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1 Introduction
1.1 Forces acting on charged particles

From the viewpoint of fundamental physics, electrostatic charge redistribution implies
the action of certain forces on charged particles. For instance, in normal metals|l],

semiconductors[2] as well as in superconductors[3, 4, 5], the magnetic Lorentz force

FLorentz - (qV X B)a (11)

where B, v and ¢ are the magnetic field, particle velocity and charge (charge distribution),
respectively, results in the Hall effect. However, exclusively in superconductors, besides
the Lorentz force which is included as a necessary ingredient in London’s phenomenological
theory of superconductivity, other forces are expected to be present even in the absence of
external or spontaneous magnetic fields, namely; the pair-potential (A) gradient (PPG)
force[6, 7, §]

0A
FPPG (0.8 E, (12)

which originates from the spatial variation of the pair potential, and another force orig-
inating from the pressure due to the slope of the density of states (DOS) in the normal
states at the Fermi level[9, 10, 11]

N'(pn)
N(:un) .

Where N'(11,,) /N (pr) is the slope of DOS in the normal states at the Fermi level between
the normal and the superconducting regions. These three forces bring about electron-hole

Fspos (1.3)

asymmetry which induces the redistribution of charged particles in both the Meissner and
the vortex state in type-II superconductors and are also expected in the presence of sur-
faces and interfaces. Charge redistribution in superconductors occurs in order to balance
the electrochemical potential between the normal regions and the superconducting regions.
For a complete understanding of the mechanism of electric charging in superconductors,
it is imperative to account for all three forces within a microscopic theory.

1.2 Augmented quasiclassical equations

Quite recently, the augmented quasiclassical equations incorporating the three-force-
terms were derived, with the standard Eilenberger equations[!2, 13] as the leading-order
contributions and the force terms as first-order quantum corrections in terms of the qua-
siclassical parameter § = (kp&y)™! < 1, where kp is the Fermi wave number and & is
the coherence length at zero temperature[!, 7, 11], and are expresssed in the Matsubara



formalism as

[ienfg ATg7 }—i—szF g
L {amg, 3ng} ih {apFAfg, ag}

h ) .
+ %evp : (B X ﬂ) (73, §(en, pr.1)} = 0, (1.4)

where § = (e, pr,7) is the quasiclassical Green’s function, A = A(pg,r) is the pair

potential, ¢, is the Matsubara energy, v is the Fermi velocity, and pr is the Fermi

momentum. Matrix 73 denotes
g 0
T3 = [ ] , T3 = [_0 ] ; (1.5)
3 0 —o

with [a,b] = ab — ba, and {a,b} = ab + ba.

> G
>

1.2.1 Meissner state charging

In the presence of a very weak magnetic field B (below the lower critical field), super-
conductors show perfect diamagnetic behaviours. Furthermore, the Lorentz force acting
on equilibrium supercurrents induces the redistribution of charge towards the surface of
the sample and a Hall electric field emerges. This goes on until a time when the electric
field due to the surface charge balances the the magnetic Lorentz force acting on super-
currents and equilibrium is reached. The induced electric field in the Meissner state E,,

is given by [5, 14]

Ey = B x Ryj, (1.6)

Where R, is the Hall coefficient and j5 is the current flowing along the edge of the
sample. This expression for the electric field agrees reasonably with the prediction of
London theory. Moreover, in the case of anisotropic superconductors, the information
about the electronic band structure is contained in the expression for the Hall coefficient

given by [11]

= L 0 —-Y)v vp(l = Y)vp) '
Bu = 5 1= YIe) (orll = V)or)y (17)

where Y = Y (pp,T') is the Yosida function and is expressed as

[APg¢
2(leal? + 1A PG0)3/

Y(pp,T) =1 —27kgT Z (1.8)



Here ¢ is the basis function of the energy gap, kg and T denoting the Boltzmann constant
and temperature, respectively. The electric field induced in the Meissner state shows a
sign change with temperature dependence[l 1] for materials with anisotropic Fermi surface
and energy gap and also at specific doping levels, due to the Fermi surface curvature. The
Fermi surface curvature and gap anisotropy result in the anisotropic redistribution of ther-
mally excited quasiparticles, hence the sign change. Fermi surface and gap anisotropies
are therefore very crucial to understanding both the magnitude and sign of electric charge
in superconductors.

1.2.2 Vortex charging

The augmented quasiclassical equations have been used in the study of electric charging
of a single superconducting vortex and also for the charging of the Abrikosov lattice system
(8, 5, 11, 15, 16, 17]. It has been shown that in the vortex core of an isotropic type-II
superconductor the PPG force gives up to 10 to 10? times larger contribution to charging
effect compared to the Lorentz force[3]. Even more recently, Ueki et al. found that the
SDOS pressure gives the dominant contribution near the transition temperature, while
the PPG force dominates as the temperature approaches zero[l1]. Masaki studied the
charged and uncharged vortices in a chiral p-wave superconductor based on the augmented
quasiclassical equations. He pointed out that the vortex-core charge is dominated by
the contribution of the angular derivative terms in the PPG force terms[15]. Using a
simplified picture of a system consisting of a vortex core in the normal state, surrounded
by a superconducting material, Khomskii et al. showed that a finite difference in chemical
potential oy # 0 between the normal and the superconducting subsystems results in the
the redistribution of chargel9, 10].

Figure 1: A schematic of the gap structure for the d,2_,2 pairing state with gap nodal lines (diagonal
dashed lines).



1.3 Surface systems

In the context of surface charging, Furusaki et al. studied spontaneous surface charging
in chiral p-wave superconductors based on the Bogoliubov—de Gennes equations. They
found two contributions, one contribution originates from the Lorentz force due to the
spontaneous edge currents, while the other contribution has topological origin and is
related to the intrinsic angular momentum of the Cooper pairs[18]. Emig et al. also
showed using a phenomenological analysis on the basis of Ginzburg-Landau theory that
the presence of surfaces in d-wave superconductors can induce charge inhomogeneity due
to the suppression of the energy gap[19].

In a d,2_,2-wave superconductor (the gap structure for the d,2_,2 pairing state is shown
in Fig. 1) with a specularly reflective surface cut along the [110] direction i.e. along the
nodal lines, the order parameter is suppressed [20, 21, 22] near the surface and vanishes
at the surface due to a change in its sign along the classical quasiparticle trajectories.
This sign change also results in the formation of zero energy states (ZES) near (at) the
edges of these materials[26, 25, 23, 24, 27]. ZES in d-wave superconductors are detectable
through the observation of zero-bias conductance peaks in the spectra of scanning tun-
neling spectroscopy at oriented surfaces of the d-wave crystals[28,; 29, 30]. Figure 2 shows
the normalized conductance measured for grains of cuprate superconductors[31]. Hayashi
et al. discussed the connection between the Caroli-de Gennes-Matricon states[32] at the
vortex core of an s-wave superconductor and the occurrence of electric charge[33]. They
concluded that the particle-hole asymmetry inside the vortex core observed through the
local density of states (LDOS) implies the corresponding existence of charge at the vortex
core. Recently, Masaki also discussed the connection between particle-hole asymmetry
and vortex charging in superconductors[l5]. Surface charging in d-wave superconductors
may also have a similar connection with particle-hole asymmetry in the LDOS, which is
expected to appear due to first-order quantum corrections within the augmented quasi-
classical theory.

1.4 Motivation

Several studies have been carried out on the charging effect in the vortex state of super-
conductors based on microscopic theories, these have inspired a lot of experimental efforts
leading to a better understanding of the electrodynamics of superconductors in the vortex
state. On the other hand, surface charge in superconductors remains unexplored or at
best previous studies on surface charge have been mostly based on phenomenological ap-
proaches, despite the rich physics inherent at the surfaces of superconductors, especially in
systems with anisotropic energy gap and/or Fermi surface. In fact, even in the absence of
magnetic fields, surface effects in d-wave superconductors result in the appearance of the
PPG force due to the suppression of the pair potential near the surface and the pressure
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Figure 2: Normalized conductance vs normalized voltage of oriented grain boundaries of cuprate super-

conductors at T' = 4.2K.

due to the SDOS at the Fermi level. Hence the presence of oriented surfaces in d-wave
superconductors is expected to be accompanied by the redistribution of charged particles.

Experiments by Bok and Klein [31] followed by Morris and Brown [35] successfully cir-
cumvented the difficulties encountered in the earlier attempts at the measurement of Hall
voltage in superconductors by applying capacitive couplings to the samples. Although,
such measurement have not been carried out on materials with gap and Fermi surface
anisotropy yet. There is also the possibility of observing qualitative signatures of elec-
tric charging by observing electron-hole asymmetry in the local density of states in the
tunnelling spectra of superconductors, such as the cuprates.

In this study, we have carried out a microscopic investigation of the spontaneous surface
charge on a semi-finite d,2_,2 superconductor cut along the [110] direction due to the
PPG force and the SDOS pressure. Moreover, the SDOS pressure gives the dominant
contribution to the surface charge for the realistic electron-fillings n = 0.8, 0.9, and 1.15
at all temperatures. We also observe zero energy Andreev bound states at the surface of
the d-wave superconductor, which manifest themselves in the zero energy peaks in local
density of states within the augmented quasiclassical theory. We further highlight that
the particle-hole asymmetry in the local density of states due to the PPG force and the
SDOS pressure is a qualitative evidence of electric charging. This particle-hole asymmetry
may be observed in experiments.

This thesis is organized as follows. In Sect. 2, we derive the augmented quasiclassical



equations of superconductivity in the Matsubara formalism, with the three force terms
which are responsible for charging. In Sect. 3, we apply the augmented quasiclassical
equations to perform a microscopic study on the spontaneous charge redistribution near
the surface of a d-wave superconductor cut along the [110] direction. We also calculate
the local density of states within the augmented quasiclassical theory. In Sect. 4, we give

a general summary of the content of this thesis, as well as our conclusion.
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2 General Augmented Quasiclassical Theory

In this chapter, we review the formulation of the augmented Eilenberger equations in
the Matsubara formalism taking into account the three force terms namely; the Lorentz
force, the pair potential gradient force and the pressure due to the slope of density of
states in the normal states at the Fermi level. For simplicity, we consider the spin-singlet

pairing state. To this end, we follow the derivation in earlier works [5, 11, 13].

2.1 Augmented Eilenberger equations

The augmented quasiclassical equations given in the Matsubara formalism are expressed
as

[iénﬁ; ~ A, g} + ihvp - B3
+ ? {BA%?,, By, } _ %7“ {apFAfg, ag}

R 0 o R
+ %B'UF : (B X ﬂ) {73,4(en, pr,7)} =0, (2.1)

where § = §(en, pr,7) is the quasiclassical Green’s function, A = A(pg,r) is the super-
conducting pair potential, ,, is the Matsubara energy, vg is the Fermi velocity, and pg is
the Fermi momentum.

