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Abstract

We consider the linear perturbation theory on the homogeneous and isotropic spacetime
filled with various kinds of perfect fluid matters. In particular, we solve exactly the time evo-
lution equation for the tensor fluctuation, which represents the amplitude of the gravitational
waves, and for a massless minimally coupled scalar field, by using the associated third order
differential equation for several combinations of background matters. It turns out that the
solutions are given by the Weierstrass’s elliptic and related functions, denoted by p(z), ((z),
and o(z). We consider physical properties of these solutions. In the first part the problem of
propagation of gravitational waves, which is supposed to be generated in the early universe,
is considered in the standard cosmological setting and in the setting with a non-standard
matter content, which is considered as a effective model of the quintessence. We obtain the
explicit expressions for the energy spectrum of the waves and discuss the physical relevance
of them. In the second part we consider a pre-inflationary model, where the radiation and
the spatial curvature energy density dominates, followed by the de Sitter inflation. The
scalar field equation is solved exactly there and consider the problem of the vacuum choice,
especially particle creation caused by the difference from the standard Bunch-Davies vacuum
is discussed. Furthermore, the vacuum expectation value of the energy density of the quan-
tum field is calculated with the adiabatic regularization procedure. The quantum correction
to the cosmological constant as a function of the density parameters is obtained, and it is
found that the correction term canges its sign depending on the spatial curvature. Finally
we calculated the primordial power spectrum and large scale suppression compared to the
scale invariant spectrum is observed for the flat and closed universe, which is consistent with
the results of the previous works. On the other hand, it is found that when the curvature is
negative and sufficiently large, it can cause a some enhancement in the large scale.
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1 Introduction

Modern cosmology started with the discovery of the expansion of our universe by Edwin Hubble
in 1929[2]. Although the data used by Hubble were not so reliable because only nearby galaxies,
of which peculiar velocities are coparable to the expansion speed, were included, a number of
observations so far have established that our universe has been really expanding. The expansion
rate of the universe is characterized by the so called Hubble’s constant (or parameter) Hy, which
is defined as the coefficient of proportionality between the distance d from the earth and the
radial velocity v,

v = H()d. (1.1)

Note that this naive relation holds only for relatively nearby galaxies or stars because as one
can see the radial velocity can become larger than the speed of light when directly use this
relation for far away galaxies, which violates the theory of relativity. In the far region where the
full account of the relativity is needed, the value of redshift z itself is suitable to represent the
distance, and the Hubble parameter is defined as the changing ratio of the scale of the universe
in time (more precise definition will be given later). At present, the local measurement of Hy is
quite accurate and recent estimate by using the Hubble Space Telescope [1] gives

Ho=73.24+1.74 km s~* Mpc™ L. (1.2)

Although there is a statistically significant discrepancy between the value quoted above and the
value estimated from the recent observation of the cosmic microwave background (CMB)[37]
with the standard ACDM model of cosmology,, the fact that our universe has been expanding
is an established result in modern cosmology.

Once we know the universe is expanding, a reasonable guess leads to the conclusion that
the universe was much ”smaller” in far past. Note that the fact that the universe is expanding
doesn’t necessarily imply the finiteness of the spatial volume. This can be understood only when
we consider the universe within the theory of general relativity, where the spacetime is identified
as a (pseudo) Riemannian manifold and the associated metric tensor becomes a dynamical
variable. In this framework, the expansion of the universe can be understood as the stretch of
distances between any two objects.

If the past universe was smaller than that at present, from the view point of energy conser-
vation, it should be much denser and hotter in early universe and what is more surprising is that
there may exist the beginning of the universe. This has led to the so-called Big Bang cosmology.
If this is indeed the case, it may be possible to find some imprints of that age. In the late 1940s
George Gamow|[3] recognized that if the universe was high temperature in the past, at present
it should be filled with radiation of lower temperature because of gravitational redshift. Then,
the temperature at present was estimated from consideration of the nucleosynthesis in the early
universe to be about 5K, which corresponds to the peak wavelength of several centimeters. The
first signal of this cosmic microwave background was observed in the 1960s, although it was not
until the 1990s that the full spectrum was confirmed to be that of the black body radiation
described by the Planck’s formula with the temperature about 2.7K by the COBE satellite.

The observed CMB radiation turned out to be quite isotropic. Furthermore, the distribution
of clusters of galaxies in the largest length scale are also known to be almost homogeneous
and isotropic. These observational results eneble us to describe our universe in a rather simple
model of the homogeneous and isotropic spacetime, which will be reviewed in the next section
(Sec.2). At the same time, however, it raises the following two questions: (i) How can the
smaller structures, such as galaxies, be formed? and (ii) How and why did such homogeneity
and isotropy realized? Although the CMB distribution is almost isotropic, there exist small
(at a ratio of about 107°) fluctuations. Since gravitational force between massive bodies is
always attractive, alost homogeneous distribution of matters at the initial time would collapse
to form a dense cluster, namely gravitational instability. This mechanism can be responsible



for the first question but it is true only for sufficiently small region, because in larger scale
the effect of cosmological expansion described by the Hubbles law becomes significant. For
the full treatment, we have to employ the general relativity. Since the fluctuation from the
homogeneity and isotropy can be assumed to be small in cosmological scale, we can apply the
linear perturbation theory on the homogeneous background, which will be explained in Sec.3.

As for the second question, the high accuracy of the isotropy of the CMB contains a serious
problem, which can be recognized by applying the formalism explained in the next section. In
essence, because no physical interaction can propagate over the speed of light, if the age of the
universe is finite then the whole space cannot be causaly connected. Although it is necessary
to consider quantitatively, it turns out that the causaly connected region at the time when
the CMB photons were emitted now subtends an angle of order 1° (see [5], provided that the
universe is filled with ordinary baryonic matters and radiation. Thus, the isotropy of the CMB
cannot be explained by physical mechanisms with the seemingly reasonable assumption, and
this is called the horizon problem. Of course we cannot logically exclude the possibility that
just a very homogeneous and isotropic initial condition occurs accidentally, it is desirable to seek
for some dynamics that results in the observed homogeneity and isotropy.

In this regards, the possibility that the universe underwent an accelerated (usually expo-
nential like) expansion before the hot Big Bang, has been widely considered. The accelerated
expansion in this context is called the (cosmic) inflation (see [6] for fundamental aspects of infla-
tion). In theories of inflation, the tiny fluctuations observed in the CMB is attributed to quantum
fluctuations in the inflationary epoch. Because of exponentially fast expansion of space, initially
small (quantum mechanical) fluctuations is enlarged to give rise to classical (macroscopic) fluctu-
ations. Although there is a problem concerning how to ”classicalize” the quantuma fluctuations
(see for example [7] on this topic), the prediction of typical models of inflation, so called the
(almost) scale invariant power spectrum, has been confirmed by the observation of the CMBI3].

The cosmic inflation can, in fact, is desirable for resolving not only the horizon problem but
also the so called flatness problem. As we will see in Sec.2, the requirement of homogeneity
and isotropy gives three possible types of space, which are distinguished by the constant spatial
curvature denoted by K. Up to rescaling of the length scale, K = £1 and K = 0 are possible. If
there is nonzero spatial curvature comparable to other matter energy density in the past, then
the general relativity predicts that the universe at present is dominated by the curvature energy
density (see Eq.(2.11)). However, the observations of Type Ia supernovae as well as that of the
CMB revealed that the universe is actually almost flat now. This implies that at early stage
the energy density of the spatial curvature was much smaller than the other components. The
cosmic inflation can give a dynamical mechanism that explain this flatness of the space.

In terms of accelerated expansion, there is a problem on the universe not in the past but
at present. The observation of Type la supernovae noted above showed that the expansion of
the universe is now accelerating. The simplest possiblity is that the universe is filled with the
cosmological constant A, which can also be interpreted as a matter field with the constant energy
density and negative pressure. From the supernovae observations, more than half the energy
density of the present universe turns out to be such comological constant like contribution, and
this is called dark energy. In the Standard model of particle physics, the elementary contents of
the universe like electrons are described by quantum field theory. In this theory, typically there
appears vacuum energy even if there is no real particle and if we consider the backreaction of the
vacuum energy, i.e. its energy momentum tensor, it is known that it behaves as a cosmological
constant term in the Einstein equation. In this sence, the cosmological constant is sometimes
called the vacuum energy as well. However, if we try to explain the origin of now observed
acceleration of expansion by using quantum field theories, it turns out that the vacuum energy
of quantum field is typically much (120 orders of magnitude) larger than the observed value [9].
This cosmological constant problem is an important problem of recent theoretical physics.

We note also that there is attempts to explaining the observed late time acceleration by means



of other than the cosmological constant. One example is the quintessence models[10]. This kind
of models include a scalar field whose potential energy is considered to be responsible for the
late time acceleration as the inflaton field does in the inflation. Since the CMB observation is
well explained by the standard ACDM model, the quintessence field should not contribute other
than the near present time. But the potential energy must be smoothly turned on to mimic the
cosmological constant at late time, so there could arise some difference from the ACDM model
in the evolution of linear perturbations. We consider this problem in Sec.7 in a rather simplified
model.

Given that the universe seems to have an inflationary era in the past, one natural question
is then what happened before the inflation? This is not only for theoretical interest but also
observational importance. Although the observational result is well explained within the ACDM
model with the prediction of the typical inflation theory, it is known that the CMB anisotropy
spectrum at low multipole [ is unexpectedly suppressed. Since there is a difficulty of the cosmic-
variance in such low [ region, it is difficult to extract some definite conclusion. Nevertheless,
many theoretical proposal has been given so far and we consider one of such a model in Sec.8.

Another important ingredient in modern cosmology is gravitational waves. After the first
direct detection of gravitational waves from a binary black hole merger[l 1], it is now expected
that the gravitational wave background, like CMB, from the early universe can be detected in
the near future. Mechanisms for generating gravitational waves in the early universe including
inflation have been discussed in the literature (see for example [12]). In order to extract some
information on the early universe from the spectra of to be observed gravitational waves, it is
important to precisely investigate the propagation of the waves after its generation, otherwise
we cannot understand whether an observed characteristic of the waves is really originated from
the early universe. Also, since a lot of mechanisms of generating gravitational waves has been
proposed, precise calculation of their propagation is essentially important to distinguish them.
Since the amplitude of the waves are considarably tiny, we can apply the linear perturbation
theory in this case as well.

In these regards, to analyze the linear perturbation equation in the various cosmological
setting is an intriguing problem. Because of the homogeneity and isotropy, to solve the spatial
part is in general not so difficult (although the non zero spatial curvature case is less studied
in the literature). However, the time evolution equation is in general hard to solve analytically
except for the simplest cases where the universe is assumed to be filled with a single component
of the field (see Sec.3). But what is physically relevant is how the amplitude would change when
the linear perturbation propagates over two or more different stages of the expansion history,
where usually we have to use some approximation or numerical computations. For example,
the WKB approximation has been used to study the effect of gravitational waves on the CMB
fluctuations in Ref.[12], but this approximation scheme cannot be applied to long wavelength
modes.

In this thesis, we consider the linear perturbation theory in the cosmological setting within
fully analytical treatment. There are two reasons why we persist in solving the evolution equation
exactly. The first one is that any exact solutions are valuable both theoretically and practically.
For example, usually the evolution equation contains several parameters that characterize the
physical system or the propagating modes, and the exact solutions then give thorough under-
standing on how the solutions depend on these parameters. The exact solutions themselves which
we will derive in the following sections are not written in terms of the elementary functions but
physically observable quantities calculated from them such as the energy density spectrum take
rather simple form (see 6.62)) so it is useful for practical calculations. The second reason is
that the quantization of the linear perturbations needs exact mode functions. In particular, to
construct a interacting quantum field theory on a curved background, the free field theory on
that spacetime must be exactly solved if we apply the perturbation theory to that interaction.
Quantum theoretical aspects of the perturbations on the cosmological setting are important



especially in the early stage of the universe such as the inflationary epoch.

After reviewing the fundamental description of cosmological expansion and the linear per-
turbation theory in Secs.2 and 3, we explain in Sec.4 the method we utilize to obtain some exact
solutions for the time evolution equation of tensor mode, which can be regarded as a test scalar
field as well, in Sec.5. Then, Sec.6 and Sec.7 are devoted to analyze the propagation equation
of gravitational waves in the late universe using the exact solutions so obtained. In Sec.8 we
consider a possibility of a pre-inflationary epoch filled with radiation and curvature energy com-
ponent, and derive the expectation value of the energy-momentum tensor in the initial vacuum
state and the primordial power spectrum from the exact solution obtained in Sec.5. In contrast
to the previous two sections, we treat a quantum field in this section so we consider the problem
of regularization as well.

2 FRW spacetime and cosmology

In this section, we review the fundamental account of cosmology based on general relativity. For
more detailed discussions, refer to a standard text book such as [5] As we have mentioned in the
introduction, our universe is almost homogeneous and isotropic in the largest length scale. The
dynamics of spacetimes such as the expansion of the universe can be described by the theory of
general relativity, where the metric tensor g, of the spacetime becomes dynamical and obeys
the Einstein equation,

G + Agpw = 87GT,. (2.1)

Here, G, = Ry — guwR/2 is the Einstein tensor and the Ricci tensor for the connection
coefficients I'*, ) is defined as the trace of the Riemann curvature tensor R, = R’,,,, where

Ruupa = apruau - 80'Flupll + F”p)\r/\m/ - F”a)\r)\pu‘ (22)

Our convention for the signature of the metric is (—, 4, +,+). The connection coefficients are
uniquely determined by the assumption that the spacetime is torsion free (& FAW = F)‘W)
and also the metric tensor is covariantly constant (< Vg, = 0). The latter assumption is
equivalent to require the inner product of arbitrary two vectors are invariant under the parallel
transport. Explicitly, the components of the connection are given by

1
[H N = ig”p(&,gp)\ + OGpw — 8pgu>\)a (2.3)

where g"” is the inverse matrix of g,,. A is the cosmological constant, which can also be treated
as vacuum energy of homogeneous distribution of matter. G is the Newton’s gravitational
constant and note that we employ the natural unit where the speed of light in the vacuum is
equal to 1. T},, is the energy momentum tensor which provides the source of gravity.

Homogeneity and isotropy of the spacetime imply that the metric can be reduced into the
following form with a suitable choice of the coordinates (¢, x?):

ds? = —dt* + a*(t)y;;da'da?. (2.4)

Here, because of homogeneity we can introduce the global time coordinate t, which defines the
same time on the whole space. a(t) is called the scale factor and naively represents the size
of the universe at the time ¢. a(t) is assumed to be dimensionless quantity and it represents
the time evolution of the spatial length scale. We can freely choose its normalization (the most
typical convention is such that a = 1 at the present time) but we don’t explicitly fix it now. Note
that unless the spatial curvature is positive (see below), the spatial volume of the spacetime is
infinite. The spatial metric v;; must be homogeneous and isotropic, the latter of which implies
that the spatial metric can take the following form by using the polar coordinate:

Yijdr'de? = f(r)dr® + r?dQ?, (2.5)



where d2? represents the metric of the 2-dimensional sphere with the unit radius. This metric
respects only the isotropy if f(r) takes arbitrary form, so we now determine the possible forms
of f(r) by demanding homogeneity as well. By requiring the components of the Einstein tensor
to be constant on the ¢ =constant hypersurface and not to be singular at any point, gives a first
order differential equation for f(r) and the general solution is given by

1

= —— 2.
fr) = 1 (26)
with a constant K. Since the absolute value of K can be absorbed in the redefinition of the radial
coordinate r, there are essentially three distinct spaces; (1) the closed three-sphere (K = 1), (2)
the Euclidian space (K = 0), and (3) the hyperbolic space (K = —1).

The obtained full metric

dr?

2 2 2

+ r2d(22> , (2.7)
is called the Friedmann-Robertson-Walker metric. Only the dynamical variable is the scale
factor a(t), of which time evolution is determined by the behavior of energy momentum tensor
T,,, through the Einstein equation (2.1). To write down the Einstein equation, we need the Ricci
tensor, of which components are found to be

3a .. .
Ry = —;, Ry =0, Rij = (aa + 242 + QK)’)/U. (28)

where the over dot(s) represents the differentiation with respect to ¢. Since only the dynamical
variable is a(t), also the matter energy momentum tensor which is consistent with the FRW
spacetime has essentially one function of ¢. Such a matter energy momentum tensor can always
be written as the following perfect fluid form:

Tp,z/ = PGuv + (p + p)uuum (29)

where p and p are energy density and pressure of the fluid and assumed to be functions only of
the time ¢. u, is the four velocity of the fluid and in the rest frame (%, x') it takes us = —1 and
u; = 0, which leads to

Ty = p, Tij = pygij- (2.10)
Then, the Einstein equation for this system reduces to
N 2
a 81G K
H>:=(-)] = —"p— = 2.11
<) <, X (2.11)
—(2ad + a* + K) = 8rGa’p. (2.12)

The first equation (2.11) is called the Friedmann equation, which describes the time evolution
of the scale factor for a given energy density. In this equation, we defined the Hubble parameter
H(t) at time t. We note that the second equation results from the first equation with the help
of the continuity equation for the fluid,

p= —%(%Lp), (2.13)

which is a consequence of the contracted Bianchi identity V,G*, = 0. As we have mentioned,
this equation shows that the pressure is actually not independent from the energy density in
order the fluid to be consistent with the FRW spacetime. However, to close the system, we need
another equation because there are three unknown variables, a(t), p(t), and p(t). Although the
continuity equation (2.13) gives a relationship between p and p, it doesn’t reflect the properties



of the fluid but is the consequence of the dynamical consistency in the expanding spacetime. In
this sence, what we need is the so called equation of state, which relate p and p. The simplest
cases are the following form:

p = wp, (2.14)
with some constant w. In this case, the continuity equation (2.13) can be solved for p as

p oc a 30+, (2.15)

Given the spatial curvature K and the parameter w, the Friedmann equation (2.11) completely
determines the expansion behavior a(t). In the standard cosmological models, there appear
three important cases:

Nonrelativistic matter (w = 0)

p=0. pox % (2.16)
Relativistic matter (w = 1/3)
p= éf% p X % (2.17)
Vacuum energy (w = —1)
p=—p, p=const. (2.18)

In the case of flat space (K = 0), the Friedmann equation (2.11) for the simple equation of state
(2.14), or equivalently (2.15), can be easily integrated,

a(t) o e (w# —1), a(t) et (w=-1), (2.19)

where H is a constant proportional to the vacuum energy density.

Conversely, if we provide the energy density as a function of the scale factor, the continuity
equation (2.13) can be regarded as a equation of state, in which case w is no longer a constant
in general. In the ACDM model, the energy density are assumed to be a superposition of the
above three kinds of matters,

Pr Pm
= — 4+ — 2.20
p="3+T 3 Trn (2.20)

where p,, pm, and pp are constants which characterize magnitude of each content. Given the
nonzero constants p,, pm, pa, this energy density behaves as that of relativistic matter in the
early stage a ~ 0, followed by the matter dominant epoch, and finally the cosmological constant
(or vacuume energy) remains in the universe after a becomes sufficiently large. Note that if p,,
is rather small, or p, is large, there doesn’t exist the matter dominant era. In this case, by using
the continuity equation (2.13), the equation of state parameter w = p/p is given by

_ pr/3a* — pa
w = 1 3 .
pr/a* + pm/a® + pa

(2.21)

Implicit assumption for this energy density is that the amount of each component doesn’t change
with time; the time dependence of the energy density comes only from the expansion of the
universe. Therefore if some kind of interaction between different kind of matters cannot be
ignored, the above formula doesn’t work any more. In fact, it has been discussed that in the
early radiation dominated era, time dependence of the effective degrees of freedom of radiation
component such as photons or neutrinos can affect the spectrum of the primordial gravitational
waves|13]. However, we ignore this effect in the following, one reason for which is that the exact
solutions for gravitational waves in our study can be applied after the radiation component



becomes negligible as we will see later, although in the another application, a pre-inflationary
model such an effect can be significant.
For generic scale factor a, we can introduce another time coordinate 7 called the conformal

time,
dt
- / ot (2.22)

The reason why this is called conformal time can be easily seen by writing down the metric with
this coordinate,
dr?
ds* = a*(n) | —dn* + ——— +1r%dQ* ) . 2.23

=) (P + g (223)
As you can see, when the spatial curvature is vanishing, the metric takes the conformally flat
form. Another advantage of this coordinate system can be shown by considering null geodesics in
this spacetime. Because of homogeneity and isotropy, by a suitable coordinate transformation,
any single null geodesic can be converted to a radial geodesic which pass through the origin of
the space. Such a null geodesic satisfies

dr?

1— Kr?
By integrating this equation, the radial motion of lightlike particles can be described by the
function r(n). When K = 0, null geodesics are just straight lines, which is consistent with the
fact that the metric in this coordinates is conformally flat. In order to understand the meaning
of the conformal time, let us first consider the case of constant scale factor. In this case, we can
normalize the coordinate so as to a = 1. By integrating Eq.(2.24) between two points (11,71)
and (12,72), we obtain

0=ds> = dn* = (2.24)

"2 dr
N2 — M /r1 N (2.25)
that is, the difference in the value of the conformal time is equal to the spatial distance that
can be traveled by a massless particle (e.g. photon). Because ordinary matters cannot travel
faster than massless particles, we can conclude that the value of the conformal time gives the
maximum distance matters can travel.

Let us now remove the assumption of constant scale factor to consider the effect of non trivial
expansion of the universe. In the standard cosmological scenario, where the energy density takes
the form Eq.(2.20), the universe is in the radiation dominant era in the early stage (a ~ 0). In
this era, the Friedmann equation (2.11) gives a(t) o t'/2. Here, the integration constant is fixed
by the condition where the Big Bang singularity a = 0 occurs at ¢t = 0. Then, one can see that
the defining integral of the conformal time n(t) = [ dt/a(t) is convergent at t = 0, so again the
integrtion constant can be fixed so as to n = 0 at t = 0. With these conventions, the maximum
proper distance d(t) at time ¢ that can be traveled by a massless particle starting at the origin
just after the Big Bang is given by

r(t) r
dt) =a) [ —T ). (2.26)
/0 vV1—Kr2

In other words, the value of conformal time multiplied by the scale factor represents the limit

of the observable region. In this sence, d(t) is called the particle horizon scale.
For later use, we write down the Friedmann equation by using the conformal time,

(1 da)2_87rG K

= - = 2.2
CL2 dT] 3 IO CL2’ ( 7)

In particular, for the energy density (2.20) this equation reduces to

A\ (% QU Qx



where Hy is the Hubble constant at a = 1, ’ = da/dn, and

81G p, 81G pm K A
Q=——, =——, =——, O\ = —, 2.29
"T 3 HEE T 3 HY KT THZ M 3H? (2.29)
are the density parameters. Note that by definition of Hj, these parameters are under the
constraint 2, + Q,, + Qx + Qx4 = 1. For later convenience, we define a polynomial of a by
g(a) == Q + Qa + Qxa® + Qpa to write the Friedmann equation (2.28) as (a/)? = HZg(a).

