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1 Introduction

1.1 Forces acting on charged particles

From the viewpoint of fundamental physics, electrostatic charge redistribution implies

the action of certain forces on charged particles. For instance, in normal metals[1],

semiconductors[2] as well as in superconductors[3, 4, 5], the magnetic Lorentz force

FLorentz = (qv ×B), (1.1)

where B, v and q are the magnetic field, particle velocity and charge (charge distribution),

respectively, results in the Hall effect. However, exclusively in superconductors, besides

the Lorentz force which is included as a necessary ingredient in London’s phenomenological

theory of superconductivity, other forces are expected to be present even in the absence of

external or spontaneous magnetic fields, namely; the pair-potential (∆) gradient (PPG)

force[6, 7, 8]

FPPG ∝
∂∆

∂r
, (1.2)

which originates from the spatial variation of the pair potential, and another force orig-

inating from the pressure due to the slope of the density of states (DOS) in the normal

states at the Fermi level[9, 10, 11]

FSDOS ∝
N ′(µn)

N(µn)
. (1.3)

Where N ′(µn)/N(µn) is the slope of DOS in the normal states at the Fermi level between

the normal and the superconducting regions. These three forces bring about electron-hole

asymmetry which induces the redistribution of charged particles in both the Meissner and

the vortex state in type-II superconductors and are also expected in the presence of sur-

faces and interfaces. Charge redistribution in superconductors occurs in order to balance

the electrochemical potential between the normal regions and the superconducting regions.

For a complete understanding of the mechanism of electric charging in superconductors,

it is imperative to account for all three forces within a microscopic theory.

1.2 Augmented quasiclassical equations

Quite recently, the augmented quasiclassical equations incorporating the three-force-

terms were derived, with the standard Eilenberger equations[12, 13] as the leading-order

contributions and the force terms as first-order quantum corrections in terms of the qua-

siclassical parameter δ ≡ (kFξ0)
−1 ≪ 1, where kF is the Fermi wave number and ξ0 is

the coherence length at zero temperature[4, 7, 11], and are expresssed in the Matsubara
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formalism as [
iεnτ̂3 − ∆̂τ̂3, ĝ

]
+ iℏvF · ∂ĝ

+
iℏ
2

{
∂∆̂τ̂3,∂pF

ĝ
}
− iℏ

2

{
∂pF

∆̂τ̂3,∂ĝ
}

+
iℏ
2
evF ·

(
B × ∂

∂pF

)
{τ̂3, ĝ(εn,pF, r)} = 0̂, (1.4)

where ǧ = ǧ(εn,pF, r) is the quasiclassical Green’s function, ∆̌ = ∆̌(pF, r) is the pair

potential, εn is the Matsubara energy, vF is the Fermi velocity, and pF is the Fermi

momentum. Matrix τ̌3 denotes

τ̌3 =

[
τ̂3 0̂

0̂ τ̂3

]
, τ̂3 =

[
σ0 0

0 −σ0

]
, (1.5)

with [â, b̂] ≡ âb̂− b̂â, and {â, b̂} ≡ âb̂+ b̂â.

1.2.1 Meissner state charging

In the presence of a very weak magnetic field B (below the lower critical field), super-

conductors show perfect diamagnetic behaviours. Furthermore, the Lorentz force acting

on equilibrium supercurrents induces the redistribution of charge towards the surface of

the sample and a Hall electric field emerges. This goes on until a time when the electric

field due to the surface charge balances the the magnetic Lorentz force acting on super-

currents and equilibrium is reached. The induced electric field in the Meissner state EM

is given by [5, 14]

EM = B ×RHjs (1.6)

Where RH is the Hall coefficient and js is the current flowing along the edge of the

sample. This expression for the electric field agrees reasonably with the prediction of

London theory. Moreover, in the case of anisotropic superconductors, the information

about the electronic band structure is contained in the expression for the Hall coefficient

given by [14]

RH ≡
1

2eN(0)

⟨
∂

∂pF

(1− Y )vF

⟩
F

⟨vF (1− Y )vF ⟩−1F , (1.7)

where Y ≡ Y (pF , T ) is the Yosida function and is expressed as

Y (pF , T ) = 1− 2πkBT
∞∑

n=−∞

|∆|2ϕϕ̄
2(|εn|2 + |∆|2ϕϕ̄)3/2

(1.8)
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Here ϕ is the basis function of the energy gap, kB and T denoting the Boltzmann constant

and temperature, respectively. The electric field induced in the Meissner state shows a

sign change with temperature dependence[14] for materials with anisotropic Fermi surface

and energy gap and also at specific doping levels, due to the Fermi surface curvature. The

Fermi surface curvature and gap anisotropy result in the anisotropic redistribution of ther-

mally excited quasiparticles, hence the sign change. Fermi surface and gap anisotropies

are therefore very crucial to understanding both the magnitude and sign of electric charge

in superconductors.

1.2.2 Vortex charging

The augmented quasiclassical equations have been used in the study of electric charging

of a single superconducting vortex and also for the charging of the Abrikosov lattice system

[8, 5, 11, 15, 16, 17]. It has been shown that in the vortex core of an isotropic type-II

superconductor the PPG force gives up to 10 to 102 times larger contribution to charging

effect compared to the Lorentz force[8]. Even more recently, Ueki et al. found that the

SDOS pressure gives the dominant contribution near the transition temperature, while

the PPG force dominates as the temperature approaches zero[11]. Masaki studied the

charged and uncharged vortices in a chiral p-wave superconductor based on the augmented

quasiclassical equations. He pointed out that the vortex-core charge is dominated by

the contribution of the angular derivative terms in the PPG force terms[15]. Using a

simplified picture of a system consisting of a vortex core in the normal state, surrounded

by a superconducting material, Khomskii et al. showed that a finite difference in chemical

potential δµ ̸= 0 between the normal and the superconducting subsystems results in the

the redistribution of charge[9, 10].

Figure 1: A schematic of the gap structure for the dx2−y2 pairing state with gap nodal lines (diagonal

dashed lines).
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1.3 Surface systems

In the context of surface charging, Furusaki et al. studied spontaneous surface charging

in chiral p-wave superconductors based on the Bogoliubov–de Gennes equations. They

found two contributions, one contribution originates from the Lorentz force due to the

spontaneous edge currents, while the other contribution has topological origin and is

related to the intrinsic angular momentum of the Cooper pairs[18]. Emig et al. also

showed using a phenomenological analysis on the basis of Ginzburg–Landau theory that

the presence of surfaces in d-wave superconductors can induce charge inhomogeneity due

to the suppression of the energy gap[19].

In a dx2−y2-wave superconductor (the gap structure for the dx2−y2 pairing state is shown

in Fig. 1) with a specularly reflective surface cut along the [110] direction i.e. along the

nodal lines, the order parameter is suppressed [20, 21, 22] near the surface and vanishes

at the surface due to a change in its sign along the classical quasiparticle trajectories.

This sign change also results in the formation of zero energy states (ZES) near (at) the

edges of these materials[26, 25, 23, 24, 27]. ZES in d-wave superconductors are detectable

through the observation of zero-bias conductance peaks in the spectra of scanning tun-

neling spectroscopy at oriented surfaces of the d-wave crystals[28, 29, 30]. Figure 2 shows

the normalized conductance measured for grains of cuprate superconductors[31]. Hayashi

et al. discussed the connection between the Caroli–de Gennes–Matricon states[32] at the

vortex core of an s-wave superconductor and the occurrence of electric charge[33]. They

concluded that the particle-hole asymmetry inside the vortex core observed through the

local density of states (LDOS) implies the corresponding existence of charge at the vortex

core. Recently, Masaki also discussed the connection between particle-hole asymmetry

and vortex charging in superconductors[15]. Surface charging in d-wave superconductors

may also have a similar connection with particle-hole asymmetry in the LDOS, which is

expected to appear due to first-order quantum corrections within the augmented quasi-

classical theory.

1.4 Motivation

Several studies have been carried out on the charging effect in the vortex state of super-

conductors based on microscopic theories, these have inspired a lot of experimental efforts

leading to a better understanding of the electrodynamics of superconductors in the vortex

state. On the other hand, surface charge in superconductors remains unexplored or at

best previous studies on surface charge have been mostly based on phenomenological ap-

proaches, despite the rich physics inherent at the surfaces of superconductors, especially in

systems with anisotropic energy gap and/or Fermi surface. In fact, even in the absence of

magnetic fields, surface effects in d-wave superconductors result in the appearance of the

PPG force due to the suppression of the pair potential near the surface and the pressure
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Figure 2: Normalized conductance vs normalized voltage of oriented grain boundaries of cuprate super-

conductors at T = 4.2K.

due to the SDOS at the Fermi level. Hence the presence of oriented surfaces in d-wave

superconductors is expected to be accompanied by the redistribution of charged particles.

Experiments by Bok and Klein [34] followed by Morris and Brown [35] successfully cir-

cumvented the difficulties encountered in the earlier attempts at the measurement of Hall

voltage in superconductors by applying capacitive couplings to the samples. Although,

such measurement have not been carried out on materials with gap and Fermi surface

anisotropy yet. There is also the possibility of observing qualitative signatures of elec-

tric charging by observing electron-hole asymmetry in the local density of states in the

tunnelling spectra of superconductors, such as the cuprates.

In this study, we have carried out a microscopic investigation of the spontaneous surface

charge on a semi-finite dx2−y2 superconductor cut along the [110] direction due to the

PPG force and the SDOS pressure. Moreover, the SDOS pressure gives the dominant

contribution to the surface charge for the realistic electron-fillings n = 0.8, 0.9, and 1.15

at all temperatures. We also observe zero energy Andreev bound states at the surface of

the d-wave superconductor, which manifest themselves in the zero energy peaks in local

density of states within the augmented quasiclassical theory. We further highlight that

the particle-hole asymmetry in the local density of states due to the PPG force and the

SDOS pressure is a qualitative evidence of electric charging. This particle-hole asymmetry

may be observed in experiments.

This thesis is organized as follows. In Sect. 2, we derive the augmented quasiclassical
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equations of superconductivity in the Matsubara formalism, with the three force terms

which are responsible for charging. In Sect. 3, we apply the augmented quasiclassical

equations to perform a microscopic study on the spontaneous charge redistribution near

the surface of a d-wave superconductor cut along the [110] direction. We also calculate

the local density of states within the augmented quasiclassical theory. In Sect. 4, we give

a general summary of the content of this thesis, as well as our conclusion.
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2 General Augmented Quasiclassical Theory

In this chapter, we review the formulation of the augmented Eilenberger equations in

the Matsubara formalism taking into account the three force terms namely; the Lorentz

force, the pair potential gradient force and the pressure due to the slope of density of

states in the normal states at the Fermi level. For simplicity, we consider the spin-singlet

pairing state. To this end, we follow the derivation in earlier works [5, 11, 13].

2.1 Augmented Eilenberger equations

The augmented quasiclassical equations given in the Matsubara formalism are expressed

as

[
iεnτ̂3 − ∆̂τ̂3, ĝ

]
+ iℏvF · ∂ĝ

+
iℏ
2

{
∂∆̂τ̂3,∂pF

ĝ
}
− iℏ

2

{
∂pF

∆̂τ̂3,∂ĝ
}

+
iℏ
2
evF ·

(
B × ∂

∂pF

)
{τ̂3, ĝ(εn,pF, r)} = 0̂, (2.1)

where ǧ = ǧ(εn,pF, r) is the quasiclassical Green’s function, ∆̌ = ∆̌(pF, r) is the super-

conducting pair potential, εn is the Matsubara energy, vF is the Fermi velocity, and pF is

the Fermi momentum.

The gauge-invariant operator ∂ is given by

∂ ≡


∇ : on ĝ or ĝ∗

∇− i
2e

ℏ
A(r) : on f̂

∇+ i
2e

ℏ
A(r) : on f̂ ∗

, (2.2)

Matrix τ̌3 denotes

τ̌3 =

[
τ̂3 0̂

0̂ τ̂3

]
, τ̂3 =

[
σ0 0

0 −σ0

]
, (2.3)

with [â, b̂] ≡ âb̂− b̂â and {â, b̂} ≡ âb̂+ b̂â.

The quasiclassical Green’s function is defined as

ĝ(εn,pF, r) ≡ P

∫ ∞
−∞

dξp
π
iτ̂3Ĝ(εn,p, r)

≡

[
g(εn,pF, r) −if(εn,pF, r)

−if ∗(εn,−pF, r) −g∗(εn,−pF, r)

]
, (2.4)

where P denotes the principal value and Ĝ(εn,p, r) is the Green’s function of Gorkov’s

equation. The definition of the Green’s function starting from the second quantised field

operators and the derivation of Eq. (2.1) is given in Appendix.
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2.2 Local density of states

The local density of states (LDOS) can be expressed as

Ns(ε, r) ≡ −Tr
∫

d3p

(2πℏ)3
1

2π
ImGR(ε,p, r) (2.5)

whereGR(ε,p, r) ≡ G(εn → −iε+η,p, r) is the retarded Green’s function with η denoting

an infinitesimal positive constant.