The gauge-invariant operator 8 is given by

v on g or g*
- .2€A .
o= —i7A(r) conf : (2.2)
2e .
V + i%A(r) on f*

Matrix 75 denotes

40 0
=2 |, = , (2.3)
0 73 0 —o

with [a,b] = ab — ba and {a, b} = ab + ba.
The quasiclassical Green’s function is defined as

o R
g(gnapFa 7') = P/ &iﬁ’)G(snap? T)
_ s

[e.e]
| gewprr) o —inper) | (2.4)
—if*(en, —Pr,7) —g"(€n, —Pr,T)
where P denotes the principal value and G (€n,p,T) is the Green’s function of Gorkov’s

equation. The definition of the Green’s function starting from the second quantised field

operators and the derivation of Eq. (2.1) is given in Appendix.
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2.2 Local density of states

The local density of states (LDOS) can be expressed as

1
—ImG" (e, p, ) (2.5)

Ny(e,r) = —Tr/

where GR (e, p, ) = G(e, — —ic+n, p,r) is the retarded Green’s function with 7 denoting
an infinitesimal positive constant.

We replace the momentum integral using

d3p > dQ
— = A&, N —ed —£, 2.6
| o= [N+ n—cot) [ (26)
Where the differential df2, is the increment of the solid angle in the momentum space
defined based on the structure of the Fermi surface. For example, for a spherical Fermi

surface, df1, may be expressed as

s 2
/de :/ db, sin(?p/ dpp. (2.7)
0 0

Ni(e,r) = —Tr / T AN+ p—cd(r) [ B lngrepr),  (29)

o dm 27

The LDOS now becomes

N(& + i —e®(r)) = N(e) denotes the normal DOS and is defined by

N(e) = / %5(6 _e,). (2.9)

We here make the following important assumptions regarding the variations of the density

of states;

(i) the superconducting DOS approaches the normal state DOS as the single-particle
energy increases

(ii) the energy variation of the normal DOS is slow.

Consequent upon these assumptions, the superconducting DOS in Eq. (2.8) may be
expressed in terms of g and g, To this end, we expand N(e) at € = pu — e®(r) as

N(Ep + = e®(r)) = N — e(r) + N1 — eB(r)ép. 2.10)
Using N'(pn)Ao/N (1n) = O(0), op/Ag = O(0), and |e|®/Ay = O(6), we obtain
N(p—e®(r)) = N(p)[1 + O(6%)]. (2.11)

Here Ay denotes the energy gap at zero temperature, and du is the chemical potential
difference between the normal and superconducting states, and is defined by oy = p —

12



pn with g, denoting the chemical potential in the normal state. Thus, we rewrite the
expansion of N (&, + pu — e®(r)) as

N(€p + p— (1)) = N(p) + N'(j12)6. (2.12)
Substituting it into Eq. (2.8) and using Eqgs. (A.27), (A.30), and (A.32), we obtain the
superconducting LDOS as

Ns(s, r)

s,
47

N'(pn)
N (pm)

{Reg g, pr,T) + eRegR(s,pF,r)

1N () R R A
+ §mIm [A(PF,T)i (e,pp,7) + [ (5,pF,r)A(pF,’P)] }

X 02| — |el) + N(e + 1 — e@(r))0(le] - ). (2.13)
where the retarded Green’s functions and barred functions in the Keldysh formalism are

defined generally by QR(g,pF, r) = g(e, — —ie+n, pr,T) and gR(s,pF, r)= QR*(—E, —pr,T),
respectively. The cutoff energy é. > 0 is determined such that it satisfies the relation

A
N(erde—/ N(e+ p—ed)de. (2.14)

—E

2.3 Pair potential

Here we express the self-consistency equation for the superconducting pair potential
using the quasiclassical Green’s function. Using Eqgs. (A.17b), (A.20b), and putting

3
V(lrol) = [yl (2.15)
T12 (27Th)3 pe y .
in Eq. (A.15), we obtain A(p, r13) as
dp’3 ad
A(p,T12) Z/vaqu‘BT Z F(en,p',r12). (2.16)

Furthermore, we expand the interaction Vj,_,| in terms of the surface harmonics Yy, (p)
as
Ve = ) Vilp, o/ Z A7 Y 1 (D) Y (B), (2.17)
=0 m=—l
We note here that [ = 0, 1, 2 corresponds to s-wave, p-wave and d-wave pairing, respec-
tively. Hence, we here assume that only a single [ is relevant. Using Eq. (2.6), Eq. (2.16)

becomes
& dQyp
é(pa ”") = dgp’N(gp’ B e eq)(’r')) .
< Vi(p.p) Z Vi B BT S Elen o) (2.18)
m=-—I n=-—oo
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Assuming a constant and weak-coupling interaction, we can rewrite the interaction poten-
tial as Vi(p,p’) = Vl(eﬁ)G(ac — &p])0(ec — [€pr]), with Vl(eﬁ) denoting the constant effective

potential, and ¢, is the cutoff energy [13]. We can also rewrite Eq. (2.18) as
fe de/
A(p,r) = dép N (& + 11 — €®(r)) An
l e
x VIS AxY (p)Yin (B)keT Y Elen,ps7), (2.19)
m=—I n=—nc
where the cutoff n. is determined from (2n. + 1)mkgT = e. [13]. Using Egs. (A.27),

(A.30), (A.32), and (2.12), we see that only the value at p = pg contributes to A(p, r) as

a0, <
p’ ~ * (oAl
ym Z_l 4Y 10 (D) Y, (D)

Alpe, ) ~ VDN () /

D {i(en,p%m) v Ak )

n=—nc

— g(en, Pr, ) A(DE, 'P)} } (2.20)

where the barred functions in the Matsubara formalism are defined generally by g(e,, pr,T) =
g*(en, —pr, 7). Expanding A(pr,r) with respect to the surface harmonics as

Alpr,r) = Y Ay (0)VATY i (B), (2.21)

m=—I|

the self-consistency equation for the pair potential is given by

=S [ dQ )
Ay, (r) = 2mgokpT > / 4—:\/ 47TY12(P){£(5mpF, T)
n=0

i N'(pn) [
N épFarggnapFar _95napF>TépFa7’] ; 2.22
5N [APe 1)t pr 1) — glen pe T)A P, 7 (222)
where g, = —Vl(eH)N (in) denotes the coupling constant. Neglecting the spin magnetism,

we write the quasiclassical Green’s function in matrix form as g = go,. Consequently, the
gap equation [Eq. (2.22)] reduces to the self-consistency expression for the pair potential
in the Eilenberger equations.

2.4 Expressions for charge density and electric field

To obtain general expressions for the charge density and the induced electric field, we
write the charge density using the quasiclassical Green’s function. As a starting point,
we introduce the electron density n(r) as [11, 13]

14



(e 9]

n(r) = kgTTr i G(r,rie,)e - = 2/ deNg(e,r)f(e), (2.23)

n=—00 -

where f(e) = 1/ [e¥/¥»T + 1] is the fermion distribution function. Substituting Eq. (2.13)
into Eq. (2.23), we rewrite the electron density in terms of QR and QR(U as

£

n(r) ~ N(,un)Tr/f def(e)

diYy N(pin)

X /E {RegR(apF,’l‘) + N (1) RegR(l)(g,pF,T)}

©  N(e+p—ed(r)) “  N(e+p—ed(r))
+2/ de P —2/{_Sc de T 1 (2.24)

—00

We also introduce the electron density in the normal state n, as

Ny = 2 /_OO deN (e + pn) f(€), (2.25)

o0

where the prefactor of 2 is introduced so as to account for the two possible electron spin

states. We can now write the charge density using p(r) = en(r) — en,, as

€

p(r) ~ eN(un)Tr/f def(e)

—&c

dQ N (pim
X /_p [R62R<57PF,T‘) + MR@QR(I)(QPFW)]

dm N(pn) =
- 26/ deN(e + p—e®(r))f(e)
2 h deN L L 2.26
e de (@) | s BT 51 sem T 11| (2.26)

Furthermore, let us carry out a perturbation expansion with respect to the Lorentz and
PPG forces as gR = 25 +g? <.+ and QR(U - gOR(l) 4_2?(1) o 5,

up to the first order in terms of the quasiclassical parameter § below. We also use Eq.

, 14], which is expanded

(A.32), the QOR and gap equation (Eq. (2.22)) in the standard Eilenberger equations, and
approximate the distribution function, as follows:

1
elete®(r)—du—pm)/ksT 4 1
1 d 1

~ e(a_ﬂn)/kBT -+ 1 + d_ge(e—un)/kBT + 1 [6@(’]") - 5,“] (227)

Using them, we obtain a general expression for the charge density, with contributions from

the Lorentz force (in the presence of magnetic field), the gradient of the pair potential,

15



and the pressure due to the slope of the density of states as

p(r) ~ 27k TeN (i, TrZ/—pIng Ens PF, T)

+ eN/( ) /ic dSL [Neo(e,7) — 2N ()]

N (ftn) e/knl’ 1
= <—1>lceN<un ““ T Z A, (r
— 26N (1) [e®(r) — cw, (2.28)

where the cutoff 7. is obtained from (27, 4+ 1)7kgT = &., the coefficient ¢ is defined by

e 1
CE/ de— tanh 2/<:BT (2.29)

—E

with 7. denoting the superconducting transition temperature at zero magnetic field, and
Nso(g, ) is the LDOS obtained from the standard Eilenberger equations defined by

N (pn) sy

Nso(é,’r') = I

Tr

Reg, (e, pr, 7). (2.30)
Using Gauss’s law V - E = p/eg, we obtain an equation for the electric field as

— M VE(r) + E(r)
keT e
L VTrZ/—Img copr.7)

1N’(un)/ iz f(5)V o Veole,7)

e N(,Un) N(Mn)
+(— 1)32%(( ))VTr Z A, (7)), (2.31)

where Arp = \/€0/2¢2N () is the Thomas—Fermi screening length.

2.5 Chemical potential

Using Eq. (2.28), we obtain an expression for the chemical potential u as follows [11]

- _kaTTri/dQ ! /d3rlmg (ens Pr,T)
W%:; [ ot

_|_( 5 ’un T Z /d3r|Alm |2—|—e /d37“(13(7°). (2.32)
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3 Spontaneous Surface Charge on a d,»_,-wave Superconductor

In this chapter, we apply the augmented quasiclassical equations to a quasi-2D super-
conductor with d-wave pairing. More specifically, we consider a semi-infinite system on
x > 0 with a single specular interface with vacuum at = 0, cut along the [110] direction.
We show that the presence of the [110] surface in a d,2_,2-wave superconductor is accom-
panied by the spontaneous accumulation of electric charge due to the appearance of the
pair potential gradient force and a second force due to the slope of the density of states in
the normal states at the Fermi level. We also calculate the local density of states within
the augmented quasiclassical theory, taking into account first-order quantum corrections
due to the pair potential gradient (PPG) force and the pressure due to the slope of the
density of states (SDOS pressure). We observe zero energy Andreev bound states at the
[110] surface, consistent with other theoretical predictions and also in agreement with
experiments as a defining characteristic of the d-wave pairing in superconductors. These
zero energy bound states appear due to the sign change of the superconducting order

parameter of the d,2_,2 state. We further observe particle-hole asymmetry in the LDOS

y
deviations from the standard Eilenberger solutions. This asymmetry is a qualitative ev-
idence of electric charging at the surface of the superconductor, and may be observed in

experiments.

