

Instructions for use

Title Efficient Enumeration of Substructures in Sparse Graphs

Author(s) 栗田, 和宏

Citation 北海道大学. 博士(情報科学) 甲第14124号

Issue Date 2020-03-25

DOI 10.14943/doctoral.k14124

Doc URL http://hdl.handle.net/2115/78409

Type theses (doctoral)

File Information Kazuhiro_Kurita.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp

Efficient Enumeration of Substructures in

Sparse Graphs
（疎なグラフにおける部分構造の効率良い列挙）

Kazuhiro Kurita

February 2020

Division of Computer Science and Information Technology

Graduate School of Information Science and Technology

Hokkaido University

Abstract

Graphs are widely used to represent various data. For example, communication net-

works, metabolic networks, and social networks are graphs in the real world. In this

thesis, we address efficient enumeration for sparse graphs. The first parameter of spar-

sity is girth. Small cycles make a problem difficult not only an enumeration problem but

also optimization problems. For example, the minimum dominating set, the maximum

independent set, and the maximum induced matching problem have a fixed parameter

tractability. Indeed, we develop efficient enumeration algorithms for dominating sets

and induced matchings if an input graph has large girth. In addition, we address an-

other approach that uses the sparsity for subgraph enumeration. We next consider the

problem which the output has girth constraint. In addition to girth, the other param-

eters of sparsity are degeneracy and degree. We develop several theoretical efficient

enumeration algorithms. To show that these algorithms are practical, we experiment

these algorithms for artificial graph data. As a result, our algorithms are faster than

simple algorithms. In what follows, we explain our main results.

In Chapter 3, we use girth as the sparsity. More precisely, we assume that an input

graph has no cycles with length four. We address an induced matching enumeration

problem. An induced matching is a set of edges such that the distance between any pair

of edges is at least two. We propose a binary partition based enumeration algorithm.

2

Binary partition is one of the most famous technique to construct an enumeration

algorithm. Our algorithm runs in constant amortized time. In addition, our algorithm

is 200 times faster than a simple algorithm.

In Chapter 4, we use girth once again as the sparsity. However, in this chapter,

we use girth constraint to output. We address enumeration of subgraphs and induced

subgraphs with bounded girth. We consider directed case and undirected case. For all

cases, we achieves O (n) delay enumeration, where n is the number of vertices. The

bottleneck of this algorithm is girth computation. To speed up girth computation,

these algorithms use a kind of distance matrix. We implement one algorithm and it is

60 times faster than a simple algorithm.

In Chapter 5, we introduce the new sparsity parameter, degeneracy. We consider

enumeration of dominating sets and propose two algorithms. These algorithms run

in amortized O (k) time and constant amortized time, respectively, where k is the

degeneracy of a graph. It is known that a k-degenerate graph has a good vertex

elimination ordering. This ordering is important in the former algorithm. The latter

algorithm needs O (∆3) time in each node, where ∆ is the degree of a graph. However,

the number of children and grandchildren is enough large if an input graph has the

large girth. Hence, the amortized time complexity improves from O (∆3) time to O (1)

time.

In Chapter 6, we consider enumeration of chordal bipartite induced subgraphs. The

recognition of a dominating set and an induced matching is very simple. It is sufficient

to check the neighborhood of each element. However, recognition of chordal bipartite

graphs is non trivial. To solve this problem, the bottleneck is recognition of chordal

bipartite graphs. Hence, we develop a new characterization of chordal bipartite graphs

which convenient for enumeration. We show that chordal bipartite graphs have vertex

3

elimination ordering. Based on this ordering, we develop an enumeration algorithm

which runs in O (kt∆2) time, where t is the size of a maximum biclique Kt,t of a graph.

Finally, we summarize our results in Chapter 7. In addition, we give future direc-

tions of this thesis.

Acknowledgement

I would like to express my special appreciation and thanks to my supervisor Hiroki

Arimura. This thesis would not have been possible without his support and encour-

agement. I would also like to express thanks to associate professor Takuya Kida. He

always helped me when I was in trouble and support my life in Hokkaido University.

I would like to express my gratitude to Takeaki Uno and Kunihiro Wasa for sup-

porting a big part of this work. I am grateful to Roberto Grossi for his hosting me

in his laboratory. I wolud like to thank to Alessio Conte, Andrea Marino, and Giulia

Punzi for helpful discussion.

Ms. Manabe always helped us with our daily life in our laboratory. Last but not

least, my deepest gratitude to my parents Yasushi and Kaoru, my brothers Takafumi

and Yohei, and all my family. They always supported me for 27 years.

Contents

1 Introduction 11

1.1 Background . 11

1.2 Research Goal . 12

1.3 Enumeration of induced matchings . 13

1.4 Enumeration of subgraphs with bounded girth 14

1.5 Enumeration of dominating sets . 14

1.6 Enumeration of chordal bipartite induced subgraphs 15

1.7 Related work . 16

1.7.1 For general graphs . 16

1.7.2 For sparse graphs: bounded degenerate graphs 17

1.8 Organization . 17

2 Preliminaries 19

2.1 Graphs and hypergraphs . 19

2.2 Complexity of enumeration algorithms 22

2.3 Basic techniques for enumeration algorithm 22

2.3.1 Binary partition . 23

2.3.2 Reverse search . 23

8 CONTENTS

2.3.3 The supergraph technique and proximity search 24

2.4 The time complexity analysis techniques 25

2.4.1 Amortization by children and grandchildren 25

2.4.2 Push out amortization . 25

3 Enumeration of Induced Matchings 27

3.1 Introduction . 27

3.2 A basic algorithm based on binary partition 29

3.3 The algorithm for C4-free graphs . 32

3.4 Correctness of the algorithm . 35

3.5 Amortized analysis of the time complexity 37

4 Enumeration of Subgraphs with Bounded Girth 47

4.1 Introduction . 47

4.2 Algorithms for directed graphs . 49

4.2.1 A basic algorithm for directed graphs 49

4.2.2 Improvement for induced subgraph enumeration 51

4.2.3 Improvement for subgraph enumeration 55

4.3 Algorithms for undirected graphs . 62

4.3.1 A basic algorithm for undirected graphs 62

4.3.2 Improvement for induced subgraph enumeration 63

4.3.3 Improvement for subgraph enumeration 67

5 Enumeration of Dominating Sets 77

5.1 Introduction . 77

5.2 A basic algorithm based on reverse search 78

5.3 The algorithm for bounded degenerate graphs 80

CONTENTS 9

5.4 The algorithm for graphs with girth at least nine 91

6 Enumeration of Chordal Bipartite Induced Subgraphs 103

6.1 Introduction . 103

6.2 A characterization of chordal bipartite graphs 104

6.3 The proposed algorithm . 108

6.4 The time complexity analysis . 111

7 Conclusion and Future Work 119

Chapter 1

Introduction

1.1 Background

Graphs represent various real world data, i.e., road networks, social networks, and

citation networks. Dense subgraph enumeration has been studied in order to analyze

such graphs [12, 20]. A graph is called dense if the number of edges is large. For

example, a clique, that is a subgraph which any pair of vertices are adjacent, is a

typical dense subgraph. The sparsity is often used to develop efficient enumeration

algorithm for maximal cliques [9, 10, 15,21].

In this thesis, we develop efficient enumeration algorithms for sparse graphs. A

graph is called sparse if the number of edges is small. First, we consider graphs with no

short cycles as sparse graphs. More precisely, we consider graphs with girth at least g.

The girth is the length of a shortest cycle in a graph. The reason for this definition

is that many small cycles make several graph optimization problems difficult. Indeed,

the maximum independent set problem and the t-vertex cover problem are tractable if

a graph has the large girth [59]. If the girth of a graph is large, then a set of vertices

12 CHAPTER 1. INTRODUCTION

such that any pair of vertices has the distance at most g/2 induce a tree. A tree

has n − 1 edges, where n is the number of vertices. Hence, a tree is sparse graphs.

From this observation, we adopt girth as the sparsity parameter. Next, there are two

approaches to using the sparsity for subgraph enumeration. One is that input graphs

have large girth constraint. The other is that outputs have large girth constraint. We

address both problems. In addition to the theoretical analysis, we consider whether

our algorithm can be applied to data analysis. Hence, we implement and show the

performance of our algorithms.

1.2 Research Goal

The aim of this thesis is to develop an efficient enumeration algorithm for sparse graphs.

The time complexity of enumeration algorithms is measured with respect to the size

of input and the number of solutions. An enumeration algorithm is called amortized

polynomial time algorithm if it runs in linear time with respect to the number of

solutions. Then, the goal is to develop an enumeration algorithm which runs in constant

time per solution (constant amortized time). To solve an enumeration problem, a basic

technique is backtracking. For each element, we recursively search two cases. One case

adds this element to a solution. The other case does not add this element to a solution.

See Section 2.3 for the details. However, by applying this technique simply, we cannot

achieve constant amortized time. Hence, we use the sparsity.

In addition, we implement the following three algorithms, the induced matching

enumeration algorithm EIM, the connected subgraph with bounded girth enumeration

in undirected graphs EUG-ES, and the dominating set enumeration algorithm EDS-D. We

compare the performance of our algorithms, simple algorithms, and naive algorithms.

1.3. ENUMERATION OF INDUCED MATCHINGS 13

As a result, our proposed algorithm EIM and EUG-ES are faster than simple algorithms.

However, EDS-D is slower than a naive algorithm. In what follows, we show the main

results.

1.3 Enumeration of induced matchings

The maximum induced matching problem is tractable for graphs with girth six or

more [54]. We develop an algorithm EIM for induced matchings in C4-free graphs which

has no cycle with length four. The algorithm EIM runs in constant amortized time. An

induced matching is a set of edges such that any pair of edges has the distance at least

two. By applying simple binary partition, we can enumerate all induced matchings

in amortized O (∆2) time, where ∆ is the degree of a graph. To reduce the time

complexity, we manage the order of selecting edges and improve the cost from O (∆2)

to O (1)1.

In low-degree polynomial time enumeration algorithms, the most time-consuming

part is often typically the generation of child problems. If the structure is simple,

child problem generation can be completed within a short time. For example, if the

graph is a tree, there is no cycle around a vertex; thus, we do not have to consider the

unification of multiple edges when we shrink an edge. Not only theoretical analysis of

EIM, we implement EIM and compare the performance of EIM, a simple algorithm, and

a naive algorithm. In our experiment, EIM is 200 times faster than a simple algorithm.

1This result is published in [45].

14 CHAPTER 1. INTRODUCTION

1.4 Enumeration of subgraphs with bounded girth

We address enumeration of sparse graphs in this chapter. In particular, we consider

enumeration of subgraphs with bounded girth. The girth is the length of a shortest

cycle in a graph. We consider enumeration of subgraphs and induced subgraphs with

bounded girth in a directed graph and an undirected graph. This problem generalizes

that of the acyclic subgraphs enumeration. If g is more than n, then this problem

corresponds to the acyclic subgraph enumeration.

The problem of finding the acyclic subgraph with maximum size or weight has been

studied. However, the best of our knowledge, this is the first efficient enumeration algo-

rithm for the problem. Our proposed algorithms have polynomial delay and solve the

problem for both directed an undirected graphs. The girth computation is a bottleneck

of a simple binary partition algorithm. To overcome this complexity, we use the all

to all distance matrix and the second distance matrix. The second distance matrix

maintains the length of a second shortest path for any pair of vertices. By using these

data structures, we achieves O (n) delay enumeration for four enumeration problems2.

We implement the proposed algorithm for connected subgraphs with large girth. It

runs in O (n) time per solution. We show the performance of this algorithm. This

algorithm is 60 times faster than a simple algorithm.

1.5 Enumeration of dominating sets

The minimum dominating set problem has a fixed parameter tractability for girth

five or more [59]. The sparsity make this problem easy. In Chapter 5, we address

enumeration of dominating set in sparse graphs.

2These results are published in [16,44]

1.6. ENUMERATION OF CHORDAL BIPARTITE INDUCED SUBGRAPHS 15

A set of verticesD is a dominating set if a closed neighbor ofD is equal to V . In this

chapter, we focus on sparse graphs, e.g., bounded degenerate graphs and graphs with

large girth. We develop two constant amortized time enumeration algorithms3. One

is an amortized O (k) time enumeration algorithm for k-degenerate graphs. The other

is an amortized O (1) time enumeration algorithm for graphs with girth at least nine.

We implement our algorithm for bounded degeneracy graphs EDS-D. We investigate the

performance of EDS-D. However, EDS-D is slower than a naive algorithm and a simple

algorithm.

1.6 Enumeration of chordal bipartite induced sub-

graphs

Each element of a dominating set or an induced matching affects only the neighbor-

hood. However, chordal bipartite induced subgraph affect other than neighborhood.

In Chapter 6, we address enumeration of chordal bipartite induced subgraph. Our

proposed algorithm runs in constant amortized time for bounded degree graphs. Our

algorithm runs in amortized O (kt∆2) time, where k is the degeneracy and t is the

size of a maximum biclique Kt,t
4. Note that k and t are at most ∆. This algorithm

correctly works even if we do not know the exact value of t.

Chordal bipartite graphs are bipartite graphs without induced cycles with length

six or more. Chordal bipartite graphs have several equivalent characterizations, and are

closely related to strongly chordal graphs and β-acyclic hypergraphs [6, 22, 31, 49, 67].

In particular, a chordal bipartite graph also has a vertex elimination ordering, called

3This result is published in [43].
4This result is published in [46].

16 CHAPTER 1. INTRODUCTION

weak elimination ordering (WEO) [67]. The bottleneck of this problem is a recognition

problem of chordal bipartite graphs. In this thesis, we define a new characterization of

chordal bipartite graphs, called chordal bipartite elimination ordering. By using this

ordering, we construct an enumeration algorithm based on reverse search. In addition,

this characterization is useful for an enumeration algorithm since we can recognize

chordal bipartite graphs in O (∆2) time.

1.7 Related work

We give several results for constant amortized enumeration algorithms. Note that

there exist a good survey of enumeration algorithms by Wasa [74]. In particular, the

degeneracy of a graph is often used to construct efficient enumeration algorithms.

1.7.1 For general graphs

It is known that the following problems can be solved in constant amortized time: span-

ning tree enumeration [62, 73], connected induced subgraph enumeration [73], chordal

induced subgraphs enumeration [41], perfect elimination ordering enumeration [8], per-

fect sequence of chordal graph [52], and matching enumeration [73].

The above algorithms are recursive algorithms. In each recursion, algorithms other

than [8] need computation time more than O (1). The key technique is amortized analy-

sis. Especially, push out amortization is very powerful tool to show constant amortized

time enumeration. Even if much computation time is needed for each recursive call, we

can show that enumeration algorithm runs in constant amortized time if the number

of descendants is sufficient large.

1.8. ORGANIZATION 17

1.7.2 For sparse graphs: bounded degenerate graphs

It is known that the following problems can be solved in constant amortized time if

degeneracy k is constant: induced subtree enumeration (amortized O (k) time [75]), k′-

degenerate induced subgraph enumeration (amortized O (min (∆ + kk′, k2)) time [77]),

maximal clique enumeration (amortized O (poly(k)) time but this algorithm needs ex-

ponential space [51]), and bipartite induced subgraph enumeration (amortized O (k)

time [78]). The above algorithms achieve amortized constant time enumeration for

graphs with bounded degeneracy.

These algorithms use a vertex elimination ordering, called a degeneracy ordering.

In a degeneracy ordering, every vertex has at most k neighbors that are later in the

ordering. Mutula et al. [53] has been developed a linear time algorithm to compute

the degeneracy and degeneracy ordering. This ordering is a key structure to construct

efficient enumeration algorithms In this thesis, we use this ordering in Chapter 5 and

Chapter 6.

1.8 Organization

In Chapter 2, we give basic notations used in this thesis. In addition, we introduce

basic techniques for the design and analysis of enumeration algorithms. In Chapter 3,

we present an constant amortized time enumeration algorithm to enumerate induced

matchings in C4-free graphs. In Chapter 4, we propose an efficient enumeration algo-

rithm for subgraphs and induced subgraphs with bounded girth. In Chapter 5, we give

constant amortized time enumeration algorithms for dominating sets in sparse graphs.

In Chapter 6, we give an efficient enumeration algorithm for chordal bipartite induced

subgraphs. In Chapter 7, we summarize this thesis. In this chapter, we point out the

18 CHAPTER 1. INTRODUCTION

future direction of this thesis.

Chapter 2

Preliminaries

In this chapter, we introduce basic definitions and notations. In addition, we explain

basic techniques to construct and analyze enumeration algorithms.

2.1 Graphs and hypergraphs

Let G = (V (G), E(G)) be an undirected grpah, or simply a graph, where V (G) be a

set of vertices of G and E(G) ⊆ V (G)× V (G) is the set of edges of G. We denote by

n and m the size of V (G) and E(G), respectively. We say that u and v are adjacent

if E(G) includes {u, v}. A set of adjacent vertices of v is a open neighborhood of v.

We denote a open neighborhood of v as NG(v). A set of vertices NG(v)∪ {v} is called

closed neighborhood and denoted by NG[v]. A pair of vertices u and v are twin if

NG(v) is equal to NG(u). We denote NG(v) ∩X as NX(v), where X is a subset of V .

A set of neighbors of U is defined as NG(U) =
∪

u∈U NG(u) \ U . Similarly, let NG[U]

be
∪

u∈U NG(u) ∪ U . In addition, an edge {u, v} is called an incident edge of u. The

number of incident edges of v is called the degree of v and denoted by dG(v). The

20 CHAPTER 2. PRELIMINARIES

maximum degree in a graph G is called the degree of G and denoted by ∆(G). For

an edge e = {u, v}, we say that u and v are end points (or ends) of e. A set of edges

which has v as ends is denoted by N e
G(v). If there is two edges e and f which has same

end points, then we call e and f are parallel. An edge e = {v, v} is called self loop. A

graph G is simple if there is no self loops and parallel edges. In this thesis, we assume

that G is simple and finite. In what follows, if it is clear from context, we omit the

subscript G.

A graph H = (U, F) is a subgraph of G = (V,E) if U and F are subset of V and

E, respectively. We say that H is a spanning subgraph if U is equal to V . A graph

H = (U, F) is an induced subgraph of G = (V,E) if F = {{u, v} ∈ E | u, v ∈ U} and

denoted by H = G[U]. We say that an induced subgraph G[U] is induced by U . We

denote by G \ {e} = (V,E \ {e}) and G \ {v} = G[V \ {v}]. For simplicity, we denote

by v ∈ G and e ∈ G if v ∈ V and e ∈ E, respectively. A graph is called k-degenerate

if all induced subgraph has a vertex with the degree at most k [48]. The degeneracy of

a graph is the minimum value of k. A sequence P = (v1, . . . , vk) of vertices is a path if

each vertex in P appears at most once and {vi, vi+1} ∈ E for any 1 ≤ i < k. We also

call P an v1-vk path. The length of P is defined by the number of its vertices minus

1. Then, a sequence C = (v1, . . . , vk) of vertices is a cycle if (v1, . . . , vk) is a v1-vk

path and {v1, vk} ∈ E. The length of a cycle is defined by the number of its vertices.

We say that a graph is connected if any pair of u and v has a u-v path. Otherwise,

we say that a graph is disconnected. For any vertices u, v ∈ V , the distance between

u and v is defined by the length of a shortest u-v path and denoted by dist(u, v).

The distance between edge e and f is defined by the length of a shortest path, i.e.,

dist(e, f) = min{dist(u, v) | u ∈ e, v ∈ f}. Similarly, the distance between vertex v and

edge e is defined by dist(v, e) = min{dist(u, v) | u ∈ e}. We define the neighborhood

2.1. GRAPHS AND HYPERGRAPHS 21

with distance k as Nk(v) = {u ∈ V | dist(u, v) = k}. In addition, we define the

neighborhood with distance at most k as N
≤k(v) = {u ∈ V \ {v} | dist(u, v) ≤ k}. We

denote that N≤k(v) ∪ {v} as N≤k[v]. N (v) is the neighborhood set of the neighbors

defined as {N(u) | u ∈ N(v)}. A set of edges M is called an induced matching if any

pair of edges has a distance at least two.

Next, we consider directed graphs. We denote a directed edge from a to b as e =

(a, b). We call a is a tail of e and b is a head of e. We call a graph G a directed graph

when any edge in G has direction. When edge direction is not important, we write

{a, b} to refer to either the directed edge (a, b) or (b, a). and N e(v) represents the set

of edges having v as either tail or head, which we call edge neighborhood. The directed

girth, or simply girth, denoted by g(G) of a graph G, is the length of its smallest cycle.

A graph is acyclic if it contains no cycle. If G is acyclic, its girth is defined to be ∞;

in all other cases, the girth of G is at most |V (G)|, i.e., the maximum possible length

of a cycle.

Let H = (V, E) be a hypergraph, where V is a set of vertices and E is a set of subsets

of V . We call an element of E a hyperedge. For a vertex v, let H(v) be the set of edges

{e ∈ H | v ∈ e}. A sequence of edges C = (e1, . . . , ek) is a berge cycle if there exist k

distinct vertices v1, . . . , vk such that vk ∈ e1∩ek and vi ∈ ei∩ei+1 for each 1 ≤ i < k. A

berge cycle C = (e1, . . . , ek) is a pure cycle if k ≥ 3 and ei∩ej ̸= ∅ hold for any distinct

i and j, where i and j satisfy one of the following three conditions: (I) |i− j| = 1, (II)

i = 1 and j = k, or (III) i = k and j = 1. A cycle C = (e1, . . . , ek) is a β-cycle if the

sequence of (e′1, . . . , e
′
k) is a pure cycle, where e′i = ei \

∩
1≤j≤k ej. We call a hypergraph

H β-acyclic if H has no β-cycles. We call a vertex v a β-leaf if e ⊆ f or e ⊇ f hold

for any pair of edges e, f ∈ H(v). A bipartite graph I(H) = (X,Y,E) is a incidence

graph of a hypergraph H = (V, E) if X = V , Y = E , and E contains an edge {v, e} if

22 CHAPTER 2. PRELIMINARIES

v ∈ e, where v ∈ V and e ∈ E .

2.2 Complexity of enumeration algorithms

In enumeration algorithm area, there are two measurements to evaluate the efficiency

of an algorithm. One is an input sensitive. In this measurement, we evaluate the

efficiency of algorithm with respect to only an input size. Since the number of solution is

typically exponentially larger than an input size, the time complexity of an enumeration

algorithm is bounded by exponential time.

The other is an output sensitive evaluation [33]. In this measurement, we evaluate

the efficiency of an enumeration algorithm with respect to an input size and the num-

ber of solutions. In this thesis, we use output sensitive evaluation. An enumeration

algorithm is called amortized polynomial time if the total time complexity is bounded

by O (M · poly(n)), where M is the number of solution and n is an input size. In ad-

dition, an enumeration algorithm is called polynomial delay if the maximum interval is

bounded by polynomial of an input size. To solve a problem with M solutions, we need

M steps since we output M solutions. Hence, an time algorithm which runs in O (M)

time is optimal. We call such algorithm as a constant amortized time enumeration

algorithm.

2.3 Basic techniques for enumeration algorithm

We introduce several techniques for constructing enumeration algorithms. Binary par-

tition is one of the most famous technique to construct enumeration algorithms. There

are many efficient enumeration algorithms applying binary partition [1,4,13,23,24,30,

2.3. BASIC TECHNIQUES FOR ENUMERATION ALGORITHM 23

42,47,58,60,64,66,69,75,76,78]. The next famous technique is reverse search. Reverse

search have been developed by Avis and Fukuda [3]. The following results are based

on reverse search [14, 15, 40, 41, 50, 55, 65, 68, 70, 72, 79]. Finally, we introduce the su-

pergraph technique. In this technique, we construct strongly connected digraph on a

solution space. There are many algorithms based on this technique to solve maximum

or minimum solution enumeration problems [11,17,26,38,39,61].

2.3.1 Binary partition

The basic idea of binary partition is as follows: dividing S into non empty two sets,

S0 and S1. If the size of S0 is one, then output this solution. Otherwise, we divide S0
recursively. We do the same procedure for S1. This dividing procedure makes a tree

structure T = (V , E). We call this tree structure as an enumeration tree. Since each

internal node of T divides S into two sets S0 and S1, we can enumerate all solutions.

The bottleneck of binary partition is a division part. It is difficult to divide S into

two non empty set efficiently. In this thesis, our algorithms in Chapter 3 and Chapter 4

are based on binary partition. In these chapters, we show that the size of S1 and S0
are sufficiently large if we need much computation time to divide S into S0 and S1.

Hence, we can amortized this cost and achieves constant amortized time enumeration.

2.3.2 Reverse search

In reverse search, we define the parent child relation between solutions. Our aim is

constructing a spanning tree on a set of solutions. Let S be a set of solutions and R

be a solution which has no parent. If any solution S ∈ S \ {R} become a solution R

by applying the parent relation at most k times, then this relationship makes a tree

structure T = (V , E). We call this tree structure as a family tree. In reverse search, we

24 CHAPTER 2. PRELIMINARIES

enumerate all solution by traversing this tree structure T . However, we cannot traverse

T only the parent child relation since we cannot find the children of each node. Hence,

we have to define a function to enumerate all children of each node. We summarize the

key point of reverse search The definition of the parent child relation and the definition

of a function to enumerate all children of each node. If we define the above a relation

and a function, then we can traverse T and enumerates all solutions. In this thesis,

our algorithms in Chapter 5 and Chapter 6 are based on reverse search.

2.3.3 The supergraph technique and proximity search

In the supergraph technique, we define the neighbor of each solution. Hence, a set

of solution and this neighborhood relation make a directed graph. By traversing this

directed graph, we enumerate all solutions.

Cohen et al. have been developed a general framework to enumerate all maximal

subgraphs for hereditary and connected hereditary graph properties. This framework

is based on the supergraph technique and guarantees that a constructed supergraph is

strongly connedted. In this framework, we have to slove some enumeration problem.

This subproblem is called an input restricted problem. If we can solve an input restricted

problem in output polynomial time, then we can enumerate maximal subgraphs in out-

put polynomial time. Unfortunately, it is difficult to solve an input restricted problem

in polynomial time since an input restricted problem is an enumeration problem.

To overcome this difficulty, Conte and Uno have been developed a new technique to

construct a sparse strongly connected supergraph. This technique is called proximity

search [17]. In proximity search, the out degree can be reduced to polynomial size if a

solution has good ordering. Hence, in proximity search, we compute all neighborhood

in polynomial time for each vertex on a supergraph.

2.4. THE TIME COMPLEXITY ANALYSIS TECHNIQUES 25

2.4 The time complexity analysis techniques

Enumeration algorithms based on reverse search or binary partition make a recursion

tree. Suppose that an algorithm outputs at least one solution in each node of this

recursion tree. The amortized time complexity of such an enumeration algorithm is

O (T (X)) time, where X is a node in a recursion tree and T (X) is the time complexity

of node X. We introduce the technique to reduce the amortized complexity. In what

follows, suppose that an enumeration algorithm makes a recursion tree.