3 Evolution equation for the gravitational wave on FRW space-
time

In this section, we consider linear perturbation on the FRW spacetime (2.7). This topic is also
treated in the standard textbooks on cosmology such as [5] and we follow the line of argument
of it. However, our formulation below is slightly generalized compared to it in two points. The
first point is that we don’t assume K = 0 in the followings. Although our universe at present
seems almost flat, it can be nonzero strictly speaking. Furthermore, when we consider the very
early stage of the universe, it could give rise to some non trivial and non negligible effects. We
consider more on this point later (see Sec.8). The second point is that we maintain the general
covariance of spatial metric. This is not only for formal preference but also for convenience in
practical calculations especially for spatially curved cases. Even in the case of flat space, we
can use the polar coordinates, where the covariant derivatives D; take non trivial forms. We
denote by h,, the metric perturbation, i.e. g, = g + huy, where g, is the background metric
(2.7). We use g, and g"” to raise and lower the indices of perturbed quantities, for example
h# = ghtg"?h,s. Although our main concern is weak gravitational waves propagating on the
FRW spacetime, which is described by the components of h,, with helicity 2, in general the
perturbation contains other helicity components, namely scalar and vector modes. Therefore
we have to decompose h, into these different modes. Since the background spacetime has the
unique choice of time slices defined through the cosmological time coordinate ¢, we can first
classify the perturbation into hy, hy;, and h;j. The first one hy is clearly a scalar component.
The second one hy; generally contains both vector and scalar components, which can be separated
as

where F' and G; are a scalar and a vector field on the 3-space and D; is the covariant derivative
of the background 3-space metric v;;. Here, the scale factor a is inserted because the spatial
coordinates ' are the comoving ones. In this decomposition, we require the vector part to
be divergenceless, namely D'G; = 0 ! so that the scalar component F is uniquely determined
through the Laplace equation

D'hy; = aD?F. (3.2)

Similarly, h;; can be decomposed as
hij = CL2 (A’}/,L] + DlD]B + Dle + DJCZ + Xij) . (33)

Here, C; is a divergenceless vector (D'C; = 0) and Xij is a transverse and traceless tensor, in
other words A ‘
Xli = DZXZ'J' =0. (34)

Indices of quantities such as D; or G; on the 3-space are raised and lowered by using the spatial comoving
metric 7v;; and ~*, but this does not apply to the spatial components of 4-dimensional quantities such as hs;, for
instance h'* = g"'g“hy; = — (¥ /a2)htj.

10



In this decomposition, the scalar components A and B are determined by the trace and the
divergence of h;; through the following equations:

Y9hij = a*(3A+ D?*B), D'D’h;; = a*(D*A+ D'D'D;D,B). (3.5)
After that, the vector component C; can be defined by
D'hij = a*(D;A + D*D;B + (D* + 2K)C}). (3.6)
In deriving this equation, we use the Ricci identity
[D;, Dj|X* = RF;; X (3.7)

for arbitrary vector X* with the Riemann curvature tensor Rklij for the spatial metric +;;, and
the fact that in the constant curvature 3-space its components are given by

Riji = K(vikvji — Yirvik)- (3.8)

Lastly, x;; can be obtained by solving Eq.(3.3).

Before proceeding to write down the Einstein equation for the perturbed quantities, we note
that this decomposition is useful especially for linearized theory. If we consider higher order
contributions, they are in general coupled with each other. For example, at the second order,
C'C; would appear in the field equation for the scalar part. This decoupling at the linearized level
is realized because there are no vector or tensor field other than the metric on this background.

We can decompose the pertrubed matter energy momentum tensor 67}, as in the case of
metric perturbation, but in this case we can further classify 67),, into two types. The first one
is a perturbation that can be considered as a perturbed perfect fluid, and the second one is the
other forms. By taking the differential of Eq.(2.9), we obtain

Opt Ly = 0pGuw + Dhyw + (0p + dp)u,ty, + (p + D) (0w, + Uydu,). (3.9)

Here dp¢ indicates the perturbation of perfect fluid form. Provided that the velocity of the fluid
is timelike, the perturbation for w, must satisfies (9" u,u,) = 0, which with the background
velocity u; = —1,4; = 0 gives

0= htt — 2(5’U,t. (310)

Therefore only the spatial component du; is dynamical in the velocity perturbation. Then, we
can write down the components of the perturbation with perfect fluid form,

Spt Tt = —phut + 0p, OpfThi = Phei — (p+ P)ous, OpeTy; = Phij + a®;;0p. (3.11)

In general we have to include the matter perturbation that cannot be written in this form.
However, for example in 0,7} we can reinterpret dp as an arbitrary scalar perturbation instead
of the infinitesimal change of the perfect fluid energy density. Similarly in 0,¢1%;, by giving
up the original definition as the velocity perturbation, we can regard du; as a general vector
perturbation, which can be decomposed into the gradient of a scalar field and a divergenceless
vector. From these arguments, we can see that what we have to add to express the most general
matter perturbation are only the scalar, vector, and tensor modes in §7;;. As a result, the most
general form of matter perturbation can be cast into the following form:

5Ttt = _,(_)htt + 5p, (312)
0Ty = phyi — (p + p)(D;U + V;), (3.13)
51—%3- = ﬁh” + a? (%jép + DZ'D]VTS + Dﬂ(’;/ + Djﬂ'z-v + 773;) , 314)

where V; and 7er are divergenceless vectors, and wiTj is a transverse and traceless tensor. 7, 7'(‘2/ ,

and 7rZ-Tj represent the departure from the perfect fluid form and are called the anisotropic inertia.
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The next task for deriving the perturbed Einstein equation is to calculate the perturbed
Einstein tensor,

5w = SRy — Ly~ 3000 (3.15)

The perturbed connection coefficients can be obtained by using the generic formula
1, - _ _
ot = 5 (szhu)\ + VARH, — Vuhu)\) . (316)

For completeness, we show the result below,

§T; % (Ochij + 2aavyiihee — Dihy; — Djhy;) (3.17)
6T = % <—3ihtt + iahti) : (3.18)
5Tty = —%athtt, (3.19)
6Ty = ﬁvij (20thj — Ojhut) (3.20)
5T, — ﬁv’k <8thkj _ %hkj + Djhyy — thjt> , (3.21)
o), = %“27” (Djhi + Dyhyj — Dby, — 2aayjiha) - (3.22)

The linearized Ricci tensor then can be calculated by
SRy = VAT, — V6T, (3.23)

We again list explicit expressions for each component,

SRy = —%“2 <D2 - 36‘@) hut + %Diathit 5% (a,? aaat + 2;‘22 - 25) h3), (324
SRy = —%Dihtt — — (D*hit — D' Dshyy) + (Z + 25;) hit

+Lpia <’;J2) 20D, (Zj?) (3.25)
OR;j = % (DiD; + airy;;0; + 2(ai + 24%)7i) hee — = <8t + > (Dihgj + Djhy;)

442 1 h®)
_ —’)/Z]D hkt + = (8t — 8t a > h” + 2@@'}’”8,5 <a2>

1
+ T‘? (DkDJhkz + Dszhk] - Dthj - DzD]h(g)) . (326)

where we introduced h(3) = ~% h;; for notational simplicity. We also need the perturbed Ricci
scalar,

SR = —h" Ry + §" R,
1 2 2
<3“at ba b, 2D2> - (at a) D'hiy
a a a a a

. 1 26 242 2K
2 (pipip.. _ p2p3) I O R A A )
+a4 (DDh” D?h )+a2 (@ - )h . (3.27)
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Although we are now ready to explicitly write down the perturbed Einstein equation 6G, =
8mGdT),,, even if we separate the equations into scalar, vector, and tensor parts they take quite
complicated forms. Furthermore, this system of linear differential equations for the perturbed
quantities is not sufficient to completely determine the evolutions of them because of the gauge
degrees of freedom. In general relativity, the gauge degrees of freedom come from general
coordinate transformation xz# — z* + €, where € is an arbitrary infinitesimal vector. In
general, tensor fields including vectors and scalars as well transforms by the negative of the Lie
derivative generated by ¢. For a tensor field, the Lie derivative generated by e is given by

ﬁeg;w = 6)‘3>\9;w + gu)\alfﬁ/\ + g)\ua,uf/\- (3'28)

Assuming the infinitesimal vector € is the same order as the perturbation h,,, the gauge
transformation AhWQ are given by

Ahy, = — (&a@w + Gur0ve + gAyaueA) . (3.29)

On the background of FRW metric, the gauge transformation of each component turns out to
be
€ .
Ahy = —20,¢;, Ahy; = —Djer — a’0, ((712) , Ahgj = 2aa€;7i;. (3.30)

The spatial component is again decomposed as €; = 9;¢° —i—eZV with a divergenceless vector €;. By
comparing these transformation laws with the decompositions of hs; and h;;, namely Eqgs.(3.1)
and (3.3), we can obtain

€¢ ES EV
ar=-2—a(5). 86i=-an (%), (3.31)
a a a
. 5
Aa=2 A= —2%, (3.32)
a a
v
AC; =~ Axi =0. (3.33)

We immediately see that the transvese and traceless component y;; is gauge invariant. For
the scalar and vector components, we can construct gauge invariant combinations. From these
gauge transformation laws, we can immediately see

1 . .
P .= 3 (A—i—QaF—aaB) ,
1 1 .
a’l = —§htt + Oi(aF) — 5&5(&23),
S; = G; — aC; (3.34)

are gauge invariant combinations. Especially, ® and ¥ are called Bardeen’s potentials in the
literature[13].

Weak gravitational waves on this spacetime can be described as a linear perturbations of
the metric, in particular tensor modes. By picking up the transverse and traceless part of the
linearized Einstein equation 0G;; = 8wGT;;, we can read off the following equation:

(a®0} + 3aad; + 2K — D?) yi; = 167Gr). (3.35)

Our main objective is to analyze the propagation of gravitational waves in vacuum space, so we

assume Wg; = 0 hereafter. Since time derivatives and spatial derivatives are completely separated

%We denote the gauge transformation not by § but by A in order to distinguish the gauge transformation from
physical perturbation.
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in the equation, we can reduce it to an ordinary differential equation by expanding the solution
Xij as

Xij(t2") =D " efi(k)ha(k)x(H) i (a?), (3.36)
A k

where ef}(kz) (A = 1,2) is a normalized set of polarization tensor, ha(k) characterize initial
conditions, and ®y(x?) is the eigen function satisfying (D? — 2K)®; = —k>®;. x(t) represents
the time development of the amplitude, which is thoroughly investigated in the rest of the paper.
Furthermore, we use the conformal time 7 instead of the cosmological time ¢. Then, the evolution

equation for x(n) can be easily derived by substituting the expansion into the above equation,
2a’
X'+ 7X' + k?x = 0. (3.37)

There are two extreme cases which doesn’t depend on the details of the expansion. These
are distinguished by the ratio of the wave number k and a’/a = aH, called the comoving Hubble
horizon scale. The first case is super-horizon regime (k < aH ), in which case the third term in
the equation can be neglected and the general solution is found to be

d
X(n) ~ A+ B/ Dk < am) (3.38)
a*(n)
with two arbitrary constants A, B. The second solution decays with the expansion of the universe
while the first one keeps constant value. The other extreme case is sub-horizon regime (k > aH),
where the evolution equation has the following solution:
1

—— e (k> aH) (3.39)

x(n) ~ ()

This is just a decaying oscillation, and what can be directly observed by gravitational wave detec-
tors is the waves in this regime. These behaviors can be physically understood from Eq.(3.37) as
one particle equation of motion. The second term can be interpreted as a friction term caused
by the expansion of the universe, while the third term is the force obeying the Hooke’s law.
In order to start oscillation in this system, the latter force must be larger than the friction,
otherwise the particle at rest cannot start to move.

The comoving Hubble radius 1/(aH) = 1/a becomes larger and larger in the radiation or
matter dominated eras, in other words the universe is decelerating, while the comoving wave
number k is constant. Then, the wave modes that are in the super-horizon regime in the
early epoch can ”cross the horizon”, namely k = aH, at some time and possibly become sub-
horizon modes after sufficient deceleration time. One important implication of this dynamics
is that the modes that cross the horizon around the present time keep the information of the
early universe because such modes are not affected by various local interactions during they
are outside the horizon. In the inflationary models, gravitational waves are generated from the
quantum fluctuations and the wave length are stretched out to the super-horizon scale by the
exponential expansion as we will briefly see later. Such super-horizon modes re-enter the horizon
at some time after the inflation depending of their comoving wave number k.

Now we consider background spacetime with a single matter component, i.e. non relativistic
matter, relativistic matter, and vacuum energy, in which cases we can obtain analytic expressions
for x by using elementary functions. When the parameter w appearing in the equation of state
is constant, the Friedmann equation (2.27) can be solved as

w 2/(3w+1)
o = (M5 o) w1 (3.40)
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The exceptional case w = —1/3 corresponding to the case where the spacetime is filled with no
matter and K # 0 is not of physical interest. The evolution equation (3.37) for this background
expansion becomes

1
X +k*x =0. (3.41)

"
X Jr3w+17]

Introducing a dimensionless variable & = k7 and factoring out a multiplicative power by y =
X/€N with A = 3(1—w)/(6w+2), this equation can be easily transformed to the Bessel’s equation

of order A,
d 14 22
- - 1—-2Z)|v=0. 42
i et (@)X .
In particular, in the most important cases of w = 1/3 (radiation), w = 0 (matter), and w = —1

(vacuum energy), the order takes A = 1/2,3/2, and —3/2, of which solution is given by the
spherical Bessel functions with integer order. For refference, we write these solutions explicitly
below.

Relativistic matter (w = 1/3)

1 1,2 20 4
v (n) = = Hy 5 (k) = ﬁ,mei . (3.43)

Non relativistic matter (w = 0)
x+(n) = WH?E/Q )(kﬁ) = —l\/;(kn)g (1 F ikn) e, (3.44)
Vacuum energy (w = —1)

12 , i
xe () = (k)2 Hy o (h) = —Z\ﬁ (L ikn) . (3.45)

In these solutions, H,ELQ) (x) is the Hankel function of 1st and 2nd kind.

Concerning observations of gravitational waves, one physically important quantity is the
energy density of the waves. Although there is no local and covariant definition of energy mo-
mentum tensor for gravitational field in general situations, we can define the energy momentum
tensor of gravitational waves propagating on a given background spacetime. For the derivation,
we concentrate on the vacuum Einstein equation,

1
R, — §g,WR +Agu = 0. (3.46)

As in the previous calculations, we devide the metric into two parts, gu, = Guv +huw, and assume
this metric solves the Einstein equation. In general, the Ricci tensor R, and the Ricci scalar
R can be expanded in powers of h, as

Ry = Ry + RY + RY + 0(h*), R=R+RY +R® + 01 (3.47)

Substituting these expressions into the full Einstein equation, we can arange various terms up
to the second order as

_ 1, _ _ 1_
R + R — 3 Guw + Iy ) (R + R + (G + hyw)A = — <R,<E) - QgWR(2)) +O(h%). (3.48)

This form of the Einstein equation manifestly shows that the second order terms in the right hand
side behaves as a source of gravity and induces the first order correction h,, to the background
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metric g, appearing in the left hand side. Thus we define the energy momentum tensor for the
gravitational waves on the background g,, by

1
7oV = e <R(2,,) R<2>> (3.49)

We now derive the energy density, namely 75", on the FRW background. In general, TE’VW
contains all components of the perturbations h,, but we restrict ourselves to the contribution
from the transverse traceless tensor mode, h;; = aQXij and ignore the other components. The
second order Ricci tensor can be calculated by using the following formula:

R?) =V,6917,, — V, 601, + 617 )50, — 6175017 (3.50)
where §)T#,, is the second order variation of T'*,y, of which components are given by
1 _ _ _
sre,\ = =W (Vuhpx + Vahpy = Vphoa) - (3.51)

The first order variation 0I'*,) is already given in Eqs.(3.17)-(3.22). The second order Ricci
scalar is then given by B
R® =g RQ) — nR() + W h," Ry, (3.52)

Note that RE}V) is nothing but dR,, given in Eqs.(3.24)-(3.26). In deriving the energy density
of gravitational waves, we further assume the wave length A and the period 1" are much smaller
than the curvature radius. On the FRW background, this means A\?> < 1/K and T < a/a.
Then we can ignore terms like (a/a)x;; compared to Opx;;. Furthermore, the energy of such a
rapidly oscillating waves can be defined through averaging over several wave length and periods,
which then allows us to ignore total derivative terms. With these assumptions, we can obtain
the following energy density:

1
=TSV = A xijO 3.53
PGW tt 397 G< L Xij % > ( )
where (- - - ) represents the average mentioned above. The spectrum of gravitational waves is usu-
ally described by the fraction of the energy density per logarithmic frequency interval normalized
by the critical energy density,

1 dpew
Q = — . 3.54
Gw pe dlogk ( )
The energy density can be expressed as an integral of the Fourier components of x;; as
dk P(k 9
= 3.55
paw = 32WG & i <|xk\ ); (3.55)

where we introduced P(k), called primordial power spectrum, to reflect the initial spectrum of
gravitational waves. As we will see soon below, various mechanisms of generating gravitational
waves in the early universe has been proposed and each model predict different spectrum P(k).
Then, the spectrum at time ¢ is given by

Qo = 51 00 ([GO) = 3 (k) ), (3.56)

where we used the conformal time in the last expression.

In order to obtain what we can really observe, namely the spectrum at present, we have to
evaluate the time evolution of the amplitude ;. As we have seen, yj are given by rather simple
forms in the single component cases (see Eqgs.(3.43)-(3.45)). However, in the long history of the
expansion of our universe after the hot Big Bang, the parameter w of equation of state has not
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been kept constant because different kind of matters are suppressed by different powers of the
scale factor a as we can see from Eq.(2.20). For this reason, we have to analize the evolution
equation (3.37) with the energy density (2.20).

Instead of 7, we can also use the scale factor as a time coordinate. Note that the change of
coordinate n — a is well defined because, as one can see from the Friedmann equation (2.27), o/
is always positive with a suitable initial condition (a’ > 0 at the initial time) unless the positive
curvature term (K > 0) and the matter energy density in the right hand side cancel each other,
which is not realistic situation. By using Eq.(2.28), the evolution equation for the tensormode

can be rewritten as e ,( ) d (k/ )2
d(a ) Hy
* d o (/H)?Y 3.57

[da2 <2g(a) a) da g(a) ] X ( )

This differential equation has at most six singular points at a = 0, co and at the roots of g(a) = 0.
Depending on the value of the density parameters 2, ~ 25, the nature of these singular points
could change. In the most general case, where g(a) = 0 has four distinct solutions, all the
singular points are regular ones, though all but a = 0 lie in the unphysical region, which means
that they are not on the positive real axis of a. When the density parameters satisfy a specific
relation, which can be obtained from the discriminant, some of the roots of g(a) = 0 coincide
to form an irregular singular point, and the behavior of the solution around that point would
significantly change.

On the other hand, the Friedmann equation in the ACDM model (2.28) can be solved in
terms of the elliptic functions, which can be seen by directly considering the integration on
a. Then, with the general property that the derivatives of any elliptic function is also elliptic
functions in mind, we can see that the time evolution equation (3.37) is a differential equation
with elliptic function coefficients. One of the most famous and important equation is the Lamé
equation,

2

% (4 1)p(z) - B| f(2) =0, (3.58)
where n is a non negative integer, B is an arbitrary constant, and p(z) is the Weierstrass’s
elliptic function (see appendix A for its definition and fundamental properties). Lamé equation
arises when one solves the Laplace equation in the so called ellipsoidal coordinate system[l1(].
Later, we will encounter this equation in a model of density perturbation in the early stage of
cosmology (see Sec.8). R. Burger, G. Labahn, and M. van Hoeij[!1] proposed a method to obtain
a closed form solution of ordinary differential equations which have elliptic function coefficients,
including the Lamé equation. There, the authors considered the 3rd order differential equation
associated to the original 2nd order equation (say, Lamé equation). Then what they showed
is that it can be (though not always) solved by a rational function of the elliptic function that
appear in the coefficients of the equation. Because any rational function of the elliptic function is
again an elliptic funciton with the same periods, this result can be stated as that, in some cases,
3rd order differential equations with elliptic function coefficients have solutions which are elliptic
functions as well. Note that such a property doesn’t hold in general cases where the coefficients
in the differential equation are periodic. Except for the 1st order differential equations, as there
are two or more independent solutions, only what one can argue is that a solution shifted by the
period is some linear superposition of a complete set of basis solutions. More explicitly, for a
complete set of solutions {x;}i=1~n to a n-th order equation with coefficients whose periodicity
is w, there exists a matrix 7;; that satisfies

Xi(z +w) = Tyx,(x). (3.59)
j=1

The matrix Tj; is called the monodromy matrix for the differential equation. Unless the set of
eigenvalues of the monodromy matrix contains 1, there is no periodic solution to the equation.
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When the coefficients of the equation are elliptic functions, there exist two independent periods,
hence two monodromy matrices arises. Thus the condition in order the equation allows an elliptic
function solution is further restricted: the two monodromy matrices must be commutative.
After obtaining the solution for the 3rd order differential equation, we can construct the general
solution to the original, 2nd order equation by performing an integral. We review this method
in Sec. 4.

