open space. The other is map-matching, which is useful for analyzing tra�cs on road

networks.

Cressie et al. have classi�ed research on geospatial information into geostatistics and

metric geography. The former treats values associated to coordinates as realizations

of random variables over two-dimensional numeric space, and the latter deals with the

relationship between values in a discrete space. Although there are few cross references

between those two academic results due to their individual development tracks, these

are collectively described as spatial statistics, which has been widely applied to public

health, city or transportation planning, store opening planning, prediction of crime

rate, and image analysis. As mentioned above, however, GPS records on their own are

less informative. Therefore, in order to apply the aforementioned academic results, it

is necessary to convert events and coordinates into quantitative data by aggregating

them. But when it comes to aggregation, it is di�cult to determine aggregation units

in the �rst place because people and things as well as their associated events behave

dynamically and interactively. On the other hand, analyzing tra�cs on road networks is

a relatively newer problem and thus computing a minimizing path in terms of distance

metric or object function has been of main interest. Contrarily, less attention has been

paid to estimating unobservable true paths from noisy and sampled GPS traces from

statistical perspective.

In this thesis, we study the followings to overcome the aforementioned di�culties.

For region discovery problems, we propose algorithms that maximize expected average

response of regions through the following two phases. The �rst phase solves an op-



11

timized association rule mining problem to discover regions with maximal con�dence

in a mesh irregularly split in accordance with GPS data. Employing the solution of

the �rst phase as its initial solution, the subsequent phase maximizes expected average

response by using an gradient-descent algorithm whose object function has a regular-

ization term de�ned as description length of regions. For map-matching problems, we

formalize a joint map-matching problem as a posterior maximization of observed tra-

jectories. Motivated by this formulation, we propose an algorithm that explores true

paths. After introducing preliminaries in Chapter 2, we show the contributions of this

thesis in the following chapters.

In Chapter 3, a novel algorithm is presented for discovering areas having locally

maximized con�dence of an association rule on a collection of location data. Although

location data obtained from GPS-equipped devices have promising applications, those

GPS points are usually not uniformly distributed in two-dimensional space. As a result,

substantial insights might be missed by using data mining algorithms that discover

x -monotone or rectangular areas under the assumption that the GPS data points are

distributed uniformly. The proposed algorithm composes transitively connected groups

of irregular cells that have locally maximized con�dence. There is thus no need to

assume the uniformity, which enables the discovery of areas not limited to a certain

class of shapes. Iterative removal of the cells in accordance with the local maximum

property enables the algorithm to perform 50 times faster than state-of-the-art ones.

In Chapter 4, we propose a new approach to discovering regions optimizing the

expected responses from data with a strong spatial bias. The methods available thus

far do not work well on data of that nature because they assume that coordinates and

responses are uniform and isotropic. To relax this assumption, we employ a hypothesis

that cells in an irregularly sized mesh are connected transitively. However, it requires

considerable computation and possibly over�ts data because there are exponentially

many transitive closures. Our contributions to overcome these problems are twofold:
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we prove the maximal property that shows how irrelevant cells are removed without

enumerating candidates in the hypothesis space, and we propose a description length

of transitive closure based on which the remaining regions are regularized. We show via

experiments that our algorithms do not reduce the precision with unknown data, even

when such data is neither uniform nor isotropic. In addition, we show that the regu-

larized region improves the precision by more than 20% compared to the unregularized

one.

In Chapter 5, we propose a joint map-matching for estimating unobservable paths

from GPS traces. This method is the �rst to maximize the posterior probability of

stochastic generative model, in which traces are emitted as vehicles travel along the

roads. We employed an EM algorithm to �nd the parameters of the generative model

as well as to evaluate the expectations of the latent variable, which is indeed the

estimated unobservable path. The EM algorithm is reduced to the exploratory search

of the route graph, which is the geometric graph that is most likely emitting the traces

and corresponds to the parameters of the model. Due to this stochastic formulation,

our method works well in presence of sampling noise in the traces. Our experimental

results show that the residual degradation of the estimated paths was no more than

7.0% even when they are sampled at a rate as low as 40%.

In Chapter 6, we summarize this thesis, and also point out the future direction of

this study.



Chapter 1

Introduction

1.1 Background

As many people have enjoyed their well-beings and comfortable lives owing to the

industrial expansion, we are faced with new problems such as population growth, envi-

ronmental pollution and aging infrastructure. In order to continue safe and sustainable

life in the future, increasing social e�ciency and convenience is the major issues. For

this purpose, spatial information processing attracts much attention because it helps

us to analyzes and understand mobility of people and things as well as accompanying

consumption of resource and investment by using advanced computation and device

technologies.

The Global Positioning System (GPS) developed by the United States is a geo-

graphical measurement system by using satellites. It measures time and coordinates

every moment [76]. GPS was released for private use in 1993 and this made cars,

vessels, airplanes, and smartphones equipped with GPS receivers. And some of the de-

veloped countries developed and operated their own Global Navigation Satellite System

(GNSS). In addition, Wi-Fi and ID tags enabled indoor positioning where satellite com-

munication were di�cult. Because of all these technologies, it is now possible to collect

13



14 CHAPTER 1. INTRODUCTION

location history both indoors and outdoors, comprehensively and inexpensively. In this

thesis, the data obtained by these positioning systems is collectively referred to as GPS

data which is comprised of identi�cation number, positioning time and coordinates.

The aforementioned existence of various positioning systems suggests that the ap-

plication of location information is expected in many �elds such as transportation,

distribution, manufacturing, and marketing [21, 51, 78, 77, 59, 69, 75]. In particular,

the cluster and �ow analysis of people and things are highly anticipated in a wide range

of industries as long as people and things are handled. For example, it is used for plan-

nings of transportation network, city, delivery, signage placement, etc. Therefore, in

this thesis, we focus on GPS data, which is the center of digitization in the real world,

and study methods to estimate the accumulation and �ow of people and things from

the observed incomplete data.

Cressie et al. have classi�ed research on geospatial information into geostatistics and

metric geography. The former treats spatial data as a realization of random variables

over two-dimensional numeric space, and the latter deals with the relationship between

values in a discrete space [17, 18, 32, 6, 9, 52]. Although there are few cross references

between those two academic results due to their individual development tracks, these

are collectively described as spatial statistics, which has been widely applied to public

health, city or transportation planning, store opening planning, prediction of crime rate

and image analysis. In those studies, modeling the probabilistic process that caused the

spatial observations is of prominent interest, so it is considered useful for the purpose

of this thesis. However, even though GPS data represents spatial information indeed, it

is meaningless to apply the techniques from spatial statistics due to its asynchronous,

imprecise and incomplete nature in the following senses:

Asynchronous GPS devices measure coordinates in di�erent moments.

Inprecise GPS data has error because of neighboring buildings.
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Incomplete Data acquisition interval is not dense, or there is a defect.

As data analysis and pre-processing for GPS data with such properties, we are

interested in the following two problems: regional analysis and map-matching for �ow

analysis. In the next two sections, we will introduce each of the previous studies, clarify

the issues when applying to GPS data with the above three properties, and motivate

our research. The following sections outline the three main results of this thesis.

1.1.1 Regional analysis

This problem has been studied from di�erent literatures including applications of con-

gestion, convergence and divergence discovery [33, 77, 79, 71, 55], bichromatic discrep-

ancy and bump hunting, or box rule induction, from machine learning [22, 2, 26, 37],

optimized association rule mining over two-dimensional numeric space [28, 31, 63], and

cluster detection test in spatial epidemiology [68, 66, 46, 74, 23, 1]. The idea of those

approaches is that solving an optimization problem whose object function needs to be

estimated from data is di�cult because it is not easy to estimate said function. Instead,

those methods try to directly discover the optimized regions from the data.

Giannotti et al. [33] de�ned regions of interest (RoIs). An RoI is a popular, or

dense, area of points. Their PopularRegion algorithm extracts dense and rectangular

regions. Zheng et al. [77] de�ned stay regions, which are narrow clusters of stay points

where a subsequence of a trajectory is within given distance and time thresholds. Their

ExtractStayRegion algorithm extracts dense and rectangular regions of stay points with

sizes within d× d, where d is a given distance threshold. Zheng and Zhou [79] studied

convergence and divergence patterns representing aggregate and segregate motions,

respectively, as circular or rectangular RoIs.

In machine learning literature, bump-hunting or box rule induction [26, 37] and

bichromatic discrepancy [22, 2] have been formalized. Friedman et al. [26] studied

the maximization of averaged response in an axis-parallel rectangular hypothesis from
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point data. Dobkin et al. [22] studied bichromatic discrepancy of the axis-parallel

rectangular hypothesis, which is the number of di�erences between positive and nega-

tive examples. Notably, this is equivalent to the minimization of disagreement between

true and predictive class by de�nition, as well as the optimized gain association rule

mining.

In data mining literature, optimized association rule mining [30, 31, 28, 63, 57] has

been formalized. The goal is to obtain optimized instantiations in terms of support,

con�dence or gain of an uninstantiated association rule. Fukuda et al. [31, 28] pro-

posed algorithms that need a grid-like mesh to �rst aggregates GPS records for every

cell, and then they discover the regions with the highest score among a certain hypoth-

esis set such as a rectangle and x -monotone region. Rastogi and Shim [63] proposed

enumerating instantiations of numeric attributes before starting processing so that the

identi�ed instantiations do not overlap each other.

In geospatial information and epidemiological literature, the cluster detection test

(CDT) has been studied [47, 46, 68, 67, 23, 24, 60, 40]. The CDT is comprised of two

parts and the �rst part of maximizing Standard Mortality Rate (SMR) [10, 17, 46, 68,

67] relates to RoI discovery. Kulldor� et al.[46] proposed this framework and employed

the circular hypothesis space. Tango et al. [68, 67] proposed a hypothesis set consisting

of transitively connected segments in administrative districts.

Although they are from di�erent literatures, they are all related in the sense that

they discover optimal regions of their interested hypothesis like circles, rectangles, or

connected cells or districts. Note that scores of PopularRegion and ExtractStayRegion,

expected average response of bump hunting, con�dence of optimized association rule

and likelihood of CDT are equivalent. The di�erences lie on the hypothesis space that

they employ. Figure 1.1 and 1.2 respectively show rectangular and x -monotone regions.

The aforementioned studies are all superior ones in their literatures, though, they

are not directly applicable to the RoI discovery problems that handle GPS data because
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of the following reasons. First, those employing circles and rectangles as the hypothesis

space are implicitly assuming that GPS data and its response distribute isotropic and

axis-parallel. This assumption is unrealistic for GPS application where external factors

such as geographical or weather conditions dominate, or in scenarios where the mutual

e�ects between people or objects dominate. Second, those employing meshes do not �t

because GPS data is less informative on their own. In order to apply the aforementioned

academic results, GPS data has to be aggregated to quantitative data. However, it is

not always easy to determine the regular and moderate size mesh because GPS data

has strong spatial bias as mentioned above. Finally, even if such a mesh were available,

the size of hypothesis space becomes huge and there is a high risk of over-�t to the

GPS data.

1.1.2 Flow analysis

Among various services enabled by spatial information processing, the analyses of �ows

of cars and people have enjoyed the most commercial success. For instance, analyzing

tra�c demands provides feedback to urban tra�c design and identi�cation of typical

routes improves the e�ciency of distribution services [44, 16, 45, 70, 53, 27, 7]. Map-

matching served as pre-processing for those tra�c applications and is commonly used

to attach observed trajectories on to a digital road map (DRM). Governments and

private companies have developed their own DRMs for political and commercial use,

respectively. Furthermore, some of the DRMs are socially maintained and distributed

under an open source license. The authors of [8] surveyed the range of map-matching

techniques, and those in [62] discussed recent developments and remaining problems.