We replace the momentum integral using

∫
d3p

(2πℏ)3
=

∫ ∞
−∞

dξpN(ξp + µ− eΦ(r))
∫
dΩp

4π
. (2.6)

Where the differential dΩp is the increment of the solid angle in the momentum space

defined based on the structure of the Fermi surface. For example, for a spherical Fermi

surface, dΩp may be expressed as∫
dΩp =

∫ π

0

dθp sin θp

∫ 2π

0

dφp. (2.7)

The LDOS now becomes

Ns(ε, r) = −Tr
∫ ∞
−∞

dξpN(ξp + µ− eΦ(r))
∫
dΩp

4π

1

2π
ImGR(ε,p, r), (2.8)

N(ξp + µ− eΦ(r)) ≡ N(ϵ) denotes the normal DOS and is defined by

N(ϵ) ≡
∫

d3p

(2πℏ)3
δ(ϵ− εp). (2.9)

We here make the following important assumptions regarding the variations of the density

of states;

(i) the superconducting DOS approaches the normal state DOS as the single-particle

energy increases

(ii) the energy variation of the normal DOS is slow.

Consequent upon these assumptions, the superconducting DOS in Eq. (2.8) may be

expressed in terms of g and g(1). To this end, we expand N(ϵ) at ϵ = µ− eΦ(r) as

N(ξp + µ− eΦ(r)) ≈ N(µ− eΦ(r)) +N ′(µ− eΦ(r))ξp. (2.10)

Using N ′(µn)∆0/N(µn) = O(δ), δµ/∆0 = O(δ), and |e|Φ/∆0 = O(δ), we obtain

N(µ− eΦ(r)) = N(µn)[1 +O(δ2)]. (2.11)

Here ∆0 denotes the energy gap at zero temperature, and δµ is the chemical potential

difference between the normal and superconducting states, and is defined by δµ ≡ µ −

12



µn with µn denoting the chemical potential in the normal state. Thus, we rewrite the

expansion of N(ξp + µ− eΦ(r)) as

N(ξp + µ− eΦ(r)) ≈ N(µn) +N ′(µn)ξp. (2.12)

Substituting it into Eq. (2.8) and using Eqs. (A.27), (A.30), and (A.32), we obtain the

superconducting LDOS as

Ns(ε, r)

≈ N(µn)

2
Tr

∫
dΩp

4π

{
RegR(ε,pF, r) +

N ′(µn)

N(µn)
εRegR(ε,pF, r)

+
1

2

N ′(µn)

N(µn)
Im
[
∆(pF, r)f̄

R
(ε,pF, r) + fR(ε,pF, r)∆̄(pF, r)

]}
× θ(|ε̃c| − |ε|) +N(ε+ µ− eΦ(r))θ(|ε| − |ε̃c|), (2.13)

where the retarded Green’s functions and barred functions in the Keldysh formalism are

defined generally by gR(ε,pF, r) ≡ g(εn → −iε+η,pF, r) and ḡ
R(ε,pF, r) ≡ gR∗(−ε,−pF, r),

respectively. The cutoff energy ε̃c > 0 is determined such that it satisfies the relation∫ ε̃c

−ε̃c
Ns(ε, r)dε =

∫ ε̃c

−ε̃c
N(ε+ µ− eΦ)dε. (2.14)

2.3 Pair potential

Here we express the self-consistency equation for the superconducting pair potential

using the quasiclassical Green’s function. Using Eqs. (A.17b), (A.20b), and putting

V(|r̄12|) =
∫

dp3

(2πℏ)3
Vpeip·r̄12/ℏ, (2.15)

in Eq. (A.15), we obtain ∆(p, r12) as

∆(p, r12) =

∫
dp′3

(2πℏ)3
V|p−p′|kBT

∞∑
n=−∞

F (εn,p
′, r12). (2.16)

Furthermore, we expand the interaction V|p−p′| in terms of the surface harmonics Ylm(p̂)

as

V|p−p′| =
∞∑
l=0

Vl(p,p′)
l∑

m=−l

4πYlm(p̂)Y
∗
lm(p̂

′), (2.17)

We note here that l = 0, 1, 2 corresponds to s-wave, p-wave and d-wave pairing, respec-

tively. Hence, we here assume that only a single l is relevant. Using Eq. (2.6), Eq. (2.16)

becomes

∆(p, r) =

∫ ∞
−∞

dξp′N(ξp′ + µ− eΦ(r))
∫
dΩp′

4π

× Vl(p,p′)
l∑

m=−l

4πYlm(p̂)Y
∗
lm(p̂

′)kBT
∞∑

n=−∞

F (εn,p
′, r). (2.18)
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Assuming a constant and weak-coupling interaction, we can rewrite the interaction poten-

tial as Vl(p,p′) = V(eff)
l θ(εc − |ξp|)θ(εc − |ξp′ |), with V(eff)

l denoting the constant effective

potential, and εc is the cutoff energy [13]. We can also rewrite Eq. (2.18) as

∆(p, r) =

∫ εc

−εc
dξp′N(ξp′ + µ− eΦ(r))

∫
dΩp′

4π

× V(eff)
l

l∑
m=−l

4πYlm(p̂)Y
∗
lm(p̂

′)kBT
nc∑

n=−nc

F (εn,p
′, r), (2.19)

where the cutoff nc is determined from (2nc + 1)πkBT = εc [13]. Using Eqs. (A.27),

(A.30), (A.32), and (2.12), we see that only the value at p = pF contributes to ∆(p, r) as

∆(pF, r) ≈ −V (eff)
l N(µn)

∫
dΩp′

4π

l∑
m=−l

4πYlm(p̂)Y
∗
lm(p̂

′)

× πkBT
nc∑

n=−nc

{
f(εn,p

′
F, r)−

i

2

N ′(µn)

N(µn)

[
∆(p′F, r)ḡ(εn,p

′
F, r)

− g(εn,p′F, r)∆(p′F, r)
]}

, (2.20)

where the barred functions in the Matsubara formalism are defined generally by ḡ(εn,pF, r) ≡
g∗(εn,−pF, r). Expanding ∆(pF, r) with respect to the surface harmonics as

∆(pF, r) =
l∑

m=−l

∆lm(r)
√
4πYlm(p̂), (2.21)

the self-consistency equation for the pair potential is given by

∆lm(r) = 2πg0kBT
nc∑
n=0

∫
dΩp

4π

√
4πY ∗lm(p̂)

{
f(εn,pF, r)

− i

2

N ′(µn)

N(µn)

[
∆(pF, r)ḡ(εn,pF, r)− g(εn,pF, r)∆(pF, r)

]}
, (2.22)

where g0 ≡ −V (eff)
l N(µn) denotes the coupling constant. Neglecting the spin magnetism,

we write the quasiclassical Green’s function in matrix form as g = gσ0. Consequently, the

gap equation [Eq. (2.22)] reduces to the self-consistency expression for the pair potential

in the Eilenberger equations.

2.4 Expressions for charge density and electric field

To obtain general expressions for the charge density and the induced electric field, we

write the charge density using the quasiclassical Green’s function. As a starting point,

we introduce the electron density n(r) as [11, 13]
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n(r) = kBTTr
∞∑

n=−∞

G(r, r; εn)e
−iεn0− = 2

∫ ∞
−∞

dεNs(ε, r)f(ε), (2.23)

where f(ε) = 1/
[
eε/kBT + 1

]
is the fermion distribution function. Substituting Eq. (2.13)

into Eq. (2.23), we rewrite the electron density in terms of gR and gR(1) as

n(r) ≈ N(µn)Tr

∫ ε̃c

−ε̃c
dεf(ε)

×
∫
dΩp

4π

[
RegR(ε,pF, r) +

N ′(µn)

N(µn)
RegR(1)(ε,pF, r)

]
+ 2

∫ ∞
−∞

dε
N(ε+ µ− eΦ(r))

eε/kBT + 1
− 2

∫ ε̃c

−ε̃c
dε
N(ε+ µ− eΦ(r))

eε/kBT + 1
, (2.24)

We also introduce the electron density in the normal state nn as

nn = 2

∫ ∞
−∞

dεN(ε+ µn)f(ε), (2.25)

where the prefactor of 2 is introduced so as to account for the two possible electron spin

states. We can now write the charge density using ρ(r) = en(r)− enn as

ρ(r) ≈ eN(µn)Tr

∫ ε̃c

−ε̃c
dεf(ε)

×
∫
dΩp

4π

[
RegR(ε,pF, r) +

N ′(µn)

N(µn)
RegR(1)(ε,pF, r)

]
− 2e

∫ ε̃c

−ε̃c
dεN(ε+ µ− eΦ(r))f(ε)

+ 2e

∫ ∞
−∞

dεN(ε)

[
1

e(ε+eΦ(r)−δµ−µn)/kBT + 1
− 1

e(ε−µn)/kBT + 1

]
. (2.26)

Furthermore, let us carry out a perturbation expansion with respect to the Lorentz and

PPG forces as gR = gR
0
+ gR

1
· · · and gR(1) = gR(1)

0
+ gR(1)

1
· · · [5, 8, 14], which is expanded

up to the first order in terms of the quasiclassical parameter δ below. We also use Eq.

(A.32), the gR
0
and gap equation (Eq. (2.22)) in the standard Eilenberger equations, and

approximate the distribution function, as follows:

1

e(ε+eΦ(r)−δµ−µn)/kBT + 1

≈ 1

e(ε−µn)/kBT + 1
+

d

dε

1

e(ε−µn)/kBT + 1
[eΦ(r)− δµ]. (2.27)

Using them, we obtain a general expression for the charge density, with contributions from

the Lorentz force (in the presence of magnetic field), the gradient of the pair potential,
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and the pressure due to the slope of the density of states as

ρ(r) ≈ 2πkBTeN(µn)Tr
ñc∑
n=0

∫
dΩp

4π
Img

1
(εn,pF, r)

+ e
N ′(µn)

N(µn)

∫ ε̃c

−ε̃c
dε

ε

eε/kBT + 1
[Ns0(ε, r)− 2N(µn)]

− (−1)lceN(µn)
N ′(µn)

N(µn)
Tr

l∑
m=−l

|∆lm(r)|2

− 2eN(µn)[eΦ(r)− δµ], (2.28)

where the cutoff ñc is obtained from (2ñc + 1)πkBT = ε̃c, the coefficient c is defined by

c ≡
∫ ε̃c

−ε̃c
dε

1

2ε
tanh

ε

2kBTc
, (2.29)

with Tc denoting the superconducting transition temperature at zero magnetic field, and

Ns0(ε, r) is the LDOS obtained from the standard Eilenberger equations defined by

Ns0(ε, r) ≡
N(µn)

2
Tr

∫
dΩp

4π
RegR

0
(ε,pF, r). (2.30)

Using Gauss’s law ∇ ·E = ρ/ϵ0, we obtain an equation for the electric field as

− λ2TF∇2E(r) +E(r)

= −πkBT
e

∇Tr
ñc∑
n=0

∫
dΩp

4π
Img

1
(εn,pF, r)

− 1

e

N ′(µn)

N(µn)

∫ ε̃c

−ε̃c
dεεf(ε)∇Ns0(ε, r)

N(µn)

+ (−1)l c
2e

N ′(µn)

N(µn)
∇Tr

l∑
m=−l

|∆lm(r)|2, (2.31)

where λTF ≡
√
ϵ0/2e2N(µn) is the Thomas–Fermi screening length.

2.5 Chemical potential

Using Eq. (2.28), we obtain an expression for the chemical potential µ as follows [11]

µ = µn − πkBTTr
ñc∑
n=0

∫
dΩp

4π

1

V

∫
d3rImg

1
(εn,pF, r)

− 1

2

N ′(µn)

N(µn)

∫ ε̃c

−ε̃c
dεεf(ε)

1

V

∫
d3r

[
Ns0(ε, r)

N(µn)
− 2

]
+

(−1)l

2
c
N ′(µn)

N(µn)
Tr

l∑
m=−l

1

V

∫
d3r|∆lm(r)|2 + e

1

V

∫
d3rΦ(r). (2.32)
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3 Spontaneous Surface Charge on a dx2−y2-wave Superconductor

In this chapter, we apply the augmented quasiclassical equations to a quasi-2D super-

conductor with d-wave pairing. More specifically, we consider a semi-infinite system on

x > 0 with a single specular interface with vacuum at x = 0, cut along the [110] direction.

We show that the presence of the [110] surface in a dx2−y2-wave superconductor is accom-

panied by the spontaneous accumulation of electric charge due to the appearance of the

pair potential gradient force and a second force due to the slope of the density of states in

the normal states at the Fermi level. We also calculate the local density of states within

the augmented quasiclassical theory, taking into account first-order quantum corrections

due to the pair potential gradient (PPG) force and the pressure due to the slope of the

density of states (SDOS pressure). We observe zero energy Andreev bound states at the

[110] surface, consistent with other theoretical predictions and also in agreement with

experiments as a defining characteristic of the d-wave pairing in superconductors. These

zero energy bound states appear due to the sign change of the superconducting order

parameter of the dx2−y2 state. We further observe particle-hole asymmetry in the LDOS

deviations from the standard Eilenberger solutions. This asymmetry is a qualitative ev-

idence of electric charging at the surface of the superconductor, and may be observed in

experiments.

3.1 Formalism

3.1.1 Augmented quasiclassical equations

We consider a time-reversal invariant superconductor, the quasiclassical equations aug-

mented with the pair potential gradient terms are given in the Matsubara formalism by

[8, 11] [
iεnτ̂3 − ∆̂τ̂3, ĝ

]
+ iℏvF ·∇ĝ

+
iℏ
2

{
∇∆̂τ̂3,∂pF

ĝ
}
− iℏ

2

{
∂pF

∆̂τ̂3,∇ĝ
}
= 0̂, (3.1)

where e < 0 is the electron charge, εn = (2n + 1)πkBT is the fermion Matsubara en-

ergy (n = 0,±1, . . . ), vF is the Fermi velocity while pF is the Fermi momentum. The

commutators [â, b̂] ≡ âb̂− b̂â and {â, b̂} ≡ âb̂+ b̂â. The functions ĝ = ĝ(εn,pF, r) and

∆̂ = ∆̂(pF, r) are the quasiclassical Green’s functions and the pair potential.