2.4.1 Amortization by children and grandchildren

To reduce the amortized time complexity, we consider the number of children and

grandchildren. Let A be an enumeration algorithm. Let X be a node in a re-

cursion tree T = (V , E). the number of children and grandchildren of X are de-

noted by ch(X) and gch(X), respectively. In each node X, A demands T (X) =

O (ch(X) + gch(X)) time. In this case, the total time complexity of this algorithm is

bounded by O
(∑

X∈T ch(X) + gch(X)
)
. Since the sum of the number children and

grandchildren is bounded by O (|V|), the amortized time complexity of this algorithm

is O (1) if the size of V is bounded by O (M), where M is the number of solutions.

This analysis is simple. However, we use this analysis many times in this thesis.

2.4.2 Push out amortization

Uno has been developed the analysis technique, called push out amortization [73]. In

push out amortization, the key point is the total computation time of children nodes.

Uno shows that if any internal node satisfies the following condition, called push out

condition (PO condition), then, the amortized time complexity of this algorithm is

26 CHAPTER 2. PRELIMINARIES

O (T ∗), where T ∗ is the time complexity of a leaf node. Let X be a node in an

enumeration tree T . PO condition is as follows: T (ch(X)) ≥ αT (X)−βT ∗ |ch(X) + 1|,

where α is a real number greater than 1, β is a real number greater than or equal to 0,

T (X) is the computational time in nodeX, and T (ch(X)) is the total computation time

of children nodes. In this analysis, we distribute the computational cost recursively.

If PO condition is satisfied in any node in T , then total computation time of this

algorithm is dominated by the bottom part of T . Since each leaf has O (T ∗) cost, the

amortized time complexity is O (T ∗).

Chapter 3

Enumeration of Induced Matchings

3.1 Introduction

In this chapter, we propose an efficient enumeration algorithm for induced matchings.

An induced matching is a set of edges such that any pair of edges has no adjacent

endpoints. We show that our algorithm enumerates all solutions in constant amortized

time if graphs have no cycles with length four. The maximum induced matching

problem is a famous NP-hard problem [63]. Moreover, Moser and Sikdar show that

the maximum induced matching problem is fixed parameter tractable for graphs with

girth six or more [54]. We evaluate our algorithm by output sensitive manner [33]. In

other words, we evaluate the time complexity with respect to the size of input and the

This chapter is based on ”Efficient Enumeration of Induced Matchings in a Graph without Cycles with Length

Four,” [45] by the same authors, which appeared in the Proceedings of IEICE TRANSACTIONS on Fundamentals

of Electronics, Communications and Computer Sciences, Copyright(c) 2017 IEICE. The material in this chapter was

presented in part at the Proceedings of IEICE TRANSACTIONS on Fundamentals of Electronics, Communications and

Computer Sciences [45], and all the figures of this chapter are reused form [45] under the permission of the IEICE.

28 CHAPTER 3. ENUMERATION OF INDUCED MATCHINGS

4

2

8

7
6

5

31

(a)

4

2

8

7
6

5

31

(b) (c) (d)

4

2

8

7
6

5

31
4

2

8

7
6

5

31

Figure 3.1: An example of an intractable input graph.

number of solutions. In this measurement, we evaluate the efficiency of an enumeration

algorithm with respect to an input size and the number of solutions.

Our algorithm is binary partition based algorithm. Hence, we spend considerable

amount time in generating all child problems if the graph is dense, In Figure 3.1, (a)

is an input graph. (b), (c), and (d) are induced matchings in this graph. Thick solid

lines are included an induced matching, dotted lines are not included. In this case,

it is difficult to enumerate all induced matching efficiently since the number of child

problems is 0 even if we select any edge. We need much time to check it. In such a case,

it is difficult to efficiently enumerate all solutions because the number of child problems

is small. The number of child problems is important for efficient enumeration. If it

is adequate, considerable amount of time is available for generating child problems.

Thus, efficient enumeration of dense graphs is difficult, and we therefore consider not

dense graphs. We define the induced matching enumeration problem as follows.

Problem 1 (The induced matching enumeration problem). Output all induced

matching in a given graph G without duplicates.

3.2. A BASIC ALGORITHM BASED ON BINARY PARTITION 29

Main result

We present an efficient induced matching enumeration algorithm EIM for C4-free graphs.

This algorithm based on simple binary partition. The key point is the number of

children of siblings. In each iteration, we need more than O (1) time. However, this

computational time is corresponding to the number of children of siblings if an input

graph is C4-free.

3.2 A basic algorithm based on binary partition

A binary partition method is a method to construct an enumeration algorithm which

enumerates all solutions by dividing a search space into two disjoint search spaces

recursively. Let A be an enumeration algorithm based on binary partition. We call a

dividing step an iteration. Let G,M(G), and X be an input graph, the set of solutions

for G, and an iteration of the algorithm, respectively. Let S(X) be the set of solutions

included in a search space of X. In the initial state, S(X) =M(G) holds. At the initial

iteration, the algorithm selects an edge e in G such that e satisfies |S0(X)| ≥ 1 and

|S1(X)| ≥ 1 where S0(X) = {M ∈ S(X) | e /∈M} and S1(X) = {M ∈ S(X) | e ∈M}.

Note that S(X) = S0(X) ∪ S1(X) holds. An algorithm A recursively applies this

procedure until all edges are selected.

Next, we introduce a binary enumeration tree T = (V , E). Here, V is the set of

iterations of A and E is a subset of V × V . For any iteration X, we define the edge

set EX as follows: EX =
∩

M∈S(X)M . In other words, EX is the set of edges included

by all solutions in S(X). For any iterations X and Y , Y is a child of X if EY ⊂ EX

and |EX \ EY | = 1 hold. We call X is the parent of Y . For any iteration X, we define

iterations X.1 and X.0 with the set of solutions S1(X) and S0(X), respectively. That

30 CHAPTER 3. ENUMERATION OF INDUCED MATCHINGS

Y

I

X’

Y’

P

The chain consisted of
0-branches from X’ to Y’

M(I) = Ø

M(X’)

M(Y’) = M(X’)

(a) The downward path X and the chain consisted of 0-branches in

The 1-branch of P

T

The downward
path X from X to Y

X

Figure 3.2: The downward path X and the chain consisted of 0-branches in T .

is, X.1 and X.0 are the children of X. In particular, X.1 is the 1-child of X, and X.0

is the 0-child of X. In addition, we call edges e = {X,X.0} and f = {X,X.1} in E a

0-branch and a 1-branch, respectively. In the binary enumeration tree T , we call an

iteration with children an internal iteration, and an iteration without children a leaf

iteration. Moreover, an iteration X is the root iteration if there is no iteration that

has X as a child, that is, X is the first iteration called by A. For the simplicity, we

call the binary enumeration tree the enumeration tree.

For any iterations X and Y , a downward path from X to Y in T is a sequence of

iterations L = (X = X0, . . . , Xk = Y), where for each i = 1, . . . , k, Xk is a child of

Xk−1. For any iterations X and Y , if there is a downward path L from X to Y , then

X is an ancestor of Y and Y is a descendant of X. X ⪯ Y if X is an ancestor of Y .

For any iteration Y , the set {X | X ⪯ Y } is a chain of Y . When iterations X and Y

belong to a same chain, X and Y are comparable. In a chain L, we call an iteration X

3.3. THE ALGORITHM FOR C4-FREE GRAPHS 31

Algorithm 1: An algorithm enumerating all induced matchings in C4-free graphs

in constant amortized time.

1 Procedure EIM (G = (V,E))

2 RecEIM (∅, G) ;

3 Procedure RecEIM (M,G)

4 if E(G) = ∅ then

5 Output M ;

6 return;

7 The vertex v has the maximum degree in G;

8 RecEIM (M,G \ {v}); //0-child

9 G′ ← G \N [v];

10 for e ∈ D0(v) do

11 RecEIM (M ∪ {e}, G′ \ Sect2(e, v)); //i-child

12 Restore edges in D0(v) ∪D1(v);

13 return;

is the minimum element and the maximum element if X is the head of L and is the

tail of L, respectively. In Figure 3.2, we show an example of a downward path and a

chain in T . The solid line from X to Y represents a downward path. Consequently,

X ⪯ Y holds. The dotted line represents a chain consisting of 0-branches. X ′ is a top

of the chain since X ′ is a 1-child of P . Y ′ is a bottom of the chain since Y ′ does not

have a child.

32 CHAPTER 3. ENUMERATION OF INDUCED MATCHINGS

3.3 The algorithm for C4-free graphs

We show the algorithm EIM in Algorithm 1. RecEIM selects the vertex v with the

maximum degree. We call such a vertex v a pivot on X. For any iteration X of

RecEIM, let M(X), S(X) and G(X) be the current induced matching as solution, the

set of vertices that are selected in the ancestor iterations of X as the pivots, and a

graph G(X) = G[V \ (N(V (M(X)))∪S(X))], respectively. An edge e in G is a conflict

edge if there exists an edge f ∈M(X) satisfying dist(e, f) ≤ 1. Otherwise, we say that

e is a safe edge. That is, G(X) is a graph removed all conflict edges with M(X) and

S(X) from G. Let k ∈ {0, 1, 2} and ℓ ∈ {0, 1, 2}. We define the concentric structure

Dk,ℓ(v) as follows:

Dk,ℓ(v) = {{x, y} ∈ E(G(X)) | distG(X)(x, v) = k,

distG(X)(y, v) = ℓ}.

Dk(v) denotes Dk,k(v) ∪ Dk,k+1(v). We call an edge e ∈ Dk,ℓ(v) a k-ℓ edge of v and

an edge e ∈ Dk(v) a k-∗ edge of v. Figure 3.3 (a) shows an example of 0-1 edges, 1-∗

edges, and 2-∗ edges. The distance between two vertices is defined by the length of

shortest path in not G but G(X). For any 0-1 edge ei = {v, ui} of a pivot v, we define

Sectk(ei, v) as follows:

Sectk(ei, v) = {f ∈ Dk(v) | distG(X)(ei, f) = k − 1,

distG(X)(v, f) = k}.

We show an example of Sectk(ei, v) in Figure 3.3. In case (a), the shaded area indicates

the area of edges to be removed when calling type-0 child. In case (b), the shaded

area indicates the area of edges to be removed when calling type-1 child. The area

3.3. THE ALGORITHM FOR C4-FREE GRAPHS 33

Sect2(ei, v)

D2(v)

D1(v)

D0(v)

D2(v)

D1(v)

D0(v)

Figure 3.3: An example of dividing edges by the pivot v in the graph G. In (b), the

area surrounded by the solid line represents Sect2(ei, v).

surrounded by the solid line represents Sect2(ei, v). Note that, from the assumption,

G has no self loops, thus, D0,0(v) = ∅.

RecEIM outputs M(X) as a solution if no edge can be added to M(X) from G(X)

and quits X. RecEIM skips this step and execute the following steps if there is an

edge that can be added to M(X). Next, RecEIM divides a solution set S(X) into

d(v) + 1 disjoint sets S0(X), . . . ,S|d(v)|(X). Let ei be the ith edge incident to v for

i ∈ {1, . . . , dG(X)(v)}. Si(X) ⊆ S(X) is the set of solutions including ei, and S0(X) =

S(X) \
∪

i=1,...,dG(X)(v)
Si(X) is the set of solutions not including edges adjacent to v.

X.i denotes the ith child iteration of X that receives M(M(X)) ∪ {ei}. Also, we call

X.0 type-0 child and X.i type-1 child for i ̸= 0. We call the branch from X to the

34 CHAPTER 3. ENUMERATION OF INDUCED MATCHINGS

X Y

ei

Z

W

The current iteration
v

Figure 3.4: An example of an enumeration tree made by EIM.

type-0 child the 0-branch and a branch from X to type-1 child a 1-branch. Let T be

an enumeration tree made by EIM. Note that T is a multi-way tree. In Figure 3.4, we

show an example of T . Black dots represent vertices in the enumeration tree, in other

words, iterations. Triangles represent subtrees. Dotted lines and solid lines represent

0-branches and 1-branches. A label v and ei show a pivot and a selected edge in G(X).

Lemma 1. Let X and Y be any iterations. If X ⪯ Y then M(X) ⊆ M(Y) and

E(G(X)) ⊇ E(G(Y)) hold.

Proof. There is a downward path L from X to Y since X ⪯ Y . It is obvious that EIM

does not remove any edge in M(X) from M(X ′) in X ′ ∈ L. On the other hands, EIM

does not add any edge to E(G(X)) to E(G(X ′)) in X ′ ∈ L.

3.4. CORRECTNESS OF THE ALGORITHM 35

3.4 Correctness of the algorithm

We show the correctness of Algorithm 1. The next lemma implies that M(X) ∪ {e} is

an induced matching in G for any edge e ∈ D0(v).

Lemma 2. Let G be an input graph, X be any iteration in the algorithm EIM in

Algorithm 1, and e be any edge in D0(v). Then, M(X) ∪ {e} is an induced matching

in G.

Proof. We prove by contradiction. Assume that there is a conflict edge f ∈ M(X)

with e. From Lemma 1, there is an iteration Y ⪯ X such that f is added to M(Y).

Since f conflict with e, either (1) e is adjacent to f or (2) e is not adjacent to f and

there is an edge g in G(Y) that is adjacent to both e and f . We consider case (1). By

the definition of G(Y), if EIM adds f to M(Y) in Y , edges adjacent to f are not in

G(W), for any descendant iteration W of Y . This contradicts the assumption. Next,

we consider case (2). If g ∈ G(Y) holds, then distG(Y)(e, g) = 1. This implies that for

any descendant iteration W of Y , e /∈ G(W). On the other hands, if g /∈ G(Y), then

G(Y) is not induced subgraph since e, f ∈ G(Y) and g /∈ G(Y). This also contradicts

the assumption. Hence the statement holds.

Since EIM outputs a solution in a leaf iteration and M(X) is induced matching for

each iteration X ∈ T , the following corollary holds from Lemma 2.

Corollary 3. The algorithm EIM in Algorithm 1 outputs only induced matchings.

Next, we consider a method for obtaining G(X.i).

Lemma 4. Let X be an iteration in the algorithm EIM in Algorithm 1. Then, G(X.0) =

G(X) \ {v} holds.

36 CHAPTER 3. ENUMERATION OF INDUCED MATCHINGS

Proof. Since M(X) = M(X.0), there is no edge in G(X.0) such that one of its endpoint

is v. Thus, the statement holds.

Lemma 5. Let X be any iteration in the algorithm EIM in Algorithm 1 and i be positive

integer. Then, G(X.i) = G(X) \ (D0(v) ∪D1(v) ∪ Sect2(ei, v)) holds.

Proof. For any edge f in G, we show that the following cases are equivalent: (1) f is

conflict edge of e and (2) f belongs to D0(v)∪D1(v)∪Sect2(ei, v). Let ei = {v, vi} and

f = {u,w}. Without loss of generality, we can assume that distG(u, v) ≤ distG(w, v).

If f /∈ D0(v) ∪ D1(v) ∪ Sect2(ei, v), then 1 < distG(u, v) ≤ distG(w, v) and 1 <

distG(u, v1) ≤ distG(w, v1) hold. Hence, f does not conflict with ei. On the other

hands, if f /∈ D0(v) ∪ D1(v) ∪ Sect2(ei, v) then f obviously conflicts with ei. Hence,

the statement holds.

Lemma 4 and Lemma 5 imply that EIM correctly computes G(X.i) in X.

Lemma 6. The algorithm EIM in Algorithm 1 outputs solutions without duplication.

Proof. Let X and Y be two distinct leaf iterations. We proceed by contradiction.

Suppose that M(X) = M(Y). From the assumption, X and Y are incomparable.

Hence, without loss of generality the lowest common ancestor of X and Y always

exists. Let Z be the lowest common ancestor of X and Y . We consider the following

two cases. (1) Suppose that both X and Y are descendants of the type-0 child Z.0 of Z.

This contradicts that Z is the lowest common ancestor of X and Y . (2) Suppose that at

least one of X and Y is a descendant of a type-1 child of Z. Without loss of generality,

X is a descendant of the ith child Z.i of Z. If W is Z.j or is any descendant of Z.j

where j ̸= i, then M(W) does not include ei and this contradicts M(X) = M(Y).

Hence, the statement holds.

3.5. AMORTIZED ANALYSIS OF THE TIME COMPLEXITY 37

Lemma 7. The algorithm EIM in Algorithm 1 outputs all solutions inM.

Proof. Let T be an enumeration tree, X be any iteration on T , and v be the pivot on

X. From Lemma 4 and Lemma 5, EIM correctly divides a solution set S(X) in X into

S0(X), . . . ,Sd(v)(X). If |S(X)| = 1, then EIM outputs S(X). The statement holds.

From corollary 3, Lemma 6, and, Lemma 7, the next theorem holds.

Theorem 8. The algorithm EIM in Algorithm 1 enumerates all solutions without du-

plication.

3.5 Amortized analysis of the time complexity

In this section, we show that EIM enumerates all induced matchings in constant time

per solution for C4-free graphs, where C4-free graphs are graphs which has no cycle

with length four as a subgraph, not an induced subgraph. If the degree of the pivot

on X is less than three, then EIM obviously runs in the constant amortized time per

solution. Thus, we assume the degree of pivot is at least three. It is redundant to

process safe and conflict edges independently among siblings of the same parent. To

avoid this, we simultaneously process these edges by using concentric structures Dk,ℓ(v)

around the pivot on X.

We consider the data structure List(G(X)) to efficiently extract the set of ver-

tices whose degree is k when we are given k. We use List(G(X)) to find the ver-

tex v with the maximum degree. We define List(G(X)) as follows: List(G(X)) =

{L0, . . . , L∆(G(X))}, where for any 0 ≤ i ≤ ∆(G(X)), Li = {v ∈ V (G) | dG(X)(v) = i}.

The lists in List(G(X)) are implemented by doubly-linked lists. For brevity, we write

x ∈ List(G(X)) if there is Li such that x ∈ Li in List(G(X)). Usually, when we search

38 CHAPTER 3. ENUMERATION OF INDUCED MATCHINGS

a position of a vertex v in List(G(X)), we need linear time for the size of List(G(X))

since Li is implemented by doubly-linked list. Now, we prepare an array PG(X) to find

a position of v in List(G(X)) in constant time. PG(X) store address of each vertex in

List(G(X)). We can find position of any vertex in List(G(X)) in constant time. For

any input graph G, we can compute List(G) in O (|V (G)|) time by using bucket sort.

We can implement List(G(X)) such that extracting any vertex from List(G(X)) can

be done in constant time.

Lemma 9. Let X be any iteration in T . Then, we can find the pivot in constant time

by using List(G(X)).

Proof. It is obvious that
∪

Li∈List(G(X)) = V (G) holds. i∗ = arg max
i∈{0,...,∆(G(X))}

(Li ̸= ∅),

that is, Li∗ is the non empty list with the maximum index in List(G(X)). Now, the

pivot on X is in Li∗ since ∆(G(X)) = i∗. Hence, EIM can obtain v in constant time by

extracting a vertex from the tail of Li∗ .

Lemma 9 shows that we can find v in constant time. Next, we consider management

of the data structure List(G(X)). When we delete v inG(X), we update List(G(X)) to

List(G(X) \ {v}). It is completed in O
(
dG(X)(v)

)
time using PG(X). Thus, we manage

List(G(X)) in O
(
dG(X)(v)

)
time to use PG(X) and find a vertex v with the maximum

degree. Next, we define the edge set D≤2(v) as follows: D≤2(v) =
∪

i=0,1,2D
i(v), i.e.

D≤2(v) consist of all edges with distance less than two from v.

Lemma 10. Let G be a C4-free graph, v be the pivot on an iteration X, and, u be a

vertex satisfying distG(u, v) = 2. Then, the number of edges whose endpoint is u in the

set of 1-2 edges of v is exactly one.

Proof. We prove by contradiction. Let f1 = {u,w1} and f2 = {u,w2} be two distinct

1-2 edges whose end point is u. We assume w1 ̸= w2. Since f1 and f2 are 1-2 edges

3.5. AMORTIZED ANALYSIS OF THE TIME COMPLEXITY 39

and distG(u, v) = 2, distG(v, w1) = distG(v, w2) = 1 holds. Thus, there exist two

edges e1 = {v, w1} and e2 = {v, w2}. Hence, there is a cycle (v, w1, u, w2,) in G. This

contradicts that G is a C4-free graph. Hence, the statement holds.

Lemma 11. Let G be a C4-free graph and v be the pivot on an iteration. Then, the

following inequality holds:
∑

e∈D0(v) |Sect2(e, v)| ≤ 2 |D2(v)|.

Proof. We show that
∪

e∈D0(v) Sect
2(e, v) = D2(v). Let f = {x, y} be an edge in

Sect2(e, v). By definition, f ∈ D2(v) holds. Without loss of generality, we can as-

sume that distG(x, v) = 2. Since distG(x, v) = 2, there is a vertex w satisfying

distG(x,w) = distG(w, v) = 1. By definition, f belongs to Sect2({w, v}, v). Hence,∪
e∈D0(v) Sect

2(e, v) = D2(v) holds.

Next, we assume that for any 2-∗ edge f ∈ D2(v), f belongs to the following three

sets; Sect2(e1, v), Sect
2(e2, v), and Sect2(e3, v) , where e1, e2, e3 ∈ D0(v). Then, by the

definition of Sect2(ei, v), distG(ei, f) = 1 holds for i ∈ {1, 2, 3}. Hence, there is some

gi = {xi, yi} satisfying xi ∈ ei and yi ∈ f . By the definition of ei, distG(v, xi) = 1 and

distG(v, yi) = 2 hold. This implies that gi is a 1-2 edge that shares the end point with

f . By the pigeonhole principle, one of the end points of f has at least two 1-2 edges.

This contradicts with Lemma 10, hence the statement holds.

In the remaining of this section, we show that EIM enumerates all solutions in

constant amortized time per solution. To show the complexity, we show that the ratio

between the number of 1-child iterations and 0-child iterations is constant. Let X be

any iteration in T and v be the pivot on X. Suppose that e = {x, y} is any edge in

D≤2(v) and f = {v, z}, where v, x, y, and z are mutually distinct. We denote by

C(X, e) a descendant iteration of X such that Y = C(X, e) is the top of the chain

including X and receives M(Y) defined as follows.

40 CHAPTER 3. ENUMERATION OF INDUCED MATCHINGS

(1) If e is a 0-1 edge, then M(Y) = M(X) ∪ {e}.

(2) If e is a 1-1 edge, then M(Y) = M(X) ∪ {f}.

(3.a) If e is a 1-2 edge and Sect2(f, v) = ∅, then M(Y) = M(X) ∪ {e}.

(3.b) If e is a 1-2 edge and Sect2(f, v) ̸= ∅, then M(Y) = M(X) ∪ {f ′, g}, where

f ′ ∈ D0(v) and g ∈ Sect2(f, v) such that f ′ ̸= f and distG(f
′, g) = 2.

(4) If e is 2-∗ edge, then M(Y) = M(X) ∪ {e, h}, where h is an edge such that h is

adjacent to v and distG(e, h) = 2.

We call C(X, e) the corresponding iteration to X w.r.t e. The next lemma shows that

C(X, e) satisfying the above conditions always exists.

Lemma 12. For any iteration X and e ∈ D≤
v (2), there always exists the corresponding

iteration C(X, e) to X w.r.t e.

Proof. Let e = (x, y). From Lemma 7, to proof the lemma, all we have to do is show

that M(C(X, e)) is a solution. If (1) or (3.a) holds, then M(C(X, e)) is obviously an

induced matching since e ∈ D≤2(v). Next, we consider condition (2). There are two

edges {v, x} = f and {y, v} since e is a 1-1 edge. Since f ∈ D≤2(v), M(C(X, e)) is a

solution. Next, we consider condition (3.b). Let f = {v, x}. Since e is a 1-2 edge, such

edge f always exists. Let g be any edge in Sect2(f, v). From Lemma 10, at least one

of the end points of g connects exactly one 1-2 edge. Hence, there is an edge f ′ ̸= f

that is adjacent to v and satisfies distG(f
′, g) = 2 since the degree of v is at least three.

Moreover, {f ′, g} is an induced matching since distG(f
′, g) = 2. Hence, M(C(X, e))

is an induced matching. Finally, we consider condition (4). Since dG(v) ≥ 3, there

exists an edge h that is adjacent to v and satisfies distG(e, h). Hence, M(C(X, e)) is

an induced matching.

3.5. AMORTIZED ANALYSIS OF THE TIME COMPLEXITY 41

In the following lemmas, for any iteration X, we show the number of pairs of an

iteration and an edge whose corresponding iteration is X is constant.

Lemma 13. If a graph G is C4-free, then each 0-1 edge {u, v} of v is adjacent to at

most one 1-1 edge.

Proof. We show the lemma by contradiction. Suppose there are two distinct 1-1 edges

f = {u,w} and g = {u, x} that are adjacent to a 0-1 edge e. By the definition

of a 1-1 edge, {u,w, x} ⊆ N(v). Hence, there exist two distinct edges f ′ = {v, w}

and g′ = {v, x}. However, this implies that there exist a 4-cycle (v, w, u, x). This

contradicts that G is C4-free. Hence, the statement holds.

Lemma 14. Let X and e be a pair of an iteration on T and an edge in D≤2(v)

satisfying condition (3.a), and Y be any iteration on L from X to C(X, e) such that

Y satisfies C(Y, e) = C(X, e). Then, the number of such Y is at most two.

Proof. We first show that L consists of 0-branches except the end of L. By the definition

of C(X, e), the end of L is a 1-branch since C(X, e) is the top of a chain. Next, L

includes exactly one 1-branch since M(C(X, e)) = M(X) ∪ {e}. Hence, L consists of

only 0-branch other than the end of L.

By using the above observation, we prove by contradiction. Suppose that there

exists three distinct iterations Y1, Y2, and Y3 such that they satisfy condition (3.a) and

C(X, e) = C(Y1, e) = C(Y2, e) = C(Y3, e). Thus, for any i = 1, 2, 3, e is a 1-2 edge

of vi that is the pivot of Yi. Let e = {x, y} and fi be an edge such that fi shares the

end point with e and fi is adjacent to vi. Without loss of generality, we can assume

f1 = {x, v1} and Y1 ⪯ Y2, Y1 ⪯ Y3. For j = 2, 3, if G(Yj) has the edge fj = {y, vj},

then this contradict with Sect2(fi, v) = ∅. Hence, vj is a neighbor of x. In Y1, the

number of 1-1 edges adjacent to f1 is at most one from Lemma 13. Hence, at least one

42 CHAPTER 3. ENUMERATION OF INDUCED MATCHINGS

of f2 and f3 is a 1-2 edge. Without loss of generality, we can assume that f2 is a 1-2

edge. Since Sect2(f1, v) = ∅, DG(Y1)(v3) = 1. In addition, in Y3, dG(Y3)(x) ≥ 2 since x

is adjacent to y and v3. However, this contradicts with dG(Y3)(v3) ≥ dG(Y3)(x). Hence,

the statement holds.