Earlier proposals for on-line map-matching algorithms attached each observation to

one of the neighboring road segments by considering local connectivity of the segments

[73, 34, 15]. Then, o�-line map-matching algorithms were proposed, which consider

the topological distances between trajectories and paths on a DRM [25, 4, 3, 49, 78,
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Figure 1.1: Example of rectangular regions.
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Figure 1.2: Example of x -monotone regions.
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Figure 1.3: Example of transitive closures.
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38, 12, 64, 50]. Probabilistic map-matching algorithms have also been proposed for

estimating the road links from which observations are made [61, 5, 58]. Due to the

limited network bandwidth or the constraint on power consumption, map-matching

low-sample trajectories has attracted recent interest. One advanced algorithm utilizes

observations from other trajectories to map a trajectory onto a DRM [41]. Another

maps trajectories to the segments embedded in a DRM all at once by formalizing

map-matching as an optimization problem [48].

Most of these preceding approaches, however, mainly focused on assigning trajec-

tories to the routes that seem natural on a DRM, or computing a minimizing path in

terms of distance metric or object function has been of main interest. By contrast,

less attention has been paid to estimating unobservable paths, which are unaccessible

in practical situations. In addition, we must pay more attention to identifying major

streams in the trajectories to provide useful insight for realizing applications such as

demand analysis and urban design, as mentioned above.

1.2 Contributions

1.2.1 Maximizing Regions in Adaptive Quadtree Mesh

A novel algorithm is presented for discovering areas having locally maximized con�-

dence of an association rule on a collection of location data. Although location data

obtained from GPS-equipped devices have promising applications, those GPS points

are usually not uniformly distributed in two-dimensional space. As a result, substantial

insights might be missed by using data mining algorithms that discover x-monotone

or rectangular areas under the assumption that the GPS data points are distributed

uniformly. The proposed algorithm composes transitively connected groups of irregu-

lar cells that have locally maximized con�dence. There is thus no need to assume the

uniformity, which enables the discovery of areas not limited to a certain class of shapes.
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Iterative removal of the cells in accordance with the local maximum property enables

the algorithm to perform 50 times faster than state-of-the-art ones.

1.2.2 Regularizing Regions by Description Length

In Chapter 4, we propose a method to discover regions optimizing the expected response

from data with strong spatial biases. Our method employs a hypothesis set consisting

of transitively connected cells in an irregularly shaped mesh. Figure 1.3 shows examples

of the regions discovered by the proposed method. By building the mesh adaptively

for a given set of data such that its cells have approximately the same numbers of

coordinates, we can prevent areas containing a small number of coordinates from being

assigned high priority, even if the coordinates are ununiformly distributed. Moreover,

because this hypothesis considers a variety of shapes, the proposed method allows us

to discover hotspots with non-isotropic responses.

By contrast, relaxing the hypothesis likely requires much computation, and the

discovered regions tend to over�t the data because the number of transitively connected

cells can be large. To overcome those problems, our contributions are as follows:

� We prove the maximal property that holds for cells outside of the optimized

region and propose a peeling procedure that iteratively removes irrelevant cells

without enumerating candidate regions.

� We introduce a description length of connected cells and propose a gradient

descent based pasting procedure that prevents the remaining regions from over-

�tting by employing this length as a regularization term.

1.2.3 Maximizing Posterior Joint Map-matching

In Chapter 5, we propose a joint map-matching method, which is formulated to maxi-

mize the posterior probability of a stochastic generative model. This model represents
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a process in which GPS devices on vehicles generate observations as they travel along

the paths, which are actually unobservable. Using this stochastic model whose latent

random variable represents an occurrence of a drive on a path, our method is able to

directly estimate the unobservable paths from the observed trajectories. Our contribu-

tions are as follows: �rst, we present the process that generates GPS observations and

formulate it as a stochastic generative model whose latent random variable represents

the occurrence of a drive on a path, and whose observed random variable represents

the distance between the path and the trajectory. Second, we formulate an EM al-

gorithm that maximizes the posterior probability of the generative model. Then, we

show that the log-likelihood of the posterior probability should be reduced to an object

function consisting of the residual of the trajectories from their maximizing paths and

the description length of the DRM. Finally, we present our algorithm, which itera-

tively explores the subgraphs likely to emit the observations. The experimental results

show that the residual degradation was within 7.0% even if we map-match trajectories

sparsi�ed at a rate of 40%.

1.3 Organization

In Chapter 2 we give the basic notations and important concepts used in this thesis.

We also refer the studies that introduced those concepts.

In Chapter 3, we propose the discovery of maximal connected regions in an adap-

tively sized mesh. After providing related works in Sec.3.1. we introduce the local

maximum property over location data on two-dimensional plane in Sec.3.2. We then

describe algorithms for extracting regions of interest in Sec.3.3. Next, we present exper-

imental results in Sec.3.4. We then present two applications and end with a summary

of the key points in Sec.3.5.

In Chapter 4, we propose the regularization of the connected regions by description
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lengths to maximize average response of the regions. After providing a brief review of

related works in Sec.4.1, we propose the framework of our algorithm and describe its

key features along with a few preliminaries in Sec.4.2. Next, we explain the algorithms

in Sec.4.3 and present our experimental results in Sec.4.4, in addition to describing

application of the algorithm to taxi �eet control. Finally, we present our concluding

remarks in Sec.4.5.

In Chapter 5, we propose the joint map-matching algorithm that maximizes poste-

rior probability after observing trajectories. After providing a brief review of related

works in Sec.5.1, we propose the new map-matching problem and describe its key fea-

tures along with a few preliminaries in Sec.5.2, followed by applications potentially

improved by combining the joint map-matching algorithm with conventional analysis

techniques in Sec.5.3. Next, we present our experimental results in Sec.5.4. Finally,

we conclude the paper and suggest future work in Sec.5.5.

In Chapter 6, we summarize this thesis and also point out the future direction of

this study.



Chapter 2

Preliminaries

2.1 Primary Data Structures

2.1.1 GPS observations

GPS data emitted by a device is comprised of time, latitude, longitude, and identi�ca-

tion number of object. It could be associated with other attributes. For example, data

from Controller Area Network (CAN) collects a lot of measurements from sensors in

a vehicle. They are recorded together with their GPS observation in an application.

Consequently, GPS records are in the form of (x, y, a1, · · · , am) where x and y are

longitude and latitude, respectively, and {aj}mj=1 are other attributes associated with

position x = (x, y). A device identi�er or time stamp could be one in aj.

Let n,m be natural numbers and i, j, k, p, q be non-negative integers. Consider a

point dataset S = { (xi, li) | i = 1, 2, · · · , n } where xi ∈ R2, li ∈ {0, 1}, each of which

is drawn iid from a probability distribution p(X, L) of random variables X ∈ R2 and

L ∈ {0, 1}. Let U ⊂ R2 be a two-dimensional region containing all records in S. Let

D ⊆ U be a region and D = U \ D be the complement region of D. We also denote

selection of coordinates from S as Sxy or Sx.

25
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2.1.2 Regions

In this section, we de�ne the regions that should be discovered. The existing methods

introduced in Chapter 1 employed their own hypothesis sets of regions, such as circular

or rectangular ones. Before describing those hypothesis sets, we de�ne a mesh and its

cells, as well as relation between cells to see if they share a border.

Let us consider a mesh and its cells as M = {ci}mi=1 where U =
∪

i=1,··· ,n ci and

ci ∩ cj = ϕ if i ̸= j. Note that this de�nition only requires cells to be exhaustive and

exclusive. It never requires cells to have a particular shape.

A grid-like mesh obviously follows the de�nition of mesh above. A mesh built using

a quad-tree, as shown in Fig.3.1, is another example of mesh. This is useful when

the distribution of points is biased because the number of points in each cell should

be nearly equal. Another example is a set of polygonal meshes like administrative

districts. This is useful when a mesh should be manually de�ned for some reasons.

Obviously, two cells may share their boundary and we call the shared part in the

boundary a border. In other words, by stitching borders so that they enclose a single

cell, we have a boundary of that cell. We call the border and the point at which two

consecutive borders meet an edge and a corer of that cell, respectively. The relation R :

M2 7→ {True,False} representing whether two cells share a border satis�es R(cj, ck) =

True i� the two cells share a border when j ̸= k.

In the following paragraphs, we explain the concrete hypothesis sets that have been

employed by previous studies.

Circular hypothesis is a class of regions whose shapes are circular with radius

r ∈ R and centered at (xi, yi) ∈ Sxy in the records.

H = {(x, y) ∈ U | (x− x0)
2 + (y − y0)

2 ≤ r where (x0, y0) ∈ U} (2.1)

It assumes isotoropy of observations and responses, however, it falls short for GPS

applications where geographical or weather conditions dominate. A circle could be
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constrained so its center is one of the observations and its radius is the distance to its

k -neighbors, which is denoted as neighborsk.

H = {(x, y) ∈ U | (x− xi)
2 + (y − yi)

2 ≤ r (2.2)

where (xi, yi) ∈ Sxy, r ∈ {
√

(xj − xi)2 + (yj − yi)2 | j ∈ neighborsk(i)}}.

This hypothesis was used in [47, 46].

Rectangular hypothesis is a class of regions whose shapes are axis-parallel rect-

angular.

H = {(x, y) | x ∈ [xl, xu], y ∈ [yl, yu] where (xl, yl), (xu, yu) ∈ U} (2.3)

It assumes axis-wise isotoropy of observations and responses, but is easier to design

e�cient algorithms. Considering all rectangles with di�erent observations in them, it

is enough to consider the following hypothesis.

H = {(x, y) | x ∈ [xi, xi′ ], y ∈ [yj, yj′ ] where xi, xi′ ∈ Sx, yj, yj′ ∈ Sy} (2.4)

This hypothesis was employed by [22, 37] and its size is O(n4). Some methods employ a

grid-like mesh, which split the domain U intom either vertically or horizontally. Let its

cells indexed by (p, q) where p, q = 0, · · · ,m− 1. In other words, we have intersections

at {(x(p), y(q)) | p, q ∈ {0, 1, · · · ,m}} in the mesh. By mapping the index (p, q) to the

cell cmp+q+1, the rectangular hypothesis over the grid-like mesh is given as:

H = {cmi+j+1 | x(i) ∈ [x(p), x(p′)), y(j) ∈ [y(q), y(q
′)) where p, p′, q, q′ ∈ {0, 1, · · · ,m}}.

(2.5)

This hypothesis was employed by [29, 28, 63].

x -monotone hypothesis is a class of closed regions who are undivided with any

vertical line. The formal de�nition of x -monotone hypothesis is given below:

H ={(x′, y′) | (x′, y′) ∈ D if y′min ≤ y′ ≤ y′max for xmin ≤ ∀x′ ≤ xmax} (2.6)

where

 xmin = min(x,y)∈D x, xmax = max(x,y)∈D x,

y′min = min(x′,y)∈D y, y′max = max(x′,y)∈D y
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The x -monotone hypothesis over the grid-like mesh is give below:

H ={cmi+j+1 | (x(i), y(j)) ∈ D if qi ≤ j < q′i for p ≤ ∀i < p′} (2.7)

where

 p = min(x(k),y(j))∈D k, p′ = max(x(k),y(j))∈D k,

qi = min(x(i),y(k))∈D k, q′i = max(x(i),y(k))∈D k

This hypothesis was employed by [29, 28].

Cluster hypothesis is a class of regions de�ned by using mesh M . We can enclose

an arbitrary region D on the mesh M by stitching borders. Formally, the cluster

hypothesis is de�ned as

H = {D | R+(cj, ck) = True for all cj, ck ∈ D} (2.8)

where R+ denotes the transitive closure of R+. We denote this hypothesis H as

R+ because the hypothesis is de�ned by using R+. This de�nition does not assume

isotropy. Tango et al. employed the cluster hypothesis, given administrative districts

as the mesh [67], although they imposed constraints on diameter of regions to ignore

unnaturally distorted ones.