We consider the spin-singlet pairing state without spin paramagnetism. The matrices

ĝ, ∆̂ and τ̂3 are written as

ĝ =

[
g −if
if̄ −ḡ

]
, ∆̂ =

[
0 ∆ϕ

∆ϕ 0

]
, τ̂3 =

[
1 0

0 −1

]
, (3.2)
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where real functions ∆ = ∆(r) and ϕ = ϕ(pF) denote the amplitude of the energy gap

and the basis function of the energy gap, and the barred functions in the Matsubara

formalism are defined generally by X̄(ε,pF, r) ≡ X∗(−ε,−pF, r).

Following the procedure in Ref., we carry out a perturbation expansion of f and g in

terms of δ as f = f0+ f1+ · · · and g = go+ g1+ · · · . Then the main part in the standard

Eilenberger equations [13, 12] are obtained from the leading-order contribution in terms

of the quasiclassical parameter as

εnf0 +
1

2
ℏvF ·∇f0 = ∆ϕg0. (3.3)

We also obtain the relations from the normalization condition as

g0 = ḡ0 = sgn(εn)
√

1− f0f̄0[13]. Using Eq. (2.22) and neglecting spin magnetism, the

self-consistency equation for the pair potential is expressed as

∆ = 2πg0kBT
∞∑
n=0

⟨f0ϕ⟩F, (3.4)

where ⟨· · · ⟩F denotes the Fermi surface average, g0 denotes the coupling constant respon-

sible for the Cooper pairing, defined by g0 ≡ −N(0)V
(eff)
l with V

(eff)
l and N(0) denoting

the constant effective potential and the normal-state density-of-states (DOS) per spin and

unit volume at the Fermi level respectively. We obtain the expression for the first-order

Green’s function g1 in terms of quasiclassical parameter δ from Eq. (3.1) as

vF ·∇g1 = −
i

2
∇∆ϕ · ∂f0

∂pF

− i

2
∇∆ϕ · ∂f̄0

∂pF

+
i

2
∆
∂ϕ

∂pF

·∇f0 +
i

2
∆
∂ϕ

∂pF

·∇f̄0. (3.5)

We note that the momentum derivative terms of ϕ come in the g1 equation for anisotropic

superconductors[15].

3.1.2 Local density of states

The LDOS is obtained as[11]

Ns(ε, r) = N(0)⟨RegR0 +RegR1 ⟩F +N ′(0)ε⟨RegR0 ⟩F

+
1

2
N ′(0)∆⟨ImfR

0 + Imf̄R
0 ⟩F, (3.6)

where the functions gR0,1 and fR
0 are the quasiclassical retarded Green’s functions which

are obtained by solving Eqs. (3.3) and (3.5) with the following transformation:

gR0,1(ε,pF, r) = g0,1(εn → −iε+ η,pF, r) and f
R
0 (ε,pF, r) = f0(εn → −iε+ η,pF, r),

and η is a positive infinitesimal constant (smearing factor).
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3.1.3 Electric field equation

Using Eq. (2.31), the electric field is expressed as[11]

− λ2TF∇2E(r) +E(r) = −2πkBT

e

∞∑
n=0

⟨∇Img1⟩F

− 1

e

N ′(0)

N(0)

∫ ε̃c+

ε̃c−

dεf(ε)ε
⟨
∇RegR0

⟩
F
−c
e

N ′(0)

N(0)
∇∆2, (3.7)

where λTF ≡
√
1/2ϵ0e2N(0) denotes the Thomas–Fermi screening length, and the function

f(ε) = 1/(eε/kBT + 1) is the Fermi distribution function for electrons. The first term on

the RHS of Eq. (A.29) is the PPG term, while the second and third terms are the

contributions from the SDOS pressure. Furthermore, it can be seen that the third term

depends on the gradient of the amplitude of the pair potential. The parameter c first

introduced by Khomskii et al.[10] is given by[11]

c ≡
∫ ε̃c+

ε̃c−

dε
1

2ε
tanh

ε

2kBTc
, (3.8)

where Tc denotes the superconducting transition temperature at zero magnetic field. The

cutoff energies ε̃c± are determined by[11]∫ ε̃c+

ε̃c−

Ns(ε, r)dε =

∫ ε̃c+

ε̃c−

N(ε)dε, Ns(ε̃c±, r) = N(ε̃c±). (3.9)

3.1.4 Density of states and the chemical potential difference in the homogeneous system

We introduce the normal DOS N(ε), expressed as

N(ε) ≡
∫
dpxdpy
(2πℏ)2

δ(ε− ϵp + µ), (3.10)

where ϵp denotes the single particle energy. px and py are the x and y-components of the

quasiparticle momentum, respectively, while µ is the chemical potential.

The superconducting DOS in the homogeneous system is written using Eq. (2.13) [11]

Ns(ε) = N(0)

⟨
|ε|√

ε2 −∆2
bulkϕ

2
θ(|ε| −∆bulk|ϕ|)

⟩
F

+N ′(0)

⟨
sgn(ε)

√
ε2 −∆2

bulkϕ
2θ(|ε| −∆bulk|ϕ|)

⟩
F

, (3.11)

where ∆bulk denotes the gap amplitude in the bulk.

The chemical potential difference between the normal and superconducting states of the

homogeneous system is given by[11]

δµ = −N
′(0)

N(0)

∫ ε̃c+

ε̃c−

dεεf(ε)

[
Nbulk

s0 (ε)

N(0)
− 1

]
− cN

′(0)

N(0)
∆2

bulk, (3.12)
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where Nbulk
s0 (ε) is the LDOS in the bulk obtained from the standard Eilenberger equations

as

Nbulk
s0 (ε) = N(0)

⟨
|ε|√

ε2 −∆2
bulkϕ

2
θ(|ε| −∆bulk|ϕ|)

⟩
F

. (3.13)

The details of the derivation of Eqs. (3.6), (A.29), (3.11), and (3.12) are available in

Ref. [11]

p̃xp̃y

py

px

surface[110]

π

4

Figure 3: Schematic representation of quasi-particle momenta px and py transformed to p̃x and p̃y,

respectively by a π/4 rotation. This rotation gives a [110] surface along the p̃y direction.

3.2 Numerical procedures

3.2.1 Model d-wave pairing

We here perform numerical calculations for a quasi-two-dimensional semi-finite system

with a single specular surface. As a starting point, we introduce the single-particle energy

on a two-dimensional square lattice used for high-Tc superconductors[36, 37, 14]

ϵp = −2t(cos p̃x + cos p̃y) + 4t1(cos p̃x cos p̃y − 1)

+ 2t2(cos 2p̃x + cos 2p̃y − 2), (3.14)

with the dimensionless hopping parameters t1/t = 1/6 and t2/t = −1/5, and the momenta

p̃x and p̃y are given by p̃x = (px + py)/
√
2 and p̃y = (py− px)/

√
2. We also adopt a model

d-wave pairing as ϕ = C(cos p̃x− cos p̃y), where the real constant C is determined via the

normalization condition ⟨ϕ2⟩F = 1.
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px/π

p
y
/π

n = 0.8
n = 0.9

n = 1.15

Figure 4: (Color online) Fermi surfaces of n = 0.8, 0.9 and 1.15 for the single-particle energy.
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3.2.2 Self-consistent solution

We first obtain the self-consistent solutions to the standard Eilenberger equations in Eqs.

(3.3) and (3.4) using Riccati method[13, 38, 39, 40]. The relevant boundary conditions

used near the bulk is obtained by carrying out a gradient expansion[13] up to the first-

order, as shown in appendix. We also assume mirror reflection at the surface such that

a(εn,pF, 0) ≡ a(εn,p
′
F, 0), (3.15)

∂a

∂pFx

(εn,pF, 0) ≡ a(εn,p
′
F, 0) (3.16)

and

g0(εn,pF, 0) ≡ g0(εn,p
′
F, 0), f0(εn,pF, 0) ≡ f0(εn,p

′
F, 0), (3.17)

where pF and p′F are the Fermi momenta before and after reflection at the surface respec-

tively and are related by[20]

p′F = pF − 2n(n · pF), (3.18)

with n=−x̂. We note that we need to solve Eqs. (B.1) and (B.6) (see appendix) by

numerical integration towards the −x̂ direction for vFx < 0 from the bulk at x = xc ≫ ξ0

to the surface at x = 0 and towards the x̂ direction for vFx > 0 from the surface at x = 0

to the bulk at x = xc. We also use the solutions obtained by the gradient expansion of

Eqs. (B.1) and (B.6) up to the first-order in the region of |vFx| ≪ ⟨vF⟩F.

3.2.3 Calculation of surface charging

We next solve Eq. (A.29) to obtain the surface electric field with the boundary condi-

tions where the electric field vanishes at the surface and the first term on the LHS of Eq.

(A.29) is neglected near the bulk, using Eq. (3.5) and substituting the Green’s functions

f0 and gR0 into Eq. (A.29) accordingly. We obtain the retarded Green’s functions with

the transformation εn → −iε + η and the same procedures as in the calculation of the

Matsubara Green’s functions. The derivatives ∂f0/∂x and ∂f0/∂pFx in Eq. (3.5) are also

shown in appendix. We finally calculate the corresponding charge density using Gauss’

law, ∇ · E(x) = ρ(x)/ϵ0. Furthermore, we calculate the LDOS, by substituting the re-

tarded Green’s functions gR0,1 and fR
0 into Eq. (3.6). We also use gR1 = 0 at the bulk as a

boundary condition to solve Eq. (3.5). We choose the parameters appropriate for cuprate

superconductors as δ = 0.05, t = 14∆0, and λTF = 0.05ξ0, where ∆0 denotes the gap

amplitude at zero temperature.
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∆
(x
)/
∆

0

x/ξ0

T = 0.7Tc

T = 0.5Tc

T = 0.3Tc

Figure 5: (Color online) Temperature dependences in the self-consistent pair potential for the dx2−y2-

wave state with a smooth [110] surface at x = 0. At temperatures T = 0.3Tc (green solid line), 0.5Tc

(blue long dashed line), and 0.7Tc (red short dashed line), for the filling n = 0.9.

ε/∆0

N(ε)/N(0)

Ns(ε)/N(0)

Figure 6: (Color online) Superconducting DOS Ns(ε) (green solid line) and the normal DOS N(ε) (red

dashed lines) in the homogeneous system at temperature T = 0.1Tc, for the filling n = 0.9, in units of

N(0) over −40∆0 ≤ ε ≤ 60∆0.
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δ
µ
/∆

0

T/Tc

Figure 7: Temperature dependence of the chemical potential difference δµ between the normal and the

superconducting states of the homogeneous system at the filling n = 0.9.

ρ
(x
)/
ρ
0

x/ξ0

SDOS2

SDOS1

SDOS

Figure 8: (Color online) Surface charge due to SDOS pressure, in units of ρ0 ≡ ε0∆0/|e|ξ20 , with η = 0.01,

at temperature T = 0.5Tc, for the filling n = 0.9, with contributions from the second term in Eq. (A.29)

(blue long dashed line), the third term in Eq. (A.29) (green short dashed line). While the total charge

density due to the SDOS pressure is given by the red solid line.
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ρ
(x
)/
ρ
0

x/ξ0

SDOS

PPG

SDOS + PPG

Figure 9: (Color online) Total spontaneous surface charge density (red solid line) due to the PPG force

(blue long dashed line) and the SDOS pressure (green short dashed line), in units of ρ0 ≡ ε0∆0/|e|ξ20 , at
temperature T = 0.5Tc, for the filling n = 0.9, with η = 0.01.
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ρ
(x
)/
ρ
0

x/ξ0

SDOS

PPG

SDOS + PPG

Figure 10: (Color online) Total spontaneous surface charge density (red solid line) due to the PPG force

(blue long dashed line) and the SDOS pressure (green short dashed line), in units of ρ0 ≡ ε0∆0/|e|ξ20 , at
temperature T = 0.5Tc, for the filling n = 1.15, with η = 0.01.
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ρ
(x
)/
ρ
0

x/ξ0

T = 0.3Tc

T = 0.5Tc

T = 0.7Tc

Figure 11: (Colour online) Temperature dependence of the total surface charge induced by the PPG force

and SDOS pressure, for the filling n = 0.9, in units of ρ0 ≡ ε0∆0/|e|ξ20 , with η = 0.01, at temperatures

T = 0.3Tc (green short dashed line), 0.5Tc (red solid line), and 0.7Tc (blue long dashed line).

3.3 Results

We discuss our numerical results as follows. Figure 5 shows the self-consistent gap

amplitude for the d-wave paired superconductor with a [110] oriented surface at the filling

n = 0.9. The pair potential is suppressed around the surface and vanishes at the surface

due to a change in its sign around the surface. The slope of pair potential is described

by ξ−11 = [∆(∞)]−1 limx→0[∆(x)/x]. Although ξ1 decreases as the temperature is lowered

in high-temperature region, it saturates to the finite value as T → 0. Indeed, ξ1 behaves

quite similar to the coherence length incorporating both energy-gap and Fermi-surface

anisotropies defined as ξc ≡ [⟨ℏ2v2Fxϕ2⟩F/⟨ϕ4⟩F]
1
2∆−1(∞). In this sense, the behaviour of

pair potential in the surface system is distinguished from the one in the vortex systems

in type-II superconductors, which induces vortex-core shrinkage[41, 42].