Lemma 15. Let X be any iteration in T . Then, the number of pairs an iteration Y

and an edge e satisfying C(Y, e) = X is at most six.

Proof. Let L be the path from the root iteration I on T to X and X ′ be the parent

iteration of X. Without loss of generality, we can assume that X is the top of a chain

by the definition of C(Y, e). Let X ′′ be the parent of the top of a chain including X ′ and

L′ be the path from X ′′ to X ′. By the definition of C(Y, e), Y satisfying C(Y, e) = X

exists only on L′. If Y is X ′, then the number of edges e′ satisfying C(Y, e′) = X is at

most two by conditions (1) and (2). If Y is X ′′, then the number of edges e′ satisfying

C(Y, e′) = X is at most two by conditions(3.b) and (4). If Y is not X ′ and X ′′, then

the number of Y satisfying C(Y, e) = X is at most two from Lemma 14. Hence, the

statement holds.

From Lemma 13, Lemma 14, and Lemma 15, for any iteration X ∈ T , the number

of pairs of an iteration Y and an edge e such that C(Y, e) = X is constant. Next, the

following lemmas show that total computation time in EIM is O (|T |) time. Let F (X)

be
∩

i=0,...,∆(G(X)) E(G(X.i)). That is, F (X) is the set of edges that are shared by all

child iterations of X.

Lemma 16. Let v be the pivot on an iteration X in T . Then, E(G(X)) \ F (X) =

D≤2(v).

Proof. Let {e1, . . . , edG(X)(v)} be the set of edges that are adjacent to v. We show

F (X) = E(G(X)) \D≤2(v). Firstly, we show F (X) ⊆ E(G(X)) \D≤2(v). For any i =

3.5. AMORTIZED ANALYSIS OF THE TIME COMPLEXITY 43

0, . . . , dG(X)(v), M(G(X.i)) includes ei = {v, ui} by definition. Hence, F (X) does not

include conflict edges of ei. In addition, each edge f ∈ F (X) satisfies distG(X)(f, v) ≥ 2

and distG(X)(f, ui) ≥ 2. Therefore, f is not included in D≤2(v). Secondly, we show

F (X) ⊇ E(G(X)) \ D≤2(v). Let g be any edge in E(G(X)) \ D≤2(v). By definition,

distG(X)(g, ei) ≥ 2 holds for any ei. Therefore, g ∈ F (X) since g ∈ E(G(X.i)). Now,

D≤2(v) ⊆ E(G(X)) and F (X) ∩D≤2(v) = ∅. Hence, the statement holds.

Lemma 17.
∑

X∈V (T) |E(G(X)) \ F (X)| is bounded by O (|T |).

Proof. Let X be any iteration and v be the pivot on X. The number of iterations

Y = C(X, e) is at most
∣∣D≤2(v)

∣∣, where e is an edge in D≤2(v). Hence, the number of

all corresponding iterations is equal to
∑

X∈V (T) |E(G(X)) \ F (X)| since E(G(X)) \

F (X) = D≤2(v) from Lemma 16 together with that a pair of an internal iteration X

and an edge e ∈ D≤2(v) corresponds to exactly one iteration C(X, e). Next, we consider

the number of all corresponding iterations. The number of pairs of an iteration Y and

an edge e such that C(Y, e) = X is at most constant from Lemma 15. Since the number

of internal iteration is |T |, the number of all corresponding iterations is bounded by

O (|T |), Hence, the statement holds.

From Theorem 8, Lemma 10, and Lemma 17, we show the following theorem.

Theorem 18. The algorithm EIM in Algorithm 1 enumerates all induced matchings in

constant amortized time per solution in a C4-free graph G after O (|V |+ |E|) prepro-

cessing time.

Proof. The correctness of EIM is obvious from Theorem 8. Next, we consider the time

complexity of EIM. Let X be an iteration of EIM. In the preprocessing phase, EIM

constructs List(G) in O (|V |+ |E|) time by using bucket sort. Next, we consider the

44 CHAPTER 3. ENUMERATION OF INDUCED MATCHINGS

total time for deleting edges in an input graph. Each edge is deleted at most twice from

Lemma 10 in each iteration. Moreover, from Lemma 17, the total number of deleted

edges is O (|T |) in EIM. Hence, the total time of edge deletion is O (|T |) time since each

edge can be removed in constant time from the input graph. Next, we consider the

total time of the updating List(G(X)). When EIM removes an edge e = {u, v} from

X, EIM moves u ∈ Li to Li−1 and v ∈ Lj to Lj−1. Since it can be done in constant

time, the time complexity of EIM is O (|T |). In addition, every iteration X in T has

a child at least two. Hence, the number of solutions is Ω(|T |). Therefore, EIM runs in

O (|T | / |T |) = O (1) time per solution.

Experimental result

We conducted experiments on artificial data to evaluate the computational speed. We

implemented EIM. The experimental environment is as follows: C++ with GCC7.3.0

and -O3 option. We considered the following graphs that were randomly generated:

general graphs(GG), graphs without cycles with length four(WC). We experimented three

algorithms, EIM, the simple polynomial delay algorithm, and a naive algorithm for GG

and WC. The time complexity of the simple algorithm and the naive algorithm are

amortized O (nm) time and O (2npoly(n)) time. The efficient algorithm is 200 times

faster than the simple polynomial delay algorithm.

Although the efficient algorithms is theoretically O (∆2) for GG, its computation

time was roughly equal to the computation time of WC. In all cases, we terminated the

naive algorithm because the running time exceeds 20 minutes. This experiments show

EIM is faster than simple algorithm.

3.5. AMORTIZED ANALYSIS OF THE TIME COMPLEXITY 45

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

75 85 95 105 115 125

WC:
WC:
GG:
GG:

na
no

 se
c

#Edges

The total running time for WC and GG

O(nm)
O(1)
O(nm)
O(Δ^2)

0

500

1000

1500

2000

2500

3000

70 80 90 100 110 120 130

WC:
WC:
GG:
GG:

na
no

 se
c

#Edges

The running time per solution for WC and GG

O(nm)
O(1)
O(nm)
O(Δ^2)

Figure 3.5: The total running time and the time per solution of induced matching

enumeration. All input graphs in GG and WC have 30, 35, 40, 45, or 50 vertices. All

cases, the average degree of the input graph is five.

46 CHAPTER 3. ENUMERATION OF INDUCED MATCHINGS

#Edges O (1) for WC O (nm) naive

113 800,257 17,591,453 2114 − 1 ≃ 2.0× 1034

125 7,689,450 119,371,878 2126 − 1 ≃ 4.2× 1037

Table 3.1: The number of iterations in each induced matching enumeration. An input

graph is in WC.

Chapter 4

Enumeration of Subgraphs with

Bounded Girth

4.1 Introduction

In this chapter, we address enumeration of sparse subgraphs, that is, subgraphs with

large girth. The girth of a directed or undirected graph G is the length of a shortest

directed or undirected cycle. From the definition of girth, girth is ∞ if a graph has

no cycle. We propose output sensitive algorithms for enumerating all subgraphs with

girth at least g of a given graph G. Figure 4.1 shows some examples.

This problems generalize two well studied problems, i.e., enumeration of subtrees

and induced subtrees [24, 60, 62, 75]. We consider enumeration of both induced and

edge subgraphs (with girth g), and all algorithms can be easily adapted to relax the

connectivity requirement or to deal with weighted graphs. We say that subgraphs

whose girth is at least g simply as subgraphs with girth g. In addition, we generalize

this problem to that of finding connected subgraphs with lower bounded girth.

48 CHAPTER 4. ENUMERATION OF SUBGRAPHS WITH BOUNDED GIRTH

9 10

1181

5

6

4

3

2
12

7

9 10

1181

5

6

4

3

2
12

7

9 10

1181

5

6

4

3

2
12

7

9 10

1181

5

6

4

3

2
12

7

(a)

9 10

1181

5

6

4

3

2
12

7

9 10

1181

5

6

4

3

2
12

7

(b)

(c) (d)

9 10

1181

5

6

4

3

2
12

7

9 10

1181

5

6

4

3

2
12

7

(e) (f)

Figure 4.1: directed graph (a), an induced subgraph with girth 4 (b), an edge subgraph

with girth 5 (c), and an acyclic edge subgraph (d). For the undirected case, an induced

subgraph with girth 3 (e), and an edge subgraph with girth 10 (f). The subgraphs

correspond to the vertices and edges in black.

Main result

We first consider the directed case. We propose two algorithms, EDG-IS and EDG-ES,

for enumeration of induced and edge subgraphs with directed girth g. Both algorithms

run in O(n) time per solution using O(n3) space.

Next, we consider the undirected case and propose two algorithms, EUG-IS and

EUG-ES. These algorithms enumerate induced and edge subgraphs with undirected girth

g, respectively. All four algorithms are given for connected subgraphs, but can easily

be applied to the enumeration of non-connected subgraphs and weighted graphs.

4.2. ALGORITHMS FOR DIRECTED GRAPHS 49

4.2 Algorithms for directed graphs

In this section, we propose two algorithms EDG-IS and EDG-ES. We first show a basic

algorithm EDG-Base.

4.2.1 A basic algorithm for directed graphs

In the following, we describe the strategy of a basic algorithm for solving a problem.

We define our problem in Problem 2.

Problem 2 directed girth g connected induced subgraph enumeration. Enu-

merate all connected induced subgraphs S of a directed graph G with g(S) ≥ g, without

duplicates.

We describe the detail of EDG-Base in Algorithm 2. This algorithm is based on

binary partition. In the root iteration I, S(I) = ∅ since a subgraph made by a single

vertex is acyclic, it have girth ∞ and every v ∈ V is addible. Hence, C (I) is equal to

V in the first call of RecEDG-Base() performed by algorithm EDG-Base().

The recursive procedure can be seen as a form of binary partition. Let X be an

iteration in an enumeration tree T . We define the set of vertices C (X) = {v ∈ V |

S(X) ∪ {v} is connected and g(S(X) ∪ {v}) ≥ k}, called addible candidate set. The

vertices to be removed from the graph are represented by a set R(X), and removed

in the nested recursive calls. For a vertex v ∈ C (X), we consider a set of solutions

including S(X)∪{v} (Line 8). Next, we remove v from the graph and enumerate a set

of solutions including S(X) and not including v. Thus every cycle of the for loop can

be seen as a binary partition step. However, grouping these steps in a single iteration

is useful in the complexity analysis.

50 CHAPTER 4. ENUMERATION OF SUBGRAPHS WITH BOUNDED GIRTH

Algorithm 2: Enumerating all connected induced subgraphs with girth g in a

directed graph G

1 Procedure EDG-Base(G, g) // G: (directed) graph, g: positive

integer

2 RecEDG-Base(∅, G, g);

3 Procedure RecEDG-Base(S,G, g)

4 Output S;

5 C ← {v ∈ V \ S | G[S ∪ {v}] is connected and has girth g};

6 R← ∅;

7 for v ∈ C do

8 RecEDG-Base(S ∪ {v}, G \R, g); // find subgraphs containing v

9 R← R ∪ {v}; // find subgraphs not containing v

Correctness. Proving that each output of EDG-Base is an induced subgraph with

girth at least g is trivial, since every vertex added to S(X) has passed the check in

Line 5. It is easy to prove that each output of EDG-Base has no duplication. All

solutions found in sub-calls of Line 8 contain v. However, all solutions found dur-

ing following cycles of the for loop will not contain the same v. Hence, there is no

duplication. Finally, we show that EDG-Base outputs all solutions.

Lemma 19. The algorithm EDG-Base outputs all solutions.

Proof. We prove this by induction. We assume that EDG-Base outputs all solution

with the size k. We consider a solution S∗ with the size k + 1. Let v be a vertex in

S∗. From the assumption, EDG-Base outputs S∗ \ {v}. Hence, there exist an iteration

X which output S∗ \ {v}. If a graph G in X has v, then we output S∗. Otherwise,

we consider a path between the root iteration I to X. Let Y be an iteration which

4.2. ALGORITHMS FOR DIRECTED GRAPHS 51

remove a vertex v in Line 9. Hence, there is a sibling Z of Y which satisfies S(Z) ⊆ S∗

and G in Z includes all vertices in S∗. Thus, EDG-Base outputs S∗ and the statement

holds.

Cost analysis. As every iteration will output a solution in Line 4, the cost per

solution is clearly bounded by the cost of an iteration. This corresponds to the cost

of computing C (X) in Line 5. The trivial way to build C (X) is to compute the girth

of G[S(X) ∪ {u}] for each vertex u ∈ V . Since the girth can be computed in O(nm)

time [56], a total cost of O(n2m) per solution.

4.2.2 Improvement for induced subgraph enumeration

The bottleneck of EDG-Base is the girth computation. We improve this computation

by using special distance matrices. In the following we show how modify this algorithm

to obtain EDG-IS, which reduces the cost of EDG-Base by a factor O(nm), obtaining

O(n) time per solution. First, consider the following fundamental property.

Observation 1. Let ℓ(v, S(X)) be the length of a shortest cycle containing v in S(X).

If, for a vertex u ̸∈ S(X), ℓ(v, S(X) ∪ {u}) < ℓ(v, S(X)), then the shortest cycle

containing v in S(X) ∪ {u} must contain u.

As this applies to every v ∈ S(X) and u ̸∈ S(X), this implies a more general

property.

Observation 2. If A is a subgraph of G with girth g, and A ∪ {v} has girth g′ < g,

the shortest cycle in A ∪ {v} must involve v.

Let Y be an iteration of the parent of X, S(Y) be the solution in Y , and C (Y) be a

candidate set. We have S(Y) = S(X)\{v} and C (Y) = {v ∈ V \S(Y) | G[S(Y)∪{v}]

52 CHAPTER 4. ENUMERATION OF SUBGRAPHS WITH BOUNDED GIRTH

is connected and has girth g}. Every addible vertex v ∈ C (X) must either have been

in C (S(Y)) as well, or be a neighbor of v. Otherwise the subgraph G[S(X) ∪ {v}]

satisfies either g(G[S(X) ∪ {v}]) < g or be disconnected. We can use this properties

to efficiently identify all vertices v ∈ C (X). An addible candidate set C (X) will be

made of all the vertices in C (Y) that still pass the check in Line 5 after adding v to

S(X), and all the vertices in N(v) \R(X) which were not already in C (Y): these are

only connected to S(X) by v and hence cannot participate in any cycle.

We will also keep in each iteration a special distance matrix for S(X), that is a

matrix MX of size |C (X) | × |C (X) | such that for each pair x, y ∈ C (X), MX(x, y)

is equal to the distance between x and y in the induced subgraph G[S(X) ∪ {x, y}].

Clearly, if MX(x, y) +MX(y, x) < g then G[S(X) ∪ {x, y}] has a cycle shorter than g.

By using MX and Observation 2, we can conclude the following.

Lemma 20. Given C (Y) the candidate set in the parent iteration, and the special

distance matrix MY for S(Y), Line 5 can be rewritten as follows:

C (X)← {x ∈ C (Y) |MY (x, v) +MY (v, x) ≥ g} ∪ (N(v) \ (R(X) ∪ C (Y))) (4.1)

With this technique, C (X) is computed in O(|C (Y) | + |N(v)|) time. After com-

puting C (X) we need to compute MX , i.e., the special distance matrix for S(X) =

S(Y)∪{v} which will be passed to the child iteration. To ease this we will use the MX

matrix built in the parent iteration, which we call MY : we must simply check if the

shortest path between two vertices x and y has been improved by adding v to S(X).

In other words, given MY and C (X), we can compute MX in O(|MX |) = O(|C (X) |2)

time as for each x, y ∈ C (X), MX(x, y) = min(MY (x, y),MY (x, v) +MY (v, y)).

As for the first iteration, with S(I) = ∅ and C (I) = V , MI is computed in

O(|MI |) = O(|C (I) |2) time, since for each x, y ∈ C (I), MI(x, y) = 1 if (x, y) ∈ E,

4.2. ALGORITHMS FOR DIRECTED GRAPHS 53

and 0 otherwise. The improved algorithm EDG-IS is built by modifying iterations of

EDG-Base as follows:

• The first iteration initializes MI .

• The C (X) and MX are passed to child iterations as C (Y) and MY .

• The C (X) and MX are built using C (Y) and MY .

• Line 5 is modified as in Lemma 20.

We omit the revised pseudo-code, but one may look for reference at that of Algo-

rithm 3 in the following section (which solves the edge subgraph version of the problem),

as the structure is essentially the same and auxiliary data structures are shown.1

Cost analysis. Every iteration of EDG-IS will take O(|C (Y) | + |C (X) |2 + |N(v)|)

time to compute C (X) and MX . While this is trivially bounded by O(n2), we show

that it can be further improved by means of amortized analysis.

Let X be an iteration and Y be a parent of X. An iteration X has the sets

S(X), R(X), C (X), and the matrix MX . Note that X have exactly |C (X) | child

iterations and take O(|C (Y) | + |C (X) |2) time to execute. However, X subdivide

the O(|C (X) |2) portion of the cost equally among its |C (X) | children, for a total of

|C (X) | each. Every iteration receive a O(|C (X) |) cost, and be charged only from its

parent of an additional O(|C (X) |) time, for a total of O(|C (X) |) = O(|N [S(X)]|)

time per each iteration. Since |N(v)| = O (|N [X]|), EDG-IS is amortized O(|N [S(X)]|)

time.

1In particular, note how rather than modifying G we simply pass the set X to children iterations

to keep track of the removed nodes/edges.

54 CHAPTER 4. ENUMERATION OF SUBGRAPHS WITH BOUNDED GIRTH

Considering the space usage, S(X), C (X), and R(X) may be efficiently stored

by keeping track of just the difference between the parent and child iterations for an

amortized space usage of O(n). As for MX , we do not actually need to compute a

separate matrix in each iteration. We simply update the cells of MY and use MY

as MX , accessing only the cells corresponding to indices in C (X). The depth of the

enumeration tree, i.e., the number of changes we need to keep track of, is O(|S(X)|);

the total space usage will thus be O(|MX | · |S(X)|) = O(|N [S(X)]|2 · |S(X)|) = O(n3).

As g does not impact the cost, EDG-IS can enumerate acyclic subgraphs, i.e., sub-

graphs with girth at least n + 1, in O(n) time per solution as well. Furthermore,

distance is meaningless in acyclic subgraphs, as we only care about whether x can

reach y or not. Each cell of MX is updated at most once, for a total space usage of

O(|MX |) = O(|N [S(X)]|2) = O(n2). We can finally state the correctness and complex-

ity of EDG-IS.

Theorem 21. EDG-IS enumerates the induced subgraphs of a graph G with girth at

least g exactly once in O(
∑

S∈S |N [S]|) total time and O(max
S∈S
{|N [S]|2} · |S|) = O(n3)

space, where S is the set of solutions.

Theorem 22. EDG-IS enumerates the acyclic induced subgraphs of a graph G exactly

once in O(
∑

S∈S |N [S]|) total time and O(max
S∈S
{|N [S]|2}) = O(n2) space, where S is

the set of solutions.

Weighted and non-connected cases. EDG-IS is given for unweighted graphs.

However, it should be remarked that it is trivially adapted to weighted graphs, where

the weight of a cycle is the sum of its edges, and the girth is the smallest weight of a

cycle. This is done by simply initializing MX(x, y) in the first iteration to the weight

of the edge (x, y), rather than 1, as long as g > 0. The approach works in the presence

4.2. ALGORITHMS FOR DIRECTED GRAPHS 55

of negative edges and even negative cycles, as a negative cycle can never be added to

S(X) since it would cause g < 0. Furthermore, EDG-IS can be trivially modified to

drop the connectivity constraint by simply setting C (X) = V in the first iteration, so

that every vertex can be immediately considered for addition (we can then also ignore

the addition of vertices in N(v) to C (X), see Lemma 20). In this way all the induced

subgraphs with girth g will be enumerated, rather than just the connected ones.

Similar trivial adaptations to cover the weighted and non-connected case are pos-

sible for all the other algorithms proposed in the chapter for both induced and edge

subgraphs.

4.2.3 Improvement for subgraph enumeration

In this section we describe an algorithm for enumeratng all edge subgraphs with girth

at least g, or more formally, to solve Problem 3.

Problem 3 directed girth g connected subgraph enumeration. Enumerate all

connected subgraphs S of a directed graph G with g(S) ≥ g, without duplicates.

The algorithm EDG-ES is detailed in Algorithm 3. Firstly, in an iteration X, the

solution S(X), the set of addible candidates C (X), and removed elements R(X) are

sets of edges rather than vertices. Secondly, the size of candidate edges is an impor-

tant in the complexity of EDG-ES. Furthermore, we show the auxiliary data structures

explicitly, to aid the understanding of the cost analysis.

We consider the current solution in an iteration X. Let S(X) be a solution cor-

responding to an iteration X, a set R(X) of removed edges, and the set C (X) ⊆

E \ (S(X) ∪ R(X)) of edges that are addible to S(X). In addition, we will subdivide

C (X) into C in (X) and Cex (X). Let SN(X) be the set of vertices incident to edges

56 CHAPTER 4. ENUMERATION OF SUBGRAPHS WITH BOUNDED GIRTH

in S(X), ∀e = {x, y} ∈ C (X), e ∈ C in (X) if {x, y} ⊆ SN(X), and e ∈ Cex (X) oth-

erwise. Again, we find all solutions in a binary partition fashion by selecting an edge

e ∈ C (X), and first considering all subgraphs with contain S(X)∪{e}, then removing

e from C (X) and considering those that contain S(X) but not e.

We call this algorithm EDG-ES, and we can reconstruct its structure by simple

modifications of EDG-IS. Each cycle of the for loop in Line 7 in Algorithm 2 considers an

edge e ∈ C in (X) rather than a vertex. Furthermore, the updated C (X) (Line 5) should

be computed as C (X)← {e′ ∈ E\(S(X)∪R(X)) | and G′ = (V [S(X)∪{e′}], S∪{e′})

is connected has girth g}. Finally, EDG-ES select e from Cex (X) only if C in (X) = ∅.

For brevity, we omit the correctness proof which consists in simply retracing that of

EDG-IS.

Again, we employ a special distance matrix MX . Let CN(X) be the set of vertices

incident to at least one edge in C (X). In this case, the size ofMX is |CN(X)|×|CN(X)|,

and for each pair x, y ∈ CN(X), MX(x, y) is equal to the distance between x and y in

the edge subgraph G′ = (V [S(X)], S(X)). For two edges e1 = (x, y) and e2 = (w, z) in

C (X), if there is a cycle shorter than g in G′′ = (V [S(X) ∪ {e1, e2}], S(X) ∪ {e1, e2}),

then we will have MX(y, w) + MX(z, x) + 2 < g, since any cycle involving e1 and e2

must traverse the vertices y, w, z, and x in this order. After adding e = {a, b} to S(X),

the edges in N e(a)∪N e(b) but not in X may enter C (X), which can thus be computed

similarly to how done in Lemma 20 for the induced case, i.e.

C (X)← {e′ = {c, d} ∈ C (Y)∪(N e(a)∪N e(b))\R(X) |MX(b, c)+MX(a, d)+2 ≥ g},

(4.2)

where Y is a parent iteration of X and the 2 is added to account using the edges e and

e′ and can be replaced by their weight for the weighted case. The values of MX can be

updated after adding e = {a, b} ∈ C (X) to S(X). We have that MX(y, w), i.e., the

4.2. ALGORITHMS FOR DIRECTED GRAPHS 57

distance “from” e1 to e2 in G′ = (V [S(X)∪ {e}], S(X)∪ {e}), was either improved by

using e or is unchanged. That is MX(y, w) = min(MX(y, w),MY (y, a)+MY (b, z)+ 1),

where the 1 is added to account for using e. Note that we replaced by the weight of

e when weighted case. Thus, EDG-ES will also follow the structure in Algorithm 2,

modifying iterations of EDG-Base as follows:

• The first iteration initializes MX .

• The sets C in (X), Cex (X), CN(X), SN(X) and MX are passed to child iterations.

• C (X), CN(X), SN(X) and MX are updated using those passed from the father

iteration.

• The candidates in Cex (X) will be selected only after C in (X) is empty.

• Line 9 is modified as in Equation (4.2).

Cost analysis. By implementing the updates in Line 9 similarly to how done in

EDG-IS, and performing the same amortized analysis, one could easily find that EDG-ES

has a complexity of O(m) time per solution, which is a factor O(mn) faster than the

baseline. In the following, however, we will further reduce the cost of Line 9 and obtain

O(n) time per solution.

In particular, let us focus on the update of the C in (X) and Cex (X) sets. When

EDG-ES selects e ∈ Cex (X), updating the sets can trivially be done in O(m) time by

testing each edge f ∈ E \ (S(X) ∪ R(X)) with MX as in Equation 4.2. However, this

can be simplified by means of the following:

58 CHAPTER 4. ENUMERATION OF SUBGRAPHS WITH BOUNDED GIRTH

Algorithm 3: Enumerating all connected edge subgraphs with girth g in a di-

rected graph G

1 Procedure EDG-ES(G = (V,E), g)

2 R← ∅;

3 foreach e = {x, y} ∈ E do

4 RecEDG-ES(∅, ∅, ∅, ∅, ∅, ∅, R, e, g));

5 X ← X ∪ {v};

6 Procedure RecEDG-ES(S,C in, Cex, CN , SN ,M,R, e, g)

// let e = {a, b}

7 S, SN ← S ∪ {e}, SN ∪ {a, b};

8 Output S;

9 Update CN , C
in, Cex,M for the new S and R;

10 for f ∈ C in do

11 RecEDG-ES(S,C in, Cex, CN , SN ,M,R, f, g) ; // subgraphs containing f

12 R← R ∪ {f} ; // subgraphs not containing f

13 for f ∈ Cex do

14 RecEDG-ES(S,C in, Cex, CN , SN ,M,R, f, g) ; // subgraphs containing f

15 R← R ∪ {f} ; // subgraphs not containing f

16 S ← S \ {v}; R← R \ C ; // restore S and R

17 Restore CN , C
in, Cex,M for the restored S and X ;

Lemma 23. Let e = {a, b} ∈ Cex (X) be the edge selected and added to S(X) by

EDG-ES, with C in (X) = ∅. Without loss of generality let a ∈ SN(X) and b ̸∈ SN(X).

Then

• The updated C in (X) is contained N e(b) \ (S(X) ∪R(X)).

4.2. ALGORITHMS FOR DIRECTED GRAPHS 59

• The updated Cex (X) is contained in Cex (X) ∪N e(b) \ (S(X) ∪R(X)).

• Both C in (X) and Cex (X) can be updated in O(∆) time.

Proof. Since b is the only new vertex in SN(X), the new edges in C in (X) and Cex (X)

must be adjacent to b. Any new edge in C in (X) must be removed from Cex (X).