Finally, we de�ne vector representation of region if it is on a mesh. D is denoted

as a column vector as

xD = (xDj)
m
j=1, where xDj =

 1 if cj ∈ D,

0 otherwise
(2.9)

We also de�ne zD ∈ Rm to introduce the continuous version of xD = σ(zD) ∈ (0, 1)m

where σ(·) is a sigmoid function. The continuous version is used when we execute the

pasting in Sec.4.2.2 to regularize the discovered regions.

2.2 Object Functions to Optimize Regions

In this section, we introduce object functions employed in existing methods to obtain

optimized regions. Some of them are mutually equivalent as shown in later chapters.
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2.2.1 Empirical error and average response

Bichromatic discrepancy is to minimize empirical error given below:

ErrS(D ∈ H) =
∑
i

(li = 0)⊕ (xi ∈ D). (2.10)

Dobkin et al. studied the theory on bichromatic discrepancy and presented an algo-

rithm that discover rectangular region minimizing the empirical error.

Let X ∈ R2 and L ∈ {0, 1} random variables which follow the joint probability

p(X, L). Average response is given below:

E[L | X ∈ D] =

∫
lp(l | x ∈ D)dl. (2.11)

The goal of box rule induction or bump-hunting [26, 37] is, given a dataset S, to obtain

D maximizing E[L|X ∈ D]. Note that p(X, L) is unknown. Thus, box rule induction

has two steps. It �rst iteratively peels either lower or higher end of the variables'

domain one at a time until the averaged response of the remaining rectangular region

stops decreasing, and it then performs pasting to ensure that the rectangular region

does not over�t the concrete training data.

2.2.2 Support, con�dence, and gain

An association rule has the form C1 → C2 where Ci(i = 1, 2) are logical conditions on

attributes of records. Their Boolean values are �xed by instantiating attributes with

values, although we omit them from the expression for simplicity. Each association

rule has associated support and con�dence. Let the support for condition Ci(i = 1, 2)

be the number of records satisfying Ci. It is represented as sup(Ci). The support for a

rule in the form C1 → C2 is then the same as the support for C1 while its con�dence
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is the ratio of the supports of conditions C1 ∧ C2 and C1:

sup(C1 → C2) = sup(C1), (2.12)

conf (C1 → C2) =
sup(C1 ∧ C2)

sup(C1)
. (2.13)

A rule is con�dent if its con�dence is not less than a given con�dence threshold θ.

A rule is ample if its support is not less than a given support threshold Z.

The hit and gain of a rule are de�ned as:

hit(C1 → C2) = sup(C1 → C2)conf (C1 → C2), (2.14)

gain(C1 → C2) = hit(C1 → C2)− θ sup(C1 → C2). (2.15)

Although many studies have considered various forms of the presumptive and ob-

jective conditions, here we consider the case in which both are conjunctions of atomic

conditions, which are aj = v for nominal attributes, aj ∈ [l, u] for numeric attributes,

and (x, y) ∈ D ⊂ R2 for location attributes.

In the optimized association rule mining, the presumptive condition can have unin-

stantiated atomic conditions. Atomic conditions are uninstantiated (resp. instantiated)

when one of v, [l, u], and D is a variable (resp. a value). If the uninstantiated and

instantiated conditions are separately written, the association rule U ∧ C1 → C2 ap-

pears. If Ui denotes an instantiation of U, Ui can be obtained by replacing variables in

U with values.

Optimized association rule mining is categorized into three types:

1. An optimized support problem is to discover con�dent instantiations that maxi-

mize the support.

2. An optimized con�dence problem is to discover ample instantiations that maxi-

mize the con�dence.

3. An optimized gain problem is to discover ample instantiations that maximize the

gain.
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The related works introduced in Sec. 3.1 consider some or all of those types of

problems. We concentrated on the optimized con�dence problem because it was the

most important problem for the geospatial applications in which we were interested.

Example 1 Consider the database of a social messaging service. Let a record in

the database be denoted by (x, y, id , year ,mon,mday , hour , photo), where photo is a

Boolean attribute indicating whether a photo is attached to the message. Let the con-

dition for position (x, y) ∈ D be uninstantiated by letting D be a variable and the

conditions hour ∈ [l, u] and photo = v be instantiated by letting [l, u] and v be values.

An uninstantiated association rule is thereby obtained.

((x, y) ∈ D) ∧ (hour ∈ [l, u])→ (photo = v),

where

 l = 5 : 00, u = 8 : 00,

v = True

To �nd an area where messages are likely attached to photos and posted in the early

morning, we solve the optimized con�dence problem by discovering ample instantiations

of variable D such that the con�dence of the uninstantiated rule above is maximized.

Note that either cell cj or region D includes some points in S. The number of points

in cj is called support of the cell and denoted as sj = sup(cj). The number of points

in cj such that li = 1 is called hit of the cell and is denoted as hj = hit(cj). Similarly,

sup(D) and hit(D) denote the support and the hit of region D. sup(cj) and hit(cj) are

represented by the column vectors, s = (sj)
m
j=1 and h = (hj)

m
j=1, respectively.

Given an association rule, optimized association rule mining is to discover instanti-

ations of the rule so that it maximize either support, con�dence, or gain. An attributes

could be a location as well as numeric or nominal. Fukuda et al. [30] solved optimized

support and con�dence problems on two-dimensional numeric attributes in rectangu-

lar hypothesis, and presented O(n) time algorithms. They also presented O(
√
n) time

algorithm for optimized gain problem in x -monotone hypothesis.



32 CHAPTER 2. PRELIMINARIES

2.2.3 Standard mortality rate

In spatial epidemiology literature, spotting regions with high SMR of a particular

disease has been of interest. The �nal goal is to spot the region with statistical signif-

icance, however, discovery of region with maximal SMR is important as its �rst step.

The SMR of region is formalized below:

SMR =

∑
ci∈D di∑
ci∈D ei

. (2.16)

where di and ei are number of death and expected number of population, respectively.

The expected number of population ei is corrected by age group. If the numbers in age

groups are not available, ei is identical to the number of population.

2.3 Map-matching Problem

In this section, we de�ne two map-matching frameworks. One is the single-track map-

matching that is employed by the joint map-matching proposed in Chapter 5. The

other is the multi-track map-matching as the joint map-matching is categorized to it.

We leave concrete conventional methods to the survey papers [8, 62] as there are a huge

number of studies. Many of them are categorized either of the frameworks de�ned later

in this section.

Let i, j be non-negative integers and k, n, p, q,N,K be natural numbers. We call

G = (V,E) a geometric graph, or simply a graph, where V = {(x , y) | x , y ∈ R} and

E = {(u, v) | u, v ∈ V and u ̸= v}. Denoting a list as [ ] whose elements are ordered

by i or j, an element α in P is a trajectory of length p, where α = [α(i) ∈ R2 | i ≤ p ],

and an element β in PG is a path in G of length q, where β = [ β(j) ∈ V | j ≤

q where (β(j−1), β(j)) ∈ E if j ≥ 1 ]. Both trajectory and path in G are polylines.

Note that they may contain an element multiple times and that we have PG ⊂ P. A

path can be regarded as a sub-graph of G and we denoted it as G(β) = (Vβ, Eβ) where
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Vβ = {β(j) | j ≤ q} and Eβ = {(β(j−1), β(j)) | 1 ≤ j ≤ q}. To introduce binary set

operators on graphs, we de�ne an edge-induced graph of given E as G(E) = (V,E)

where V =
∪

(u,v)∈E{u, v}. With this de�nition, given two graphs Gi = (Vi, Ei) for

i ∈ {1, 2}, we have G(E1) ◦G(E2) = G(E1 ◦ E2) where ◦ is a binary set operator.

Before de�ning single- and multi-track map-matching frameworks, we de�ne the dis-

tance function between polylines. For example, Fréchet distance follow this de�nition.

The two frameworks are de�ned by using the distance function.

De�nition 1 (Distance function): Let d : P × P → R be a distance function between

polylines, where the following inequality and equalities hold for all α, β ∈ P:

d(α, β) ≥ 0, d(α, α) = 0, d(α, β) = d(β, α).

A single-track map-matching maps a trajectory to a path on a geometric graph by

minimizing the distance. Many existing o�-line map-matching follow this de�nition

[4, 3, 78]. A multi-track map-matching maps a collection of trajectories to paths on a

geometric graph by minimizing an object function. The object function usually has its

residual term which comes with other terms. The residual term penalize the solution

in terms of distance between trajectories and their paths as it is done by a single-track

map-matching. On the other hand, the other terms penalize in terms of complexities

of the solution, which di�erentiate multi-track map-matching from single-track map-

matching.

De�nition 2 (Single-track map-matching) Let G = (V,E) be a geometric graph and

d(α, β) be a distance function between polylines. Given a trajectory α ∈ P, a single-track

map-matching algorithm, or simply a map-matching algorithmMG : P→ PG×R �nds

its minimizing path and its minimum distance, which are β̂G(α) = argminβ∈PG
d(α, β)

and d̂G(α) = minβ∈PG
d(α, β), respectively.
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De�nition 3 (Multi-track map-matching) Let G = (V,E) be a geometric graph and

d(α, β) be a distance function between polylines. Given a collection of trajectory T =

{αi}ni=1, a multi-track map-matching algorithmMG : P|T | → P|T |
G ×R maps αi to βi so

that they minimize a object function
∑

α∈T d(αi, βi)+λ∥{βi}ni=1∥, where λ is a positive

constant and ∥{βi}ni=1∥ is a certain function that penalize strange paths.

The penalty depends on methods to methods. For example, a method introduced

stitching and regularity terms [48].



Chapter 3

Maximizing Regions in Adaptive

Quadtree Mesh

In this chapter, we study a method for maximizing regions in adaptive quadtree mesh.

3.1 Related Work.

Optimized association rule mining was �rst introduced by Fukuda et al. They for-

mulated discovery of association rules for a single numeric attribute [31] and two-

dimensional numeric attributes [28]. Their algorithms include an O(m) time algorithm,

where m is the size of mesh for a x-monotone region, that maximizes the gain achieved

by using dynamic programming (DP) with fast matrix search, O(m1.5) time algorithms

for a single rectangular region that maximizes the gain, and approximation algorithms

for a single rectangular region that maximizes the support or con�dence.

These algorithms identify a single rectangle or x-monotone region because their

goal is to keep the optimization rules simple enough for people to easily understand

them. Note that they are based on the assumption that the uninstantiated numeric

attributes are uniformly distributed. Therefore, they start by splitting relations into

35
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Fukuda Rastogi Dobkin

assumes uniformity? yes yes no

no. of regions 1 k 1

x-monotone regions yes no no

rectangular regions yes yes yes

Table 3.1: Comparison of three algorithms for optimized rule mining of geospatial data.

equal-sized buckets or grid-like meshes for one- or two-dimensional data, respectively.

Rastogi and Shim generalized the formulation of optimized association rule min-

ing [63]. Their optimized association rules can have disjunctions over an arbitrary

number of uninstantiated attributes, which can be either categorical or numeric. This

means that the discovered instantiations can be multiple hyper rectangular regions.

They also showed that their problem is NP-hard and proposed algorithms that

search through the space of instantiations in decreasing order of the weighted sum of

the con�dence and support, by using a branch and bound technique to prune the search

space e�ciently.

Their algorithms require the enumeration of instantiations of numeric attributes,

each of which has the form ai ∈ [li, ui], before they start processing so that the identi�ed

instantiations do not overlap each other. The number of instantiations could be huge for

numeric attributes since they take conbinations of values. The pruneInstArray reduces

those instantiations that are never included in the �nal disjunctions of instantiations.

Note that the numeric attributes are assumed to be uniformly distributed in Rastogi's

algorithms as in Fukuda's algorithms.

