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Chapter 1 Introduction

In this chapter, we review the previous studies and describe the motivation for our study.

1.1 Bose—Einstein Condensation and Superfluidity

The spin-statistics theorem classifies identical particles into two groups in terms of their spins. One
of the groups is associated with particles with half-integer spins called fermions, and the other
corresponds to particles with integer spins called bosons. Fermions and bosons show completely
different behaviors at low temperature because they obey different quantum statistics. Fermions obey
the statistics with Pauli exclusion principle which forbids two particles from occupying at the same
one-particle state. On the other hand, bosons are free from this exclusion principle. Particularly,
macroscopic number of bosons condense into the lowest-energy below a certain temperature. This
phase transition induced by the quantum statistics of bosons is called Bose—Finstein condensation
(BEC), which was predicted by Einstein [I] in noninteracting atoms based on the idea in a paper
by Bose [2] who gave a new derivation of Planck’s formula assuming the radiation is composed of
quanta (photons) obeying a particular kind of statistics different from the classical one.

BEC systems are generally dominated over a wave function at the lowest-energy state, called
condensate wave function ¥o(r,t). The wave function corresponds to the order parameter in BEC
and describes the behavior of macroscopic number of condensed particles (condensates). One of the
striking phenomena associated with BEC is frictionless transport of particles, called “superfluidity”.
First of all, we introduce some previous theoretical investigations for the relationship between BEC

and superfluidity.

1.1.1 History of studies for BEC and superfluidity

The relevance between BEC and superfluidity was pointed out by London [3], who was stimulated
by the experiments of liquid *He below A point by Kapitza [d] and Allen and Misener [H]. He
evaluated the critical temperature of BEC T, using Einstein’s theory [] with material parameters of
liquid “He and compared it with the experimental data of A-transition temperature Ty. He obtained
T. ~ 3.1, which was qualitatively consistent with 7, ~ 2.1. However, his consideration was not
sufficient because the effects of strong interparticle interactions in liquids were neglected completely.
Regarding this problem, Landau [G] constructed a theory of interacting quantum liquid. He quantized
the Hamiltonian of classical liquid by introducing the density operator j(r) and velocity operator
o(r), and associated the motions of the liquids with their elementary excitations. According to his
consideration, quantum liquid possesses the stationary states classified as (1) irrotational potential

motion (V x © = 0) that corresponds to

phonon mode”, (2) vortex motions (V x v # 0) that
corresponds to “roton mode”. Specifically, he considered that the potential motion (1) results in
the superfluidity in *He. Based on his idea with a stability condition for elementary excitations in

quantum liquid responsible for motion (1), one can obtain the maximum value of superfluid velocity
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v as follows [7]:

. Ep
Ve = min —, 1
T ) W

where €, is the elementary excitations of the liquids with momentum p and minimum is calculated
over all the value of p. Assuming the free-particle dispersion as €, oc |p|? and substituting it
into Eq. (0), we obtain v. = 0, i.e., superfluidity is absent in noninteracting systems. On the
other hand, phonon-type dispersion as €, = c|p| yields finite superfluid critical velocity. Thus,
interaction between particles found to be indispensable for the superfluidity, and the elementary
excitation responsible for frictionless motion was concluded to be phonons by his work. Bogoliubov
developed a quantum-field-theoretic description of weakly interacting BEC “molecules” and discuss
the origin of superfluidity from microscopic viewpoint [8]. He regarded the interaction part in the
Hamiltonian as a “mean field” to introduce a quasiparticle operator in BEC and calculated the
quasiparticle excitation at T'= 0. Although his mean-field approximation was limited to the weak-
coupling regime, the quasiparticle dispersion was identical with the “phonon excitation” predicted
by Landau. Thus, the perturbative small interactions between bosons transformed a free-particle
dispersion into a phonon-type dispersion responsible for the frictionless motion in superfluids.
However, one may raise a question here; why does the one-particle excitation by Bogoliubov
theory become equivalent to the collective mode by Landau theory ? Regarding this question,
Gavoret and Nozierés gave a conclusion that the one-particle excitation is same as the two-particle
excitation in BEC systems [d]. They considered the structure of Green’s functions in BEC systems
based on a perturbation-expansion method developed by Beliaev [IM], and showed that one and two-
particle Green’s function share common poles in the long-wave-length limit. Therefore, low-lying
quasiparticle excitations (one-particle excitation) in interacting BEC systems is widely accepted to

be identical with collective phonon modes in superfluids.

1.2 Fundamental Theoretical Difficulties and Recent Developments

To understand the relationship between BEC and superfluidity, intensive theoretical studies have
been done. However, we encounter fundamental difficulties when we extend the Bogoliubov theory
to describe strong-coupling or finite-temperature systems straightforwardly.

Based on Beliaev’s formalism, Hugenholtz and Pines proved that there should be no gap in the
one-particle-excitation spectrum in BEC in the long-wavelength limit [T]. In this sense, a gapless
phonon-like mode predicted by Bogoliubov satisfies the Hugenholtz—Pines theorem. On the other
hand, the Bogoliubov theory is not self-consistent and neglects contributions in the Hamiltonian
smaller than O(y/Np) (No: condensed particle number), which is mainly by non-condensed particles
(noncondensates). Therefore, Bogoliubov theory or its simple generalization to strong-coupling or
finite temperature systems without self-consistency breaks dynamical conservation laws. On the
other hand, if we adopt the conventional Wick-decomposition procedure to evaluate the two-body
interaction and construct a self-consistent theory satisfying conservation laws [I2, 3], we obtain
a one-particle excitation with an unphysical gap that contradicts the Hugenholtz—Pines theorem.

Because of this “conserving-gapless dilemma”, which was pointed out by Hohenberg and Martin
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[4], we have difficulty in constructing a reliable microscopic theory of interacting BEC systems
even at the mean-field level. To overcome this problem, various theories have been suggested based
on perturbation-expansion method [I5, [6] and variational method [I7]. In the following, we review

these recent works.

1.2.1 Perturbation-expansion method
One of the most successful perturbation theories is ®-derivative approximation, which is known to
be applicable to normal systems with satisfying dynamical conservation laws. This method was
developed by Baym [I¥] in order to construct a systematic scheme to describe non-equilibrium phe-
nomena. The conserving-gapless theory, which corresponds to the generalization of the ®-derivative
approximation to BEC systems, satisfies both dynamical conservation laws and the Hugenholtz—
Pines theorem simultaneously [I5, 06]. This section summarizes the conserving-gapless theory and
compares it with a conventional self-consisntent mean-field theory called Hartree—-Fock—Bogoliubov
(HFB) theory [I3].

Here, we consider a system of weakly-interacting bosons with mass m and spin 0, which is

described by the following Hamiltonian:

g:HO+Hinta (2)

A~ ~ 2 2 S ~ ~

o = [ ardt () = 5 i) = [ardt)Kd). (3)
Huw = [drs [[draUr = ra)d! ()b (ra)ira) o), (@

where U is the interaction potential and p is the chemical potential. To construct a perturbation

theory, we introduce the Heisenberg equation for 1&(7’) with “imaginary” time 7 as follows:

81;(7’.1;7-1) — 61&(1) _ mHA —mH
e e

- Kd(1)+ / d20 (1 — 2)41 () (2)d(1), (5)

where (r1,7) =1 and U(1 —2) = U(ry — 72)0(11 — 72).

In BEC systems, we need to determine the behaviors of condensates ¥y and noncondensates 51/3 =
)—W, simultaneously. To describe noncondensates, we define a Green’s function — (T,-dt)(1)6¢1(2)) =
—[0(r1 —72) (5h(1)64T(2)) +0(r2 —71) (59T(2)6¢(1))] = G(1,2), where T} represents a time-ordering
operator. In addition, anomalous density (6¢)(r1)8(r)) and anomalous Green’s function (T,6¢)(1)81)(2)) =
F(1,2) are known to be finite in BEC systems [[0]. Noting these facts, we introduce a imaginary-time

Green’s function in the 2 x 2 Nambu space defined as
A 5 (1) . ) .
G(1,2)= - (T . 02 (2) o1 (2
(1,2) < <5¢2(1) ( ¥2(2) 091 ( )) 03

(G2 P2\ _
_< 7(1,2) —G(1,2)>_G”(1’2)’ ©
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where &; (i = 0,1,2,3) denotes Pauli matrix and
51 (1) = e H5j(r)e | 59y (1) = e ity )e . (7)

The equations of motion for CA{ called Dyson—Beliaev equations, are derived as
/ d3[Gy ' (1,3) — 3(1,3)]G(3,2) = G06(1 — 2), (8)

where G31(1,2) = (—=600/01 — 63K)6(1 — 2) and 6(1 — 2) = d(m — 72)8(r1 — 72). On the other
hand, the equation of motion for Wy is obtained by (9¢(r;7)/d7) = 0, which is known as the
Gross—Pitaevskii (GP) equation [[9, P0] given by

KWo(r) + /dTlU(|7“ - 7°1|){ [[@o(r:)[* + (6 (r1)8%(r1)) | Wo(r)
+ (00 (r)59 (1)) W5 (r) + (501 (r)de)(r1)) \110(7‘1)} = KWo(r)+T(r) =0, (9)

where we use the approximation (5@/361[151@ ~ 0 within mean-field regime.

Luttinger and Ward introduced the exact equilibrium thermodynamic potential with a functional
® = ®[G] for a normal Fermi system in terms of the imaginary-time Green’s function G [21]. Here,
we follow their manner and introduce the generalized form of the thermodynamic potential to an

interacting BEC system [I5, 06]. The thermodynamic potential is given by

0= /dr\pz;(r)K\po(r) + kBTTTr[ln(—QA(;l L) +2 G+ o, (10)

where Q denotes a matrix whose elements are compose of G;;(1,2), its trace is defined as TrQ =
Dim1 Jd1G;;(1,1+ 04), and @ generates &, A, and T as

0P 0P kgT 092
— = —kpT>(1,2 = —A(L,2
5G(2, 1) kB ( ’ )? ( )?

oD = s Sun] e (11)

By these definitions, 59/5@’ = 0 and 0Q/6Wy reproduce Dyson—-Beliaev equations and the GP
equation simultaneously. We note Eq. () reproduces the thermodynamic potential for a normal
Bose system by setting ¥, F — 0.

In the ®-derivative theory, we need to consider ® in order to determine what types of diagrams
we incorporate in the self-consistent theory. To construct a mean-field theory, we approximate ® in

the lowest order as [IH, 6]

o~ = kBT/dl/dl’/dQ/d2V1—2 o1 —1)8(2—2)

+6(1—2)8(2 - 1){2G(1,1)G(2,2) + ¢§) F(1,2)F(1',2") + SV G (1,180 (2) o (2')
+ VR (1,2)T0(1)T0(2) + F(1,2) W0 (1) To(2)] + c§ T (1) To(2') W0 (2)To(1)}, (12)

where céb), c&), c%), cé ) numerical weights for respective contributions to ®. Here, we set all the

coeflicients unknown and discuss “the gapless condition” the one-particle excitation in homogeneous

systems.
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We consider the equilibrium state in homogeneous systems where the condensate wave function
is expressed by ¥o(r) = /ng, where ng is condensed-particle-number density. Noting this relation
and using the following Fourier transformation of G given by

o0

k T
G( B4 Z Zka €1k (r1—r2) —zsn(n 7'2) (13)

n=—o00 k#0

with volume V and Matsubara frequency e, = 2nmkgT, we obtain the Dyson—Beliaev equations in

(k,er) space as follows:

(iendo — HYF)Gr e, = 6o, (14a)

= (SRS ALt _ (& A (14b)
N S A S SO

where ¢, = h%|k|?/2m with wave number k and self energies are given as

No(Uo + U 1
E%F = —O(Zivk)Cg? + v Z(Uk,k/ + UO)pk/7 (15&)
k#0
Ny,
ANF — (;} By = S Z Ut FrrcS)). (15b)
k#0

Using Gp,e,, , the one-particle spectral function is defined as
Ak,a = _ZImGk,isn—)5+0+- (16)

Therefore one-particle-excitation spectrum is described by taking the imaginary part of G with

replacing i€, — € + 04. By this procedure, we obtain the spectral function as

Ag =2r[(1+0R)d(e — ER'F) —vpd(e + B, (17)

where vi = [1 — M /EMF] /2 represents the weight of the spectral function and EMY is given by
BN = (e — 4 n)ex — pt ), m = AT £ ANF, (18)
which is derived by diagonalizing the effective Hamiltonian ]:] ff Thus, the gapless excitation in a
homogeneous system is realized when —p 41, o = —4 + SME S — AME S — 0, which corresponds to

the Hugenholtz—Pines theorem. Here, we check whether the chemical potential satisfies the relation
p=3ME — AME or not.

The chemical potential is determined from the GP equation in Eq. (8) by

NoU, 1 1
= (;} 0 V(Uk + U()) Z P’ + v Z Fio Uy (193“)
k’'#0 k’'#0

On the other hand, the stationary condition §2/0¥* = 0, we derive the GP equation as

(1) (1)
Co NoUg Clq Uk + Ug 1b
= = _ ’ F ’ ’ ]_ b
W v 1 v E PR+ E & Uk, (19b)
k' #0 K/ #0
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in terms of numerical weights. By comparison between these two expressions, we obtain
1 1 1
o) =1, ) =4, = 1. (20)

Subtracting Eq. ([5H) from (I5d) with taking k — 0 and using the expression for chemical potential,
we obtain
1+ )
Shho — ApSe =1 — T% Z UkFr. (21)
k+£0
By the conventional procedure for constructing mean-field theory based on the Wick decompo-
sition, we also can obtain self energy and pair potential (HFB theory). In this case, however, the
pair potential is derived as
NoUsy

AIFB _ S

1
+ v Z Uk Fi, (22)
k40

and thus cg}) = 1. Therefore, the Hugenholtz-Pines theorem is broken and unphysical gap remains

in the excitation spectrum. In the conserving—gapless theory, on the other hand, we construct ® in

order to satisfy this gapless condition. In the present case, we set c;? = —1 and thus
NyU, 1
ARG = 2E — SN U F (23)
V 1% o

Note that £¢¢ = SHFB gince SMF does not include cl)) and all other factors are determined by
the GP equation. Because EkMF and Al,\fF are determined self-consistently with G and Uy, the
conserving-gapless theory satisfies conservation laws with realizing the gapless condition.