C in (X) and Cex (X) can be computed by scanning N e(b) and testing each edge {b, x}

not in S(X) or R(X) in constant time using MX , adding the edges that pass the girth

test to C in (X) if x ∈ SN(X) and to Cex (X) otherwise. This takes O(∆) time.

Note that EDG-ES only selects e from Cex (X) once C in (X) is empty, and otherwise

it will select it from C in (X). Selecting e from C in (X) always decreases |C in (X) | by at

least 1: indeed no new edge may enter C in (X) since SN(X) is unchanged, but e itself

is removed. When C in (X) is empty and we select e from Cex (X), |C in (X) | become

at most ∆ (Lemma 23). We state that

Lemma 24. For any iteration X, |C in (X) | ≤ ∆.

When EDG-ES selects the edge e from C in (X), From Lemma 24, we can also update

C in (X) and Cex (X) faster than in O(m) time:

Lemma 25. Let X be an iteration and e = {a, b} ∈ C in (X) be the edge selected and

added to S(X). Then the updated C in (X) is included in C in (X) \ {e} and can be

computed in O(∆), and Cex (X) is unchanged.

Proof. As SN(X) is unchanged, no edge enters C in (X), but e is removed. Whether each

edge remains in C in (X) can be tested in constant time using MX , which takes O(∆)

time as |C in (X) | ≤ ∆ by Lemma 24. Finally, as every edge in Cex (X) still exactly

one extreme in SN(X), it may not participate in any cycle in G(V [SN(X)], S(X)), and

since SN(X) is unchanged no edge is either removed from or added to Cex (X).

60 CHAPTER 4. ENUMERATION OF SUBGRAPHS WITH BOUNDED GIRTH

We can now proceed to give the complexity EDG-ES. We consider any iteration X,

with its sets S(X), R(X), C in (X), Cex (X), CN(X) and the matrix MX as computed

in Line 9, and Z, a child iteration of X (performed in either Line 11 or 14) with its

sets S(Z), R(Z), C in (Z), Cex (Z), CN(Z) and the matrix MZ .

From Lemmas 25 and 23, we can update C in (X) and Cex (X) to obtain C in (Z) and

Cex (Z) in O(∆) time. Furthermore, CN(Z) can be obtained in constant time, and using

MX and CN(Z) we can update MX to obtain MZ in O(|C in
N (Z) ∪ (Cex

N (Z) ∩ SN(Z))|2)

time. The total cost of Line 9 will thus be O(∆ + |C in
N (Z) ∪ (Cex

N (Z) ∩ SN(Z))|2).

Since O(∆) = O(|SN(Z) ∪ Cex
N (Z)|), the total cost of Line 9 is O(|C in

N (Z) ∪ (Cex
N (Z) ∩

SN(Z))|2).

However, we have that for each edge in C in (Z) and Cex (Z) there are two vertices

in C in
N (Z) and Cex

N (Z) respectively, which means |C in
N (Z)| + |Cex

N (Z)| ≤ 2(|C in (Z) | +

|Cex (Z) |). As Z has |C in (Z) | + |Cex (Z) | children iterations, we can give the same

amortized analysis as for EDG-IS. An iteration Z will subdivide equally among its

children the O(|C in
N (Z) ∪ (Cex

N (Z) ∩ SN(Z))|2) time component of its cost, for a total

of O(|C in
N (Z) ∪ (Cex

N (Z) ∩ SN(Z))|) = O(|SN(Z)|) = O(n) for each child.

The space complexity of EDG-ES is dominated by the space needed to store S(X),

C in (X), Cex (X) and R(X). It can be stored in amortized O(m) space by keeping track

of the differences between parent and children iterations. Next, CN(X) and SN(X) can

be stored in O(n) space. Finally, MX has O(max
S∈S
{|SN |2}) cells. For each cell we keep

track of at most n changes, where S is the set of solutions. Indeed, while the depth of

the recursion is bounded by m, each value MX(i, j) corresponds to a distance between

two vertices i and j, which is bounded by n. Hence, a total space usage is bounded by

O(n ·max
S∈S
{|SN |2}) = O(n3)2.

2This is different in the weighted case, in which distances can be reduced by less than 1, and will

4.3. ALGORITHMS FOR UNDIRECTED GRAPHS 61

Algorithm 4: Enumerate all connected induced subgraphs with girth g.

1 Procedure EUG-Base(G, g) // G: (undirected) graph, g: positive

integer

2 RecEUG-ES(∅, G, g);

3 Procedure RecEUG-ES(S,G, g) // S: the current solution

4 Output S;

5 R← ∅;

6 C (S)← {x ∈ V (G) \ S | G[S ∪ {x}] is connected and has girth g};

7 for v ∈ C (S) do

8 RecEUG-ES(S ∪ {v}, G \R, g);

9 R← R ∪ {v};

10 return;

As for acyclic edge subgraphs, there are only two possible values forMX(i, j). As we

only need to keep track of one update, the space usage will be O(max
S∈S
{|SN |2}) = O(n2).

We can finally state the cost of EDG-ES.

Theorem 26. Given a graph G = (V,E), EDG-ES enumerates the edge subgraphs of G

with girth at least g exactly once in O(
∑

S∈S |SN |) total time space O(n ·max
S∈S
{|SN |2}).

Theorem 27. Given a graph G = (V,E), EDG-ES enumerates the edge subgraphs of G

with girth at least g exactly once in O(
∑

S∈S |SN |) total time space O(max
S∈S
{|SN |2}).

62 CHAPTER 4. ENUMERATION OF SUBGRAPHS WITH BOUNDED GIRTH

4.3 Algorithms for undirected graphs

In the following sections, we consider the enumeration problems corresponding to those

above, for the case of undirected graphs.

Problem 4 undirected girth g connected induced subgraph enumeration.

Enumerate all connected induced subgraphs S of an undirected graph G with g(S) ≥ g,

without duplicates.

Problem 5 undirected girth g connected subgraph enumeration. Enumerate

all connected subgraphs S of an undirected graph G with g(S) ≥ g, without duplicates.

To solve these problems, we will show two algorithms with a similar structure to

those above, but which require significantly different techniques to achieve efficiency.

4.3.1 A basic algorithm for undirected graphs

Algorithm EUG-Base, detailed in Algorithm 4, represents a basic strategy for Problem 4,

much like that of Algorithm 2. Again, while EUG-Base enumerates solutions by picking

vertices on each iteration, we can obtain an enumeration algorithm for Problem 5 by

modifying EUG-Base so that it picks edges instead.

Let G, X, and S(X) be respectively the undirected graph in input, an iteration of

the algorithm, and the solution that the iteration X received from its parent iteration.

The set of candidate vertices for S(X) is defined as follows: C (X) = {v ∈ V \ S(X) |

g(S(X) ∪ {v}) ≥ g and S(X) ∪ {v} is connected. }, meaning that S(X) ∪ {v} is a

solution. We recall that that iterations of the execution on a graph G correspond to

nodes of the enumeration tree T , where each nested iteration of a node corresponds to

a child node in T .
thus require using O(n2m) space.

4.3. ALGORITHMS FOR UNDIRECTED GRAPHS 63

Finally, the correctness proof for Algorithm 4 can be obtained similarly to that for

Algorithm 2, and using Itai’s algorithm [32] to compute the girth of a graph in O (mn),

we can obtain a first trivial complexity bound.

Theorem 28. EUG-Base solves Problem 4, i.e., enumerates all connected induced sub-

graphs with girth g of a graph without duplication, with delay O (n2m).

Proof. By the same reasoning as Algorithm 2, EUG-Base enumerates all solutions with-

out duplication.

As for its delay, since every iteration outputs a solution, it is sufficient to bound

the time complexity of one iteration. The bottleneck of RecEUG-ES is Line 7: in order

to compute C (X), EUG-Base must iterate over all vertices v ∈ V and check whether

the girth of G[S(X) ∪ {v}] is g.

By using time Itai’s algorithm [32], we can test each v in O (nm), thus the total

cost is bounded by |V | ·O (nm) = O (n2m).

4.3.2 Improvement for induced subgraph enumeration

The bottleneck of EUG-Base is the computation of the candidate set. In this section, we

present a more efficient algorithm EUG-IS for Problem 4. EUG-IS is based on EUG-Base,

but each iteration exploits information from the parent iteration, and maintains dis-

tances in order to improve the computation of the candidate set. The procedure is

shown in Algorithm 5.

Let π be a shortest path between u and v. We call a path which is a shortest u-v

path without π a second shortest path. If there is shortest paths two or more, then the

length of a shortest path and a second shortest path is same.

EUG-IS uses the second distance between vertices defined as follows. Let u and

64 CHAPTER 4. ENUMERATION OF SUBGRAPHS WITH BOUNDED GIRTH

Algorithm 5: Updating data structures in EUG-IS.

1 Procedure NextCand(v, C,Mu1,Mu2, S, g,G)

2 C ← UpdateCand(v, S);

3 Mu1,Mu2 ← UpdateU1(v, C);

4 Function UpdateCand(v, S, C)

5 C ← N(v) ∪ C;

6 foreach u ∈ C do

7 if Mu1(u, v) +Mu2(u, v) ≥ g then C ← C ∪ {u} ;

8 return C;

9 Function UpdateU1(v, C)

10 foreach u ∈ C ∪ S,w ∈ C do

11 Mu2(u,w)← min{max{Mu1(u,w),Mu1(u, v, w)},Mu2(u,w),Mu2(u, v) +

Mu1(v, w),Mu1(u, v) +Mu2(v, w)}. ;

12 Mu1(u,w)← min{Mu1(u,w),Mu1(u, v, w)};

13 return Mu1,Mu2

v be vertices in C (X). We denote by Mu1
X (u, v) the distance between v and u in

G[S(X)∪{v, u}], and by Mu2
X (u, v) the length of a second shortest path between u and

v in G[S(X)∪{u, v}]. Note that for any vertices x, y ∈ G \C (X), Mu1
X (x, y) =∞ and

Mu2
X (x, y) = ∞. Especially, we call Mu2

X (u, v) the second distance between u and v in

G[S(X) ∪ {u, v}]. Moreover, we write Mu1
X (u,w, v) and Mu2

X (u,w, v) for the distance

and the second distance from u to v via a vertex w, respectively. Let π and π′ be

respectively a v-u shortest path and a v-u second shortest path. Since π and π′ share

u and v, and there is a vertex x such that x ∈ π and x /∈ π′ holds, H must have a cycle

including v and u, where H is a subgraph of G such that V (H) = V (π) ∪ V (π′) and

4.3. ALGORITHMS FOR UNDIRECTED GRAPHS 65

8

4

21

3

5
7 6

9 u w

8

4

21

3

5
7 6

9

(A) (B) (C)

Figure 4.2: An example of shortest path and second shortest path.

E(H) = E(π) ∪E(π′). Figure 4.2 shows an example of a cycle made by π and π′. Let

S(A) = {1, 2, 3, 6, 7, 8, 9} and S(B) = {1, 2, 4, 5, 6, 8, 9}. Dashed edges and vertices are

not contained by induced subgraphs. Black and gray paths show respectively shortest

and second shortest paths. When u = 1, v = 8, Mu1
A (u, v) = 4 and Mu2

A (u, v) = 4.

Similarly, Mu1
B (u, v) = 3 and Mu2

B (u, v) = 4 hold in G[S(B)]. To compute the candidate

set efficiently, we will use the following lemmas. In the following lemmas, let Y and

S(Y) be the parent iteration of X and a solution of Y . Moreover, v be a vertex in

C (Y) such that S(X) = S(Y) ∪ {v}.

Lemma 29. Let u and w be two vertices in C (Y) and g = g(G[S(Y)]). (A) g(G[S(Y)∪

{u,w}]) ≥ g if and only if (B) Mu1
Y (u,w) +Mu2

Y (u,w) ≥ g.

Proof. Clearly, (A) → (B) holds by definition of Mu1
Y and Mu2

Y . For the direction (B)

→ (A), consider a shortest cycle C in G[S(Y) ∪ {u,w}]) in the following three cases:

(I) u,w /∈ C: |C| ≥ g since g(G[S(Y)]) ≥ g. (II) Either u or w in C: |C| ≥ g since u

and w belong to C (Y). (III) Both u and w in C: C can be decomposed into two u-w

paths π1 and π2. Without loss of generality, |π1| ≤ |π2|. If π1 is a u-w shortest path,

then |C| ≥ g from (B), since π2 is at least as long as the second distance Mu2
Y (u,w).

66 CHAPTER 4. ENUMERATION OF SUBGRAPHS WITH BOUNDED GIRTH

Otherwise, there is a u-w shortest path π3 and a cycle C ′ consisting of a part of π1 (or

π2) and a part of π3. If C
′ contains w, then |C ′| = |C| ≥ g since C is a shortest cycle.

If C ′ does not contain w, then |C ′| is a cycle in G[S(Y) ∪ {u}], thus |C ′| ≥ g because

u ∈ C (Y).

Lemma 30. EUG-IS computes C (X) in O (|C (Y)|+ |N(v)|) time.

Proof. From Lemma 29, vertex u in C (Y) belongs to C (X) if and only if Mu1
Y (u, v) +

Mu2
Y (u, v) ≥ g. This can be done in constant time. In addition, from the con-

nectivity of G[S(X)], C (X) \ C (Y) ⊆ N(v). Thus, we can find C (X) \ C (Y) in

O (|C (Y)|+ |N(v)|) time.

Next, we consider how to update the values of Mu1
X and Mu2

X when adding v to Y .

We can update the old distances to the ones after adding v as in the Floyd-Warshall

algorithm (see Algorithm 5), meaning that we can compute Mu1
X in O

(
|C (Y)|2

)
time.

By the following lemma, the values of Mu2
X can be updated in constant time for each

pair of vertices in C (X).

Lemma 31. Let u and w be vertices in C (Y). Mu2
X (u,w) is the minimum value of

the followings: (I) max{Mu1
Y (u,w),Mu1

Y (u, v, w)}, (II) Mu2
Y (u,w), (III) Mu2

Y (u, v) +

Mu1
Y (v, w), and (IV) Mu1

Y (u, v) +Mu2
Y (v, w).

Proof. We consider a u-w shortest path π1. |P | is equal to min{Mu1
Y (u,w),Mu1

Y (u, v, w)}.

We assume that |π1| = Mu1
Y (u,w). Let π2 be a second shortest path in G[X]. If π2

includes v, then |π2| = Mu1
Y (u, v, w). Otherwise, |π2| = Mu2

Y (u,w). In this case,

|π2| = min{Mu2
Y (u,w),Mu1

Y (u, v, w)}. We assume that |π1| = Mu1
Y (u, v, w). Let π2

be a second shortest path π2. If π2 includes v, then |π2| is equal to min{Mu1
Y (u, v) +

Mu2
Y (v, w),Mu2

Y (u, v) +Mu1
Y (v, w)}. Otherwise, |π2| = Mu1

Y (u,w). In this case, |π2| =

4.3. ALGORITHMS FOR UNDIRECTED GRAPHS 67

min{Mu1
Y (u,w),Mu1

Y (u, v) +Mu2
Y (v, w),Mu2

Y (u, v) +Mu1
Y (v, w)}. Hence, the statement

holds.

From Lemma 31, we can analyze the time complexity of computing Mu2
X .

Lemma 32. We can compute Mu2
X from Mu2

Y and Mu1
Y in O

(
|C (X)|2

)
time.

Theorem 33. EUG-IS enumerates all solutions in O
(∑

S∈S |N [S]|
)
time using

O

(
n ·max

S∈S
{|N [S]|2}

)
space, where S is the set of all solutions.

Proof. The correctness of EUG-IS follows from the fact that it performs the same op-

erations as Algorithm 4, which is correct. We first consider the space complexity. In

an iteration X, EUG-IS uses O
(
|C (X)|2

)
space for storing values of Mu1 and Mu2. In

addition, the height of T is at most n. Therefore, EUG-IS uses O

(
n ·max

S∈S
{|N [S]|2}

)
space.

Let cX be |C (X)| and T (Y,X) be the time needed to generate X from Y , i.e., an

execution of NextCand() (Algorithm 5). From Lemma 30, Lemma 31, and the Floyd-

Warshall algorithm, T (Y,X) is O (cY + |N(v)|+ c2X) time. Thus, by distributing the

O (|N(S(X))|) time fromX to children ofX, each iteration needsO (|N(S(X))|+ |N(v)|) =

O (|N [S(X)]|) time since each iteration receives costs only from the parent and the

grandparent. In addition, each iteration outputs a solution, and hence the total time

is O
(∑

S∈S |N [S]|
)
.

4.3.3 Improvement for subgraph enumeration

We propose an algorithm, EUG-ES, for enumerating all subgraphs with girth g in an

undirected graph G, detailed in Algorithm 6. A trivial adaptation of EUG-IS would

run in O (m) time per solution, as the candidate sets are sets of edges, whose size is

68 CHAPTER 4. ENUMERATION OF SUBGRAPHS WITH BOUNDED GIRTH

Good Case Bad Case

Figure 4.3: Black solid lines and gray solid lines represent inner edges and external

edges, respectively.

O (m). To improve this running time, EUG-ES selects candidates in a certain order, so

that the number of candidate edges does not exceed no more than the number of nodes

in the previous solution G[S].

Let X be an iteration and S(X) be the current solution. Note that S(X) is an edge

set. We first define an inner edge and an external edge as follows: an edge e = {u, v}

is an inner edge for S(X) if u, v ∈ G[S(X)], and an external edge otherwise (see

Figure 4.3). Our main strategy is to reduce the number of inner edges in EUG-IS. We

first consider the case when EUG-ES picks an external edge. In the following lemmas,

let X be an iteration in enumeration tree T , S(X) be a solution in an iteration X,

C in (X) and Cex (X) be a set of inner edges and external edges in C (X), e be an edge

in S(X), and Y be the parent iteration of X satisfying S(X) = S(Y) ∪ {e}. Here,

SN(X) be the set of vertices incident to edges in SR.

Lemma 34. Let e = {x, y} be an external edge such that x ∈ SN(X). Then C (X) ⊆

(C (Y) ∪ E(y)) \ {e}, where E(y) are the edges incident to y.

Proof. An edge g /∈ E(y)∪C (Y) may not be added to S(X) as the resulting subgraph

would be disconnected, and e ̸∈ C (X) since e ∈ S(X).

From Lemma 34, EUG-ESmanages the candidate set C (X) inO (|C (X)|+ |SN(X)|)

time when EUG-ES picks an external edge e since we can add all edges e′ /∈ S(Y)∪C (Y)

4.3. ALGORITHMS FOR UNDIRECTED GRAPHS 69

incident to y and S(X) ∪ {e′} is a solution. Moreover, removed edges are at most

|SN(Y)| since all removed edges have a vertex in SN(Y). In this case, EUG-ES can

obtain C in (X) and Cex (X) in O (|S(Y)|) time and O (|C (X)|) time, respectively.

Next, we consider that when EUG-ES picks an inner edge e. When we pick an inner

edge, C (X) is monotonically decreasing.

Lemma 35. If e is an inner edge, then C in (X) ⊂ C in (Y) and Cex (X) = Cex (Y).

Proof. Since e is an inner edge SN(X) = SN(Y), thus there is no edge f ∈ C in (X) \

C in (Y). Since e /∈ C in (X) and no edge in Cex (Y) is in C in (X), C in (X) ⊂ C in (Y).

Moreover, there is no cycle including f ∈ Cex (Y) in G[S(X) ∪ {f}], hence Cex (X) =

Cex (Y).

Next, for any pair of edges e and f not in G[S(Y)], we consider the computation of

the girth of G[S(Y)∪ {e, f}] in EUG-ES. Let A(Y) = {v ∈ SN(Y) | E(v)∩C (Y) ̸= ∅}.

In a similar fashion as EUG-IS, EUG-ES uses Mue
Y for A(Y). The definition of Mue

Y is as

follows: For any pair of vertices u and v in A(Y), Mue
Y (u, v) is the distance between u

and v in A(Y). Note that a shortest path between u and v may contain a vertex in

G[S(Y)] \A(Y). The next lemma shows that by using Mue
Y , we can compute C (X) in

O (|SN(X)|) time from C (Y).

Lemma 36. For any iteration X,
∣∣C in (X)

∣∣ ≤ |SN(X)|.

Proof. The proof follows from these facts: (A) Initially, C in (X) = ∅. (B) Choosing

e ∈ C in (Y) decreases |C in (X) |, where Y is the parent iteration of X. (C) e = {x, y} ∈

Cex (Y) is chosen iff C in (Y) = ∅, and (assuming wlog y ̸∈ SN(Y)) it increases |C in (X) |

by at most |{{y, z} | z ∈ SN(Y)}| < |SN(Y)|.

Lemma 37. For any iteration X, |Cex (Y) \ Cex (X)|+|Cex (X) \ Cex (Y)| ≤ |SN(X)|,

where Y is the parent iteration of Y .

70 CHAPTER 4. ENUMERATION OF SUBGRAPHS WITH BOUNDED GIRTH

Algorithm 6: Updating data structures in EUG-ES.

1 Procedure NextCand(C (S) ,Mue
S , S, g,G)

2 if C in ̸= ∅ then e← C in; else e← Cex ;

3 C (S ∪ {e})← UpdateCand(e, S);

4 Mue
S∪{e} ← UpdateUE(e, C (S ∪ {e}));

5 Function UpdateCand(e = {u, v}, S)

6 if e ∈ C in then

7 for f ∈ C in \ {e} do

8 if g(G[S ∪ {e, f}]) ≥ g then C in ← C in ∪ {f} ;

9 else // We assume u ∈ SN and v /∈ SN

10 for w ∈ N(v) do // Let f be an edge {v, w}

11 if g(G[S ∪ {e, f}]) < g then Cex ← Cex \ f ;

12 else if w ∈ SN then (C in, Cex)← (C in ∪ f, Cex \ f) ;

13 else Cex ← Cex ∪ f ;

14 return C in ∪ Cex;

15 Function UpdateUE(e = {u, v}, C (S ∪ {e}))

16 A = {v ∈ SN | v is incident to C (S) .};

17 for x, y ∈ A do // If e ∈ Cex, then u ∈ SN , v /∈ SN

18 if e ∈ C in then

19 Mue
S (x, y)←

min{Mue
S (x, y),Mue

S (x, u)+Mue
S (v, y)+ 1,Mue

S (x, v)+Mue
S (u, y)+ 1};

20 else Mue
S (x, y)← min{Mue

S (x, y),Mue
S (x, u) + 1} ;

21 return Mue
S ;

4.3. ALGORITHMS FOR UNDIRECTED GRAPHS 71

Proof. We consider two cases: (I) C in (Y) ̸= ∅: EUG-ES picks e ∈ C in (Y), and thus,

from Lemma 35, Cex (X) = Cex (Y). (II) C in (I) = ∅: EUG-ES picks e = {u, v} ∈

Cex (Y). Without loss of generality, we can assume that u ∈ SN(Y) and v /∈ SN(Y).

Let f be an edge {v, w} incident to v. Now, w ∈ SN(X). This implies that the number

of edges that are added to Cex (X) and removed from Cex (Y) is at most |SN(X)|.

Note that |SN(Y)| ≤ |SN(X)|. Hence, from the above lemmas, we can obtain the

following lemma.

Lemma 38. C (X) can be computed in O (|SN(Y)|) time from C (Y).

Theorem 39. EUG-ES enumerates all connected subgraphs with girth g in O
(∑

S∈S |SN |
)

total time using O

(
n ·max

S∈S
{|SN |2}

)
space. Moreover, the delay is O

(
max
S∈S
{|SN |}

)
.

Proof. The correctness of EUG-IS can be seen similarly to that of EDG-ES, i.e., Algo-

rithm 2 adapted to the enumeration of edge subgraphs. Let T = (V , E) be the enumer-

ation tree made by EUG-ES. We first consider the space complexity of EUG-ES. In each

iteration X, EUG-ES needs O

(
max
X∈V
{|A(X)|2}

)
for storing Mue

X . In addition, each cell

of Mue
X is updated at most n times since the distance is at most n and monotonically

decreasing. EUG-ES traverses on T in a DFS manner. Hence, the space complexity of

EUG-ES is O

(
n ·max

S∈S
{|SN |}2

)
since A(X) ⊆ SN(X) for any iteration X ∈ V .

Let us consider the time complexity. Let Y be a parent of X. Suppose that we

add e = {u, v} to S(Y), and S(X) = S(Y) ∪ {e}, that is, Y is the parent itera-

tion of X. Then, Mue
X (x, y) = min{Mue

Y (x, y),Mue
Y)(x, u) + Mue

Y (v, y) + 1,Mue
Y (x, v) +

Mue
Y (u, y) + 1}. Thus, we can compute Mue

X from Mue
Y in O

(
|A(X)|2

)
time since each

value of Mue
X can be computed in constant time. From Lemma 38, EUG-ES needs

O
(
|SN(Y)|+ |A(X)|2

)
time for generating data structures for S(X) from those for

S(Y). Thus, since |SN(Y)| ≤ |SN(X)|, the total time of EUG-ES isO
(∑

X∈V |SN(X)|+ |A(X)|2
)
.

72 CHAPTER 4. ENUMERATION OF SUBGRAPHS WITH BOUNDED GIRTH

Note that, X has |C (X)| child iterations. Moreover, |A(X)| is at most 2 |C (X)| since

each vertex in A(X) is incident to at least one edge in C (X). Hence, O
(
|A(X)|2

)
=

O (|C (X)| · |A(X)|). Since |V| = 1 +
∑

X∈V |C (X)|, by delivering O (A(X)) time to

each child of X, the time complexity of EUG-ES is O
(∑

X∈V(|SN(X)|+ |A(X)|)
)
. In

addition, |A(X)| is at most |SN(X)| since A(X) ⊆ SN(X). Hence, this algorithm runs

in amortized O

(
max
S∈S
{|SN |}

)
time.

Analysis of delay

While the cost per solution of all algorithms are O(n). However, their delay, i.e., the

maximum elapsed time between the output of a solution and the following one, is

higher, unless we employ additional techniques. By outputting the solution at the be-

ginning of every iteration, a solution will be output whenever an iteration is performed.

In this case the delay will be bounded by O(n2) delay. However, we can reduce the

delay by using the output queue and alternative output techniques [71]: Let X be an

arbitrary iteration, T ∗ be an upper bound on the cost of X, and T̄ an upper bound for

the ratio

(cost of processing the subtree of X) / (solutions found in the subtree) (4.3)

To reduce the delay, we will need to use a buffer which stores ⌈2 · T ∗/T̄ ⌉+ 1 solutions.

First, we fill the buffer until it is full, then we will out a solution every O(T̄) time,

obtaining O(T̄) delay.

By means of our amortized cost analysis, we have that T̄ corresponds exactly to

the cost per solution, that is O(n) for all algorithms.

Thus we will have T ∗ = O(n2) and T̄ = O(n), meaning that we will obtain delay

O(n), at the cost of storing Θ(n) solutions. As a solution of EDG-IS and EUG-IS are

4.3. ALGORITHMS FOR UNDIRECTED GRAPHS 73

defined by a set of vertices, this translates to a space usage of O(n2) and a delay of

O(n).