Dobkin et al. [22] presented an algorithm that solves optimized gain problems for

a single rectangular region. It takes O(n2 log n) time, where n is the number of points,

and does not necessarily suppose that numeric attributes are uniformly distributed

since it takes all distinct values of those numeric attributes in the records.
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Table 3.1 compares the algorithms of Fukuda, Rastogi, and Dobkin.

3.2 Local Maximization of Con�dence.

Our goal was to develop an algorithm that does not require the numeric attributes

to be uniformly distributed and that identi�es multiple regions. Both features are

important for us to discover RoIs in geospatial data. We achieved both by introduc-

ing locally optimized association rule mining, which provides another mathematically

sound formalization for discovering RoIs.

De�nition 4 For given a hypothesis H, a threshold Z, and D ∈ H, we de�ne D̃ as

the maximized region with respect to con�dence satisfying

sup(D̃) ≥ Z and conf (D) < conf (D̃) for any D ⊃ D̃. (3.1)

Informally, this means that D̃ is maximal if there is no area D containing D̃ with

con�dence greater than D̃. The following lemma trivially holds:

Lemma 1 Given a mesh M = {ci}mi=1 and an association rule C1 → C2, let si and hi

be the support and hit of cell ci, respectively. For any E ∈ H,

conf (E) =

∑
ci∈E hi∑
ci∈E si

≤ 1

|E|
∑
ci∈E

hi

minci∈E si
, (3.2)

where |E| is the number of cells in E.

For a naive algorithm that enumerates all possible transitive closures of R, it could

take exponential time to compute the locally maximized con�dence regions, D̃ ∈ 2M ,

since there are
∑

k=1,··· ,n nCk possible transitive closures.

The following theorem presents the condition that each cell should satisfy when it

is not included in the maximum area.
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Theorem 1 For ∀D̃,D ∈ H such that D̃ ⊂ D, let E = D \ D̃. Then, conf (D) <

conf (D̃) holds if
hi

minci∈E si
< conf (D) for ∀ci ∈ E. (3.3)

Proof 1 To keep the formulas simple, we introduce some invariants: SE =
∑

mi∈E si,

HE =
∑

mi∈E hi, SD̃ =
∑

mi∈D̃ si and HD̃ =
∑

mi∈D̃ hi. Since D = E∪D̃ and E∩D̃ = ϕ,

SD̃ = SD − SE,

HD̃ = HD − HE.

Now conf (D̃)− conf (D) is evaluated:

conf (D̃)− conf (D) =
HD̃

SD̃

− HD

SD

=
SD(HD − HE)− (SD − SE)HD

SD̃SD

=
SE

SD̃

SEHD − SDHE

SESD

=
SE

SD̃

(
HD

SD

− HE

SE

)
=

SE

SD̃

(conf (D)− conf (E)) . (3.4)

By summing (3.3) over ci ∈ E and combining this with (3.2), we get

conf (E) ≤ 1

|E|
∑
ci∈E

hi

minci∈E si
< conf (D). (3.5)

From (3.4) and (3.5), conf (D̃) > conf (D) is proved.

Theorem 1 implies that it is not necessary to enumerate all combinations of cells

and evaluate their con�dence as a naive algorithm would do. Instead, it is su�cient

to see if Eq.(3.3) holds for each individual mesh. However, Eq.(3.3) is unlikely to hold

for most of the cells if minmi∈E si is too small. This is the case for car probe data and

location data from other movable objects, where the position data is not distributed



3.3. ALGORITHMS. 39

Algorithm 1 discoverMaximalClosure(S, M , C1, C2, Z)

1: M ← buildQuadtree(S,M,C1, Z)

2: obtain sup(m) and hit(m) of C1 → C2 for ∀m ∈M

3: Γ← {M}

4: repeat

5: for D ∈ Γ do

6: E ← {}

7: δ ← minm∈D sup(m)

8: for all m ∈ D such that hit(m)/δ < conf (E) do

9: E ← E ∪ {m}

10: if E = {} orsup(D\E) < Z then

11: report D

12: E = D

13: M ←M\E

14: Γ← composeTransitiveClosure(M)

15: until no report occurred at line 11

uniformly. In those cases, it is better to use a mesh of cells whose support counts are

almost equal to each other.

With this in mind, we present an algorithm for discovering regions with locally

maximal con�dence in the following section. We also mention an algorithm for reducing

the number of meshes to be checked to see if they share borders.

3.3 Algorithms.

In the remaining sections of this chapter, some of the notations are replaced to di�erent

ones. Let Mesh M be comprised of {mi}ni=1, instead of {ci}mi=1, and S be of size N ,

instead of n.
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Algorithm 1 shows our algorithm for discovering locally maximal regions. The

algorithm comprises two parts. The �rst part initializes a mesh and calculate the

support and hit for each cell (lines 1�3). It does this by using a position database S,

an initial �xed-sized mesh set M , the association rule to be optimized C1 → C2, and

the minimum support threshold Z. One such mesh is called quad-tree. As illustrated

in Fig. 3.1, it is obtained by recursively splitting a cell evenly into four smaller cells

with horizontal and vertical borders. The algorithm continues to split the given mesh

M into �ner one so long as its cells have more points than the minimum support

threshold Z. The white and black points in the �gure represent position data satisfying

C1 and C1 ∧ C2, respectively. The result is di�erent size cells with support counts less

than Z = 2.

The second part of the algorithm identi�es transitively connected groups of cells

with locally maximal con�dence (lines 4�15). The algorithm iteratively narrows a

transitive closure by removing cells that do not satisfy the local maximum property

given by Theorem. 1 with δ determined for that transitive closure (lines 8�9). Using

minm∈D sup(m) for δ is not any problem since δ ≤ minm∈D\D̃ sup(m) always holds. By

sorting M in ascending order of conf (m), each mesh is visited only once by line 9.

Therefore, the nested loop (lines 5�13) iterates at most n times. If the transitive

closure D is maximal and ample, then it is reported at line 11. The remaining cells

are processed by composeTransitiveClosurefunction, which composes transitive

closures for the next iteration (line 14).

The computation time of discoverMaximalClosure is O(n log n) since com-

poseTransitiveClosure takes O(n log n) time as shown below and the outer most

loop iterates constant times proportional to Z.

It takes O(n2) time to naively check if the remaining cells share borders with each

other. Figure 3.2 shows an outline of the sweep-line algorithm used to reduce the

number of cells to be checked to see if they share borders. A sweep-line is a vertical
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Algorithm 2 composeTransitiveClosure(M)

1: let Q be a list comprising left-bottom and right-top vertices of ∀m ∈M

2: sort Q in the order representing the time when cells become active or inactive

3: A← {}

4: E ← {}

5: while Q is not empty do

6: poll one from Q and call it v1

7: let m1 be the mesh of v1

8: if v1 is a left-bottom vertex, then

9: A← A ∪ {m1}

10: E ← E ∪ {(m1,m2)| m2 ∈ A s.t. m1.btm ≤ m2.top and m1.top ≥ m2.btm}

11: else

12: A← A\{m1}

13: V ← ∪(m1,m2)∈E{m1,m2}

14: report all connected graphs in G(V,E) by traversing it in breadth �rst manner

line that makes cells active while it crosses over them. All cells are initially inactive.

As the sweep-line moves from left to right, only the active cells are checked to see if

they share borders with each other. If one shares a border with another, the pair is

output. Such pairs are never missed because no two cells share a border unless both of

them become active at the same time. A cell becomes inactive again as the sweep-line

moves away from the top of that cell and thus is never examined with other cells. Once

the sweep-line has traversed completely to the right, all pairs of adjacent cells have

been identi�ed and output. By traversing a graph comprised of those pairs as its edges

in a breadth �rst manner, the sweep-line algorithm composes all transitive closures.

Algorithm 2 implements this process. The sweep-line is emulated by using queue

Q containing left-bottom and right-top vertices sorted in the order that represents
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the time when the cells become active and inactive, respectively (line 1�2). A brief

description of how the lines 5�12 work is given in the caption of Fig 3.2. It computes in

O(n log n) time even if the cells have arbitrary sizes and shapes as long as they can be

represented as polygons. Interested readers can consult a text book on computational

geometry, such as [20].
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3.4 Experimental Results and Applications.

This section presents experimental results for both arti�cial and realistic data sets to

demonstrate the performance of our algorithm and the goodness of the areas discovered.

Then, two example applications are presented. All the experiments were run on a Core

i5-680 3.60GHz machine with 4GB of RAM running Windows.

3.4.1 Experiments.

An experiment was done using arti�cial data to compare the performance of our dis-

coverMaximalClosure algorithm to that of Rastogi's algorithm. Rastogi's algo-

rithm was selected for comparison because it is the only one among the related ones

that can discover multiple areas with mathematically sound de�nitions for the areas it

discovers, as mentioned in Sec. 3.1.

The arti�cial data comprised N uniformly distributed points, either enabled or

disabled in accordance with a two-dimensional Gaussian mixture distribution of the K

components:

p(x) =
K∑
k=1

πkN (x|µk,Σk), where x, µk ∈ R2 for k = 1, · · · , K. (3.6)

Let πk = 1/K and Σk = diag(σ, σ) for simplicity, and let µk be determined randomly for

k = 1, · · · , K. To obtain an arti�cial data point, each point x was generated uniformly

and then enabled if p(x) > 1/K or disabled otherwise by random processes.

Rastogi's and our algorithms are used to discover areas containing as much enabled

points as possible while eliminating disabled points. This is achieved by discovering

the areas that maximize the con�dence of the rule:

C1 → C2, where

 C1 : True,

C2 : True if the point is enabled, False otherwise

Rastogi's algorithm requires three parameters, n,M, and minSup, and that the

entire rectangle be evenly separated into
√
n×
√
n grids. It can then discover a set of
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maximally con�dent M regions that have no less support than minSup. It is reasonable

to set the parameters M to K.

Our discoverMaximalClosure algorithm, on the other hand, requires one pa-

rameter, Z. Although it adaptively separates the entire rectangle in accordance with

the given data by using the buildQuadtree function, we used
√
n ×
√
n grids to

enable us to compare performance. This function discovers locally maximal transitive

closures each of which has a support no less than Z.

Figure 3.3 shows the regions discovered by the two algorithms with
√
n = 16, as well

as the black (enabled) or white (disabled) points generated with K = 3 and N = 1000.

The entire rectangle was about 15.9km× 19.6km, and variance σ was set to 2.0km.

We compared the processing times for N = 10, 000, K ∈ {1, 2, · · · , 10}, and
√
n ∈

{16, 32, 64}. The processing times were invariant with K for every
√
n. As shown

in the left graph of Fig. 3.4, our discoverMaximalClosure algorithm was about

50 times faster than Rastogi's for
√
n = 32. The right graph of Fig. 3.4 compares

the probabilities of capturing enabled points in the discovered regions to evaluate the

e�ectiveness of the two algorithms. The expected probability is de�ned as
∑

x∈D p(x)

sup(D)
,

where D is a discovered region. The discoverMaximalClosure was comparable

or better in capturing the Gaussian mixture distribution than Rastogi's algorithm,

although we do not understand why Rastogi's algorithm do not perform well in some

cases.

Figure 3.6 and 3.7 show the regions discovered by the two algorithms for realistic

data that were not distributed uniformly. Fig 3.5 shows those by Fukuda's algorithm

for reference. We could not disclose the detail of this data because of some contractual

reasons, but it was from taxis as introduced in Sec. 3.4.2. As described above, the

discoverMaximalClosure algorithm adaptively separates the entire rectangle in

accordance with the given data by using the buildQuadtree function while Rastogi's

uses �xed grid-like meshes. Our algorithm is better for non-uniformly distributed
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data points because it discovers well-limited and high con�dence regions. Rastogi's

algorithm, on the other hand, would need to use �ner grid-like meshes and take more

time to discover such well-limited regions.