A systematic construction of ®,(n > 1) is also introduced in Ref. [I6] although we have limited
the discussion within mean-field approximation here. According to the analysis of one-particle-
excitation spectrum based on the conserving-gapless theory up to third order, every excitation for
each k should have a finite life time, even in the limit k& — 0 because of the perturbative contributions
beyond mean-field approximation [22]. It implies that one-particle excitation in BEC systems should
be distinguished from the collective mode which has infinite lifetime in the long-wave-length limit

From the viewpoint of variational principle in thermodynamics, energetically stable state should
be realized by improving a theory. However, the conserving-gapless theory yields higher ground-
state energy (free energy) than that by the HFB theory at T = 0 (T # 0), as shown in Fig. 0 in
the next section. One of the reasons may be the constraint in the conserving-gapless theory, the
Hugenholtz—Pines theorem, which should be satisfied naturally. In other word, it is necessary to
find a self-consistent solution which (1) satisfies the Hugenholtz—Pines theorem and (2) yields lower

ground-state or free energy.

1.2.2 Variational method
The variational method is a theory that incorporates variational parameters into a certain ground
state or density matrix and determine the behaviors of variational parameters from stationary condi-

tions. For instance, in case we consider the ground state described by |®) = |®[z]) with a variational
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parameter x, we impose

£ = (@[a]| B[]} > Blrop)| HIBlrop)) » 0| =0, (24)

T=Top
and determine the optimized solution z,, from this equation, where z,, gives the most “physical”
solution over all of x. When the other independent factors in the Hamiltonian also play crucial
roles, one may need to increase the number of variational parameters. In this sense, “energetic
discussion” is the most important guideline to choose the form of the variational state. Up to the
present, intensive studies based on this variational method have been done in various systems. One
of the works relating BEC was carried out by Girardeau and Arnowitt [I2], who tried to extend the
Bogoliuov theory and confirm its applicability to strong coupling systems, such as liquid “He.

In the Hamiltonian of an interacting BEC system, the interaction term yields various collisional
processes because of the presence of condensates. With ¢ = W + 6¢p (Ug = O(NO%)), Eq. (@) can

be expressed as

Hint[Vo,09] = O(N§) + O(N§) + O(No) + O(Ng ) + O(1)
EHO+I§I%+F11+I§I%+1EIQ. (25)

Explicit forms of H; (i = 0,1/2,1,3/2,2) are given in Eq. (B4) in the next chapter. We here
point out that Bogoliubov theory extracts contributions only up to H, with a simple perturbation
manner. Girardeau and Arnowitt constructed a variational ground state with noncondensates with
incorporating the interaction between two noncondensates described by H, within the mean-field
approximation. The Girardeau-Arnowitt variational wave function (GA variational wave function)

is given by

[Pan) = Aca exp(rly) [N)g, 71 = % > owchely, (26)
k#£0
where (é;rc, Cr) are the field operators satisfying the Bose commutation relations, |[N), = (é;r))N 0y /V/N!
with the vacuum |0), Aga is the normalization constant and ¢, corresponds to the variational pa-
rameter characterizing pair excitations from condensates. In fact, the GA theory reduces to the
HFB theory at T' = 0, i,e., the one-particle excitation by GA theory also has an unphysical energy
gap. Therefore, even in the self-consistent variational theory within mean-field approximation, the
fundamental problem remains to be unsolved.
Recently, a better variational wave function beyond the mean-field approximation has been in-
troduced [I7]. The improved wave function incorporates H 2, called 3/2-body correlations in Ref.

[7]. To describe H 3, the following wave function was introduced:

. . 1 At At
) = A3 eXP(F%) |Pca), WT% =3 Z Whey ok Vo, Ty Vi (27)

" ki,k2,ks#0

where 4 is Bogoliubov quasiparticle operator characterized by g [®ca) = 0 and w is the new

variational parameter. In Ref. [I[7], the ground-state property was investigated with the contact
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Figure 1: Coupling-constant dependence of ¢y evaluated by the Bogoliubov theory (purple), the
GA or HFB theory (green), the conserving-gapless theory (cyan), and the variational theory with
3/2-body correlations (orange).

potential U = 4wh2ay/m (ay: alternative parameter in unit of length, m: mass of bosons) and the
ground-state energy per particle was evaluated using the following quantity;
6 (P|H|®) — (®pog|(H — Hyjs — Hy)|Pnog)

N = ~ = ¢y X epayn, (28)

where |®pog) is the Bogoliubov’s ground state, 7 is the total particle-number density, and ey is
an energy unit given by ey = nU. Fig. 0 plots the results of ¢ by the Bogoliubov theory, the
GA (HFB) theory, the conserving-gapless theory, and the theory with 3/2-body correlations. As
seen in the figure, 3/2-body correlations play a role of decreasing the ground-state energy, and
their contributions are comparable to the mean-field contributions. Thus, the 3/2-body correlations
beyond mean-field approximation should not be omitted in BEC systems, even in the weak-coupling
region.

Based on the new wave function, it was shown that the 3/2-body correlations also yield a quali-
tative change to the one-particle excitation spectrum from the mean-field description. In Ref. [I7],
the author calculated the first and second moments of the one-particle spectral function, as shown
in Fig. B. The first moment corresponds to the peak value of one-particle spectral function, and
the second one corresponds to its width around the peak. Figure B shows the respective results by
|®Bog), |Pca), and |®). As shown in this figure, 3/2-body correlations have the effect of reducing

the peak of the excitation spectrum from the GA spectrum towards the Bogoliubov spectrum and
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Figure 2: A picture from Ref. [I7] : Mean value Ej and width AEj of the one-particle excitation
spectrum, as functions of the wavenumber k = |k| for 6 = 1.0 x 107% and &;_/ey = 100. The
horizontal and vertical axes are normalized by ky = v/2mey /h and ey, respectively. For comparison,
the spectra ESA and EE obtained by the Girardeau—Arnowitt and Bogoliubov theories, respectively.

the reduction becomes larger for & — 0. Thus, the unphysical energy gap appearing in the self-
consistent mean-field theory decreases substantially. In addition, the width of the spectrum was also
finite caused by 3/2-body correlations even in the limit & — 0, indicating a finite lifetime of the
one-particle excitation. Therefore, the variational theory also predict that the qualitative features

of the one-particle excitations differ from that of the collective excitations.

1.3 Motivation of the Present Study

In the following, we investigate weakly-interacting BEC systems on the basis of the recent variational
theory. First, we generalize the variational theory in order to describe various BEC systems. Second,

we reconsider the relation between superfluidity and BEC in the context of macroscopic coherence.

1.3.1 Motivation 1 : Construction of the variational theory for various BEC systems
The recent variational theory was constructed for homogeneous single-component BEC systems at
T = 0. On the other hand, BEC is created in dilute atomic gases by cooling identical bosons in

a inhomogeneous magnetic trap. Therefore, when constructing ground states in a realistic BEC
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system, a competition between interparticle interaction and inhomogeneity due to the trap potential
should be considered [4]. By the recent experimental development, it is possible to realize multi-
component BEC systems with internal degrees of freedom, such as Bose-Bose mixture, Bose—Fermi
mixture, and spinor BEC. Although such field also have been studied extensively, the collisional
processes between different particles tend to be neglected beyond mean-field approximation. There-
fore, collisional effects between different particles are also worth investigating. To do this, we also
construct a variational wave function of M-component Bose-Bose mixtures with incorporating 2-
and 3/2-body correlations between different particles [P5]. At zero temperature, condensed particles
dominates over weakly-interacting BEC systems, since Ng > 1. Thus, the GP equation which does
not include noncondensates is often used and gives qualitative results. However, at finite tempera-
ture, the number of noncondensates is comparable to that of condensates because of the presence of
thermally excited particles. Therefore, noncondensates cannot be neglected at finite temperature.
In this thesis, we also extend the zero-temperature formalism in order to describe systems at finite
temperature [26]. The present variational method is also applicable to the superconducting systems
with some modifications, as shown in Ref. [27]. In appendix A, we construct a variational theory of
superconductivity at finite temperature based density-matrix formalism in Ref. [?6] by incorporating

many-body correlations.

1.3.2 Motivation 2 : Reconsideration of the relation between superfluidity and BEC
Phonon excitations responsible for superfluidity have been widely accepted to be identical with low-
lying single-particle excitations in interacting BEC systems. It is justified by the work by Gavoret
and Nozierés arguing one and two-particle Green’s functions share “common poles” in the long-wave-
length limit. On the other hand, according to the recent works beyond Bogoliubov theory, low-lying
one-particle excitation may be distinguished essentially from the collective excitation. Therefore, it
should be worth reconsidering the relation between BEC and superfluidity from microscopic view-
point.

In 1957, Bardeen, Cooper, and Schrieffer constructed a variational theory of superconductivity
[28]. Although the theory is remarkably successful in describing weak-coupling superconductors, the
variational state is apparently incompatible with particleenumber conservation because it is super-
posed over different total-particle-number states. This fact is stated by Schrieffer from the beginning
[29] and emphasized by Peierls [B0] and Leggett [81]. On the other hand, Anderson justified the
superposition by considering the exchange of particles between subsystems discussed the emergence
of a well-defined macroscopic phase as the key ingredient for superfluidity [82]. However, such fluc-
tuations in the total-particle number never appear in any closed systems. Hence, one may regard
the superposition as just a mathematical artifact to exploit features of the grand canonical ensemble
in the thermodynamic limit. On the other hand, the recent variational wave functions for BEC sys-
tems [[7] and superconductors [27] are superposed over different condensed-particle-number states
within the fixed-number formalism, instead of the total particle number. Fig. B shows the squared
projection | (N —n|®) |? in Ref. [I7], which indicates finite particle-number fluctuation due to the

interaction in number-fixed systems. If we assume this mechanism to be correct, a macroscopic phase
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Figure 3: A picture from Ref. [I7] : The squared projection | (N —n|®)|? for § = 1.0 x 107°,
ek, /ev = 100, and N = 20000, where N is the total particle number. For comparison, the corre-
sponding quantities obtained with the Bogoliubov and Girardeau—Arnowitt approximations are also
plotted.

emerges in BEC systems naturally and physically due to the interaction even in an isolated system.
Indeed, after the realization of BEC systems in experiments on vapors of rubidium [33], evidences
for the macroscopic phase coherence in BEC systems, such as macroscopic interference effect [34]
and quantum vortices in rotating systems [35], have been observed experimentally. Therefore, we
reconsider the relation between BEC and superfluidity based on the idea that the condensed (or
noncondensed) particle-number fluctuation due to the interaction induces a macroscopic phase in
BEC systems at T = 0.

The superfluid particle number is generally different from the number of condensates [36]. Specif-
ically, in strong-coupling systems such as liquid *He, condensed particle number is only about 10%
or less of the total particle number of the liquid even at T' = 0 [37], while superfluid component ap-
proaches the total density [88]. From the viewpoint of macroscopic coherence, these results indicate
that all the particles have the same phase at T' = 0 and it should be maintained dynamically. With
this consideration, we observe the relaxation process of the wave function of an interacting BEC
system and consider how the macroscopic phase is maintained dynamically. To do this, we generalize
the variational method in Ref. [I7] so as to describe the dynamics starting from the principle of least
action. Specifically, we investigate the role of dynamical 3/2-body correlations beyond mean-field

approximations.
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It is also possible to apply this method to superconducting systems. In appendix B, we summarize

the theory which describes dynamics of superconducting states beyond mean-field approximation.



Chapter 2 Variational Theories for
Equilibrium States

Here, we construct a variational wave function that includes 3/2-body correlations with considering
the external trap V(7). After constructing the variational wave function, we reproduce the solution
for single-component homogeneous systems given in Ref. [I7]. We also formulate variational methods
to (1) inhomogeneous systems (2) M-component Bose-Bose mixtures and (3) finite-temperature

systems and show some numerical results based on respective methods.

2.1 Construction of a Variational Wave Function

Here, we consider identical Bose particles with mass m and spin 0 trapped in an external potential

V(r). The Hamiltonian is given by
ﬁz/dmﬁ(r)Kzﬁ(r)
by [ar [[drad! )3t ra)U G = r)i(ra) i), (29)

where 1) is the boson field operator, K is defined as K = p?/2m + V (r) in terms of the momentum
operator p, and U(r; — r2) = U(ry — r1) is an interaction potential.

We expand t)(r) in basis functions ¢,(r) = (r|q), which are distinguished by a set of quantum
numbers ¢ and satisfy orthonormality (¢|¢’) = d4 and completeness > g lg) {(qg| =1, as

b(r) = bqpg(r) = Pe(r) + Pne(r), (30)

where |¢ = 0) (g # 0)) denotes the one-particle state of condensates (noncondensates) and 9. (r) =
oo () [ne(r) =32 440 Cqtpq(7)] denotes the field operator for condensates (noncondensates). Using

(¢q:¢1), Eq. (29) is transformed to

H ZKQWH qzclh Z 444359291 q4c<§36qzéfh (31)
9192 q1q2q3q4
with
ﬁZ
Koo = [ drey ) | 24 V()] (o) (322)
Unasasss = [ dra [ drali(1rs = ral)ey, ()i, (ra)in, (ra)iu, (). (320)

Our aim is to construct the ground-state wave function of Eq. (B1) with Eqgs. (82d) and (BZH) that
describes the weakly interacting inhomogeneous system characterized by an external potential V (7).

To carry this out, we classify H according to the number of noncondensed states involved as

ﬁ=ﬁ0+ﬁ%+ﬁ1+ﬁg+ﬁ2, (33)

13
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where
: N stata o
Ho =Koocyco + iUoo;OOCoCococoy (34a)
=3 (Koqlégéql + H.C.) +3 (Uqlo;ooéglégéoéo n Hc) (34b)
q17#0 q17#0
Hy = Z qumé:;zém + Z (Uq20;q10+Uq20;0q1>68606226q1
q1,927#0 q1927#0
1 At ot s
+ 5 Z (Uoo;nglcgc;gcqgcql + H.C.), (34c)
419270
iy = 3" (Uossgan 04k st + H.C.), (34d)
41929370
N 1 T
Hy =3 Z Uq4<13;f12q10(§46230«12 Cq1» (34e)
4192939470

where H.C. denotes the Hermitian conjugate.
Next, we introduce the number-conserving creation-annihilation operators[T7, B9]. To carry this

out, we give the orthonormal basis function for ¢ = 0 as

ehyn
In), = (\/07% 0) (n=0,1,2,---,N). (35)

The ground state without correlations is given by |N),. The number-conserving operators are
introduced as (3], Bo) for n > 0 by 3 In)g = |n+ 1), and Bo|n + 1)y = |n), with B010) = 0. These

operators are expressible in terms of (ég, ¢p) as
B = e (1 + cheo) 2, (36a)
Bo = (1+ éhéo) 2, (36b)

and obey (BS)VBg In)y, = B(‘)’(Bg)” In), = 0 for integer v < n and (/3’3)”35 In), = 0 for v > n.
Therefore, (BS)VB(’J’ =1 and 56’(38)” ~ 1 for v = 1,2,---. The latter approximation for v < N is
almost exact in the weak-coupling regime where the ground state is composed of the kets |n), with
n = O(N).