There has been plenty of studies on physical implications of cosmological gravitational waves
discussed so far. First of all, we must cosider possible mechanisms for producing gravitational
waves. For example, gravitational wave production in the cosmic inflation, the first-order phase
transitions, and topological defects have been discussed in the literature. In the cosmic inflation,
the vacuum fluctuations of (a) quantum field(s) (usually a single or several scalar fields) are
extended by the exponential expansion of the spacetime and this fluctuation is considered as a
seed of the various structures in the univers at present. In general, such quantum fluctuations
induce not only scalar perturbations but also tensor perturbations, namely gravitational waves.
We can easily see this mechanism in the simple de Sitter approximation of inflation. As we have
shown in Eq.(3.45), the amplitude of a transverse and traceless tensor field x(n) in the de Sitter
expansion phase is in general given by a superposition of the following form:

x(n) = Cyx+(n) + C-x-(n). (3.60)

Instead of x(n), we define vg(n) = a(n)x(n), in order to get the canonical form of the kinetic
energy. Using the scale factor for de Sitter expansion a(n) = —1/(Hn) and normalizing the basis
solutions vy (n) as

mH?
v(n) = =\ gam)xz), (3.61)
we write the general solution as
o) = ay (kv () + a_(k)o_(n). (3.62)
In this normalization, the basis solutions v (n) satisfies vyv’ —v_v) = —i and behave in the

far past n — —oo as

- tikn
ve(n) — \/ﬂe , (3.63)
which is the plane wave form. Thus, when we promote v(n) to be a quantum field, a4 and a_
are considered to be creation and annihilation operators in the far past. The typical assumption
is the quantum field was in the vacuum state defined by ay, which is called the Bunch-Davies
vacuum in the literature. In this vacuum state, the expectation value of the quantum fluctuations
of x = v/a is equal to v v_/a?, which can be easily calculated as

2 2
{Ix(m*) = 5;3 (1 + HZZ2~(77)> : (3.64)

We can see that the expectation value is ” frozen” once the wave length becomes much larger than
the Hubble scale (k* < H?a?), to a non zero constant. Then, the primordial power spectrum
P(k) is given by

3 2
P(E) == Tim 2 (x(n)?) = (;ﬁ) | (3.65)

The most important feature is that the spectrum is in fact independent of the wavelength of the
fluctuation, namely scale invariant. If one deals with more detailed dynamics of the inflation by
introducing the inflaton field(s) and consider slow-roll models, the power spectrum is slightly
modified and becomes nearly scale invariant. Other modification may come from different choices
of the quantum states. As is well known, there is no unique and preferable quantum vacuum
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state in non stationary spacetime. There has been much discussion on the choice of vacuum
state or even the possibility of excited states[17, 18, 19]. In addition, it may possible that there
existed certain pre-inflationary era before de Sitter expansion started, in which case the power
spectrum would be modified because the wave function used above may not be a simple plane
wave at that time. We will discuss more on this point later in Sec.8.

This significant property of scale invariance holds for a scalar field case as well because
the evolution equation for a minimally coupled free massless scalar field is exactly the same as
that of x(n). The scalar fluctuations generated in this way are reflected in the temperature
fluctuations observed in CMB and verified (though not completely) through the observation of
CMB temperature fluctuations.

4 The third order differential equation associated with the sec-
ond order differential equation

Let us begin with general form of second order linear ordinary differential equation,

X" (@) + p(x)x' () + q(z)x(2) =0, (4.1)

where p(x) and ¢(z) are assumed to be known functions. The problem of solving this equation
appears in almost all all the areas of physics, for example the Schrodinger equation for a given
potential. In this paper this kind of equations arise in the context of linear perturbation on a
given background spacetime. If the background spacetime has enough symmetry, for example
time translation symmetry in stationary spacetimes, the partial differential equations(PDE) for
linear perturbations on that spacetime can be solved by the method of separation of variables,
which reduces the PDE into a set of ODEs. Although Eq.(4.1) for some specific forms of p(x)
and ¢(z) are known to be solved by using well known functions, it is in general hopeless task to
obtain the analytic solution in a closed form.

In such a situation, usually the solution is expressed as a (typically infinite) series of some
known functions. The simplest one is the power series expansion around some fixed point,
which is known as a Frobenius solution. In many cases, the coefficient functions p(z) and
¢(z) have various kinds of singular points, which represents some physical boundaries when the
independent variable x corresponds to one of the spacetime coordinates. Such singular points
are called singular points of the ODE (4.1). Although we can solve for the expansion coefficients
order by order, such a series solution has a finite value of convergence radius. If the expansion
location is a regular singular point, the convergence radius is known to be the distance to the
closest singular point. The convergence radius can even be 0 when the point is irregular, or
indefinite singular point, which means that the infinite series is actually an asymptotic series.

Since Eq.(4.1) is a second order ODE, the solution space forms a 2-dimensional vector space,
in other words any solution can be expressed by a superposition of two independent solutions.
Expansion of the solution around a singular point can give a two linearly independent solutions
(in the case of irregular singular point, it is possible that the power series expansion gives only
one solution).When the ODE (4.1) has two or more singular points, we can obtain several sets
of the two linearly independent solutions which are defined by the analytic continuations of each
series solutions. Then, one of the most important problems in this situation is to understand
how two of such sets are related each other.

One physical example is scattering problem on the real axis with a given potential function.
For definiteness, let us consider the Schrodinger equation,

W () + (V(2) + k*)p(x) =0, (4.2)

where k is a real constant. If the potential decays sufficiently fast at infinity (z — 4o00), the
solution takes the form of plane wave there, 1)(z) ~ e**?_ We denote the ingoing and outgoing
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waves at © — £00 by ¥(x) and ¥ (z) respectively. When the incident wave comes from the

negative infinity, the solution ¢ (x) satisfies the following boundary condition:

P(x) = (@) + R(k)yp2 (z) (z — —o0) (4.3)
= T(k)y" () (x — +00), (4.4)

where we normalize the amplitude of the incident wave to be unity and R(k) and T'(k) represent
the reflection and transmission coefficients respectively. Although the asymptotic form of the
solution can be easily deduced without knowing the preciese form of the potential, these scat-
tering coefficients can be obtained only when the full solution #(x) is known. As this example
shows, it is physically desirable to obtain the exact solution for ODEs.

Let us come back to the general ODE (4.1). Here, we consider, instead of x(z) itself, the
product of the two solution, y = x1x2 following the work[!4]. By using the ODE (4.1), we can
derive the differential equation for y. Because the ODE (4.1) is 2nd order, all the derivatives of
y can be expressed as sums of x1x2, X1 x2 + X1x%, and xjx5. As a result, ¥ can be represented
by using y, v and 3", which means that y satisfies a linear 3rd order differential equation.
This fact can be understood in another way. Since the ODE (4.1) is 2nd order, there are two
independent solutions, say x1 and x2. Then there exist three independent symmetric products,
namely (x1)2, (x2)?, and x1x2. Thus y should satisfies a 3rd order equation.

Now we derive the 3rd order equation for y = x1x2. The first derivative is ¥’ = x}x2 + x1X5,
by using which the second derivative can be simplified as

"n_

y" = —py = 2qy + 2X1 X5
Now we can solve these equations for xi1x2, xjXx2 + X1X%, and X} x5, the third derivative

"

y" = —(py' +2qy)" — 4px1xa — 2a(X 1 x2 + X1X3)
can be expressed by usind y, 3/, and y”. The result is given below:
y" + 3py” + (0’ + 4q + 2pP)y' + 2(¢' + 2pq)y = 0. (4.5)

If one can obtain a solution for this third order equation, then the solutions to the original
second order equation can be constructed as follows. In doing so, we have to distinguish whether
x1 and x2, which consist of y = x1X2, is linearly independent or not. For the solutions of 2nd
order ODE (4.1), it is known that we can construct a constant out of the Wronskian,

C(x1, x2) := exp </p(w)d$) (X1X2 = X1X2)- (4.6)

The two solutions x1 and yz2 are linearly independent if and only if the constant C'(x1, x2 takes a
nonzero value. Similarly, we can define the constant L for two solutions ¥y = x1x2 and ¥y = x3x4
of the 3rd order equation (4.5) as

L(y1,y2) := C(x1,x3)C(x2, X4) + C(x1, x4)C(x2; X3)- (4.7)

By observing that this definition is symmetric under the interchanges (x1 <> x2) and (x3 <> x4),
L(y1,y2) can be expressed in terms of y1, yo and their derivatives,

L(y1,y2) = exp <2 / p(w)dx> [y1 (v + pys + 2qy2) + yo(y] + pyi + 2qu1) — yiys).  (4.8)

Because L(y1, y2) is symmetric, namely L(y1,y2) = L(y2, y1), the square of the constant C'(x1, x2)
can evaluated from the solution y = x1x2 by setting yo = y1 = y in the above formula,

C?(x1,Xx2) = —exp (2 / p(w)dx> [2yy” + 2pyy’ + 4ay® — (v)?]. (4.9)
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When the constant C(x1,x2) for a given solution y vanishes, the solution is actually the
square of a solution for the 2nd order ODE (4.1), i.e. y = x3. In this case we can immediately
obtain the solution x1 = /y. By solving the first order differential equation (4.6) for xo with an
arbitrary nonzero value of C'(x1, x2), a linearly independent solution can be also obtained. Note
that the value of C'(x1, x2) # 0 in this process is not important because this is proportional to
the normalization of x2 and x;.

On the other hand, if C(x1, x2) for a given solution y doesn’t vanish, we cannot simply take
the square root to obatin the solution for the original 2nd order equation. In this case, we regard
the derivative ¥’ = x1x5 + X} x2 and the definition of C'(x1, x2) Eq.(4.6) as a system of 1st order
equations for x; and xs. These two equations can be solved for the logarithmic derivatives of

x1 and x2 as follows:
xi_y C ( / >
= =——-_—exp|— x)dx |,
o2y 2, P p(x)

a_v_C., (— / p(:v)d:c) : (4.10)

X1 2y 2y

where we omit the argument of C(xi,x2) because this is assumed to be a known constant.
Finally integration of these equations give the two independent solutions,

i = VT exp [i; / (; exp ( / p(a:)d:z:) d:c] , (4.11)

where x4+ = x1 and x— = xo2.

One might think that it is as hard (or harder) to solve the third order equation (4.5) as
(than) the original equation (4.1), but this is not always the case. One of such possibilities is
that the ODE (4.1) allows solutions of the form y+ = |x(z)|e**?®), where the squared amplitude
|x(x)|? is a polynomial of z. In this case, by expanding y as a power series one will find that
the recurrence relation for the expansion coefficients terminates at some finite order, so that
the remaining non trivial process is to perform the integration in (4.11). On the other hand,
such a solution could not be found by directly expanding x in a power series because both
the amplitude |x(z)| and the phase factor e*?(®) are in general infinite series of z. Therefore
considering the third order equation can give another way to solve second order ODEs which
have not been solved yet.

Before we apply this method to more complicated problems, we give a few simple examples..
The first one is the simple harmonic oscillator,

X' (x) + k*x(z) = 0.

The generic solutions can be expressed by linear combinations of two fundamental solutions
X1(z) = cos kz and y2(x) = sin kz. Alternatively, we can use another set of solutions as a basis,
x+(x) = et*®. The associated 3rd order equation in this case becomes

y/// +4k2y/ — 0’
whose independent solutions are given by

o =1, ye ==

Note that if we consider the power series solutions around = = 0, y+ is given by infinite series
while yo has a terminate series (just one term). We take yy to construct the solution x. The
constant C? for this solution can be calculated by using Eq.(4.9), which gives

CQ(y()) = —4]{72.
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Because the sign change of C' just corresponds to the interchange of two solutions y.i, we can
take its sign arbitrarily. By taking C(yo) = 2ik, the general formula (4.11) gives x4+ = ™+,
As a next example, we consider the Bessel’s differential equation,

V2

1
o)+ 2@+ (1- 5 ) o) =0,
The associated 3rd order equation now becomes
[0(6 +2v)(0 — 2v) + 42%(0 + 1)]y = 0.

When the order is a positive half odd integer, i.e. v = N +1/2, this equation allows the following
polynomial solution:

2NN £ 1/2) 8 (DP(-N)w 4oy
- 2 2 (1/2 — N)n(—2N)pn!” '

Y

n=0

For this solution, Eq.(4.9) gives C? = —16/7%. By taking C' = 4i/m, the general solution (4.11)
turns out to be the Hankel function,

Xt (@) = B, (@), x-(2) = HY,, ().

In both examples, we observe the constant C is pure imaginary. When C? < 0 and y is
positive, then the solutions xt in Eq.(4.11) are complex conjugate each other and y corresponds
to indeed the squared amplitude of these solutions, namely y = |x+|?. Thus, by analyzing the
solution y for which C?(y) is negative, we can directly see the behavior of the amplitude of y.

Before finishing this section, we briefly discuss the relationship of this method with the WKB
method for solving second order differential equations. The WKB method is typically applied to
the Schroedinger-type differential equation, where the coefficient p(x) is identically set to zero,
namely

X"(z) + q(x)x(z) =0,

and assume the following ansatz:

1
)= ——==exp|—t [ W(x)dz |. 4.12
o) = i exp (=i [ Wiaie) (4.12)
Then, the differential equation for W (z) becomes non-linear,
3 (W(x)\> W'(x)
W2(z) = = - . 4.13
@ =)+ () - sy (4.13)

Usually, we don’t try to solve this equation exactly but instead look for an approximate solution.
Since the right hand side of Eq.(4.13) contains the derivatives of W (z), we can consider a
derivative expansion. In other words, we regard the number of derivatives as an expansion
order. Then, the leading behavior is given by W(x) ~ {/q(x), and higher order terms can be
determined algebraically by assuming the derivative terms of W (z) in the right hand side as a
perturbation. For example, the next leading approximation is given by inserting W = ,/q into
the right hand side of Eq.(4.13),

¢?(x)  q)

This WKB expansion is valid when the derivatives of ¢(x) is small compared to the value of g(x)
itself. If the independent variable x represents some sort of time coordinate, then this expansion
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corresponds to the so-called adiabatic expansion. This point of view will be utilized later in
Sec.8.

Now it is obvious that the WKB ansatz (4.12) and the solution (4.11) constructed from y are
equivalent with the identification y = 1/W under the assumptions p(z) = 0 and C' = 2i. Since
the value of C' can be freely changed by normalizing the solution y unless C' = (as noted, in this
case a solution is directly obtained by x = ,/y.), this identification is essentially always possible.
In fact, the WKB equation (4.13) can be shown to be equivalent to Eq.(4.9) with C' = 2¢ and
p = 0 by transforming W = 1/y. In this sence, the WKB equation (4.13) can be considered as a
1st integral of the 3rd order linear equation for y (4.5). The restriction p = 0 is not critical since
any 2nd order equation can be converted to this form by a suitable change of the dependent
variable y.

Although the correspondence W = 1/y itself seems one-to-one, because y is obtained as a
solution to the 3rd order equation (4.5) which has three independent solutions while W has only
two independent solutions corresponding to the choice of the branch of the square root in the
leading order W ~ ,/q, there should be some degeneracy in this identification. To clarify this
degeneracy, we introduce an inner product in the space of solutions to the 3rd order equation
(4.5) by

Iim) = 5 [P +92) — Cyn) — ()] (415)

This inner product is symmetric and bilinear, and reduces to the value of C? when two solutions
is identical, namely I(y,y) = C?(y). Also, note that this definition is valid for p(z) # 0. Since
y must be a product of two solutions of a second order equation, we can always take a basis
solution 41,2, and ys3 such that C%(y;) = C?(y2) = 0 and C?(y3) # 0. Explicitly, this can be
realized by y1 oc (x1)%, y2 o (x2)?, and y3 o x1x2 With any two independent solutions x; and
X2. Then, by direct computation one can verify that the matrix I;; = I(y;,y;) can be cast into
the following form with a suitable normalization of y;:

01 0
Li=[10 o], (4.16)
00 -1

which implies that the signature of the metric in the solution space of y is Lorentzian. In this
space we can choose two independent null direction, which corresponds to the choice of the
square of two independent solutions (x1)? and (x2)?. Once two null directions are fixed, there
remains unique space like direction orthogonal to both the null direction, which corresponds to
the product of these solutions x1x2. One can form a time-like and space-like basis from two null
directions y; and y2 as y+ = (y1 + v2)/V/2.

Each choice of the two null direction in 3-dimensional Minkowski space is in one-to-one
correspondence to the point of the circle S, reflecting the degrees of freedom of rotation in
the 2-dimensional plane of the solution space for x. The metric I;; itself doesn’t distinguish
any of these solutions, i.e. Lorentz invariant. Note that the boost transformation changes the
normalization of x; and y2. These Lorentz transformations in the space of y are exactly same
as the SL(2,C)/Z5 transformations in the space of x that preserve the Wronskian W (x1, x2) (or
equivalently C'(x1,x2)). The division by Z, originates from the fact that y is invariant under
the sign change of x.

In any one of basis where the metric is represented by the matrix (4.16), what is really
identified with the WKB factor W (z) is y3 since y; and y2 are null. Among the three basis
Lorentz transformations (1 rotation and 2 boosts), the boost along the direction of y_ (imagi-
nary rotation about ys axis) is the only transformation that preserves ys, while the remaining
transformation, the rotation about y, axis and the boost along the direction of y3 do change
ys. Thus the degrees of freedom in the choice of y3, hence W, is really two.
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5 3rd order differential equation for the gravitational waves on
FLRW spacetime

In this section, we apply the method explained in Sec.4 to the time evolution equation of
gravitational waves on FLRW spacetime, namely Eq.(3.57). We apply the general formula (4.5)
to this case by identifying

(k/Ho)*

_9@ 2
T " 1T g ol

As a result, we obtain the following equation:

d3 3g'(a) 6 d? g"(a)  44'(a) 6 4(k/H0)2 d 8(k/H0)2
{da3+(2g(a)+a>da2+( + ++>da+agm)]y 0
(5.2)

29(a) ~ ag(a)  a? g(a)
Because the coefficients of this equation are all rational function of a, we search for solutions
which are rational in a. Specifically, we consider the following ansatz:

P(a)
Q(a)’

where P(a) and @(a) are polynomials. Rational functions in this form has in general several
poles at the zeros of Q(a). If we demand this expression to be a solution to the differential
equation, The locations of these poles must coincide with the singular points of that equation
because differentiation of a finite order doesn’t change the position of poles. Thus, we can
decompose the above ansatz in partial fractions of 1/a and 1/(a — a,), where a,, (n =1 ~ 4) are
the roots of g(a) = 0. Furthermore, we assume the order of the polynomial P(a) is less than or
equal to that of Q(a), which restrict the solution y to decaying (or possibly constant) modes in
the far future a — oco. In order to determine the possible order of these singularities, we assume
y ~ 1/(a — a,)™ in the limit @ — a,. Because g(a) < (a — a,) when a, is not a degenerate
root, only the first and second term in the above differential equation contribute to the leading
order. As a result, we obtain the determination equation for the index N,

p(a)

y(a) = (5.3)

which implies that actually y cannot be singular except for a = 0 when the roots of g(a) are all
distinct. On the other hand, if any two of four roots coincide, i.e. g(a) = 0 has a degenerate
solution, the behavior of g(a) around that point becomes g(a)  (a—a,)? and the determination
equation for N,, would be altered. However, in such a case it turns out that the determination
equation contains the wave number k£ and N,, becomes complex and dependent on k in general,
which means that the ansatz are no longer adequate. Therefore we only consider the solutions
y that is non singular at the roots of g(a) = 0 hereafter.

Effectively, this assumption with the ansatz above is equivalent to restrict ourselves to poly-
nomial solutions in 1/a. For that purpose, at first we expand y as

y=) (5.4)

and derive the recurrence relation for the coefficients y,,. In doing so, it is useful to rewrite the
equation for y, namely (5.2), by using the differential operator § = ad/da instead of d/da. This
can be easily done by noting the identity a’(d/da)’ = (0 —1)---(6 — j + 1) and the result is
given below,

4 .
. A4k?
E bja’0(0+ 5 +2) <¢9+1+‘;) +ﬁa2(9+2) y =0, (5.5)
=0 0
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where we define for notational simplicity
bo =, b1 = Qp, by =0k, b3 =0, by = Q. (5.6)

As we have mentioned in the previous section, this is equivalent to search for doubly periodic
solutions when we take the conformal time n as the independent variable because the solution
to the Friedmann equation (2.28) is in general elliptic functions.

Although b3 = 0 in the standard ACDM cosmology, from now on we include this term in our
consideration of the recurrence relation. This term corresponds to some exotic matter whose
energy density is proportional to 1/a and physical relevance of such a matter will be discussed
later.

Now substituting the expansion (5.4) into the third order equation (5.5), we obtain the
recurrence relation for y,. As one can see from Eq.(5.5), y, obeys a five term recurrence in
general, of which general solutions cannot be obtained. However, recalling that ¢=" is the
eigenfunction of the operator 6 with the eigenvalue —n, the first few recurrenc relations gives
relations only among less terms. The most notable restriction comes from the coefficients of a3
and a2, which gives

b4y1 = (/{/HQ)QZM =0. (57)

The latter equation leads to y4 = 0 unless k& = 0, namely zero mode. Since the zero mode
solution for x can be easily obtained directly from Eq.(3.37), which will be discussed later, we
assume k£ = 0 and so y4 = 0 in this section.

From the coefficient of a™" with n > 3, we obtain the following recurrence:

0=>bs(n+4)(n+1)(n = 2)ynta + b3(n + 3)(n + 1/2)(n — 2)ynt3
+ [ba(n + 2)(n — 2) + 4(k/Ho)*] nyn+2
+by(n+1)(n—1/2)(n — 2)yns1 + bon(n — 1)(n — 2)yy. (5.8)

We can regard this recurrence as a specific example of the following general five term homoge-
neous recurrence relation:

0= Anyn+4 + Bnyn+3 + Cnyn+2 + Dnyn—l—l + Enyn (59)

Let us consider the condition under which the recurrence relation allows a finite term solution.
We denote the index of the first term and the number of terms of such a solution by ng and
N (> 1) respectively. In other words, we assume y,, = 0 for n < ng and n > ng+ N —1. Then, the
recurrence relation (5.8) gives non trivial constraint only for from n = ng—4 ton =ng+ N —1,

0 - An074y’n0’
0= An073yno+l + Bn0*3yn0’

0= DpotN—2Yno+N—-1 + Engt N—2Yno+N-2,
0= FEnogt+ N—1Yno+N—1-

In general, this is a over determined system because there are N +4 equations for the N variables
Yngs """ s Yng+N—1. 1n order to allow a non trivial solution, the rank of the (IV +4) x N matrix of
the coefficients must be less than N. The unknown number ng and N can be determined from
the necessary conditions 0 = A,,—4 = E,,+n-1 because yp,Yn,+N—1 # 0 by definition. After
that, we can consider the (N + 2) x N matrix that consists of the remaining equations for the
given value of ng and N, and can (in principle) write down the condition for the existence of a
non trivial finite term solution.
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We apply this argument to the specific case of Eq.(5.8). In this case we have
Ap=bi(n+4)(n+1)(n—2), E,="bon(n—1)(n—2). (5.10)

Note that if by = 0, A,, vanishes identically and so we have to require B,,_3 = 0 instead of
Apy—a = 0. Similarly, we take D, +n_2 = 0 in place of E,,yn_1 = 0 when by = 0. Such cases
are discussed later. Assuming bsby # 0, possible pairs of (ng, N) turn out to be (0,1),(0,2),
and (0,3). Furthermore, as we have mentioned earlier, Eq.(5.7) is required in any case. Since
we are now assuming by # 0, this leads to y3 = 0. Then, one of the possible pairs, namely
(ng, N) = (0,2) is identical to (0,1). We consider the remaining three possibilities in the
following.