3.4.2 Application: Taxi Fleet Control.

Based on the results shown in Fig. 3.5, 3.6 and 3.7, one feasible application is taxi

�eet control based on expected demand. The points indicate the locations of the taxis.

Herein, the taxis regularly report their location every minute or so, and whether or not

they were available. Let the data points be:

(id , time, x , y , pflag , cflag),

where cflag or pflag is True if the taxi identi�ed by id is unavailable in the current

time step or was unavailable in the previous one, respectively, and False otherwise.

Optimizing the con�dence of the association rule given below would increase the

probability of taxis picking up passengers in the discovered regions because there should

be more demand for taxis and fewer available ones around:

C1 : pflag = False,

C2 : pflag = False and cflag = True.

In other words, a point is enabled when a taxi picks up a passenger, otherwise, it

is disabled. Note that taxis unavailable in the previous time step are not taken into

consideration. We believe our method is more e�ective than the alternatives because

the points are distributed ununiformly, as can be seen in the �gure. Knowing the

maximal regions would increase the probability of taxis picking up passengers in the

discovered regions because there should be greater demand for taxis and fewer taxis

available. The quick processing speed of our algorithm enables taxis to obtain in

realtime the locations of areas where they are more likely to pick up passengers without

competing with other ones.
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3.4.3 Application: Discovery of Sights from Social Messages.

Given the popularity of social network services (SNSs), another application is discover-

ing sights to see on the basis of location data and/or photos attached to text messages.

People could identify attractive places to visit by discovering areas that maximize the

con�dence given by the following rule:

C1 : True if message has location data, False otherwise,

C2 : True if message has both location data and a photo, False otherwise.

The gray areas in Fig. 3.8 and 3.9 represent attractive areas as determined from

the con�dence. Those in Okinawa include capes and beaches and several popular

sights, like Shuri Castle, an aquarium, and memorial parks around Naha City. Those

in Yokosuka include the aquarium on Hakkei Island, parks, and museums.
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3.5 Conclusion.

The locally optimized association rule mining has now been formalized. A theorem

that holds for locally maximized two-dimensional areas was formulated, and from it

an algorithm was derived that e�ciently discovers con�dent areas with shapes that are

not limited to being rectangular or x-monotone. It does not require the assumption

that position data are uniformly distributed as is often the case in analyzing GPS data

from vehicle and smartphones. Experimental results showed that our discoverMax-

imalClosure algorithm was 50 times faster than Rasitogi's, which discovers globally

optimized, rectangular regions of interest. Applications include ones where it is essen-

tial to discover regions of interest. Its e�ciency makes our algorithm well suited for

helping taxis to determine where to go and pick up passengers. It can also be used to

determine which sights to visit by using the location data and/or photos attached to

text messages.



52 CHAPTER 3. MAXIMIZING REGIONS IN ADAPTIVE QUADTREE MESH

139.66 139.67 139.68 139.69 139.70 139.71

3
5
.6

8
3
5
.6

9
3
5
.7

0
3
5
.7

1

139.66 139.67 139.68 139.69 139.70 139.71

3
5
.6

8
3
5
.6

9
3
5
.7

0
3
5
.7

1

longitude

la
ti
tu

d
e

Figure 3.5: Regions discovered by Fukuda for ununiformly distributed �oating car

data.
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Figure 3.6: Regions discovered by Rastogi for ununiformly distributed �oating car

data.
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Figure 3.7: Regions discovered by proposed method discoverMaximalClosure for

ununiformly distributed �oating car data.



3.5. CONCLUSION. 55

127.60 127.65 127.70 127.75 127.80 127.85

2
6

.2
0

2
6

.2
5

2
6

.3
0

2
6

.3
5

2
6

.4
0

2
6

.4
5

Figure 3.8: Locations in Okinawa where many messages with photos were posted.
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Chapter 4

Regularizing Regions by Description

Length

In this chapter, we study a method for regularizing regions by description length.

4.1 Related Works

4.1.1 Cluster detection test

Cluster detection test (CDT) was developed in the �elds of epidemiology. A CDT

method usually consists of two phases; �rst, the region with highest likelihood ratio

between the inside and the outside of that region is discovered by means of standard

mortality rate represented using binomial or Poisson distributions. Then, a statisti-

cal test is performed to con�rm whether the data inside and outside of the discov-

ered region follow di�erent probability distributions. Kulldor� et al.[46] proposed this

framework and employed the circular hypothesis space. Their method has been utilized

frequently in epidemiological studies up to the present day. In some cases, however,

diseases spread along winds or rivers, and for this reason, a more �exible hypothesis

57
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space than the circular one is required. Tango et al. [65, 67] proposed a hypothesis set

consisting of transitively connected segments in administrative districts. Both Kull-

dor� and Tango's methods naively enumerated connected regions, while other studies

employed simulated annealing [23, 24]，upper-level set [60], or echelon structure [40] for

enhancing computational e�ciency. These methods, however, consider the empirical

average response and consequently execute a statistical test to validate the signi�cance

of the discovered region.

4.1.2 Bump hunting and bichromatic discrepancy

When we are interested in the regions with high response rates, it is easier to obtain

them directly rather than estimating the joint probability of variables followed by

discovering the regions using the estimated probability. Friedman et al. [26] studied

the maximization of averaged response in an axis-parallel rectangular hypothesis from

point data. Patient rule induction method [26, 37] iteratively peels either lower or

higher end of the variables' domain one at a time until the averaged response of the

remaining rectangular region stops decreasing and then performs pasting to ensure that

the rectangular region does not over�t the concrete training data. This procedure is a

type of heuristic and does not �nd the exactly optimized solution.

Dobkin et al. [22] studied bichromatic discrepancy of the axis-parallel rectangular

hypothesis in the context of machine learning. Bichromatic discrepancy is the number

of di�erences between positive and negative examples. They proposed an algorithm

to discover the region with the maximum bichromatic discrepancy by employing its

monotonous property. Notably, this is equivalent to the minimization of disagreement

between true and predictive class by de�nition, as well as the optimized gain association

rule mining. Agrawal et al. [2] proposed an algorithm to maximize the likelihood ratio

between the inside and the outside of a domain by using a technique similar to that

proposed by Dobkin.
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4.1.3 Optimized association rule mining

Optimized association rule mining was �rst introduced by Fukuda et al. They for-

mulated the discovery of association rules for a single numeric attribute [30] and two-

dimensional numeric attributes [28]. The goal is to obtain optimized instantiations in

terms of support, con�dence, or gain of the rule, given an uninstantiated association

rule. A concrete method �rst aggregates the measurements and baselines for every cell

of an equal-sized grid and then discovers the regions with the highest score among a cer-

tain hypothesis set such as a rectangle. Their algorithms include one for a x -monotone

region that maximizes the gain achieved by using dynamic programming with fast ma-

trix search, one for a single rectangular region that maximizes gain, and approximation

algorithms for a rectangular region that maximizes support or con�dence.

Rastogi and Shim generalized the optimized association rule mining [63] such that it

has the disjunctive normal form over either categorical or numeric attributes, and they

showed that the problem is NP-hard. They proposed a branch-and-bound algorithm

to prune the search space as well as enumerating instantiations of numeric attributes

before starting processing so that the identi�ed instantiations do not overlap each other.

Neill et al. [57] proposed the branch-and-bound algorithm over an overwrap k -

dimentional tree to discover exact solutions of extended densities of regions in a two-

dimensional plane.

4.2 Proposed Method

4.2.1 Problem description

Using the preliminaries introduced in Chapter 2, the optimization problem is formalized

as follows:

Problem 1 (Maximization problem of spatial cluster) Given a point dataset S, a mesh
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set M，an object function f , and a hypothesis set H, which is a transitive closure of

cells, �nd D ∈ H to maximize f(D).

We employ the expected average response as the object function f , as given below.

E[L | X ∈ D] =

∫
lp(l | x ∈ D)dl (4.1)

=

∫
lp(x ∈ D, l)dl

p(x ∈ D)
(4.2)

=

∫∫
D
lp(x, l)dldx∫
D
p(x)dx

(4.3)

∼
{
∑

xi∈D li}/n
{
∑

xi∈D 1}/n
. (4.4)

At the fourth equality, we estimate either the joint or marginal probabilities, respec-

tively, p(x, y) and p(x), from the examples. We call this �nal expression average

response hereinafter.

The average response is equivalent to the con�dence of an association rule. We will

show this as follows. An association rule is of the form C1 → C2 where Ci(i = 1, 2) are

logical conditions on X and L. Their Boolean values are �xed by instantiating X and

L with some coordinates and a response, although we omit either X or L for simplicity.

By letting the support of condition, denoted as sup(Ci), be the number of records in

D satisfying Ci, the support and con�dence of the rule are de�ned as follows:

sup(C1 → C2) = sup(C1), (4.5)

conf (C1 → C2) =
sup(C1 ∧ C2)

sup(C1)
. (4.6)

A rule is con�dent if its con�dence is not less than a given con�dence threshold θ.

A rule is ample if its support is not less than a given support threshold Z.

Let C1 be True for all xi ∈ D and C2 be True i� li = 1. Then, we obtain

sup(C1) =
∑

xi∈D 1 and sup(C1 ∧ C2) =
∑

xi∈D li. Obviously, they are equivalent to

the denominator and numerator of (4.4), respectively. Hence, we interchangeably use

the expected average response and con�dence.
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Let us go revert to the object function. As mentioned earlier, we employ transitive

closures, R+, as the hypothesis to discover hotspots from neither uniform nor isotropic

data. This requires us to avoid over�tting because the hypothesis is highly complex.

Therefore, the object functions should include a regularization term as follows:

f(D) =

∑
xi∈D li∑
xi∈D

− λ∥D∥ (4.7)

where ∥D∥ is the description length which will be de�ned in Sec.4.2.2, and λ is a hyper

parameter.

Obviously, it is di�cult to obtain the optimized solution explicitly. Instead, our

algorithms �rst obtain an initial solution and then perform a gradient descent. We

already studied the technique to obtain the initial solution by using the proved maximal

property of regions in Sec.3.2. In Sec.4.2.2, we propose the concrete description length

used as the regularization term. Thereafter, in Sec.4.3 we explain the gradient descent

based algorithms.

4.2.2 Regularization

This section discusses the regularization term of object function (4.7) that penalizes

the region by its complexity on shape. It is well understood that the VC-dimension

of convex polygons is related to the number of their edges, or equivalently, number of

their corners [54]. We employ this measure as the regularization term denoted by ∥D∥

and explain how to evaluate it.

Lemma 2 The number of corners of transitive closure D ∈ R+ is given as follows:

(1− xD)
TWxD where W = 2U − V (4.8)

where 1 is an m-dimensional column vector with all elements equaling 1, and U =
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(ujk)
m,m
j=1,k=1, V = (vjk)

m,m
j=1,k=1 represent m×m matrices, such that

ujk =

 1 if cj and ck share their borders,

0 otherwise.
(4.9)

vjk =


2 two corners of cj are on a edge of ck,

1 one corner of cj is on a edge of ck,

0 otherwise.

(4.10)

Proof 2 Equation (4.8) is decomposed as

(1− xD)
TWxD =

∑
cj ,ck∈D

(1− xDj)wjkxDk (4.11)

+
∑

cj ,ck∈D

(1− xDj)wjkxDk (4.12)

+
∑

otherwise

(1− xDj)wjkxDk. (4.13)

Equation (4.11) represents the case in which both ck and cj are in D. In this case, this

term is always 0 because 1− xDj = 0. Similarly, (4.12) is always 0 because xDk = 0.

Therefore, we only need to investigate (4.13), where either ck or cj is in D, whereas

the other is not. Without loss of generality, we have ck ∈ D and cj ∈ D.