As a first step to construct the ground state, we give an inhomogeneous extension of the GA

wave function [I7]. First, we define the pair-correlation function as
. 1 A At A2
#t = 3 Z ¢q1q202102250, (37)
q1927#0
where ¢4 = @44 is a variational parameter that characterizes the pair excitation of particles ¢ and
¢’ from condensates. Using #f, we introduce the ground-state wave function as

IN/2)
= AT =
|q)GA> AGA eXp(7T )‘N>0 AGA ; L

LN =20, (38)

where [N/2] denotes the largest integer that does not exceed N/2 and Aga is a normalization

constant determined by (Pga|Pca) = 1.
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|®ca) is the vacuum state characterized by 4, |®ca) = 0, where 4, is the number-conserving

quasiparticle operator defined as

Vg = Z (quléql Bg - quﬁf;ﬁO) . (39)

q17#0

Here, we require that (3§,4,) obey the Bose commutator relation. In this case, matrices u = (ugq,q,)

and v = (vg,q,) are given in terms of ¢ = (@q,4,) and the unit matrix 1 = (d4,4,) by

u=(1-¢¢""% v=(1-9¢9" 20 (40)
Therefore, they satisfy
T

w=u v =v, vul —vol =1, uv=vu (41)

where T denotes the transposition of a matrix. The third and fourth relations are summarized as

EE | o

Using Eq. (B2), (&g, ¢}) are also expressible in terms of (94,%}) as follows:

the following matrix form:

[S
(1S4

*

éqﬁg = Z (u‘Z‘h:Y(h + quﬂ;) ) (43a)
q1#£0

é:gﬂo = Z (uqu:y;l + vzth:y‘h) . (43b)
q1#0

Note that [®ga) only includes pair processes via ¢, meaning that it has no contributions from
fI% and H%, ie, (Pgal ﬁ% [Paa) = (Paal fI% |®aa) = 0. To incorporate 3/2-body correlations,
we need to characterize them by introducing the corresponding variational parameters as outlined
below.

Next, we improve |[Pga) so that H 3 yields finite contributions to lower the variational ground-
state energy further. The ground state with a new operator may be introduced as

) 1 ot At
|®) = Az exp (7[1,) |PGa), 7T§ = 31 Z waqzqﬂ;ﬂ;ﬂ;gv (44)

91929370
where wy, 4,4, 18 a variational parameter characterized by 3/2-body correlations satisfying P
W, g2q5 fOr any permutation P with three elements (q1,42,q3) and Az is the normalization constant

expressed as

— R . 1
472 = (@calexp (r)exp (7]) [Pan) =exp | 5 D0 [wgwsas+O(jul') | (45)
" 41929370

Here, we omit the higher-order terms O(|w|4) in the present weak-coupling consideration. In this
case, we obtain

—2
olnAz” w* (46)

— 77q19293°

(@4, 48,31, 12) =

5wiZ1 4293

719293 Waq1q2q3 =
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Note that (9P| ’Ay;f NaoVas |2)s (] g Vgo |®), and their complex conjugates are neglected since they are
all higher-order contributions. In addition, we have (®| H 1]®) =0.

On the basis of |®), we obtain expressions for the ground-state energy and self-consistent equa-
tions embodying energy-minimum conditions. To express the ground-state energy explicitly, we

define the following quantities:

pqwz = <(I)| égzéfh |<I)> = p;wh

1 N 3 1
= 5 Z (U(I1q3u22q:5 + vqmsv;gqg) + Z (UQ1Q3quQ4 +UQ1Q4U;2q3)p¢§3CI4 - 56%(127 (4784)
q37#0 939470
Fyiq = (P 4,84, (50) |®) = Foq
2
= Z Uq193Vq342 + Z <UQ1Q3UQ2Q4 + UQ1Q4uqle3>pQS‘I47 (47b)
q37#0 939470
Wq1Q2;Q3 = <(I)| 62361126111/8(]; ‘(I)>
= Z Ugy a1y Ugogs Ve o W + Vg1 quVanqs U g Wi (47¢)
9194 9295 ¥ q3q96 949596 9194 %9295 'q3q96 949596 )’
94959670
where )
é ~ A
Pira: = (P ’Y;{qu |®) =~ ) Z waqsq4wqu3q4 (48)
g3q4
and we approximate
R R 771+T: ~ ~
(@)™ (@)™ = (No) ™= (B)™ (o)™, (49)

where Ny denotes the number of condensed particles. Therefore, we obtain an expression for the

ground-state energy £ = (®| H |®) as

€= Edguq» ¢Za‘]b’ Wyaqyqes w;aqch] =&+ &+ 5% + &, (50)
where
- 1
& =(®| Ho |®) = KooNo + *Uoo;ooNg, (51a)
=(Q| Hl ‘(I) Z K241 Pq14: + No Z (UQ20§Q10 + UQ20;OQ1)pq1qz
41,9270 q1927#0
No
5 Z (UOO;qquFquh + C-C-)7 (51b)
919270
5% = (I)|H3 |®) = /Ny Z (UOqa;qzq1Wq1q2q3 =+ C-C->7 (51c)
41929370
~ 1 .
&= <(I)| Hy ‘(I)> = § Z UQ4QS§Q2Q1 (FQ1quq3q4 + Pa2q4Pqias T pQ1Q4pQ2Q3)7 (51d)

9192939470

where C.C. denotes complex conjugate and we use the decomposition as

<(I)| q4 qgcqzc(h |<D> q4q3Fq2Q1 + pq2q4pq1q3 + pq1q4pq2Q3~ (52)
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In principle, the stationary condition §& = 0 gives self-consistent equations for ¢g, 4, and wq, g, -

However, the explicit expression for 6€/d¢ is difficult to obtain unlike the case of homogeneous

*
9aqb
systems. This is because ug, 4, and vg, 4, are expressed by ¢4, 4, as given in Eq. (E0), which includes

the square root of inverse matrices and is too complicated to perform variational calculations. For

this reason, we introduce a potential {2 and consider the conditions equivalent to d& /5(;5;@% =
6E [owy, 4, . = 0 on the basis of Lagrange multipliers. Here, we introduce (2 as

1 * *
Q=&+pu |N—| No+ quq + ) Z Oq1qs — Z (quqlutZ?,qz - ququng) Agaars  (53)
q#0 q1927#0 q3#0

where ;1 and Ay, 4,are Lagrange multipliers whose variational conditions give the following constraint

conditions:
N0+quq:Na (543')
q#0
Z (ufh%u;zqg - UQIQSU;]‘(qu) = 5Q1qz' (54b)
q37#0

Minimizing €2 instead of £ corresponds to changing the independent variational parameters from

(¢)q1qz’ Wq1q2q35 C.C.) to (No, p, Ugygz5 V125 Agraz s Wargags s C.C.).

Now, we carry out the following variational calculations:

09 1
=0 = — (Ao +C.C)+ Y (Uoo;qlquqIQQ + c.c.)
6Ny 2
— q1927#0
1
+ N Z (UO(I3;Q2¢11 quqz% + CC); (553)
2vNo 41929370
o 00
” =0 and =0
6UQaQb Vgaqs
€gaar Agaar Uqyq2 3 Xl(]i)(lb
- Z * * * (6‘12‘117 + 2PQZQb) + (2)
01,4270 LT a1 “Sqaar] [Yqige Xqaq
=> luZ“‘“] Maras» (55b)
0170 LY%aa
o0 b
* =0 — wq,q,q. = — — ; (55¢)
OWg, guq. Ogoq, T Ogyq, T Ogeqe
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where we define the following quantities:

Saar = Kqug, = 10444, + No(Ug,0,0,0 + Ug,0:04,)

+ E ( dagz;apqr T U4aq27q1Qb)pqlq2’ (56a)
919270
Ag.q, = NoUg,qa;00 + § Ugaariaoas Fa1o (56b)
q1927#0
1) —9./
Xgaq, = 2V No U04a;9201 V143 Va2
4192939470
* *

+ (Ugagisq20 + Uq1qa;q20)“q1qqu2q41}quq4qb’ (56¢)

* *
XQaQb = _2\/]70 § : [Uqw%qaoum%uqzrm

4192939470
* *
+ (UOqz;qlqa + UOqz;qaql)UqlqaquqJwq3q4qbv (56d)
_ * *
Aqaqy = E , aras (ulh%uqlqa "‘quqbvqlqa)
q1927#0
*
+ Z (AQ1Q2U(J2CI&U¢11% +AQ1Q2 qzqavqlqb)7 (568)
q1927#0
* *
bgaara. = V' No E anqch E Uqlqz;qe.quaqluqquvchs
91929370
+ Uogsig201 Vga a1 Vg U q{-q;g § :an%qc § Aq.q1 Wa1qpqe- (56f)
q17#qa#0

Within our theory, we can also derive the GP equation (9, 20] including 3/2-body correlations for

inhomogeneous systems, which is obtained by 6Q/dpf(r) = 0:

/d'rl {I@(r, 71)po(ry) — A(r,ﬁ)s&é(ﬁ)}

- [l =iy 2P + A )] 67)
where we define the following self-consistent conditions:
Krs.r) =00~ 1) (Ka = )+ [ dra{U(ra = 1) [o(ra,7) + Nalpo(r) ]
+U(r1 —72) X [p(r1,72) + Nowo(r1) @5 (12)]
=6(ry —1ro) (Ko — p) + 2(r1,72) (58a)
A(ry, 1) =U(r — 13) [F(rl, re) + Nogoo(rl)(po(rg)], (58b)
p(ri,m2) = Z Parg2Par (T1)Pg, (T2), (58¢)
q1927#0
F(ri,ma) = Y Fug0a,(r1)eg, (r2), (58d)
919270
W(ry,re,r3) = Z Wi g2gsPar (T1)0gs (r2)<p23 (r3). (58e)

41929370
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By solving Eq. (B4) with the self-consistent conditions, we obtain the condensate wave function

©o(r) deformed by interaction between particles.

2.2 Equations for Homogeneous Systems

This formulation can be applied to a homogeneous BEC system with V' = 0 [[7] by changing the

subscript as ¢ — k and the basis function as ¢4(r) — etk ) V'V, where k denotes the wave number

of a particle. In this case, the basic matrix elements are given by

Ok
1tk k3+ka
Kppr = 5k,k/5k7 Ukle;k3k4 = #U“"l—kah ¢k’k’/ = 5"’77"’,925’“’

With gf)k = ¢—k = d),*c, wk1k2k3 = w;;lekS and

i'12|k|2 K2 k2
2m 2m

L —

; Ul = /drU(r)e_““"”.

With these relations, we obtain the following variational conditions:

_ UoNo
TV v

zUk’Fk/ + = Z U0+Uk/)pk/
k20 k¢0

1
+ E 5k1 +k:2+k:3,0Uk'1 Wklkz;kS’
Vv No 1koks£0

(1)
Sk Ag | |uk X Uk
(1 +2p ) + l(<;2) = Ak,
—Ar —&k| |vk X U
Wk, kyke = S -
al®plRce a,ka + akb + a,kc 9’
where
Ny
€k—§kk—€k—u+7(Uk+Uo Z (Ulte—rr) + Uo) prr
k/£0
N U
Ak, = Ak,—k 0 k Z U\k k-’|Fk:’
k/;eo
2/ N
i) =Xl = 5 Gktkatho [Ukﬂkﬂks + (Ur + UkQ)UkQUm]wkkzk:;,
k2k3750
2\/N
X =X = © 3 Gktkatkso [Uk2uk2uk3 + Uk + Ukz)vk2uk3]wkk2k37
Koks#0

ap = Ek(ui + ’U,Qc) + 2Apuk Vg,

vVNo

bkokyk, = T5ka+kb+kcukaukbuke {(Uka + Uk, ) (Pk. + Ok, Pre,)

+ (Uk, + Uk, ) (DK, + Ok, Pk,) + (Uk, + Uk, ) (DK, + Pk, Pk.) |

3 1
2 _ 2
P = 5 E |wkk2k3| .
koks#0

(59)

(60)

(61a)

(61b)

(61c)

(62a)

(62b)

(62c¢)

(62d)

(62e)
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Using the relation between ¢ and (ug,vg) in Eq. (1) given by

Up = _ Vg = _ e (63)

/717(25%; k /717(25%3

we obtain equation for ¢ as

_ =&t V& — Me(DAk — X&)

4
¢k Akg ) (6 )
where xg is defined as
1 Xg)fﬁk — ng) _ 2yNp 1 5 Uk, Uk
Xk = 3 = 3 § Z k+kotks,0Wkkoks ——
1+ 2p} Uk 14208 ¥ koksro
X [Uky (1 + Ok @ry bres) + (U + Uk, ) (Pky + Pries)]- (65)

Conditions for ¢ and wk, k,k, set self-consistent equations.

Here, we introduce the model for numerical calculation in the previous study used in Ref. [I7].
In this study, numerical calculations were performed for the contact interaction potential Uy = U
used widely in the literature to make a direct comparison possible. For convenience, we express this

U as
B drhay

m

U (66)

The ultraviolet divergence inherent in the potential were removed by introducing a cutoff wave

number k. into every summation over k as

Z/ — Z/é)(kc — k). (67)
k k

The s-wave scattering length a which originate from U is obtained by

m 1 Bl (ke — k)
dmh?a U +/ 2m)3 2 (68)
which yields
- (69)

o= ——.

1+ chaU/’]T
If k. is chosen as kcay < 1, we can approximate a ~ ay. The units of energy and wavenum-
ber were also introduced for performing the numerical calculations. The characteristic energy and

wavenumber of this system are defined by
ey =nU, ky = /8mayn, (70)

where 7 = N/V. Using these quantities, the dimensionless coupling constants is denoted as 6 =

a%]ﬁau. We note that we use this model with some modifications in the second chapter.
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2.3 Application (1) : Inhomogeneous Systems in External Traps
As one of the simplest numerical examples, we here consider a 1D system (r — z) trapped by a
harmonic oscillator V(z) = mw?22/2 with a short-range contact potential written as U(r, — 7p) =

U(zq — 2p) = g0(zq — 2p). Using the potential, we transform Eq. (62) into

2 2 mw222 z
{ LA L 5(2)}%(2) — AG)(E) = —g|2P()gh(2) + V%] (71)

where X (r) = X(r,r) (X =&, A, and F) and W(r) = W(r,r,r). In the following calculation, we
set the units of energy €, = hw/2 and length I, = (h/mw)?.