As for EDG-ES and EUG-ES, we need to store solutions corresponding to sets of edges,

which have size O(m) and take O(m) to output. We address this problem with the

alternative output technique. This consists in performing the output of a solution as

the first operation in each iteration of even depth, and as the last operation in each

iteration of odd depth.

By using this structure, consecutive outputs of the algorithm are performed by

iterations at distance at most 3 in the enumeration tree (see Figure 3 in [71]). As each

iteration outputs a solution that differs by 1 edge from those output by its parent and

children, consecutively output solutions will differ by at most 3 edges. We can thus

output each solution by giving only the difference with the last output solution, which

takes constant space (and time), thus the buffer size will take only O(m) space for the

first solution, and O(n) space for the subsequent n ones, for a total cost of O(n) delay

and O(m) space usage.

In both cases, the space required by the solution buffer does not increase the O(n2)

space usage of all algorithms. However, the output queue technique will add a pre-

processing time, that is the time required to fill the buffer: as without the output queue

technique the algorithm guarantee a delay of O(n2) time, the time required to fill a

buffer of Θ(n) solution, that is O(n3).

Finally, we summary our result in Table 4.1. If g is equal to n+ 1, the algorithms

will enumerate all acyclic subgraphs. Furthermore, they can easily be adapted to relax

the connectivity constraint and consider weighted graphs.

74 CHAPTER 4. ENUMERATION OF SUBGRAPHS WITH BOUNDED GIRTH

input graph subgraph type algorithm delay space usage

directed
induced EDG-IS O(max

S∈S
{|N [S]|})∗ O(n ·max

S∈S
{|N [S]|2})†

edge EDG-ES O(max
S∈S
{|SN |})∗ O(n ·max

S∈S
{|SN |2})†

undirected
induced EUG-IS O(max

S∈S
{|N [S]|})∗ O(n ·max

S∈S
{|N [S]|2})

edge EUG-ES O(max
S∈S
{|SN |})∗ O(n ·max

S∈S
{|SN |2})

Table 4.1: Summary of the time and space complexity of the proposed enumeration

algorithms for enumerating subgraphs with girth at least g, where S is the set of

solutions and SN is the set of vertices incident to S. ∗: O(n3) pre-processing time is

also required. †: the bound drops to O(n2) for enumerating acyclic subgraphs (i.e.,

g = n+ 1).

Experimental result

We conducted experiments on artificial data to evaluate the computational speed. We

implemented EUG-ES. The experimental environment is as follows: C++ with GCC7.3.0

and -O3 option. We considered general graphs(GG) randomly generated. We experi-

mented three algorithms, EUG-ES, a simple polynomial delay algorithm, and a naive

algorithm for GG. The time complexity of the simple algorithm and the naive algorithm

are amortized O (nm2) time and O (2mpoly(n)) time. The efficient algorithm is 60

times faster than the simple polynomial delay algorithm.

#Edges O (n) and O (nm2) naive

23 380,906 224 − 1 = 8, 388, 607

25 997,093 226 − 1 = 67, 108, 863

Table 4.2: The number of iterations in connected bounded girth enumeration. An

input graph is in GG.

4.3. ALGORITHMS FOR UNDIRECTED GRAPHS 75

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

O(nm^2)
O(n)time
O(2^n poly(n))

na
no

se
c

#Edges

The total running time for GG

0
5000

10000
15000
20000
25000
30000
35000
40000
45000

13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

O(nm^2)
O(n)
O(2^n poly(n))

na
no

 se
c

#Edges

The running time per solution for GG

Figure 4.4: The total running time and the time per solution of connected bounded

subgraph enumeration. All input graphs in GG have 10 vertices.

Chapter 5

Enumeration of Dominating Sets

5.1 Introduction

In this chapter, we address the dominating set enumeration problem. A set of vertex

D of a graph G is a dominating set of G if every vertex in G is in D or has at least

one neighbors in D. A dominating set is one of a fundamental substructure of graphs.

Finding the minimum dominating set problem is a classical NP-hard problem [25]. A

dominating set is fixed parameter tractable if an input is sparse graphs [57, 59]. We

show that our proposed algorithms solve this problem in constant amortized time if

graphs are sparse.

The enumeration of minimal dominating sets of a graph is closely related to the

enumeration of minimal hypergraph transversals [19]. A dominating set D is a mini-

mal if D \ {v} is not dominating set for any v ∈ D. Kanté et al. [35] show that the

minimal dominating set enumeration problem and the minimal hypergraph transver-

sal enumeration problem are equivalent, that is, the one side can be solved in output

polynomial time if the other side can be also solved in output polynomial time. Several

78 CHAPTER 5. ENUMERATION OF DOMINATING SETS

algorithms that run in polynomial delay have been developed when we restrict input

graphs [18, 28, 34–37]. Incremental polynomial time algorithms have also been devel-

oped [5, 27, 29]. However, it is still open whether there exists an output polynomial

time algorithm for enumerating minimal dominating sets from general graphs. We now

define the dominating set enumeration problem as follows:

Problem 6 (The dominating set enumeration problem). Given a graph G, then

output all dominating sets in G without duplication.

Main results

In this chapter, we consider the relaxed problems, i.e., enumeration of all dominating

sets that include non-minimal ones in a graph. We present two algorithms, EDS-D and

EDS-G. EDS-D enumerates all dominating sets in O (k) time per solution, where k is

the degeneracy of a graph (Theorem 53). Moreover, EDS-G enumerates all dominating

sets in constant time per solution for a graph with girth at least nine (Theorem 66).

5.2 A basic algorithm based on reverse search

In this chapter, we propose two algorithms EDS-D and EDS-G for solving Problem 6.

These algorithms use the degeneracy ordering and the local tree structure, respectively.

Before we enter into details of them, we first show the basic idea for them, called

reverse search that is proposed by Avis and Fukuda [3] and is one of the framework

for constructing enumeration algorithms.

An algorithm based on reverse search enumerates solutions by traversing on an

implicit tree structure on the set of solution, called a family tree. For building the

family tree, we first define the parent-child relationship between solutions as follows:

5.2. A BASIC ALGORITHM BASED ON REVERSE SEARCH 79

Let G = (V,E) be an input graph with V = {v1, . . . , vn} and X and Y be dominating

sets on G. We arbitrarily number the vertices in G from 1 to n and call the number

of a vertex the index of the vertex. If no confusion occurs, we identify a vertex with

its index. We assume that there is a total ordering < on V according to the indices.

pv (X), called the parent vertex , is the vertex in V \X with the minimum index. For

any dominating set X such that X ̸= V , Y is the parent of X if Y = X ∪ {pv (X)}.

We denote by P (X) the parent of X. Note that since any superset of a dominating

set also dominates G, thus, P (X) is also a dominating set of G. We call X is a child

of Y if P (X) = Y . We denote by F (G) a digraph on the set of solutions S (G). Here,

the vertex set of F (G) is S (G) and the edge set E (G) of F (G) is defined according to

the parent-child relationship. We call F (G) the family tree for G and call V the root

of F (G). Next, we show that F (G) forms a tree rooted at V .

Our basic algorithm EDS is shown in Algorithm 7. We say C (X) the candidate

set of X and define C (X) = {v ∈ V | N [X \ {v}] = V ∧ P (X \ {v}) = X}. Intu-

itively, the candidate set of X is the set of vertices such that any vertex v in the set,

removing v from X generates another dominating set. We show a recursive procedure

AllChildren(X,C (X) , G) actually generates all children of X on F (G). We denote

by ch(X) the set of children of X, and by gch(X) the set of grandchildren of X.

From Lemmas 40, 41, and 42, we can obtain the correctness of EDS.

Lemma 40. For any dominating set X, by recursively applying the parent function

P (·) to X at most n times, we obtain V .

Proof. For any dominating set X, since pv (v) always exists, there always exists the

parent vertex for X. In addition, |P (X) \X| = 1. Hence, the statement holds.

Lemma 41. F (G) forms a tree.

80 CHAPTER 5. ENUMERATION OF DOMINATING SETS

Algorithm 7: EDS enumerates all dominating sets in amortized polynomial time.

1 Procedure EDS(G = (V,E)) // G: an input graph

2 AllChildren(V, V,G);

3 Procedure AllChildren(X,C (X) , G = (V,E)) // X: a solution

4 Output X;

5 for v ∈ C (X) do

6 Y ← X \ {v}; C (Y)← {u ∈ C (X) | N [Y \ {u}] = V ∧P (Y \ {u}) = Y };

7 AllChildren(Y,C (Y) , G);

Proof. Let X be any solution in S (G) \ {V }. Since X has exactly one parent and

V has no parent, F (G) has |V (F (G))| − 1 edges. In addition, since there is a path

between X and V by Lemma 40, F (G) is connected. Hence, the statement holds.

Lemma 42. Let X and Y be distinct dominating sets in a graph G. Y ∈ ch(X) if and

only if there is a vertex v ∈ C (X) such that X = Y ∪ {v}.

Proof. The if part is immediately shown from the definition of a candidate set. We

show the only if part by contradiction. Let Z be a dominating set in ch(X) such that

Z = X \{v′}, where v′ ∈ Z. We assume that v′ /∈ C (X). From v′ /∈ C (X), N [P (Z)] ̸=

V or P (Z) ̸= X. Since Z is a child of X, P (Z) = X, and thus, N [P (Z)] = V . This

contradicts v′ /∈ C (X). Hence, the statement holds.

Theorem 43. By traversing F (G), EDS solves Problem 6.

5.3 The algorithm for bounded degenerate graphs

The bottle-neck of EDS is the maintenance of candidate sets. Let X be a dominating

set and Y be a child of X. We can easily see that the time complexity of EDS is

5.3. THE ALGORITHM FOR BOUNDED DEGENERATE GRAPHS 81

Algorithm 8: EDS-D enumerates all dominating sets in O (k) time per solution.

1 Procedure EDS-D(G = (V,E)) // G: an input graph

2 for v ∈ V do Dv ← ∅;

3 AllChildren(V, V,D(V) := {D1, . . . , D|V |});

4 Procedure AllChildren(X,C,D)

5 Output X;

6 C ′ ← ∅; D′ ← D; // D′ := {D′
1, . . . , D

′
|V |}

7 for v ∈ C do // v has the largest index in C

8 Y ← X \ {v};

9 C ← C \ {v}; // Remove vertices in Del3 (X, v).

10 C (Y)← Cand-D(X, v, C); // Vertices larger than v are not in C.

11 D(Y)← DomList(v, Y,X,C (Y) , C ′ ⊕ C (Y) ,D′);

12 AllChildren(Y,C (Y) ,D(Y));

13 C ′ ← C (Y); D′ ← D(Y);

14 for u ∈ N(v)v< do D′
u ← D′

u ∪ {v} ;

O (∆2) time per solution since a removed vertex u ∈ C (X) \ C (Y) has the distance

at most two from v. In this section, we improve EDS by focusing on the degeneracy

of an input graph G. G is a k-degenerate graph [48] if for any induced subgraph H

of G, the minimum degree in H is less than or equal to k. The degeneracy of G is

the smallest k such that G is k-degenerate. A k-degenerate graph has a good vertex

ordering. The definition of orderings of vertices in G, called a degeneracy ordering of

G, is as follows: for any vertex v in G, the number of vertices that are larger than v and

adjacent to v is at most k. We show an example of a degeneracy ordering of a graph

in Figure 5.1. In Figure 5.1, each vertex v is adjacent to vertices at most two whose

82 CHAPTER 5. ENUMERATION OF DOMINATING SETS

Algorithm 9: Several ancillary functions to compute EDS-D.

1 Procedure Cand-D(X, v, C)

2 Y ← X \ {v}; Del1 ← ∅; Del2 ← ∅;

3 for u ∈ (N(v) ∩ C) ∪N(v)v< do

4 if u < v then

5 if N(u)u< ∩ Y = ∅ ∧N(u)<u ∩ Y = ∅ then Del1 ← Del1 ∪ {u} ;

6 else

7 if N [u] ∩ (X \ C) = ∅ ∧ |N [u] ∩ C| = 2 then

Del2 ← Del2 ∪ (N [u] ∩ C) ;

8 return C \ (Del1 ∪Del2); // C is C (X \ {v})

9 Procedure DomList (v, Y,X,C ′ ⊕ C (Y) ,D′)

10 for u ∈ C ′ ⊕ C(Y) do

11 for w ∈ N(u)u< do

12 if u /∈ D′
w(X) then

13 if u /∈ C ′ then D′
w ← D′

w ∪ {u} ;

14 else D′
w ← D′

w \ {u} ;

15 for u ∈ N(v)v< do

16 if u ∈ X then D′
v ← D′

v ∪ {u} ;

17 return D′; // D′ is D(Y)

indices are larger than v. Matula and Beck show that the degeneracy and a degeneracy

ordering of G can be obtained in O (n+m) time [53]. Our proposed algorithm EDS-D,

shown in Algorithm 8, achieves amortized O (k) time enumeration by using this good

ordering. In what follows, we fix some degeneracy ordering of G and number the indices

of vertices from 1 to n according to the degeneracy ordering. We assume that for each

5.3. THE ALGORITHM FOR BOUNDED DEGENERATE GRAPHS 83

4
5

2

1
3 6

78

4 521 3 6 7 8

Figure 5.1: An example of a degeneracy ordering for a 2-degenerate graph G.

vertex v and each dominating set X, N [v] and C (X) are stored in a doubly linked list

and sorted by the ordering. Note that the larger neighbors of v can be listed in O (k)

time. Let us denote by V<v = {1, 2, . . . , v − 1} and Vv< = {v + 1, . . . n}. Moreover,

A<v = A ∩ Vv< and Av< = A ∩ V<v for a subset A of V . We first show the relation

between C (X) and C (Y).

Lemma 44. Let X be a dominating set of G and Y be a child of X. Then, C (Y) ⊂

C (X).

Proof. Let Z be a child of Y . Hence, pv (Z) ∈ X and pv (Z) ∈ C (Y). From the

definition of pv (Z), pv (Z) = minV \ Z. Moreover, since V \ X ⊂ V \ Z, pv (Z) ≤

minV \X. Therefore, pv (Z) ∈ C (X).

From the Lemma 44, for any v ∈ C (X), what we need to obtain the candidate set

of Y is to compute Del (X, pv (Y)) = C (X) \C (Y), where Y = X \ {v}. In addition,

we can easily sort C (Y) by the degeneracy ordering if C (X) is sorted. In what follows,

we denote by Del1 (X, v) = {u ∈ C (X)<v | N [u] ∩ X = {u, v}}, Del2 (X, v) = {u ∈

C (X)<v | ∃w ∈ V \ (X \ {v})(N [w]∩X = {u, v})}, and Del3 (X, v) = C (X)v≤. Next,

we show the time complexity for obtaining Del (X, pv (Y)).

84 CHAPTER 5. ENUMERATION OF DOMINATING SETS

5

42

7 8

1 3 6

11

9

542

7 8

1

3

6

11

910 10

Figure 5.2: Let X be a dominating set {1, 2, 3, 4, 5, 6, 11}. An example of the main-

tenance of C (X) and D(X). Each dashed directed edge is stored in D(X), and each

solid edge is an edge in G. A directed edge (u, v) implies v ∈ Du(X). White, black,

and gray vertices belong to V \X, X \ C (X), and C (X), respectively.

Lemma 45. For each v ∈ C (X), Del (X, v) = Del1 (X, v) ∪Del2 (X, v) ∪Del3 (X, v)

holds.

Proof. Del (X, v) ⊇ Del1 (X, v)∪Del2 (X, v)∪Del3 (X, v) is trivial since X \ {u, v} is

not dominating set for each u ∈ Del1 (X, v) ∪Del2 (X, v) and the parent of X \ {u, v}

is not X \ {v} for each u ∈ Del3 (X, v). We next prove Del (X, v) ⊆ Del1 (X, v) ∪

Del2 (X, v) ∪ Del3 (X, v). Let u be a vertex in Del (X, v). Suppose that X \ {u, v}

is a dominating set. Since P (X \ {u, v}) ̸= X \ {v}, v < u. Thus, u ∈ Del3 (X, v).

Suppose that X \ {u, v} is not a dominating set, that is, N [X \ {u, v}] ̸= V . This

implies that there exists a vertex w in V such that w is not dominated by any vertex

in X \ {u, v}. Note that w may be equal to u or v. Hence, N [w]∩X = {u, v} and the

statement holds.

We show an example of dominated list and a maintenance of C (X) in Figure 5.2.

To compute a candidate set efficiently, for each vertex u in V , we maintain the vertex

5.3. THE ALGORITHM FOR BOUNDED DEGENERATE GRAPHS 85

lists Du(X) for X. We call Du(X) the dominated list of u for X. The definition of

Du(X) is as follows: If u ∈ V \X, then Du(X) = N(u) ∩ (X \ C (X)). If u ∈ X, then

Du(X) = N(u)<u ∩ (X \ C (X)). For brevity, we write Du as Du(X) if no confusion

arises. We denote by D(X) =
∪

u∈V {Du}. By using D(X), we can efficiently find

Del1 (X, v) and Del2 (X, v).

Lemma 46. For each vertex v ∈ C (X), we can compute N(v)∩C (X) and N(v)v<∩X

in O (k) time on average over all children of X.

Proof. Since G is k-degenerate, G[C (X)] is also k-degenerate. Thus, the number of

edges in G[C (X)] is at most k |C (X)|. Remind that C (X) is sorted by the degeneracy

ordering. Hence, by scanning vertices of C (X) from the smallest vertex to the largest

one, for each v in C (X), we can obtain N(v) ∩ C (X) in O (k) time on average over

all children of X. Since N(v)v< is the larger v’s neighbors set, the size is at most k.

Hence, the statement holds.

Lemma 47. Let X be a dominating set of G. Suppose that for each vertex u in G, we

can obtain the size of Du in constant time. Then, for each vertex v ∈ C (X), we can

compute Del1 (X, v) in O (k) time on average over all children of X.

Proof. Since every vertex u in Del1 (X, v) is adjacent to v, Del1 (X, v) ⊆ N(v)∩C (X).

To compute Del1 (X, v), we need to check whether N [u] ∩X = {u, v} or not. We first

consider smaller neighbors of u. Before computing Del1 (X, v) for every vertex v, we

record the size of Du of u ∈ C (X) in O (|C (X)|) time. Du = ∅ if and only if there are

no smaller neighbors of u in X<u \C (X). Moreover, the number of edges in G[C (X)]

is at most k |C (X)| from the definition of the degeneracy. Thus, this part can be

done in O
(∑

v∈C(X) |N(v) ∩ C (X)|
)
total time and in O (k) time per each vertex in

C (X). We next consider larger neighbors. Again, before computing Del1 (X, v) for

86 CHAPTER 5. ENUMERATION OF DOMINATING SETS

every vertex v, from Lemma 46 and the degeneracy of G, we can check all of the larger

neighbors of u ∈ C (X) in O (k |C (X)|) time. Thus, as with the smaller case, the

checking for the larger part also can be done in O (k) time on average over all children

of X. Hence, the statement holds.

Lemma 48. Suppose that for each vertex w in G, we can obtain the size of Dw in

constant time. For each vertex v ∈ C (X), we can compute Del2 (X, v) in O (k) time

on average over all children of X.

Proof. Let u be a vertex in Del2 (X, v). Then, there exists a vertex w such that

N [w] ∩ X = {u, v} and w ∈ N [v] ∩ (V \ (X \ {v}). In addition, for any vertex v′

in C (X), pv (X \ {v′}) = v′. Thus, v ≤ w and u < w hold. Before computing

Del2 (X, v) for every vertex v, by scanning all larger neighbors w′ of vertices of C (X),

we can list such vertices w′ such that w′ > max{C (X)}, |N [w′] ∩ C (X)| = 2, and

w′ ∈ V \ (X \ {v}) in O (k |C (X)|) time since G is k-degenerate. If Dw′ ̸= ∅, that is,

w′ has a neighbor in X \ C (X), then |N [w] ∩X| > 2. Thus, since we can check the

size of Dw′ in constant time, we can compute Del2 (X, v) in O (k) time on average over

all children of X.

In Lemma 47 and Lemma 48, we assume that the dominated lists were computed

when we compute Del (X, v) for each vertex v in C (X). We next consider how we

maintain D. Next lemmas show the transformation from Du(X) to Du(Y) for each

vertex u in G.

Lemma 49. Let X be a dominating set, v be a vertex in C (X), and Y = X \ {v}.

For each vertex u ∈ G such that u ̸= v, Du(Y) = Du(X) ∪ (N(u)<u ∩ (Del1 (X, v) ∪

Del2 (X, v))) ∪ (N(u)<u ∩ (Del3 (X, v) \ {v})).

5.3. THE ALGORITHM FOR BOUNDED DEGENERATE GRAPHS 87

Proof. Let XC̄ = X \ C (X). Suppose that u ∈ Y . From the definition, Du(X) =

N(u)<u ∩XC̄ . From the distributive property,

L = Du(X) ∪ (N(u)<u ∩ (Del1 (X, v) ∪Del2 (X, v))) ∪ (N(u)<u ∩ (Del3 (X, v) \ {v}))

= N(u)<u ∩ (XC̄ ∪ (Del (X, v) \ {v}))

= N(u)<u ∩ (Y \ C (Y))

Since XC̄ ∪ (Del (X, v) \ {v}) = Y \C (Y). Suppose that u ∈ V \X. From the parent-

child relation, pv (Y) < u holds. Since Del (X, v) ⊆ V<u, N(u)<u ∩ (Del1 (X, v) ∪

Del2 (X, v)) = N(u) ∩ (Del1 (X, v) ∪Del2 (X, v)), and N(u)<u ∩ (Del3 (X, v) \ {v}) =

N(u) ∩ (Del3 (X, v) \ {v}). From the definition, Du(X) = N(u) ∩XC̄ ,

L = Du(X) ∪ (N(u)<u ∩ (Del1 (X, v) ∪Del2 (X, v))) ∪ (N(u)<u ∩ (Del3 (X, v) \ {v}))

= (N(u) ∩XC̄) ∪ (N(u) ∩ (Del1 (X, v) ∪Del2 (X, v))) ∪ (N(u) ∩ (Del3 (X, v) \ {v}))

= N(u) ∩ (XC̄ ∪ (Del1 (X, v) ∪Del2 (X, v)) ∪ (Del3 (X, v) \ {v}))

= N(u) ∩ (XC̄ ∪ (Del (X, v) \ {v}))

= N(u) ∩ (Y \ C (Y))

Hence, the statement holds.

Lemma 50. Let X be a dominating set, v be a vertex in C (X), and Y = X \ {v}.

Dv(Y) = Dv(X) ∪ (N(v)<v ∩ (Del1 (X, v) ∪Del2 (X, v))) ∪ (N(v)v< ∩X).

Proof. Since Del1 (X, v) ∪ Del2 (X, v) ⊆ V<v and Del3 (X, v) ∩ V<v = ∅, N(v)<v ∩

(Del1 (X, v)∪Del2 (X, v)) = N(v)<v∩Del (X, v). By the same discussion as Lemma 49,

L = Dv(X) ∪ (N(v)<v ∩ Del (X, v)) = N(v)<v ∩ (Y \ C (Y)). Since Y = X \ {v},

N(v)v< ∩ Y = N(v)v< ∩ X. Moreover, since X<v = Y<v and C (Y)v< = ∅, N(v)v< ∩

(Y \C (Y)) = N(v)v< ∩X. Since L = (N(v)v< ∪N(v)<v) ∩ (Y \C (Y)) = Dv(Y), the

statement holds.

88 CHAPTER 5. ENUMERATION OF DOMINATING SETS

We next consider the time complexity for obtaining the dominated lists for children

of X. From Lemma 49 and Lemma 50, a näıve method for the computation needs

O (k |Del (X, v)|+ k) time for each vertex v of X since we can list all larger neighbors

of any vertex in O (k) time. However, if we already know C (W) and D(W) for a child

W of X, then we can easily obtain D(Y), where Y is the child of X immediately after

W . The next lemma plays a key role in EDS-D. Here, for any two sets A,B, we denote

by A⊕B = (A \B) ∪ (B \ A).

Lemma 51. Let X be a dominating set, v, u be vertices in C (X) such that u has the

maximum index in C (X)<v, Y = X \ {u}, and W = X \ {v}. Suppose that we already

know C (Y)⊕C (W), D(W), Del (X, v), and Del (X, u). Then, we can compute D(Y)

in O (k |C (Y)⊕ C (W)|+ k) time.

Proof. Suppose that z is a vertex in G such that z ̸= v and z ̸= u. From the definition,

Dz(W)\Dz(Y) = (Del (X, v)\Del (X, u))∩N(z)<z andDz(Y)\Dz(W) = (Del (X, u)\

Del (X, v))∩N(z)<z. Hence, we first compute Del (X, v)⊕Del (X, u). Now, (C (X) \

C (W))⊕(C (X)\C (Y)) = C (W)⊕C (Y). Next, for each vertex c in C (W)⊕C (Y), we

check whether we add to or remove c from Dz(Y) or not. Note that added or removed

vertices from Dz(Y) is a smaller neighbor of z. From the definition, if c /∈ Dz(Y) or

c ∈ Dz(X), then we add c to Dz(Y). Otherwise, we remove c from Dz(Y). Thus, since

each vertex in C (W)⊕C (Y) has at most k larger neighbors, for all vertices other than

u and v, we can compute the all dominated lists in O (k |C (W)⊕ C (Y)|) time. Next

we consider the update for Du(Y) and Dv(Y). Note that from the definition, Dv(W)

and Du(Y) contain larger neighbors of v and u, respectively. However, the number of

such neighbors is O (k). Finally, since v belongs to Y , v ∈ Du′(Z) if u′ ∈ N(v)v< for

any vertex u′. Thus, as with the above discussion, we can compute Du(Y) and Dv(Y)

in O (k |C (W)⊕ C (Y)|+ k) time.

5.3. THE ALGORITHM FOR BOUNDED DEGENERATE GRAPHS 89

Lemma 52. Let X be a dominating set. Then, AllChildren(X,C (X) ,D(X)) of

EDS-D other than recursive calls can be done in O (k |ch(X)|+ k |gch(X)|) time.

Proof. We first consider the time complexity of Cand-D. From Lemma 47 and Lemma 48,

Cand-D correctly computes Del1 (X, v) and Del2 (X, v) in from line 4 to line 5 and from

line 6 to line 7, respectively. For each loop from line 7, the algorithm picks the largest

vertex in C. This can be done in O (1) since C is sorted. The algorithm needs to

remove vertices in Del3 (X, v). This can be done in line 9 and in O (1) time since v

is the largest vertex. Thus, for each vertex v in C (X), C (X \ {v}) can be obtained

in O (k) time on average. Hence, for all vertices in C (X), the candidate sets can be

computed in O (k |ch(X)|) time. Next, we consider the time complexity of DomList.