We provide a sketch of the proof. Twice the number of shared edges between ck

and D equals the number of corners on the border between ck and the cells in D if no

corner of ck is a corner of D (left column in 4.1). The former number di�ers from

the later by the number of ck's corners that are also those of D as well (right column

in 4.1). With this in mind, note that the j-th element of UxD is the number of the

edges that cj shares with the region D and that accordingly, (1 − xD)
TUxD gives the

number of edges shared between D and D. Similarly, note that the k-th element of

(1 − xD)
TV is the number of corners on the border between ck and the region D and

that accordingly, (1− xD)
TV xD gives the number of corners on the border between D

and D. Consequently, (4.8) was proved to give the number of corners in D.
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The matrices U and V were obtained by employing sweep-line algorithms in a

manner similar to that used for evaluating transitive closure from a collection of cells.

For detail, refer to [39].

4.3 Algorithms

This section explains the procedures used to discover the optimized hypothesis (Algo-

rithm 3). The proposed method involves building a quad-tree comprising irregularly

sized cells (line 2), peeling the cells irrelevant to the maximal regions (line 3), and

pasting cells by running the gradient descent method to regularize the regions(line 4).

The notations are the same as those used in Sec.4.2. These three processes are detailed

in the following sections.

4.3.1 Data adaptive mesh forming

Lines 5�14 describe the procedure to build a quad-tree. Because the cells are split

iteratively into four along the horizontal and vertical borders so long as they have

more points than the threshold α (line 6), the cells in the �nal quad-tree are expected

to have roughly the same number of points as that in the �xed mesh of size m. In

the case where the points are distributed uniformly in the two-dimensional space, the

quad-tree converges to a grid mesh as more points become available. It is easy to

obtain h and s by counting the points in cells during quad-tree formation (line 14)．

4.3.2 Peeling

Lines 15�24 describe the peeling procedure. All maximal regions G are reported by it-

eratively removing the irrelevant cells in accordance with Thm.1 until no peeling occurs

at line 20. The process for obtaining new transitive closures (line 22) is implemented
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e�ciently by using the sweep-line algorithm [20, 39]. h and s are needed at lines 20

and 23.

4.3.3 Pasting

Lines 25�31 describe the pasting procedure. First, we obtain the matrices W = 2U−V

needed to evaluate the regularization term ∥D∥ based on their de�nitions in Sec.4.2.2.

The process of e�cient implementation is omitted because it is obvious as we presented

the sweep-line algorithm over quad-tree in Sec.3.3. Second, we initialize xDj a positive

number if cj is in one of the regions in G, or a negative number otherwise (line 27).

Finally, we run the gradient descent method (line 28�30). To make the object function

di�erentiable, we replace xD with its continuous version as explained in Sec.2.1.2. With

this trick, the gradient is given as follows:

∇zDf(xD) =

(
∂f

∂xDj

∂xDj

∂zDj

)m

j=1

(4.14)

=

(
xDj(1− xDj)

∂f

∂xDj

)m

j=1

.

4.4 Experimental Results

This section presents the experimental results showing that the proposed method cap-

tures the probability p(X, L) well and achieves a higher average response by using

synthetic data. We compared the method with and without regularization, denoted as

MtcR and Mtc, respectively. Mtc stands for "Maximized Transitive Closure". In

addition, we present the results obtained by Rastogi and Fukuda. Note that Ras-

togi, Fukuda, andMtc can represent CDT introduced in Sec.4.1.1 because they are

supposed to output the similar regions as CDT in the following experimental settings.
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Table 4.1: Parameters of synthetic data.

Name Values Description

n 4096 #data

K { 1,2, · · · , 9 } #Gaussian components

m 64 Ö 64 #segments

F { 0.2, 0.4, 0.6, 0.8, 1.0} �atness of components

q 0.65 probability to split cells

4.4.1 Generation of synthetic data

The synthetic data is used to emulate spatially isotropic or non-isotropic cases by

making the coordinate distribution p(X) uniform or ununiform, as well as by making

the response probability p(L | X) round or squashed, respectively. Table 4.1 shows the

parameters needed to achieve this.

In the uniform case, the synthetic p(X) follows an uniform distribution. In the

ununiform case, on the contrary, a quad-tree is employed to determine the distribution

of coordinates p(X) = p(X | cj)p(cj). It is built by letting cells split with the probability

qd, where d is the depth of quad-tree. p(X | cj) and p(cj) follow individual uniform

distributions. This implies that the cells have the same number of coordinates, either

large or small, which makes the coordinates sparse or dense from place to place. Note

that the parameter q was determined such that the average number of cells becomes n

for ensuring fair comparison between the ununiform and uniform cases.

The response probability p(L | X) follows mixed Gaussian probability with K

components whose mixture coe�cients are equal. Their covariance matrices are elliptic,

and the �atness of these components is F , but the angles of these components are

determined randomly and di�er from each other.

Once the joint probability p(X, L) = p(L | X)p(X) is �xed, we generate n coordi-

nates with their responses such that they follow the joint probability using a random
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process.

4.4.2 Experimental con�gurations

Simply evaluating the average responses for the data from which the regions are dis-

covered is not su�cient for demonstrating the aim of the present study. Instead, we

must evaluate the expected average responses. To this end, we designed the following

experimental con�gurations: �rst, we generated 11 independent datasets by using the

procedure explained in Sec.4.4.1. Then, by using one of these datasets and the algo-

rithms, we discover the maximal regions with the parameter m, which determines the

�neness of the grid or quad-tree mesh these algorithms employ. Finally, we evaluate

the precision of discovered regions for the remaining 10 datasets. This test process is

repeated on 20 di�erently parameterized probabilities and the average of these trials is

calculated.

4.4.3 Results

1. Uniform or ununiform distributions: we �rst compared each algorithm between

the uniform and the ununiform cases. The response was �xed to be round (F=1.0)

to eliminate factors other than uniformity. We investigated both unimodal (K=1)

and multimodal (K=5) cases (upper in Tab.4.2). With this experiment, we ex-

pect that quad-tree meshes bene�t in the ununiform cases by taking dense and

sparse areas fairly. The precision of Mtc and MtcR improved signi�cantly by

around 10% in the unimodal cases, and by 1.5%�3.0% in the multimodal cases.

Naturally, the improvement was lower in the multimodal cases because the num-

ber of coordinates per component was lower than that in the unimodal cases.

Although Rastogi enjoyed its highest precision in the unimodal and uniform

cases, MtcR was superior in the ununiform cases and comparable to Fukuda

in the uniform cases.
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2. Round or squashed responses: next, we compare each algorithm with the squashed

and round responses. To eliminate factors other than the �atness, the responses

were �xed as unimodal (K=1). We investigated both uniform and ununiform

cases (lower in Tab.4.2). With this experiment, we expect that the hypothesis

of transitive closure captures regions with high expected average response even

when the response probability is squashed. The precision did not change signif-

icantly between the squashed and the round cases with both Mtc and MtcR,

while it decreased by 7.21%�9.78% when using Rastogi. Notably, Fukuda

did not degrade because the x -monotone hypothesis can also represent squashed

regions.

3. Advantage of regularization: thus far, our methods, Mtc and MtcR, advanta-

geous in the case with non-isotropic distribution.

Finally, we show the improvement resulting from regularization by comparing

the algorithms in the case of a non-isotropic distribution with variable �atness in

Fig.4.2. The improvement rate made by MtcR from Mtc were 11.6%�23.0%.
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Algorithm 3 Proposed method

1: procedure main(S, U , m, Z)

2: M,h, s← buildQuadtree(S, U,m)

3: G← peeling(M,h, s, Z)

4: return pasting(G, h, s) as D̃

5: procedure buildQuadtree(S, U , m)

6: α← |S|/m

7: initialize queue Q by {U}, M by empty set

8: while Q is not empty do

9: pop cell from Q as U

10: if sup(U) > α then

11: split U into four cells and push them to Q

12: else

13: append U to M

14: return M as well as its h and s

15: procedure peeling(M , h, s, Z)

16: initialize maximal regions, G, by {M}

17: repeat

18: initialize M by empty set

19: for all D ∈ G do

20: peel irrelevant cells from D by using (3.3)

21: add cells in D to M

22: initialize G by closures discovered in M

23: until sup(M) < Z or no cell peeled at line 20

24: return G

25: procedure pasting(M , G, h, s)

26: initialize W from M

27: initialize zD in accordance with G

28: repeat

29: zD ← zD − η∇zDf(xD))

30: until zD converges

31: return {cj | zDj > 0}
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Figure 4.2: Precision of Mtc and MtcR with K=5 and variable �atness.

4.5 Conclusion

We proposed a new approach to maximize the expected average response. In this

method, we introduced a regularization term that penalizes the complex regions and

relaxes the assumptions related to coordinate distribution. These enhancements made

our method adaptive to observed data while improving its predictive performance. The

experiments showed that our algorithms did not decrease the precision in the case of

unseen data, even when it was neither uniform nor isotropic. In addition, they showed

that the regularization improved precision by more than 20%.





Chapter 5

Maximizing Posterior Joint

Map-matching

In this chapter, we study a method for maximizing posterior joint map-matching.

5.1 Related Works

On-line or local map-matching methods attach a newly observed GPS point to one of

the neighboring links in a DRM. These methods use coordinates, direction, and speed

localized to the current point to take into account the connectivities of these links

[34, 73, 15]. By contrast, o�-line or global map-matching methods consider distance

between a trajectory and a path in a DRM in a topological sense, from its origin to

destination [12]. Alt et al. proposed a map-matching algorithm that utilizes Fréchet

distance [4, 3]. Algorithms with the relaxed Fréchet distance have also been proposed

[25, 12]. All these approaches map individual trajectories to the nearest paths in

accordance with their own policy or distance function.

Due to the constraints on power consumption and transmission cost, trajectories

are very sparse, and the above approaches do not always work well with low-sampled

73
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trajectories. To tackle these problems, probabilistic methods estimate the link from

which the observation is made [50, 78, 58]. A multi-track map-matching method ex-

ploits the ensemble nature buried in the trajectories. It iteratively estimates the order

of observations from di�erent trajectories and the most likely segments from which

they come [41]. A joint map-matching enumerates �xed-sized segments from a DRM

and, using them as variables of the optimization problem, it discovers the paths to

which the trajectories are assigned such that they seem to be as natural as routes [48].

This method, however, requires hyper parameters to balance the features such as the

distance to the segments, stitching of segments, and regularity of the solution. Our

method falls to this category that tackles the problem with low-sampled trajectories,

which is not accessed well by single-track, especially on-line, map-matching methods.

Therefore, we would concentrate on multi-track and o�-line map-matching methods

hereinafter.

Map-generation algorithms have been proposed for overall tra�c analysis. Although

governments, information companies, and social communities have manually developed

DRMs, sometimes roads open or close either permanently or temporarily. To be adapt-

able, map-generation techniques maintain DRMs with less cost by automatically build-

ing them from a huge collection of observed GPS points. Some methods reconstruct

DRMs through a series of dedicated procedures [19, 42, 43], and others do so based

on Morse theory [72]. Their interests are mainly in building accurate DRMs, not in

understanding the tra�c �ow. A method that consolidates trajectories to form a map

considers tra�c �ows to some extent [13], but it may not work on cases where the

trajectories are sparsely sampled.

Many applications have been proposed for the analysis and prediction of traces.

Some learn the repeated patterns of a car owner's history, e.g., commuting routes, the

dropping o� and picking up of family members, and visiting relatives or friends [27].

Turn prediction is another typical application for predicting which direction a car will
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take at an intersection, based on the route taken up to this point by learning others'

traces [44]. These applications, however, are developed to predict particular purposes.

5.2 Proposed Method

5.2.1 Stochastic generative model

The notations employed hereinafter follow those de�ned in Sec.2.3. Let b(s) ∈ R2, 0 ≤

s ≤ q, s ∈ R be a route, which is also described as a path β ∈ PG, such that:

b(s) =

v(j) if s = j,

(⌈s⌉ − s)v(⌊s⌋) + (s− ⌊s⌋)v(⌈s⌉) otherwise.