We point out that it is crucial to choose an appropriate |q) that corresponds to the external
potential considered in the present formulation. In the limit ¢ — 0, the condensate wave function
©o(r) becomes a Gaussian. On the other hand, po(r) deforms due to the nonlinear term of the
GP equation when we set a larger g, such as in the case of a Thomas-Fermi BEC [d0]. With these

considerations, we propose two approximations in the weak-coupling region as follows:
(i) : |¢) = |n) for all n > 0,
(ii) : (r|0) = ¢§T(r) and |q) ~ |n) for n > 0,

where ¢§F(r) represents the solution of Eq. (I0); integer n < ney is a quantum number that
characterizes the energy levels of a harmonic oscillator and n.,; is the cutoff energy level. On the

basis of the approximation, ¢, (z) = (z|n) is given as

= (o) (2o (53)

where H,, denotes the nth Hermite polynomial. Hence, we obtain K,,,,, and Up,nyingn, a5
Knlnz = 6”1”2 (2711 + l)ng (73&)

lcut
Uninasnang = 9/ dzn, (2)Pn, (2)Pns (2)Pn, (2), (73b)

_lcut

where [.y; is the cutoff length for numerical calculations.
To carry out the numerical calculations, we introduce the external parameter (coupling constant

in a trapped system) as
mgl, 1 g

«

h? 2 ey

This parameter denotes the ratio of the scales for the correlation of particles and the harmonic

< 1. (74)

oscillator potential. In this work, we carry out the numerical calculations for N = 1000 and a ~
1.0 x 1073, where the condensate wave function has an approximately Gaussian profile [41]. In
addition, we neglect the O(|w|?) terms in the self-consistent conditions because they give only a
small correction to the ground-state wave function in the weak-coupling regime. We choose n.,; = 40

(Eneye = 8ley,) and ey = 101, (mwl? /2 = 100e,, ~ €,,,,) for the numerical calculations. We start
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the initial self-consistent calculation by substituting the trivial solutions for ¢ = 0 and renew the
solutions one after another while mixing the old and new solutions with the weight ratio of 80 : 20.
Now, we discuss the numerical results. First, we show the ground-state energy &, (o =0, 1,3/2,2)
to explain the respective energy scales in Tables B and B. From these tables, we see that |Eg| > |€1| >
€2 > |€3|. However, £ is comparable to & around a ~ 1.0 X 10~3. In addition, €2|/[&2| seems to
increase monotonically as a function of « so that the 3/2-body correlation may be dominant in the
relatively strong coupling system, such as the Thomas—Fermi BEC regime. Comparing Tables B and
B, we find that approximation (ii) yields lower total ground-state energies than approximation (i)
because the deformation of the condensate wave function also lowers the ground-state energy. Hence,
one might conclude that (ii) is better than (i). However, (ii) appears to break the orthogonality
relation, i.e., (0|n) # g, for n > 0. To evaluate the ground-state energies more quantitatively,
setting appropriate one-particle states with orthogonality relations remains a future task.
Incorporating more variational parameters in the theory is expected to yield a better estimate
for the ground-state energy. To see this explicitly, we perform our variational calculations on the

basis of the following ground states:
(1) |Pap): We set ¢nin, = Wnyngng = 0.
(2) |PBog): We obtain ¢y, ,, while fixing pp,n, = Fniny, = Wnynong = 0.

(3) |Purp): We set Anin, = Eni0nin, and Wy, pon, = 0. This is equivalent to the problem of

diagonalizing the effective Hamiltonian [I3].

(4) |®ga): All the variational parameters except wp,n,n, are calculated self-consistently. The

ground state is equivalent to the GA wave function.
(5) |®): All the variational parameters are calculated self-consistently.

Using the ground states, we evaluate the energy differences defined by

A& = (B H |®) — (Dgp| H |Dcp) (
A&y = (Dgal H|Pca) — (Ppog| H [ Ppog) | (75b
Ay = (@ H |®) — (Purg| H |urs) (
A€y = (0| H @) — (Paal H [®ca) - (

From Tables B and f, we subsequently see the relation (®| H |®) < (®qa| H [®aa) < (Purp| H |Purs) <
(Opog| H |Ppog) < (Pap| H |Pap); thus, |®) seems to be the best solution in terms of constructing
the variational wave function. The reason why |®ga) gives lower energy than |®prp) is traced back
to the difference in the manner of setting ), i.e., the difference between u u’ — v v’ = 1 for |®ga)
and Tr[u vt — v vf] = 1 for |®gpp). In the latter case, the quasiparticles do not satisfy the Bose
commutator relations because the condition for the off-diagonal parts of (u uwl — v QT) is not con-

sidered to be appropriate. In contrast, |®ga) with u and v satisfying all the conditions of Eq. (£1)
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gives a lower ground-state energy than |®ypg). Thus, the appropriate consideration for commutator
relations of quasiparticles is indispensable for obtaining the lower ground-state energy.

In addition, |A&p/| is roughly 100 — 1000 times larger than |A&r|. This result indicates that the
3/2-body correlations contribute to the decrease in the ground-state energies more than the 2-body
correlations. These results agree with the results of homogeneous systems [I7]. Therefore, the mean-
field approximation for inhomogeneous BEC systems characterized by the discretized energy levels
may not be effective quantitatively even in the weak-coupling region, similarly to the homogeneous
systems.

We have constructed the variational wave function for an inhomogeneous system including not
only the mean-field 2-body correlations but also the 3/2-body correlations beyond the mean-field
approximation. Using the variational wave function, we have carried out a numerical calculation to
evaluate the ground-state energy of a 1D system trapped by a harmonic oscillator. Our numerical
result shows that 3/2-body correlations decrease the ground-state energies even in a trapped system
characterized by the discretized energy level, and their contributions are comparable to those of
2-body correlations, which agree with the results of the homogeneous case [[4]. Therefore, when we
consider the contributions from noncondensates, self-consistent mean-field approximations may not
be valid in BEC systems and 3/2-body correlations should be incorporated. This wave function is
expected to give physical pictures beyond mean-field contributions in inhomogeneous systems more

microscopically.
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Table 1: Ground-state energies based on approximation (i) with &, = &,/(Ne,) and & = o x 103 .

i & 3 & & &5

0.1 1.0399 —549x1077 —6.51x10"1 1.64x 10" -0.040
05 120 —-122x107% -3.60x 107 1.93x107° -0.19
1.5 160 —7.85x107° —236x10"% 4.85x107% -0.49
25 200 —1.22x107* —1.69x1077 234x1077 -0.72

Table 2: Ground-state energies based on approximation (i) with &, = &,/(Ne,) and & = a x 10°.

a & & é‘% & é% /&
0.1 1.0397 —547x10"7 —6.57x10713 1.64x 10711 -0.040
05 119 —1.19x107° —=3.72x10710 194x10~° -0.19
1.5 156 —771x107°% —243x10% 4.73x10"% -0.51
25 189 —155x10"* —157x10"7 204x10"7 -0.77

Table 3: Energy differences based on approximation (i) with A&, = A&, /(Ne,) and & = a x 10,

& AE; AEpp AEr A&y

0.1 —726x10"7 —444x10716 —6.59x 10713 —6.52x 10713
0.5 —1.75x107% —281x10713 —446x10"'9 —3.60x 10710
1.5 —1.46x107* —-283x107!'"" —6.23x107®% —2.36x 1078
25 —387x107% —-345x10719 —794x10"" —1.69x 107

Table 4: Energy differences based on approximation (ii) with AE, = AE, /(Ne,) and & = a x 103.

& AE; AEpp AEr Aéry

0.1 —-724x1077 —-1.22x107™ —6.63x107'% —6.56x 10713
0.5 —1.72x107° —5.61x10712 —4.61x1071% —-3.72x 10710
1.5 —139x107*% —277x10710 —627x107% —243x1078
25 —351x107% —140x107% —6.58x10"7 —1.57x107"

2.4 Application (2) : M-Component Bose-Bose Mixture

Dilute atomic gases are highly controllable systems for demonstrating various BEC systems exper-
imentally. One of the targets is multi-component BEC systems [42, &3, g4, g5, 46]. In particular,
many theoretical studies focusing on its collective features of condensates have been carried out,
such as dynamical instabilities and collapsing processes [dR, @9, 50, 51, 62, b3, 54]. However, the
collisional processes smaller than O(NV;) tend to be neglected, when considering the behavior of con-
densates of dilute gasses where N; > 1 is the number of particle ¢. In Ref. [Z5], we have generalized

the present variational method to a mixed system and constructed the ground-state wave function
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by superposing the variational parameters which characterize 2-body and 3/2-body correlations be-
tween different particles. In this section, we summarize the contents of Ref. [25] and show the results
of ground-state energies. In addition to the evaluation of ground-state energies, we here derive the
correction to the stability condition for 2-component miscible states including 2-body and 3/2-body
correlations. While the conventional condition without 2-body and 3/2-body correlations is given
by Uip/UaaUpp < 1 [A0] where U,; is the contact potential between particle ¢ and j, many-body
effects give finite contributions to this condition as 1 — 1 + a.

In the following, we consider a system described by the following Hamiltonian,

M M
R L U, P o
H=3cuthin+ 3 % il it (0
i=1 k#£0 i,j=1 kk’/q£0
where g, = h?k?/2m; denotes the kinetic energy of particle i and U;; = Uj; is an effective contact

potential for treating scattering effect between particle ¢ and j [40].
How to extend the variational theory is just to include the internal degree of freedom. Therefore,
the ground state of of Eq. (@), the miscible state of an interacting M-component system, can be

considered by using the following variational wave function:
|Pca) = Agaexp (ﬂEA) |N1, Na, -+, Nur)g (77a)
®) = Agexp (11}) D). (77b)

where Aga and As are the normalization constant determined by (Pga|®Pca) =1 and (2|P) =1,
N1, Na,- -, Nar), is the ground state of M-component BEC without interaction with Ef\il N; = N.

f[; and ﬂg A are defined as

M

. 1 ~t At o4

H;T», = 31 Z Z wijkk1k2k373k17;k27}1k37 (77¢)
i,3,k=1 k1kak3#£0
M | M 1

~ . A IR ~t At oA

HTGA = Z Wjjﬂiﬁj -3 Z Z%kczk%fk’ Tij = 52@1’“3&;4@ (77d)
ij=1 i,j=1 k0 k#0

where Bl is a number-conserving operator for multi-component BEC, ¢;; is a variational parameter
which characterizes a pair excitation of particle (i, k) and (j, —k) from condensates caused by in-
teraction between particles, w;jxk, k,k, & variational parameter characterizing 3/2-body correlations
which satisfies Pwijkklkm = Wijkk, koks fOT any permutation P with three elements (i,k1), (J, k2),

and (k, k3), and (4,4") a set of Bogoliuobov operators introduced by

M
Vit = Z[uijkéjk - Uijk:é;r'_k]v (77e)
j=1
M
W= Z[—Ufj—kéjk + u:j—ké;‘fk} (771)
j=1

with

Ui = (ug)ij = (L— Qkﬂ)f, Vi = (Ug)ij = (ur®y)is (77g)
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where underlined functions represent M x M matrices and (1);; = J;;. Here, we define the following

quantities for later convenience,

pijie = (| &l ljic ), (78a)
Fijie = (@] Cintj—k |®) (78b)
Wijijkakatks = (@4 ik, in, |P) - (78¢)

The definition in Eqs. (Z78) and () is a natural extension of Bogoliubov operators in one-
component systems to M-component systems. The minimization of the energy functional expressed
by variational parameters can be performed most easily in terms of Q@ = £ — >, ;N;, where p;
denotes the Lagrange multipliers. Specifically, we determine 1; = <éOlBAj> ~ /N;o€e'?i, ¢ijr and
Wijkk,koks from the stationarity conditions,

6Q 00 02

Il =0
* ? * ) *
o] 5¢z‘jk 6wz’jkk1k2k3

In considering the system composed of M > 3 types of bosons, we need to solve Eq. ([[9) simulta-

—0. (79)

neously with M 4 M? 4 M? types of variational functions in principle. We note all the variational
parameters turned out to be real numbers from our numerical calculations for M = 2 systems in
miscible state.

In a homogeneous 2-component system, it is known that the system becomes unstable by (i)
forming denser states containing both components called droplets [63] when U;; < —/UaaUgg,
or (ii) causing a phase separation into two components [64] when U;; > \/UaaUgg. The stability
condition for a homogeneous system is given by Uizj < UyUj; [80], which is derived neglecting
3/2-body and 2-body correlations. In this section, we reconsider the stability condition for a 2-
component system composed of particles A and B on the basis of the ground-state wave function
including 3/2-body and 2-body correlations. Here, we assume that all the variational parameters are
real numbers. Under such assumption, the functional €2 is given in terms of variational parameters
by

Q=Q[a, VB, P44, 948 = ¢pA, PBB, WAAA, WABA, WBAB, WBEB]- (80)

For the homogeneous solution to be stable, {2 must have a minimum value with respect to all the

variational parameters and the second-order variation of Q2 be always positive. Therefore,
20 =nTAn>0 (81)

where n is a column vector composed of small variations in all the variational parameters in all the
k space and A is the corresponding Hessian matrix [27].

In order to consider the complete condition that €2 has a minimum value, all the eigenvalues of
A must be positive, i.e., detA > 0. However, It is difficult to show it completely both analytically
and computationally because A is quite a large matrix. Here, we consider some necessary conditions

that 2 has a minimum value,

9%Q
871/)2»2 >0, detAwAwB >0, (82)
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where Ay, is a sub-matrix of A defined by

9%Q 020
o> O A0
Ay aipp = 812/]6 1/}51291/}3 . (83)

Oppda Wi

9?Q/Onp;01; is calculated by

629 4 NloNO
LU,

- (1 iy 84
5%5% v Zj( —|—C”), ( )
where
-N Nio Uap
Cii = > (1—=6ii) — > (Fapk + pas)
2U;iNyo L,A’B Nio N iz6
N Uiir
+ ——= 5 Z 5k1+k2+k30Wii';i/k1kQ;kg,] (85a)
V' Nio i'=A,B N K1 koks£0
N 1
CAB = —F—c— [FABk: + PABk} =cBa 85b
2v/NaoNpo N > (85b)

k+£0

The first condition of (§2) with (§4), (85d) and (B5H) demands the relation U;; > 0 since 1+ ¢;; with
leii] < 1 is always positive. On the other hand, the second condition of (82) with (E4), (85d) and
(BBD) gives the following stability condition

2
UAAUBB(l -|-CAA) (1 +CBB) - Ufm(l +CAB) >0

Uis 1+ (caa+cpp) + caacpn

%
UaaUgp 14 2cap +Ap

=1+a, (86)

where « is the correction value which is determined after solving Eq. () self-consistently and
obtaining |®). The conventional relation U3 ;/UaaUpp < 1 is obtained by putting o = 0 (caa =
cap = cgp = 0), which corresponds to the calculation with wasa, wesp, wapa, wpap — 0 and
N;o — N;. In the following, we show « # 0 numerically.