3.1 Formalism

3.1.1 Augmented quasiclassical equations

We consider a time-reversal invariant superconductor, the quasiclassical equations aug-
mented with the pair potential gradient terms are given in the Matsubara formalism by

[5, 11]

oy — Ay, g + it - Vg
ih A . ih A . .
+E{VAT378PF } —5{8PFAT3,VQ} :O, (31)
where e < 0 is the electron charge, €, = (2n + 1)7kgT is the fermion Matsubara en-
ergy (n = 0,£1,...), vp is the Fermi velocity while pg is the Fermi momentum. The
commutators [d,b] = ab — ba and {a,b} = ab+ ba. The functions § = §(e,, pr,7) and

A= A(pF, r) are the quasiclassical Green’s functions and the pair potential.
We consider the spin-singlet pairing state without spin paramagnetism. The matrices

R 1 0
y T3 = [0 _1]> (3-2>

g, A and 73 are written as

gzl.g- _if], T N
if —g

A¢p 0
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where real functions A = A(r) and ¢ = ¢(pr) denote the amplitude of the energy gap
and the basis function of the energy gap, and the barred functions in the Matsubara
formalism are defined generally by X (¢, pr,7) = X*(—¢, —pr, 7).

Following the procedure in Ref., we carry out a perturbation expansion of f and ¢ in
terms of 0 as f = fo+ fi+--- and g = g, + g1 +---. Then the main part in the standard
Eilenberger equations [13, 12] are obtained from the leading-order contribution in terms
of the quasiclassical parameter as

1
8nf0 + §h’UF : Vfo = A¢g0 (33)

We also obtain the relations from the normalization condition as

go = Go = sgn(en)\/1 — fofoll3]. Using Eq. (2.22) and neglecting spin magnetism, the
self-consistency equation for the pair potential is expressed as

A =2mgokpT Y (fod)r, (3.4)
n=0

where (- - - )r denotes the Fermi surface average, gy denotes the coupling constant respon-
sible for the Cooper pairing, defined by gy = —N(0)V;™ with V;*™ and N(0) denoting
the constant effective potential and the normal-state density-of-states (DOS) per spin and
unit volume at the Fermi level respectively. We obtain the expression for the first-order
Green’s function g; in terms of quasiclassical parameter ¢ from Eq. (3.1) as

ot Ofy i dfo
i 9 i 06 -
ALY ALY ‘ ‘
+3 apr V fo+ 2> opr Vo (3.5)

We note that the momentum derivative terms of ¢ come in the g; equation for anisotropic
superconductors|15].

3.1.2 Local density of states

The LDOS is obtained as[!1]

Ni(g,7) = N(0)(Regy + Regit)r + N'(0)e(Regy )¢
1

+ 5J\/’(O)A(Imf(]ﬁ + Im 34, (3.6)

where the functions ggfl and fI are the quasiclassical retarded Green’s functions which
are obtained by solving Eqs. (3.3) and (3.5) with the following transformation:

9o (&, Pr, 1) = go1(en — —ic +n,pr,7) and fo'(e,pr,7) = folen — —ic +1,pr,T),
and 7 is a positive infinitesimal constant (smearing factor).
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3.1.3 Electric field equation

Using Eq. (2.31), the electric field is expressed as[11]

o0

VB + B() =~ TS (Vg
- 1%53; / dEf(8)€<VReg£‘>F—g%T(OO))VA2, (3.7)

where At = /1/2€9e2N (0) denotes the Thomas—Fermi screening length, and the function
f(e) = 1/(e¥/*#T + 1) is the Fermi distribution function for electrons. The first term on
the RHS of Eq. (A.29) is the PPG term, while the second and third terms are the
contributions from the SDOS pressure. Furthermore, it can be seen that the third term
depends on the gradient of the amplitude of the pair potential. The parameter ¢ first
introduced by Khomskii et al.[10] is given by[l ]

/ el o © (3.8)
CcC = — tann ——— .
L e kT

where T. denotes the superconducting transition temperature at zero magnetic field. The
cutoff energies £.+ are determined by[!1]
Ect+ Ect

Ni(e,7)de = N(e)de, Ng(éex,r) = N(Ecx). (3.9)

Eer Eo

3.1.4 Density of states and the chemical potential difference in the homogeneous system

We introduce the normal DOS N (e), expressed as

N(e) E/%é(e—%—ku), (3.10)

where €, denotes the single particle energy. px and py are the x and y-components of the

quasiparticle momentum, respectively, while u is the chemical potential.

The superconducting DOS in the homogeneous system is written using Eq. (2.13) [11]

€]

NS(E) = N(O) < \/me(|5’ - Abulk’¢‘)>
80 (sn(E)y/2 — A 001 = Anade)) (3.11)

F

where Ay denotes the gap amplitude in the bulk.
The chemical potential difference between the normal and superconducting states of the
homogeneous system is given by[l1]

N’(O) Ect Ns%ulk(&i) N’(O) )
~N(0) /5C dee/f(€) {W B 1] B CWAbullm (3.12)
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where N2k (¢) is the LDOS in the bulk obtained from the standard Eilenberger equations
as

bulk/_\ __ le] _

The details of the derivation of Eqgs. (3.6), (A.29), (3.11), and (3.12) are available in
Ref. [11]

3
<
EEEEE TP =

[110] surface

Figure 3: Schematic representation of quasi-particle momenta p; and py transformed to px and py,

respectively by a /4 rotation. This rotation gives a [110] surface along the py direction.

3.2 Numerical procedures
3.2.1 Model d-wave pairing
We here perform numerical calculations for a quasi-two-dimensional semi-finite system

with a single specular surface. As a starting point, we introduce the single-particle energy

on a two-dimensional square lattice used for high-T, superconductors[36, 37, 14]

€p = —2t(cos Py + cos Py) + 4t1(cos px cospy — 1)
+ 2t5(cos 2py + cos 2p, — 2), (3.14)

with the dimensionless hopping parameters ¢, /t = 1/6 and t5/t = —1/5, and the momenta

Px and py are given by Py = (px —|—py)/\/§ and py = (py — Px)/V2. We also adopt a model
d-wave pairing as ¢ = C(cos px — cos py), where the real constant C' is determined via the

normalization condition (¢*)p = 1.
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Figure 4: (Color online) Fermi surfaces of n = 0.8,0.9 and 1.15 for the single-particle energy.



3.2.2 Self-consistent solution

We first obtain the self-consistent solutions to the standard Eilenberger equations in Egs.
(3.3) and (3.4) using Riccati method[13, 38,
used near the bulk is obtained by carrying out a gradient expansion[l3] up to the first-

, 40]. The relevant boundary conditions

order, as shown in appendix. We also assume mirror reflection at the surface such that

a(gnvaaO) = a(g’rwp/F)O); (315)
da
%(&upl:‘ao) = a(€n,p%,0) (316)
and
90(€n, PF, 0) = go(en, PR, 0),  fo(en, Pr,0) = fo(en, Pr,0), (3.17)

where pr and pf are the Fermi momenta before and after reflection at the surface respec-
tively and are related by[20]

Pr = pr — 2n(n - pp), (3.18)

with n=—&. We note that we need to solve Eqgs. (B.1) and (B.6) (see appendix) by
numerical integration towards the —& direction for vg, < 0 from the bulk at z = z. > &
to the surface at x = 0 and towards the & direction for vg, > 0 from the surface at x =0
to the bulk at z = x.. We also use the solutions obtained by the gradient expansion of
Egs. (B.1) and (B.6) up to the first-order in the region of |vg,| < (vp)p.

3.2.3 Calculation of surface charging

We next solve Eq. (A.29) to obtain the surface electric field with the boundary condi-
tions where the electric field vanishes at the surface and the first term on the LHS of Eq.
(A.29) is neglected near the bulk, using Eq. (3.5) and substituting the Green’s functions
fo and g&t into Eq. (A.29) accordingly. We obtain the retarded Green’s functions with
the transformation e, — —ic + n and the same procedures as in the calculation of the
Matsubara Green’s functions. The derivatives 0fy/0x and 0fy/Opr. in Eq. (3.5) are also
shown in appendix. We finally calculate the corresponding charge density using Gauss’
law, V - E(z) = p(x)/€e. Furthermore, we calculate the LDOS, by substituting the re-
tarded Green’s functions g¢; and fi* into Eq. (3.6). We also use g = 0 at the bulk as a
boundary condition to solve Eq. (3.5). We choose the parameters appropriate for cuprate
superconductors as 0 = 0.05, t = 144, and Arp = 0.05&y, where A, denotes the gap
amplitude at zero temperature.
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Figure 5: (Color online) Temperature dependences in the self-consistent pair potential for the dj2_ -
wave state with a smooth [110] surface at = 0. At temperatures T' = 0.37¢ (green solid line), 0.5
(blue long dashed line), and 0.77¢ (red short dashed line), for the filling n = 0.9.
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Figure 6: (Color online) Superconducting DOS Nj(g) (green solid line) and the normal DOS N(g) (red
dashed lines) in the homogeneous system at temperature T" = 0.1, for the filling n = 0.9, in units of
N(0) over —40Ag < & < 60A,.
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Figure 7: Temperature dependence of the chemical potential difference du between the normal and the

superconducting states of the homogeneous system at the filling n = 0.9.
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Figure 8: (Color online) Surface charge due to SDOS pressure, in units of pg = £9A¢/|e|€2, with n = 0.01,
at temperature T' = 0.5, for the filling n = 0.9, with contributions from the second term in Eq. (A.29)
(blue long dashed line), the third term in Eq. (A.29) (green short dashed line). While the total charge
density due to the SDOS pressure is given by the red solid line.
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Figure 9: (Color online) Total spontaneous surface charge density (red solid line) due to the PPG force

(blue long dashed line) and the SDOS pressure (green short dashed line), in units of py = g9Ao/|e|€2, at
temperature T' = 0.57, for the filling n = 0.9, with n = 0.01.