(5.1)

Note that, without loss of generality, we attached the origin and destination of the

route to the �rst and last vertices of the path, respectively.

The observations in a trajectory α ∈ P are emitted on the route b(s) at s ∈ {s(i) ∈

R | i = 0, · · · , p} such that s(i) < s(j) for all 0 ≤ i < j ≤ p. Additionally, assuming

the �rst and last observations are made from the origin and destination of the route,

respectively, we have s(0) = 0 and s(p) = q. Each observation has its observation noise

ϵi ∈ R2 and thus we have:

α(i) = b(s(i)) + ϵi. (5.2)

Also note that a trajectory has sampling noises that are induced by interpolating the

�nite number of observations comprising the trajectory.

In summary, although the routes are unobservable, the trajectories are observed

and are emitted from one of the routes. We introduce the stochastic generative model

with the observed and latent random variable X,Z ∈ RK , as follows:

Latent variable Z is a 1-of-K random variable whose realization is z = (zk)
K
k=1,

where zk ∈ {0, 1}. There is a k∗ such that zk = 1 if k = k∗ and zk = 0 otherwise,



76 CHAPTER 5. MAXIMIZING POSTERIOR JOINT MAP-MATCHING

which represents the occurrence of k∗-th route out of K possible routes. The

occurrence follows the prior probability distribution of P (z) =
∏K

k=1 πk
zk such

that
∑K

k=1 πk = 1.

Observed variable X is a random variable whose realization is x = (xk)
K
k=1, which

represents the distance between trajectory and path. This distance follows the

probability distribution of P (x|z) =
∏K

k=1 f(xk|σ)zk where f(xk|σ) = σ exp(−σxk)

is the probability density function of exponential distribution. The parameter σ

is determined in accordance with the volume of the sampling noise.

5.2.2 Maximizing posterior probability

A generic EM algorithm maximizes the posterior probability of the stochastic model

parameterized by θ. With an initial θold, it iterates the following E-step and M-step

by replacing θold with θnew until either Q′ or θ converges:

E-step updates the conditional probability P (Z|X, θold), and

M-step �nds the parameter θnew that maximizes the log-likelihood of posterior prob-

ability:

Q′(θ, θold) =
∑
Z

P (Z|X, θold) lnP (X,Z|θ) + lnP (θ). (5.3)

Given a collection of traces T = {αn | n = 1, · · · , N} and if let xn = (xnk)
K
k=1

and zn = (znk)
K
k=1 be the independent realizations of the random variables X and Z,

respectively, we have the concrete E-step and M-step for the joint map-matching by

applying the above probability distributions to the generic EM algorithm in a similar

manner as that for a Gaussian mixture model [11]:

E-step evaluates the responsibility γ(znk) with the parameter πold, and
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M-step �nds πnew that maximizes the log-likelihood of posterior probabilityQ′(π, πold)

.

The responsibility and the log-likelihood are respectively de�ned as follows:

γ(znk) =
πkf(xnk|σ)∑K

k′=1 πk′f(xnk|σ)
, (5.4)

Q′(π, πold) = −
N∑

n=1

K∑
k=1

σγ(znk)xnk +
K∑
k=1

zk lnπk. (5.5)

Although there are too many paths on the graph, it is practically su�cient to

consider the paths that have shorter distances from each trajectory. This is feasible if

we employ an algorithm [64] that can enumerate all the paths whose distances from

the trajectory are within a certain threshold, such as σ. In extreme, considering just

the minimizing path βk∗ = β̂G(α), we have γ(znk) = 1 if k = k∗ and γ(znk) = 0

otherwise. Assuming that the prior distribution is uniform, namely πk = 1/K for

all k, the second term of Eq.(5.5) is straightforward and equal to −K. If we accept

that K is proportional to the description length of the geometric graph G, the joint

map-matching is equivalent to the minimization problem below.

De�nition 5 (Route graph discovery) Let a hypothesis space of a graph be G, a single-

track map-matching beMG, and a collection of trajectories be T . A graph G ∈ G most

likely emits the trajectories T if it minimizes the following loss function:

L(G;T ) =
∑
α∈T

d̂G(α) + λ∥G∥, (5.6)

where ∥G∥ is the description length of the graph G, such as the total length of its edges,

and λ > 0 is a hyper parameter.

The �rst term is for the residual and the second term is for the regularization. This

problem is equivalent to single-track map-matchings if λ is zero. Otherwise, some edges

are left unused so that ∥G∥ decreases even though the distance d̂G(α) becomes longer

for some trajectories.
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5.2.3 Graph exploration algorithm

To minimize L(G;T ), we employ an exploratory search in the graph space, and obtain

a decreasing series of graphs G(t−1) ⊃ G(t) for t = 1, 2, . · · · such that their losses also

decreases. Let us denote the output of map-matching MG(t) as β̂
(t)
α = β̂G(t)(α) and

d̂
(t)
α = d̂G(t)(α) for short.

Before presenting the important property that drives the exploration, we note that

d̂
(t−1)
α ≤ d̂

(t)
α always holds. This is trivial because if there were a path closer to α in G(t),

it must be closer to α than the minimizing path in G(t−1) and this is contradictory. We

do not care how the map-matching is implemented as long as it satis�es the inequality

above.

The following theorem gives the condition to ensure that decreasing series of graphs

decrease their losses.

Theorem 2 Given a collection of trajectories T , and two graphs G(t−1) and G(t),

L(G(t);T ) < L(G(t−1);T ) holds i� the following inequality holds:

λ∥∆(t)∥ >
∑

α∈T|∆(t)

{
d̂(t)α − d̂(t−1)

α

}
, (5.7)

where ∆(t) = G(t−1) \G(t) and T|∆(t) denotes the collection of trajectories whose mini-

mizing paths run through ∆(t).

Proof 3 By evaluating the di�erence between losses of the two consecutive graphs in
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the series, we have the following:

L(G(t);T )− L(G(t−1);T )

=

 ∑
α∈T|∆(t)

d̂(t)α +
∑

α/∈T|∆(t)

d̂(t)α + λ∥G(t)∥


−

 ∑
α∈T|∆(t)

d̂(t−1)
α +

∑
α/∈T|∆(t)

d̂(t−1)
α + λ∥G(t−1)∥


=

∑
α∈T|∆(t)

(
d̂(t)α − d̂(t−1)

α

)
− λ∥∆(t)∥.

Note that d̂
(t)
α = d̂

(t−1)
α holds for α /∈ T|∆(t) because both β̂

(t)
α and β̂

(t−1)
α are irrelevant

with ∆(t). It then follows that, Eq.(5.7) holds i� L(G(t);T ) < L(G(t−1);T ) holds.

Algorithm 4 is the pseudo-code for the route graph discovery. Given a collection

of trajectories T and an initial graph G(0), e.g., a DRM, it �nds the �nal graph that

minimizes the loss (line 6). Note that B maintains the minimizing path and the

minimum distance for each trajectory α throughout every t-th stage (line 17). The

main loop (line 2�5) explores a series of subgraphs with decreasing losses as explained

in Thm.2. First, an edge e is selected, for instance, in increasing order of the cardinality,

which is the number of the minimizing paths running through it (line 3), and a new

graph G(t) is obtained by re-routing with the edge e disabled (line 4). We explain later

what re-routing is, as well as why and how we select a single edge. Then, the graph G(t)

is probabilistically accepted or rejected (line 4). Finally, the main loop either continues

or breaks in accordance with the history of the obtained graphs (line 5).

Next, we explain how to obtain the new graph G(t) by �nding ∆(t). The re-routing

technique serves this by map-matching with some edges of graph G(t) disabled (line

12). Note that trajectories not in ∆(t) are irrelevant to ∆(t) and that any edge e in ∆(t)
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satis�es the following inequality:

g ⊆ ∆(t) ⊆ ∆
(t)

g

where

g = G({e}),

∆
(t)

g = G(t−1) \
∪

α/∈T|g
G(β̂

(t−1)
α ),

and T|gis the collection of trajectories whose minimizing paths run through g. Thus,

the following strategy works: �rst conservatively select an edge e from G(t) and opti-

mistically initialize ∆(t) with ∆
(t)

g (line 8), as well as the cumulative di�erential residual

ϵ with 0 (line 9). Then, as we re-route a trajectory in T|g, ∆
(t) is subtracted by G(β̂

(t)
α ),

and ϵ is added by the di�erential residual before and after the re-routing (line 12�14).

In this implementation, we employed Zeheng et al.'s algorithm [78] for re-routing.

The procedure terminates as soon as it becomes obvious that Eq.(5.7) will never

be satis�ed (line 15,16). This is safe because of Thm.2 and, notably, this saves much

computation by skipping unnecessary map-matchings. If no early termination has

occurred, the procedure returns with the new reduced graph as G(t) (line 18). We

describe four implementation issues in the following sections.

1. Meta-heuristic optimization in main loop: the reason we probabilistically accept

the graph at line 4 is to escape local minima. For simplicity, however, the current

implementation always accepts the returned graph G(t). Other meta-heuristic

algorithms are also applicable, in addition to this implementation.

2. Initial graph: a DRM is one candidate of the initial graph G(0). A Delauney

graph whose vertices are GPS observations is another. In the former case, Alg.4

performs a joint map-matching. If it is certain that the GPS traces are from

objects moving on a DRM, this is the reasonable option. We chose this option

for the sake of experimentation in Sec.5.4. In the latter case, Alg.4 performs a

map-generation. This is useful when no DRM is available, although GPS ob-

servations should be carefully sampled if the density di�ers from place to place



5.2. PROPOSED METHOD 81

over the two-dimensional space. This is because too many observations increase

the computation whereas too few observations decrease the accuracy of the route

graph.

3. Map-matching algorithm: as mentioned at the beginning of Sec.5.2.3, the route

graph discovery employs a map-matching algorithm that follows Def.2. The cur-

rent implementation employed Zeheng et al. [78] because it is easy to implement.

Simply introducing their algorithm, it performs the A* algorithm to �nd the

shortest path between two vertices in the graph. Considering the combinations

of vertices, each of which is one of the neighbors of consecutive observations

within a window of size w, their algorithm �nds the route that minimizes the

cost function of the A* algorithm so long as w is large enough. Thus, this algo-

rithm satis�es the requirement of Def.2. Notably, any map-matching algorithm

could be used as long as it follows Def.2.

4. Selection of edges: there can be several priorities when selecting a disabled edge:

(a) by the length of edge,

(b) by the cardinality of edge,

(c) by both the length and cardinality,

(d) by the size of ∆(t) for the edge, and

(e) at random.

Except for the �fth option, these share the idea of �rst selecting an edge that

is most unlikely to remain in the �nal graph. Although the fourth option is

an exact greedy method, too much computation is needed because it requires

roughly as many re-routings as the average cardinality times the number of edges

in just one iteration. The �rst to the third options approximate the preference

of edges without the eager computation of ∆(t). Let us consider the case where a
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DRM is the initial graph. Intuitively, the length of the edge seems irrelevant to

the likelihood that it will remain in the �nal graph. For this reason, the second

one is the option we take because the �rst and the third employ the length of

the edge. Note that, whether an edge is selected with or without replacement is

another option. This implementation never replaces edges, but only selects an

edge once because the reduced graph is always accepted at line 4.

5.3 Feasible Applications

Supplied the trajectories, the proposed framework generates a route graph that simul-

taneously minimizes the distance to them and the size of itself. As every trajectory is

represented as a sequences of vertices or edges, it is easy to count the tra�c of each

intersection or segment. The following applications are realized just by combining the

existing technologies, instead of developing speci�c algorithms.

Careful readers might notice that ordinary map-matching can do the same thing

and allows us to count the tra�c. The road graph and DRM, however, are di�erent in

the sense that the former consolidates trajectories and the later does not. Thus, even

though the map-matching provides the similar function, their accuracies are di�erent.