We show that the ground state incorporating terms of Hamiltonian smaller than O(v/N;) gives
lower energy than the one given by the eigenstate of the approximated Hamiltonian I:IBog = Ho+H;.

In order to see this clearly, we diagonalize fIBOg and obtain the ground-state energy as follows,

Eoit = EQ + £ (87)



Section 2.4. Application (2) : M-Component Bose—Bose Mixture

where we define the following quantities,

Z Z ”NN
i= AB] AB
£ = Z [ Y Bw- Y Em)
i=A,B o=+,—
Balk) = % (BB (1)2 + (EB5(k))?

1
2

£/ (B8 (k))2 — (ER°8(k))? C  16manpeePU?
A B NANBEL € Uap

EP8(k) =

3

62(6}; + QﬁZUM),

)

28

(88a)

(88b)

(88c¢)

(88d)

(88e)

with 7i; = N;/V. We have confirmed that (®| Hpeg |®) estimated by our variational calculations

with waa4, WBBE, WABA, Wpap — 0 and N9 — N, coincides with g numerically.

Table 5: éég), é:e(flf) and AE in various cases and conditions with &

[Uag|/VUaaUpp = 0.95.

ke =

Case &Y &Y Aéy Afuy Ay Aény Afw,
(Ay) 0488 —5.62 2730 809  79.0 624 228
(By) 0492 —572 1530 829 810 493  24.2
(Cy) 110 —11.9 3800 162 158 109 527
(A-) 0.0125 —5.62 2730 18.2 16.9 1.29 —3.69
(B-) 0188 —572 1530 427 412 102 7.01
(C-) 0150 —11.9 3800 819  79.0 313 185

Table 6:
|Uas|/vVUaaUpp = 0.95.

g‘é?f), géflf) and A€ in various cases and conditions with e,

Case &2 &R Aéy Aéuy Ay Aény Afw,
(Ay) 0488 —13.0 6120 392 377 335 230
(By) 0492 —13.3 4080 402 387 304 237
(Cy) 110 —274 9990 770 743 623 472
(A_) 0.0125 -13.0 6120 62.6 50.5 10.3 —5.24
(B-) 0.188 —13.3 4080 191 178 96.3 86.1
(C-) 0150 —27.4 9990 350 326 208 171

25EUAA

1OO€UAA

and

and



Section 2.4. Application (2) : M-Component Bose—Bose Mixture 29

Table T7: gég), é:é;f) and AE in various cases and conditions with e, = 25e¢y,, and

|Uag|/UaaUpp = 0.98.

Case gég) ééflf) AS(I) Ag([[) Ag([][) Ag([‘/) Ag(v)

(Ay) 0495 —5.78 2610 84.2 82.2 66.2 23.3
(B1) 0497 —5.82 1710 85.0 83.1 51.8 24.5
(Cy) 1.12 —12.1 4210 166 162 114 53.0
(A_) 0.00500 —5.78 2610 15.2 13.8 -1.19 -5.87
(B-) 0.183 —5.82 1710 40.8 39.3 8.72 5.62
(C-) 0.135 —12.1 4210 7.9 75.0 28.2 15.3

Since our interest is to estimate the ground-state energies including }AI3 /2 and 1';[2, we calculate

the quantity defined by

. 1 N;N; Ui

géf(-)f) = gtgf(‘)f)/(NEUAA) =5 Z Z 12 2 (89a)
2 i=A,B j=A,B Nan Uaa

R =X /(Nev,,) x 6,2, (89b)

AE = (€ — &)/ (New,,) x 65, (89c)

and evaluate their values for the six cases,
(Ay) ma:mp=nyg:Ap=1:1

(Bx) ma:mp=1:1,n4:1p=1:4
(Cyx) ma:mp=4:1,na:np=1:1

where + denotes the sign of Usp. When we carry out numerical calculations, we set external
coupling constants as 64 = dp = 1.0 x 1075, where §; = a?]iiﬁ.

Incorporating more variational parameters in the theory is expected to yield a better estimate
for the ground-state energy. To see this explicitly, we have performed our variational calculations

for the five cases.

(I) Nijop — N; and ¢pap = waaa = wppp = wapa = wpap = 0. This case corresponds to the

Bogoliubov theory with no correlations between different species.

(II) Njo — N; and wasa = wppp = wapa = wpap = 0. This case corresponds to the eigenstate

of Hpog or standard multi-component GP theory [?].
(IIT) waaa = wppp = wapa = wpap = 0. This case corresponds to [®Pga).
(IV) wapa = wpap = 0.

(V') All the variational parameters are calculated self-consistently.
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The corresponding energies are denoted by A(‘:'(I), AS(H), Af:'(m), A(‘:'(IV) and Ag(v). As shown
in Table. B - [, we can confirm the relation Ag(l) > Ag(n) > Ag(m) > AS(IV) > Ag(v) for all
the cases of (A1), (By) and (C1). Therefore, the ground state of 2-component miscible state with
the contributions from 2-body and 3/2-body correlations is constructed through this self-consistent
calculations. In addition, as we see the tables, \Ag(n) — Ag(m-)| < |Ag(111) — Ag(v)| in all the cases.
This result indicates that 3/2-body correlations contribute to lower the ground-state energies more
than 2-body correlations. In this sense, the mean-field approximation for mixture BEC systems is not

effective quantitatively even in the weak-coupling region, as well as the one-component systems[7].

Table 8: ¢;; and « with various cases.

7|UAB| Cut off Case caa can BB a
VUasUgp Voa Voa Voa Voa
0.95 €k, = 2DE0, 4 (Ay) 488 —5.09 4.88 20.2
(By) 195 =510 1.24 31.3
(Cy) 779  —4.08 1.97 18.1
(A_) 497 5.21 497 —0.486
(B-) 199 5.22 1.26 10.6
(C2) 7.90 4.15 1.99 1.58
0.95 eg. = 100ey,, (Ay) 117 —12.2  11.7 49.1
(By) 46.7 —12.2 298 76.0
(Cy) 188 —9.82 474 44.0
(A-) 12.3 12.9 12.3 —1.18
(B-) 49.0 12.9 3.11 25.7
(C2) 195 10.2 4.91 3.84
0.98 e, = 2ep,,  (AL) 521 =527 521 212
(By) 208 —527 1.32 33.0
(Cy) 831 —421 210 19.0
(A-) 5.30 5.40 530 —0.183
(B-) 212 5.40 1.34 11.6
(C-) 843 4.30 2.12 1.95

Next, we discuss the correction to the stability condition given by inequality (88). Table. B shows
CAA, CAB, cpp and « obtained by numerical calculation based on the ground state with condition
(V). As shown in the table, all the corrections are of order /54, which mainly originate from the
terms related to pap(k) and Fap(k) in Eq. (858) and (B5H). 3/2-body correlations also give O(d4)
contributions. In case with Uagp > 0, we see from the table that o becomes always positive so

that the stable regions of miscible state seem to be extended. Indeed, we checked our numerical
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calculation showed convergence even when Uap = vUaaUgg. On the other hand, in case with
Uap < 0, @ may become negative, especially when n4 : ng = mgq : mp = 1 : 1. Under such
condition, we have numerically found that the ground-state energies increased towards divergence as
iterative calculations proceeded and the self-consistent calculations became unstable in the range of
Uap < —0.985y/UaaUpp. It is difficult to determine the critical point in detail numerically because
it is not until we succeed in the self-consistent calculation that we can calculate «. However, these

results indicate that many-body effects may change the stable regions of miscible states.

2.5 Application (3) Extension to Finite-Temperature Systems

By introducing a wvariational density matriz p, instead of the ground state in previous sections,
our variational approach has been extended to the finite-temperature systems. In this section, we
summarize how to construct the theory for finite-temperature systems and introduce some results
briefly shown in [26]. This work has mainly been carried out by my collaborator A. Kirikoshi.

At finite temperature, we minimize the grand potential 2 following the variational principle
Q, = Trp [H — uN + 7 n ] > Q, (90)

where 8 = (kgT)~! and  is the exact grand potential. Therefore, the choice of p, that yields lower
value of €, is crucial and the form of p, is determined by the energy-minimum condition 62, = 0.
Here, we incorporate 3/2-body correlations based on the idea in the theories at T = 0 by choosing

the following form of py:

v = exp[B(Qvrw — Hv)], Quw =-8"1In Trefﬁﬁv, (91)
with
H, = B + 02 =Y Eifae + 30 D Okrkoks T AL,k T lakeatog Vo T Vis): (92)
k40 " kikoks£0

where Ej, and bg, k,k, represent variational parameters. Note that quasiparticle operators described
by (ug,vk) also include another variational parameter ¢g. Therefore, we optimize Q, with three
variational parameters (¢, Ek, Ok, koks ). 1f We set bg, ks = 0, we obtain the solution by HFB theory
[T3].
Based on g, we obtain the following expression for €:
Oy = Trp H — Trp Hy + Qurw
UM
2y

1

+ ﬁ Z 5k1+k‘2+k3,0U7€1 ('(/)SWklkzk?, + wOWl:1k2k3)
ko1 ko k3 £0

1
+ 55 > 1(Uo + Upe—rr)lprprr + Upe—i| FeFre] = > Erpfl?
Kk £0 k£0

N,
— uNo + Z[ﬁk — plpr + 70 Z[(Uo + Uk)pr + Ui Fi
k20 k20

1 * *
- ? Z (bk1k2k3wk1k2k3 + bk1k2k3wk¢1kz2k3) + Qvrw, (933)
" kikoks#£0
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where we define the following quantities

Yo = Tréo (93b)
No = Tréjéo, (93c)
pr = Tréj e, (93d)
Fj = Trégé_, (93¢)
Wi kaks = Trpyel iy, (93f)
. 5Q,
P = Tep Al = = E];W’ (93g)
Wiy koks = 10Ok Vieo Vs = (;Z?ﬂ, (93h)
kikoks
and the following approximations are used:

Trpyéhehéoco ~ N2, (93i)
Trpyéhel éoér ~ Nope, (93j)
Trpeébéléne g ~ 52 F, (93k)
Trpo el iy hnCioy = V6 Wity koo (931)

Trﬁvéltlé];zékgém ~ (Oky ko Oz ks T Oky ks Oko ks ) Phes Pl
+ Okey,— ko Okes,— ks Fley Fey - (93m)

In the theories at T = 0, we have obtained p? perturbation in terms of one of the variational
parameters w. On the other hand, it is necessary to determine the form of p9 and w at finite
temperature. To obtain the explicit expressions of py” and wg, k,k,, We introduce a Luttinger—-Ward
method based on a Green’s function for quasiparticle operators and derive self-consistent equations
for the Green’s function in the following.

The quasiparticle Green’s function is introduced as follows:

Or(11,72) = —Trp, TrAn (1132 (12) = —Trp, TrAp (11 — 72)4% = Gl — T2), (94)
where T, is a time-ordered operator for imaginary time 7 and Aa(r) = eTHV’yke*Tﬁ

eTﬁV&ILe_THV are the Heisenberg representation for quasiparticle operators. This imaginary-time

v and 42 (1) =

Green’s function has a boundary condition given by G (7 + 8) = Gg(7). Thus, we can express the

Green’s function in the energy domain in terms of the Fourier coefficient of Gg(7) as

I & :
Gk(1) = 3 > e G, (95)
n=—oo
where ¢, = 2nw/f (n: integer) is called the Matsubara energy for bosons. Because the basis

functions {e**»7/\/B} with 7 € [0, 3] form a complete orthonormal set for Gg(7), we obtain G e,
by integrating Gy (7)e*"" over T € [0, A].
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To construct the self-consistent equations for G ;. , we define a self energy S expressed by
Gk, , we use the method introduced by Luttinger and Ward [21]. As shown by Luttinger and

Ward, Qv = Quiw [g] can be expressed in terms of G ;c, as

-1
VLW Z Z 16"0+ ln (O)kz,isn + Sk:,isn] + Sk:,isn gk:,isn] + (I)VLW [g] (96)
B n#0 k#0

where @ consists of all the skeleton diagrams in the simple perturbation expansion with respect
to H3 for Quw with replacement of free quasiparticle’s propagator G(°) with Gy ;.. . Here, G() is
defined by

© _ 1 97
gk’w" Z'En—Ek' ( )

The equation for Gy, ;c, is determined by the stationary condition for Gy, ic, as 0Qyrw/0Gk e, = 0.
Therefore, we obtain “Dyson equation for G ;-,” as follows:
1

e = , 98
gk,/en, en — Ek - Sk,ien ( )
where we define the self-energyS in terms of the functional derivative of ®rw as
5(I)VLW
Skie, = — . 99
ki, Bngk:,ian ( )

Therefore, Eq. (B8) is solved self-consistently with the condition (89). The self-energy Sk e, given by
Eq. (M) is determined by ®y1yw. Therefore, we need to determine the form of @, 1w with introducing
some kind of approximations. Here, we incorporate a scheme based on the skeleton expansion, i.e.,
the ®-derivative approximation into our variational method. In the following, we summarize how to
construct @,y briefly.

Following the manner of ®-derivative approximation, we introduce ®,1,w as follows:

QVLW - _B[<‘§’(ﬂ)>HFB,COHH6Ct - l]skeleton,g(o) —G> (100)

where (---)ypp denotes the average by py[b = 0" = 0], (- ) 4rB connected T€PTesents the “connected
contributions” included in (- - -)ypg, the subscript “skeleton” represents “skeleton diagrams without
self-energy corrections”, the subscript Gy — G represents “replacement of Gy in ®yp,w by G7, and

S (8) is an operator to carry out the perturbation expansion defined by
R o MEF . >© 1 (B B B o R
S(B) =M e =14 3 j/ dﬁ/ dry - / A Ty H2 (11) - - - H2 (11). (101)
—1 " Jo 0 0
m=1

Thus, ®yiw = >, PP formally consists of infinite closed skeleton diagrams with Gy replaced by
G. We note ®x?™" = 0 (p: integer), i.e., only even-order contributions remain. In the following,
we proceed our calculation with approximating ®ypw as Pypw =~ <I>i2L)W, where <I>i2L)W is expressed
by

sQL)w ,5 Z bk, Bekes |2 / dﬁ/ dToGk, (T1 — T2)Gky (T1 — T2) Gy (T1 — T2)

ki1kaks

1
:W Z Z |bk1k2k3 |25n1+n2+n3,0gk1,i€n1 gkz,iEnQ gk37i6n3 . (102)

n1n2n37$0 k1k2k3750



Section 2.5. Application (3) Extension to Finite-Temperature Systems 34

Therefore, the self energy is

1
Skvien = - 27 Z Z |bkk2k3 |257’L+7’L2+?’L3,ng§2,i8712 gk?niang . (103)

’I’LQTL;;#O k2k3 750

Therefore, we here solve Eq. (88) with (IT3), instead of Eq. (89).