(ng,N) = (0,1) In this case, only non trivial equation is given by Eq.(5.8) with n = —2,
0 = (k/Ho)*yo,

which, provided that k # 0, has only trivial solution yg = 0.

(ng, N) = (0,3) In this case, there are three constraints among two variables yo and ys, which
are given by
0 = b1y = bsyz = baya — (k/Ho)*yo-
Thus, if and only if by = b3 = 0, there is a polynomial solution,
2

k
=b —. 5.11
Yy 4 + Hgaz ( )

Now let us turn to the case where either by = 0 or by = 0. When by = 0 but still by # 0,
the condition at the boundary becomes B,,-3 = E,,+n-1 = 0. For our equation, B, =
bs(n + 3)(n + 1/2)(n — 2) and the possible pairs are found to be again (ng, N) = (0,1), (0, 2),
and (0,3), but in this case we don’t have to require y; = 0. However, we can see that the first
case is actually impossible because the equation for yg doesn’t change from the previous case.
Therefore we examine the latter two cases.

(ng,N) = (0,2) There are three constraints for yo and yi,
0 = 3bays + (3ba — 4(k/Ho)?)y1 = (3ba — 4(k/Ho)*)y1 = biy1.

We can immediately see that there is only the trivial solution yg = y; = 0.

(ng, N) = (0,3) In this case, there are for equations for yg, y1, and ys,
0 = 3bgy1 — 4(k/Ho)?yo = 3bsya + (3ba — 4(k/Ho)*)y1 = biy1 = brya,

from the last two of which imply b; = 0 for non zero solution. Then the other two equation
gives y1 and yo interms of yg, and we obtain the following polynomial solution:
12k%b3  4(k/Ho)?(4(k/Hp)? — 3bo)
H2 + 2

ba a

y = (3b3)% + . (5.12)

The next possibility is by = 0 but by # 0, in which case we require A,;—4 = Dyp,4n—2 =0
as necessary conditions. From the expression D, = bi(n + 1)(n — 1/2)(n — 2), we obtain
(ng, N) = (0,1),(0,4), and (3,1). Since the procedure is identical to the previous cases, we only
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state the result. A non trivial polynomial solution can possible only for the case (0,4) with the
additional constraint b3 = 0, and the solution is given by

k%(4(k/Hg)? — 3bg)  b1k?

= by(4(k/Hp)? — 3b .
y = by(4(k/Ho) 2) + H2a? HZa?

(5.13)

Finally, we consider the case where by = by = 0. In this case, we demand B,,,_3 = Dp,+n—2 =
0 and only non trivial possibility turns out to be (ng, N) = (0,4). There are four equations for
the four variables yg, -, ys3,

—8(k/Hy)? 6b3 0 0 Yo
0 3by — 4(k/Hp)?  3b3 0 1
0 b1 0 —3b3 Y2
0 0 —b1 —362 + 4(k/H0)2 Y3

Fortunately, the determinant of the coefficient matrix is identically zero, which allows the fol-
lowing polynomial solution:

12k%bg  4k%(4(k/Ho)? — 3bo) N 4k%by
HZa HZa? HZa3"

y = (3b3)% + (5.14)

Now let us summarize the result obtained so far. We have examined the solutions for the
third order equation (5.5), in particular solutions that are rational functions of a. It turned out
that only possible singularities (poles, in the case of rational functions) are at a = 0, under the
physical assumption that y is bounded in the limit a — oco. Then, by expanding y as a series
of 1/a, the expansion coefficients are determined by the five term recurrence relation (5.8). We
found that there are four non trivial cases where the recurrence allows a finite term solution.
These solutions are listed below:

by = by —
k‘2
SR Kby | A(k/Ho)2(4(k/Ho)? — 3by)
12 3 4 H() 4 HO -3 2
= (3b3)? ) 1
y = (3b3)2 + et -~ (5.16)
by = bs = 0 2
Ak/Ho)? — 3by b
== H202  3bs  A(k/H)? —3by b
9 3 _3
_ 093 4 3 + ( / 0) 2 _f_il (518)

4k2 a a? a3’

These solutions can be used to construct the amplitude of tensor mode x by performing the
integration in the general formula (4.11). In the following sections we perform this integral in
each of these cases and give the explicit solutions. Also, physical relevance of these solutions
will be discussed.
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6 Gravitational waves in §2,Qx ) # 0

In this section, we consider the FLRW spacetime with the non relativistic matter, cosmological
constant, and spatial curvature. From the view point of the real universe, this spacetime can
be regarded as a model for expansion of our universe after the radiation component becomes
negligible. The observations of CMB so far have revealed that our universe is almost spatially
flat. In this sence, it’s enough to consider the case where 2 = 0. Nevertheless, we derive the
explicit expression for the scale factor and the gravitational amplitude with non zero curvature
term for completeness.
Let us begin with the Friedmann equation (2.28), which in this case reduces to

d 2

(da) = HZ (bra + baa® + bya?) . (6.1)
n

In order to solve for a in terms of the Weierstrass’s elliptic function, we need some changes

variables to convert this equation into the ”standard form” (A.9). Such a transformation can

be found in, for example (HTF vol.2). In our case, we introduce the new variable z and 7 by

1 1
- 5= >\/bHyn. 6.2
O A 1T g Vi (6.2)

Then, we can arrive at the following equation,

di\?
i = 4%° — g2 — g3, (6.3)

where the constants are defined by

205\ 2 20, \°  4by
=32 - (=2) -2 6.4
g2 <3b1> , g3 <3b1> bl ( )

This is exactly the differential equation for the Weierstrass’s function and the general solution
is given by & = p(71 — 7jp) with a integration constant 79. We choose the origin of the conformal
time so that a = 0 at 77 = 0, which leads to 7j9 = 0. Thus, the solution for the Friedmann

equation is given by
1

= S — bl
Since p(z) has a second order pole at the origin, in the early epoch (77 ~ 0) the scale factor
behaves as a ~ 72, which shows the evolution in the matter dominant era as we have seen in ...
As 7 gradually increases along the positive real axis, the value of p(7) decreases and eventually
becomes equal to be/3b1, where the scale factor diverges. This means that physical domain
of the conformal time 7 is an interval 7 € (0,7), where the endpoint 7j; is defined through
©(7¢) = ba/3b1. The value of the derivative ©'(77y) can be obtained by using the differential
equation (A.9). Although there is an ambiguity of sign, the above discussion shows (7)) must
be negative. Then, by considering the expansion of @(7) around 7¢, we obtain the asymptotic

form of the scale factor,
()~ 2y Giip) (6.6)
a ~ — — = oy ~ .
2\ by — 7 n~nf

which clearly shows the de Sitter expansion.

To completely understand the behavior of the scale factor, we have to determine the funda-
mental periods of the elliptic function, wy and we, and the value of the end point 7j;. The inverse
relation for p(7) and 77 are given by (A.10), or equivalently (A.11), which in this case we write

(6.5)

o0 dz o0 dz
- = . 6.7
! /go(ﬁ) VAT — go — g3 /go(ﬁ) VAT — e1)(T — e2)(T — e3) (6.1
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Since the discreminant D for the polynomial in the square root becomes negative, D = —27by(by+
4b3) < 0, one of the branch point of the integrand is real and the other two are complex conju-
gate each other. We take e; € R and the imaginary part of ey to be positive. As is discussed in
the appendix A, we can always take one of the half periods, say w1, to be real positive. Because
only e; is the branch point on the real axis, wi can be now evaluated by the following integral:

= di
e / JAE —e1) (T —2) (@ —e3)

By a suitable change of the integration variable, we can express this integral by using the
complete elliptic integral of the 1st kind,

(> 0). (6.8)

1

w1 = K<q)7 (69)
[(e1 — e2)(er — )]/
where P
4 de
K= [ = (6.10)
0 1—¢g?sin“6
and the modulus ¢ is given by
1 es +e3 — 2ep
qg=,/z+ : (6.11)
\/2 4y/(e1 — ez)(e1 — e3)
Note that the real root e; can be explicitly expressed by using g2 and g3 as
1 1/3 % -1/3
o=z (Vi-@rm) + 2 (V- @pree) (<0 ©12)

Also, the real part es + eg and the squared absolute value eses can be determined through

1
e1+es+e3 =0, ejeses = 19 (6.13)

Thus we can now easily evaluate the half period w; directly from the cosmological parameters
b1, by and bs. Another half period, say ws, can be defined by for example

/ o0 dz

W2 = = = o~ )
es VAT —e1)(T —e2)(T —e3)
where in this case we have to be careful about the path of integration. When the path goes

along the two line segments one of which connects es and e; and the other connects e; and +o0,
with a suitable choice of the branch, we can obtain

(6.14)

1 i 1
Wy = —W1 — =
2 2 [(e1 — ea)(e1 — e3)]"

2K (@), (6.15)

where the mudulus g is given by
1 -2
G= |- ——2ts—fa (6.16)
2 4y/(er —ea)(e1 —e3)

In order to evaluate 7j;, it is convenient to use the scale factor itself as a integration variable
because 7] = 7}y corresponds to a = co. Then, the integral expression for 7; is given by

i _1/°° da
T72)0 Vat (a/br)a® + (bajbr)ad’

(6.17)
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Figure 1: Fundamental lattice points of p(77) when by = 0.3,b2 = 0,b4 = 0.7. A magenta line
segment corresponds to the physical interval.

which can be converted into the standard form of the elliptic integral as

Now let us consider the gravitational waves on this background spacetime. As we have
seen, the time evolution of the squared amplitude y of the gravitational waves on this spacetime
can be represented by the polynomial (5.17) of 1/a. Another factor of the waves, namely the
time evolution of the phase, can be obtained from the general formula (4.11) by performing the
integral including the amplitude ,/y. Before that, we need the constant C' associated with y
through Eq.(4.9). For the solution (5.17), we obtain

C2 = —(1—by/k?) [4/52(41;2 — 3by)? + 27b§b4} = (iC)?, (6.18)

where we define k = k /Hy. Now we write the solution xt as
iC da
X+ =+yexp | £— / — . (6.19)
( 2 a2y\/g(a)>

We can use the Friedmann equation to convert the integral variable from a to 7,

. Vb1 da B ﬁ
1= /a2y\/g(7)/a2y. (6.20)

By recalling that the scale factor as a function of 7 is given by (6.5), the integrand can be written
as a rational function of the elliptic function (7). Actually, y is a third order polynomial of
©(7), and the integral I can be written as

=1 (p(77) — ba/3b1)%dn
b1 ) (p(7) — (c1) (o) — (c2))(p(7) — p(c3))’

(6.21)
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where p(¢;) (i = 1,2,3) are the roots of y = 0 as a polynomial of (7). More specifically, they
are the solutions for the following equations:

4(k* —b
@1+@2+@3——(bz)7
1
bo(7hy — 8K?)
P12 + P23 T P301 = TR
1
by(4k2 — 3by)  4k2 — 10by/3 [ by \?
= — = — — 6.22
P10203 e ™ ;) (6.22)
where we use simplified notation p; = p(¢;). The integral can be decomposed into partial
fractions,
3 ~
1 dn
=— Ai/~, 6.23
b Z; (1) — pi (6.23)
where the constants A; are given by
— by /3b1)? — by /3b1)? — by /3b1)?
A = @ =bf30) o (e ba/3b)T (95— ba/3by) (6.24)

(o2 — o) (w3 —p1) 0 (p1—p2)(p3 —p2) > (92— 3)(p1 — 93)°

Note that this decomposition can work only when the polynomial y has three distinct roots,
which is assured because the discriminant D is always negative

D = —by(4 — 3by/k?)? |4k (4k* — 3by)? + 27b%by| < 0. (6.25)

Also, this fact shows one of g; is real.

In order to evaluate the remaining integral, we utilize the addition theorem for the function
((z), Eq.(A.29). Since the function ((z) is the logarithmic derivative of o(z), we can integrate
Eq.(A.29) with z = 7,w = ¢;,

1, / dn 1 N o(n+¢) -
-0 (¢ ———— = —log (p(n) — plc logi—i—(cl« 7. 6.26
59 () p(n) —plc) 2 i) = elei)) = a(n)o(ci) (i) (6:20)
Thus, by inserting this result into Eq.(6.19), we obtain the following expression:
(o))
— +ikn a\n)o(¢; > 6.27
o ()] e
where the exponents ¢ and O; (i = 1,2, 3) are defined by
3 ~
CA;
k=2 C(Cl)ez, @z = = - (628)
; (b1)*/2¢/(c:)
Another addition theorem (A.28) enables to further simplify this expression,
" 77) +i0;
iRl . 6.29
= Ve H < o(ci+ 77)) ( )

The constants p(c;) are the roots of the third order equation, of which explicit forms are

given by
4];2 — 352 Oéj 3()2 1/3
N 2 0 (= C — /27b%b
@(CJ) 301 301 < 4k2) ( 1 4)
4k% — 3b by\ /3 —2/3
_ (Bbf’?)a; (1 - z/;> (C - \/27b%b4> : (6.30)
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Figure 2: Numerical plot of x4 (7) with by = 0.3,b2 = 0,b4 = 0.7 and k = 10.0.

where o = e?m=1/3 (j = 1,2,3) are square roots of 1 and

C = \/4152(41%2 — 3bg)2 + 27b3by. (6.31)

Note that although this expression uniquely determine the value p(c;), ¢; itself is not determined
uniquely because of the periodicity and even parity of p(z). However, the solution (6.29) is
invariant under both the change of the sign ¢; — —c; and the translation by the periods
¢j — ¢ + 2w;, so we can arbitrary choose each c;.

In the following, we restrict ourselves to the case of bs = 0, i.e. spatially flat case. Since
cosmological observations so far indicates our space is almost flat, the solution obtained here can
be considered as a model for gravitational waves propagating in the cosmological scale after the
radiation energy density becomes negligible. In the early epoch in this model, the energy density
of non relativistic matter by = €, dominates the universe while after the matter-A equality the
universe begin to accelerated expansion. As we have seen in Sec.3, in each epoch where the
energy density consists of only single term, the gravitational wave equation can be solved by
using elementary functions. Although our exact solution (6.29) seems rather non trivial form
even when by = 0, it should include these elementary function solution as limiting cases. To
explicitly confirm these limits is important not only for verifying Eq.(6.29) is indeed the solution
but also for giving the matching condition for the two limiting solutions.

First we take by — 0, which corresponds to A-dominant limit. Note that in this limit the
physical interval of the normalized conformal time 7, namely (0,7y), shrinks to a single point
as you can see from the integral expression (6.17). Instead of 7, we have to use the original
conformal time 7. We change the origin of 7 from (6.2) as

- 1
— iy = 5 Vb Hop, (6.32)

In order the limit to be finite. More precisely, since the asymptotic behavior of 7; is proportional
to (bl)l/ﬁ, matter epoch 7 ~ 0 corresponds to n ~ —oo. As the relevant region in this limit is

At

32



7 ~ 7, we expand the elliptic function around this point, which can be obtained by repeated
use of the differential equation (A.9),

o) = ) i) + S5 )+ 0005 7)), (6.3

By keeping the variable n finite, this expansion shows that in the limit b — 0 the elliptic
function converges to p(77) — —Hon. Then, the scale factor is given by

a(n) = ———, (b1 = 0) (6.34)

which is exactly the scale factor for the de Sitter expansion. Note that we have used the
constraint by + by = 1.

In order to obtain the asymptotic form of the gravitational wave amplitude (6.29), we have
to consider the position of ¢; in this limit. From the exact expression of p(c;) (6.30), the leading
behavior can be found to be

~2 . .
oc1) — f%, o(c2) = =, ples) = —. (6.35)
1 k k
Recalling the fact that only the singularities of (7) is the origin 77 = 0 and the congruent points,
we take ¢; so that ¢c; — 0 in this limit. Then, we can use the leading behavior p(7}) = 1/72+0(7?)
to deduce the following:
Vb1

o — iYL 6.36
! 2% (6-36)

On the other hand, because p(c23) are finite we can use p(77) = —Hon, which gives

- Vb . ivb
CQ‘)T]‘)“\Q/;, 03%17f+ \2/];

The leading behavior of the constants appearing in the exponents, x and ©;, turns out to be

(6.37)

i i i 2k

O =>+-,0 = ——, 03— -, K> ——.

1 9’ 2 9’ 3 9’ oY \/E

We here observe that the exponent x7) is indefinite in this limit because 7 — 7y = O((by)/)
with n kept finite. In order to obtain the definite limit we normalize the amplitude as

(6.38)

~ 7. 3 n N ‘ i
X+ (7) :\/1 k2 n b1 im(ﬁﬁf)H{UEC"_n)G(Ci—FW) i®' (6.39)
g
=1

= +— e ~ .
X£(7f) bsa?  4bya® ¢i —if)o(ci+17)

Then we can see that the exponential factor converges to e=(1—=75) — ¢*ik1  The remaining
factor is the sigma function part. Since c; vanishes faster than 7 and 7jf, i = 1 factor in the
above expression just gives 1. On the other hand ¢ = 2 part gives non trivial factor as follows:

o(ca — 1) N o(—iv/b1/2k — Vb Hon/2)
o(ca —7y) o (—iv/by/2k)

and ¢ = 3 part are just the complex conjugate. Finally, combining all the results we obtain

— 1 — ikn, (6.40)

X (7) i) ik
7Xi(ﬁf) — (1 Fikn) K (6.41)

Next let us take the other limit, by — 0. In this case, we don’t have to change the origin of
the conformal time and the two coordinates 7] and 7) are connected as

1
1= 5Hom. (6.42)
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Furthermore, since go = g3 = 0 in this limit we can directly integrate the differential equation
(A.9) to obtain the scale factor in matter dominant era,

2
p(ﬁ)—>f’12 = a(n) - <HQ°’7> . (6.43)

Also, similar calculation to the previous case shows

3
X+ (n) — <H2> (1 F ikn)e=tn. (6.44)
on
As a model for relic gravitational waves generated in the early universe, we have to consider
the initial condition for x(n). Because the solution obtained in this section is applicable only
after the radiation component of the energy density becomes negligible, we need some boundary
condition at the transition from radiation-dominated era to matter-dominated era. Although we
don’t know the analytic solution there, the relevant wave modes for future direct observations
should be almost constant mode around the transition, otherwise the amplitude is suppress
with the expansion and it becomes impossible to directly observe. Thus, we look for the specific
superposition of the basis solutions x4 (n) that behaves as almost constant mode at n ~ 0 in
the super-horizon limit. Let us first consider the expansion of Eq.(6.29). The absolute value ,/y
can be easily expanded with the help of the expansion of the elliptic function (A.6). To expand
the phase factor, we note that the n-th logarithmic derivative of o(z) is given by
n
Tlogo(z) = =" (2). (n > 2) (6.45)

By using this identity, we obtain
p®n (e, (6.46)

which then gives the following expansion around 7} = 0 of the phase factor:

:I:mn H < )):I:z@ ~ oxp 4 ZK ~2n+1 (6 47)
c] +17) i ’ ‘

n=1

where the coefficients K,, are defined by

3
(gnil); > 050" D (ey). (n>1) (6.48)
j=1

K, =
In principle we can calcualte the explicit expression of K, for arbitrary order n by using the
value of p(c;j) given in Eq.(6.30) and the differential equation (A.9). Actually, because K, is
symmetric under any permutation of ¢;, we don’t need the explicit expression (6.30) but only
Eqs.(6.22) are enough. For our purpose, we take only the leading term in 77 — 0, namely K,
which turns out to be

~ ~ 3
C 1 4k2 27by
K =——- — —_— — (b 0 6.49

1 3(()1)3/2 - 3 < by ) + by ( 2 = ) ( )

Note that the first expression holds even when by # 0. Then, we obtain the expansion of y+

around 7 = 0,
b 7.2
n b1

x+(n) = i+ K70 + O(ﬁ4)) . (6.50)
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Figure 3: x¢ with several values of k.

We can immediately see that the specific combination xc(n) := (x+(n) —x=(n))/(2i) is the only
non singular solution around 77 = 0. Furthermore, one can easily verify, though we don’t show
explicitly, that the next-leading order coefficient of the power series expansion is proportional
to k2, which means in the super-horizon limit & — 0, xc(n) really behaves as almost constant.
To understand the super-horizon limit of the solutions, we next consider low frequency expan-
sion. Taking the limit & — 0 directly in the expression (6.29) is not so straightforward because
we have to examine the behavior of ¢;. Instead, we directly solve the evolution equation (3.37)
with the assumption that x+ (1) = fi (1) +k>g+(n) +O(k*), where fy and g4 are k independent
functions. As we have mentioned in Sec.3, the leading term, namely zero modes, are in general
given by the constant mode and decaying mode (3.38). In our case, the integral expression for
the decaying mode can be performed by using the second order differential equation satisfied by

the elliptic function,
. 1
o' () = 69°(7) = 5.9 (6.51)
Together with the condition by = 0, we conclude that the general solution of zero mode is given
by

2B
A+ By (i) = T A+0(i). (6.52)

By comparing the last expansion with Eq.(6.50), the leading term fi(n) turns out to be

fan) = V1 (@’(ﬁ) ¥ 2\/3bT> . (6.53

The next order term g1 can be obtained by solving the zero mode equation with a inhomogeneous
term,

[dz 2¢'(7) d

= - dn} 9s(0) + 1 £2) =0, (6.54)
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which is derived from the evolution equation (3.37). We can integrate this equation for g+ and
the integration constants are determined again by comparing the result with Eq.(6.50). The

result is
L2 g A BT [ e
1) = =) F S5 [ et [ s (6.55)

Let us consider the energy density spectrum of this gravitational wave solution. In the
general formula (3.56), we need to take average over several periods. To perform this, it is
useful to rewrite the basis solution (6.29) as x+ = \/gjeiw, where the phase factor 6 as wel as
the absolute value of the amplitude /y are functions of 7. As we can see from Eq.(5.17), the
amplitude ,/y is given by a polynomial of the reciprocal of the scale factor while the phase factor
e shows oscillatory behavior in the sub-horizon regime. Thus, we approximate the averaging
by simply keeping terms which don’t contain this phase factor and ignoring the other terms. As
an illustration, consider the averaging for the purely positive frequency solution y; = \/ﬂew.
The squared absolute value of the derivative is given by

dyi|?  dxsdx- 1 [dy\? o\
‘ I . <y> +y () : (6.56)
dn dn dn 4y \ dn dn
which doesn’t contain any e hence the averaging for this solution just gives

2
(6.57)

2
A7 | dx
dn dn
One important note is that though this expression includes both y and 6, in fact, what is really
necessary is the amplitude y. As we have mentioned (see the discussion above Eq.(4.5)), the

symmetric products of two solutions x1, x2 and their first derivatives can be expressed in terms
of y and its derivatives. In particular, we have in this case

dx+dx- 1 d’>y  ldady 4k?

i i 2dip adidy bV (6.58)
Using the polynomial form of y, Eq.(5.17) and the Friedmann equation (6.1), we obtain
dyy|? AR2(4k% —3by) 12k 9b
S 2) =L (6.59)
dr bia? a3 a*

Then, from the general formula (3.56), the spectrum for the specific solution x4 is given by a
rational function of the scale factor

Qaw (6.60)

B 9672¢g(a) a? a? at

P(k)a® | 4k%(4k® — 3by)  12bk>  9b?