Section 5.4 gives the empirical proof of this.

5.3.1 Predicting tra�c

Estimating probability p(v) for every vertex v and conditional probability p(f | e) for

every consecutive edges, e and f , is straight forward as we can easily count the tra�c for

any vertex or segment. Evaluating the conditional probability p(f | e(1), · · · , e(k)) for

a directed segment e(1), · · · , e(k) and its consecutive edge f realizes the turn prediction

at the the terminating end of that segment. These conditional or joint probabilities

are evaluated with p(v) or p(f | e) and some other useful predictive applications can
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be realized similarly. Moreover, recommending routes between origin and destination

is realized by using Viterbi algorithm on this Markov model.

5.3.2 Pattern discovery

Once trajectories are transformed to sequences of vertices or edges, the well stud-

ied �exible pattern matching [56] and frequent pattern mining technique [36, 35] are

applicable to them. The former technique realizes search for similar trajectories to

given trajectory, while the later enumerates all popular routes, uncovers the demand

for tra�c. The route graph can substitute for �ock pattern mining [7, 14] because it

consolidates trajectories if they �ock together.

5.3.3 Compression and anonymization

While tra�c analysis contributes to social goods, much care should be paid for privacy

concerns because GPS traces record exact locations of citizens. The important thing

is to exclude or obfuscate the private information from the discovered results as k -

anonymity mining does. Because the route graph aims to reduce its size, traces go

along nearby with each other are likely consolidated to common segments. Because of

this, the route graph maintains both privacy and utility after removing segments with

less than k -populations from it.

5.4 Experiments

In this section, we examine whether our algorithm is able to estimate unobservable

paths from sampled trajectories using the benchmark datasets. First, we explain the

experimental con�gurations and then present the results.

We implemented the algorithm with Python and run it on an Ubuntu 16.04 box

equipped with Intel Xeon E5-2623 v3 3.00GHz and 256GB memory. The process
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GPS OSM

name #pts #trace #nodes #edges

icdm 2859950 4257 18716 35170

bikely 549920 3150 262699 540017

chicago 118360 889 46533 88942

Table 5.1: Popular GPS trace datasets

employed 16 cores managed by multiprocessing module that comes with Python such

that each re-routing runs concurrently for computational e�ciency.

5.4.1 Experimental con�gurations

We use the benchmark datasets of GPS traces, which are collected and shared by

various research groups or volunteers. The DRM should be contemporary with the

GPS traces, although we utilized the Open Street Map (OSM) of 2017. Table 5.1 shows

descriptions of the datasets and their corresponding DRMs. Note that they might di�er

from those in other reports because those datasets were preprocessed di�erently.

The goal of this experiments was to examine the accuracy of the algorithms in

estimating unobservable paths from sparsi�ed trajectories. These paths, however, are

never available because the traces have been originally sampled. As such, we must

make some assumptions to evaluate the accuracy even in the following settings:

� an unobservable path is a series of connected links in the DRM, indicating that

a car drives on the roads,

� both the observation and sampling noises of the traces are su�ciently small,

� a certain algorithm, such as those using the Fréchet distance [3, 64], can map a

trace to its unobservable path if it contains su�ciently little noise.
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The �rst setting is acceptable because the trajectories in the datasets we are using

are all from those of cars or bikes. The third setting is also acceptable because map-

matching is trivial in that unrealistic case. Even though the second setting depends

on datasets, for the sake of experimentation, we decided to accept it.

In the experiments, we sampled observations in a trajectory-wise manner with vari-

able rates, and compared the residuals of the following:

1. unsampled trajectory from DRM (lower bound),

2. unsampled trajectory from route graph (proposed),

3. sampled trajectory from DRM (upper bound).

The �rst situation gives the lower bounding residual, in that no algorithm can do

better than this method, as we had accepted the three above assumptions. The second

method is our proposed method. To evaluate how well the route graph represents the

major streams in the GPS traces compared to the DRM, we evaluated the residual

of the unsampled trajectory from the route graph. The third method evaluates the

residual arising from the injection of sampling noises. This gives the upper bounding

residual in the sense that no o�-the-shelf single-track map-matching does worth than

this.

5.4.2 Experimental results

Figure 5.1 shows example results of a single-track and the proposed map-matching

algorithms with variable sampling rates. Note that the unobservable path is identical

to the result of single-track map-matching in the bottom picture. As the sampling

rate increases, the results get similar with each other and they �nally become almost

identical. The estimated routes by the single-track map-matching cling to the traces

because they minimize the Fréchet distances. Especially with the lowest sampling
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rate, the route unnaturally comes and goes across the river. On the other hand, the

estimated routes by the proposed method are less dependent on the sampling rates

than those by the single-track map-matching. Furthermore, with the unsampled trace,

the proposed method estimates the even natural route because of the regularization

term as we will mention later.

Figure 5.2, 5.3, and 5.4 describe the residuals of the three methods with variable

sampling rates. Note that the lower bound is constant because the �rst method is

irrelevant with the sampling rates. We can see that the upper bound curve steeply

increases as the sampling rate decreases. This is what we expected, as the lower is the

sampling rate, the more the residual experiences injected sampling noises.

In contrast, the curve for the proposed method increases moderately. For instance,

in the icdm and chicago datasets, the proposed method reduced the residual by more

than 70% and 40%, respectively, for the upper bound at sampling rate of 40%. The

reduction rate tends to increase when the dataset has a larger number of trajectories,

which means that the proposed method leverages the residual using the other trajec-

tories. Indeed, we can see that the icdm was able to decrease the sampling rate to 40%

while the degradation of residual remained nearly constant at 7.0%.

The residual is slightly larger than the upper bound at a sampling rate of 100%, this

is because our algorithm accepts a slight increase in the residuals to reduce the route

graph. The behavior of the residual as well as the empirical loss is well understood in

the regularization technique. The results may accordingly indicate that our algorithm

may further exploit the observation and sampling noises.

Figure 5.5, 5.6, and 5.7 describe the description length of graph with variable sam-

pling rates, which corresponds to the regularization term that we introduced to the loss

function. In all three datasets, the description length monotonically and asymptoti-

cally increases as the sampling rate increases. By contrast, the residual monotonically

and asymptotically decreases in Fig.5.2, 5.3, and 5.4, which shows that our algorithm
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reasonably favors these contradictory terms depending on the sampling rate.

5.4.3 Discussions

In this section, we discuss the di�erences between the existing methods and our method.

Recall that we have been trying to estimate unobservable paths from traces with sample

noise by proposing a new joint map-matching method. Therefore, we would discuss the

relation between a joint map-matching [48] and our proposal, as well as the expected

advantage of our method to the proceeding stochastic method [58].

Li et al. [48] formalized a joint map-matching as an optimization problem whose

objective function contains residual, stitching, and regularization terms. Their method

is essentially similar to our method as these two methods share two terms in their

objective functions, although the proceeding method requires the stitching term to

penalize the fragmentations introduced by its formalization. They di�er, however, in

terms of algorithms. The proceeding method requires three hyper-parameters while

ours requires a single hyper-parameter which can be �xed as λ = 1 with a good

reason. And we remarkably disclosed that the residual and regularization terms are

obtained as we formalize the joint map-matching as a generative stochastic process.

Concretely, the residual term is caused by the assumption that the distance between

trace and unobservable path follows the exponential probability distribution, and that

the regularization term is from the other assumption that the paths are equally likely.

Then, we compare our method to another stochastic method that employs HMM

[58]. They has two major di�erences. One is that the latent variables of the HMM-

based method correspond to the vertices from which the observations come, while those

of our method correspond to the paths from which the traces come. The other is that

the HMM-based method maximizes likelihood estimator (MLE), while ours maximizes

a posterior (MAP). Thus, we suppose that the HMM-based method likely over�ts

without restricting the number of hidden states by manually tuning the complexity of
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the graph. On the other hand, our method automatically determines the complexity of

the graph depending on the number of GPS observations. Because of these di�erences,

we believe that the proposed method has advantages especially with a low sampling

rate or less traces.

5.5 Conclusion

In Chapter 5, we proposed a joint map-matching method based on the generative model

for estimating unobservable paths by maximizing the posterior probability. Maximiza-

tion is achieved by the EM algorithm whose object function consists of residual and

regularization terms. We presented an iterative algorithm for exploring the route graph,

which avoids as many map-matchings as possible by taking advantage of the proven

property holding of the residual and the regularization terms. The experimental results

showed that the residual degradations from the lower bound were no more than 7.0%

when the sampling rate was reduced to 40%. This means that this algorithm reduces

the volume of sampling noises and identi�es the major streams in the trajectories.
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Algorithm 4 Building route graph
Require: trajectories T , minimizing paths B

1: procedure main(G(0))

2: for all t = 1, 2, 3, · · · do

3: select e from edges in G(t−1)

4: G(t) ← apply(G({e}), G(t−1)) with some probability

5: break by history · · · , G(t−1), G(t)

6: report G(t)

7: function apply(g, G(t−1))

8: let ∆(t) be subgraph only T|grun

9: ϵ← 0

10: for all α ∈ T|g do

11: β̂
(t−1)
α , d̂

(t−1)
α ← B[α]

12: β̂
(t)
α , d̂

(t)
α ←MG\g(α)

13: ∆(t) ← ∆(t) \G(β̂
(t)
α )

14: ϵ← ϵ+ (d̂
(t)
α − d̂

(t−1)
α )

15: if ∥∆(t)∥ < ϵ then

16: return G(t−1)

17: update B[α] with β̂
(t)
α , d̂

(t)
α for α ∈ T|g

18: return G(t−1) \∆(t)
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Figure 5.1: Estimated routes by single-track (chain), proposed (solid) map-matching,

and sampled trace (dashed) from bikely with rate 20% (top), 40% (middle), and 100%

(bottom).
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Figure 5.2: Residuals of icdm versus sampling rate.
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Figure 5.3: Residuals of bikely versus sampling rate.
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Figure 5.4: Residuals of chicago versus sampling rate.
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Figure 5.5: Regularization term of icdm versus sampling rate.
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Figure 5.6: Regularization term of bikely versus sampling rate.
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Figure 5.7: Regularization term of of chicago versus sampling rate.



Chapter 6

Conclusion

In this thesis, we studied geospatial mobility analysis dealing GPS observations.

Discovery of regions was extended to handle dynamic and probabilistic nature of

mobility analysis. We proved the local maximum property to retain relevant cells and

proposed the algorithm that compose transitive closures from remaining cells. We also

introduced regularization by description length of regions to the object function. The

experimental result showed that the algorithm is well applied to detecting hotspots

with non-isotropic in ununiformly distributed points, and that the regularized region

improves the precision by more than 20% compared to the unregularized one.

Joint map-matching was formalized as maximizing posterior problem. We proposed

the algorithm that exploratory optimizes the object function with regularization term

representing the number of unique edges of the mapped paths. The experimental result

showed the algorithm is well applied to coarsely sampled trajectories without increasing

residuals from true paths, and that the residual degradation was within 7.0% even if

we map-match trajectories sparsi�ed at a rate of 40% for the practical benchmark

datasets.

For the problem of RoI discovery, this works can be continued in two directions: one

involves extending it to higher dimensional data. The other is theoretical analysis. Both

97
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the quad-tree and the regularization term are currently apriori. They need justi�cations

based on the theory of statistical machine learning.

For the multi-track map-matching problem, we plan to continue this work in three

directions: �rst, by realizing performance enhancements by further reducing the costly

map-matching. One idea is to localize the re-routing to the disabled links without

performing map-matching from the origin to destination of the trajectories. The other

idea is to extend our algorithm to the incremental one that updates the route graph as

trajectories arrive in sequence. The second direction is to develop more sophisticated

formulations of the EM algorithm without considering the extreme case, or applying

another generative model such as the Hidden Markov Model. The third direction is to

apply our method to demand analysis, urban design, and other applications.
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