Before computing DomList, EDS-D already computed C (Y)⊕C (W), D(W), Del (X, v),

and Del (X, v′). Note that we can compute C (Y) ⊕ C (W) when we compute C (Y)

and C (W). Here, W is the previous dominating set, C ′ stores C (W), and D′ stores

D(W). Thus, by using Lemma 51, we can compute D(Y) in O (k |C (Y)⊕ C (W)|+ k)

time. In addition, for all vertices in C (X), the dominated lists can be computed in

O (k |C (X)|+ k |gch(X)|) time since Y has at least |C (W) \ C (Y)| − 1 children and

|gch(X)| is at least the sum of |C (W) \ C (Y)| − 1 over all Y ∈ {X \ {v} | v ∈ C (X)}

and the previous solution W of Y . When EDS-D copies data such as D, EDS-D only

copies the pointer of these data. By recording operations of each line, EDS-D restores

these data when backtracking happens. These restoring can be done in the same time

of the above update computation.

Theorem 53. EDS-D enumerates all dominating sets in O (k) time per solution in a

k-degenerate graph by using O (n+m) space.

Proof. The parent-child relation of EDS-D and EDS are same. From Lemma 44 and

Lemma 45, EDS-D correctly computes all children. Hence, the correctness of EDS-D is

90 CHAPTER 5. ENUMERATION OF DOMINATING SETS

4 53

8 9

1

2

6 7 10

Distance 0

Distance 1

Distance 2

Distance 3

Distance 4
13

11 12

1514 1816 2217 2119 20

24 25 2726 29

23

Distance 5
28

3433

30 31

35

32

Figure 5.3: An example of Gv(X), where v = 1. The vertices in the grey area are

Del′ (X, v)∪(Gv(X)\G(Y))∪(N ′
v(v)\X). Each horizontal line represents the distance

between 1 and any vertex.

shown by the same manner of Theorem 43. We next consider the space complexity

of EDS-D. For any vertex v in G, if v is removed from a data structure used in EDS-D

on a recursive procedure, v will never be added to the data structure on descendant

recursive procedures. In addition, for each recursive procedure, the number of data

structures that are used in the procedure is constant. Hence, the space complexity of

EDS-D is O (n+m). We finally consider the time complexity. Each recursive procedure

needs O (k |ch(X)|+ k |gch(X)|) time from Lemma 52. Thus, the time complexity

of EDS-D is O
(
k
∑

X∈S(|ch(X)|+ |gch(X)|)
)
, where S is the set of solutions. Now,

O
(∑

X∈S(|ch(X)|+ |gch(X)|)
)
= O (|S|). Hence, the statement holds.

5.4. THE ALGORITHM FOR GRAPHS WITH GIRTH AT LEAST NINE 91

Algorithm 10: EDS-G enumerates all dominating sets in O (1) time per solution

for a graph with girth at least nine.

1 Procedure EDS-G(G = (V,E)) // G: an input graph

2 for v ∈ V do fv ← False ;

3 AllChildren (V, V, {f1, . . . , f|V |}, G);

4 Procedure AllChildren (X,C, F,G)

5 Output X;

6 for v ∈ C (X) do // v is the largest vertex in C

7 Y ← X \ {v};

8 (C (Y) , F (Y), G(Y))← Cand-G (v, C, F,G);

9 AllChildren (Y,C (Y) , F (Y), G(Y));

10 for u ∈ NG(v) do

11 if u ∈ C then fu ← True ;

12 else G← G \ {u} ;

13 G← G \ {v};

14 C ← C \ {v}; // Remove vertices in Del3 (X, v).

5.4 The algorithm for graphs with girth at least

nine

In this section, we propose an efficient enumeration algorithm EDS-G for graphs with

girth at least nine, where the girth of a graph is the length of a shortest cycle in the

graph. That is, the proposed algorithm runs in constant amortized time per solution for

such graphs. The algorithm is shown in Algorithm 10. To achieve constant amortized

time enumeration, we focus on the local structure Gv(X) for (X, v) of G defined as

92 CHAPTER 5. ENUMERATION OF DOMINATING SETS

Algorithm 11: An ancillary function to compute EDS-G.

1 Procedure Cand-G (v, C, F,G)

2 Del1 ← ∅; Del2 ← ∅;

3 for u ∈ NG(v) do

4 if NG[u] ∩X = {u, v} and fu = False then Del1 ← Del1 ∪ {u} ;

5 else if ∃w(NG[u] ∩X = {w, v}) then Del2 ← Del2 ∪ {w} ;

6 C ′ ← C \ (Del1 ∪Del2 ∪ {v});

7 for u ∈ N ′[Del1 ∪Del2] do // Lemma 57

8 fu ← True;

9 if u /∈ C ′ then G← G \ {u} ;

10 if fv = True then G← G \ {v};

11 return (C ′, F,G);

follows: Gv(X) = G[(V \ N [X \ C (X)≤v]) ∪ C (X)≤v]. Figure 5.3 shows an example

of Gv(X). Gv(X) is a subgraph of G induced by vertices that (1) are dominated by

vertices only in C (X)≤v or (2) are in C (X)≤v. Intuitively speaking, we can efficiently

enumerate solutions by using the local structure and ignoring vertices in G \ Gv(X)

since the number of solutions that are generated according to the structure is enough

to reduce the amortized time complexity to constant. We denote by G(X) = G[(V \

N [X \ C (X)]) ∪ C (X)] the local structure for (X, v∗) of G, where v∗ is the largest

vertex in G.

We first consider the correctness of EDS-G. The parent-child relation between so-

lutions used in EDS-G is the same as in EDS. Suppose that X and Y are dominating

sets such that X is the parent of Y . Recall that, from Lemma 45, C (X) \ C (Y) =

Del (X, v), where X = Y ∪ {v}. We denote by fv(u,X) = True if there exists a

5.4. THE ALGORITHM FOR GRAPHS WITH GIRTH AT LEAST NINE 93

neighbor w of u such that w ∈ X \ C (X)≤v; Otherwise fv(u,X) = False. Thus,

Cand-G correctly computes Del1 (X, v) and Del2 (X, v) from line 3 to 5. Moreover, in

line 14, vertices in Del3 (X, v) are removed from C (X) and hence, Cand-G also cor-

rectly computes C (X \ {v}). Moreover, for each vertex w removed from G during

enumeration, w is dominated by some vertices in G. Hence, by the same discussion

as Theorem 43, we can show that EDS-G enumerates all dominating sets. In the re-

maining of this section, we show the time complexity of EDS-G. Note that Gv(X)

does not include any vertex in N [Del3 (X, v) \ {v}] \ C (X)≤v. Hence, we will con-

sider only vertices in Del1 (X, v) ∪ Del2 (X, v) ∪ {v}. We denote by Del′ (X, v) =

Del1 (X, v) ∪ Del2 (X, v) ∪ {v}. We first show the time complexity for updating the

candidate sets.

In what follows, if v is the largest vertex in C (X), then we simply write f(u,X) as

fv(u,X). We denote by N ′
v(u) = NGv(X)(u), N

′
v[u] = N ′

v(u)∪{u}, and d′v(u) = |N ′
v(u)|

if no confusion arises. Suppose that G and Gv(X) are stored in an adjacency list, and

neighbors of a vertex are stored in a doubly linked list and sorted in the ordering.

Lemma 54. Let X be a dominating set, v be a vertex in C (X), and u be a vertex in

G. Then, u ∈ Del1 (X, v) if and only if N ′
v[u] ∩X = {u, v} and fv(u,X) = False.

Proof. The only if part is obvious since u, v ∈ C (X)≤v and N [u] ∩ X = {u, v}. We

next prove the if part. Since fv(u, x) = False, N [u] ∩ (X \ C (X)≤v) = ∅. Moreover,

since (N ′
v[u] ∩ X) ⊆ C (X)≤v, N [u] ∩ X = N ′

v[u] ∪ (N [u] ∩ (X \ C (X)v<)) = {u, v}.

Hence, the statement holds.

Lemma 55. Let X be a dominating set, v be a vertex in C (X), and u be a vertex

in G. Then, u ∈ Del2 (X, v) if and only if there is a vertex w in Gv(X) such that

N ′
v[w] ∩X = {u, v}.

94 CHAPTER 5. ENUMERATION OF DOMINATING SETS

Proof. The only if part is obvious since u, v ∈ C (X)≤v and there is a vertex w such

that N [w] ∩X = {u, v}. We next show the if part. Since w ∈ Gv(X), w ∈ C (X)≤v or

w /∈ X ∪N [X \C (X)≤v]. Moreover, since N ′[w] = {u, v}, w /∈ X, that is, w /∈ C (X).

Hence, w /∈ N [X \ C (X)≤v]. Therefore, N [w] ∩ X = (N ′
v[w] ∩ X) ∪ (N [w] ∩ (X \

C (X)v<)) = {u, v} and the statement holds.

Lemma 56. Let X be a dominating set and v be a vertex in C (X). Suppose that for

any vertex u, we can check the number of u’s neighbors in the local structure Gv(X)

and the value of fv(u,X) in constant time. Then, we can compute C (X \ {v}) from

C (X)≤v in O (d′v(v)) time

Proof. Since Del3 (X, v) ∩ C (X \ {v}) = ∅, C (X \ {v}) ⊆ C (X)≤v. Thus, we do

not need to remove vertices in Del3 (X, v) from C (X)≤v. From Lemma 54, for each

vertex u ∈ N ′
v(v), we can check whether u ∈ Del1 (X, v) or not in constant time by

confirming that fv(u,X) = False and |N ′
v(u)| = 2. Moreover, from Lemma 55, for

each vertex w ∈ N ′
v(v), we can compute Del2 (X, v) by listing vertices in u ∈ C (X)≤v

such that N ′[w]∩X = {u, v} or not. Note that since any vertex in X<v belongs to X,

N ′[w] ∩X = {u, v} if fv(w,X) = False, |N ′[w]| = 2, and u and v are adjacent to w.

Hence, the statement holds.

Lemma 57. Let X be a dominating set, v be a vertex in C (X), and Y = X\{v}. Then,

we can compute G(Y) from Gv(X) in O
(∑

u∈Del′(X,v) d
′
v(u) +

∑
u∈Gv(X)\G(Y) d

′
v(u)

)
time. Note that N ′

v(u) = NGv(X)(u) and d′v(u) = |N ′
v(u)|.

Proof. From the definition, V (G(Y)) ⊆ V (Gv(X)). Let us denote by u a vertex in

Gv(X) but not in G(Y) such that u ̸= v. This implies that (A) u is dominated by some

vertex in Y \C (Y) and (B) u /∈ C (Y). Thus, for any vertex u′ /∈ N ′
v[Del′ (X, v)\{v}],

5.4. THE ALGORITHM FOR GRAPHS WITH GIRTH AT LEAST NINE 95

u′ ∈ Gv(X) if and only if u′ ∈ G(Y). Hence, we can find such vertex u by check-

ing whether for each vertex w ∈ N ′
v[Del′ (X, v)], w satisfies (A) and (B). Before

checking, we first update the value of f . This can be done by checking all the

vertices in N ′
v[Del′ (X, v)] and in O (1) time per vertex. Hence, this update needs

O
(∑

w∈Del′(X,v) d
′
v(w)

)
time. If w satisfies these conditions, that is, fv(w,X) = False,

f(w, Y) = True, and (B), then we remove w and edges that are incident to w from

Gv(X). This needs O
(∑

w∈Gv(X)\G(Y) d
′
v(w)

)
total time for removing vertices. Thus,

the statement holds.

From Lemma 56 and Lemma 57, we can compute the local structure and the can-

didate set of Y from those of X in O
(∑

u∈Del′(X,v) d
′
v(u) +

∑
u∈Gv(X)\G(Y) d

′
v(u)

)
time.

We next consider the time complexity of the loop in line 10. In this loop procedure,

EDS-G deletes all the neighbors u of v from Gv(X) if u /∈ C (X)≤v because for each

descendant W of dominating set Y ′, v ∈ W \ C (W), where Y ′ is a child of X and is

generated after Y . Thus, this needs O
(
d′v(v) +

∑
u∈N ′(v)\X d′v(u)

)
time. Hence, from

the above discussion, we can obtain the following lemma:

Lemma 58. Let X be a dominating set, v be a vertex in C (X), and Y = X \ {v}.

Then, AllChildren other than a recursive call runs in the following time bound:

O

 ∑
u∈Del′(X,v)

d′v(u) +
∑

u∈Gv(X)\G(Y)

d′v(u) +
∑

u∈N ′
v(v)\X

d′v(u)

 . (5.1)

Before we analyze the number of descendants of X, we show the following lemmas.

Lemma 59. Let us denote by Penv(X) = {u ∈ Del′ (X, v) | d′v(u) = 1}. Then,∑
v∈C(X) |Penv(X)| is at most |C (X)|.

Proof. Let u be the largest vertex in C (X)<v and w be a vertex in Gv(X)∩Del′ (X, v).

If w ∈ Del1 (X, v), then d′u(w) = 0 since w ∈ N ′
v(v). Otherwise, w ∈ Del2 (X, v), then

96 CHAPTER 5. ENUMERATION OF DOMINATING SETS

d′u(w) = 0 since a vertex x such that N ′
v[x] = {w, v} is removed from Gv(X). Hence,

Penv(X)∩Penu(X) = ∅. Moreover, for each v ∈ C (X), Penv(X) is a subset of C (X).

Hence, the union of Penv(X) is a subset of C (X) for each v ∈ C (X).

Let v be a vertex in C (X) and a pendant in Gv(X). A vertex v pendant if the

degree of v is one. Since the number of such pendants is at most |C (X)|, the sum of

degree of such pendants is at most |C (X)| in each execution of AllChildren without

recursive calls. Hence, the cost of deleting such pendants is O (|C (X)|) time. Next,

we consider the number of descendants of X. From Lemma 59, we can ignore such

pendant vertices. Hence, for each u ∈ Del′ (X, v), we will assume that d′v(u) ≥ 2 below.

Lemma 60. Let X be a dominating set, v be a vertex in C (X), and u be a vertex in

Gv(X). Then,
∣∣N ′

v[u] ∩ C (X)≤v

∣∣ ≥ 2 if u /∈ C (X). Otherwise,
∣∣N ′

v[u] ∩ C (X)≤v

∣∣ ≥ 1.

Proof. If u ∈ C (X), then u ∈ N ′[u] ∩ C (X). We assume that u /∈ C (X). Thus,

N ′[u]∩(X\C (X)) = ∅ from the definition ofG(X). If |N ′[u] ∩ C (X)| = 0, then u is not

dominated by any vertex. This contradicts X is dominating set. If |N ′[u] ∩ C (X)| = 1,

then u is dominated only by the neighbor w of u in C (X). This contradicts w ∈ C (X).

Hence, |N [v] ∩ C (X)| ≥ 2 if v /∈ C (X).

Lemma 61. Let X be a dominating set, v be a vertex in C (X), and Y be a dominating

set X \ {v}. Then, |C (Y)| is at least |(N ′
v(v) ∩X) \Del′ (X, v)|.

Proof. Let u be a vertex in (N ′
v(v) ∩ X) \ Del′ (X, v). If u ∈ C (X), then u is also

a candidate vertex in C (Y) since u /∈ Del′ (X, v). Suppose that u /∈ C (X). Since

u ∈ Gv(X), u is dominated by only candidate vertices of X. However, since u ∈ X, u

dominates it self and thus, this contradicts. Hence, the statement holds.

Lemma 62. Let X be a dominating set, v be a vertex in C (X), and Y be a dominating

set X \ {v}. Then, |C (Y)| is at least
∑

u∈N ′
v(v)\X

(d′v(u)− 1).

5.4. THE ALGORITHM FOR GRAPHS WITH GIRTH AT LEAST NINE 97

Proof. Let u be a vertex in N ′
v(v) \X. That is, u /∈ C (X) and N ′

v(u) ⊆ C (X). Thus,

from Lemma 60, there is a vertex w ∈ N ′
v(u) such that w < v. We consider the following

two cases: (A) If N ′
v(u) = {v, w}, then w ∈ Del′ (X, v). From the assumption, w has at

least one neighbor x such that x ̸= u. If x /∈ C (X), then there is a neighbor y ∈ C (X)

such that y ̸= w. Suppose that y ∈ Del′ (X, v). This implies that there is a cycle

with length at most six. This contradicts the girth of G. Hence, y /∈ Del′ (X, v) and

Y \ {y} is a dominating set. If x ∈ C (X), then x /∈ Del′ (X, v) from the definition of

Del′ (X, v) and the girth of G. Hence, Y \ {x} is a dominating set. (B) Suppose N ′
v(u)

has a vertex z ∈ C (X) such that z ̸= v and z ̸= w. If both z and w are in Del′ (X, v),

then from the definition of Del′ (X, v) and the girth of G, G has a cycle with length at

most five. Thus, without loss of generality, we can assume that z /∈ Del′ (X, v). This

allows us to generate a child Y \ {z} of Y . Since the girth of G is at least nine, all

children of Y generated above are mutually distinct. Hence, the statement holds.

Lemma 63. Let X be a dominating set, v be a vertex in C (X), and Y be a dominating

set X \ {v}. Then, |C (Y)| is at least
∑

u∈Del′(X,v)\{v} (d
′
v(u)− 1).

Proof. Let u be a vertex in Del′ (X, v)\{v}. From the assumption, there is a neighbor

w of u in G(X). We consider the following two cases: (A) Suppose that w is in G(Y).

Since u is in Y \ C (Y), w ∈ C (Y). Hence, Y \ {w} is a child of Y . Suppose that

for any two distinct vertices x, y in Del′ (X, v) \ {v}, they have a common neighbor w′

in G(Y). If both x and y are in Del2 (X, v), then there exist two vertex zx, zy such

that N ′
v[zx] ∩ X = {x, v} and N ′

v[zy] ∩ X = {y, v}, respectively. Therefore, there is a

cycle (v, zx, x, w
′, y, zy, v) with length six. As with the above, if x or y in Del1 (X, v),

then there exists a cycle with length less than six since {x, v} ∈ G or {x, v} ∈ G.

This contradicts of the assumption of the girth of G. Hence, any pair vertices in

Del′ (X, v) has no common neighbors. Thus, in this case, all grandchildren of X are

98 CHAPTER 5. ENUMERATION OF DOMINATING SETS

mutually distinct. (B) Suppose that w is not in G(Y). Thus, if w ∈ C (X), then

w ∈ Del′ (X, v). This implies that there is a cycle including w and u whose length

is less than six. Hence, w is not in C (X). Then, from Lemma 60, there is a vertex

z in N ′
v(w) ∩ C (X) such that z ̸= u. Since u ∈ Del′ (X, v) \ {v}, there is an edge

between u and v, or there is a vertex c such that {u, c} and {v, c} are in Gv(X). Again,

if z is in Del′ (X, v), then there is a cycle with length less than seven. Thus, z still

belongs to C (Y) and X \ {v, z} is a dominating set. Next, we consider the uniqueness

of X \ {v, z}. If there is a vertex w′ such that w′ ∈ N ′
v(u), w

′ ̸= w, w and w′ share

a common neighbor u′ other than u, then (u,w, u′, w′) is a cycle. Hence, any pair

neighbors of u has no common neighbors. As with the above, any two distinct vertices

in Del′ (X, v) \ {v} also has no common vertex like z. If there are two distinct vertex

u, u′ ∈ Del′ (X, v) such that u and u′ has a common vertex like z, then there is a cycle

with length at most eight even if u, u′ ∈ Del2 (X, v). This contradicts the assumption

of the girth, and thus, the statement holds.

Lemma 64. Let X be a dominating set v be a vertex in C (X), and Y be a dominating

set X \ {v}. Then, the number of children and grandchildren of Y is at least∑
u∈Gv(X)\(G(Y)∪Del′(X,v)∪N ′

v(v))

(d′v(u)− 1).

Proof. Let u be a vertex in Gv(X)\ (G(Y)∪Del′ (X, v)∪N ′
v(v)). Since u /∈ Del′ (X, v)

and u ∈ Gv(X) \ G(Y), u is not in X. Since
∣∣N ′

v(u) ∩ C (X)≤v

∣∣ is greater than or

equal to two from Lemma 60, there are two distinct vertices w,w′ in N ′
v(u). We

assume that w,w′ ∈ Del′ (X, v). From Lemma 45, the distance between w and v is

at most two. Similarly, the distance between w′ and v is at most two. Hence, there

is a cycle with the length at most six since w ̸= v and w′ ̸= v. Thus, without loss

of generality, we can assume that w /∈ Del′ (X, v). (A) Suppose that |N ′
v(u)| = 2.

5.4. THE ALGORITHM FOR GRAPHS WITH GIRTH AT LEAST NINE 99

If there is a vertex u′ ∈ Gv(X) \ (G(Y) ∪ Del′ (X, v) ∪ N ′
v(v)) such that u′ ̸= u and

w ∈ N ′(u), then as with Lemma 62, there is a short cycle. Hence, for each vertex

such as u, there is a corresponding dominating set X \ {v, w}. (B) Suppose that

there is a neighbor w′′ ∈ N ′
v(u) ∩ C (X). Then, as mentioned in above, there is a

dominating set X \ {v, w, w′′}. In addition, by the same discussion as Lemma 63, such

generated dominating sets are mutually distinct. (C) Suppose that there is a neighbor

w′′ ∈ N ′
v(u) \ C (X). From Lemma 60, there are two vertices z, z′ ∈ N ′(w′′) ∩ C (X).

Then, z /∈ Del′ (X, v) or z′ /∈ Del′ (X, v), and thus, we can assume that z /∈ Del′ (X, v).

Therefore, there is a dominating set X \ {v, w, z}. Next, we consider the uniqueness of

grandchildren of Y . Moreover, if there is a vertex u′ such that w, y ∈ N ′(u′) holds, such

that z ∈ N ′(y). Then, there is a cycle (u,w, u′, y, z, w′′) with the length six. Hence,

grandchildren of Y are mutually distinct for each u ∈ G(X)\G(Y)\Del′ (X, v). Thus,

from (A), (B), and (C), the statement holds.

Note that for any pair of candidate vertices v and v′, X \ {v} and X \ {v′} do not

share their descendants. Thus, from Lemma 61, Lemma 62, Lemma 63, and Lemma 64,

we can obtain the following lemma:

Lemma 65. Let X be a dominating set. Then, the sum of the number of X’s children,

grandchildren, and great-grandchildren is bounded by the following order:

Ω

|C (X)|+
∑

v∈C(X)

 ∑
u∈Del′(X,v)

d′v(u) +
∑

u∈Gv(X)\G(Y)

d′v(u) +
∑

u∈N ′
v(v)\X

d′v(u)

 .

(5.2)

From Lemma 58, Lemma 59, and Lemma 65, each iteration outputs a solution in

constant amortized time. Hence, by the same discussion of Theorem 53, we can obtain

the following theorem.

100 CHAPTER 5. ENUMERATION OF DOMINATING SETS

Theorem 66. For an input graph with girth at least nine, EDS-G enumerates all dom-

inating sets in O (1) time per solution by using O (n+m) space.

Proof. The correctness of EDS-G is shown by Theorem 43, Lemma 54, and Lemma 55.

By the same discussion with Theorem 53, the space complexity of EDS-G is O (n+m).

We next consider the time complexity of EDS-G. From Lemma 58, Lemma 59, and

Lemma 65. we can amortize the cost of each recursion by distributing O (1) time cost

to the corresponding descendant discussed in the above lemmas. Thus, the amortized

time complexity of each recursion becomes O (1). Moreover, each recursion outputs a

solution. Hence, EDS-G enumerates all solutions in O (1) amortized time per solution.

Experimental result

We conducted experiments on artificial data to evaluate the computational speed. We

implemented EDS-D. The experimental environment is as follows: C++ with GCC7.3.0

and -O3 option. We considered 4-degenerate graphs(DK). We experimented three al-

gorithms, EDS-D, a simple polynomial delay algorithm, and a naive algorithm for DK.

The time complexity of the simple algorithm and the naive algorithm are amortized

O (nm) time and O (2npoly(n)) time. The efficient algorithm is two times faster than

the O (nm) delay algorithm. However, this algorithm is slower than the O (n∆) delay

algorithm.

Interestingly, the fastest algorithm is a simple O (n∆) time algorithm and a naive

algorithm and EDS-D have the almost same running time. In Table 5.1, the number of

iteration of the naive algorithm is three times of the number of iteration of EDS-D. It

means that there is no redundant iteration in the naive algorithm. While, a constant

factor of EDS-D in each iteration would be large. We conclude that the naive algorithm

5.4. THE ALGORITHM FOR GRAPHS WITH GIRTH AT LEAST NINE 101

and EDS-D have almost same running time for above reason.

#Nodes O (k) O (n∆) and O (nm) naive

25 26,616,233 54,947,204 226 − 1 = 67, 108, 863

30 828,807,337 1,725,659,002 231 − 1 = 2, 147, 483, 647

Table 5.1: The number of iterations in dominating set enumeration. An input graph

is in DK.

102 CHAPTER 5. ENUMERATION OF DOMINATING SETS

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

20 21 22 23 24 25 26 27 28 29 30

O(Δn)
O(k)
O(nm)
O(2^n poly(n))

na
no

 se
c

#Nodes

The total running time for DK

0

50

100

150

200

250

300

350

400

20 21 22 23 24 25 26 27 28 29 30

O(nΔ)
O(k)
O(nm)
O(2^n poly(n))na

no
 se

c

#Nodes

The running time per solution for DK

Figure 5.4: The total running time and the time per solution of dominating set enu-

meration. The degeneracy of a graph in DK is four.

Chapter 6

Enumeration of Chordal Bipartite

Induced Subgraphs

6.1 Introduction

In this chapter, we consider the chordal bipartite induced subgraph enumeration. A

chordal bipartite graph is a bipartite graph without induced cycles with length six or

more. It is easy to solve recognition problems of a dominating set and an induced

matching. By checking neighborhood of each element, we can recognize a dominating

set and an induced matching. Hence, we can manage a candidate set in two problems

in O (poly(∆)) time. However, it is difficult to recognize chordal bipartite graphs in

O (poly(∆)) time. Thus, the management of a candidate set is difficult in O (poly(∆))

time.

We overcome this difficulty by defining the good parent child relation. For this

reason, we introduce a new vertex elimination ordering, called a chordal bipartite elim-

ination ordering (CBEO, in short). A vertex ordering CBEO is defined by the following

104CHAPTER 6. ENUMERATIONOF CHORDAL BIPARTITE INDUCED SUBGRAPHS

operation: Recursively remove a weak-simplicial vbertex [67]. A vertex ordering CBEO

plays the key role in ECB-IS. In Figure 6.1, we show an input graph G and one of the

solutions. We define our problem as follows.

Problem 7 (The chordal bipartite induced subgraph enumeration problem).

Output all chordal bipartite induced subgraphs in an input graph without duplication.