+ + .
We have to move on to the case of cosmologically relevant solution x¢. In this case, we need to
consider the averaging of the following expression:

? ldxgpdy- 1| (dxs 2+ dx-\’ (6.61)
C2diy di 4|\ di dn ' ‘

As we have noted, we ignore the last term in the averaging because they contain the oscillatory

factor e¥2. Then, we can see the remaining term gives just a half contribution of the spectrum

for x4+ given above. Also, we have to care about the normalization of the solution. So far, our
convention is such that yc(n) — b1 K1 as 7 — 0 and this gives a non trivial k£ dependent

dxc
dn
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normalization. We now normalize the solution so as to x¢(n) — 1 as n — 0, which finally gives
the following spectrum:

3b2a2 P (k) bo\ N[y, - -1
Qaw =212 (1-2= 4K2 (4k% — 3b9)? + 27b%b
GW 647729(0) ( ]{2> |: ( 2) + 1 4:|
4k%(4k% — 3by)  12b1k% 9B
X [ CL2 + CLS ? (662)

This treatment of averaging is valid only when the mode comes into the sub-horizon regime,
k > aH. To examine this condition, we first identify the horizon crossing time 7 for a given
mode with frequency k. By definition, 7 satisfies

2k 1lda .
ﬁ = g%(ﬁk)- (6.63)

Before solving this equation, we must be aware that the right hand side, which is the comoving
Hubble scale, has the minimum value because the comoving Hubble scale increases in the matter
dominated era while decreases in the cosmological constant dominated era. To find the minimum,
we take the square of the comoving Hubble scale and use the Friedmann equation to obtain

1 (da\? 1 by

We can easily find the minimum value 6(2b4/b1)"/3 at a = (b1/2b4)"/3, which is slightly earlier
than the matter-A equality. Thus, the horizon crossing can occur only for the mode with
frequency larger than k,;, given by

. 3
Fomin = \@ (262b4) " (6.65)

By inserting the standard value b; = 0.3,b4 = 0.7, and Hy = 70 km/s Mpc at a = 1, we obtain
the minimum frequency vimin = kmin/27 ~ 0.3 X 10~'8Hz, or equivalently the maximum wave
length A\pax ~ 300Gpc. Taking the square of the crossing equation and using the Friedmann
equation, we obtain the 3rd order equation which determines the scale factor at the crossing,
72
@) — (i) + - =0 (6.66)
4 4
For sufficiently large value of k, namely k > kmin, this equation have two positive solutions,
which correspond to the horizon entering and exit respectively. In order the formula for the
spectrum above to be valid, k must be much larger than l%min and at the same time, a should
not be so large or small. More precisely, denoting the scale factor at the horizon enter and exit
by a1 and ag respectively, a; < a < az must hold. Note that necessary condition a; < ag is
assured by k> lz:min.

7 Relic gravitational waves in quintessence universe

In this section, we construct the exact solution x(7n) corresponding to the polynomial solution
(5.18). Although, as far as we know, there is no matter whose energy density dilute as p < 1/a
with the expansion of the universe, we consider this background spacetime as an effective model
of the quintessence scenario for the late time acceleration.

As in the previous section, we first consider the Friedmann equation

d 2
(d:;> = H2 (bya + bya® + bya®) . (7.1)
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Because the right hand side is already a 3rd order polynomial, the standard form of Weierstrass’s
elliptic function can be achieved by shifting the scale factor a = x — ba/(3b3) and normalizing
the conformal time 77 = /b3 Hon/2,

dzx

2
(dn> — 4P~ gor— g, (7.2)

where the constants go and g3 are given by

2, \>  4by 205\ 4byby
=3(=2) -2, —_ | == ) 7.3
92 (3bg> by P 30;) T 32 (7.3)
Again, the general solution is given by x = o(7 —17)y) with an integration constant 7¢. Physically
relevant region is from a = 0 to a = co. We set the origin of the conformal time as the initial

time, namely a(0) = 0. Then, the constant 7j; is determined by the equation p(7;) = b2/ (3b3).
The other endpoint of the conformal time is 7 = 77, where the scale factor diverges as

1

o) = G e

(7.4)

In order to determine the periods of this elliptic function, we have to see the locations of the
roots of 43 — gox — g3 = 0. The discriminant D for this equation is found to be

b\ | [b2\? 4D

p=(3) Kb) - b] ’ (75)
whose sign is indefinite depending on the density parameters. We first assume D < 0, where the
solutions for the 3rd order equation consists of one real solution e; and two complex solutions
e9,e3. Actually, the real solution is given by e; = by/(3bs), which can be easily verified from
the original form of the Friedmann equation (7.1). Regarding the result of observations, this
case including bs = 0 is physically more attractive. The half periods for this case are formally
given by the same expressions as in the previous section, namely Eqs.(6.9) and (6.15), because

the configuration of the roots ey, es, e3 is the same. Similarly, the endpoint 7y is evaluated by
the following integral:

_ 1= dx 1 da
. /52/(3193) Vie—e)(@—e)(z—es) 2 /0 Va® + (ba/bs)a® + (b1 /bs)a’ (76)

From the first expression, we can see that this value is actually equal to the real half period w;.
Thus the scale factor can be written as

a(n) = p(wr — 1) —e1. (7.7)

Let us now turn to the construction of the gravitational wave amplitude on this background
by using the general formula (4.11) with the squared amplitude (5.18). First of all, we obtain
the Wronskian constant C' as

) _ ) bibs /. -
O2 = — (42 — 3by) [4(E? — b)(4k> — 3by) — 18b1b3} - 411;23 (64k4 v 81b1b3) . (79

where k = k/Hj.
The integration of the phase factor,
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is very similar to the case in the previous section. We first factorize the integrand,

B 47152 (9 — ba/3b3)d)
93 ) (p—p1)(p—p2)(p—p3)

(7.10)

where p = () —7¢) and p; = p(¢; —7f) (7 = 1,2,3). The constants c; are defined so that
©(cj —1f) = zj + ba/3bs with the solutions z; of the following equation:

4k? k> 4K2b
3 2 7.2 1
—_— 4k* — 3b =0. 7.11
SRR 22+ o (7.11)
Next we decompose in a partial fraction as

452 & dii

I1=— B, / , 7.12
9b3 ]z:; 7)o - (7.12)

where the constants B; are given by

o1 — ba/3b3 B — @2 — ba/3b3 Ba— ©3 — ba/3b3

= ) 2 — 5 3 = . 7.13
(91 — p2)(p1 — p3) (2 — 91)(92 — 93) (03 — p2) (93 — 1) (r13)
Then the remaining integral can be evaluated by using the addition theorem as
1, 5 / dn 1 o(c; —10) -
59 (¢ =1 = 5 log — — —+ ((c; — 7p)7. 7.14
9 (¢ f) o—p; 2 o (7 + ¢; — 2iiy) (¢ f) ( )

Finally, we arrive at the following exact solution:

in J = 2ip)o(e; — i)\ O
) = Ve nH( o(f+ ¢; — 2if)o(c )) ’ (7.15)

where

’ _ C 4k B
k 2Z®JC(CJ nf), O \/591)% o' (c; —iif)’ (7.16)
and we adjusted the integration constant so that the phase factor takes the value 1 at 1 = 0.
From now on, we set bo = 0 and investigate the properties of this solution. Let us begin
with takeing the limit of single component, namely b; — 0 and b3 — 0 and confirm our solution
really converges to the elementary function solutions in each case. In the flat space case, the
conformal time at the endpoint 7 = w; can be expressed as a simple power of b3 /by,

S _AT(5/4) (b 1/4
rEerEm s e
In the matter-dominant limit by — 0, because 77 = O((b3)'/?) vanishes faster than 7j; =

((b3)'/*), we expand the scale factor at 7 = 0, of which only the leading term remains non
vanishing in this limit,

(7.17)

a(n) — i(Hon)Z- (b3 = 0) (7.18)

We next consider the initial condition for this solution. In particular, we are interested in
the solution that is regular at 7 = 0. We expect such a solution is realized by the superposition
Xc = (x+ —x—)/(2i), as in the case of Sec.6. Note that this expectation comes from the specific
normalization of the solution (7.15) where the phase factor becomes unity at 7 = 0. In other
words, if we write the solution as x4+ = \/geﬂe, the phase 6 vanishes at 77 = 0, which then
implies x¢ = /y sinf can become finite at 77 = 0. Although it is rather natural that this specific
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Figure 4: Numerical plot of x4 (7) with by = 0.3,b2 = 0,b3 = 0.7, and k = 10.0.

combination x¢ is regular there, we show that this is indeed the case below. The reason is that
without explicit calculation we cannot extract the normalization factor of xyo at 7 = 0. The
calculation is similar to the case in Sec.6 but it is not so trivial in this case because of the choice
of the origin of the conformal time. The taylor expansion of the ¢ functions are obtained in the
same manner,

o(c; —2nf)o(c; —n)

I
8 o(n+c; —275)o(c;)

= —[C(ej — 2715) + C(e5)] 7

+ % [@(”_2) (¢j — 27p) — (—1)%(”‘2)((:]-)] . (7.19)
n=2

Recalling 7y = w is one of the half period, the last line of the right hand side is formally equal
to the expansion obtained in Eq.(6.46). However, the linear part doesn’t seem cancel out with
the exponent of e**. The possibly problematic part of the exponent is given by

(2¢(cj —w1) = C(cj — 2w1) — ((cj)) ©;. (7.20)

3
=1

J

(Recall the definition of k.) We prove by performing the sum this expression is actually vanishing
below. By using the quasi periodicity of the zeta function (A.22) and the addition theorem
(A.29), we can manipulate as

2 (e — wr) — Cles — 2u5) — Cles) = 2[C(es — wr) — C(eg) + Clwn)] = g(c?). (7.21)

Note that in applying the addition theorem we used the assumption by = 0 and the differential
equation for p(z). Because gg = 0 now, another addition theorem (A.27) gives the following
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"half periodicity”:

92 1 1o, _%@,(Z)
tpiy PP = a0y

Then, equation (7.20) can be reduced as follows

oz —wy) = — (7.22)

3
D (26(ej — wi) = Clej — 2wi) = C(e;)) O
=1
3

B ¢(c)
= ; o' (c; —w1) p(cy)

3
:;2 : o(cj) B
~ [ ! + ! + ! ] =0.
(1 —p2) (1 —93) (2 —p1)(p2 —p3) (3 — 02) (03 — p1)

Finally we obtain the expansion around 7 = 0,

x+(n) = yexp (:I:i ZKnﬁ2"+1> , (7.23)

n=1

where 5
p -
Ko = iy 22 997V () (7.24)
Tj=1

From this, the leading term of x¢ in 77 — 0 can be obtained as
bs/z
xc(n) = ?KI +O(7°), (7.25)
which shows x¢ is regular as expected. For later use, we show the explicit form of K7 below:
C

K =
3b3/2

(7.26)

Let us examine the energy density spectrum. Because the structure of the solution is very
similar to that in Sec.6, the argument to derive Eq. (6.62) can be applied here. Thus, we only
show the final result,

bsP(k)a® 3b1 212k2  8kY 6k, 9b2
0 - 7.27
W 96729(a) g(a) a bsa? = bsa® = 2bgat|’ (7.27)
where C is given by
. - - 2
C? = (4k?)® — 56b1b3k> + (91;1];23)‘ (7.28)

If we put the matter density parameter at by = 0.3 as in the standard ACDM model, numerical
plot of Qgw at a = 1 divided by the primordial spectrum P(k) is given in figure 6, where
for comparison the spectrum for the matter and cosmological constant background is shown
as well. As one can see, for large value of k they are almost the same because such high
frequency modes enter the sub-horizon regime deep in the matter dominated era. However, the
assumption that the matter density parameter b; takes the same value for both cases may not
be adequate. Although a recent work[32] on observational constraints for various quintessential
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Figure 6: Comparison of the energy density spectra of gravitational wave solutions at a = 1.
Large deviation appears at small k region while they are almost identical in k£ > 1.
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Figure 7: Gravitational spectrum at a = 1 divided by P(k) with smaller values of matter energy
parameter b;. The spectrum with by = 0.3,b3 = 0.7 is not displayed because it is almost
indistinguishable from the case of standard model b; = 0.3,b4 = 0.7.

models reported almost identical value with the standard ACDM model, namely b; ~ 0.3,
our model doesn’t treat dynamical quintessece scalar field but have an effective energy density
proportional to 1/a so we have to be careful to compare. In doing so, we consider the equation
of state parameter w = p/p. In our background spacetime, w takes 0 in early matter dominated
era and gradually decreses to w = —2/3. On the other hand, in typical models of quintessence
universe, including ones discussed in Ref.[32], the parameter w goes to —1 at late time and the
expansion becomes almost exponential type one. In their analysis, the parameter w at present
(a = 1) ranges from w ~ —0.7 to w ~ —0.6 depending on the detail of model parameters. Since
the minimum value of w in our model is w = —2/3 ~ —0.67 at a — oo, in order to match the
value to the above models, we have to take smaller value of matter density b; = ,,,. From the
spectrum Eq.(7.27), we can see that Qqyw for large value of k is proportional to (by)?2, thus the
spectrum is suppressed by taking smaller b; (Fig.7). Although our model doesn’t include the
radiation component, this approximation would valid up to k ~ 0O(10%), modes above which
enter the sub-horizon regime when the radiation energy, and the change of effective degrees
of freedom of relativistic particles as well[33], cannot be ignored. Then, the range where our
exact formula (7.27) is valid is roughly 1 < k < 103 ~ 10~'°Hz, which is out of the range in
near future direct detection experiments. Nevertheless, our result here implies that in existence
of quintessence field the spectrum of the primordial gravitational waves may be suppressed in
higher frequency region as well.

8 Primordial perturbations in a pre-inflationary era

In this section, we consider an application of the solution (5.15). The background spacetime in
this case contains radiation, spatial curvature, and vacuum energy as energy density. Because
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non relativistic matter component is not included, we cannot consider this as a model of our
universe after the hot Big Bang. Nevertheless, it can be considered as a model that describes
a pre-inflationary era, which include certain radiation component at initial time and after some
expansion the universe starts the de Sitter expansion. As we have demonstrated in Sec.3, in
the standard inflationary scenarios, the seed fluctuations that is considered as the origin of
the structures in our universe at present is generated by quantum fluctuations of some scalar
field, called inflaton field. In typical models of inflation, the predicted power spectrums of the
fluctuation take the almost scale invariant form. However, this result relies on the assumption
that the quantum states of the inflaton fluctuation is in the so-called the Bunch-Davies vacuum
state®, which is defined as Minkowski-like vacuum state at the infinite past in de Sitter spacetime.
Although this assumption seems plausible and natural, there has been a lot of arguments and
speculations about the possibility of non-Bunch-Davies vacuum states or even excited states[!7,
, 19).

Furthermore, if some pre-inflationary era where the expansion is not de Sitter like precedes
the standard de Sitter phase, then the natural choice of vacuum state would be altered, and
the power spectrum may be no more scale invariant. For example, several works (see [20] and
references therein) considered a scenario where the slow-roll inflation is preceded by a fast-roll
phase. Although in these models there exists only inflaton field in the pre-inflationary era,
it is possible that some radiation component dominate the spacetime. Also, as one of the
motivations to consider the inflationary epoch is to solve the flatness problem, it is natural to
take into account non zero spatial curvature in such a pre-inflationary era. Note that if our
universe started with the quantum to classical transition, the potential energy caused by the
spatial curvature is expected to be the same order of magnitude as the kinetic energy. A pre-
inflationary era dominated by radiation component and its effect on primordial spectrum has
been considered in several works[21, 22, 23]. Also, the effect of the spatial curvature on density
perturbations in inflation has been analyzed in several papers [24, 25, 26, 27]. They showed that
the power spectrum for low [ region, namely large length scale, deviates from flat spectrum.
The analysis comparing to Planck results has been done in Refs.[28, 29]. However, as far as we
know, there is no simultaneous accounts of these two effects.

In these point of views, our background evolution can be regarded as a model of a pre-
inflationary era that contains both radiation and spatial curvature before the de Sitter expansion
starts. Then, the solution (5.15) can be regarded as the squared gravitational wave amplitude on
generated on this background. At the same time, we can consider the solution as a fluctuation of
the inflaton field because the scalar field equation on the FRW background spacetime is the same
as the evolution equation for the tensor mode. Explicitly, the action for a minimally coupled
massless free scalar field is given by

S, = /d4x¢?g [—;vavmp] , (8.1)

from which the equation of motion can be derived as

3a 1

0=02p+ =0y — —D?p. (8.2)

a a2
Comparing this equation with the evolution equation for tensor modes (3.35), by a suitable
redefinition of the eigenvalue of the Laplacian, namely the wave number k, we can see that these

two equations coincide.

8.1 Background evolution

Before constructing the exact solution for this equation from the solution for the associated 3rd
order equation (5.15), we summarize fundamental properties of the background spacetime. By

3In the literature, it is also called Euclidean or thermal vacuum.
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defining the following constants,

b2 bo

HE =bHE, A== B=_-—, (8.3)
by by
the Friedmann equation reduces to
da )\’ 2 (4 2

We can transform this equation into the Weierstrass’s standard form by x = a? + A/3 and
1= Hyn,

de\ 2
(dﬁ) :4963—9233—93:4(x—61)(x—62)(:z—63), (8.5)
where A 1A 42
2
=_(A*-3B =—(B-=-). :
92 3( 3B), g3 3< 9> (8.6)

The roots e; are easily obtained from the biquadratic equation in terms of a as

A A A? A A2
O Y N : N Y iy ) .
€1 37 €2 6+ 4 , €3 6 4 (87)

There are two cases: (i) A > —2v/B and (ii) A < —2v/B. In the former case, the roots e and e3
correspond to complex value of a so that we can take the origin of the conformal time as a = 0
at 7 = 0. Taking into account the fact that the p(z) is equal to the roots e; at the half period
z = w1, the scale factor can be written as

a(n) = [p(wy —7) —e1]'/?. (8.8)
The half period w; is positive and given by

1 [ dz
' 2/31 V(i —er)(z —e2)(z —e3) (8.9)

Physical interval is from 7 = 0 to 7 = wy, around which the scale factor behaves as

a(n) ~ VBij, (i~ 0) (8.10)
aln) ~ ——. (i~ w1) (8.11)
w1 —n

These behaviors are consistent with the initial radiation-dominated era and the final de Sitter
expansion era.

In the case (ii), all the three roots e; (j = 1,2,3) correspond to real and positive value of a.
The interval from a = y/e3 — A/3 to a = /ea — A/3 is unacceptable because da/dn becomes
imaginary there from the Friedmann equation. Another branch from a = 0to a = \/e3 — A/3 is
physically possible but this solution corresponds to the Big Crunch. In this case the spacetime
cannot sufficiently expand to start the inflation, therefore we discard this possibility. Eventually,
we have to consider the spacetime starting with the finite scale factor a = ag := \/ea — A/3. By
setting the integration constant so that a = ag at 77 = 0, the time evolution of the scale factor
is given by

a(n) = [p(wz — 7)) — ea] /*. (8.12)

In contrast to the case (i), another half period we defined by

1 [o° dx
by L 8.13
’ 2/@ Vi — )@ — )@ — e3) o
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is real and positive. Around the endpoints 7 = 0 and 7) = wy the scale factor behaves as

ol ~ao (14 2522) (i~ 0) (8.1)
1

a(n) ~ - (7 ~ wa) (8.15)

Expansion rate at the initial stage is different from that in the usual radiation dominanted era
because of the large value of the curvature energy (compare with the case (i) above), while the
late time de Sitter phase is present.

Finally, we briefly discuss the comoving Hubble scale H = (da/dij)/a, which can be read off
from the Friedmann equation as a function of the scale factor,

~ / B

In the large a limit, namely well after the radiation and the curvature components becomes
negligible, we see H ~ a. In other words the comoving Hubble scale increases with time, which
is a typical behavior in accelerated expansion era. Conversely, if we go back to the past direction
in the pure de Sitter phase, the comoving Hubble can be arbitrarily small, or the Hubble radius
can be infinitely large. Thus, in the de Sitter inflation any long wave length modes can be
sub-horizon regime in sufficiently early time, which is the reason one typically assumes the
Bunch-Davies vacuum in this situation. However, if there is a decelerate expansion era before
the inflation as in our model, the comoving Hubble scale generally has the minimum at some
point around the transition epoch from the decelerate expansion to the accelerated expansion.
In our case, this minimum is given by

Huin = \/2VB + A at a = BY4 (8.17)

Therefore, we expect that in this kind of pre-inflationary models, various physical quantities like
the power spectrum of quantum fluctuations would be modified for modes with this or more
larger length scale. In the following, we will see this is indeed the case by exactly calculating
the energy density and the fluctuation of a test scalar field.

8.2 Exact solution for the evolution equation

We now move on to the scalar field equation (8.2) on this background. Using the conformal time
71 as a independent variable and taking the spatial coordinate dependence as the eigenfunction
of the Laplacian, the equation reduces to

Py 2 da doy
diz | adij di

+ k%¢p, = 0, (8.18)

where the comoving momentum is normalized by the Hubble scale of the inflation & = k /Hy .