In Fig. 6 , the superconducting DOS and the normal DOS in the homogeneous system

at the filling n = 0.9 connect at energies ε = ε̃c+ and ε̃c−. They connect more smoothly

taking into account higher order derivatives of the DOS at the Fermi level, but the higher

order derivatives contribute little to quantities. Thus, we can perform the following cal-

culations using these cutoff energies ε̃c±.

In Fig. 7, we show the temperature dependence of the chemical potential difference

between the normal and superconducting states of the homogeneous system for the filling
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N
s
(ε
,x

)/
N
(0
)

ε/∆0

x = 0

x = 2ξ0

x = ξ0

Figure 12: (Color online) LDOS Ns(ε, x) at x = 0 (green short dashes), ξ0 (blue solid line), and 2ξ0 (red

long dashes), with η = 0.04, at temperature T = 0.1Tc, for the filling n = 0.9.
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N
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ε/∆0

x = 0

x = 2ξ0

x = ξ0

Figure 13: (Color online) Deviation δNPPG
s (ε, x) from the standard Eilenberger solutions in the LDOS

due to quantum corrections from the PPG within the augmented quasiclassical theory, at x = 0 (green

short dashes), ξ0 (blue solid line), and 2ξ0 (red long dashes), with η = 0.04, at temperature T = 0.1Tc,

for the filling n = 0.9.
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x = 2ξ0

Figure 14: (Color online) Deviation δNSDOS
s (ε, x) from the standard Eilenberger solutions in the LDOS

due to quantum corrections from the SDOS within the augmented quasiclassical theory, at x = 0 (green

short dashes), ξ0 (blue solid line), and 2ξ0 (red long dashes), with η = 0.04, at temperature T = 0.1Tc,

for the filling n = 0.9.
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n = 0.9 due to the SDOS at the Fermi level. Assuming roughly normal metal at the [110]

surface, we can explain that the (effective) chemical potential difference between the [110]

surface and the bulk is what brings about the redistribution of charged particles.

Figure 8 plots the surface charge density due to the the SDOS pressure for the filling

n = 0.9. The SDOS pressure charge consists of the second and third terms in Eq. (A.29),

which have different signs respectively. As seen in Fig. 8, the third term dominates over

the second term and thus the SDOS pressure charge at the surface becomes negative in

total. We also confirmed the third term was dominant at all temperature for the fillings

n = 0.8, 0.9, and 1.15 which are also realistic doping levels. Furthermore, Fig. 9 shows

the total surface charge with contributions from the PPG force and the SDOS pressure

for the filling n = 0.9. The SDOS pressure gives the dominant contribution to the surface

charge within our present model at n = 0.9. We also confirmed that the SDOS pressure

was dominant at not only n = 0.9, but also at n = 0.8 and n = 1.15. Since there is no

supercurrents near the surface, there are no phase terms of the pair potential in the PPG

force terms which are dominant in vortex systems[15]. Therefore, the contribution from

the PPG force to the surface charge becomes small, and the SDOS pressure is dominant in

a wide parameter range of the semi-finite system, compared to the vortex system. Figure

10 shows the total surface charge with contributions from the PPG force and the SDOS

pressure for the filling n = 1.15. The PPG force contribution has the same negative

sign as the SDOS pressure contribution, with the SDOS pressure giving the dominant

contribution to the total charge.

As shown in Fig. 9 and 10, the sign of the charge density due to the PPG force at

n = 0.9 is different from the one at n = 1.15. To explain this fact, we assume the form

of pair potential as ∆ ≃ ∆bulk tanh(x/ξ1) and substitute it into Eq. (C.6) with taking

x→ 0. By this procedure, we obtain

ρPPG(0) ∼ −
2a(3)ℏ2ϵ0∆2

bulk

ξ41e

⟨
ϕ2dvFx
dpFx

⟩
F

, (3.19)

where ρPPG represents the charge density induced by PPG force and a(3) ≡ πkBT
∑∞

n=0 ε
−3
n .

As described in appendix B, this approximation is valid at high temperature near the

critical temperature. Relying on this expression, we see that the filling dependence is

determined only by ⟨ϕ2dvFx/dpFx ≃⟩dvFx/dpFx ∝ (R
(n)
H )xx = (R

(n)
H )yy, where R

(n)
H is a Hall

coefficient in the normal state [14]. Therefore, as shown in Fig. 1 of Ref., charge density

caused by PPG force also changes its sign around n = 1, which is mainly caused by the

change of Fermi-surface curvature.

In Fig. 11, the temperature dependence of the total surface charge for the filling n = 0.9

is shown. The total spontaneously induced surface charge increases with a decrease in

temperature. This follows the temperature dependence of the slope of the pair potential

shown in Fig. 5. One may notice that the second order derivative of ρ(x ≳ 0) with respect

31



to x is not monotonic. The second order derivative of ρ(x = 0) is given by

(∂2ρ(x)/∂x2)x=0 ≡ ρ(2)(0) ∝ −[ρSDOS(0)/ξ
2
SDOS + ρPPG(0)/ξ

2
PPG], (3.20)

where ξSDOS (ξPPG) is defined by the value of x at the first peak of charge density due

to the SDOS pressure (PPG force). Thus, not only ρi(0) but also ξi is necessary when

we consider ρ(2)(0). In the present case, although ρ(0) decreases monotonically as tem-

perature decreases, ρ(2)(0) behaves nonmonotonically because of the competition between

ρSDOS(0)/ξ
2
SDOS < 0 and ρPPG(0)/ξ

2
PPG > 0.

Figure 12 plots the normalised LDOS for the filling n = 0.9 at the regions x = 0, ξ0,

and 2ξ0. The peak structure appears as we move from the bulk to the surface. Figures 13

and 14 plot the deviations δNPPG
s (ε, x) and δNSDOS

s (ε, x) from the standard Eilenberger

solutions in the LDOS at the filling n = 0.9, due to quantum corrections from the PPG

force and the SDOS pressure respectively. The deviations δNPPG
s (ε, x) and δNSDOS

s (ε, x)

are defined by

δNPPG
s (ε, x) = N(0)⟨RegR1 ⟩F, (3.21a)

δNSDOS
s (ε, x) = N ′(0)ε⟨RegR0 ⟩F +

1

2
N ′(0)∆⟨ImfR

0 + Imf̄R
0 ⟩F. (3.21b)

We observe particle-hole asymmetry within the augmented quasiclassical theory. The

PPG force and the SDOS pressure change their LDOS peaks near zero energy and around

energy gap. This asymmetry indicates the presence of electric charging at the surface.

The relation between the charging and the particle-hole asymmetry in the LDOS has

already been discussed in the vortex system[15, 33]. Furthermore, multiple turning points

appear in the LDOS deviations in the region |ε/∆0| ≤ 1.5. At x = 0, these sign changes

appear due to the presence of small peaks in the LDOS at finite energies both within

the standard Eilenberger equations and the LDOS with first-order quantum corrections.

In the bulk region, the difference in the coherence peaks of the gap-like structures as

well as the difference in the width of the energy gap between the LDOS in the standard

Eilenberger solutions and the LDOS in the augmented quasiclassical equations might be

the origin of these multiple turning points. Although it remains to be clarified if these

multiple turning points have any physical meaning.
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3.4 Summary

In summary, we have performed a microscopic calculation on surface charging at a single

[110] specularly reflective surface of a d-wave superconductor with a Fermi surface used for

cuprate superconductors using the augmented quasiclassical theory. We have shown that

despite the absence of supercurrent, charge is spontaneously induced around the surface

due to the PPG force and the SDOS pressure. The SDOS pressure gives the dominant

contribution for the realistic electron-fillings n = 0.8, 0.9, and 1.15 at all temperatures.

This differs from the case of the charging of an isolated s-wave vortex carried out by

Ueki et al., wherein the SDOS term dominates only near the critical temperature. We

also have found that it is important to consider the Fermi surfaces, since the contribution

from the SDOS pressure greatly depends on the Fermi surface structure. We have also

calculated the LDOS within the augmented quasiclassical theory, taking into account the

contributions due to the PPG and the SDOS pressure. At the surface, the LDOS shows a

peak structure which signifies the presence of ZES. The bulk region shows a (nodal) gap-

like structure which is a characteristic of the superconducting state. We have also shown

the existence of particle-hole asymmetry (SDOS gives a strong particle-hole asymmetry)

in the LDOS. This asymmetry indicates the presence of electric charge.

Although our present study is restricted to a smooth surface without edge currents,

the presence of surface roughness is expected to affect the surface states and may conse-

quently alter the surface charge. In addition, surface imperfections appear in the process

of fabricating real samples. It is therefore important to take this into account in theory.

It is relatively easier to consider surface roughness within the quasiclassical theory using

the random S-matrix theory[44] or by adding a disorder-induced self-energy[45, 46]. Fur-

thermore, in the presence of edge currents, the PPG force contribution to the charging

effect may be enhanced due to the appearance of the phase terms of the pair potential.

A combination of surface roughness and chirality may reveal very interesting physics.
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4 General Summary and Conclusion

In this thesis, on the basis of the augmented quasiclassical equations, we have performed

a microscopic study on the spontaneous redistribution charge near the surface of a d-wave

superconductor cut along the [110] direction. More specifically, we have shown that even in

the absence of supercurrents in the system, in a dx2−y2-paired superconductor cut along the

[110] plane, interesting surface effects appear and are accompanied by the pair potential

gradient force and another force due to the slope of density of states in the normal states

at the Fermi level. We have shown that these two forces induce spontaneous charging

in the model d-wave superconductor. In carrying out our numerical study, we adopt a

model d-wave pairing suitable for cuprate superconductors and therefore emphasise that

this study can be applied to both hole-doped and electron-doped cuprates.

Furthermore, we have also calculated the local density of states within the augmented

quasiclassical theory taking into account the first-order quantum corrections in terms

of the quasiclassical parameter, due to the pair potential gradient force and the slope

of the density of states. Although it has already been pointed out by Hayashi et al.

and also recently by Masaki, that particle-hole asymmetry in the local density of states

at the vortex core of superconductors shows the presence of electric charge. We have

extended this idea to the surface state and have shown that the presence of the pair

potential gradient force and the slope of the density of states give rise to an observable

local particle-hole asymmetry in the local density of states which varies spatially from

bulk to surface. We therefore conclude that this local asymmetry is a qualitative evidence

of electric charging at the nodal surface of the d-wave paired superconductor.
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Appendix

A Derivation of Augmented Quasiclassical Equations

Here, we give an overview of the derivation of the augmented quasiclassical equations

(Eq. (2.1)) in the Matsubara formalism, following earlier works [5, 11, 13]. These elegant

equations are useful for a microscopic investigation of the redistribution of charged par-

ticles in superconductors. We use the Green’s function formalism to derive the Gor’kov

equations from which the quasiclassical equations are obtained.

A.1 Matsubara Green’s functions and Gor’kov equations

As a starting point, we consider electrons in static electromagnetic fields described by

the Hamiltonian given in second quantized form as

Ĥ =

∫
dξ1ψ̂

†(ξ1)K̂1ψ̂(ξ1)

+
1

2

∫
dξ1

∫
dξ2V(r1 − r2)ψ̂

†(ξ1)ψ̂
†(ξ2)ψ̂(ξ2)ψ̂(ξ1), (A.1)

where the variable ξ is defined explicitly as ξ ≡ (r, α) with r and α denoting the space and

spin degrees of freedom, respectively. ψ̂†(ξ) and ψ̂(ξ) are the second quantized creation

and annihilation operators of the fermion field, respectively, we also use † to denote

a Hermitian conjugate, and V(r1 − r2) is the interaction potential. The one-particle

operator K̂1 now contains the vector potential A1 ≡ A(r1) and is expressed as

K̂1 ≡
1

2m

[
−iℏ ∂

∂r1
− eA(r1)

]2
+ eΦ(r1)− µ, (A.2)

where m is the electronic mass, e < 0 is the electronic charge, and µ is the chemical

potential. Φ(r) and A(r) are the static scalar potential and vector potential, respectively,

and static electromagnetic fields are expressed here in terms of them as E(r) = −∇Φ(r)

and B(r) = ∇ × A(r). Furthermore, we introduce the fermion field operators in the

Heisenberg representation in the Matsubara formalism as{
ψ̂1(1) ≡ eτ1Ĥψ̂(ξ1)e

−τ1Ĥ

ψ̂2(1) ≡ eτ1Ĥψ̂†(ξ1)e
−τ1Ĥ

, (A.3)

where the argument 1 can be written in explicit form as 1 ≡ (ξ1, τ1), where the variable

τ1 lies in the range 0 ≤ τ1 ≤ 1/kBT with kB and T denoting the Boltzmann constant and

temperature, respectively. Using them, we introduce the Matsubara Green’s function

Gij(1, 2) ≡ −⟨Tτ ψ̂i(1)ψ̂3−j(2)⟩, (A.4)

The bracket notation ⟨· · · ⟩ and the operator Tτ denote the grand-canonical average [13]

and “time”-ordering operator, respectively. Particle-field operators under Tτ are placed
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from left to right in order of decreasing “time” τ . For example

Tτ (ψ̂(ξ1)ψ̂
†(ξ2)) ≡

{
ψ̂(ξ1)ψ̂

†(ξ2) τ1 > τ2,

−ψ̂†(ξ2)ψ̂(ξ1) τ1 < τ2.
(A.5)

In the RHS, the field operators are placed in the chronological order, and a pre-factor of

±1 appears, depending on whether the transposition is even or odd.