Main result

Our proposed algorithm ECB-IS is based on the reverse search [3]. To construct an

efficient enumeration algorithm, we have to give a good family tree, that is, the good

parent for each solution. A vertex ordering CBEO plays the key role for defining such

parents. As the main result of this chapter, we propose ECB-IS which outputs all

chordal bipartite induced subgraphs in a given graph G in amortized O (kt∆2) time,

where k is the degeneracy of G, t is the maximum size of Kt,t as an induced subgraph,

and ∆ is the maximum degree of G. Moreover, the space usage of ECB-IS is O (n+m).

6.2 A characterization of chordal bipartite graphs

We propose a new characterization of chordal bipartite graphs. By using this char-

acterization, we construct our algorithm ECB-IS in Section 6.3. We first give some

definitions. Let U be a subset of V . For vertices u, v ∈ V , u and v are comparable if

N(v) ⊆ N(u) or N(v) ⊇ N(u) hold. Otherwise, u and v are incomparable. A vertex v

is weak-simplicial [67] if N(v) is an independent set and any pair of neighbors of v are

comparable. A bipartite graph B = (X,Y,E) is bipartite chain if any pair of vertices in

X or Y are comparable, that is, N(u) ⊆ N(v) or N(u) ⊇ N(v) holds for any u, v ∈ X

or u, v ∈ Y . A bipartite graph B is biclique if any pair of vertices x ∈ X and y ∈ Y are

6.2. A CHARACTERIZATION OF CHORDAL BIPARTITE GRAPHS 105

10

9
8

6
2

7

3
5

1

4

12 11

(A) An input graph G

10

9
8

6
2

7

3
5

1

4

12 11

(B) A chordal bipartite induced subgraph

9

8

6

2

7

3

1

1211

(C) Bipartite representation

Figure 6.1: (A) shows an input graph G and (B) shows one of the solutions B =

(X,Y,E), where X = {1, 3, 7, 11} and Y = {2, 6, 8, 9, 12}. (C) shows the graph B

drawn by dividing X and Y .

adjacent. We denote a biclique as Ka,b if |X| = a and |Y | = b. and say that the size

of a biclique Kt,t is t. V is totally ordered if for any pair X,Y ∈ V of vertex subsets,

either X ⊆ Y or X ⊇ Y . To show our result, we use the following two theorems.

Theorem 67 (Theorem 1 of [2]). Let H be a hypergraph. Then I(H) is chordal

bipartite if and only if H is β-acyclic.

Theorem 68 (Theorem 3.9 of [7]). A β-acyclic hypergraph H = (V , E) with at least

two vertices has two distinct β-leaves that are not neighbors in H′ = (V , E \ {V}).

Brault [7] gives a vertex elimination ordering (v1, . . . , vn) for a hypergraph H, called

a β-elimination ordering . The definition of the ordering is as follows: For any 1 ≤ i ≤

n, vi is a β-leaf in H[Vi≤], where Vi≤ = {vk ∈ V | i ≤ k ≤ n}. Similarly, V≤i is defined

by {vk ∈ V | 1 ≤ k ≤ i}. He also showed that H is β-acyclic if and only if there is

a β-elimination ordering of H [7]. Similarly, for any graph G, we define a new vertex

elimination ordering (v1, . . . , vn) for G, called CBEO, as follows: For any 1 ≤ i ≤ n,

106CHAPTER 6. ENUMERATIONOF CHORDAL BIPARTITE INDUCED SUBGRAPHS

vi is a weak-simplicial in G[Vi≤]. In the remainder of this section, we show that a

graph is chordal bipartite if and only if G has CBEO. Lemma 69 shows that a β-leaf of

a hypergraph is weak-simplicial in its incidence graph.

Lemma 69. Let H = (V , E) be a hypergraph, v be a vertex in V, and v′ be a cor-

responding vertex of v in X of I(H). Then v is a β-leaf in H if and only if v′ is a

weak-simplicial vertex in I(H).

Proof. We assume that v is a β-leaf in H. Let v′ be the vertex corresponding to v in

I(H). From the definition of a β-leaf, N (v) is also totally ordered in I(H). Thus, v

is a weak-simplicial vertex in I(H). We next assume that v′ is weak-simplicial in X

of I(H). From the definition, N (v) is totally ordered. Thus, H(v) is totally ordered.

Therefore, v is a β-leaf in H and the statement holds.

From Lemma 69, a β-leaf v of H corresponds to a weak-simplicial vertex of the

incidence graph I(H). We next show that a chordal bipartite graph has at least one

weak-simplicial vertex from Theorem 67, Theorem 68, and Lemma 69.

Lemma 70. Let B = (X,Y,E) be a chordal bipartite graph with at least two vertices.

If there is no vertex v in B such that N(v) = X or N(v) = Y , then B has at least two

weak-simplicial vertices which are not adjacent.

Proof. From Theorem 67, Theorem 68, and Lemma 69, if B is chordal bipartite and

has no twins, then G has at two weak-simplicial vertices which are not adjacent. We

now assume B has twins. We construct B′ as follows: Let T be a set of twins in B.

For each twins T ∈ T , remove all vertices in T except one twin of T . Note that B′ is

still chordal bipartite since vertex deletion does not destroy chordality. Since B′ has

no twins, B′ has at least two weak-simplicial vertices u and v which are not adjacent.

6.3. THE PROPOSED ALGORITHM 107

Since the set inclusion relation between B and B′ is same, u and v also weak-simplicial

in B. Hence, the statement holds.

Theorem 71. Let B be a bipartite graph. B is chordal bipartite if and only if B has

CBEO.

Proof. From Lemma 70, the only if part holds. We consider the contrapositive of the

if part. Suppose that B is not chordal bipartite. Then B has an induced cycle C with

length six or more. Since a vertex in C is not weak-simplicial, we cannot eliminate all

vertices from B and the statement holds.

We next show that a vertex v is weak-simplicial in a bipartite graph B if and

only if B[N≤2[v]] is bipartite chain. The following lemma is used to improve the time

complexity of ECB-IS in Section 6.4.

Lemma 72. Let B = (X,Y,E) be a chordal bipartite graph and v be a vertex in B.

Then v is weak-simplicial if and only if an induced subgraph B[N≤2[v]] is bipartite

chain.

Proof. We assume that B[N≤2[v]] is bipartite chain. From the definition, any pair of

vertices in N(v) are comparable. Hence, v is weak-simplicial.

We next prove the other direction. We assume that v is weak-simplicial. Let x and

y be vertices in N2(v). If x and y are incomparable in B[N≤2[v]], then there are two

vertices z ∈ N(x) \N(y) and z′ ∈ N(y) \N(x). Note that z and z′ are neighbors of v.

This contradicts that any pair of vertices in N(v) are comparable. Hence, x, y ∈ N2(v)

are comparable and B[N≤2[v]] is bipartite chain.

108CHAPTER 6. ENUMERATIONOF CHORDAL BIPARTITE INDUCED SUBGRAPHS

Algorithm 12: Enumeration algorithm for all chordal bipartite induced sub-

graphs

1 Procedure ECB-IS(G) // G = (V,E): an input graph

2 RecECB-IS((∅, ∅, V,G));

3 Procedure RecECB-IS(X,WS(X), AWS(X), G)

4 Output X and Compute C (X) from AWS(X);

5 for v ∈ C (X) do

6 Y ← X ∪ {v};

7 if P (Y) = X then RecECB-IS(Y,WS(Y), AWS(Y), G) ;

6.3 The proposed algorithm

In this section, we propose an enumeration algorithm ECB-IS which is based on reverse

search [3]. ECB-IS enumerates all solutions by traversing on a tree structure F (G) =

(S(G), E(G)), called a family tree, where S(G) is a set of solutions in an input graph

G and E(G) ⊆ S(G) × S(G). Note that F (G) is directed. More precisely, E(G) is

deinfed by the parent-child relationship among solutions based on Theorem 71. Let

X be a vertex subset that induces a solution. We denote the set of weak-simplicial

vertices in G[X] as WS(X). In what follows, we number the vertex indices from 1 to

n and compare the vertices with their indices, where n is the number of vertices in

G. The parent of X is defined as P (X) = X \ {arg maxWS(X)}. X is a child of

Y if P (X) = Y . Let ch(X) be the set of children of X. We define the parent vertex

pv(X) as arg maxWS(X) which induces the parent. For any pair of solutions X and

Y , (X,Y) ∈ E(G) if Y = P (X). From Theorem 71, any solution can reach the empty

set by recursively removing the parent vertex from the solution. Hence, the following

6.4. THE TIME COMPLEXITY ANALYSIS 109

lemma holds.

Lemma 73. The family tree forms a tree.

Next, we show that ECB-IS enumerates all solutions. For any vertex subset X ⊆ V ,

we denote X≤i = X ∩ V≤i. An addible weak-simplicial vertex set is AWS(X) = {v ∈

V \ X | v ∈ WS(X ∪ {v})}, that is, any vertex v in AWS(X) generates a solution

X∪{v}. We define a candidate set C (X) as follows: C (X) = AWS(X)v≤∪(AWS(X)∩

N≤2(v)), where v = pv(X). Note that C (X) is a subset of AWS(X). The following

lemma shows that we can enumerate all children if we have C (X).

Lemma 74. Let X and Y be distinct solutions. If Y is a child of X, then pv(Y) ∈

C (X).

Proof. Suppose that Y is a child of X. Let v = pv(Y) and u = pv(X). Note that v

belongs to AWS(X). If u < v, then v ∈ AWSu≤(X) and thus v ∈ C (X). Otherwise,

u is not contained in WS(Y) since v has the maximum index in WS(Y). From the

definition of a weak-simplicial vertex, there are two vertices in NY (u) which are incom-

parable in G[Y]. Since N (u) is totally ordered in G[X], v must be in N≤2
Y (u). Hence,

the statement holds.

In what follows, we say a vertex v ∈ C (X) generates a child if X ∪ {v} is a child

of X. From Lemma 73 and Lemma 74, ECB-IS enumerates all solution by the DFS

traversing on F (G).

Theorem 75. ECB-IS enumerates all solutions without duplication.

110CHAPTER 6. ENUMERATIONOF CHORDAL BIPARTITE INDUCED SUBGRAPHS

Algorithm 13: Update algorithms for WS and AWS

1 Procedure UpdateWS(X, v,WS(X), G)

2 WS ← WS(X);

3 for u ∈ NX(v) do

4 if u ∈ WS∧ there is a vertex w ∈ NX(u) is incomparable to u. then

WS ← WS \ {u};

5 for w ∈ NX(u) ∩WS do

6 if w and v are incomparable then WS ← WS \ {w} ;

7 return WS;

8 Procedure UpdateAWS(X, v,AWS(X), G)

9 AWS ← AWS(X);

10 for u ∈ N(v) do

11 if u ∈ AWS then

12 if There is a vertex w ∈ NX(u) which is incomparable to u. then

AWS ← AWS \ {u};

13 else if u ∈ X then

14 for w ∈ N(u) ∩ AWS do

15 if w and v are incomparable. then AWS ← AWS \ {w} ;

16 return AWS;

6.4. THE TIME COMPLEXITY ANALYSIS 111

10

9
8

6
2

7

3
5

1

4

12 11

An input graph G

10 9 862 7 3 51 412 11

A degeneracy ordering of G

Figure 6.2: It is a degeneracy ordering of G. The degeneracy of G is three. In this

ordering,
∣∣N≤2

≤v (v)
∣∣ is at most k∆ for any vertex v.

6.4 The time complexity analysis

Our proposed algorithm ECB-IS has two bottlenecks. (1) Some vertices in C (X) do

not generate a child and (2) the maintenance of WS(X) and AWS(X) consumes time.

A trivial bound of the number of redundant vertices in C (X) is O (∆2) since only

vertices in (AWS(X)∩N≤2(pv(X)) may not generate a child, where ∆ is the maximum

degree of an input graph. To reduce the number of such redundant vertices, we use a

degeneracy ordering . A graph G is k-degenerate if any induced subgraph of G has a

vertex with degree k or less [48]. The degeneracy of a graph is the smallest such number

k. Matula and Beck [53] show that a k-degenerate graph G has a following vertex

ordering, called a degeneracy ordering : For each vertex v, the number of neighbors

smaller than v is at most k. See Figure 6.2. They also show that a k-degenerate

ordering of G can be obtained in linear time. Note that there can be several degeneracy

orderings for a graph. In what follows, we fix the reverse ordering of a degeneracy

ordering and WS(X) and AWS(X) are sorted in this ordering. We first show that the

number of redundant vertices is at most 2k∆.

Lemma 76. Let X be a solution. The number of vertices in C (X) which do not

112CHAPTER 6. ENUMERATIONOF CHORDAL BIPARTITE INDUCED SUBGRAPHS

generate a child is at most 2k∆.

Proof. Let v be a vertex in C (X) and p be a vertex pv(X). If p < v, then v generates

a child. We assume that v < p. Since v is in C (X), v ∈ N≤2(p) ∩ AWX≤p(X).

We estimate the size of N≤2(p) ∩ AWX≤p(X). We consider a vertex u ∈ N≤v(v).∑
u∈N≤v(v)

|N(u)| is at most k∆ since |N≤v(v)| is at most k. We next consider a vertex

u ∈ Nv≤(v). Since u is larger than v, a vertex in Nu≤(u) is larger than v. Hence, we

consider vertices N≤u(u). For each u, |N≤u(u)| is at most k. Hence,
∑

u∈Nv≤(v) |N(u)≤u|

is at most k∆ and the statement holds.

We next show how to compute C (Y) from C (X), where X is a solution and Y is a

child of X. From the definition of C (X), we can compute C (Y) in O (|C (Y)|+ k∆)

time if we have AWS(Y) and pv(Y). Moreover, if we have WS(X ∪ {v}), then we

can determine whether X ∪ {v} is a child of X or not in constant time since WS(X ∪

{v}) is sorted. Hence, to obtain the children of X, computing AWS(X) and WS(X)

dominates the computation time of each iteration. Here, we define two vertex sets as

follows:

DelW (X, v) = {u ∈ N≤2(v) ∩WS(X) | u /∈ WS(X ∪ {v})} and

DelA (X, v) = {u ∈ N≤2(v) ∩ AWS(X) | u /∈ WS(X ∪ {u, v})}.

These vertex sets are the sets of vertices that are removed from WS(X) and AWS(X)

after adding v to X, respectively. In the following lemmas, we show that WS(X) and

AWS(X) can be updated if we have DelW (X, v) and DelA (X, v).

Lemma 77. Let X be a solution, Y be a child of X, and v = pv(Y). Then WS(Y) =

(WS(X) \DelW (X, v)) ∪ {v}.

6.4. THE TIME COMPLEXITY ANALYSIS 113

Proof. Let u be a vertex inWS(Y). We prove u is contained in (WS(X)\DelW (X, v))∪

{v}. If u = v holds, then u ∈ WS(Y) since v ∈ pv(Y). We assume that u ̸= v. Since u

is weak-simplicial in Y , u ∈ WS(X). If u ∈ DelW (X, v), then u is not weak-simplicial

in Y . This contradicts the assumption. Hence, u ̸∈ DelW (X, v). We prove the other

direction. Let u be a vertex in (WS(X) \DelW (X, v)) ∪ {v}. We assume that u ̸= v.

If u ̸∈ WS(Y), then u ∈ DelW (X, v). This is a contradiction and thus the statement

holds.

Lemma 78. Let X be a solution, Y be a child of X, and v = pv(Y). Then AWS(Y) =

AWS(X) \DelA (X, v).

Proof. Let u be a vertex inAWS(Y). We prove u is contained inAWS(X)\DelA (X, v).

From the definition of AWS(X), u ∈ AWS(X) holds. If u ∈ DelA (X, v), then u is

not weak-simplicial in Y ∪ {u}. Since u ∈ AWS(Y), u ̸∈ DelA (X, v). We prove the

other direction. Let u be a vertex in AWS(X) \ DelA (X, v). From the definition of

AWS(X) and DelA (X, v), u is weak-simplicial in X ∪ {v, u}. Hence, u ∈ AWS(Y)

and the statement holds.

Note that by just removing redundant vertices, WS(Y) and AWS(X) can be eas-

ily sorted if WS(X) and AWS(X) were already sorted. We next consider how to

compute DelW (X, v) and DelA (X, v). We first show a characterization of a vertex

in DelW (X, v) and DelA (X, v). In the following lemmas, let X be a solution, v be a

vertex in AWS(X), and Y be a solution X ∪ {v}.

Lemma 79. Let u be a vertex in NY (v)∩WS(X). Then u is contained in DelW (X, v)

if and only if NX(u) contains w which is incomparable to v.

Proof. If u has a neighbor w in X which is incomparable to v, then from the definition,

u is not weak-simplicial.

114CHAPTER 6. ENUMERATIONOF CHORDAL BIPARTITE INDUCED SUBGRAPHS

w2

w1

w3

u

v

3

2

1

w2

w1

w3

u

v

3

2

1

(A)When a vertex v is added,  
 u is a weak-simplicial

(B)When a vertex v is added,  
 u is not weak-simplicial

Figure 6.3: Let X be a set of vertices {u,w1, w2, w3, 1, 2, 3}. In case (A), a vertex u

is still weak-simplicial. In case (B), however, u is not weak-simplicial since w1 and w3

are imcomparable.

Let u be a vertex in DelW (X, v). There are vertices w1 and w2 in NY (u) which

are incomparable. If w1 or w2 is equal to v, then the statement holds. Hence, we

assume that both w1 and w2 are not equal to v. Since G[Y] is bipartite, w1 and w2

are not adjacent to v. Hence, NX(w1) = NY (w1) and NX(w2) = NY (w2) hold. This

contradicts that X is a solution and the statement holds.

Lemma 80. Let u be a vertex in N2
Y (v)∩WS(X). Then u is contained in DelW (X, v)

if and only if there exist vertices w1, w2 ∈ NX(u) which satisfy NX(w1) ⊂ NX(w2),

v ∈ NY (w1), and v ̸∈ NY (w2).

Proof. The if part is easily shown by the assumption of the incomparability of w1 and

w2. We next prove the other direction. We assume that u ∈ DelW (X, v). Hence, there

are neighbors w1 and w2 of u such that they are incomparable in Y . Without loss of

6.4. THE TIME COMPLEXITY ANALYSIS 115

generality, NX(w1) ⊂ NX(w2) holds since u is in WS(X). If NX(w1) = NX(w2), then

w1 and w2 are comparable in Y . Since w1 and w2 are incomparable in Y , w1 is adjacent

to v and w2 is not adjacent to v. Thus, the statement holds.

Lemma 81. Let u be a vertex in N(v) ∩ AWS(X) and Z = X ∪ {u, v}. Then u ∈

DelA (X, v) if and only if u has a neighbor w ∈ Z that is incomparable to v.

Proof. The if part is trivial from the definition of weak-simplicial. We prove the only

if part. We assume that u ∈ DelA (X, v) holds. Since u ∈ DelA (X, v), u has neighbors

w1 and w2 which are incomparable in Z. If w1 or w2 is equal to v, then u has a neighbor

w which is incomparable to v and the statement holds. We next assume that w1 and w2

are distinct from v. v is not adjacent to w1, w2, or both of them since G[Y] is bipartite.

Hence, w1 and w2 are comparable in Z since w1 and w2 are comparable in G[X]. This

contradicts that w1 and w2 are incomparable in Z and the statement holds.

Lemma 82. Let u be a vertex in N2(v) ∩ AWS(X) and Z = X ∪ {u, v}. Then u

is contained in DelA (X, v) if and only if there exists vertices w1, w2 ∈ NZ(u) which

satisfy NZ(w1) ⊂ NZ(w2), v ∈ NZ(w1), and v ̸∈ NZ(w2).

Proof. From the assumption, w1 and w2 are incomparable in Z. Hence, the if part

holds. We prove the other direction. We assume that u ∈ DelA (X, v). Hence, u

has vertices w′
1 and w′

2 which are incomparable in Z. Without loss of generality,

NX∪{u}(w
′
1) ⊂ NX∪{u}(w

′
2) holds. Since w′

1 and w′
2 are incomparable in G[Z], w′

1 is

adjacent to v. Thus, the statement holds.

Next, we consider the time complexity of computing DelW (X, v) and DelA (X, v).

For analysing these computing time more precisely, we give two upper bounds with

respect to the number of edges and the size of N2(v) in bipartite chain graphs. Note

that t is the maximum size of a biclique Kt,t that appears in B as an induced subgraph.

116CHAPTER 6. ENUMERATIONOF CHORDAL BIPARTITE INDUCED SUBGRAPHS

Lemma 83. Let B be a bipartite chain graph and v be a vertex in B. Then the size

of N2(v) is at most ∆.

Proof. Let u be a vertex in N(v) which satisfies N(w) ⊆ N(u) for any w ∈ N(v). Since

N2(v) =
∪

w∈N(v) N(w), N2(v) = N(u). Hence, the statement holds.

Lemma 84. Let B = (X,Y,E) be a bipartite chain graph. Then the number of edges

in B is O (t∆).

Proof. Let w be a vertex in X which satisfies for N(u) ⊇ N(w) for any u ∈ X. If

d(w) ≤ t, then the statement holds from Lemma 83. We assume that d(w) > t. We

consider the number of edges in B. Let (u1, . . . , ud(w)) be a sequence of vertices in

N(w) such that N(ui) ⊆ N(ui+1) for 1 ≤ i < d(w). For each d(w)− t+ 1 ≤ i ≤ d(w),

the sum of |N(ui)| is at most O (t∆). We next consider the case for 1 ≤ i ≤ d(w)− t.

Since N(ui) is a subset of N(uj) for any i < j, |N(ui)| is at most t. If |N(ui)| is greater

than t, then B has a biclique Kt+1,t+1. Hence, the number of edges in B is O (t∆) and

the statement holds.

Lemma 85. Let v be a vertex in C (X). Then we can compute DelW (X, v) in O (t∆)

time.

Proof. Let Y be a solution X ∪ {v}. We first compute vertices in WS(X) ∩ N2
X(v)

that remain in WS(Y). From Lemma 77 and Lemma 80, w /∈ WS(Y) if and only

if there exists vertices w1, w2 ∈ N(u) which satisfy NX(w1) ⊂ NX(w2), v ∈ NY (w1),

and v ̸∈ NY (w2). By scanning vertices with distance two from v, this can be done in

linear time in the size of
∑

u∈NX(v) |NX(u)|. Since G[N≤2(v)] is bipartite chain from

Lemma 72,
∑

u∈NX(v) |NX(u)| is at most O (t∆) from Lemma 84. Moreover, it can be

determined whether w ∈ N2(v) and v are comparable or not in this scan operation.

6.4. THE TIME COMPLEXITY ANALYSIS 117

We next compute vertices in WS(X) ∩ NX(v) that remain in WS(Y). From

Lemma 79, u is contained in DelW (X, v) if and only if u has a neighbor w which

is incomparable to v. Since G[Y] is bipartite, NX(u) is contained in N2
Y (v). In

the previous scan operation, we already know whether w and v are comparable or

not. Hence, we can compute whether w ∈ WS(Y) or not in O (|N(u)|) time. Since

O
(∑

u∈NY (v) |N(u)|
)
= O (t∆) holds from Lemma 84, we can find NX(v)∩DelW (X, v)

in O (t∆) total time. Hence, the statement holds.

Lemma 86. Let v be a vertex in C (X). Then we can compute DelA (X, v) in O (∆2)

time.

Proof. Since v is contained in DelA (X, v), G[X ∪ {v}] is a chordal bipartite induced

subgraph. Here, let Y be a set of vertices X ∪ {v}. In the same fashion as Lemma 85,

we can decide u ∈ AWS(X∪{v}∩N2
Y (v)) in O (∆2) total time. By applying the above

procedure for all vertices distance two from v, we can obtain all vertices in DelA (X, v)

in O (∆2) time since the number of edges can be bounded in O (∆2).

From Lemma 85 and Lemma 86, we can compute DelW (X, v) and DelA (X, v) in

O (t∆) and O (∆2) time for each v ∈ C (X), respectively.

Hence, we can enumerate all children in O (|C (X)| t∆+ |ch(X)|∆2) time from

Lemma 74, Lemma 77 and Lemma 78. In the following theorem, we show the amortized

time complexity and the space usage of ECB-IS.

Theorem 87. ECB-IS enumerates all solutions in amortized O (kt∆2) time by using

O (n+m) space, where k is the degeneracy of an input graph G, t is the maximum size

of Kt,t that appears in G as an induced subgraph, n is the number of vertices of G, and

m is the number of edges of G.

118CHAPTER 6. ENUMERATIONOF CHORDAL BIPARTITE INDUCED SUBGRAPHS

Proof. ECB-IS uses AWS(X) and WS(X) as data structures. Each data structure

demands linear space and the total space usage of ECB-IS is O (n+m) space. Hence,

the total space usage of ECB-IS is linear in the size of the input. We next consider

the amortized time complexity of ECB-IS. From Lemma 75, ECB-IS enumerates all

solutions. From Lemma 85 and Lemma 86, ECB-IS computes all children and updates

all data structures in O (|C (X)| t∆+ |ch(X)|∆2) time. From Lemma 76, |C (X)| is at

most |ch(X)|+k∆. Hence, we need O ((|ch(X)|+ k∆)t∆+ |ch(X)|∆2) time to gener-

ate all children. Note that this computation time is bounded by O ((|ch(X)|+ kt)∆2).

We consider the total time for enumerating all solutions. Since each iteration X needs

O ((|ch(X)|+ kt)∆2) time, the total time is O
(∑

X∈S(|ch(X)|+ kt)∆2
)
time, where S

is the set of solutions. Since O
(∑

X∈S |ch(X)|∆2
)
is bounded by O (|S|∆2), the total

time is O (|S| kt∆2) time. Therefore, ECB-IS enumerates all solutions in amortized

O (kt∆2) time.

Chapter 7

Conclusion and Future Work

In this thesis, we studied efficient enumeration for sparse graphs. In particular, we

address the following four enumeration problems: the induced matching enumeration

problem, the enumeration of subgraph with bounded girth, the dominating set enu-

meration problem, and the chordal bipartite induced subgraph enumeration problem.

We summarize our results of this thesis.

For the induced matching enumeration problem, we develop a constant amortized

time algorithm for C4-free graphs. The time complexity of a simple binary partition

algorithm is O (∆2). The key idea of this algorithm is the maintenance of a candidate

set and estimation of the number of descendant. Our algorithm needs O (∆2) time per

nodes in an enumeration tree. However, we show that each node has only constant

cost.

For the enumeration of subgraph and induced subgraph with bounded girth prob-

lem, we consider the problem in directed graphs and undirected graphs. In these

problems, we achieve O (n) delay enumeration. More precisely, our algorithm is more

efficient than O (n) delay. See for the details in Table 4.1. The bottleneck of this prob-

120 CHAPTER 7. CONCLUSION AND FUTURE WORK

lem is the computation of girth. For general graphs, the best efficient algorithm needs

O (nm) time [32]. However, we overcome this difficulty by using distance matrices.

For the dominating set enumeration problem, we propose two efficient enumeration

algorithms. One algorithm enumerates all dominating sets in amortized O (k) time,

where k is the degeneracy of a graph. The other algorithm enumerates all dominating

sets in constant amortized time for graphs with girth at least nine. The time complexity

of a simple enumeration algorithm based on reverse search is amortized O (∆2) time.