Before solving this equation by using the exact solution (5.15) for the associated 3rd order
equation, we note that this equation is actually equivalent to the Lamé equation (3.58). It can
be seen by the rescaling of the solution as ¢ = vi/a so that the first order derivative term is
removed,

dz’l}k _ =9 )

di2 = [2@(‘*’1 —n)+e—k } vg, case (i)

@ = {2 (wo —17) +er — 152} vg. case (ii) (8.19)
dﬁQ Plwz — 1 1 k- )
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This is nothing but the Lamé equation with n = 1 and B = e; — k2, whose basis solutions are
known in the literature [11] as

Wi =146) i)y = T@i =T =) (i (8.20)

vl = =
b o(wy - n)o(e ’ o(wj —n)o(—c) ’

where j = 1,2 indicates the case (i) and (ii) respectively, and the constant ¢ is defined in both
cases through the equation 3
o(c) = e — k2. (8.21)

Note that although this equation determines ¢ up to the shift of the periods ¢ ~ ¢ + 2nw; +
2mws (Yn, m € Z), these solutions are invariant under the shift, i.e. periodic in ¢ (but not in 7).
In addition, because the elliptic function p(z) is even function, ¢ has sign ambiguity. Recalling
that the sigma o(z) and zeta ((z) functions are odd functions, we observe that the sign change
of ¢ is equivalent to the interchange of v,j and v, . We will fix this ambiguity by requiring véﬁ
represents the positive/negative frequency solutions respectively.

We derive this solution by applying the general formula (4.11) from the exact squared am-
plitude (5.15). First of all, we need the Wronskian constant C' evaluated from Eq.(4.9). We
divide Eq.(5.15) by by to rescale y,

k2
y=1+, (8.22)
for which the formula (4.9) gives
C? = —C? = 4> (byk* — bok® + by). (8.23)

We realize that by definition of p(c) and the differential equation for p(z) leads to the following
relationship:

[/ ()] = -7 (8.24)

For definiteness we take ¢'(c) = +iC/v/bs. With this convention, the general solution con-
structed by the formula (4.11) can be written as

p'(c)dn > : (8.25)

plwj —0) — p(e)

1
X+ = \/Qexp (:l:2/

By multiplying a and exponentiating the factor a,/y to write it as an integration of logarithmic
derivative of p(w; —77) — p(c), we can manipulate as follows:

vF = \Jolw; — 1) - p(c) exp (i;/ Mwﬁ%dj p<c>>

(4 ).

(8.26)

Finally we can apply the addition theorem (A.29) to obtain the expression (8.20).

Let us examine fundamental properties of this solution and determine the normalization.
One important task would be to clarify the relationship between v,j and v, . Although natural
expectation is they are complex conjugate each other, it is non trivial because we introduce o(c),
which is in general complex valued, as an integration constant in deriving the above solution.
We have to consider complex conjugate properties of elliptic and related functions p(z), ((2),
and o(z) as well as the constant c. As for the elliptic function, we can easily conclude the simple
behavior (p(z))* = p(z*), because the coefficients of the differential equation for p(z) are all
real. (Strictly speaking, only the reality of g2 and g3 is not enough but the requirement that the
position of the pole is fixed at z = 0 is also needed.) Similarly we can verify ({(z))* = ((z*) and
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Figure 8: Numerical plot of v:(ﬁ) with parameters A =5 x 1073, B = 1.25 x 1075, and k = 1.0.

(0(z))* = o(z*). Next we consider the complex conjugate of the constant c. From the definition
of ¢ (8.21), we can formally obtain the integral expression,
1 [ dz 1 [« dz
B N N ) MM S e ey ey
For real value of k, the integrand in the last expression is always pure imaginary hence we can
deduce

(8.28)

(c—w)" =—(c—w1), (8.29)
in other words, ¢ — w; is pure imaginary. When B > A?/4 holds (included in case (i)), because
the half period wy is real, this gives

= —c+ 2w ~ —c, (8.30)

?

where we denote the equivalence up to the periods by '~’. Then, we can see from this result
and the fact that solutions (8.20) is periodic in ¢, that v,': and v, are indeed complex conjugate
in this case. On the other hand, in the remaining part in the case (i), namely A > 2v/B, the
situation changes drastically because the integrand in the integral expression of ¢ has other
branch point on the real axis at z = ey and z = e3. As a function of k, complex conjugate of ¢
is given by

(c—w)* = —(c—w), (k*<A/2—-\/A2/4— B) (8.31)
(c—wy)* =c—woy, (A)2—+/A2/4— B <k?®<A/2++\/A2/4— B) (8.32)
(c—ws)* = —(c—ws), (A/2+ \/A2/4— B < k?). (8.33)

Observing that the imaginary part of wy and the real part of w3 are both half periods, we can
summarize as follows:

k*— Ak + B
¢ N{C ( +B<0) (8.34)

—c¢ (K*— Ak + B>0)
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When c is real, the basis solutions v,f are also real (Uki)* = Uf, which means that in this region
of k these solutions cannot be interpreted as usual plane wave like solutions, but exponential
type solutions. For case (ii), similar consideration shows v,:f are complex conjugate for all real
value of k. We also note that for the anomalous case where ¢* ~ ¢, the Wronskian constant C
becomes pure imaginary. However, the wave number k? must be larger than the curvature scale
| K |1/ 2 to make the spatial part to be oscillatory function. If we restrict to that case, namely
k? > |K|, then k> > A > A/2 — \/A2/4 — B holds for A > 2v/B, in which case ¢* ~ —c hence
(v,f)* = v .

8.3 Quantization of the scalar field

In this subsection, we promote the scalar field to a quantum field operator. For that purpose we
have to normalize the solution obtined in the previous subsection. Normalization of the basis
solutions vki can be defined through the Wronskian
dv;,  dv;
Wt v) =vf =5 — —Eq- (8.35)
k> "k k dn d77 k
Since the differential equation for v; doesn’t have the first order derivative term, W (v;", v} ) is
independent of time 1. We can make use of the addition theorems (A.28) and (A.29) to calculate
the Wronskian, ~
iCHy
o
Because C' is positive real for A < 2¢/B as we have mentioned, we can normalize the solution
U,:f so that W(V,',V,") = —i by defining

_ Vb iy
Vi = HyC k A (8:37)

W (vt v, ) =—Hyg'(c) =

(8.36)

the former of which is shown to be the positive frequency solution at the initial time below. The
expansion of v, at 7] = 0 turns out to be

o (i)

0 0)

= exp |~ (Cley — ) — ¢-) — o n+ (p<"—2><wj—c>—p<n—2><w]->)]- (8.39)
n=2

The coefficient of the leading order O(7) can be simplified by using the addition theorem (A.29)
as

e 1

2v/by e; —el+ k2
In deriving this expression we have used p(w;) = e, 9’ (wj) = 0 and the definition of ¢ (8.21).
Thus, the asymptotic behavior of v, is given by

C(wj = ¢) = ¢(=¢) = ¢(w)) (8.39)

exp (—zlz: (1 — A/k? + B//;:4) 2 f]) (case (1))
N (8.40)
exp (—zlzz <1 + a%/lNcQ) - (1 —AJk? + B//~€4> 2 ﬁ) (case (ii))

We can see that v, is the positive frequency plane wave solution e~ at the initial time for
sufficiently large value of wave number k. However, for smaller value of k, although the plane
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Figure 9: Numerical plot of the effective number 5. The density parameters are taken A =
5.0 x 1073, B = 1.25 x 107° for case (i) and A = —0.01, B = 1.25 x 10~° for case (ii).

wave form is preserved the wave number is deformed by virtue both of the spatial curvature and

the radiation energy. Therefore we introduce the effective wave number & (k),
- - -\ /2
/%:k:(l—A/k +B/k) (8.41)

for case (i) and
. Zo\—1 . - \1/2
R=k (1 + ag/k2) (1 A/ B/k:4) / (8.42)

for case (ii) to write the asymptotic behavior as v} (77) /v (0) — e, Although & coincides with
k for large k in both cases, small k behaviors are totally different as can be seen from Fig.(9).
For case (i), #(k) has the minimum value Fpin = V —A + 2vB at k = BY* and diverges as

i — VB / k in the infrared limit & — 0. Note that the existence of the minimum for this case
is due to the radiation energy density, which means that the radiation component acts as an
effective infrared cutoff. We discuss this point again later. On the other hand for case (ii), & is
monotonically increasing but slightly modified at small &k limit as & — (vVB/ a%)l;:.

It is also of interest to investigate the behavior of the solutions at late time 7 ~ w; (j = 1, 2).

Recalling the relationship ¢'(z) = —p(z) and (logo(z))" = ((z), we can find

i) = — (14 e =)+ Oy =) e (— > “"j‘”)"w-”(ic)) - (843)

The second factor comes from the expansion formula (A.26). The exponential factor can be ex-
plicitly obtained by using the definition of p(c) and the differential equation for g(z) repeatedly.
Inserting the leading and the next leading terms, we obtain

1 1 - iC
4. 2 ~\2

v

(wj = 7)° + O((wj — ﬁ)4)] : (8.44)
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We compare this expression to the normalized solution in the pure de Sitter expansion case (see
Eq.(3.45)),

+ P it 0 8.45
Q’ds,k—< 74777) ok (n <0) (8.45)

where the subscript ”dS” stands for ”de Sitter”. Up to the order given in the above expansion,
the asymptotic behavior turns out to be

Vi — tcoshlog (

S S Y
(k2 —e)3/4 ) ds, k2—HZ ey
72 sinh log (]52 _ 61)3/4 UdS, k27H‘2/61 .
= Z (ak,k"l)g&k/ + /Bk,k’vis7k/> 3 (847)

kl

where k is the effective wave number for case (i) defined in Eq.(8.41) though this asymptotic
relation holds both for case (i) and (ii). In the last equality, we have defined the Bogoliubov
coefficients by

ieoshl V k2R 5
Ok = 1 COShlog W KR HZer

ﬂk’kl = ZSthlOg (WI) 57“’»\/@’ (848)

and the summation over k' represents integration with suitable mearsures for negative and zero
spatial curvature cases. Although this relation is asymptotic one because Udis,k: are not the
solutions to the full evolution equation, we can define the exact solutions Vdja ;. that behaves as
these de Sitter solutions by using the inverse Bogoliubov transformation,

Vasy = Z (o 1 Vi — B kVir ) s Vdgk = (Vag )™ (8.49)
k/

One can verify this is indeed the inverse transformation of (8.46) by observing that the Bogoli-
ubov coefficients (8.48) satisfy the following:

> (@i = Brogr B o) = S
k.//

Z (e Br o — B rrcvpr ) = 0.

k,/l

As in the case of initial state, the wave number is deformed by existence of radiation and
curvature. In addition, we observe that Vi is in general a mixture of the positive and negative
frequency wave functions VdS - This klnd of mixing of positive and negative frequency modes
can happen when the background spacetime undergoes non stationary eras, as in the cases of
expanding universe which we are now considering[30]. In particular, because the coefficient
Bk k is non vanishing, there happens particle creation if the vacuum state defined through the
wave functions Vki is chosen, compared to the vacuum state defined by the pure de Sitter
wave functions Vdjg,kv which is the typical assumption in considering the quantum fluctuation in
inflationary era.
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8.4 Particle creation and simple estimate of the energy density of created
particles

We are now going to evaluate the spectrum and the total number of created particles. We first
promote the field ¢ to quantum field in the Heisenberg picture. Then, from the Heisenberg field
equation for the quantum field operator ¢, we can expand it by using either the basis solutions
of VkjE or Vdjé,k as

V(n) = amelnz) = > (AVy (@) + ALV (nvi(=) ) (8.50)

k
=2 (BVisa(mvnte) + BV, vie) . (851)
k

Precise forms of the measure ), depends on the spatial curvature and the normalization of the
basis solution ¢ (x). We set the normalization through the completeness relation by using the
invariant Dirac’s delta function as

S (@) vi(y) = %6% —y). (8.52)
k

Then, the expansion coefficients Ag, Bk, and their conjugates are annihilation and creation
operators obeying the canonical commutation relations,

[Ak,AL/} = [Bk,BL] = Ok (8.53)
[Ag, Agr] = [Bg, Bir] = 0. (8.54)

The spatial function 1 (x) is the eigenfunction of the spatial Laplacian D? (see Eq.(8.2)) with
the eigenvalue —k2, whose functional form depends on the spatial curvature K. From the
Bogoliubov transformation (8.49), the annihilation operator associated with the de Sitter mode
can be expanded as
Be=3" (Ak/am ¥ AL,B;%) : (8.55)
k/
and vice versa. We define the initial vacuum state |04) by using the annihilation operator Ay

as
Agl04) =0, k. (8.56)

Then, the number of created particle of mode k associated with the operator By is given by

(0| BEBRI0A) = > |Brw|*. (8.57)
k/

To precisely determine the spectrum of the created particle, we have to define the integration
measure, which depends on the spatial curvature. Furthermore, it isn’t necessarily valid to
consider within the concept of particles, especially for large wave length modes. In fact, the
Bogoliubov coefficient 8y dacays at large k because both the initial and final positive frequency
modes coincide at the shord wave length limit. In general, quantum particle creation is relevant
for modes whose wave length or frequency is comparable to the curvature scale of the background
spacetime.. In the cosmological setting there are two kinds of curvature scale in the background,
namely the Hubble scale and the spatial curvature scale. Although the concept of particle is
not clear for modes around the Hubble scale, in the following we estimate the energy density of
created particles by using the flat space approximation where each free particle with frequency
k has its energy k in the natural unit # = ¢ = 1. The result will be confirmed by more rigorous
(though some ambiguity may exist in regularization procedure) treatment of energy momentum
tensor.
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We restrict to the most familiar and simplest case K = 0. In this case, the eigenfunction of
the spatial Laplacian D? is given by the plane wave 11, (z) ~ €'*® and the eigenvalue —k% = —|k|?
takes arbitrary negative values. In this case, the expansion of the field (8.50) becomes

3 . .
Vine) = [ (;’;3 (Vi e + ALV (e ) (8.58)

and the nonzero canonical commutation relation becomes

[Ak, AH = (21)383(k — k), (8.59)

Noth that in the flat case the Bogoliubov transformation (8.49) doesn’t change the wave number
k, and the relation between two sets of annihilation/creation operators are given by

By, = Aoy + AL B, Bj, = Alap + A_kBr, (8.60)
where
ay, = 1 cosh log I B = isinhlog \/; (8.61)
Then, the expectation value of the ” By” particle number operator reduces to
(0] B} Br|04) = (27)°5° (0)| 5 (8.62)

Although this expression is divergent because of the Dirac’s delta function, we can interpret this
factor as the comoving spatial volume by considering the k — 0 limit in the following expression:

(27)253 (k) = / PBreke, (8.63)

Thus, we define the number density ng of particles of mode k by

(04| Bf Bk |0.4) _ 1Bl
\% ad’

(8.64)

where V = a3 S d3z is the proper spatial volume. Then, the total number density of created
particle np is given by integrating ng as

3 1 00
nB:/ d’k / k2dk| By |*. (8.65)
0

(2m)3 "k = 9n243

In the second equality, we have integrated out the angular part. Inserting the coefficient (8.61),
the above integral can be evaluated in terms of various elliptic integrals and gives

_ T2(1/4) (boba)**H
"BT 96m52 43

HS
~ 7.8 x 1072 x (boby)*/*=L. (8.66)
a
Similarly, taking the effect of gravitational redshift, we can calculate the energy density pp by
>k k 1 o
= [ = | Kdk|B]* 8.67
PB /(27r)3ank 27r2a4/0 1B (8.67)

In this case, the integral can be easily performed in terms of elementary functions and gives

BHy,  bobsH{

PB = 3or2a% ~ 32720t (8.68)
We also consider the energy density spectrum
d kB> HYk [ 28*+B
pr WV HvE (20 4B o) (8.69)
dk 2m4a 8m2a* \ \/k4 + B
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Figure 10: Energy density spectrum of created particles for spatially flat case (K = 0).

This distribution has a single peak,

3/4 1/4
dps H} <4J6—9> 3V6 -2 3 at o — (‘W) B4, (8.70)

dk

= 8n2d? 15 2 15

max

In the infrared and ultraviolet limit, the distribution obeys simple power law behavior,

VBHY - -

" Sl k, (k—0)

& (8.71)
By 1 o)
3272a4 |5

‘As can be immediately seen from the numerical plot Fig.(10), the peak of the spectrum lies at
k < 1, namely below the Hubble scale.
Let us compare this distribution with the Planck distribution of temperature T,

dpPlanck - i k3
dk  w2ek/ksT _ 1’

(8.72)

where kp is the Boltzmann constant. The integrated energy density pplanck iS given by the well
known Stefan-Boltzmann law

PPlanck = E(kBT) : (8.73)

For a local observer, the expansion of the universe can be negligible so we can set a = 1. Then,
one can regard the expression pp as the Stefan-Boltzmann law with the effective temperature
kpTeg proportional to BY/4Hy = (b0b4)1/4H0.

Although the shape of the spectrum dpp/dk in the figure 10 seems similar to the Planck
distribution at first sight, they are not the same at all. The difference can be seen both in the
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infrared region (kK — 0) and the ultraviolet region (kK — o0), where the asymptotic behavior
for dpp/dk is given in (8.71) while that for the Planck distribution is given by the famous
Rayleigh-Jeans law and the Wien’s law,

kT
f2 k2 (k—0)
d 11
pPla Ck % (8,74)
dk 3

—k/kpT
3¢ kBT (k — 00)
We can see that in the both limits the obtained spectrum dpp/dk decays slower than the Planck
distribution with any temperature.

8.5 Vacuum expectation value of the energy density

Although our treatment above is simple and the result seems acceptable, in order to take account
of the effect of curvature we need more rigorous treatment. The most canonical quantity which
doesn’t rely on the concept of particle to calculate the energy density is the energy momentum
tensor. The energy density is given by the tt-component of the energy momentum tensor

1 1 )
py =Ty = 5(3%25)2 + ﬁDWDZ(b- (8.75)

We are interested in the expectation value of ps in the vacuum state |04). Using the mode
expansion (8.50), the expectation value reduces to

(04lppl04) = Z () ? [at < > ) <V+> + ksz] (8.76)

a2 a a

This expectation value is divergent if we take arbitrarily large value of k (ultraviolet divergence)
as in the case of flat spacetime. In the flat spacetime usually such UV divergences are renormal-
ized by redefinition of various coupling constants or the strength of the field itself. If a quantum
field in the flat spacetime is free, namely without any interaction, only the divergence comes
from the vacuum energy but it is just subtracted by hand arguing what we can observe is only
the difference in energy. This procedure is valid when we can ignore gravitational effect of the
quantum field. However, when we take account of gravitational interaction with quantum fields,
we have to consider the absolute value of the energy (or more generally, energy momentum
tensor) of the fields because it can affect the dynamics of geometry through the Einstein equa-
tion. Thus, how to obtain a finite energy density of quantum fields on a curved sapcetime is an
intriguing problem. See [30] as a classical reference. There are several methods of regularization
and renormalization in this situation, among which the adiabatic regularization is a method
to directly obtain a finite expectation value for the energy momentum tensor[34]. The term
”adiabatic” comes from the adiabatic expansion of physical quantities such as the field itself
or the energy momentum tensor. The adiabatic expansion is a inverse power series expansion
in terms of the so-called adiabatic parameter denoted by T, which represents the slowness of
the expansion in our case, or more generally the time scale of the background spacetime. In
the adiabatic limit T — oo the spacetime becomes stationary, where there is no ambiguity in
the concept of particles since we can make use of the time-like Killing vector field. Even if the
spacetime is not stationary at all, gravitational effects for sufficiently large frequency modes can
be considered as small. In other words, we can assume large k& expansion, in which case the
adiabatic parameter T is identified with k itself. Large k expansion for the solutions to the
equations like (8.19) can be implemented by the WKB expansion with the ansatz

1
+ .
ViE = mexp (:I:z/ Wkdn) , (8.77)
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where W}, is assumed to have a power series expansion in terms of 1/k? and the leading behavior
is Wy — k. As far as the leading term has dominant contribution to Vi, this set of solutions
can be considered as a reasonable basis to define the vacuum state. In the FRW spacetime,
this condition is fulfilled for sufficiently large value of k given that the time variation of the
scale factor a is smooth while such a mode may not be available at the singular points of a.
Once the WKB solution is obtained up to some finite order of the adiabatic parameter (or 1/k),
we can expand the energy momentum tensor as well. The divergence in the expectation value
of the energy density (8.76) comes from the first few orders (up to 4th order in 4-dimensional
spacetime) of this adiabatic expansion, which can be verified by dimensional arguments. Then,
by subtracting the contributions up to the 4th order the resulting expectation value becomes
finite.

We here note that our exact solution Vki is nothing but the full WKB solution, which can be
seen from Eq.(8.26). Explicitly, the normalized solution VkjE can be written as the WKB form
(8.77) with

k (154 — AK? + B) V2
p(w; — 1) — p(c)

For a fixed finite value of 77, this WKB factor Wy, is exactly the adiabatic mode, namely in the
large k limit it behaves as

Wy =

(=12 (8.78)

Wy, = k (1 + 0(12:*2)) .
This expansion is valid only when the k is sufficiently large compared to p(w; — 1) —e1 = a’. As
this expression tells, the lower bound of the adiabatic region gradually increases as the universe
expands, which finally diverges. This behavior is well known in the standard de Sitter inflations,
where any modes becomes after sufficient number of e-folds super-horizon modes. On the other
hand, at the early time 7 ~ 0, W}, is almost constant, more precisely, it satisfies the following
initial condition: - 5
Hy (k* — Ak? + B)Y/?
k

Note that this initial condition is consistent with the plane wave behavior at the initial time
described earlier. Since the time evolution equation for Wj, is a 2nd order differential equation,
this W} is the unique exact solution with this initial condition. However, higer order derivatives
of Wy is not vanishing at the initial time reflecting the fact that the background spacetime is
not stationary. For example, the initial condition for the second derivative is given by W}'(0) =
—2BHV(I;:4 — Ak? + B)'/?/ k3. In the WKB approximation, one usually assumes the leading
behavior Wy, ~ \/k? — |K| by neglecting the derivative term in the differential equation for vy,
but our exact solution shows a further contribution from the radiation energy, which can be seen
in the effective wave number (8.41). This modification of the initial wavenumber comes from the
non-vanishing second derivative. But this deviation from the usual WKB leading order is small
as far as the wavenumber is sufficiently large, i.e. k> B/4. This condition says that for such
modes the initial expansion rate of the universe is negligible compared with their frequency.