The elements of Gij(1, 2) satisfy the following symmetry relations;

Gij(1, 2) = −G3−j,3−i(2, 1) = G∗ji(ξ2τ1, ξ1τ2), (A.6)

where the superscript ∗ denotes complex conjugation operation. The Matsubara Green’s

function can be expanded as [13]

Gij(1, 2) = kBT
∞∑

n=−∞

Gij(ξ1, ξ2; εn)e
−iεn(τ1−τ2), (A.7)

where the argument εn = (2n+1)πkBT is the fermion Matsubara energy (n = 0,±1, . . .).
Separating the spin variable α =↑, ↓ from ξ = (r, α), we introduce a new notation for

each Gij as

G11(ξ1, ξ2; εn) = Gα1,α2(r1, r2; εn), (A.8a)

G12(ξ1, ξ2; εn) = Fα1,α2(r1, r2; εn), (A.8b)

G21(ξ1, ξ2; εn) = −F̄α1,α2(r1, r2; εn), (A.8c)

G22(ξ1, ξ2; εn) = −Ḡα1,α2(r1, r2; εn). (A.8d)

Subsequently, we express the spin degrees of freedom as the 2× 2 matrix

G(r1, r2; εn) ≡

[
G↑↑(r1, r2; εn) G↑↓(r1, r2; εn)

G↓↑(r1, r2; εn) G↓↓(r1, r2; εn)

]
. (A.9)

Therefore, the Green’s functions G and F from Eqs. (A.6) and (A.7) have the following

symmetry relations;

G(r1, r2; εn) = G†(r2, r1;−εn) = Ḡ
T
(r2, r1;−εn), (A.10a)

F (r1, r2; εn) = −F̄
†
(r2, r1;−εn) = −FT(r2, r1;−εn), (A.10b)

where the superscript T denotes the transpose. It follows from these symmetry relations

that Ḡ(r1, r2; εn) = G∗(r1, r2; εn) and F̄ (r1, r2; εn) = F ∗(r1, r2; εn) hold. Using G and F ,

we define a 4× 4 matrix in Nambu space by

Ĝ(r1, r2; εn) ≡

[
G(r1, r2; εn) F (r1, r2; εn)

−F ∗(r1, r2; εn) −G∗(r1, r2; εn)

]
. (A.11)
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Within the mean-field approximation, the Nambu Green’s function satisfy Gor’kov equa-

tions [13, 47] [
(iεn − K̂1)σ0 0

0 (iεn + K̂∗1)σ0

]
Ĝ(r1, r2; εn)

−
∫
d3r3ÛBdG(r1, r3)Ĝ(r3, r2; εn) = δ̂(r1 − r2), (A.12)

where σ0 and 0 denote the 2× 2 unit and zero matrices, respectively. Matrix ÛBdG(r1, r3)

denotes

ÛBdG(r1, r2) ≡

[
UHF(r1, r2) ∆(r1, r2)

−∆∗(r1, r2) −U∗HF(r1, r2)

]
, (A.13)

where matrices UHF(r1, r2) and ∆(r1, r2) are the Hartree–Fock and pair potential, respec-

tively, and have the following definitions;

UHF(r1, r2) ≡ δ(r1 − r2)σ0Tr

∫
d3r3V(r1 − r3)

× kBT
∞∑

n=−∞

G(r3, r3; εn)e
−iεn0−

− V(r1 − r2)kBT
∞∑

n=−∞

G(r1, r2; εn)e
−iεn0− , (A.14)

∆(r1, r2) ≡ V(r1 − r2)kBT
∞∑

n=−∞

F (r1, r2; εn), (A.15)

where the quantity 0− denotes an extra infinitesimal negative constant. Finally, matrix δ̂

on the right-hand side of Eq. (A.12) is defined by

δ̂(r1 − r2) ≡

[
δ(r1 − r2)σ0 0

0 δ(r1 − r2)σ0

]
. (A.16)

A.2 Gor’kov equations in the Wigner representation

We highlight that one of the known fundamental difficulties encountered when applying

the original Wigner transform [11, 13, 48] to charged systems is that it breaks gauge

invariance with respect to the center-of-mass coordinate. To ameliorate this difficulty, we

adopt the technique of gauge-covariant Wigner transform which has been devised for the

Matsubara Green’s functions defined by

Ĝ(εn,p, r12)

≡
∫
d3r̄12e

−ip·r̄12/ℏΓ̂(r12, r1)Ĝ(r1, r2; εn)Γ̂(r2, r12)

≡

[
G(εn,p, r12) F (εn,p, r12)

−F ∗(εn,−p, r12) −G∗(εn,−p, r12)

]
, (A.17a)
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with r12 ≡ (r1 + r2)/2 and r̄12 ≡ r1 − r2, its inverse is expressed as

Ĝ(r1, r2; εn)

= Γ̂(r1, r12)

∫
d3p

(2πℏ)3
eip·r̄12/ℏĜ(εn,p, r12)Γ̂(r12, r2). (A.17b)

The matrix Γ̂ is given by

Γ̂(r1, r2) ≡

[
σ0e

iI(r1,r2) 0

0 σ0e
−iI(r1,r2)

]
. (A.18)

Where the function I(r1, r2) is the line integral expressed as

I(r1, r2) ≡
e

ℏ

∫ r1

r2

A(s) · ds, (A.19)

with s denoting a straight-line path from r2 to r1. Similarly, we rewrite the mean-field

potential in Eq. (A.13) as

ÛBdG(p, r12)

≡
∫
d3r̄12e

−ip·r̄12/ℏΓ̂(r12, r1)ÛBdG(r1, r2)Γ̂(r2, r12)

≡

[
UHF(p, r12) ∆(p, r12)

−∆∗(−p, r12) −U∗HF(−p, r12)

]
, (A.20a)

It has an inverse which can be written

ÛBdG(r1, r2)

= Γ̂(r1, r12)

∫
d3p

(2πℏ)3
eip·r̄12/ℏÛBdG(p, r12)Γ̂(r12, r2). (A.20b)

The quantities UHF(p, r12) and ∆(p, r12) satisfy the following symmetry relations

UHF(p, r12) = U †HF(p, r12) and ∆(p, r12) = −∆T(−p, r12). Furthermore, we consider

the next-to-leading-order contribution in the expansion in terms of the quasiclassical pa-

rameter. We hereby obtain Gor’kov equations in the Wigner representation as (see Ap-

pendices A.3 and A.4 below for the derivation of the kinetic-energy and self-energy terms

in the Wigner representation, respectively){
iεn1̂−

[
ξp − i

ℏv
2
· ∂ − ℏ2∂2

8m∗
− iℏ

2
eE(r) · ∂

∂p

]
τ̂3

}
Ĝ(εn,p, r)

− ∆̂(p, r) ◦ Ĝ(εn,p, r)

+
iℏ
8
ev ·

[
B(r)× ∂

∂p

] [
3Ĝ(εn,p, r) + τ̂3Ĝ(εn,p, r)τ̂3

]
= 1̂, (A.21)

where ξp is defined by ξp ≡ εp+eΦ(r)−µ with εp denoting the single-particle energy, m∗

is the effective mass defined by m∗ ≡ p/v, 1̂ denotes the 4 × 4 unit matrix, τ̂3 is defined
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by

τ̂3 ≡

[
σ0 0

0 −σ0

]
, (A.22)

∂ is given by

∂ ≡



∂

∂r
: on G or G∗

∂

∂r
− i

2e

ℏ
A(r) : on F

∂

∂r
+ i

2e

ℏ
A(r) : on F ∗

, (A.23)

and the operator ◦ is also defined as

â(p, r) ◦ b̂(p, r) ≡ â(p, r) exp

[
iℏ
2

(←−
∂ ·
−→
∂ p −

←−
∂ p ·

−→
∂
)]

b̂(p, r). (A.24)

Taking the Hermitian conjugate of Eq. (A.21), use the symmetries Û †BdG(p, r) = ÛBdG(p, r)

and Ĝ†(εn,p, r) = Ĝ(−εn,p, r), and replace εn → −εn to obtain

Ĝ(εn,p, r)

{
iεn1̂− τ̂3

[
ξp + i

ℏv
2
· ∂ − ℏ2∂2

8m∗
+
iℏ
2
eE(r) · ∂

∂p

]}
− Ĝ(εn,p, r) ◦ ∆̂(p, r)

− iℏ
8
ev ·

[
B(r)× ∂

∂p

] [
3Ĝ(εn,p, r) + τ̂3Ĝ(εn,p, r)τ̂3

]
= 1̂. (A.25)

Next we operate τ̂3 on the left- and right-hand sides of Eq. (A.25), and subtracting from

Eq. (A.21) and also adding to Eq. (A.21). We arrive at the following:[
iεnτ̂3 − ∆̂(p, r)τ̂3, τ̂3Ĝ(εn,p, r)

]
◦
+ iℏv · ∂ τ̂3Ĝ(εn,p, r)

+ iℏeE · ∂
∂p

τ̂3Ĝ(εn,p, r) +
iℏ
2
ev ·

(
B × ∂

∂p

){
τ̂3, τ̂3Ĝ(εn,p, r)

}
= 0̂, (A.26a)

1

2

{
iεnτ̂3 − ∆̂(p, r)τ̂3, τ̂3Ĝ(εn,p, r)

}
◦
− ξpτ̂3Ĝ(εn,p, r)− 1̂

+
ℏ2∂2

8m∗
τ̂3Ĝ(εn,p, r) +

iℏ
8
ev ·

(
B × ∂

∂p

)[
τ̂3, τ̂3Ĝ(εn,p, r)

]
= 0̂, (A.26b)

with [â, b̂] ≡ âb̂ − b̂â, [â, b̂]◦ ≡ â ◦ b̂ − b̂ ◦ â, {â, b̂} ≡ âb̂ + b̂â, and {â, b̂}◦ ≡ â ◦ b̂ + b̂ ◦ â.
Now, in terms of Eq. (A.17a), we introduce the quasiclassical Green’s function

ĝ(εn,pF, r) ≡ P

∫ ∞
−∞

dξp
π
iτ̂3Ĝ(εn,p, r)

≡

[
g(εn,pF, r) −if(εn,pF, r)

−if ∗(εn,−pF, r) −g∗(εn,−pF, r)

]
, (A.27)
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where P denotes the principal value. It follows that the upper elements g and f satisfy

g(εn,pF, r) = −g†(−εn,pF, r), f(εn,pF, r) = −fT(−εn,−pF, r). To derive the equation

for ĝ from Eq. (A.26a), we express ∂p = ∂p∥ + v(∂/∂ξ) with p∥ denoting the component

on the energy surface ξ = ξp, set p = pF except for the argument of Ĝ, integrate Eq.

(A.26a) over −εc ≤ ξp ≤ εc, and use v × ∂p∥ = v × ∂p and

P

∫ ∞
−∞

dξp
∂

∂ξp
Ĝ(εn,p, r) = 0̂. (A.28)

Neglecting terms with eE · ∂p∥ and taking the limit εc → ∞, we obtain the augmented

quasiclassical equations with the Lorentz force and the pair potential gradient terms as[
iεnτ̂3 − ∆̂(pF, r)τ̂3, ĝ(εn,pF, r)

]
◦
+ iℏvF · ∂ĝ(εn,pF, r)

+
iℏ
2
evF ·

(
B × ∂

∂pF

)
{τ̂3, ĝ(εn,pF, r)} = 0̂. (A.29)

Applying the same procedure to Eq. (A.29), we obtain the equation for

ĝ(1)(εn,pF, r) ≡ P

∫ ∞
−∞

dξp
π
i
[
ξpτ̂3Ĝ(εn,p, r) + 1̂

]
(A.30)

as

ĝ(1)(εn,pF, r) =
1

2

{
iεnτ̂3 − ∆̂(pF, r)τ̂3, ĝ(εn,pF, r)

}
◦

+
ℏ2∂2

8m∗
ĝ(εn,pF, r) +

iℏ
8
evF ·

(
B × ∂

∂pF

)
[τ̂3, ĝ(εn,pF, r)] . (A.31)

We then neglect the second and third terms in Eq. (A.31) to take the leading order as

ĝ(1)(εn,pF, r) ≈
1

2

{
iεnτ̂3 − ∆̂(pF, r)τ̂3, ĝ(εn,pF, r)

}
. (A.32)

It is important to note that Eq. (A.32) is useful for evaluating the terms of the slope of

density of states within the augmented quasiclassical theory. It accounts for the deviations

in the local density of states from the standard Eilenberger solutions.