For bounded degenerate graphs,

For graphs with girth at least nine, each node in an enumeration tree needs O (∆3)

time. This time complexity is worse than the time complexity of a simple algorithm.

However, we show that each node has many descendants. Thus, we can amortize this

computational cost to such descendants. Hence, we can improve the time complexity

of this algorithm.

For chordal bipartite induced subgraph enumeration, we propose an amortized

O (kt∆2) time enumeration algorithm. The key point of this algorithm is a vertex

elimination ordering, called CBEO. This ordering is a characterization of chordal bipar-

tite graphs. Our algorithm is based on reverse search and CBEO is important in the

parent child relation. In our algorithm, we manage a set of weak-simplicial vertices

and a set of addible weak-simplicial vertices in O (t∆) time and O (∆2) time, respec-

tively. Since the number of redundant children is at most O (k∆), our algorithm runs

in amortized O (kt∆2) time.

We show future directions of this research area. Firstly, we will develop a graph

search algorithm based on enumeration algorithm. Binary partition based algorithms

are typically simple. Hence, it is easy to combine other pruning techniques. Indeed,

Ajami and Cohen [1] propose top-k minimal set cover enumeration algorithm with

121

an approximate order. This algorithm is based on simple binary partition. As other

application of these algorithms, we consider enumeration of all solutions with the size

more than k. For example, we consider enumeration of induced matchings with the

size k. By using our algorithm in Chapter 3, we can enumerate all solutions. Since

our algorithm is simple backtracking, we add a pruning operation. By computing an

upper bound of the size of maximum induced matching, we prune redundant iterations.

This algorithm is not output sensitive. However, practically faster than the original

algorithm.

Secondly, we will develop enumeration algorithm for maximal or minimal solutions.

Our proposed algorithms enumerate all solutions efficiently. However, the number of

solution is huge. Hence, we should consider how to reduce the number of solution

since the total computation time is long. For that purpose, enumeration of maximal or

minimal solution is appropriate. Indeed, the maximal induced matching enumeration

problem is similar to maximal independent set enumeration problem. Hence, we would

enumerate all maximal induced matchings by applying similar technique to maximal

independent set enumeration.

Finally, we will implement theoretical efficient enumeration algorithms. For output

sensitive enumeration algorithms, the number of solution is a big problem. If we can

develop an efficient counting algorithm, then we can estimate the running time of

output sensitive algorithm. Otherwise, we do not know how much time is needed for

the computation. Therefore, it is important to know how large and dense data can

be enumerated in a realistic time. Since the number of solution is typically huge, it

is necessary to reduce the number of solutions, i.e., output only maximal or minimal

solutions. For that reason, development and implementation on maximal or minimal

subgraph enumeration algorithms and experiments on real data is a future work.

Bibliography

[1] Zahi Ajami and Sara Cohen. Enumerating minimal weight set covers. In 2019

IEEE 35th International Conference on Data Engineering, ICDE 2019, pages 518–

529. IEEE, 2019.

[2] Giorgio Ausiello, Alessandro D’Atri, and Marina Moscarini. Chordality properties

on graphs and minimal conceptual connections in semantic data models. Journal

of Computer and System Sciences, 33(2):179–202, 1986.

[3] David Avis and Komei Fukuda. Reverse search for enumeration. Discrete Applied

Mathematics, 65(1–3):21–46, 1996.

[4] Etienne Birmelé, Rui Ferreira, Roberto Grossi, Andrea Marino, Nadia Pisanti,

Romeo Rizzi, and Gustavo Sacomoto. Optimal Listing of Cycles and st-Paths in

Undirected Graphs. In Sanjeev Khanna, editor, Proceedings of the Twenty-Fourth

Annual ACM-SIAM Symposium on Discrete Algorithms, New Orleans, Louisiana,

USA, January 68, 2013., pages 118–128. SIAM, 2013.

[5] Endre Boros, Khaled Elbassioni, Vladimir Gurvich, and Leonid Khachiyan. Gener-

ating maximal independent sets for hypergraphs with bounded edge-intersections.

In Martin Farach-Colton, editor, LATIN 2004: Theoretical Informatics - 6th Latin

124 BIBLIOGRAPHY

American Symposium, Buenos Aires, Argentina, April 5-8, 2004, Proceedings,

pages 488–498, Berlin, Heidelberg, 2004. Springer-Verlag.

[6] Andreas Brandstädt, Van Bang Le, and Jeremy P. Spinrad. Graph Classes: A

Survey. SIAM, 1999.

[7] Johann Brault-Baron. Hypergraph acyclicity revisited. ACM Computing Surveys,

49(3):54, 2016.

[8] L. Sunil Chandran, Louis Ibarra, Frank Ruskey, and Joe Sawada. Generating and

characterizing the perfect elimination orderings of a chordal graph. Theoretical

Computer Science, 307(2):303–317, 2003.

[9] Lijun Chang, Jeffrey Xu Yu, and Lu Qin. Fast maximal cliques enumeration in

sparse graphs. Algorithmica, 66(1):173–186, 2013.

[10] Norishige Chiba and Takao Nishizeki. Arboricity and subgraph listing algorithms.

SIAM Journal of Computing, 14(1):210–223, 1985.

[11] Sara Cohen, Benny Kimelfeld, and Yehoshua Sagiv. Generating all maximal in-

duced subgraphs for hereditary and connected-hereditary graph properties. Jour-

nal of Computer and System Sciences, 74(7):1147 – 1159, 2008.

[12] Alessio Conte, Donatella Firmani, Caterina Mordente, Maurizio Patrignani, and

Riccardo Torlone. Fast enumeration of large k-plexes. In Proceedings of the 23rd

AMC SIGKDD International Conference on Knowledge Discovery and Data Min-

ing Halifax, NS, Canada - August 13 - 17, 2017, pages 115–124. ACM, 2017.

BIBLIOGRAPHY 125

[13] Alessio Conte, Roberto Grossi, Andrea Marino, and Romeo Rizzi. Efficient

enumeration of graph orientations with sources. Discrete Applied Mathematics,

246:22–37, 2018.

[14] Alessio Conte, Roberto Grossi, Andrea Marino, Takeaki Uno, and Luca Versari.

Listing maximal independent sets with minimal space and bounded delay. In

Gabriele Fice, Marinella Sciortino, and Rossano Venturini, editors, String Pro-

cessing and Information Retrieval - 24th International Symposium, SPIRE 2017,

Palermo, Italy, September 2629, 2017, Proceedings, volume 10508 of Lecture Notes

in Computer Science, pages 144–160, Cham, Switzerland, 2017. Springer Interna-

tional Publishing.

[15] Alessio Conte, Roberto Grossi, Andrea Marino, and Luca Versari. Sublinear-

space bounded-delay enumeration for massive network analytics: Maximal cliques.

In Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and Davide

Sangiorgi, editors, 43rd International Colloquium on Automata, Languages, and

Programming, ICALP 2016, July 11-15, 2016, Rome, Italy, volume 55 of Leib-

niz International Proceedings in Informatics (LIPcs), pages 148:1–148:15. Schloss

Dagstuhl–Leibniz-Zentrum für Informatik, 2016.

[16] Alessio Conte, Kazuhiro Kurita, Kunihiro Wasa, and Takeaki Uno. Listing acyclic

subgraphs and subgraphs of bounded girth in directed graphs. In Xiaofeng Gao,

Hongwei Du, and Meng Han, editors, Combinatorial Optimization and Applica-

tions - 11th International Conference, COCOA 2017, Shanghai, China, December

16-18, 2017, Proceedings, Part II, volume 10628 of Lecture Notes in Computer

Science, pages 169–181, Cham, Switzerland, 2017. Springer International Publish-

ing.

126 BIBLIOGRAPHY

[17] Alessio Conte and Takeaki Uno. New polynomial delay bounds for maximal sub-

graph enumeration by proximity search. In Proceedings of the 51st Annual ACM

SIGACT Symposium on Theory of Computing, Phoenix, AZ, USA - June 23 - 26,

2019, pages 1179–1190. ACM, 2019.

[18] Bruno Courcelle. Linear delay enumeration and monadic second-order logic. Dis-

crete Applied Mathematics, 157(12):2675–2700, 2009.

[19] Thomas Eiter, Georg Gottlob, and Kazuhisa Makino. New results on monotone

dualization and generating hypergraph transversals. SIAM Journal on Computing,

32(2):514–537, 2003.

[20] Alessandro Epasto, Silvio Lattanzi, and Mauro Sozio. Efficient densest subgraph

computation in evolving graphs. In Aldo Gangemi, Stefano Leonardi, and Alessan-

dro Panconesi, editors, Proceedings of the 24th International Conference on World

Wide Web, Florence, Italy - May 18 - 22, 2015, WWW ’15, pages 300–310, Re-

public and Canton of Geneva, Switzerland, 2015. International World Wide Web

Conferences Steering Committee.

[21] David Eppstein, Maarten Löffler, and Darren Strash. Listing all maximal cliques

in large sparse real-world graphs. Journal of Experimental Algorithmics, 18:1–21,

2013.

[22] Martin Farber. Characterizations of strongly chordal graphs. Discrete Mathemat-

ics, 43(2-3):173–189, 1983.

[23] Rui Ferreira. Efficiently Listing Combinatorial Patterns in Graphs. PhD thesis,

Universitá degli Studi di Pisa, 2013.

BIBLIOGRAPHY 127

[24] Rui Ferreira, Roberto Grossi, and Romeo Rizzi. Output-sensitive listing of

bounded-size trees in undirected graphs. In Camil Demetrescu and Magnús M.

Halldórsson, editors, Algorithms - ESA 2011 - 19th Annual European Symposium,

Saarbrücken, Germany, September 5-9, 2011. Proceedings, volume 6942 of Lecture

Notes in Computer Science, pages 275–286, Berlin, Heidelberg, 2011. Springer-

Verlag.

[25] Michael R. Garey and David S. Johnson. Computers and Intractability; A Guide

to the Theory of NP-Completeness. W. H. Freeman and Company, New York, NY,

USA, 1990.

[26] Alain Gély, Lhouari Nourine, and Bachir Sadi. Enumeration aspects of maximal

cliques and bicliques. Discrete Applied Mathematics, 157(7):1447–1459, 2009.

[27] Petr A. Golovach, Pinar Heggernes, Mamadou M. Kanté, Dieter Kratsch, and Yn-

gve Villanger. Enumerating minimal dominating sets in chordal bipartite graphs.

Discrete Applied Mathematics, 199(30):30–36, 2016.

[28] Petr A. Golovach, Pinar Heggernes, Mamadou Moustapha Kanté, Dieter Kratsch,

Sigve H Sæther, and Yngve Villanger. Output-Polynomial Enumeration on Graphs

of Bounded (Local) Linear MIM-Width. Algorithmica, 80(2):714–741, 2018.

[29] Petr A. Golovach, Pinar Heggernes, Dieter Kratsch, and Yngve Villanger. An

incremental polynomial time algorithm to enumerate all minimal edge dominating

sets. Algorithmica, 72(3):836–859, 2015.

[30] Roberto Grossi, Andrea Marino, and Luca Versari. Efficient algorithms for list-

ing k disjoint st-paths in graphs. In Michael A. Bender, Martin Farach-Colton,

and Miguel A. Mosteiro, editors, LATIN 2018: Theoretical Informatics 13th

128 BIBLIOGRAPHY

Latin American Symposium, Buenos Aires, Argentina, April 16-19, 2018, Pro-

ceedings, volume 10807 of Lecture Notes in Computer Science, pages 544–557,

Cham, Switzerland, 2018. Springer International Publishing.

[31] Jing Huang. Representation characterizations of chordal bipartite graphs. Journal

of Combinatorial Theory, Series B, 96(5):673–683, 2006.

[32] Alon Itai and Michael Rodeh. Finding a minimum circuit in a graph. SIAM

Journal on Computing, 7(4):413–423, 1978.

[33] David S. Johnson, Mihalis Yannakakis, and Christos H. Papadimitriou. On gen-

erating all maximal independent sets. Information Processing Letters, 27(3):119 –

123, 1988.

[34] Mamadou Moustapha Kanté, Vincent Limouzy, Arnaud Mary, and Lhouari

Nourine. Enumeration of minimal dominating sets and variants. In Olaf Owe,

Martin Steffen, and Jan Arne Telle, editors, Fundamentals of Computation Theory

- 18th International Symposium, FCT 2011, Oslo, Norway, August 22-28, 2011,

Proceedings, volume 6914 of Lecture Notes in Computer Science, pages 298–309,

Berlin, Heidelberg, 2011. Springer-Verlag.

[35] Mamadou Moustapha Kanté, Vincent Limouzy, Arnaud Mary, and Lhouari

Nourine. On the enumeration of minimal dominating sets and related notions.

SIAM Journal on Discrete Mathematics, 28(4):1916–1929, 2014.

[36] Mamadou Moustapha Kanté, Vincent Limouzy, Arnaud Mary, Lhouari Nourine,

and Takeaki Uno. A polynomial delay algorithm for enumerating minimal domi-

nating sets in chordal graphs. In Ernst W. Mayr, editor, Graph-Theoretic Concepts

BIBLIOGRAPHY 129

in Computer Science - 44th International Workshop, WG 2018, Cottbus, Ger-

many, June 2729, 2018, Proceedings, volume 11159 of Lecture Notes in Computer

Science, pages 138–153, Berlin, Heidelberg, 2015. Springer-Verlag.

[37] Mamadou Moustapha Kanté, Vincent Limouzy, Arnaud Mary, Lhouari Nourine,

and Takeaki Uno. Polynomial delay algorithm for listing minimal edge dominating

sets in graphs. In Frank Dehne, Jörg-Rüdiger Sack, and Ulrike Stege, editors,

Algorithms and Data Structures - 14th International Symposium, WADS 2015,

Victoria, BC, Canada, August 5-7, 2015. Proceedings, volume 9214 of Lecture

Notes in Computer Science, pages 446–457, Cham, Switzerland, 2015. Springer

International Publishing.

[38] Leonid Khachiyan, Endre Boros, Konrad Borys, Khaled Elbassioni, Vladimir Gur-

vich, and Kazuhisa Makino. Generating cut conjunctions in graphs and related

problems. Algorithmica, 51(3):239–263, 2008.

[39] Leonid Khachiyan, Endre Boros, Khaled Elbassioni, Vladimir Gurvich, and

Kazuhisa Makino. Enumerating disjunctions and conjunctions of paths and cuts

in reliability theory. Discrete Applied Mathematics, 155(2):137–149, 2007.

[40] Masashi Kiyomi, Shuji Kijima, and Takeaki Uno. Listing chordal graphs and

interval graphs. In Fedor V. Fomin, editor, Graph-Theoretic Concepts in Computer

Science - 32nd International Workshop, WG 2006, Bergen, Norway, June 22-23,

2006, Revised Papers, volume 4271 of Lecture Notes in Computer Science, pages

68–77, Berlin, Heidelberg, 2006. Springer-Verlag.

130 BIBLIOGRAPHY

[41] Masashi Kiyomi and Takeaki Uno. Generating chordal graphs included in given

graphs. IEICE TRANSACTIONS on Information and Systems, E89-D(2):763–

770, 2006.

[42] Christian Komusiewicz and Frank Sommer. Enumerating connected induced sub-

graphs: Improved delay and experimental comparison. In Barbara Catania,

Rastislav Královic, Jerzy R. Nawrocki, and Giovanni Pighizzini, editors, SOF-

SEM 2019: Theory and Practice of Computer Science - 45th International Con-

ference on Current Trends in Theory and Practice of Computer Science, Nov

Smokovec, Slovakia, January 27-30, 2019, Proceedings, volume 11376 of Lecture

Notes in Computer Science, pages 272–284, Cham, Switzerland, 2019. Springer

Nature Switzerland.

[43] Kazuhiro Kurita, Kunihiro Wasa, Hiroki Arimura, and Takeaki Uno. Efficient

enumeration of dominating sets for sparse graphs. In Wen-Lian Hsu, Der-Tsai

Lee, and Chung-Shou Liao, editors, 29th International Symposium on Algorithms

and Computation, ISAAC 2018, December 16-19, 2018 - Jiaoxi, Yilan, Taiwan,

volume 123 of Leibniz International Proceedings in Informatics (LIPcs), pages

8:1–8:13. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2018.

[44] Kazuhiro Kurita, Kunihiro Wasa, Alessio Conte, Takeaki Uno, and Hiroki

Arimura. Efficient enumeration of subgraphs and induced subgraphs with bounded

girth. In Costas S. Iliopoulos, Hon Wai Leong, and Wing-Kin Sung, editors, Com-

binatorial Algorithms - 29th International Workshop, IWOCA 2018, Singapore,

July 1619, 2018, Proceedings, volume 10979 of Lecture Notes in Computer Sci-

ence, pages 201–213, Cham, Switzerland, 2018. Springer International Publishing.

BIBLIOGRAPHY 131

[45] Kazuhiro Kurita, Kunihiro Wasa, Takeaki Uno, and Hiroki Arimura. Efficient

enumeration of induced matchings in a graph without cycles with length four.

IEICE TRANSACTIONS on Fundamentals of Electronics, Communications and

Computer Sciences, E101-A(9):1383–1391, 2018.

[46] Kazuhiro Kurita, Kunihiro Wasa, Takeaki Uno, and Hiroki Arimura. An efficient

algorithm for enumerating chordal bipartite induced subgraphs in sparse graphs.

In Charles J. Colbourn, Roberto Grossi, and Nadia Pisanti, editors, Combinatorial

Algorithms - 30th International Workshop, IWOCA 2019, Pisa, Italy, July 2325,

2019, Proceedings, volume 11638 of Lecture Notes in Computer Science, pages

339–351, Cham, Switzerland, 2019. Springer International Publishing.

[47] E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan. Generating all maximal

independent sets: NP-hardness and polynomial-time algorithms. SIAM Journal

on Computing, 9(3):558–565, 1980.

[48] Don R. Lick and Arthur T. White. k-degenerate graphs. Canadian Journal of

Mathematics, 22(5):1082–1096, 1970.

[49] Anna Lubiw. Doubly lexical orderings of matrices. SIAM Journal on Computing,

16(5):854–879, 1987.

[50] Kazuhisa Makino and Takeaki Uno. New algorithms for enumerating all maximal

cliques. In Torben Hagerup and Jyrki Katajainen, editors, Algorithm Theory

- SWAT 2004 - 9th Scandinavian Workshop on Algorithm Theory, Humlebaek,

Denmark, July 8-10, 2004. Proceedings, volume 3111 of Lecture Notes in Computer

Science, pages 260–272, Berlin, Heidelberg, 2004. Springer-Verlag.

132 BIBLIOGRAPHY

[51] George Manoussakis. A new decomposition technique for maximal clique enumer-

ation for sparse graphs. Theoretical Computer Science, 770:25–33, 2019.

[52] Yasuko Matsui, Ryuhei Uehara, and Takeaki Uno. Enumeration of the perfect

sequences of a chordal graph. Theoretical Computer Science, 411(40-42):3635–

3641, 2010.

[53] David W. Matula and Leland L. Beck. Smallest-last ordering and clustering and

graph coloring algorithms. Journal of the ACM, 30(3):417–427, 1983.

[54] Hannes Moser and Somnath Sikdar. The parameterized complexity of the induced

matching problem. Discrete Applied Mathematics, 157(4):715–727, 2009.

[55] Shin-ichi Nakano. Enumerating floorplans with n rooms. IEICE TRANSAC-

TIONS on Fundamentals of Electronics, Communications and Computer Sciences,

E85-A(7):1746–1750, 2002.

[56] James B. Orlin and Antonio Sedeno-Noda. An O(nm) time algorithm for finding

the min length directed cycle in a graph. In Philip N. Klein, editor, Proceedings

of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms,

Barcelona, Spain - January 16 - 19, 2017, pages 1866–1879. SIAM, 2017.

[57] Geevarghese Philip, Venkatesh Raman, and Somnath Sikdar. Polynomial kernels

for dominating set in graphs of bounded degeneracy and beyond. ACM Transac-

tions on Algorithms, 9(1):11, 2012.

[58] J. Scott Provan and Douglas R. Shier. A paradigm for listing (s, t)-cuts in graphs.

Algorithmica, 15(4):351–372, 1996.

BIBLIOGRAPHY 133

[59] Venkatesh Raman and Saket Saurabh. Short cycles make W -hard problems hard:

FPT algorithms forW -hard problems in graphs with no short cycles. Algorithmica,

52(2):203–225, 2008.

[60] R. C. Read and R. E. Tarjan. Bounds on backtrack algorithms for listing cycles,

paths, and spanning trees. Networks, 5(3):237–252, 1975.

[61] Benno Schwikowski and Ewald Speckenmeyer. On enumerating all minimal so-

lutions of feedback problems. Discrete Applied Mathematics, 117(1-3):253–265,

2002.

[62] Akiyoshi Shioura, Akihisa Tamura, and Takeaki Uno. An Optimal Algorithm for

Scanning All Spanning Trees of Undirected Graphs. SIAM Journal on Computing,

26(3):678–692, 1997.

[63] Larry J. Stockmeyer and Vijay V. Vazirani. NP-completeness of some gener-

alizations of the maximum matching problem. Information Processing Letters,

15(1):14–19, 1982.

[64] Ken Takata. Space-optimal, backtracking algorithms to list the minimal vertex

separators of a graph. Discrete Applied Mathematics, 158(15):1660–1667, 2010.

[65] Shuji Tsukiyama, Mikio Ide, Hiromu Ariyoshi, and Isao Shirakawa. A new algo-

rithm for generating all the maximal independent sets. SIAM Journal on Com-

puting, 6(3):505–517, 1977.

[66] Shuji Tsukiyama, Isao Shirakawa, Hiroshi Ozaki, and Hiromu Ariyoshi. An algo-

rithm to enumerate all cutsets of a graph in linear time per cutset. Journal of the

ACM, 27(4):619–632, 1980.

134 BIBLIOGRAPHY

[67] Ryuhei Uehara. Linear time algorithms on chordal bipartite and strongly chordal

graphs. In Peter Widmayer, Francisco Triguero Ruiz, Rafael Morales Bueno,

Matthew Hennessy, Stephan J. Eidenbenz, and Ricardo Conejo, editors, Au-

tomata, Languages and Programming - 29th International Colloquium, ICALP

2002, Malaga, Spain, July 8-13, 2002. Proceedings, volume 2380 of Lecture Notes

in Computer Science, pages 993–1004, Berlin, Heidelberg, 2002. Springer-Verlag.

[68] Takeaki Uno. An algorithm for enumerating all directed spanning trees in a di-

rected graph. In Tetsuo Asano, Yoshihide Igarashi, Hiroshi Nagamochi, Satoru

Miyano, and Subhash Suri, editors, Algorithms and Computation - 7th Interna-

tional Symposium, ISAAC ’96, Osaka, Japan, December 16 - 18, 1996, Proceed-

ings, volume 1178 of Lecture Notes in Computer Science, pages 166–173, Berlin,

Heidelberg, 1996. Springer-Verlag.

[69] Takeaki Uno. A fast algorithm for enumerating bipartite perfect matchings. In

Peter Eades and Tadao Takaoka, editors, Algorithms and Computation - 12th

International Symposium, ISAAC 2001, Christchurch, New Zealand, December

19-21, 2001. Proceedings, volume 2223 of Lecture Notes in Computer Science,

pages 367–379, Berlin, Heidelberg, 2001. Springer-Verlag.

[70] Takeaki Uno. A fast algorithm for enumerating non-bipartite maximal matchings.

NII Journal, 3:89–97, 2001.

[71] Takeaki Uno. Two general methods to reduce delay and change of enumeration

algorithms. Technical report, National Institute of Informatics, 2003.

[72] Takeaki Uno. An efficient algorithm for enumerating pseudo cliques. In Takeshi

Tokuyama, editor, Algorithms and Computation - 18th International Symposium,

BIBLIOGRAPHY 135

ISAAC 2007, Sendai, Japan, December 17-19, 2007, Proceedings, volume 4835

of Lecture Notes in Computer Science, pages 402–414, Berlin, Heidelberg, 2007.

Springer-Verlag.

[73] Takeaki Uno. Constant time enumeration by amortization. In Frank Dehne, Jörg-

Rüdiger Sack, and Ulrike Stege, editors, Algorithms and Data Structures - 15th

International Symposium, WADS 2015, St. John’s, NL, Canada, July 31 August

2, 2017, Proceedings, volume 9214 of Lecture Notes in Computer Science, pages

593–605, Cham, Switzerland, 2015. Springer International Publishing.

[74] Kunihiro Wasa. Enumeration of enumeration algorithms, 2019. https://

kunihirowasa.github.io/enum/, (visited on 2019-12-14).

[75] Kunihiro Wasa, Hiroki Arimura, and Takeaki Uno. Efficient Enumeration of In-

duced Subtrees in a K-Degenerate Graph. In Hee-Kap Ahn and Chan-Su Shin,

editors, Algorithms and Computation - 25th International Symposium, ISAAC

2014, Jeonju, Korea, December 15-17, 2014, Proceedings, volume 8889 of Lecture

Notes in Computer Science, pages 94–102, Cham, Switzerland, 2014. Springer

International Publishing.

[76] Kunihiro Wasa, Yusaku Kaneta, Takeaki Uno, and Hiroki Arimura. Constant time

enumeration of bounded-size subtrees in trees and its application. In Joachim

Gudmundsson, Julián Mestre, and Taso Viglas, editors, Computing and Combi-

natorics - 18th Annual International Conference, COCOON 2012, volume 7434

of Lecture Notes in Computer Science, pages 347–359, Berlin Heidelberg, 2012.

Springer-Verlag.

136 BIBLIOGRAPHY

[77] Kunihiro Wasa and Takeaki Uno. An efficient algorithm for enumerating induced

subgraphs with bounded degeneracy. In Donghyun Kim, R. N. Uma, and Alexan-

der Zelikovsky, editors, Combinatorial Optimization and Applications - 12th Inter-

national Conference, COCOA 2018, Atlanta, GA, USA, December 15-17, 2018,

Proceedings, volume 11346 of Lecture Notes in Computer Science, pages 35–45,

Cham, Switzerland, 2018. Springer International Publishing.

[78] Kunihiro Wasa and Takeaki Uno. Efficient enumeration of bipartite subgraphs in

graphs. In Lusheng Wang and Daming Zhu, editors, Computing and Combina-

torics - 24th International Conference, COCOON 2018, Qing Dao, China, July

2-4, 2018, Proceedings, volume 10976 of Lecture Notes in Computer Science, pages

454–466, Cham, Switzerland, 2018. Springer International Publishing.

[79] Kazuaki Yamazaki, Toshiki Saitoh, Masashi Kiyomi, and Ryuhei Uehara. Enumer-

ation of nonisomorphic interval graphs and nonisomorphic permutation graphs.

Theoretical Computer Science, 2019. https://doi.org/10.1016/j.tcs.2019.

04.017.