25



0.06
0.04;
0.02}

-0.02f
-0.04|
-0.06f
-0.08}
0.1}
-0.12|
0.14
-0.16 :

SDOS + PPG —

p(x)/po

2 3
/&0

Figure 10: (Color online) Total spontaneous surface charge density (red solid line) due to the PPG force
(blue long dashed line) and the SDOS pressure (green short dashed line), in units of py = e9Ao/|e|€3, at
temperature T' = 0.5T¢, for the filling n = 1.15, with n = 0.01.
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Figure 11: (Colour online) Temperature dependence of the total surface charge induced by the PPG force
and SDOS pressure, for the filling n = 0.9, in units of py = £9Ao/|e|€2, with n = 0.01, at temperatures
T = 0.3T; (green short dashed line), 0.57¢ (red solid line), and 0.7T¢ (blue long dashed line).

3.3 Results

We discuss our numerical results as follows. Figure 5 shows the self-consistent gap
amplitude for the d-wave paired superconductor with a [110] oriented surface at the filling
n = 0.9. The pair potential is suppressed around the surface and vanishes at the surface
due to a change in its sign around the surface. The slope of pair potential is described
by &1 = [A(c0)] ! lim,_,o[A(x)/z]. Although &; decreases as the temperature is lowered
in high-temperature region, it saturates to the finite value as T" — 0. Indeed, &; behaves
quite similar to the coherence length incorporating both energy-gap and Fermi-surface
anisotropies defined as & = [(h2v2,¢%)p/(#*)r]2 A (c0). In this sense, the behaviour of
pair potential in the surface system is distinguished from the one in the vortex systems
in type-1I superconductors, which induces vortex-core shrinkage[!1, 12].

In Fig. 6 , the superconducting DOS and the normal DOS in the homogeneous system
at the filling n = 0.9 connect at energies ¢ = £, and £._. They connect more smoothly
taking into account higher order derivatives of the DOS at the Fermi level, but the higher
order derivatives contribute little to quantities. Thus, we can perform the following cal-
culations using these cutoff energies &...

In Fig. 7, we show the temperature dependence of the chemical potential difference

between the normal and superconducting states of the homogeneous system for the filling
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Figure 12: (Color online) LDOS N;(e,z) at = 0 (green short dashes), & (blue solid line), and 2&y (red
long dashes), with n = 0.04, at temperature T' = 0.17¢, for the filling n = 0.9.
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Figure 13: (Color online) Deviation INFFS (e, ) from the standard Eilenberger solutions in the LDOS
due to quantum corrections from the PPG within the augmented quasiclassical theory, at x = 0 (green

short dashes), & (blue solid line), and 2&y (red long dashes), with n = 0.04, at temperature T = 0.1T,

for the filling n = 0.9.
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Figure 14: (Color online) Deviation § NSP95 (e, 2) from the standard Eilenberger solutions in the LDOS
due to quantum corrections from the SDOS within the augmented quasiclassical theory, at © = 0 (green
short dashes), & (blue solid line), and 2&y (red long dashes), with = 0.04, at temperature T' = 0.17T¢,
for the filling n = 0.9.
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n = 0.9 due to the SDOS at the Fermi level. Assuming roughly normal metal at the [110]
surface, we can explain that the (effective) chemical potential difference between the [110]
surface and the bulk is what brings about the redistribution of charged particles.

Figure 8 plots the surface charge density due to the the SDOS pressure for the filling
n = 0.9. The SDOS pressure charge consists of the second and third terms in Eq. (A.29),
which have different signs respectively. As seen in Fig. 8, the third term dominates over
the second term and thus the SDOS pressure charge at the surface becomes negative in
total. We also confirmed the third term was dominant at all temperature for the fillings
n = 0.8, 0.9, and 1.15 which are also realistic doping levels. Furthermore, Fig. 9 shows
the total surface charge with contributions from the PPG force and the SDOS pressure
for the filling n = 0.9. The SDOS pressure gives the dominant contribution to the surface
charge within our present model at n = 0.9. We also confirmed that the SDOS pressure
was dominant at not only n = 0.9, but also at n = 0.8 and n = 1.15. Since there is no
supercurrents near the surface, there are no phase terms of the pair potential in the PPG
force terms which are dominant in vortex systems[15]. Therefore, the contribution from
the PPG force to the surface charge becomes small, and the SDOS pressure is dominant in
a wide parameter range of the semi-finite system, compared to the vortex system. Figure
10 shows the total surface charge with contributions from the PPG force and the SDOS
pressure for the filling n = 1.15. The PPG force contribution has the same negative
sign as the SDOS pressure contribution, with the SDOS pressure giving the dominant
contribution to the total charge.

As shown in Fig. 9 and 10, the sign of the charge density due to the PPG force at
n = 0.9 is different from the one at n = 1.15. To explain this fact, we assume the form
of pair potential as A ~ Ay tanh(z/&;) and substitute it into Eq. (C.6) with taking
x — 0. By this procedure, we obtain

203 ey A2 dvup
0) ~ — Pk (g7 ——= 3.19
pPPG( ) f%e <¢ dme F ’ ( )
where pppg represents the charge density induced by PPG force and a® = nkpT > o0 .,

As described in appendix B, this approximation is valid at high temperature near the
critical temperature. Relying on this expression, we see that the filling dependence is
determined only by ($*dvp, /dpr, ~=)dvp,/dpr, o< (Bgl ))m = (Bgl ))yy, where Egl ) is a Hall
coefficient in the normal state [11]. Therefore, as shown in Fig. 1 of Ref., charge density
caused by PPG force also changes its sign around n = 1, which is mainly caused by the
change of Fermi-surface curvature.

In Fig. 11, the temperature dependence of the total surface charge for the filling n = 0.9
is shown. The total spontaneously induced surface charge increases with a decrease in
temperature. This follows the temperature dependence of the slope of the pair potential

shown in Fig. 5. One may notice that the second order derivative of p(x 2 0) with respect
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to x is not monotonic. The second order derivative of p(x = 0) is given by

(0%p(x) /02%) =0 = p'P(0) < =[pspos(0)/Epos + prra(0)/Eipal: (3.20)

where &spos (Eppg) is defined by the value of x at the first peak of charge density due
to the SDOS pressure (PPG force). Thus, not only p;(0) but also ; is necessary when
we consider p®(0). In the present case, although p(0) decreases monotonically as tem-
perature decreases, p®(0) behaves nonmonotonically because of the competition between
pspos(0)/Epos < 0 and pppc(0)/&Epg > 0.

Figure 12 plots the normalised LDOS for the filling n = 0.9 at the regions = = 0, &,
and 2&y. The peak structure appears as we move from the bulk to the surface. Figures 13
and 14 plot the deviations 6 NFP% (g, ) and NSPOS(g x) from the standard Eilenberger
solutions in the LDOS at the filling n = 0.9, due to quantum corrections from the PPG
force and the SDOS pressure respectively. The deviations §NPPG (g, x) and SNSPOS (g, )
are defined by

SNIPCG (e, 2) = N(0)(Regl)F, (3.21a)

SNEPOS e, 1) = N'(O)e(Regl)r + 5 V(O AMIm s+ Tuffr. (321b)

We observe particle-hole asymmetry within the augmented quasiclassical theory. The
PPG force and the SDOS pressure change their LDOS peaks near zero energy and around
energy gap. This asymmetry indicates the presence of electric charging at the surface.
The relation between the charging and the particle-hole asymmetry in the LDOS has
already been discussed in the vortex system|[15, 33]. Furthermore, multiple turning points
appear in the LDOS deviations in the region |/Ay| < 1.5. At = = 0, these sign changes
appear due to the presence of small peaks in the LDOS at finite energies both within
the standard Eilenberger equations and the LDOS with first-order quantum corrections.
In the bulk region, the difference in the coherence peaks of the gap-like structures as
well as the difference in the width of the energy gap between the LDOS in the standard
Eilenberger solutions and the LDOS in the augmented quasiclassical equations might be
the origin of these multiple turning points. Although it remains to be clarified if these

multiple turning points have any physical meaning.

32



3.4 Summary

In summary, we have performed a microscopic calculation on surface charging at a single
[110] specularly reflective surface of a d-wave superconductor with a Fermi surface used for
cuprate superconductors using the augmented quasiclassical theory. We have shown that
despite the absence of supercurrent, charge is spontaneously induced around the surface
due to the PPG force and the SDOS pressure. The SDOS pressure gives the dominant
contribution for the realistic electron-fillings n = 0.8, 0.9, and 1.15 at all temperatures.
This differs from the case of the charging of an isolated s-wave vortex carried out by
Ueki et al., wherein the SDOS term dominates only near the critical temperature. We
also have found that it is important to consider the Fermi surfaces, since the contribution
from the SDOS pressure greatly depends on the Fermi surface structure. We have also
calculated the LDOS within the augmented quasiclassical theory, taking into account the
contributions due to the PPG and the SDOS pressure. At the surface, the LDOS shows a
peak structure which signifies the presence of ZES. The bulk region shows a (nodal) gap-
like structure which is a characteristic of the superconducting state. We have also shown
the existence of particle-hole asymmetry (SDOS gives a strong particle-hole asymmetry)
in the LDOS. This asymmetry indicates the presence of electric charge.

Although our present study is restricted to a smooth surface without edge currents,
the presence of surface roughness is expected to affect the surface states and may conse-
quently alter the surface charge. In addition, surface imperfections appear in the process
of fabricating real samples. It is therefore important to take this into account in theory.
It is relatively easier to consider surface roughness within the quasiclassical theory using
the random S-matrix theory[!1] or by adding a disorder-induced self-energy|[!15, 16]. Fur-
thermore, in the presence of edge currents, the PPG force contribution to the charging
effect may be enhanced due to the appearance of the phase terms of the pair potential.

A combination of surface roughness and chirality may reveal very interesting physics.
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4  General Summary and Conclusion

In this thesis, on the basis of the augmented quasiclassical equations, we have performed
a microscopic study on the spontaneous redistribution charge near the surface of a d-wave
superconductor cut along the [110] direction. More specifically, we have shown that even in
the absence of supercurrents in the system, in a d,2_,2-paired superconductor cut along the
[110] plane, interesting surface effects appear and are accompanied by the pair potential
gradient force and another force due to the slope of density of states in the normal states
at the Fermi level. We have shown that these two forces induce spontaneous charging
in the model d-wave superconductor. In carrying out our numerical study, we adopt a
model d-wave pairing suitable for cuprate superconductors and therefore emphasise that
this study can be applied to both hole-doped and electron-doped cuprates.

Furthermore, we have also calculated the local density of states within the augmented
quasiclassical theory taking into account the first-order quantum corrections in terms
of the quasiclassical parameter, due to the pair potential gradient force and the slope
of the density of states. Although it has already been pointed out by Hayashi et al.
and also recently by Masaki, that particle-hole asymmetry in the local density of states
at the vortex core of superconductors shows the presence of electric charge. We have
extended this idea to the surface state and have shown that the presence of the pair
potential gradient force and the slope of the density of states give rise to an observable
local particle-hole asymmetry in the local density of states which varies spatially from
bulk to surface. We therefore conclude that this local asymmetry is a qualitative evidence
of electric charging at the nodal surface of the d-wave paired superconductor.
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Appendix

A Derivation of Augmented Quasiclassical Equations

Here, we give an overview of the derivation of the augmented quasiclassical equations
(Eq. (2.1)) in the Matsubara formalism, following earlier works [5, 11, 13]. These elegant
equations are useful for a microscopic investigation of the redistribution of charged par-
ticles in superconductors. We use the Green’s function formalism to derive the Gor’kov
equations from which the quasiclassical equations are obtained.