Using Gk, ic,,, we can evaluate py’ and Wi, k,k, as follows:

Z i, (104a)

n;éO

1
Wk koks = bk1k2k3 @ Z 5ﬂ1+n2+n3’0gk1,i5n1 gk27i€n2 gkz,iﬁn;; . (104b)
n1n2n37é0
Therefore, by solving variational conditions for (¢x, Ek, bk koks) With (pE” [G], Wik, koks [G]) described
by Eq. (88) and (IT3), we obtain the equilibrium state at finite temperature. The variational condi-
tions for (¢, Fk, bk, k,ks ) can be obtained by the same procedures as the theory at zero temperature.

The variational conditions are calculated as follows:

—& + /& — A(Dk — xk)

) 105
Ok = AL (105)
By, = (uf, + v)&k + 2Akup vy, (106)
vV N
bk1k2k3 = 61451 +ka+ks3,0 Toukl Uk, uks[(Ukl + Ukz)(¢k3 + d)k‘q djkz)
+ (Ulﬁ + Uk3)(¢k2 + ¢k1 ¢k3> + (Uk2 + Ukz)((bkn + (bkz(bkz)]? (107)

with self-consistent conditions for & = 6, /dpr, Ak = 09 /0 F), and xx whose forms are the same
as those by zero-temperature formalism.
Here, we confirm the connection between this theory and the zero-temperature formalism by

taking the zero-temperature limit. To do this, we introduce the following Lehmann representation

Gk ic,, = / g5 i (108)

)
oo 2WiEy, —€

for Green’s function:

where A is the spectral function for G satisfying

/ giAk =1 (109)

Using the spectral function, we obtain the expressions of p” and wg, k,k, as follows:

P =/ ;liAkef( ), (110)

/ d<€1 / de’:‘Q / d<€3 .Ak ElAk 52-/414-, €3
Wiy koks = Dk koks

2r €1 +éeg+e€3

X [f(—é‘l)f(—52)f(—53) + f(€1)f(€2>f(€3)] (111)
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Here, we show that pg” and wg, k,k, reduces to the expressions obtained by zero-temperature for-

malism. To proceed calculations, we expand G assuming S < 1 as

Okic,, = _ G ~GO 1+88 gl
R T
= g’(c?i?en + gl(clz)a ) (112)
where S1) = S[G(?)]. Lehmann representation for S() is given as

A(O) A(O)
s;:zan:f; S ol [ g2 [ G R B ) — e

2w ey, +E9 + €3

: Z |bkk’ k: |2f(7Ek2)f(7Ek3) — f(Ek:2)f(Ek3) = /OO de i

t€n + Eiy, + B, oo Eien —¢

kzkg;éo
1
STl =7 3 bkkos I (~ Bro) f(=Erg) = f(Ex,)f(E,)]
koks#£0
X5(6+Ek2 +Ek3)7 (113)
where FS)E is the spectral function for Sg s, .

Since the spectral function is also expressible as Ag . = —2ImGy ;- e 1i0, and F(l) = 2Imsl(clz)an—>5+10+

we obtain A;cll as

ASZ = —QImg(l? = —ZIm[Q( )2 s ]

ki, —e+i04 k,icn—e+i04 Mk ic, —e+i04

(1)
~ sz,e

(1)
2IrnSk i€n ~>€+ZO+Reg k sign—re+i04 m

o f(iEkz)f(fEks) — f(Ekz)f(Eks)
=7 Z |bkk2k3|2 (Ek I Ek2 i Ek3)2

0(e + Bk, + Ek,), (114)

koks#0
where we transformed the second into the third equation with ImG©® ~ (. This consideration
is based on the assumption that ideal quasiparticles have infinite lifetimes due to the absence of
interactions. On the other hand, in the presence of correlations between quasiparticles, such as
3/2-body correlations, finite lifetimes described by ImS) appear in the quasiparticles. Therefore,

we obtain pi¥ as
0 1
o = [ Sl + A0S

_ 1 f(_Ekz)f(_Eks)
_f(Ek)+§kkz¢o‘bkk2k3‘2(Ek+Ek2 +Ek3)2 (115&)

On the other hand, by substituting A ~ A(®) into Eq. (ICIT), we obtain the expression of w as

bk, koks
E, + Eg, + Ej,

Therefore, by taking f(Erro0) = 0 and f(—Egxo) — —1 in the limit T — 0 in Eqgs. (I52d) and

(IB2H), the finite-temperature formalism reduces to the zero-temperature formalism. We note the

[f(=Er) f (= By ) [ (= Era) + [ (B, f (Ereo) [ (Egy)] (115b)

wkl koks =
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Figure 4: A picture from Ref. [26]: Temperature dependencies of AF (solid) and Aéy = Acy X § =
(c2 — cH¥B)§ (dashed) for 6 = 1.0 x 1076, The inset shows AF near zero temperature for k. = 10k,
and the filled circle is obtained by zero-temperature formalism in Ref. [I7].

approximated spectral function given by A;S)E + A;cl)g does not satisfy the sum rule. To satisfy this
sum rule completely, it is necessary to obtain G self-consistently.

Based on the finite-temperature formalism, we have evaluated the free-energy difference AF =
F — Furp in the region T'/Tco < 0.5 in Ref. [26], where Ty represents the critical temperature of an
ideal BEC system. By numerical calculations, we have shown the 3/2-body correlations yield finite
contribution to lower the free energy. In this sense, collisions between Bogoliubov quasiparticles
introduced by 3/2-body correlations play roles to increase the entropy at finite temperature.

Before closing this section, we comment about the applicability of this theory, specifically in
terms of the choice of H, in the variational density matrix. In this section, we have assumed that
the 3/2-body correlations by quasiparticles given as 444 and 47414t are more important than other
contributions on account of the consideration in the theory of the ground state. In this sense, it
is possible to choose or add independent collisional processes by quasiparticles (e.g.,574%) in the
density matrix with introducing the corresponding variational parameters. However, contributions
except 499 and 44141 are neglected approximately at T' = 0 and our zero-temperature formalism

is valid. If the variational density matrix p, is chosen in terms of H, given by

H, = T + HYY (116)
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where H2! is defined as

N 1
21 _ ~ ~ ~ * 2 2 -~
HY' = o E (bklkz;kﬂfcﬂ;ﬂ—kg + bk1k2;kﬂT—kﬂkﬂ’ﬂ)‘
" k1Ko ka0

o = Trﬁv’%i’?k and W, kyks = LrPvYk, Yio Vs are calculated as

Okt e > f (B f (Big)  |brkostes | f (= By ) f (Ees)
2(Ex — Bk, — Ek;)? (B + Bk, — Eiy)? |

PP~ f(Be)+ Y

koks#0

Wk = - i’“gjﬁ T | Be)f (~Bie) (B + £ (B (B (B )]

Therefore, both of Egs. (II8) vanish in the limit T — 0 due to the condition f(Egxo) = 0.

37

(117)

(118a)

(118b)



Chapter 3 Variational Theory out of
Equilibrium States

In this chapter, we describe dynamics of interacting BEC systems with 3/2-body correlations and
reconsider the relation between BEC and superfluidity in terms of macroscopic coherence. To do
this, we introduce a time-evolutional variational wave function. Based on the wave function, we
investigate the response of a weakly-interacting BEC system by changing of the s-wave scattering
length (coupling constant) rapidly in order to observe the dynamical relaxation process [68]. Using
the same method in this chapter, we also introduce the time-dependent theory of superconductivity

beyond mean-field approximation in appendix B.

3.1 Variational Wave Function Derived from The Principle of Least Ac-
tion
To observe 3/2-body correlations dynamically, we construct a variational wave function with time
dependence imposing the following the principle of least action [65, b6, 57]:
ty R ty o .
38 =94 dt' (®(t)|L()|®(t')) =6 dt’ ((I)(t’)|z‘h% — H|®(t')) =0, (119)
to t()
where £ represents a Lagrangian operator and ¢, t; is arbitrary times. The Hamiltonian H is given
by
N R 1 R . o
H = Ze’:‘kCITCCk + ﬁ Z UqCL+qC£,7qu/Ck, (120)
k q.k,k’
with (&, ¢) denoting a set of boson field operators with [¢x, ¢k, ] = 0., ex = h2k?/2m, and U, the

interaction potential. The Hamiltonian is categorized in terms of the number of (¢, é:r)) as follows:

ﬁzﬁo—i-ﬁl—i-[{[%—‘rﬁg, (1213.)
where
. Ug .+ 5. .
Hy = ﬁcgcgcocm (121b)
. . 1 TN 1 BT T
H, = Z gkc,tck + v Z(Uo + Uk)cgcoc};ck + v Z Uk(cgc:r)ckc,k + cT_kc};coco) (121¢)
k40 k£0 k+£0
~ 1 R o TN R
H% =9 Z 5k1+k2+k3,0(c:r)cf_kgck2ckl + cLchQC,kScO)7 (121d)
k1,k2,k3#0
N 1 . R o
Hy = o > Uglhyglhs_gtrrin. (121e)
a,k,k'#0

The principle of least action in Eq. (IT9) for the variational parameters derives the time-dependent
theories, such as the time-dependent Hartree—Fock—Bogoliubov (TDHFB) equations for BEC sys-

tems [67] and the time-dependent Bogoliubov—de-Genne (TDBdAG) equations for superconductors

38
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or superfluid Fermi systems[6&|, as shown later (regarding theory of superconductivity, the deriva-
tion is written in appendix B). Here, we start from Eq. (IT9) and generalize these time-dependent
mean-field theories by improving the variational wave functions.

Using number-conserving operators (/30, Bg), the field operators (d,d") for k # 0 are expressed

as
CZL = é;chQ, CZk, = Bgék, (122)

which satisfy [czk, ci};,] = Ok k' -
First, we introduce the Girardeau—Arnowitt variational wave function with time dependence as

follows:

@G (t)) = Aexplat ()] [N}y, #1(t) = - Zm (Hdjd', (123)

_1
with A = (No\efrefrT |No) *. |®cal(t)) corresponds to a ”vacuum state” characterized by 4% (t) |®qa (t)) =
0, where 7 is defined by

Ao (t) = un(t)di — vi(t)d’ (124a)
A1) = —vi(t)de + uk(t)d! . (124D)
e By these definitions, commutator relations

with definitions ug = \/ﬁ = ujy, and v = W
are given by [H, ’Ay,i,] = Ogry and [fx,Jx’] = 0. The inverse transformations are given by
dr, = e (t)3k(t) + vr ()74 (1), (125a)
d' = Vi (A1 () + k()3 4 (). (125b)
We note (Pga (t)|Hs|®aal(t)) = 0.

Before introducing our variational wave function, we reproduce the TDHFB at T = 0 within

mean-field approximation. To do this, we evaluate (Dga (¢)| 1hd/0t |Paa(t)) as

0 i 5} OlnA
(a0 5y [2a(1) = 5 3 (@on ] il [oca () + in
ZFk 8¢k 81n81;1(t). (126)
Using this relation and d(¢*/(1 — |¢|?))/0¢* = (1 — |$|*) =2 = u?, we obtain
J h AT ih 8¢k(t) 4

where we used 0In A(t = t9)/d¢5(t) = 6In A(t = t1)/d¢5 (t) with ¢ £ to, 1.
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The expectation value of the Hamiltonian is given by
Eana = <‘I>GA(t)|f{0 + ﬁl + H2|(I)GA(t)>

U()N2 No No N
= o) +Z5kpk+7ZUkPk‘FWZUk(Fk"'Fk)
k40 k#0 k40

1

o > U—w(prpr + FiF3), (128)
k,k’,q#0

where we approximate (P (£)|(¢hB0)” (B1¢0)"|@aa (t)) = No“ /2 No = N—57, p, pre = (dfdie),

and Fy = <cchZ,k> pr and F is given in terms of v and v as

ok = |vkl®, Fr = ugv_g.

Therefore,
0€ca 0Eca 0prr  0Ega 0F  0Eqa OFY, Ardr  Ag
ooy, k%;() { Oprr 09y, 0F, ¢y, 0Fg, 5¢k} 2 2
where
NoUp 1 1 .
= — = Upr) prer — — o (F + Fy, 12
& =en + —; +VZ(U|k7k\ Uk') i QVZUk(k+ k) (129a)
k/#£0 K/
NoU 1
Ag = v + §;U|k—k/|Fk:'- (129b)
By these calculations, we obtain
L0 «
Zﬁ% = 2R r + Aj Ok + A (130)

Here, we confirm the equivalence between the TDHFB theory and Eq. (I30). Recalling the

relations for ug and vg = Prug, we can express Eq. (I30) in the following form:

., Oug, . 8¢>k . Oug
=g = huk =5, +ih=5= 0k
* 12 . auk
= [26k0k + Ajd + ArJuk + ih= = O (131)

On the other hand, the TDHFB theory at 7' = 0 is given as [67]

L0 (ue\ [ &k Ak Ug
n? (U)_(_AZ _£k> <k> (152)

Substituting Eq. (I32) into Eq. (IE3T), we can see the equivalence easily.

Next, we incorporate the effect by 3/2-body correlations into the wave function.