Let us examine the energy density (8.76) with this exact solution. The summation over all k
in this formula can be divided into the radial part and the angular part. Since the time evolution
VkjE depends only on the norm of k, what is relevant to the summation over the angular part is

Wi(0) = . W0) = 0. (8.79)
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|9k ()|, which has been performed in Ref.[31] and the result is summarized as

KS/Qi(l +1)2 (K >0)
=0

[ duth) = 293 o) = [ (K=0) (8.80)
k 0

(x| Ty (K <0)
0

where the norm k is given by k? = KI(l +2) and k% = |K|(p? + 1) for K > 0 and K < 0
respectively. Inserting the WKB form of Vki, the expectation value (8.76) now reduces to

1 LA 1 a\*\ o W
. o L [ A W g2 @ — 'k 8.81
(041pg]0.4) 4W2a4/ 1 >[8sz’ Wit g 13 +2(1Wk? , (881)

where prime indicates the derivative with respect to the conformal time 7. Recalling the leading
behavior Wi, — k in the UV limit, this integral contains divergent terms except for the first
term in the bracket, and the order of divergence is at most quartic, followed by quadratic and
logarithmic divergence.

At the same time we have to care about small k region, where usually infrared divergence
is expected for minimally coupled massless scalar fields[35]. Remarkably, the above expectation
value does not suffer from such infrared divergence, except for the zero mode contribution (I = 0)
in the closed space case (K > 0). The reasons for the safe behavior in IR limit are different for
K =0 and K < 0 cases. For the latter case, this is due to the cut off ki, = ]K\l/z caused by
the spatial curvature, while for the flat space case the radiation component B gives another cut
off as we have mentioned earlier. One can see this fact from the exact WKB solution (8.78) for
A = 0, which behaves as Wy, = O(k) if B # 0 exists, otherwise W, = O(k?®) causing the infrared
divergence.

The IR divergence in the case of closed universe comes from the zero mode (I = 0) contribu-
tion. In the cases of flat and open space, zero mode contribution is suppressed by the integration
measure | du(k) but in the closed space case such suppression doesn’t happen, so we have to
care about the zero mode in this case. We note that in de Sitter space proper treatment of
the zero mode is necessary to construct de Sitter invariant vacuum state for minimally coupled
massless scalar field[36]. The peculiarity of the zero mode in our solution (8.20) can be seen
from their Wronskian (8.36), which vanishes when & — 0. This fact shows the basis solutions
v,z,t (or normalized ones Vki) are linearly dependent in this limit. In fact, the constant ¢ defined
through (8.21) becomes one of the half periods when & = 0, namely ¢(k = 0) = wq, which then
implies var = vy . (Recall that v,f is periodic in ¢.) To remedy this singularity, we have to go
back to the evolution equation (8.2), from which two independent solutions for zero mode can
be easily obtained as

a _ (2) dn

v =a, v =a —.
0 ’ 0 az

(8.82)
As kE — 0 limit vac is non singular at a = 0 (or 7 = 0), we can conclude that ’U(:)t o< v[()l). For
quantization, we have to choose ”positive frequency” mode as a specific linear combination of
v(()l) and v(()Z). Here, the term ”positive frequency” just means the wave function with which the
annihilation operator is associated. Although it contains considerable amount of possibilities,

we here take V= o v(()2) because véQ) is singular at the initial time a — 0 and the vacuume state

should not have such singular mode. Another basis solution is taken as Vo+ x v(()l). With this

choice, we can see that zero mode doesn’t contribute to the energy density expectation value

o7



(8.76). Therefore in the closed space case we merely remove | = 0 contribution to evaluate the
energy density.

Now we consider the problem of UV divergence. We employ the adiabatic regularization
but naive expansion in terms of 1/k and subtraction up to the 4th adiabatic order causes
infrared divergences. In order to preserve the infrared safety, instead, we expand in terms of
K = (k* — Ak? + B)'/4. Before restricting to the specific solution (8.78), we formally expand
Wy as

% . WIE2) W]g4) W}gG)
k K2 K4 K6
Then, the energy density (8.76) can also be expanded as

+ +

+0(K™?), (8.83)

4720t -
A 0alps]04) = / dji(k)k

Hy,
I\ 2
Y5t {(Wé”f A O (‘;) (W,f?) + > } +0(K™%)| (3.:84)
Ar2a*
= H%/ (<p>div + <p>reg) . (8'85)

Here HYdju(k) = du(k) and we divided the energy density into divergent term (p)gi, which
consists of the terms up to 4th order and regular term (p).ee which consists of the terms of
higher order. The leading term k in the bracket represents the energy for the mode k in the
flat spacetime as expected. Terms of order K2 and KX~*, which doesn’t exist in the flat space
free scalar field case, are also divergent. We subtract these terms from the expectation value to
obtain regularized energy density,

(P)reg = (Po) — (P)div- (8.86)

We apply this procedure to the exact solution (8.78). Unregularized density is given by

4m2a* d{py) P Bk
= — +t =5 8.87
L dntk) 22t T e (8.87)
where we defined the spectrum density d{pg)/dfi(k) by
N
04]pe|04 :/d,u,k —— . 8.88
(Oaloil0s) = [ ) 0 (5.5%)
The adiabatic expansion of (8.78) is given by *
Wi 1/, A L/, , B A? 6
Dk 2) 4 = il .
Z K2<a +2)+K4<a +Aa+2+8 +O(K™), (8.89)

where we have used the Friedmann equation to express the derivatives of a as a function of a.
which then enables to calculate the subtraction term as

4r2a* d{pgiv) 3 k 4 k 7 1
v = = Y — A = 2
Hy duk)  \2icz T2 )¢ T\ e ) TR
- A k 1 3B 1 A \ B
+hk+ =+ ==+ — A%+ = +(~+ = ) 8.90
2k <8/C4 4kIC2> 2kK2  \2k  4kK2) a? (8.90)

4 Although only up to the 2nd order is needed to compute the regularized energy density (p)req, the 4th order
term is shown here because it is necessary to regularize the pressure later.
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We finally obtain the regularized density spectrum

47‘(2&4 d<preg> — ~1 _ i;: a4 + i _ i —+ A ; _ i a2
Hy du(k) okk2  2K* 2K2 2k 4kK2 2K

+E_];;_£+ B _ k + 1 A2+ i_i_i E
K2 2k 2kK?2 8K 4kK2 2K% ok 4kK? ) a*

(8.91)

We can see that regularized energy consists of four terms which have distinct behavior under
the expansion of the space. We thus separate these terms as
d<,0reg> wﬁ(k) w4(k) wQ(k)
= + + 4+ wo(k). 8.92
du(k) ab at a? () (8:92)
While wg, wz, and wy4 gives quantum correction to the background energy density, there appears
a new contribution wg that doesn’t exsit in the background matter. To get an insight into this
result, we first consider the flat case A = 0. We expect that the radiation-like component wy
corresponds to dpp/dk calculated before using the Bogoliubov coefficient. Recalling the measure
in the flat space du(k) = k2dk, this expectation turns out to be indeed true,

Hik ([ 2K*+B - d
Roa(k)] oy = % ( i —2k2>:a4pB (8.93)

872 \ /it + B dk
However, we have now other contribution that are not directly derived from the Bogoliubov
coefficients, among which the most important component is wy because the others are more
or less "washed away” after sufficiently long period of inflation, otherwise the flatness problem
would arise again. wy gives a quantum correction to the cosmological constant,

Hik 1 k2
Kwo(k) = =X — = . 8.94
U)O( ) {72 ( /];;4 B kA + B) ( )

A quite remarkable result appears when we integrate it out to obtain the total energy density
from wy,

4

o0 H
k2wo(k)dk = —L 1og 2. 8.95
| Fentwar = 1510 (8.95)

Although the density spectrum itself depends on the radiation energy B, the total amount of
energy density depends only on the Hubble parameter in the inflationary era.

For the negative curvature case (A > 0 < K < 0), the total energy density of wy is given by
the following integral:

H4

1 VpE+1

_ Vv > 2 _
/dﬂ(k)WO(k> = 8772/0 p-dp [\/(102 T (P22 + 1) + B/A2)  p*(p*+1)+ B/A?

(8.96)
Although the first term contains a square root of 6th order polynomial of p, a variable change
x = p? reduces to an elliptic integral,

[antrn) = 5 [
’ 1672 Jo | \/(z+1)(x(z + 1)+ BJ/A?) x(z+1)+B/A

Instead of convert it into the standard forms of elliptic integrals, we consider two limiting cases
A/vVB — 0 and A/v/B — oo, after which exhibit a numerical result. Large curvature limit
A/ VB — oo is easily obtained since it reduces to an elementary integral,

HEY [ 1 1 H
du(k)wo(k —V_ — dr = ——Y 1og 2. 8.98
/ p(k)wo(k) — 16%2/0 (l’—f—l x(aH—l)) T ]2 og ( )

99

Vi z(z+1)

dr.  (8.97)




Figure 11: Integrated energy density of wy(k) in the negative curvature space normalized by the
inflation Hubble scale H{4, as a function of A/ VB.

In the other limit A/v/B — 0 this integral should converges to the result of flat space. We can
confirm this result as

H 1 x H
/d”(k)”(’(k) 1672 / (m T B 2@t )+ B/A2> A = Jopzlos2 (8.99)

A numerical plot Fig.11 shows that the energy density is monotonically decreasing from the flat
value.

We finally consider the positive curvature case. In this case, the total energy density is
evaluated not by an integration but the following infinite sum:

Hy - 1
/d”(k 22} [W [+2)(0 1 120 +2) + B/A2)

1(1+2)
I+ 1)2(1+2) + B/A?

(8.100)

Although it cannot be expressed in a closed form even in the limiting cases considered in the open
space case, we expect essentially similar behavior as a function of A/+/B since the summand
is the same as the integrand in the open space case and only the difference comes from the
measure. However, a numerical result (Fig.12) shows different behavior in the large curvature
region, while the small curvature limit is consistent with the flat space result.

8.6 Density fluctuation

In this section, we consider the density fluctuation that arise from the quantum fluctuation
during the inflationary era. Strictly speaking, we have to consider both the scalar part of linear
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Figure 12: Total energy density of wy(k) in the closed curvature space (A < 0) normalized by
the inflation Hubble scale Hi: as a function of |A|/v/B.

perturbation to the metric tensor and the perturbation in the matter fields, where the main
dynamical equation, called the Mukhanov-Sasaki equation, is given by[5]

Z”
vp + <l<:2 — Z> v = 0. (8.101)

In this equation, vy, is related to the curvature perturbation, ¢, is the speed of sound of the scalar
perturbation, and 2% = 2a%¢/c2. ¢ is called the first slow roll parameter defined by € = —-H JH?,
which represents the variation rate of the Hubble parameter. In order the inflation to last for
sufficiently long period the slow roll parameter should be small.

However, these effects appear only when one deals with the dynamics of the inflaton field.
Since the inflationary Hubble parameter Hy in our treatment is constant and our purpose here is
to consider the effects of the pre-inflationary era on the power spectrum, we ignore those effects
mentioned above. One can show that in the limit ¢ — 0 the Mukhanov-Sasaki equation reduces
to just the massless minimally coupled scalar field equation, therefore we can use the solution
obtained in the previous section to investigate the modification to the density fluctuation caused
by the pre-inflationary era. Actually, in the linear order of the slow roll parameter, the dynamics
of the background inflaton field in general gives slight violation of the scale invariance in the
power spectrum. Although one can take into account that dynamics simultaneously with the
pre-inflationary effects, we don’t go into such a detail.

Essentially, the density fluctuation which is considered as the origin of the large scale struc-
ture at present, is caused by the vacuum fluctuation of the scalar field (0||¢(x)|?|0). As we have
seen in Sec.3, after the horizon exit this expectation value is frozen to a constant and gives the
scale invariant power spectrum in the de Sitter space.

We take the same vacuum state as in the previous sections, namely |04). Then using the
mode expansion (8.50) and recalling the definition of the measure (8.80), the vacuum fluctuation
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of V(n, ) can be given as a mode sum

OV n.2)P08) = 515 [ dutIV, ()P (8.102)

Recall that our construction of the exact solution for Vki relies on the simple polynomial solution
for the squared amplitude |V,jt|2 ~ a?y, where y is given in Eq.(8.22). Taking account of the
normalization constant as well, the fluctuation for the field ¢ is given by

Oallé(, ) 2l04) = —o / dpu(k) <1 + k) | (8.103)

T 4n2Hy | EKC2 a2

where K = (k* — Ak? 4+ B)'/* is already defined in the previous section. We can see that the
fluctuation is frozen after the inflation a — oo as

: 1 du(k)
1 204) = L 104
Jm (OAl162100) = 1 [ T (3.104)
As usual, we define the power spectrum P(k) for K =0 as
. dk
lim (04]]¢%104) = | —P(k), (8.105)
a—r o0 kj
which gives
Hy \* k2
P(k) = <27r> ek (8.106)

One can see that in the large k£ limit this power spectrum recovers the scale invariance while the
effect of the pre-inflationary matters become manifest in the small k region. Figure 13 explicitly
shows the deviation from scale invariance at very low value of k. For the flat space case, the large
scale suppression due to the radiation component can be seen, which was reported in Ref.[22].
The setting in their work is completely the same as ours except for the full account of the spatial
curvature, thus the result should be consistent. Indeed, it can be seen that FIG.1 in their paper
is completely identical to our result (top of Fig.13) except for the rapid oscillatory behavior in
their result. They mentioned such a oscillation is caused by an improper choice of the initial
condition for the numerical calculations. As our result is mathematically exact in the linearized
level, the oscillatory behavior appearing in the previous work is confirmed to be totally due to
the numerical calculations.

To define the power spectrum for curved cases, we have to care about the integration or
summation measure. In general, they don’t affect the large k£ behavior but it modifies signifi-
cantly in the small k region, where the deviation of the power spectrum is also important. To
compare the power spectrum for different spatial curvature cases, we define it by Eq.(8.106) for
the curved cases as well.

Figure 14 shows the comparison of the power spectrum for different values of the spatial
curvature. The top figure represents a case where the curvature contribution is small compared
to the background vacuum energy of the inflaton. In this case, as one expect, the three cases
shown in the figure is almost identical. In contrast, if the curvature component becomes larger
(bottom of Fig.14) the deviation from the flat one is apparent and the difference between the
positive and negative curvature cases seems rather nontrivial. For the closed case, the effect of
curvature is just an additional suppression of the spectrum. On the other hand, for the open
space the power spectrum is enhanced at the largest length scale. We can see this behavior
analytically. The spectrum (8.106) has the maximum at kpeax = +/2B/A, which exists only
when the curvature is negative (< A > 0). The maximum value relative to the value of the
standard spectrum P(oco) is given by

P(kpeak) _ 2\/§/A
P(e0) (2VB/A)? — 1

(8.107)
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Figure 13: Numerical plot of vacuum fluctuation for the flat space, normalized by the value at
the UV limit P(co) = (Hy /2m)2, which is the spectrum in the pure de Sitter expansion. The
parameters are set to A =0, B = 1.25 x 107

The relative peak value converges to 1 in the limit 2v/B /A — oo, namely the flat limit, which
is consistent with the absence of the peak in the flat case. In the large curvature limit, the
peak value apparently diverges at 2¢/B/A = 1 but this divergence is actually out of the physical
relevance because in this case the peak position l;:peak is smaller than the spatial curvature scale
AY2. When the negative curvature is not so large, i.e. A < /2B, the peak is inside the physical
region l;:peak > AY/2 but in this case the relative peak value has an upper bound

Plhoeat) /5.1 41. (8.108)
P(o0)
This bound can be achieved in the degenerate case A = v/2B, although in this case the peak
position is equal to the spatial curvature scale I;:peak = AY2. In fact, the bottom of Fig.14
corresponds to this degenerate case, as one can see from the coincidence of the peak position
and the cut off indicated by the vertical line.

Note that in the figure the deviation appears around very large length scale compared to
the inflationaly Hubble scale (recall the normalization k& = k/Hy). However, this is due to the
choice of small value of the parameter B, which represents the radiation energy compared to
the vacuum energy of the background inflaton. If we take B = O(1) then the deviation from
the scale invariant spectrum can be seen in the Hubble scale of the inflation, although we don’t
explicitly list the figure because the qualitative behavior is not unchanged from Fig.14.

Let us consider the connection to the observational result of the CMBI[37, 38]. As noted so far,
non-standard expansion history before the inflation only affects the large scale fluctuation after
the inflationary epoch. Therefore, we are interested in the low multipole moment (1) components
of the CMB anisotropy. It is well known that there is a large scale anomaly in the CMB power
spectrum, namely the suppression of the power at low [ modes compared to the prediction from
the almost scale invariant primordial spectrum with the standard ACDM model. Although in
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Figure 14: Comparison of the power spectrum normalized by the value in the UV limit, with
different values of the spatial curvature. The radiation component is fixed to B = 1.25 x 107°,
while the curvature is (top) |A| = 1.0 x 1073 and (bottom) |A| = 5.0 x 1073 for curved cases
(A = 0 for flat case of course). The vertical dashed line represents the momentum cut off
fﬁmin = /A for the negative curvature case.
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such a small [ region there exists a difficulty of the cosmic variance[5], it might be a signal of the
violation of the scale invariance of the primordial power spectrum. We note here that because
of this suppression, our result above seems to indicate that the large negative curvature should
be excluded from the consideration. However, if the amount of the radiation component in the
pre-inflationary era is comparable to the curvature component, then the resultant spectrum is
rather simillar to each other because the radiation component B can compensate for the negative
curvature (A > 0) effect as one can see from the expression K = (k* — Ak? + B)'/4. In this sence
there is a degeneracy in the parameter space of our model if we only consider the primordial
power spectrum. It is possible that this degeneracy would be resolved by taking the dynamics
of the inflaton field into account and consider more precise (of course model dependent) time
evolution in the inflationary era.

Considering possible effects on other obaservable quantities is also important. Recently,
it has been argued that the enhancement of the lensing amplitude in the Planck results can
be naturally explained by assuming the positive curvature, though in this case discrepancies
between various local observational results including BAO (baryon acoustic oscillation) becomes
larger[39].

9 Conclusion

We considered the linear perturbation theory, especially time evolution equation on the FRW
spacetime with various combinations of background matters. Surprisingly, although the solutions
to the evolution equations have rather complicated expression in terms of Weierstrass’s elliptic
and related functions, the associated 3rd order equations satisfied by the symmetric power of the
wave amplitude allow simple solutions that are polynimials of the resiprocal of the scale factor
a. The method utilized there was originally employed in mathematical literature, but it is also
physically motivated because the associated 3rd order differential equation directly describes
the time development of the squared amplitude, which is related to the energy density of the
propagating waves. Although we have not succeeded in applying this method to other physical
systems, it is worth searching for such examples.

On mathematical side, there is a generalization of the idea, where in general k-th powers of
the solutions of original second order differential equation are used[10]. In this work, the authors
the condition that the condition where the Lamé equation allows algebraic solutions in terms of
the monodromy group of the equation. These kind of studies may be useful to understand why
there are polynomial solutions in the cosmological setting treated in this thesis only in the four
cases, although such an understanding (if possible) is physically relevant or not is unclear.

After obtaining the exact solutions, we considered applications of these solutions. In the
first part (Sec.6,7), we considered propagation of gravitational waves in the late time universe.
In the former section, the exact solution after the radiation component becomes negligible in
the standard cosmological model was studied. Note that our solution can afford to include the
spatial curvature as well, although the observable effect would not exist. The solution in terms
of elliptic functions are found to reduce to the known solutions when the limit is appropriately
taken, which confirms the validity of the exact solution. We also obtained the exact expression for
the energy spectrum of the gravitational waves in terms of a rational function of the scale factor
a and the comoving wave number k. In the latter section, we treated the similar problem but
with the cosmological constant replaced by a non standard energy content which is proportional
to 1/a®. We regarded this as a simplified model for the quintessence scenario in the late time
acceleration and obtained the energy spectrum in the similar manner. The result shows that
the spectrum of these two cases differ significantly in the large scale. Although the spectrum is
almost identical to each other in the physically relevant, meaning observable in the near future,
region if the density parameter €, of the non relativistic matter is set to the same value, it may
be possible that €, differs from the standard value if some quintessence scenario is true.
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In the second part, we considered a model of a pre-inflationary era filled with radiation
and spatial curvature components, followed by the de Sitter expansion. We obtained the exact
solution for the massless minimally coupled scalar field in this background, which obeys the
Lamé equation of the order n = 1. The obtained exact solution was found to be positive
and negative frequency modes at the initial time when the radiation energy is dominant, and
the Bogoiubov transformation that connects the late time positive/negative frequency solutions
which are usually utilized to define the Bunch-Davies vacuum state in the inflation. Using the
Bogoliubov transformation, we calculated the number and energy density of particles created
due to non trivial time evolution of the background gravitational field. The resultant energy
distribution turned out to be non thermal one, differently from the typical examples of the
gravitational particle creation, namely the Hawking radiation from black holes. We further
calculated the vacuum expectation value of the energy density of the scalar field. In contrast
to the case of the de Sitter spacetime, there is no infrared divergence observed, while the usual
ultraviolet divergence exists. To regularize the divergence, we use the adiabatic regularization
but slightly modified so as to keep the infrared finiteness. The regularized energy density contains
the spectrum obtained by using the Bogoliubov coefficients as a radiation like component, and
other components with different behaviors under the cosmic expansion. Among them, we pick
up the term that is independent of the scale factor a, namely the quantum correction to the
cosmological constant. We found the sign of the correction can change with the value of the
spatial curvature. Lastly, we calculated the primordial power spectrum, which is given by the
simple function of the comoving wave number and the density parameters normalized by the
Hubble parameter of the inflation. As in the case of energy density correction, the positive
and negative curvature gives the opposite contribution to the power spectrum. Except for the
sufficiently large negative curvature cases, the pre-inflationary era suppresses the power spectrum
at the very large length scale, which may be reponsible for the observed anomaly in the CMB
temperature anisotropy at low multipole [.
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A Preliminary on Weierstrass elliptic function and related func-
tions

In this appendix, we briefly summarize basic facts about (especially Weierstrass’s) elliptic func-
tions. The readers who would like to know more on this topic can refer to ref [1].