A.3 Kinetic-Energy Terms in the Wigner Representation

Here we show how to simplify the kinetic-energy terms contained in the Gor’kov equation

[Eq. (A.12)] in the Wigner representation [Eq. (A.17b)]. To this end, we introduce the

following functions

E1(u) ≡
∫ 1

0

dηeηu =
eu − 1

u
=
∞∑
n=1

un−1

n!
, (A.33)

E2(u) ≡
∫ 1

0

dη

∫ η

0

dζeζu =
eu − 1− u

u2
=
∞∑
n=2

un−2

n!
, (A.34)
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These functions are used to rewrite the phase factors which appear in in Eq. (A.17b) as

follows;

I(r1, r12) =
e

ℏ
E1
(
r̄12
2
· ∂

∂r12

)
A(r12) ·

r̄12
2
, (A.35a)

I(r12, r2) =
e

ℏ
E1
(
− r̄12

2
· ∂

∂r12

)
A(r12) ·

r̄12
2
. (A.35b)

Next, we use ∂/∂r1 = ∂/∂r̄12 + (1/2)∂/∂r12 and Eq. (A.35) to rewrite (∂/∂r1)I(r1, r12)

and (∂/∂r1)I(r12, r2) in the form

∂

∂r1
I(r1, r12) =

e

ℏ
A(r1)−

e

2ℏ
A(r12)

− e

4ℏ

[
2E1
(
r̄12
2
· ∂

∂r12

)
− E2

(
r̄12
2
· ∂

∂r12

)]
B(r12)× r̄12, (A.36a)

∂

∂r1
I(r12, r2) =

e

2ℏ
A(r12)−

e

4ℏ
E2
(
− r̄12

2
· ∂

∂r12

)
B(r12)× r̄12. (A.36b)

Next, we consider the kinetic-energy terms in Eq. (A.12),[
K̂1σ0 0

0 −K̂∗1σ0

]
Ĝ(r1, r2; εn)

=

[
K̂1G(r1, r2; εn) K̂1F (r1, r2; εn)

K̂∗1F ∗(r1, r2; εn) K̂∗1G∗(r1, r2; εn)

]
. (A.37)

Substituting Eq. (A.17b) and using ∂/∂r1 = ∂/∂r̄12 + (1/2)∂/∂r12 and Eq. (A.36), we

can transform each submatrix on the right-hand side as

K̂1G(r1, r2; εn) ≈ eiI(r1,r12)+iI(r12,r2)

∫
d3p

(2πℏ)3
eip·r̄12/ℏ

×

{
p2

2m
+ eΦ(r12)− µ−

iℏ
2

p

m
· ∂

∂r12
− ℏ2

8m

∂2

∂r2
12

− iℏ
2
e
p

m
·
[
B(r12)×

∂

∂p

]
− iℏ

2
eE(r12) ·

∂

∂p

}
G(εn,p, r12), (A.38a)

K̂1F (r1, r2; εn) ≈ eiI(r1,r12)−iI(r12,r2)
∫

d3p

(2πℏ)3
eip·r̄12/ℏ

×

{
p2

2m
+ eΦ(r12)− µ−

iℏ
2

p

m
·
[
∂

∂r12
− i2e

ℏ
A(r12)

]
− ℏ2

8m

[
∂

∂r12
− i2e

ℏ
A(r12)

]2
− iℏ

4
e
p

m
·
[
B(r12)×

∂

∂p

]
− iℏ

2
eE(r12) ·

∂

∂p

}
F (εn,p, r12), (A.38b)
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K̂∗1F ∗(r1, r2; εn) ≈ e−iI(r1,r12)+iI(r12,r2)

∫
d3p

(2πℏ)3
eip·r̄12/ℏ{

p2

2m
+ eΦ(r12)− µ−

iℏ
2

p

m
·
[
∂

∂r12
+ i

2e

ℏ
A(r12)

]
− ℏ2

8m

[
∂

∂r12
+ i

2e

ℏ
A(r12)

]2
+
iℏ
4
e
p

m
·
[
B(r12)×

∂

∂p

]
− iℏ

2
eE(r12) ·

∂

∂p

}
F ∗(εn,−p, r12), (A.38c)

K̂∗1G∗(r1, r2; εn) ≈ e−iI(r1,r12)−iI(r12,r2)
∫

d3p

(2πℏ)3
eip·r̄12/ℏ

×

{
p2

2m
+ eΦ(r12)− µ−

iℏ
2

p

m
· ∂

∂r12
− ℏ2

8m

∂2

∂r2
12

+
iℏ
2
e
p

m
·
[
B(r12)×

∂

∂p

]
− iℏ

2
eE(r12) ·

∂

∂p

}
G∗(εn,−p, r12). (A.38d)

For clarity we note that the following approximations were used in arriving at Eq. (A.38).

(i) We have neglected spatial derivatives of both E and B, which amounts to setting

E1 → 1 and E2 → 1/2.

(ii) We have also neglected the second-order terms in ∂r12 , E, and B except that of ∂2
r12

.

(iii) We have expanded Φ around r12 up to the first order in r̄12 as Φ(r1) ≈ Φ(r12) −
E(r12) · r̄12/2.

By following these procedures, we obtain the kinetic-energy terms of the Gor’kov equa-

tion [Eq. (A.12)] in the Wigner representation as∫
d3r̄12e

−ip·r̄12/ℏ

× Γ̂(r12, r1)

[
K̂1σ0 0

0 −K̂∗1σ0

]
Ĝ(r1, r2; εn)Γ̂(r2, r12)

=

[
p2

2m
+ eΦ(r12)− µ−

iℏ
2

p

m
· ∂12 −

ℏ2

8m
∂2
12

− iℏ
2
eE(r12) ·

∂

∂p

]
τ̂3Ĝ(εn,p, r12)

− iℏ
8
e
p

m
·
[
B(r12)×

∂

∂p

] [
3Ĝ(εn,p, r12) + τ̂3Ĝ(εn,p, r12)τ̂3

]
. (A.39)
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Figure 15: Schematics of the paths of the phase integrals.

A.4 Self-Energy Terms in the Wigner Representation

Here we evaluate the self-energy terms in Eq. (A.12). To this end, we substitute Eqs.

(A.17b) and (A.20b) into Eq. (A.12) and rewrite the expression as∫
d3r3ÛBdG(r1, r3)Ĝ(r3, r2; εn) =[
J(r1, r2; εn)−K(r1, r2; εn) L(r1, r2; εn)−M(r1, r2; εn)

L∗(r1, r2; εn)−M∗(r1, r2; εn) J∗(r1, r2; εn)−K∗(r1, r2; εn)

]
, (A.40)

with the matrices J(r1, r2; εn), K(r1, r2; εn), L(r1, r2; εn), and M(r1, r2; εn) defined in

integral form by

J(r1, r2; εn) ≡
∫
d3r3UHF(r1, r3)G(r3, r2; εn), (A.41a)

K(r1, r2; εn) ≡
∫
d3r3∆(r1, r3)F

∗(r3, r2; εn), (A.41b)

L(r1, r2; εn) ≡
∫
d3r3UHF(r1, r3)F (r3, r2; εn), (A.41c)

M(r1, r2; εn) ≡
∫
d3r3∆(r1, r3)G

∗(r3, r2; εn). (A.41d)

Firstly, let us consider Eq. (A.41a). Putting Eqs. (A.17b) and (A.20b) into Eq. (A.41a),
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we arrive at the matrix J(r1, r2; εn) as

J(r1, r2; εn) = eiI(r1,r12)+iI(r12,r2)

∫
d3p

(2πℏ)3

∫
d3p′

(2πℏ)3

∫
d3r3

× eiϕ123+ip·r̄13/ℏ+ip′·r̄32/ℏUHF(p, r13)G(εn,p
′, r32), (A.42)

where the phase integral ϕ123 is expressed as

ϕ123 ≡
e

ℏ

∮
C123

A(s) · ds, (A.43)

with the paths of the phase integral, C123 given in Fig. 15. Applying Stokes theorem

and approximating B(r) ≈ B(r12), and noting Fig. 15, the phase integral ϕ123 is also

expressed as

ϕ123 =
e

ℏ

∫
S123

B(r) · dS ≈ e

2ℏ
B(r12) · (r̄32 × r̄13). (A.44)

By the same procedure used in the standard Wigner transformation, [?] we obtain the

matrix J(r1, r2; εn) with UHF(p, r12) and G(εn,p, r12) in the Wigner representation as

J(r1, r2; εn) ≈ eiI(r1,r12)+iI(r12,r2)

∫
d3p

(2πℏ)3
eip·r̄12/ℏUHF(p, r12)

× e(iℏ/2)eB(r12)·(
←−
∂ p×

−→
∂ p)e(iℏ/2)

←−
∂ 12·

−→
∂ p−(iℏ/2)

←−
∂ p·
−→
∂ 12G(εn,p, r12), (A.45)

where the left (right) arrow on each differential operator denotes that it acts on the left

potential (right Green’s function), appropriately.

We next consider Eq. (A.41b), substituting Eqs. (A.17b) and (A.20b) into Eq. (A.41d).

Then, we can express K(r1, r2; εn) as

K(r1, r2; εn) = eiI(r1,r12)+iI(r12,r2)

∫
d3p

(2πℏ)3

∫
d3p′

(2πℏ)3

∫
d3r3

× ei(ϕ1+ϕ2+ϕ3)−2iI(r13,r12)−2iI(r12,r32)+ip·r̄13/ℏ+ip′·r̄32/ℏ

×∆(p, r13)F
∗(εn,−p′, r32), (A.46)

where the phase integrals ϕ1 + ϕ2 + ϕ3 are defined by

ϕ1 + ϕ2 + ϕ3

≡ e

ℏ

∮
C1

A(s) · ds+
e

ℏ

∮
C2

A(s) · ds+
e

ℏ

∮
C3

A(s) · ds. (A.47)

Noting the integral paths C1, C2, and C3 given in Fig. 15, we see that ϕ1 + ϕ2 + ϕ3 = 0.

Thus, the matrix K(r1, r2; εn) with ∆(p, r12) and F
∗(εn,p, r12) in the Wigner represen-

tation is given as

K(r1, r2; εn) ≈ eiI(r1,r12)+iI(r12,r2)

∫
d3p

(2πℏ)3
eip·r̄12/ℏ

×∆(p, r12)e
(iℏ/2)

←−
∂ 12·

−→
∂ p−(iℏ/2)

←−
∂ p·
−→
∂ 12F ∗(εn,−p, r12). (A.48)
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Finally, we calculate L(r1, r2; εn) and M(r1, r2; εn). Substituting Eqs. (A.17b) and

(A.20b) into Eqs. (A.41c) and (A.41d), the matrices L(r1, r2; εn) and M(r1, r2; εn) are

given as

L(r1, r2; εn) = eiI(r1,r12)−iI(r12,r2)
∫

d3p

(2πℏ)3

∫
d3p′

(2πℏ)3

∫
d3r3

× ei(ϕ13+ϕ2)−2iI(r32,r12)+ip·r̄13/ℏ+ip′·r̄32/ℏUHF(p, r13)F (εn,p
′, r32), (A.49)

M(r1, r2; εn) = eiI(r1,r12)−iI(r12,r2)
∫

d3p

(2πℏ)3

∫
d3p′

(2πℏ)3

∫
d3r3

× ei(ϕ1+ϕ23)−2iI(r13,r12)+ip·r̄13/ℏ+ip′·r̄32/ℏ∆(p, r13)G
∗(εn,−p′, r32), (A.50)

with the phase integrals ϕ13 + ϕ2 and ϕ1 + ϕ23 expressed as

ϕ13 + ϕ2 ≡
e

ℏ

∮
C13

A(s) · ds+
e

ℏ

∮
C2

A(s) · ds, (A.51)

ϕ1 + ϕ23 ≡
e

ℏ

∮
C1

A(s) · ds+
e

ℏ

∮
C23

A(s) · ds. (A.52)

Following the same procedure as used for Eq. (A.44), we perform the phase integration

ϕ13 + ϕ2 and ϕ1 + ϕ23 as

ϕ13 + ϕ2 ≈
e

4ℏ
B(r12) · (r̄32 × r̄13), (A.53)

ϕ23 + ϕ1 ≈ −
e

4ℏ
B(r12) · (r̄32 × r̄13). (A.54)

We therefore obtain the matrices L(r1, r2; εn) and M(r1, r2; εn) with the potentials and

Green’s functions given in the Wigner representation as

L(r1, r2; εn) ≈ eiI(r1,r12)−iI(r12,r2)
∫

d3p

(2πℏ)3
eip·r̄12/ℏ

× UHF(p, r12)e
(iℏ/4)eB(r12)·(

←−
∂ p×

−→
∂ p)

× e(iℏ/2)
←−
∂ 12·

−→
∂ p−(iℏ/2)

←−
∂ p·
−→
∂ 12F (εn,p, r12), (A.55)

M(r1, r2; εn) ≈ eiI(r1,r12)−iI(r12,r2)
∫

d3p

(2πℏ)3
eip·r̄12/ℏ

×∆(p, r12)e
−(iℏ/4)eB(r12)·(

←−
∂ p×

−→
∂ p)

× e(iℏ/2)
←−
∂ 12·

−→
∂ p−(iℏ/2)

←−
∂ p·
−→
∂ 12G∗(εn,−p, r12). (A.56)

Finally, we use Eqs. (A.45), (A.48), (A.55), and (A.56) in Eq. (A.40) to obtain the

self-energy terms of the Gor’kov equation (A.12) in the Wigner representation. Further-

more, we carry out an expansion of the Hartree–Fock potential formally as UHF(p, r) =

UHF(p)σ0 + O(∆2(p, r)) with UHF(p) as the Hartree–Fock potential in the homogeneous

normal state, and neglecting all the terms of the product of two momenta derivatives of
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the superconducting pair potential and the Green’s function such as ∂∆/∂p×∂G/∂p and

∂∆/∂p× ∂F/∂p. Based on this proceedure, we now rewrite the self-energy terms in the

Wigner representation as∫
d3r̄12e

−ip·r̄12

× Γ̂(r12, r1)

∫
d3r3ÛBdG(r1, r3)Ĝ(r3, r2; εn)Γ̂(r2, r12)