. . 1 At s
|®) = Azexp(#}) [Paa), 7= 30 D Whikaks Y, W L (133)
" kikoks
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41

We extend this wave function using the same manner as that by mean-field theory. The expectation

value of Hamiltonian is given by

i 1
0] 3 100) = S 50+ in @] 50 oo
) a(lnA—i—lnA)
+1FLT3

The first term is evaluated as

Al
in (@(1)] 750 oy

ih awk kok (t)
BEPR IR e
" kikoks#0

; 94t (DAT ()41
PSS i, @) 20D D04

" kikok3#0

ih 8wk kok (t) ih
~ ? Z wzlk2k3 18; 3 + (3')2 Z wk1k2k3wz/lk'2ké

" kikoks#0 kikaksk, kK, #0

SR
(@ (D) 3 (03 1y (0 DO g

Using the following relation,

AL, (DAL, (DAL (¢
(P ()] Yres (8) ks (1) Faey (1) s )%51( D@ [Pca(t))

= Z(skhk 6k2 k2P6k37 3p(fk'1P + fk‘2P + fk3p)
P

with definition of f as

o 8’%1;:/ (t) _ 8Uk 8uk - fk,
[ry’c(t)’ ot } = 5k,k ( Ve, ot ukﬁ) = (Sk,k/%,
Eq. (I33) is transformed into
ih . O¢r(t) zh « OWk, koykes (t)
el )| - ji: WOy g D Whikk gy
k1,k2,k3
. O(ln A+1n As)
2
+ 5 Z |wk1k2k3| |:fk1 + sz + fk3i| + ZHT

k1,k2,k3

Therefore, we obtain the following equations:

5E  ihOon, ,
= MO |y
56p 2 ot *’k;;; kot [}
o€ . OWk, koks
= ih ks g ks [fk1 + [, +fk3},

5“’1:11@133 ot

(134)

(135)

(136a)

(136b)
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where £ = (®(t)|H|®(t)) given by
€ = (B(t)|Ho + Hy + Hs + Ha|®(1))

Ug N2 N N
=29 +Zf‘:kpk+7OZUkpk+7OZUk(Fk+F,:)

2V k0 k40 2V k40
1 *
Tow Z Uk—t| (Prprr + FreFy)
k,k/,q£0
v No *
+ Z 5k1+k2+k3,0Uk1 (Wkl,kz;ks + Wkl,kz;kz)’

14 k1,k2,k3#0

with

o, lul? 2 ui 2
P = lokl” + = > W ksks] + 5 > Wk |,

kz,kg k2;k3
Fp = 141 2 2
k= kv |1+ 5 D (Whteats * + [0—tteats )|
k2,k3

Wkl,kz;kS = <¢‘dik3dk‘2dk‘1 ‘(I)> = ukluk2v23wk1k2k3 + Uk1vk2uk3wiklfk27k37

Straightforwardly, the variational conditions are calculated as

6 14 Yk, ke [Wkkoks | .
= kaks B (2endn + ALOE + A + i) U

Sr 2
23 0 0 0
Sw* = bk1k2k3 + Wy koks (Ek1 + Ek2 + Ek:3)7
Wiy koks
where
NoUyp 1 1 N
ke =ek + (;) £t v > (Ui — Uk )prr — v > Un(F + F)
k/#£0 Y
1 *
+ Z 5k1+k2+k3,0U1€1 (Wkl,kz;ks + Wkl,kz;k3)

2VVNo k1 ko, k3 £0

NoUp 1
A: - U_/F/
k v +VZ |k—k'| L'k
k' #£0
vV No 1
Xk

L Yy s [WRRaks 2V

U, U «
XY Oktkatks kukk3 [(Uk + Us,) [0k (0 + bk ) Wiy kg
Ko k30

+ 201 — |9w]*) b, + Ok Dk, + OkPhy)|Whsks] + Uny [2(1 — |0k]*) Wikt

+ Ok (P + Pk, Pl ) Whkenkes + Ok( Pk + Py ¢k3)w}§k2k3]]-

Ep = &e(ui + |vel?) + Afurvr + Agugvy,

v N
bklkzks = 6k1+k2+k3~,0 Toukl Uley Ukes (Ukl + Uk2)(¢k3 + ¢k1 ¢k2)

+ (Uk1 + Uks)((bkz + ¢k1 ¢k3) + (Uk2 + Uk3)(¢k1 + ¢k‘2¢k‘3)} .
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(138a)

(138b)

(138¢)

(139a)

(139b)

(139c¢)
(139d)
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Therefore, we obtain the dynamical equations as follows:

Ok

ihﬁ = 2o + Njds + Mg + Xk (140a)
. ow
Zh% = bk1k2k3 + Wy koks Z {E,(; — fkl} . (14011))
i=1,2,3

By solving these equations simultaneously, we obtain the dynamical state given by ¢g(t) and

Wk ko ks (t)

3.2 Numerical Calculations

In the following, we introduce the model and method for numerical calculations and present the

numerical results.

3.2.1 Model : rapid change for s-wave scattering length

By solving the TDBAG theory, Scott et al., [68] investigated the dynamical response of superfluid
Fermi gases to rapid changes of the s-wave scattering length. Here, we perform the numerical
calculation for the contact interaction potential Uy = U(t) with units for energy and wave number
given in Eq. () and consider the rapid changes of interaction potential. In terms of coupling

constant 6(t) = a?]( i, we control the interaction potential using the following model:
d(t) = o1f(t/tg), 6(t =0)=0(t = dt) = do, (141)

where f is a dimensionless model function giving time dependence for interaction potential with
f(t =0) < 1 and f(t — oo) = 1 and ty represents a time scale for the change of interaction
potential. Therefore, the initial condition for (¢(t = 0),w(t = 0)) are set to be the solution for
equilibrium solution for § = dgp. On the other hand, the behaviors of (¢(t — o0),w(t — o0)) are
expected to approach to the equilibrium solution for 6 = ¢; through relaxation process. In our
numerical calculation, we use §(t) = 01 tanh(¢/tp). The unit for time is set as ty = h/nlU;. The

schematic drawing for the present numerical model is described in Fig. B.

3.2.2 Numerical results
In the following, we show the numerical results calculated with At = 5.0x 10 %ty, Ak = 2.0x 10" 2ky
(interval of wave numbers), to = 0.1ty, 61 = 1.0 x 1075, (. 6o = 5.0 x 107?), k. = 5kyr.

Before discussing the numerical results, we give a comment about a method to solve dynamical
equations by using second-order differential method in terms of ¢. For instance, assuming a time-

evolutional equation given by

oY
— = X (¢t 142
20~ xa) (1420)
we evaluate 0v/0t by taking the central difference with discretizing t as () — 1; (¢ > 0: integer)
as follows:

oy i — Vi
ot B 2At

t=t;
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01

Figure 5: The schematic drawing for the present model. We change interaction potential (coupling
constant) rapidly, and stop increasing it around ¢t = t3. By this procedure, we can observe the
relaxation processes of physical quantities in a homogeneous system.

where At denotes time interval between (¢;) and t(t;11). Solving Eq. (IZ2H) recursively from
Yo = 1 = ¥*4, we obtain ¥ (t). This algorithm is effective if At is small enough to neglect numerical
errors of order O(At?).

First, we show the time dependencies of expectation values of Hamiltonian by the TDHFB
theory and our theory subtracted by UN?/2V = Nep/2, which we call “dynamical energy” here,
in Fig. B. As seen in this figure, both dynamical energies saturate to constant values towards the
region where the interaction potential is constant. Thus, both theories satisfy the dynamical energy
conservation law in the relaxation process. In addition, our theory with 3/2-body correlations yields
lower dynamical energy than that by TDHFB, i.e., the stable state is realized by incorporating
3/2-body correlations. In the same figure, we also plot the corresponding ground-state energies.
Although their dynamical energies approach to the equilibrium energies, they do not saturate to
their values strictly. One of the reasons for this undesirable property may be the model for rapid
changes of interaction potential. We observed that the models with larger ¢y yield smaller dynamical
energies. However, taking large t also yields a difficulty in carrying out the numerical calculations
in terms of accumulation of numerical error characteristic of dynamical simulations.

Next, we show the profiles of pg at various times in Fig. [@. Left figure corresponds to the
result by the TDHFB theory and right corresponds to the result by our theory with 3/2-body
correlations. As seen in the left figure, the profile of pg changes substantially as time proceeds,

specifically |k| = k 2 0. Our observation is described in the schematic drawing in the graph, i.e.,
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Figure 6: The expectation values of Hamiltonian evaluated by our theory (purple) and the TDHFB
theory (green) subtracted by Ney /2 as a function of time. Cyan (orange) lines plot the ground state
energies by the wave function with 3/2-body correlations (GA wave function).

noncondensates move collectively without collisions with condensates once they are excited due to
the rapid change of interaction potential. On the other hand, pg by the theory with 3/2-body
correlations always has a peak at the smallest k. This behavior indicates that local momentum-
exchange processes between condensates and noncondensates are incorporated successfully in the
wave function.

Finally, we discuss the noncondensates’ wave function. The variational parameter ¢ charac-
terizes the pair excitations with wave numbers k and —k from condensates. Thus, ¢ given by
o, = tan~!Imey /Redy (strictly, ¢r/2) directly corresponds to the phase of noncondensates’ or
quasiparticles’ wave function. Figure B shows the k dependencies of tanyy at t = 0.5¢y, 2.5ty,
5.0ty and 7.5ty. The left figure corresponds to the result by TDHFB theory and the right corre-
sponds to the result by our theory. In our calculation, the phase of condensate wave function was
fixed as p. = 0, i.e., <éo/3’$> = (égﬁ@ =+/Ny. As seen in the left figure, tan ¢y, oscillates around 0 as
time proceeds, particularly around k£ = 0. In this sense, p. # g within the TDHFB theory. On the
other hand, such phase oscillation around k 2 0 is suppressed substantially by 3/2-body correlations,
as seen in the right figure. Compared to the result by the TDHFB theory, we apparently observe
the relation ¢, ~ . = 0 in every k.

In Refs. [7] and [27], superposition over different condensed-particle-number states due to the

interaction was regarded as the essential factor for the macroscopic coherence. On the other hand,
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Figure 7: Numerical results of the dynamics of noncondensate densities. The left figure corresponds
to the result by TDHFB theory and right figure corresponds to the result by our variational theory
with 3/2-body correlations. Purple, green, cyan, and orange lines corresponds to the results at
t = 0.5ty, 2.5ty, 5.0ty and 7.5y, respectively. Two figures in the graphs show their respective
dynamics schematically.

our calculation shows that the wave function of noncondensate within self-consistent mean-field
approximation has large oscillations around &£ 2 0. Such oscillations are caused by the unphysical
energy gap at kK = 0 in the excitation spectrum because the energy gap prevents noncondensates
from interacting with condensates. In our calculation, we have observed that the variational wave
function with 3/2-body correlations described the collisions between noncondensates and condensate
reservoir. In addition, the dynamical oscillations in the phase of noncondensate wave function is
strongly suppressed. As shown in Fig. B in the introduction part, it also played a role to decrease
the unphysical energy gaps due to the mean-field approximations. With these facts, one can see
that the excited particles can exchange their momentums with condensates without energy barrier
owing to the 3/2-body processes and the macroscopic phase is maintained dynamically. In this
sense, not only “superposition”, but also “gapless excitation” seems to be one of the crucial points
for discussing the origin of macroscopic coherence. Strictly speaking, however, very small energy
gap remains even if we incorporate 3/2-body correlations successfully as seen in Fig. B. The small
variation of ¢;> (t — o00) observed in the right figure may be due to such small energy gap between
condensates and noncondensates.

Associated with this problem, the other independent studies based on functional renormalization
group theory have been carried out very recently [69, 60]. In this study, the author derived general
conditions among n-point vertices for gapless excitation in BEC and showed that the lowest-order
condition corresponds to the Hugenholtz-Pines theorem. In addition, the effective coupling constant

ga at the energy cut-off A was also obtained by solving the exact renormalization-group equations for
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Figure 8: Numerical results of the dynamics of Im¢y/Re¢y. The left figure corresponds to the
result by the TDHFB theory and right figure corresponds to the result by our variational theory
with 3/2-body correlations. Purple, green, cyan, and orange lines corresponds to the results at
t = 0.5ty, 2.5ty, 5.0ty and 7.5ty, respectively. Two figures in the graphs draw their respective
particle-number fluctuations schematically with considering their gaps in excitation spectrums.

the n-point vertices and showed ga—o — 0 under d < 4 (d < 3) at finite (zero) temperature, where
d denotes a dimension of the system. This vanishing of g, caused by the many-body correlations
(n-point vertices) beyond mean-field treatment, indicates that the Bogoliubov mode with linear
dispersion is absent in one-particle excitations in BEC systems. Even if there are no Bogoliubov
modes with linear dispersion, the origin of superfluidity in BEC systems can be explained using the
present idea based on the macroscopic coherence. In this sense, many-body correlations such as

3/2-body correlations should be a key factor for investigating interacting BEC systems definitely.



Chapter 4 Concluding Remarks

In this thesis, we have developed variational theories to describe equilibrium and nonequilibrium
systems. Conclusions in respective chapters are summarized as follows.

In the first chapter, we have introduced a variational method to incorporate the correlations
between condensates and noncondensates with dividing 3 equilibrium systems : (1) inhomogeneous
systems, (2) Bose—Bose mixtures, (3) finite-temperature systems. These 3 analysis have a common
conclusion that 3/2-body correlations decrease the ground-state energies and free energies, and their
contributions are comparable to those of 2-body correlations. Therefore, the mean-field approxi-
mation for BEC systems may not be effective quantitatively even in the weak-coupling region. As
shown in appendix A, we can also apply the same method to superconducting states beyond mean-
field approximations. Our variational theories introduced here are expected to give physical pictures
beyond mean-field contributions in various BEC and superconducting systems.

In the second chapter, we have derived time-evolutional equations of variational parameters with
3/2-body correlations from the principle of least action and investigated the dynamical response
of weakly-interacting BEC systems to change the s-wave scattering length rapidly. Specifically, we
have focused on the dynamics of noncondensates’ density and the noncondensates’ wave function. To
summarize, our observation in this chapter is as follows: (1) not only particle-number fluctuations but
also gapless one-particle excitation (not necessary to be linear) seems also crucial for the macroscopic
coherence (2) 3/2-body correlations play an essential role to maintain coherence in interacting BEC
systems. If the macroscopic phase in a BEC system is maintained dynamically at T'= 0 as ¢. = ¢,
we can explain the experimental results of the relation between superfluid density and condensate
density [37, B8] without contradictions. In addition, the “equivalence” between one and collective
excitations in the long-wave-length limit, which has been believed to be essential for the relation

between BEC and superfluidity, may not be necessary.
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Appendix A Variational Theory of
Superconductivity with
Many-Body Correlations at Finite

Temperature

By using a formalism based on the variational density matrix p, introduced in Ref. [26], we extend
the variational theory for superconductors given in Ref. [27] to finite-temperature formalism.

We start from the following Hamiltonian:
N 1
_ N R
H= Z Z €kCha Cha + 20 Z UqChy gaCrr—qpCr' 5Ckas (143)
a k a,B q,k,k’
where (¢, ") is a set of fermion field operators satisfying {¢xq, é,t,a,} = Ogk'Oaa’, @ and [ spin indices,

£ = h2k2/2m, and U, < 0 the interaction potential.

Now, we introduce the BCS variational wave function with time dependence as follows:
|®pes) = Aexp(ifes) [0) (144)

where 7t = Dok ‘bké;fméiku A is the normalization constant determined by (®Ppcs|®Ppcs) = 1,

4

and ¢ is a variational parameters. |®Ppcg) corresponds to a “vacuum state” characterized by

Aka |PBCs) = 0, where (9,47) is a set of quasiparticle operators defined by

Akar = Unlha + (—1)°TTogel (145a)

'A}/T,k,a = (_1>7O‘+%U:¢éka + Ukéik,a- (145b)

with definitions ug = \/ﬁ = uy, and vg = ﬁ By these definitions, commutator relations

are given by {xq, ﬁ};,a,} = Ok Oac AN {Ykas Ykrar } = 0. The inverse transformations are given by

R . PR
Cha = UkYka — (—1)a+zvk'yik7a, (145¢)

éT—k—a = —(=1) " ik + Uk:'?T_k (145d)

In Ref. [27], a variational wave function that describes dynamical annihilation and creation processes
of Cooper pairs has been constructed by extending the conventional mean-field BCS wave function.