A.1 Matsubara Green’s functions and Gor’kov equations

As a starting point, we consider electrons in static electromagnetic fields described by
the Hamiltonian given in second quantized form as

i / de 1 (€) K (&)
o / a6, / dE V(1 — 1) (60T (E)D(E)D(E), (A1)

where the variable £ is defined explicitly as £ = (v, a) with 7 and « denoting the space and
spin degrees of freedom, respectively. @ZA)T(S) and @Z;(ﬁ ) are the second quantized creation
and annihilation operators of the fermion field, respectively, we also use T to denote
a Hermitian conjugate, and V(r; — r3) is the interaction potential. The one-particle
operator K1 now contains the vector potential A; = A(r;) and is expressed as

1 0 ?

— | —ith— —eA(r1)| +eP(r1) — u, (A.2)

K
"Tom ory

where m is the electronic mass, e < 0 is the electronic charge, and p is the chemical
potential. ®(r) and A(r) are the static scalar potential and vector potential, respectively,
and static electromagnetic fields are expressed here in terms of them as E(r) = —V&(r)
and B(r) = V x A(r). Furthermore, we introduce the fermion field operators in the

Heisenberg representation in the Matsubara formalism as
di(1) = (e )e ™
ha(1) = el (gy)e ™

where the argument 1 can be written in explicit form as 1 = (£, 1), where the variable

, (A.3)

71 lies in the range 0 < 7 < 1/kgT with kg and 7" denoting the Boltzmann constant and
temperature, respectively. Using them, we introduce the Matsubara Green’s function

Gii(1,2) = —(Tdi()ihs4(2)), (A.4)

The bracket notation (---) and the operator T, denote the grand-canonical average [13]
and “time”-ordering operator, respectively. Particle-field operators under T, are placed
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from left to right in order of decreasing “time” 7. For example

¢(§1)@5T(§2) 1 > T,
—¢T(f2)¢(f1) 71 < Ta.

In the RHS, the field operators are placed in the chronological order, and a pre-factor of

T (d(&)d1 (&) = { (A.5)

+1 appears, depending on whether the transposition is even or odd.
The elements of G;;(1,2) satisfy the following symmetry relations;

Gij(la 2) = —Gg,j73,2-(2, 1) = G;i(fzﬁ,fﬁz), (A-6)

where the superscript * denotes complex conjugation operation. The Matsubara Green’s
function can be expanded as [13]

Gy(1,2) = ksT Z Gij (&1, Eaye,) e on(mmm2) (A7)

n=—oo

where the argument €, = (2n+ 1)7kgT is the fermion Matsubara energy (n =0, £1,...).
Separating the spin variable o =7, from £ = (7, a), we introduce a new notation for

each Gj; as
G11(&1,&2180) = Gayaa (11,72 €0), (A.8a)
G12(§ 527 TL) Fal,az (’rla 7"2; gn)a <A8b)
G21 (g 527 TL) _Fa1,0<2 (rlu o] ‘gn)a (A8C>
G22 (517 527 5n) - _G al,00 (rla T2 gn)- (A8d)

Subsequently, we express the spin degrees of freedom as the 2 x 2 matrix

G¢¢("°1;"°2;€n) GN("H,T%En)

G(ri,ro5e,) =
_< 1,72, n) GiT(T17r2;€n) G\H,('I']_,Tg;gn)

Therefore, the Green’s functions G and F from Eqs. (A.6) and (A.7) have the following
symmetry relations;

Gri,roien) = Gl (o, m1y—e4) = G (12,715 —€0), (A.10a)

E(Th T2, €n) = —ET(’P% 1, —€n) = —ET("“27"°1; _gn)a (A.lOb)

where the superscript ¥ denotes the transpose. It follows from these symmetry relations
that G(7ry, 795 €,) = G*(71,79;6,) and F(ry, 795 6,) = F*(r1, m2;€,) hold. Using G and F,
we define a 4 x 4 matrix in Nambu space by

Q("‘1,7“2;€n) E("‘1,"’2;5n)

G’(rl,rQ;gn) = (A.11)

—E*("“b?b;é‘n) _Q*(r17r2;5n)
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Within the mean-field approximation, the Nambu Green’s function satisfy Gor’kov equa-

tions [13, 17]
(isn - KI)QO 0 A
> G ) 7 n
[ 0 (ien + K)oy (77
- /d37“31;deG(’l"1, T3)G(T3>7‘2; €n) = 5(7‘1 - 7'2)7 (A-12)

where g, and 0 denote the 2 x 2 unit and zero matrices, respectively. Matrix LAle(;(frl, r3)

denotes

Upac (T, 72) = (A.13)

QHF(”‘l,"‘z) A(Tlﬂ"z)
—A*(r1, 7)) —Upp(ry, r2)

where matrices Uyp(r1, 72) and A(ry, r5) are the Hartree—Fock and pair potential, respec-
tively, and have the following definitions;

Ugp(T1,m2) = 6(r) — 7°2)Q0T1"/d37”3v(7‘1 —T3)

X k’BT E ’I"3, T3, 6n —ien0—

—V(ry — ro)kgT Z (11,795 8,)e om0, (A.14)
A(ry, 7o) =V(ry — ro)kpT Z (r1,72:60), (A.15)

n=—oo

where the quantity 0_ denotes an extra infinitesimal negative constant. Finally, matrix b
on the right-hand side of Eq. (A.12) is defined by

o(r1 — 12)ay 0
0 5(7"1 — Tg)go

5(7"1 —1y) = (A.16)

A.2 Gor’kov equations in the Wigner representation

We highlight that one of the known fundamental difficulties encountered when applying
the original Wigner transform [l 1, 13, 18] to charged systems is that it breaks gauge
invariance with respect to the center-of-mass coordinate. To ameliorate this difficulty, we
adopt the technique of gauge-covariant Wigner transform which has been devised for the
Matsubara Green’s functions defined by

é(gnvpa 7“12)
= / AP0 PTEND (11, 7)) G (11, 95 20) T (172, 712)

Q(€n7 p, 7'12) E(€m D, 7‘12)

} A17a
_E*<8n7 —D, T12) _Q*(gna —D, Tl?) ( )
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with 719 = (11 + 72)/2 and 715 = 11 — 79, its inverse is expressed as

N

G(r1,79;€0)

. By .
ZF(Tl,le)/ (27T£)362p’”2/h6’(5n,p,rlg)F(rlg,rg). (A.17Db)

The matrix I is given by

. iI(ry,r2) 0
D(r1, ) = [QO@ - ] . (A.18)

—il(r1,r2)
0 aye

Where the function I(7, ) is the line integral expressed as

I(ry,7m) = % A(s) - ds, (A.19)

2

with s denoting a straight-line path from 75 to r;. Similarly, we rewrite the mean-field
potential in Eq. (A.13) as

Z/A{BdG (p, 7“12)

= /d37"12e_ipi12/hf‘(7“127 Tl)aBdG<Tla Tz)f(r2, T12)

_ | Unr (p,712) A(p,T12) (A.202)
—é*(—Pﬂ“m) —MEF(_p,"“u) ’
It has an inverse which can be written
aBdG(Tl, 7“2)
= d’p ip-T12/h7 ) °
=I'(ry,m12) / g €T Upac (P, T12)T (712, 72). (A.20b)
(27h)

The quantities Uy (p, 712) and A(p, r12) satisfy the following symmetry relations

U (p,712) = Ulp(p,712) and A(p,712) = —AT(—p,715). Furthermore, we consider
the next-to-leading-order contribution in the expansion in terms of the quasiclassical pa-
rameter. We hereby obtain Gor’kov equations in the Wigner representation as (see Ap-
pendices A.3 and A.4 below for the derivation of the kinetic-energy and self-energy terms

in the Wigner representation, respectively)

292
{zan {g,, — zh—v 0 — f 8 ZheE(r) . g} %3} G(en, p,T)

2 8m 2 op
- A( ) o G(gnapa )
ih 0 . A . .
+ 5 [ Op} G(en, p,7) + 73G(en, P, T)Tg] =1, (A.21)

where &, is defined by £, = €, + e®(r) — u with ¢, denoting the single-particle energy, m
is the effective mass defined by m* = p/v, 1 denotes the 4 x 4 unit matrix, 75 is defined
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7y = [QO 0 ] , (A.22)
0 —0y
0 is given by
.
837“ :on G or G*
o 2e
0= R p— : , A.23
5y hA(r) on F ( )
0 L% P
| o + i (r) :onF

and the operator o is also defined as
. - . th (< = -
itp.r) b, = ilpr)esp | (53, -9, F) | itw.r) (A21)

Taking the Hermitian conjugate of Eq. (A.21), use the symmetries L}]];dG (p,7) = Upac(p. )
and GT(en,p, r)= G(—sn,n r), and replace £, — —¢, to obtain

. 292
hv h*0 zhE (‘9]}

G(en,p,7) {Zani — T3 [gp + 27 -0 — S + 56 (r)- a_p
— @(ab,p, r)o A(p, r)
h 0 A o . .
_ %ev- {B(T) X %} [3G(€n,p77“) +T3G(8n,p,’l“)7'3} =1 (A.25)

Next we operate 73 on the left- and right-hand sides of Eq. (A.25), and subtracting from
Eq. (A.21) and also adding to Eq. (A.21). We arrive at the following:

|:Z.€n7ﬁ3 - A(z)a 7‘)7237 7ﬁ3é(gn>p7 T):| + thv - 8%3é(€n7p7 7’)

, 0 . - th 0 A
+ theE - a—pTgG(éTn,p,’l") + Eev . (B X 8_p) {73,T3G(€n,p, r)}

=0, (A.26a)
S {iEnts = A1), 7Cen 7))~ &Gl pir) — 1
h282 . 10 0 ~
+ {m* 723G<5nap7 'I") + %6’0 : (B X %) |:7A-37 7A_SC:(‘L:napa ’f‘)
=0, (A.26b)

with [a,b] = ab — ba, [a,be = aob—boa, {a,b} = ab+ ba, and {a,b}s = aob+boa.
Now, in terms of Eq. (A.17a), we introduce the quasiclassical Green’s function

o

d N
g(gn;pr r) = P/ %if—:ﬂG(‘g?%pv r)

—0o0

= [ g(gmpFaT) _ii(gmpFaT) ]