A.1 Fundamentals on elliptic functions

A complex function f(z) which is meromorphic and doubly periodic is called an elliptic func-
tion. A meromorphic function is a function whose singularities are only isolated poles. Double
periodicity means that there exist two complex parameters w; and wy such that for arbitrary
integers n and m

f(z + 2mwy 4 2nws) = f(2), Yz € C\ {all singular points}. (A.1)

Note that wi/ws ¢ R is assumed. Because of double periodicity, the entire properties of an
elliptic function are determined within a parallelogram with vertices zg, 29+ 2w1, 20+ 2w1 + 2ws,
and zp + 2wq for some point zp € C. We call such a parallelogram a (fundamental) cell. If
an elliptic function f(z) is analytic in a cell, then it is bounded in the entire complex plane.
This implies that an analytic elliptic function must be a constant function. Conversely, any
non-constant elliptic function should have at least one pole in a cell.

By using Cauchy’s integral formula, we can derive several properties of elliptic functions.
First we consider the following integral:

21

]4 L i), (A.2)

The contour is the boundary of a cell in the counterclockwise direction. Since f(z) takes the
same values on each pair of opposite sides and the integrations are in opposite direction, we can
see this integral vanishes. Cauchy’s theorem states that this integral is equal to the sum of the
residues of f(z) within the cell, therefore

Z Resf(z) = 0. (A.3)
in a cell

Next we observe that f/(z)/f(z) is also a elliptic function. Thus we can apply the above result,
but in this case simple poles of f/(z)/f(z) comes from every (including higher order) poles of
f(2) as well as every roots of f(z). Therefore, we obtain

Z (order of poles) = Z (multiplicity of roots). (A.4)

poles roots
This value (though not completely) characterize an elliptic function and is called the order of
f(2). Because the sum of residues must vanish, the minimal value of the order is 2.
A.2 Weierstrass’s elliptic function p(z)

Weierstrass’s elliptic function is one of the simplest elliptic functions, namely order 2, which is
defined by

p(z) = % + Z [ ! — ! ) (A.5)

(I 0.0) (z = 2mwy — 2nw9)?  (2mwy + 2nw2)?

where the summation is taken over all integers m,n except for m = n = 0. We introduce a
shorthand notation Zlmn for such a summation. Double periodicity p(z + 2w1) = p(z 4 2wq) =
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©(z) and even parity p(—z) = p(z) are evident from the definition. Also, singularities of p(z)
are only double poles at z = 2mw; + 2nws.

Taking into acount the facts that p(z) is an even function and that the summation in the
definition gives 0 at z = 0, we can conclude that the Laurent series of p(z) around z = 0 is given
as

p(z) = 7+%2 2t 0(), (A.6)

where g and g3 are some constants. By differentiating this series term by term, we obtain
2
m@:—f+—f+@£+mfy (A7)
10 7
Because the singular terms of three expressions [p/(2)]?, 9(2), and p(2) are only 1/25,1/22, we
can arrange them to pick up a non singular function. By a simple manipulation, we can find
the following result:

[0(2)]7 — 40°(2) + g29(2) + g3 = O(2?). (A.8)

The left side of this equation is evidently an elliptic function, but as the right side shows it is
non singular. Therefore, it should be a constant function, especially zero. Thus, p(z) satisfies
the following first order differential equation,

[0/(2)]" — 46°(2) + g29(2) + g3 = 0. (A.9)

The above differential equation is invariant under the translation z — z + 29 and is first
order, so the general solution to this equation is given by the elliptic function p(z + zp). Formal
integration of Eq.(A.9) gives an implicit expression for p(z),

o0 d
. :/ R (A.10)
o(2) [49 — g2 — 3]

Note that the endpoints of integration is chosen so that g(z) has a pole at z = 0. Because
the integration contains a multivalued complex function, namely square root, branch cuts and
integration path must be specified. The branch points are given by solutions to the algebraic
equation 40> — gap — g3 = 0, which, at most, has three solutions. We write the solutions as
e1, ez, and e3. When (g2)% = 27(g3)?, at least two of e; coincide and Eq.(A.10) can be integrated
with elementary functions. In this case the solution to Eq.(A.9) is no longer an elliptic function.
We assume (g2) # 27(g3)? hereafter. Note that because Eq.(A.9) doesn’t have quadratic term,
e1 + eg + ez = 0 holds.
Now we write Eq.(A.10) as

o i g : A1l
/p(z) [4(y - 61)(y - 62)(y — 63)]1/2 ( )

The configuration of three distinct roots e; are divided into two cases: (i) three real roots, (ii)
one real root and a pair of complex conjugate roots. For clarity, we assume e; > eg > e3 in case
(i) and e; € R in case (ii). Since the integrand is a square root, we need a Riemann surface that
consists of two sheets of complex plane. We fix the end point of the integral (y = oo) as the
infinity along the positive real axis on the first sheet. Then, for a given point in the Riemann
surface, various integration paths in Eq.(A.11) are specified by the winding numbers around the
branch points. Consider two paths with the same end points. If the difference of these paths
is just a small circle around one of the branch points, the values of the two integrals are equal.
On the other hand, if one of the paths differs from the other by a closed contour that encircles
two branch points, then the two integrals give different values, the difference of which is one of
the periods of this elliptic function.
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Another important implication of p(z) is related to the parity of the elliptic function, namely
o(—2z) = p(z). Since the Riemann surface can be considered as two sheets of complex plane
connected by branch cuts, there are two points in the surface that correspond to a given value
of p(z). Taking account of the fact that the difference of these choices is just the sign, we can
conclude that the two integrals which start from different sheets give sign change up to the
periods.

To illustrate these facts, let us consider the case (i). As an example, we fix the starting point
©(z) at the upper half plane of the same sheet with the endpoint y = oco. One of the simplest
paths, which we call C1, would consist of two straight lines one of which connects y = p(z) and
y = e1, and the other goes from y = e; to y = oo along the real axis,

dy o dy * dx
_ by dr A12
o FW) /mz) 7w ), 7@ (A.12)

Here f(y) denotes the integrand given in Eq.(A.11) and we introduced a real valued variable x
to indicate that the second integral is real. Now consider another path Cs; after the straight
line from y = p(z) to y = ey, it encircles two branch points e; and ey in the counterclockwise
direction, and comes back to the half real axis from y = e; to y = co. The difference of the two
integrals with C7 and C is given by the following integral:

el dx
2i /
eo \/4(61 —z)(z —e2)(x — e3)
Next we consider the path C5 that encircles eo and e3 in the counterclockwise direction. Then
the difference between the integrals with C7 and that with Cs is given by
e d
2 / z
es VAler —x)(e2 — x)(x — e3)
In conclusion, we find two fundamental periods can be chosen so that one is real and the other

is pure imaginary in case (i). We note that the periods Eqs.(A.14) and (A.13) can be also
expressed by the following integrals:

=: 2wy. (A.13)

=: 2w;. (A.14)

o dx

M Vi e e e e
o [es dz

29 = 21 /OO \/4(61 T P x) (A.16)

We can understand this result by observing that, for w;, integrals in Eqgs.(A.14) and (A.15) can
be combined to form a closed contour that doesn’t encircle any singularity. The equality between
Eqgs.(A.13) and (A.16) can be established in the similar way. Of course, appropriate changes of
variables convert the integrals of Eqs.(A.14) and (A.13) to those of Eqgs.(A.15) and (A.16). In
case (ii), although we cannot take w; and wg such that we/w; is pure imaginary, fundamental
periods are given by integrals encircling two branch points, or equivalently one branch point and
infinity.

Let us determine the positions z where p(z) = e;. From the differential equation Eq.(A.9),
we find ©/(z) = 0 there. Because p(z) is an order two elliptic function, p(z) = e; must has two
solutions for z in a fundamental lattice for each value of i(= 1,2,3). Then, since ©'(z) is an
order three elliptic function, ’(2) = 0 has three distinct, simple roots. We can find these roots
by observing the following result:

O (wi) = = (wi) = = (wi) = ¢'(wi) =0, (A.17)

where, in aadition to w; and wo, it holds for w3y := wy; + wy. Note that the choice of the
fundamental half periods w; and wo is not unique although e; are invariant up to the permutation
of the index 1.
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A.3 Weierstrass’s sigma o(z) and zeta ((z)

We introduce two complex functions o(z) and ((z) related to p(z),

z z 22
_ 1= A.18
olz) =z H < 2mw1 + 2nw2> P <2mw1 + 2nwo - 2(2mws + 2nw2)2> - :

(m,n)#(0,0)
1 1 1 i
1 . A9
o z Jr( )Z;é(o 0) L’ — 2mwy — 2nws + 2mwy + 2nwo - (2mwy + 2"“’2)2} ( :

These definitions immediately lead to the following relations:

o) = ~C(). ()= 28 ()= (@) oln) = o) (a0)
These functions are ”quasi” periodic, meaning
o(z+2w;)/o(z) = —exp (2ni(z + wj)) , (A.21)
(2 + 2wi) — ((2) = 2m;, (A.22)
where 17; = ((w;) (i = 1,2) are constants. These relations can be verified as follows. By

definition, it is easy to see that ((z 4+ 2w;) — ((z) is independent of z, so we write them as 27;.
Then, because ((z) is an odd function, we obtain

((wi) = =C(=wi) = =Clwi) +2m = ni = ((wi)- (A.23)

By integrating ((z) along the boundary of the fundamental lattice with vertices z = tw; £ wo,
we can derive a constraint on 7;,

2mi = j(l{g‘(z)dz = 4(wan1 — win2). (A.24)

Now integrating Eq.(A.22) and taking o(—w;) = —o(w;) into acount, we can obtain Eq.(A.21).
The power series expansion around the origin can be easily derived by using the expansion
of p(z) and integrating it, of which first several terms are given by

_ L g2 3 g3 ;5 7

((z) = ~ 602 1402 +0(z"), (A.25)
—,_ 92 5 _ 93 7 9

o(z) ==z 540°  840° + 0(z7). (A.26)

A.4 Addition theorems

Wieierstrass functions defined in the previous sections satisfy the following addition theorems:

/_/wQ
ol +u) = —pl2) - plw) + 1 (2 =21) (A27)

p(z) — p(w) = ()% w) (A.28)
¢(z+w) =C(z)+<(w)+;m. (A.29)
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B Laplacian on 3-dimensional homogeneous and isotropic space
and its eigenfunctions

Here we summarize the fundamental results about the Laplacian D? on the 3-dimensional homo-
geneous and isotropic space, namely spatial section of the FRW spacetime. D? can be defined
by

D= 0 (v70,). (B.1)

where «;; is the metric tensor of the space,

Co dr?
dsfg) = v;jda'dr! = gt r2dQ?, (B.2)
and 7y is the determinant of «;;. The eigenvalues and the eigenfunctions can be found in the
literature[34], but we show the result with some derivations. For flat section (K = 0), the
Cartesian coordinate system is available so that the eigenvalues and eigenfunctions are well
known,
D?etk® — _2ctk, (B.3)

When Imk # 0, the eigenfunction diverges exponentially at infinity, so we assume k € R, or the
eigenvalue is negative —k? < 0.

In the cases of non zero curvature K # 0, we take a dimensionless radial coordinate y defined
by
siny (K >0 K|'/%d

V(K>0) K[V

sinh x (K < 0) X_\/l—KTQ.

Using this coordinate, the Laplacian normalized by the curvature D? = |K|~1D? is explicitly
given by

[K['/r = R(x) = { (B.4)

2o L 5 (R L p
D? = R2(X)8X (R*(x)0y) + RQ(X)D : (B.5)

where D? is the Laplacian on the 2-dimensional sphere of unit radius. Recalling that the
eigenvalue of D? is [(I + 1) with a non negative integer [ and its eigenfunction is the spherical
harmonics Y, (|m| =0,1,--- 1), the eigenfunction of D? with the eigenvalue —k?/|K| can be
written as Y 1.m (X, 0, 9) = fei(X)Yim (0, @), where fi; is the solution to the following ordinaly
differential equation:

Jra+

S (R B ) M D - (B.6)

R2(x) dx dx R*(x) !K |

We solve the negative curvature case first. The solution for the positive curvature case can be
easily obtained by x — ix as one can see from the definition of R(x). It is useful to introduce the
coordinate z = cosh x. Then, appropriate rescaling g ; = (2% — 1)1/4fk7l leads to the Legendre’s
differential equation for gz,

_ 2 _ 1\ il ooy _ v are
0= [(z 1) = + 2z . <‘ | 4) SR }gk;,l, (B.7)

of which basis solutions are the famous Legendre functions Plj%iip(z) and QlJrll/Q%er(z) of the
1st and 2nd kind, respectively. Here we defined p = \/k?/|K| — 1. Since [ + 1/2 is half an odd

integer, we can express these solutions as finite term series by using suitable transformations of
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the Legendre functions (see [15] for such transformations). Consequently we can arrive at the
following explicit forms,

ipx — —e X \"
o=+ Z(Hl)"(. l)”( : ) : (B.8)

sinh o n!(l1 —ip), \2sinhy
i l — n
2 e 'PX I+ 1)n(=0) —e X
R0 = == 3 o , (B.9)
’ sinh y &= n!(1+ip), \2sinhy
where (z),, ;== I'(x +n)/I'(x) is the Pochhammer symbol. Another possible expression for these
solutions are .
I+1
(1) (_1) . hl d ipx B
_ 1 4 , 10
100 = sy () e (B.10)

and its complex conjugate for f . One can confirm this expression indeed solves Eq.(B.6) by
direct substitution and the coeﬂi(nent can be fixed by takmg the limit y — oo for example.
We deﬁne the basis solution to the full equation D? Yplm = —(p® + Dbpim by Ypim =

Np.im( f +f (2))Yl,m with a normalization constant N, ;,,. This specific combination is chosen
in order to make Yp1m regular at the coordinate origin x = 0. Orthogonality of v, ,, can be
readily verified from that of Y; ,, and f;i), the latter of which can be seen from the differential
equation for f,;. More precisely, from Eq.(B.6) we can derive

(p? —p’z)/ooo AXR® fpuf = /OOO dxdi [RQ <fp, Ay dfp’ fp l)} =0. (B.11)

Strictly speaking the boundary value at y — oo doesn’t vanish but we can insert an infinitesimal
imaginary part to the eigenvalue p so that the integral really vanish, as in the case of flat space.
We set the normalization of 1, ,, by the following condition:

/ BT (s 0 (&) = 50— )60 (B.12)

Then, if we expand an arbitrary field ¢(x) as

0

6@ = [ Y dpumtpin(a), (8.13)
I,m
the coefficients ép,lm can be obtained from ¢(z) by

Foim = / BTN (). (B.14)

Equivalently, the basis solutions 1, ; »(x) satisfies the completeness,

/0 dpzwplm D)y (@) = 703 — ). (B.15)

C Adiabatic expansion of a scalar field in FRW spacetime

In this appendix we describe the adiabatic expansion of a scalar field ¢ in a 4-dimensional
homogeneous and isotropic spacetime °. In the main part of this paper we only consider a

5 Although our argument is restricted to the case of four spacetime dimensions, it is straightforward to extend
to other dimensionality.
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massless field with minimal coupling to the curvature, but here we consider a massive field and
take massless limit at the end. The scalar field equation is given by

D2
0= 83+3H8t—¥+m2 o, (C.1)

where H = a/a is the Hubble parameter and D? is the spatial Laplacian. Changes of both the
dependent and independent variables ¢ — v = a¢ and ¢ — n = [ dt/a respectively removes the
first order derivative term. Also, we assume the separated form v(n, ¥) = vi(n);(Z) with the
eigenfunction of the spatial Laplacian DQL/}E = —k‘sz. Then, the ordinary differential equation
for vy is given by

0=} + (W} —d"/a)vg, wi=Fk+m?a> (C.2)

Thus, the scalar field equation in the FRW spacetime is equivalent to a set of harmonic oscillators
with time-dependent frequencsies. If the background spacetime is static, i.e. a =const. then
wy, is constant for all mode k and the solution is given by just a plane wave ek //2w;. The
adiabatic expansion assumes that the spacetime is ”close” to a static one. When the spacetime
is dynamical, the plane wave solution is affected by the derivatives of wy and a. Therefore
the adiabatic expansion is essentially a derivative expansion and implemented by the following

ansatz: .
) = e exp (i [ Winan). (©3)
2Wi(n)
where the unknown function Wy, satisfies a nonlinear 2nd order differential equation
" 7\ 2 "
=wp——+- || —==£ A4
Wi = wi a+4<Wk> 2 Wi (C4)
and is expanded as
Wi =wi (14 W+ W 4 ). (C.5)

In general W1§2A) consists of terms with 2A derivatives. The second and fourth adiabatic order
terms are explicitly given by

2 " "
9 3 [w 1 w 1 a
we _ 2( k) B (C.6)

1
wd = We @i We Lo (C.7)

Similarly the energy momentum tensor 7}, can be expanded with respect to the number

of derivatives. As one can immediately verify, large-k behavior of WIEQA) is of order O(k=24).
Thus we can regard the adiabatic expansion as large-k expansion as well. Even for free scalar
fields, the vacuum expectation value of 7}, has UV divergence as in the flat spacetime. Since
large-k limit of W,E,M) is suppressed as the number of adiabatic order 2A increases, the UV
divergence of the expectation value of T}, comes only from the first few terms in the adiabatic
expansion. This observation leads to the adiabatic regularization scheme to obtain a UV-finite
expectation value, where the first several terms that cause the UV divergences are subtracted
from the expectation value.

In the FRW spacetimes, because of the spatial homogeneity and isotropy, the vacuum ex-
pectation value of T}, takes the perfect fluid form as long as the vacuum state |0) is chosen so
that it respect the spatial symmetry. In this case, (0|7,,|0) can be characterized by the energy
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density (p) = (0|T3|0) and the isotropic pressure (p) = (0|/T%|0). When the vacuum state is
determined by the mode function (C.3), (p) and (p) are written as mode sums,

1 21 (W "2
(p>=8W2a4/du(1f) Wk+°"k+( k+)]

Wi Wi, \2W | a

1 w2 + 2m2a? 1 W a'\?

= dulk) |w,, - TG 2 Tk D)
() 87r2a4/“() k SWe W, <2Wk+a>

Note that although the mode sums [ du(k) both for (p) and (p) are divergent, these expectation
values obey the conservation law V,T*, = 0, which now reads
3a’
_l’_ JR—

0= (o) + == (o) + () (€3)

This equality can be verified by observing the following formal differentiation:

/ 2
,  3d [ du(k) (a®Wi) | WY 5 3 (W] 5 a”
) + =)+ = | g5 o |awy TWe g\ ) ety

(C.9)

The expression in the bracket is precisely the equation of motion (C.4). This result shows that
although (p) and (p) are divergent if we integrate arbitrarily high momentum modes, they satisfy
the conservation law as long as the mode function is a solution to the equation of motion. Also,
if we expand Wy in terms of a certain parameter and the equation of motion is satisfied by each
order, then the conservation law holds order by order, which in turn implies that any subtraction
of the terms with a specific order both from (p) and (p) doesn’t break the conservation law. In
particular, if the expansion parameter is chosen so that the expansion is identical to the 1/k
expansion in the large-k limit, then by subtracting the divergent terms from (p) and (p) we can
construct a UV-finite expression for these expectation values that satisfy the conservation law.
This procedure is called the adiabatic regularization of the energy-momentum tensor.

Now we specialize to the WKB expansion (C.5). The adiabatic expansion in terms of the
number of derivatives for the "bare” expectation values (p) and (p) are given by

() = (P + (o) + (D) 4. | (C.10)
) = PO + @y + W)y + ... (C.11)
where
1
) = gzt [ A (€12)
1 du(k) (o Wl \?
2)y — K Sl
() 47T2a4/ 2wy, (a +2Wk ’ (1)
1 d (k) 2 2 2 a/ w’ 2 2)/ a’ w’
(4)y _ H OV _w@ (2, Y @ (Y, *k 14
(p®) 47r2a4/ 2o [(kak ) W, <a+2wk W Tt )| (€19
and
1 w m2a?
Oy_ _~ YE(q1 -
00 = g [t (1- 757, (.15)
1 du(k) | 2w? m2a? ad  wp\?
2)y — K Yk @ (%, Y
(p@) 47r2a4/ %o [ 5 <2+ 2 wW,” + —+ o) | (C.16)
1 du(k) [2w? m2a? w? 2m2a? 2
(4)y _ 3 sWi 4) Y (2)
e 47r2a4/ 2wy, [ 3 (2+ w? Wi 3 L+ w? (Wk )
L@ (9w e (9 (C.17)
k a 2w k a 2w ‘ ‘



By simple order counting we see that the terms of higher adiabatic order than that are shown
above are UV-finite.

Note that the 4-th order terms have logarithmic singularities when we take the massless limit
m — 0 in the flat case (K = 0). These singularities are manifestation of the breakdown of the
WKB expansion for the zero mode (k = 0) in the massless case, i.e. wy = 0 at £ =m = 0. Thus,
we introduce both UV and IR cutoff parameter A and p respectively. With this regularization,
we denote the expectation values with the subscript reg. The adiabatic expansion of energy
density become

1 A+ wp
<p(0)>reg TR [A(Qw% —m2a®)wy — u(Qwi — m?a*)w, —m*a*log (M"‘Wuﬂ ,  (C.18)
2
<p(2)>re = ! g/ Awp — pwy, — 2m*a’ £
& 16720t \ a H WA Wy
2,2 /A3 3 2 2 A
L ma <3_,u3>+ma log( —i—wA)], (C.19)
6 wy Wy 2 M+ Wy
1 a’ 2 a " a 2 a’ k
(4) 2) o2 % o) 2 _

3 a 4 a 2 a’ a o a’ 2
+ 53 -] +6(—| ——2———+ | —
3wy a a a a a a
3m2q2 I\ 4 1o
<1+ mg){?)l(a) +36<a> i < > —2}
ka a a a a

n K3 L+ 3m2a? n 15ma* a7’ af Ci 4
15w,§ Qw% 8w,‘§ a a a

k3 a'\* 3m2a?  15m*a*  35mSab
- <> (1+ t—— + > (C.20)
a ka 8(,u,~C 16wk

k

In the massless limit (m — 0) keeping the cutoff finite, these expectation values reduce to

1
(0 e = gz (A =), (C.21)
(2 1 a’\? 2 2
<p )>reg — 1671'2(14 <a> (A — M ) ’ (022)

1 a 2 a a" a 2 a A
(4) - 2y 22 hudl 2
(p >reg—>327r2a4 [{(a) 2a - —|—4<a> a}log(ﬂ)]. (C.23)

Although we don’t discuss in detail in this thesis, it should be noted that the aidabatic
regularization is in fact a specific description of the renormalization. For this point of view, see
[11] for example.
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