According to this study, the augmented variational wave function is introduced as follows:
. . 1 Af At ot oo
@) = Asexp(R]) [P5cs) . L= D Weimawon 3 h LA (146)
: Ki1K2K3K4

where k = (k, ), Wy rorsn, 1S & variational parameter characterizing the dynamical annihilation
and creation processes of Cooper pairs, and Ay is a normalization constant defined by (®|®) = 1.

Here, we generalize the theory for ground state to describe finite-temperature systems. To do this,
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we introduce the variational density matrix. Following the manner in the theory of BEC, we choose

the form of p, as follows:
pv = exp[B(Qurw — Hy)l, Quiw = —4~ L In Tre A8, (1472)
with

H, = HMF + g2
it A 1 it At At oA
= Z EN’YL’YK + E Z (bN1H2K3N4’yll 7}127/:3,-}//14 + HC)? (147b)
K ' K1K2K3K4
where E,; and by, x,k4k, represent variational parameters.

The quasiparticle Green’s function is introduced as follows:

gﬁ(Tla 7_2) = _TYPVTT:)’K(TI)’S’Z;(TQ) = _TrvaT:YK(Tl - 7—2)'%1 = gH(Tl - 7—2>7 (148)
1 & ,
gﬁ)(T) - B Z eiwnﬁrgﬁ,i&na (149)

where T’ is a time-ordered operator for imaginary time 7 and Ae(T) = eTﬁV%e_THV, Ai(r) =
eTﬁV’y:[he*THV are the Heisenberg representation for quasiparticle operators, and ¢, = (2n + 1)7/8
(n: integer) is the Matsubara energy for fermions.

To construct the self-consistent equations for G, ;. , we define a self energy S expressed by G ic,, -

As shown by Luttinger and Ward, Qypw = Qyiw[G] can be expressed in terms of G ;c,, as
1 : -1
QvLVV [g} = - B Z Z [€Z€n0+ ln[fg(o) Ky iEn + Sn,isn} + Sﬁ,isn g/{,ien] + (I)VLVV [g} (150)

where @, 1w consists of all the skeleton diagrams in the simple perturbation expansion with respect
to fAIff for Qurw with replacement of free quasiparticle’s propagator G(°) with G ic,, - Here, GO is
defined by
1
o) T — (151)

Foen ge, — B

The equation for Gy ;c, is determined by 6Qyrw /Gy i, = 0. From this condition, we obtain the

Dyson equation for G, ;c,,

1
— 152
gH,lEn ign - En - Sn,ien’ ( 5 )
where S, ;c,, is the self-energy defined by
0D,
Snjie, = B 5%2. (153)

Following the manner of ®-derivative approximation, we introduce @y as follows:

1. -
Qj)VLVV = 7B[<S(B)>Bcs7connect - 1]ske1eton,g(0) —G> (154)



ol

)pes denotes the average by py[b = b* = 0] and S(B) is an operator to carry out the

where (---
perturbation expansion defined by
R o ME . >~ 1 (B B B o R
SB) =M e P =14 Y — [ dry | dryee | drn T HI(T) - HE (7). (155)
1 nl Jo 0 0 v

Thus, @, w = Zzozl @7 formally consists of infinite closed skeleton diagrams with Gy replaced
by G. In order to obtain an explicit expression for S, we use the lowest-order approximation for

<I>gL)W, where CD( )W is expressed by

() 2
® Z Z mmnsm‘ 5sn1+6n2 +eng+eny,0

vIW —
nNina2n3z3ng K1K2K3K4
(156)

Oyrw as Pyrw =

X giﬂ 11€nq gli2,i€n2 gﬁ:ﬂyyis’ng gﬁ47i€n4

Therefore, the self energy is
8”:7;571 - Z Z HN253|2657L+5H2 +eng +En470g’§277f.5n2 gﬁB;ieng g"'€4315n4 (157)
n2n3n4 K2K3K4
Using Gy se,, , we obtain pP and w,,, x,x, as follows
ptP = Z Gric, (158a)
; e . (158b)

bn Z
1K2K3K4
(Senl +engtengten, ,Ognl JUEny gng,i€n2 gn?,,zsns gti4,zan4

w =
Ki1K2K3Kg BS
ninongng

We also show that our theory reproduces the results in Ref. [27] by taking T — 0. To proceed

calculations, we expand G assuming S < 1 as

(1 (0
gn,ien 1+ Sn 1)57, grc z)sn]
(159)

I{’LE [

o)
(1)
gﬁ R gf@,iEn’

= S[G]. Lehmann representation for S() is given as

where SO = 8§
u _1 2/ d€2/ dag/ dey
= Kn2n3n4|

K,i€n _5
Afﬁoz)EQAl(i%)€3AE§04 €4
x et B (ey) feg) fed) + f(~ea)f (~e0) f(—<)
_1 Z |b |21_f(Ef€2)_f(Em3)_f(Eﬁ4)
Rt ien + By + Ewy + Es,

= D7 ananens PlF(22) Fe3) Fea) + F(—22) f(—23) f(—e4)]

1 —

— FK,?? = 3
(160)

K2K3K4
X d(e+ Ex, + Epy + Eb,),
(S8.)-

where A,(gi (F,(Ql‘)g) is the spectral function for Q,gOZE
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Since the spectral functions are given by A, . = —2ImGp ;c,, e 440, and 1“532 = —ZIrnS,(‘ii)En_}E_HO+7
1)

we obtain Ay . as

A TEEmoss o plEf e £ Hoe) e =)

(e—E.)? 3 (Ex + Ep, + By + E,.,)?

K2K3K4

X (e + Ex, + Ex, + Ev,), (161)

where we transformed the second into the third equation with ImG(® ~ 0. This consideration
is based on the assumption that ideal quasiparticles have infinite lifetimes due to the absence of
interactions. On the other hand, in the presence of correlations between quasiparticles, such as
3/2-body correlations, finite lifetimes described by ImS) appear in the quasiparticles. Therefore,

we obtain pIP as

21

1 f(_En )f(_En )f(_En )

= E, T brrorsr 2 2 2 . 162

( )+ 31 H§K4| 2K3 4| (E,Q +Em2 +En3 +EH4)2 ( a)
On the other hand, we obtain the expression of w in the lowest order as
bﬁlﬁ2l<,3f€4
Kikok3ky — *En *En 7El*i' 7E,{
w 1R2RKR3k4 EHI+EK/2+E53+EK/4 [f( 1)f( Q)f( s)f( 4)
— [(Bu) [ (Bia) f(Biy) f (i) (162b)

Therefore, the zero-temperature formalism is reproduced in the limit T — 0 (f(Ex;) — 0 and
f(=E;) —1).
The stationary condition for variational parameters are determined by 0€2, = 0. By this proce-

dure, we obtain

—(ex —p+ UF) + \/(Ek — 4+ UF)? 4+ Ap(Ak — X&)

bk = AL , (163a)
— — (02 2 HF

B = E = (u —vp) (e =+ Up ) + 28k ukvg, (163b)
b _ Okithkothkstki0
kiai1ksasksasksay — f

% {U‘k1+k4|6al—a4502—(13(71)170[17(12 (uklvk4 + Uk, uk4)(uk2vk3 + Uk, uks)
+Uv‘k’l-ﬁ-kz|6011—062 5(13—0(4(*1)170(17(13 (uklka + Uk, ukz)(uksvk4 + vksu’%)

+U‘k1+k3|5a1*a35a2*a4(_1)1_a1_a4 (uklUkS + Uk, uks)(uk2vk4 + Uk, uk4)} ) (163C)
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where
1
Up' = v > U — Upe—ier) P (163d)
k/
1
Ag = -5 > U P (163€)
k/
1

Uky Uks Ukey
k:—g(skkkk,OUkk ky — PkPlyPhy)—
X V(l _ch pgp) W +ko+ks+ky |k+ka| (¢ 2 — OkPry @ 4) un

X Z(_1)1_a_a/wkak’2a'k’3—a’k’4—a- (163f)

aa’



Appendix B Time-Dependent Variational
Theory of Superconductivity
beyond Mean-Field Approximation

We construct a time-dependent variational theory of superconductivity based on the principle of

least action :
t1

6S =46 [ dt <<I>(t)\ih% — H|®(t)) =0, (164)

to
where tg, t; is arbitrary times. Here, we consider the Hamiltonian given by Eq. (IZ3).
First, we consider within the TDBAG theory with defining Epcs(t) = (Ppes(t)|H|Ppes(t)). To
modify |Ppcs) as |Ppes(t)), we only need to consider the time dependence of ¢g(t) in Eq. (Z4).
Calculating (Ppcs(t)|0:|Ppcs(t)), we obtain

¢h<<I>BCS(t)|%|q>BCS(t)> alnA +zh2uk Yo (t %akt()’ (165)

Using this relation and 9/9¢*(¢* /(1 + |6|?)) = (1 + |¢|*) 2 = u*, Eq. (I64) is transformed into

dpcs ., 0d(t) 4
TRON T oo
where we used 0In A(t = t9) /095 (t) = 0In A(t = t1)/d¢} (t) with ¢ # to, 1.
The expression of ground-state energy Epcs is given by
Epcs = QZEkPk + = Z 2U0 — Uj—k| ) PrPrr + Z Uk—i | Fr Fr, (167)

k k' k k'
where pp = (é,téw = |vg|?, and Fy = (éx¢_g) = ugv_g. Therefore, Eq. (IBA) is transformed into

ih a¢8ktt( ) _ 2(€k'

Ud®) i + Djdr — A (168)

The TdBdG equation with familiar form is also derived, starting from the original BCS wave
function [2¥]
[Ppos(t)) = H[Uk(t) + Uk(t)éLTéf_ki] 10}, Jugl? + vk |* = 1, (169)
k

which is equivalent to the state by Eq. (IZd) with definitions for v and v in terms of ¢. Based on

this variational state, the principle of least action 65 = 0 yields

0EBcs (t) _ mauk(t) 0Epes(t) _ ih&vk(t)
dui (t) at 7 Sui(t) ot
HF A
Sand () Z (et k e (170)
ot Vi A;; —E&k — UEF Vi
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Now, we introduce the dynamical theory with many-body correlations following the manner
by Ref. [27], i.e., we start from the variational state given in Eq. (IZ8) with considering its time

dependence. Calculating (®(t)|0:|®(t)), we obtain

, d O A®t) +1In Ag(t)] ori(t) ‘ IR0
in(@(t)] o (1)) = in o + i (2(t)] =5~ |2(1)) + zhzk:ukvk o
Iln A(t) +In Ag(t)] ik N OWsey kprigrg ()
a 8t + I K .HZH' K4 wH1N2H3K4 8t
1 ) L O0r(t
4 Z |wr€1'€2f€3ﬂ4‘2[fk1 + fro + fks + f’%] + thukvk d)akt( ) (171&)
’ K1,Kk2,Kk3,KR4 k
where we define f as follows:
_ % avk 8uk
Je = Zh(’vkﬁ + ukﬁ)' (171Db)
Defining & = (®(t)|H|®(t)), we obtain the following equations:
0& ., O (t) 20,4
= 1—
5¢]*c(t) ih 3t 2 R2HZSR4 |wKIiQI{3H4| Up, (1723.)
o0& . awn K2K3K (t)
=1h S e — Wy kakska | Thy ) , e 172b
A R Wnssany |+ i+ iy + i (172b)

The expectation value of H with w is calculated as
. 1 1 «
E=(D|H|D) = 225kpk + v Z(2UO — U|k—k’\)ﬂkpk:/ + v Z U|k_k/‘Fka/
Kk’ Kk’

k
. U 1)i-ea’
+ ﬁ |Ic1+k4|(_ ) k1+ka+ks+ka,0
kiksoksky aa’

X (uklukZUkSvk4w;::1ak:20/k370/k:4704 + ,Uzlv;::gu;;gu;;4wklak&a/kS*a/kA*a)’ (1733’)
where
1
pre = o] + (luk|* — o] *)me = 3 [1+ (Juse|? = [ox*) (1 — 2ng)] (173b)
Fy, = upvg, (1 — 2n) (173c¢)
1
e =Nk = g Z |wnn2f€354‘2- (173d)
Ko2K3K4

Thus, the variational conditions are given by

&

5ot = 20k + U 4 A — D) (1 = 2 (174a)
k
5€ i
5w;;1(11k2(12k3043k4044 = Vkiarkoasksasksay

+ Wkyarksasksaskaoy (Elgl + Egz + E23 + Elg4)7 (174b)
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where
EY = (u} — \vk\Z)(Ek + U}:F) + 2ReAfugvg (175a)
1 !’
Xk = 77 Ulkey 14 T Oy kot ka+ka,0
(1 _277k) 1 2V 6¢k lkl,czzm’k4§ |k1+ 1+ko+ks+ky

* k k
X (ukl Uk Vi3 Vs Wiy aksa' ks —a'ky—a + Vg, Uk-2ukguk4wk1ak2a'k3—a’k4—a)

1 * B
= 7}}(1 5 ) Z 5k+k2+k3+k4,0U|k+k4| [¢k2 - ¢k(Re¢k3¢k4 + 21m¢k¢k2)
) 4o keakes
* * * * Uk, Ukez Ukey
X (Wkkykks T Whikgkaks T Whakokak T wk4k3k2k)} #’ (175b)
Whykoksks = Whitkothslkal: (175c¢)
Therefore, we obtain
8¢k _ HF * 12
6t =2(er +Up )k + Apdr — Ak + Xk, (176a)
4
QW koksks 0
th=——5;"""" = Vkikakaky T Wk kakoks > (ER, + fr): (176b)
i=1
with
Ok + koot stk
Ok kokska = Dkithoths ksl = %M {U\k1+k4|(uk1vk‘4 + Uty Uy ) (Ukey Vkes + Uk Uk )
= Ulkey ks | (e, Uy + Uk, Uy ) (U Uk + nguk4):| . (176¢)

2ut/h

Under the gauge transformation as ¢ — ¢e™ and w — we " t4Ht/1 (u: arbitrary constant), the

dynamics of variational parameters are given by

0%
g; =2(ex — p+ U™ )k + Ajdi — Ak + Xk, (177a)
ow 4
. kikoksk -
Ih——"3" = Dkikaksks + Whikaksks > (ER, + fr.), (177b)

i=1

where E,(CO) = (u} — vk|?) (ex + URY — 1) + 2ReAj ugvg. Assuming p is chemical potential and setting
O = Oyw = 0 and (¢, w) = (¢*,w*), we reproduce the equilibrium solutions of ¢ and w in Ref.

7).
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