. A.27
_Zi (6717 _pF7T> _g*(gna _pF7T) ( )
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where P denotes the principal value. It follows that the upper elements g and [ satisfy

g(en, Pr.7) = —g'(—€n, Pr.7), f(en, Pr.7) = —f (—&n, —pr, ). To derive the equation
for g from Eq. (A.26a), we express 8, = 9 + v(9/9) with p| denoting the component

on the energy surface { = &, set p = pr except for the argument of G, integrate Eq.
(A.26a) over —e. < &, < &, and use v X Gp = v X Jp and

P / dg,,%é(gn, p,r) =0. (A.28)
—00 p

Neglecting terms with eE - 0p, and taking the limit e. — oo, we obtain the augmented
quasiclassical equations with the Lorentz force and the pair potential gradient terms as

isn%S - A(pFa )72 g(gmpFa 'I‘):| + Zth . 8§(€n:pF7T)

ih 0 .
+ 5 €V - (B X 3_pp> {73,9(en, pr,7)} = 0. (A.29)
Applying the same procedure to Eq. (A.29), we obtain the equation for
iV enper) =P [ ErifgnGlenpr) +1] (4.30)

as

. 1. . A .
g(l)<€napF7 T) = 5 {Z€n7—3 - A(pF7 T)T3ag(€n7pF7T)}
h?0? ih <

(o}

+ {m* g(gnapFa T.) + 5 €VF -

3 B x i) (73, G(en, PR, T)] - (A.31)

op
We then neglect the second and third terms in Eq. (A.31) to take the leading order as

. Ty, . A ..
Y (en, pr,7) = 5 {wm — A(pp,7)73, §(en, PP, 'r)} . (A.32)

It is important to note that Eq. (A.32) is useful for evaluating the terms of the slope of
density of states within the augmented quasiclassical theory. It accounts for the deviations

in the local density of states from the standard Eilenberger solutions.

A.3 Kinetic-Energy Terms in the Wigner Representation

Here we show how to simplify the kinetic-energy terms contained in the Gor’kov equation
[Eq. (A.12)] in the Wigner representation [Eq. (A.17b)]. To this end, we introduce the

following functions

! .  ev—1 =yt
81(u)z/0 dne™ = — :ZT’ (A.33)

n=1
1 el —1-u 2 2
n=2 :
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These functions are used to rewrite the phase factors which appear in in Eq. (A.17b) as

follows;
e T 0 T
I(ri,ms) = 26 (; : %) A(ry) - 712 (A.35a)
e T 0 T
I(’l"m, 7"2) = E,gl (-% . 6712) A(I‘lg) : % (A35b)

Next, we use 0/0ry = 0/0712 + (1/2)0/0r15 and Eq. (A.35) to rewrite (0/0r1)I(ry, 712)
and (0/0ry)I(r12,72) in the form

0
a—rll(’f‘l, 7"12) ;A(’l"l) — %A(Tlg)
r 0 T12 _
— 4_h |:2(91 (7 87‘12) ( 5 87‘12>:| 7‘12 X 119, (A36a)
O llrm) = S Afry) — 28, (-T22 B(ry) x 7 (A.36b)
arl 12,72 2h 12 4h 2 87'12 12 12- .

Next, we consider the kinetic-energy terms in Eq. (A.12),

/€1Q(7°1, T2, €n) /Clﬂ(’rh T2, €n)] (A 37>

ICTE* ("“1, T2, €n) ’CTQ* ("“1; T2, €n)

Substituting Eq. (A.17b) and using 9/0r; = 9/0712 + (1/2)0/0r12 and Eq. (A.36), we
can transform each submatrix on the right-hand side as

~

3
]C G . ~ iI(Tl,T12)+i1(T12,T2) d p ip-flg/h
1G (71, m956,) @ 2

R R
- %_Le% {B(ru) X %} - %_LeE(rlg) : %}Q(sn, P, T12), (A.38a)
X . i Ep ps
KiE(r1,75;6,) ro e rmi2)= (’"12“)/We”’ 2/
— h—z {51(?12 — 22—7§A(r12)] : — %e% : [B(’rlg) X E%}
- GeB(ra) - 5 }ﬂsn,p, ri2), (A.38)
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. . . By
KiE" (11,795 €0) %e_”(”l”’”)*”(”l?”"?)/—e“"m/h

(2wh)3
2 )
p th p 0 2e
i ) R A
{Zm +ed(r9) — 1 > m [87'12 +1 : (’I"lg):|
B[ 0 2e > ihop )
_ 0 A e B Il
v {37”12 i (’l"lg):| + e [ (r12) x (9p}
ih 0 .
- E‘EE(’PH) : 8_p}E (&n, =P, T12), (A.38¢)
’C*G*('f' T9; € ) ~ e_”(rlvﬁ?)_“(ﬁ%"?)/—d3p eip‘f‘m/ﬁ
1=~ 1,72,¢cn (27Th)3
2 . 2 a2
p thp 0 h* 0
Ea ) g8 _ - 7
% {Zm +ed(riz) 2m Orp  8mor?
ih 0 ih 0
+ 36% . [B(Tlg) X 8—p:| — 56E<'r12> . %}Q*(ﬁn, —Pp, ?”12). (A38d)

For clarity we note that the following approximations were used in arriving at Eq. (A.38).

(i) We have neglected spatial derivatives of both E and B, which amounts to setting
& — land & — 1/2.
(ii) We have also neglected the second-order terms in 8,,, E, and B except that of 92

r12°

(iii) We have expanded ® around 715 up to the first order in 715 as ®(r) = P(ryy) —
E("'12) . 77'12/2.

By following these procedures, we obtain the kinetic-energy terms of the Gor’kov equa-
tion [Eq. (A.12)] in the Wigner representation as

/ d3f126—ip-'f‘12/h

A

K 0
X F(’T’lg, 7‘1) 190 <

0 _’&IQO
2 . 2

P th p h

2m + eq)(rlg) —HET 2m O — 8mal22

G(Th T2, 5n)f(7'2, 7“12)

h 0
— %€E<7‘12> . %

A

7A—3G(6n7 D, T12)

— —e— - |:B<’I"12> X —p} [3(?(%,1?,7“12) +7A'3@(8n>p77°12)%3] : (A.39)
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Unr I AG”

Figure 15: Schematics of the paths of the phase integrals.

A.4 Self-Energy Terms in the Wigner Representation

Here we evaluate the self-energy terms in Eq. (A.12). To this end, we substitute Eqs.
(A.17b) and (A.20b) into Eq. (A.12) and rewrite the expression as

/d3T37;deG(T177’3)0(7“3,”“2;%) =

[ J(r1,m00) — K(r1,masen) Ly, moi20) — M(r1, 7o)

, A.40
L*(""l,""z;ﬁn) - M*(”‘l,’rz;ﬁn) l*(""la""z;&n) - K*(T1,T2;€n) ( )

with the matrices J(rq,19;¢,), K(7r1,72;6,), L(r1,79;6,), and M(ry,7e;e,) defined in
integral form by

J(ry,r5e,) = /d3r3QHF(r1,rg)Q(’r'g,rg;en), (A.4la)
K(ry,ro;e,) = /d37"3é('r‘1,Tg)E*(Tg,Tz;gn), (A.41Db)
L(ry,ro;e,) = /d3r321HF(r1,rg)E(rg,rg;en), (A.41c)
M(ry,re;e,) = /d3r3é(r1,rg)Q*(r3,r2;5n). (A.41d)

Firstly, let us consider Eq. (A.41a). Putting Egs. (A.17b) and (A.20b) into Eq. (A.41a),
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we arrive at the matrix J(7ry, ro;¢,) as

) ) d3p d3p/
. _ il(ri,ri2)+il(ri2,r2) 3
J(r1,79;6,) = e\ T02 12,72 /(27rh)3/(27rh)3/d T3

% ei¢123+z‘p-ﬂ3/h+ip"F32/hZL{HF (p,713)G (en, P, r32), (A.42)

where the phase integral ¢35 is expressed as
G103 = % A(s) - ds, (A.43)
Ci23
with the paths of the phase integral, Cs3 given in Fig. 15. Applying Stokes theorem
and approximating B(r) ~ B(rs), and noting Fig. 15, the phase integral ¢qo3 is also
expressed as

P123 = %/5123 B(r)-dS ~ ﬁB(rlg) (T30 X T13). (A.44)

By the same procedure used in the standard Wigner transformation, [?] we obtain the
matrix J(ry, ro;e,) with Upp(p, r12) and G(e,, p, r12) in the Wigner representation as

ol (r1,r il (r12,7 d3p ip-T )
l(r:[’ 1’02; gn) ~ e ]( 1, 12)+ I( 12, 2) / We P 12/rQHF(p, 1’112)
o(i/2)eB(r12) ( (8px8p) ) oi1/2) 9128 —(ih/2)<8_p-312G(€n,p’ r12), (A.45)

where the left (right) arrow on each differential operator denotes that it acts on the left
potential (right Green’s function), appropriately.

We next consider Eq. (A.41b), substituting Eqs. (A.17b) and (A.20b) into Eq. (A.41d).
Then, we can express K (r1,72;¢,) as

. , d3p d3p
K -n_szmﬂmmm/" / t/ﬁ
K(ry,raien) =e (2wh)? ) (27h)3 "

w @i (P1+da+¢3)=2il(r13,712) =20l (T12,r30)+ip-T13 /htip' T3z /h

X A(p, 13) F* (€0, —D', T32), (A.46)
where the phase integrals ¢; + ¢2 + ¢3 are defined by

¢1+ G2+ @3
A(s)-ds+< ¢ A(s)-ds+ A(s) - ds. (A.47)
h Je, h Je, h Oy
Noting the integral paths C, Cs, and C3 given in Fig. 15, we see that ¢1 + ¢ + ¢p3 = 0.
Thus, the matrix K (rq,79;¢,) with A(p, r12) and F*(e,, p, r12) in the Wigner represen-

tation is given as

d3

) o I (r1,r12) 41T (r12,72) D ipwia/h
K(r1,79;,) & e (T1m2)tiimzr /(%h)?’ep 12
X = . =
% é(p, r12)e(lﬁ/2)31231:—(”5/2)3p312E*(€m —p, 7“12)- (A.48)
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Finally, we calculate L(7ry,72;¢e,) and M (71, 79;e,). Substituting Eqgs. (A.17b) and
(A.20b) into Egs. (A.41lc) and (A.41d), the matrices L(ry,7r2;¢e,) and M (7, 19;€,) are

given as

. . d3p d3p/
. _ ot(r1,r12)—il(r12,72) °
L(rl,rz,ﬁn) — p(rir2 12,72 / (27rh)3 / (27Tﬁ)3 /d T3