≈ ∆̂(p, r12) ◦ Ĝ(εn,p, r12) + UHF(p)τ̂3 ◦ Ĝ(εn,p, r12)

+
iℏ
8
eB(r12) ·

{(
v − p

m

)
× ∂

∂p

[
3Ĝ(εn,p, r12) + τ̂3Ĝ(εn,p, r12)τ̂3

]}
, (A.57)

where quantity v is the normal state velocity and is expressed as

v =
∂εp
∂p

, εp =
p2

2m
+ UHF(p). (A.58)

B Boundary conditions based on gradient expansion

In this section, we derive the boundary conditions required for solving the standard

Eilenberger equations. We start from the Riccati form of Eq. (3.3)[13, 38, 39, 40].

vFx
∂a

∂x
= −2εna−∆ϕa2 +∆ϕ, (B.1)

where a=a(εn,pF, x) is the Riccati parameter and is related to f0 and g0 as

f0 =
2a

1 + aā
, g0 =

1− aā
1 + aā

. (B.2)

We carry out a gradient expansion[13] of Eq. (3.3) using

a ≈ a(0) + a(1), (B.3)

which gives

a(0) =
∆ϕ

εn +
√
ε2n +∆2ϕ2

,

a(1) = − vFx

2
√
ε2n +∆2ϕ2

∂a(0)

∂x
,

∂a(0)

∂x
= − a(0)2√

ε2n +∆2ϕ2

d∆

dx
ϕ+

a(0)

∆

d∆

dx
. (B.4)

The derivatives ∂f0/∂x and ∂f0/∂pFx in Eq. (3.5) are expressed as
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∂f0
∂x

=
2

(1 + aā)2

(
∂a

∂x
− a2 ∂ā

∂x

)
,

∂f0
∂pFx

=
2

(1 + aā)2

(
∂a

∂pFx
− a2 ∂ā

∂pFx

)
. (B.5)

∂a/∂x is obtained from Eq. (B.1), and ∂a/∂pFx is given by solving the following equation:

vFx
∂

∂x

∂a

∂pFx
= −2εn

∂a

∂pFx
−∆

∂ϕ

∂pFx
a2

− 2∆ϕa
∂a

∂pFx
+∆

∂ϕ

∂pFx
− ∂vFx
∂pFx

∂a

∂x
, (B.6)

where the boundary condition for Eq. (B.6) used near the bulk is given by

∂a

∂pFx
≈ ∂a(0)

∂pFx
+
∂a(1)

∂pFx
,

∂a(0)

∂pFx
= − a(0)2√

ε2n +∆2ϕ2
∆

∂ϕ

∂pFx
+
a(0)

ϕ

∂ϕ

∂pFx
,

∂a(1)

∂pFx
=

vFx∆
2ϕ

4(ε2n +∆2ϕ2)2
∂ϕ

∂pFx

∂a(0)

∂x

− 1

2
√
ε2n +∆2ϕ2

(
∂vFx
∂pFx

∂a(0)

∂x
+ vFx

∂2a(0)

∂x∂pFx

)
,

∂2a(0)

∂x∂pFx
=

a(0)2

(ε2n +∆2ϕ2)3/2
∆2ϕ2d∆

dx

∂ϕ

∂pFx

− 2
a(0)√

ε2n +∆2ϕ2

∂a(0)

∂x
∆

∂ϕ

∂pFx

− a(0)2√
ε2n +∆2ϕ2

d∆

dx

∂ϕ

∂pFx
+
∂a(0)

∂x

1

ϕ

∂ϕ

∂pFx
. (B.7a)

C Derivation of Eq. (3.19)

In this section, we derive Eq. (3.19). Equation (3.19) is derived by the following pro-

cedures: (i) expand quasiclassical Green’s functions in terms of pair potential [13] up to

third order based on the assumptions |∆(x)| ≪ ∆0, ℏvFx(∂n∆/∂xn) = O(∆n+1), which is

valid near Tc, (ii) substitute expanded Green’s functions into the first term of Eq. (A.29),

(iii) neglect the Thomas–Fermi term of Eq. (7). Here, we consider the solutions when

εn > 0.

First, we expand Green’s functions with respect to ∆ as

f0 =
∞∑
ν=1

f
(ν)
0 , g0 = 1 +

∞∑
ν=2

g
(ν)
0 , (C.1)
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with initial conditions f
(0)
0 = 0, g

(0)
0 = 1, and g

(1)
0 = 0, and give the following recursive

condition from Eilenberger equations:

f
(ν)
0 =

[
∆ϕg

(ν−1)
0

εn
− ℏvFx

2εn

∂f
(ν−1)
0

∂x

]
, (C.2)

where we assumed ℏvFx∂∆/∂x = O(∆2). Using Eq. (C.2) with initial conditions and

normalization condition g20 = 1 − f 2
0 f̄

2
0 , f

(ν)
0 and g

(ν)
0 up to third order are derived as

follows

f
(1)
0 =

∆ϕ

εn
, f

(2)
0 = −ℏϕvFx

2ε2n

∂∆

∂x
,

f
(3)
0 = −

[
(∆ϕ)2

2ε3n
− (ℏvFx)2

4ε3n

∂2

∂x2

]
∆ϕ, (C.3a)

g
(2)
0 = −(∆ϕ)2

2ε2n
, g

(3)
0 = 0. (C.3b)

where we used Im∆ = 0.

The equation for ∂Img1/∂x, which is included in the electric field equation in Eq. (A.29),

is given by

∂Img1
∂x

=
−ℏ2

4ε3n

[(
2ϕ2∂vFx

∂pFx
+ vFxϕ

∂ϕ

∂pFx

)
∂∆

∂x

∂2∆

∂x2

− vFxϕ
∂ϕ

∂pFx
∆
∂3∆

∂x3

]
. (C.4)

If we only consider the PPG force, the electric field equation is given by the first term of

Eq. (A.29). Thus, within the present approximation, electric field by PPG force is given

by (
− λ2TF

∂2

∂x2
+ 1
)
EPPGx(x)

≃ ℏ2a(3)

2e

[(
2
⟨
ϕ2∂vFx
∂pFx

⟩
F
+
⟨
vFxϕ

∂ϕ

∂pFx

⟩
F

)
∂∆

∂x

∂2∆

∂x2

−
⟨
vFxϕ

∂ϕ

∂pFx

⟩
F
∆
∂3∆

∂x3

]
, (C.5)

where EPPGx represents the x-component of electric field induced by PPG force a(3) ≡
πkBT

∑
0≤n≤nc

ε−3n . Neglecting the term related to Thomas–Fermi screening length with

assumption λTF ≪ ξ0, we obtain the approximated charge density as

ρPPG(x) ≃
ℏ2a(3)ϵ0

2e

[(
2
⟨
ϕ2∂vFx
∂pFx

⟩
F
+
⟨
vFxϕ

∂ϕ

∂pFx

⟩
F

)
∂2∆

∂x2
∂2∆

∂x2

+ 2
⟨
ϕ2∂vFx
∂pFx

⟩
F

∂∆

∂x

∂3∆

∂x3
−
⟨
vFxϕ

∂ϕ

∂pFx

⟩
F
∆
∂4∆

∂x4

]
. (C.6)
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where ρPPG(x) ≡ ϵ0(∂EPPGx/∂x). Therefore, ρPPG(x) is expressible only in terms of

∆(n)(x) in high-temperature region where the present approximation is valid. Substituting

the pair potential assumed as ∆(x) ≃ ∆bulk tanh(x/ξ1) into Eq. (C.6) and taking the limit

x→ 0, we arrive at Eq. (3.19).

D Local density of states in the augmented quasiclassical theory

Here we derive the expressions which are relevant to our numerical calculation of the

local density of states within the augmented quasiclassical theory.

D.1 Riccati equation

We write the Riccati-type equation in Keldysh formalism as,

vFx
∂aR

∂x
= −2(−iε+ η)aR −∆ϕaR2 +∆ϕ (D.1)

Separating the real and imaginary parts we get,

vFx
∂ReaR

∂x
= −2ηReaR − 2εImaR −∆ϕ(ReaR2 − ImaR2) + ∆ϕ (D.2a)

and

vFx
∂ImaR

∂x
= 2εReaR − 2ηImaR − 2∆ϕReaRImaR (D.2b)

Similarly,

−vFx
∂āR

∂x
= −2(−iε+ η)āR −∆ϕāR2 +∆ϕ (D.3)

This gives,

−vFx
∂ReāR

∂x
= −2ηReāR + 2εImāR −∆ϕ(ReāR2 − ImāR2) + ∆ϕ (D.4a)

−vFx
∂ImāR

∂x
= 2εReāR + 2ηImāR + 2∆ϕReāRImāR (D.4b)

D.2 Green’s functions

We use the Riccati parameters to calculate the Green’s functions as follows,

gR0 =
1− aRāR

1 + aRāR
, fR

0 =
2aR

1 + aRāR
(D.5)
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aRāR = (ReaR + iImaR)(ReāR − iImāR)
= (ReaRReāR + ImaRImāR) + i(ImaRReāR − ReaRImāR)

= wr + iwi (D.6)

Where

wr = ReaRReāR + ImaRImāR, wi = ImaRReāR − ReaRImāR (D.7)

Then

gR0 =
1− wr − iwi

1 + wr + iwi

=
1

w
(1− wr − iwi)(1 + wr − iwi), w = (1 + wr)

2 + w2
i (D.8)

gR0 =
1

w

[
(1− wr)(1 + wr)− w2

i

]
− i

w
[(1− wr)wi + wi(1 + wr)] (D.9)

Similarly,

fR
0 =

2(ReaR + iImaR)

1 + wr + iwi

=
2

w
(ReaR + iImaR)(1 + wr − iwi) (D.10)

Therefore,

fR
0 =

2

w

[
ReaR(1 + wr) + ImaRwi

]
+

2i

w

[
ImaR(1 + wr)− ReaRwi

]
(D.11)

D.3 Solutions near the bulk

Starting from the expansion

aR ≈ aR(0) + aR(1) (D.12)

Where aR(0) is the solution for the homogeneous system and is given by

a(0) =
∆ϕ

−iε+ η +
√

(−iε+ η)2 +∆2ϕ2
(D.13)

We further simply as follows; let√
(−iε+ η)2 +∆2ϕ2 =

√
−ε2 + η2 +∆2ϕ2 − 2iεη

=
√
w1r + iw1i

= reiθ (D.14)

Where we have used the following substitutions,

w1r = −ε2 + η2 +∆2ϕ2, w1i = −2εη. (D.15)
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Then

w1r + iw1i = r2e2iθ, w1r − iw1i = r2e−2iθ

r4 = w2
1r + w2

1i → r = (w2
1r + w2

1i)
1/4, r ≥ 0 (D.16)

w1r = r2 cos 2θ, w1i = r2 sin 2θ

tan θ =
w1i

w1r

→ θ =
1

2
arctan

w1i

w1r

(D.17)

√
w1r + iw1i = (w2

1r + w2
1i)

1
4 e

1
2
arctan

w1i
w1r (D.18)

We also write

aR(0) =
∆ϕ

w2r + iw2i

(D.19)

Where

w2r = η + (w2
1r + w2

1i)
1
4 cos

(
1

2
arctan

w1i

w1r

)
, (D.20a)

w2i = −ε+ (w2
1r + w2

1i)
1
4 sin

(
1

2
arctan

w1i

w1r

)
(D.20b)

aR(0) =
∆ϕ(w2r − iw2i)

w2

, w2 = w2
2r + w2

2i (D.21)

aR(1) = − vFx

2
√

(−iε+ η)2 +∆2ϕ2

∂aR(0)

∂x
(D.22)

w3r = (w2
1r + w2

1i)
1
4 cos

(
1

2
arctan

w1i

w1r

)
, (D.23a)

w3i = (w2
1r + w2

1i)
1
4 sin

(
1

2
arctan

w1i

w1r

)
(D.23b)

Furthermore, the correction term aR(1) is expressed as

aR(1) = − vFx
2(w3r + iw3i)

∂aR(0)

∂x

= − vFx
2w3

(w3r − iw3i)

(
∂ReaR(0)

∂x
+ i

∂ImaR(0)

∂x

)
(D.24)
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w3 = w2
3r + w2

3i (D.25)

aR(1) = − vFx
2w3

(
w3r

∂ReaR(0)

∂x
+ w3i

∂ImaR(0)

∂x

)
(D.26)

−i vFx
2w3

(
w3r

∂ImaR(0)

∂x
− w3i

∂ReaR(0)

∂x

)
(D.27)

∂aR(0)

∂x
=− aR(0)2√

(−iε+ η)2 +∆2ϕ2

d∆

dx
ϕ+

aR(0)

∆

d∆

dx

=− 1

w3

(w3r − iw3i)(Rea
R(0) + iImaR(0))2

d∆

dx
ϕ

+
(ReaR(0) + iImaR(0))

∆

d∆

dx

=− 1

w3

(w3r − iw3i)(Rea
R(0)2 − ImaR(0)2 + 2iReaR(0)ImaR(0))

d∆

dx
ϕ

+
ReaR(0)

∆

d∆

dx
+ i

ImaR(0)

∆

d∆

dx
(D.28)

∂aR(0)

∂x
=− 1

w3

[
w3r(Rea

R(0)2 − ImaR(0)2) + 2w3iRea
R(0)ImaR(0)

] d∆
dx

ϕ

+
ReaR(0)