X e"(¢13+¢2)—21'1(7“3277‘12)+iP'Fls/h“‘ip,":&/hQ{HF (p,m13)E(en, P, 732), (A.49)
: : d*p a*p’
M cg,) = ZI(’I‘l,’r'lz)—’L](’r‘lg,'l‘Q)/ / /d?)
M(ry,raien) = @@ ) @mnp ) O
X e"(¢>1+¢23)*2U(T137T12)+ip'flﬁ/h+i”/'f32/hA(p7 713)G" (60, —D', T32), (A.50)

with the phase integrals ¢13 + ¢2 and ¢; + ¢o3 expressed as

Gt 2= b Als)-ds+ ¢ Als)-ds, (A51)
Ci3 Co

1+ o3 = % A(s)-ds+ % A(s) - ds. (A.52)
C1 Ca3

Following the same procedure as used for Eq. (A.44), we perform the phase integration
¢13 + @2 and @1 + P93 as

P13+ P2 = %B(Tm) (P32 X T13), (A.53)
P23 + P1 = —éB(ﬁz) - (P32 X T13). (A.54)

We therefore obtain the matrices L(7y, 79;¢,) and M (7, 7r9;€,) with the potentials and

Green’s functions given in the Wigner representation as

ip-flz/h

) . d3p
. ~ ot (r1,r12)—il(T12,72) &
L(ry,re;6p) R e 112 e /(27rh)3

X Uyp (P, T12)e(ih/4)63(r12)~(5pxB)p)

% e(m/g)b_m.3p—(ih/2)<8_p~312E(8n7 P, ’I"lg), (A55)

ip-’l_'lg/h

, 4 d3p
. et (riri2)—il(riz,me) [ 28
M(Tla T2 En) ~ € P e / (27Th)3

« Alp, ru)e_(m/z;)eB(rlg)-(%pxﬁp)

« e(ih/2)<3_12'3p—(ihf/2)§P'312Q*(gm —p, ’r'lg). (A56)

Finally, we use Egs. (A.45), (A.48), (A.55), and (A.56) in Eq. (A.40) to obtain the
self-energy terms of the Gor’kov equation (A.12) in the Wigner representation. Further-
more, we carry out an expansion of the Hartree-Fock potential formally as Uyp(p, ) =
Unr(p)a, + O(A*(p, T)) with Ugr(p) as the Hartree-Fock potential in the homogeneous
normal state, and neglecting all the terms of the product of two momenta derivatives of
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the superconducting pair potential and the Green’s function such as A /0p x G /Ip and
0A/Op x OF /Op. Based on this proceedure, we now rewrite the self-energy terms in the
Wigner representation as

/dsflge_iphflz
X f(’ﬁzﬂ‘l)/d3T3Z/A{BdG("°1,"“3)G(T37T2;€n)f("“27"°12)

~ A(pa 7"12) © é<€n7p7 7“12) + uHF(p)%?; S é(é‘mP’ ”‘12)

+ %63(7"12) : { (v — %)

0 - . A R
X 8_p [30(%7137 T12) + 3G (e, P, 7“12)7'3] }, (A.57)
where quantity v is the normal state velocity and is expressed as
Dep p?
=_P = — 4+ U , A58
v op , Ep o + HF(p) ( )

B Boundary conditions based on gradient expansion

In this section, we derive the boundary conditions required for solving the standard
Eilenberger equations. We start from the Riccati form of Eq. (3.3)[13, 38, 39, 10].

Oa

Upg— = —2e,a — Ada® + Ao, (B.1)
ox
where a=a(e,, pr, ) is the Riccati parameter and is related to fy and g as
2a 1—aa
- = ) B.2
fO 1+ aaa 90 1+ aa ( )
We carry out a gradient expansion[!3] of Eq. (3.3) using
a=a® +aW, (B.3)
which gives
40 A¢
En + /22 + A2$%
A= VFs 9a®
21/e2 + A2p2 Oz
9a(0 (0)2 dA ) dA
a a a (BA)

o VEragd A

The derivatives 0fy/0x and 0 fy/Opr, in Eq. (3.5) are expressed as
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or (1+ aa)?
dfo 2 ( da , 0a )

Opre (1 +ad) \Oprs ' Oprs

af, p (aa Qaa)

(B.5)

da/0x is obtained from Eq. (B.1), and da/dpr, is given by solving the following equation:
0 Oa da Jdo

e——— = —2¢, — A
YR o Opra c Oprs asza
da 0o Ovp, Oa
—2Ad0a + A — —, B.6
where the boundary condition for Eq. (B.6) used near the bulk is given by
da 249 9aM

~ + ,
9a(0) a(0)2 A Fol0) a® 9¢

= — + _—,
8me \/ 5% + A2¢2 apr ¢ apF:):
dat  wp A% d¢ 0al®
Opre  4(2 + A2¢2)2 Opp,, Ox

1 Ovp, 0al® 52a®
- T Vrz gy |
02a0) _ a(0)2 ) 2% ¢
0xdpp, (€2 + A2¢2)3/2 dx Opy,
(0) (0)
5 a oa A e
V2 + A2¢2 Or  Opre
(0)2 A 0) 1
a dA 0¢ da 0¢p (B.7a)

VeER+ A2¢2 dx Opy,  Ox ¢ Opps

C Derivation of Eq. (3.19)

In this section, we derive Eq. (3.19). Equation (3.19) is derived by the following pro-
cedures: (i) expand quasiclassical Green’s functions in terms of pair potential [13] up to
third order based on the assumptions |A(z)] < Ag, hvp,(0"A/dz™) = O(A™1), which is
valid near T, (ii) substitute expanded Green’s functions into the first term of Eq. (A.29),
(ili) neglect the Thomas—Fermi term of Eq. (7). Here, we consider the solutions when
en > 0.

First, we expand Green’s functions with respect to A as

foIZféy)a 90:1+Zgéy)a (C.1)
v=1 v=2
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with initial conditions féo) = 0, géo) = 1, and g(()l) = 0, and give the following recursive

condition from Eilenberger equations:

Apgy ™ hvp, afé”‘”]

foy) = (C.2)

En 2e, Ox

where we assumed hvp,0A/O0x = O(A?). Using Eq. (C.2) with initial conditions and
normalization condition g2 = 1 — f2f2, ) and ¢\ up to third order are derived as

follows
(1) _ A¢ R _ hovp, 0A
0 0 2e2 Oz’
B _ (A¢) . (thx)2 9?
Joo = 2e3 4e3  Ox? A9, (C-32)
A 2
) (C.30)

where we used ImA = 0.
The equation for 0lmg, /0z, which is included in the electric field equation in Eq. (A.29),

is given by
Olmg,  —h? 5 OURy 0o \ OA O?A
— 2 _—
ox 4e3 [( ¢ Opra + Uqubapr Ox Ox?
a¢ oAl

If we only consider the PPG force, the electric field equation is given by the first term of
Eq. (A.29). Thus, within the present approximation, electric field by PPG force is given
by

2

( /\rszaa 5+ 1)EPPGJ:(I)

=B (o5, + (o), ) S22
0 PA
B f> Ao

<vp$gb (C.5)

where Eppga represents the 2z-component of electric field induced by PPG force a® =
kgT ), <n<ne 3. Neglecting the term related to Thomas—Fermi screening length with
assumption ATF << &y, we obtain the approximated charge density as

h2a®e 5 OV, 1)) 0PN A
prea(r) = 2e [<2<¢ Opra >F * <UF$¢8ppm >F 0x? 0x?
Ovpy > oA PA
Opry /¥ Ox 023

0o > 84A (C.6)

+2(¢f <”F$¢a e
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where pppg(z) = €(0FEppa./0x). Therefore, pppg(x) is expressible only in terms of
A™(z) in high-temperature region where the present approximation is valid. Substituting
the pair potential assumed as A(z) ~ Apyy tanh(z /&) into Eq. (C.6) and taking the limit
x — 0, we arrive at Eq. (3.19).

D Local density of states in the augmented quasiclassical theory

Here we derive the expressions which are relevant to our numerical calculation of the

local density of states within the augmented quasiclassical theory.

D.1 Riccati equation

We write the Riccati-type equation in Keldysh formalism as,

Oa'* : R R2
Vs = —2(—ie +n)a™ — Apa™ + A¢ (D.1)
x
Separating the real and imaginary parts we get,
ORea®
Upy aea = —2nRea® — 2eIma® — Ag(Rea™® — Ima®™?) 4+ Ag (D.2a)
x
and
Olma™ R R R,y R
VP — = 2¢Rea™ — 2nlma™ — 2A¢Rea " Ima (D.2b)
x
Similarly,
oa : _R _R2
R - = —2(—ie+n)a” — Agpa” + A¢ (D.3)
x
This gives,
ORea®
—Upg aea = —2nRea" + 2eIma® — A¢(Rea™ — Ima™?) + A¢ (D.4a)
x
OIma' _R _R Ry, -R
~Upr s — = 2¢Rea™ + 2nlma™ + 2A¢Rea Ima (D.4b)
x

D.2 Green’s functions

We use the Riccati parameters to calculate the Green’s functions as follows,

o = 1 —aRa? R 2a™
O " 14aRaR’ 7% 14aRaR
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a®a® = (Rea™ + ilma™)(Rea™ — iIma™)

= (Rea®Rea®™ + Ima®Ima®) + i(Ima"Rea"™ — Rea™Ima™)

= w, + 1w;
Where
w, = Rea®Rea + ImaRIde, w; = Ima®Rea® — Rea®Ima®
Then
gR _ 1—w, —iw;
O 1 4w, 4wy
1
= —(1 —w, —iw;) (1 + w, —dw;), w=(1+w,)*+w?
w
rR_ 1 2 i
90 = w [(1 —w,)(1+w,) — wi] T w (1 = w,)w; + w; (1 + w,)]
Similarly,
R 2(Rea® + iImal)
EA w, + 1w
2
= ~(Rea® + iIma®™) (1 + w, — iwy;)
w
Therefore,

2 21
&= -~ [Rea™(1 + w,) 4+ Ima"w;] + i [Ima™(1 4+ w,) — Rea"w;]
w

D.3 Solutions near the bulk
Starting from the expansion
a® ~ RO ¢ RO
Where a®(© is the solution for the homogeneous system and is given by

A
—ie + 0+ \/(—ie + n)? + A2¢?

a0 —

We further simply as follows; let

V(—ie +n)? + A202 = \/—e2 + 12 + A2? — 2ien
= Vwy, +iwy

= rel?
Where we have used the following substitutions,

wy, = —2 4+ 107+ A%¢%,  wy = —2en.
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(D.11)

(D.12)

(D.13)

(D.14)

(D.15)



Then

wyy +iwy; = r2e®, wy, — iwy; = r?e”??

rt = wfr +wi~ —r = (w%r —|—wfi)1/4, r>0

wi, =1r2cos20, wy; =r?sin26

W15
tanf = —

1
— § = — arctan
W1y 2 Wiy

- 9 911 1arctan 21i
Vwyy 4 iwy = (Wi, + wy;)ie? o

We also write
A¢

Way + 1Wo;

1 W14
cos | = arctan ,
2 W1y

1, 1 Wij
wo; = —¢ + (w?, 4+ w?)* sin | = arctan —
2 Wiy

ARO)