∆

d∆

dx

− i

w3

[
2w3rRea

R(0)ImaR(0) − w3i(Rea
R(0)2 − ImaR(0)2)

] d∆
dx

ϕ

+ i
ImaR(0)

∆

d∆

dx
(D.29)

D.4 Expression for ∂aR/∂pFx

The derivatives ∂
∂x

∂aR

∂pFx
, ∂

∂x
∂ReaR

∂pFx
and ∂

∂x
∂ImaR

∂pFx
are given by

vFx
∂

∂x

∂aR

∂pFx
= −2(−iε+ η)

∂aR

∂pFx
−∆

∂ϕ

∂pFx
aR2 − 2∆ϕaR

∂aR

∂pFx
+∆

∂ϕ

∂pFx
− ∂vFx
∂pFx

∂aR

∂x
,

(D.30)

vFx
∂

∂x

∂ReaR

∂pFx
=− 2η

∂ReaR

∂pFx
− 2ε

∂ImaR

∂pFx
−∆

∂ϕ

∂pFx
(ReaR2 − ImaR2)

− 2∆ϕ

(
ReaR

∂ReaR

∂pFx
− ImaR

∂ImaR

∂pFx

)
+∆

∂ϕ

∂pFx
− ∂vFx
∂pFx

∂ReaR

∂x
,

(D.31a)
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and

vFx
∂

∂x

∂ImaR

∂pFx
=2ε

∂ReaR

∂pFx
− 2η

∂ImaR

∂pFx
− 2∆

∂ϕ

∂pFx
ReaRImaR

− 2∆ϕ

(
ReaR

∂ImaR

∂pFx
+ ImaR

∂ReaR

∂pFx

)
− ∂vFx
∂pFx

∂ImaR

∂x
(D.31b)

D.5 Spatial and momentum derivatives of the Green’s functions

In the following, we calculate the variations of the Green’s function in terms of space

and momentum variables

∂fR
0

∂x
=

2

(1 + aRāR)

(
∂aR

∂x
− aR2∂ā

R

∂x

)
(D.32)

(1 + aRāR)2 = (1 + wr + iwi)
2

= w4r + iw4i (D.33)

Let

w4r = (1 + wr)
2 − w2

i , w4i = 2(1 + wr)wi, (D.34)

We then rewrite
∂fR

0

∂x
as

aR2∂ā
R

∂x
= (ReaR2 − ImaR2 + 2iReaRImaR)

(
∂ReāR

∂x
− i∂Imā

R

∂x

)
= w5r + iw5i (D.35)

w5r = (ReaR2 − ImaR2)
∂ReāR

∂x
+ 2ReaRImaR

∂ImāR

∂x
,

w5i = 2ReaRImaR
∂ReāR

∂x
− (ReaR2 − ImaR2)

∂ImāR

∂x
(D.36)

∂fR
0

∂x
=

2

w4r + iw4i

(
∂ReaR

∂x
− w5r + i

∂ImaR

∂x
− iw5i

)
=

2

w4

(w4r − iw4i)

(
∂ReaR

∂x
− w5r + i

∂ImaR

∂x
− iw5i

)
, (D.37)

Using

w4 = w2
4r + w2

4i, (D.38)

we have

∂fR
0

∂x
=

2

w4

[
w4r

(
∂ReaR

∂x
− w5r

)
+ w4i

(
∂ImaR

∂x
− w5i

)]
+

2i

w4

[
w4r

(
∂ImaR

∂x
− w5i

)
− w4i

(
∂ReaR

∂x
− w5r

)]
(D.39)
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∂fR
0

∂pFx
=

2

(1 + aRāR)

(
∂aR

∂pFx
− aR2 ∂ā

R

∂pFx

)
(D.40)

w6r = (ReaR2 − ImaR2)
∂ReāR

∂pFx
+ 2ReaRImaR

∂ImāR

∂pFx
,

w6i = 2ReaRImaR
∂ReāR

∂pFx
− (ReaR2 − ImaR2)

∂ImāR

∂pFx
(D.41)

∂fR
0

∂pFx
=

2

w4

[
w4r

(
∂ReaR

∂pFx
− w6r

)
+ w4i

(
∂ImaR

∂pFx
− w6i

)]
+

2i

w4

[
w4r

(
∂ImaR

∂pFx
− w6i

)
− w4i

(
∂ReaR

∂pFx
− w6r

)]
(D.42)

We note the following relation:

∂fR
0

∂pFx
= − ∂f̄

R
0

∂pFx
. (D.43)

D.6 Solution near the surface

We calculate the pFx derivatives as follows;

∂aR

∂pFx
≈ ∂aR(0)

∂pFx
+
∂aR(1)

∂pFx
(D.44)

The first term is calculated as thus,

∂aR(0)

∂pFx
= − aR(0)2√

(−iε+ η)2 +∆2ϕ2
∆

∂ϕ

∂pFx
+
aR(0)

ϕ

∂ϕ

∂pFx

= −ReaR(0)2 − ImaR(0)2 + 2iReaR(0)ImaR(0)

w3r + iw3i

∆
∂ϕ

∂pFx

+
ReaR(0)

ϕ

∂ϕ

∂pFx
+ i

ImaR(0)

ϕ

∂ϕ

∂pFx
(D.45)

∂aR(0)

∂pFx
=− 1

w3

[
w3r(Rea

R(0)2 − ImaR(0)2) + 2w3iRea
R(0)ImaR(0)

]
∆

∂ϕ

∂pFx

+
ReaR(0)

ϕ

∂ϕ

∂pFx

− i

w3

[
2w3rRea

R(0)ImaR(0) − w3i(Rea
R(0)2 − ImaR(0)2)

]
∆

∂ϕ

∂pFx

+ i
ImaR(0)

ϕ

∂ϕ

∂pFx
(D.46)
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while the derivative of the correction term is given by

∂aR(1)

∂pFx
=

vFx∆
2ϕ

4 [(−iε+ η)2 +∆2ϕ2]2
∂ϕ

∂pFx

∂aR(0)

∂x

− 1

2
√

(−iε+ η)2 +∆2ϕ2

(
∂vFx
∂pFx

∂aR(0)

∂x
+ vFx

∂2aR(0)

∂x∂pFx

)
=

vFx∆
2ϕ

4(w1r + iw1i)2
∂ϕ

∂pFx

∂aR(0)

∂x
− 1

2(w3r + iw3i)

(
∂vFx
∂pFx

∂aR(0)

∂x
+ vFx

∂2aR(0)

∂x∂pFx

)
,

(D.47)

where

w7r = w2
1r − w2

1i, w7i = 2w1rw1i, w7 = w2
7r + w2

7i (D.48)

∂aR(1)

∂pFx
=
vFx∆

2ϕ

4w7

(w7r − iw7i)
∂ϕ

∂pFx

(
∂ReaR(0)

∂x
+ i

∂ImaR(0)

∂x

)
− w3r − iw3i

2w3

∂vFx
∂pFx

(
∂ReaR(0)

∂x
+ i

∂ImaR(0)

∂x

)
− vFx

w3r − iw3i

2w3

(
∂2ReaR(0)

∂x∂pFx
+ i

∂2ImaR(0)

∂x∂pFx

)
(D.49)

∂aR(1)

∂pFx
=
vFx∆

2ϕ

4w7

∂ϕ

∂pFx

(
w7r

∂ReaR(0)

∂x
+ w7i

∂ImaR(0)

∂x

)
− 1

2w3

[
∂vFx
∂pFx

(
w3r

∂ReaR(0)

∂x
+ w3i

∂ImaR(0)

∂x

)]
− vFx

1

2w3

(
w3r

∂2ReaR(0)

∂x∂pFx
+ w3i

∂2ImaR(0)

∂x∂pFx

)
+ i

vFx∆
2ϕ

4w7

∂ϕ

∂pFx

(
w7r

∂ImaR(0)

∂x
− w7i

∂ReaR(0)

∂x

)
− i

2w3

[
∂vFx
∂pFx

(
w3r

∂ImaR(0)

∂x
− w3i

∂ReaR(0)

∂x

)]
− vFx

i

2w3

(
w3r

∂2ImaR(0)

∂x∂pFx
− w3i

∂2ReaR(0)

∂x∂pFx

)
(D.50)
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We calculate the second derivative ∂2aR(0)/∂x∂pFx as

∂2aR(0)

∂x∂pFx
=

aR(0)2

[(−iε+ η)2 +∆2ϕ2]3/2
∆2ϕ2d∆

dx

∂ϕ

∂pFx

− 2
aR(0)√

(−iε+ η)2 +∆2ϕ2

∂aR(0)

∂x
∆

∂ϕ

∂pFx

− aR(0)2√
(−iε+ η)2 +∆2ϕ2

d∆

dx

∂ϕ

∂pFx
+
∂aR(0)

∂x

1

ϕ

∂ϕ

∂pFx

=
aR(0)2

(w1r + iw1i)(w3r + iw3i)
∆2ϕ2d∆

dx

∂ϕ

∂pFx

− 2
aR(0)

w3r + iw3i

∂aR(0)

∂x
∆

∂ϕ

∂pFx

− aR(0)2

w3r + iw3i

d∆

dx

∂ϕ

∂pFx
+
∂aR(0)

∂x

1

ϕ

∂ϕ

∂pFx
(D.51)

Using the substitutions

w8r = w1rw3r − w1iw3i, w8i = w1rw3i + w1iw3r, w8 = w2
8r + w2

8i, (D.52)

we rewrite the it as

∂2aR(0)

∂x∂pFx
=
w8r − iw8i

w8

(ReaR(0)2 − ImaR(0)2 + 2iReaR(0)ImaR(0))∆2ϕ2d∆

dx

∂ϕ

∂pFx

− 2
w3r − iw3i

w3

(
ReaR(0)∂Rea

R(0)

∂x
− ImaR(0)∂Ima

R(0)

∂x

+ iReaR(0)∂Ima
R(0)

∂x
+ iImaR(0)∂Rea

R(0)

∂x

)
∆

∂ϕ

∂pFx

− w3r − iw3i

w3

(ReaR(0)2 − ImaR(0)2 + 2iReaR(0)ImaR(0))
d∆

dx

∂ϕ

∂pFx

+
∂ReaR(0)

∂x

1

ϕ

∂ϕ

∂pFx
+ i

∂ImaR(0)

∂x

1

ϕ

∂ϕ

∂pFx
(D.53)
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Finally, it takes the form

∂2aR(0)

∂x∂pFx
=

1

w8

[
w8r(Rea

R(0)2 − ImaR(0)2) + 2w8iRea
R(0)ImaR(0)

]
∆2ϕ2d∆

dx

∂ϕ

∂pFx

− 2

w3

[
w3r

(
ReaR(0)∂Rea

R(0)

∂x
− ImaR(0)∂Ima

R(0)

∂x

)

+ w3i

(
ReaR(0)∂Ima

R(0)

∂x
+ ImaR(0)∂Rea

R(0)

∂x

)]
∆

∂ϕ

∂pFx

− 1

w3

[
w3r(Rea

R(0)2 − ImaR(0)2) + 2w3iRea
R(0)ImaR(0)

] d∆
dx

∂ϕ

∂pFx

+
∂ReaR(0)

∂x

1

ϕ

∂ϕ

∂pFx

+
i

w8

[
2w8rRea

R(0)ImaR(0) − w8i(Rea
R(0)2 − ImaR(0)2)

]
∆2ϕ2d∆

dx

∂ϕ

∂pFx

− 2i

w3

[
w3r

(
ReaR(0)∂Ima

R(0)

∂x
+ ImaR(0)∂Rea

R(0)

∂x

)

− w3i

(
ReaR(0)∂Rea

R(0)

∂x
− ImaR(0)∂Ima

R(0)

∂x

)]
∆

∂ϕ

∂pFx

− i

w3

[
2w3rRea

R(0)ImaR(0) − w3i(Rea
R(0)2 − ImaR(0)2)

] d∆
dx

∂ϕ

∂pFx

+ i
∂ImaR(0)

∂x

1

ϕ

∂ϕ

∂pFx
(D.54)

D.7 Expression for the LDOS

Using the expansion gR = gR0 + gR1 , the local density of states within the augmented

quasiclassical theory is given by

Ns = N(0)
⟨
RegR0 +RegR1

⟩
F
+N ′(0)ε

⟨
RegR0

⟩
F
−N ′(0)∆

2

⟨
ImfR

0 + Imf̄R
0

⟩
F

(D.55)

Where gR1 is the first-order quantum correction due to the PPG force and also due to the

SDOS pressure, in terms of the quasiclassical parameter, (kFξ0)
−1.

D.8 gR1 expression

Finally, we can calculate the
∂gR1
∂x

and
∂RegR1
∂x

using

vFx
∂gR1
∂x

= −iδ
2

d∆

dx
ϕ
∂fR

0

∂pFx
− iδ

2

d∆

dx
ϕ
∂f̄R

0

∂pFx
+
iδ

2
∆

∂ϕ

∂pFx

∂fR
0

∂x
+
iδ

2
∆

∂ϕ

∂pFx

∂f̄R
0

∂x
(D.56)

and

vFx
∂RegR1
∂x

=
δ

2

d∆

dx
ϕ
∂ImfR

0

∂pFx
− δ

2

d∆

dx
ϕ
∂Imf̄R

0

∂pFx
− δ

2
∆

∂ϕ

∂pFx

∂ImfR
0

∂x
+
δ

2
∆

∂ϕ

∂pFx

∂Imf̄R
0

∂x

(D.57)
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