Where

PN

Wor =1 + (w%r + wi)

R() _ Vpy HaR )
2¢/(—ie +n)? + A2¢? Ox

1 W14
cos | = arctan ,
2 Wiy

1, 1 Wy
ws; = (w2, +w?,)7 sin (— arctan z)
2 W1y

ST

wsy = (W, +wr,)

R(1)

Furthermore, the correction term a is expressed as

R(1) _ VFx aG/R(O)
2(QU3T + ngz) ox

ORea®® 9lmaRO©

_ Uk o
= % (w3, — tws;) ( pe +1 o

o1

(D.16)

(D.17)

(D.18)

(D.19)

(D.20a)

(D.20D)

(D.21)

(D.22)

(D.23a)

(D.23b)

(D.24)



w3 = wi, + w3 (D.25)

SR _ e ORea0 y almaR(O)
2uws T B O
(D.26)
Upy OlmaR© ORea®)
— - — Ws; D.2
Zng <w3 Oz T o (D.27)
9l aR(0)2 dA a0 gA
o et i g d’ A dv
1 , dA
= — w_3(w3T — zwgi)(Rea —|— ZIH]CL )2%¢
N (Rea®® + iTma®(© ) dA
A dx
1 dA
=— —(ws — iwgi)(ReOLR(O)2 — Ima™®? 4 2Rea™OTma™ )—gb
W3 dx
Rea®® dA  ImaR©® dA
2= 4 - D.28
A dr A @ (D.28)
a® 1 dA
C;x =— o~ [’lUgr(ReaR(O)Q — Ima®®?) 4 2w5;Rea™O Tma™ ] %Cb
Rea™©® dA
A dx
i R(0)7,.. . R(0) R(0)2 R(0)2\] 4A
- — [ngrRea Ima™™ — ws;(Rea — Ima )] —
w3 dx
Ima®© dA
) — D.2
+1 N (D.29)
D.4 Expression for da®/0pr,
The derivatives a% 38;;, 8%8;;6;1}{ and 8@ %m“ are given by
0 Oal dal 0o dal ¢ Ovp, Oal
Vpp— = —2(—ic + - A a®? — 2A¢at +A - = ,
(D.30)
0 ORea® 6Rea Olma® 13L0)
Vpg— = — 2 - A Rea®®? — Ima™?
ORea® Olma® 0p  Ovpy ORea®
— 2A¢ | Rea® — Ima® ) A — z ,
(D.31a)
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and

0 Olma® ORea®? Olma® 0¢
Vpp— =2¢ -2 —2A Rea®Ima®
Olmal ORea® Ovp, Olma®
—2A¢ [ Rea® + Ima® ) — z D.31b

D.5 Spatial and momentum derivatives of the Green’s functions

In the following, we calculate the variations of the Green’s function in terms of space

and momentum variables

R 9 R R
. _ Y e (D.32)
Or  (1+aRak) \ Oz Ox
(1+a®a™)? = (1 +w, + iw;)?
= War + 1W4; (D.33)
Let
wy = (1+w,)? —wi, wy =2(1+ w,)w, (D.34)
We then rewrite % as
oa® ORea®  OImat
rR290" R2 R2 o R R .
e (Rea Ima™* 4 2iRea"Ima™) ( pe 5 )
= Wz, + W5 <D35)
Real Ima®
ws, = (Rea™? — ImaR2)ai + 2ReaRImaRaﬂ7
Ox Ox
ORea™ dTma™
ws; = 2ReaIma® a (Rea™ — Ima®™?) ma (D.36)
x ox
Of 2 ORea® n Olma®
= — Ws, + 4 — iws;
3x Wy, + iw4i 6’x b 8x b
2 , ORea® Olma®
= w_4(w4r - Z7~U4i) < o — Wsp + 1 I - Zw5i) , (D.37)
Using
wy = wi, +wi;, (D.38)
we have
8f§ 2 OReal L Olma®
= T | Wyr — Wsp Wy, — Ws;
o wq | Ox 5 4 o 5
21 Olma® ORea®
+ w—4 |:’LU4T ( o - w5i) — Wy; < o - w57«):| (D39)
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oy 2 ( Oa® g, 00" ) (D.40)

asz (1 + G'R&R) apr apFa:
ORea® Olma®
we, = (Rea™ — Ima™?) 4 9ReaRma* T ,
Opry Opry
OReal Olma®
we = 2Rea™Ima® — (Rea®®? — Ima®? D.41
of 2 ORea® n Olma®
o = Wy | e — Wer | Wi — Wei
(9pr Wy ! apr 0 ! ame 0
21 Olma® OReal®
- r - 7 7 - r D.42
o (G ) = (G )] 0w
We note the following relation:
R rR
Ofy. _ 9y (D.43)

D.6 Solution near the surface

We calculate the pg, derivatives as follows;

R R(0) R(1)
Oa ~ Oa . Oa (D.44)

The first term is calculated as thus,

HaR©) B qR(0)2 a¢ aR(O) a(b

= — A +
Rea®? — ImaR0? 4 2iRea® O Tma () A 0¢

W3y + iwgi apr
R(0) R(0)
Rea 19J0) n Z,Ima 0¢ (D.45)
a0 1 0
;pF = (w3, (Rea™®? — Ima™?) + 2w3;Rea™ @ Ima™?] A%
T 3 T
Rea®® 9¢
L [2w3rReaR(0)ImaR(o) — ws;(Rea®™? — ImaR(0)2)] A%
Ws apFw
R(0)
4 me” 99 (D.46)
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while the derivative of the correction term is given by

da®) (WA d¢ 0aR)
Opre  4[(—ic +n)? + A2¢?) Opr. O
1 ((%pm Hal ) 92RO )
2/ (—ie +n)? + A2¢2 \Opr, Ox " 920pp,
Vpa A2 oo 0at0) 1 g, a0 92qR )
 A(wyy +iwy;)? Opp, O 2(ws, +iws;) \Opps Ox o 0x0pry )’
(D.47)
where
Wy = w%r wi., Wy = 2W1,We, Wy = w%« + w?i (D.48)
daRM) UFQ;AQ(;S( wsi) d¢ [ OReal® n OImaR©
Wey — TWr; i
(9sz 4wy T ! 8pr ox ox
wWay — iws; Ovpy [ ORea®® Jlmal©)
- i
2wy Opps ox Ox
i/ 92Ra,R(0) 2711 RO
op ws, —iws; (0°Rea ZO ma (D.49)
IRV e, A29 O OReaR ) OTmaR(©
= Wrp——(—— + Wyy——(——
Opre 4wy Opps Ox Ox
1 [ Ovp, OReaR©) N OTmaR©)
- — Wy ———— + W3j————
2ws | Opry 3 ox T On
1 9?*Reat(©) 9?ImaR©
o Ve 2ws (w3r 0x0pr, + Wsi 0r0pr, >
peA%p 0 OImaR(© OReaR©)
1 Wy ————— — Wepj—————
4wy Oppy r ox L™
1| Ovpg OlmaR©) OReaR©)
2ws | Opry 3 ox 3 ox
i 9?ImaR© 9?Rea©)
— Upy " — W3y——————— D.50
ur 2ws <w3 0r0pr, s 0r0pr, > ( )
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We calculate the second derivative 9%a®(®) /0x0pg, as

92RO gR(0)2 A2 g2 dA 3¢
0x0prz  [(—ie +n)? + A2¢2]*/? dz Oppy
) qR©0) HaR©) 0o
V(—ie +n)?+ A2¢* 0x  Opre
a2 dA 0¢  0a*0 1 9¢
- V(—ie +n)? + A2¢? dz Opr, 0z ¢ Opr.
_ aR(©)2 A242 % 99
(w1, + dw;) (wa, + fw3;) dz Oprs

a0 §aRO) A 1))
ws, + w3, 0r Opre
a2 dA ¢  9aRO 1 9¢

_ - — D.51

Using the substitutions

2 2
Wy = Wi W3y — WiW3, Wi = Wi, W3 + WiWsp,  Ws = Wi, + W, (D.52)

we rewrite the it as

2 R(0 ~
0% _ Wer 7 108 (Rea®@? — TmaR®2 4 QiReaR(O)ImaR(O))AQﬁ%—8¢

oW — iy, (ReaR(O) OReal) R (o) OTma™

wS 83;‘ - Hma (933
R(0 R(0)
+ iReaRO OImal(© + TmaR© ORea A do
ox ox Oprz
_ Wsr — W3 (ReaR(0)2 — ImaRO2 4 2iReaR(0)ImaR(0))%%
Ws dx 8me

3ReaR(0)l 0¢ +Z_81maR(0)l 0¢
or ¢ Oppy 0r ¢ Oppy

(D.53)
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Finally, it takes the form

92RO 1 N
— . R, R(0)2 I R(0)2 2 zR R(O)I R(0) AQ 20—
OxOpr,  ws [0 (Rea ma®) + 2ugRea M ma ] Alg dx Opry

2 OReaR®) OlmaR©®
- — |ws; <ReaR(O)L _ TR 2

ws O Oz

Olma ") OReqRO P

L dA 0
- [w3r(ReaR(O)2 — ImaR(O)Q) + 2w3iRe(lR(0) ImaR(O)] a4 ¢

s dz Opp,

ORea®™® 1 9¢
+ - [ngrReaR(o)ImaR(o) — wg;(Rea®™? — ImaR(O)Q)] A2¢2% O¢

s dzr Oppy

' R(0 R(O

= Wy <ReaR(0)aIm—a() 1 TmaR© ORea™ )>

ws Ox o

ORea™") AlmaR©) (0]
— ws; [ Rea® Y ——— — Ima"©® A
. dA

- [2w3TReaR(O)ImaR(O) — wgi(ReaR(O)Q _ ImaR(op)] an ¢

s dzr Opps

R(0)
Z,(‘?Ima 1 0¢ -

dr ¢ Opra

D.7 Expression for the LDOS

Using the expansion g® = g + ¢g®, the local density of states within the augmented
g 0 1 y

quasiclassical theory is given by
A
Ny = N(0) (Regy + Regi), + N'(0)e (Regy) . — N’(O)E (Imfg' +Imfi'),  (D.55)

Where gt is the first-order quantum correction due to the PPG force and also due to the

SDOS pressure, in terms of the quasiclassical parameter, (kp&y) ™.

D.8 g expression

. agRt ORegl .
Finally, we can calculate the <2 and “=2- using
) oz oz

Ogf _ iSdA Off iddA OfY  ib, 90 Off  id, 09 Of

e T 2 de COpes | 2 dx ¢(9sz 2 " Oppy Ox 2 Opp, O (D-56)
and
OReg?  §dA [ OImfl}  6dA OlmfE & 0¢ Olmfl o6 0¢ OlmfE
e T 2dr Oprs §%¢ Oprs §Aappm ox 27 Opp, Oz
(D.57)
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