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ABSTRACT

We introduce and study the notion of G-Tutte polynomial for a list of elements

in a finitely generated abelian group and an abelian group G through combinatorial,

topological and matroid theoretical aspects. The G-Tutte polynomial establishes a

common generalization of several “Tutte-like” polynomials appearing in the literature

such as the (arithmetic) Tutte polynomial of realizable (arithmetic) matroid, the char-

acteristic quasi-polynomial of integral arrangement, the Brändén-Moci’s arithmetic

version of the partition function of an abelian group-valued Potts model, and the

modified Tutte-Krushkal-Renhardy polynomial of a finite CW-complex.

Through combinatorial viewpoint, we generalize the characteristic polynomials of

hyperplane and toric arrangements to that of abelian Lie group arrangements and in

turn give two arrangement theoretic interpretations for every constituent of the chro-

matic quasi-polynomial. Passing from general to particular consideration, we give

several results on the characteristic quasi-polynomials of arrangements arising from

root systems in connection with Ehrhart theory, Eulerian polynomial and signed

graph. From topological viewpoint, we prove that the semialgebraic and topological

Euler characteristics and Poincaré polynomial of a certain abelian Lie group arrange-

ment can be expressed in terms of the associated G-Tutte polynomial, which general-

izes many classical formulas. From matroid theoretical viewpoint, we prove that the

G-Tutte polynomial, like many of its specializations, possesses deletion-contraction

and convolution formulas, but unlike them, the G-Tutte polynomial may have nega-

tive coefficients. We propose some ideas and partial answers for finding under what

conditions the G-Tutte polynomial has positive coefficients.
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INTRODUCTION

Background

The Tutte polynomial, due to Tutte (e.g., [Tut54]), is one of the most-loved invari-

ants of graphs, and surely the most studied. This two-variable polynomial encodes

a substantial amount of the combinatorial information of a graph, and specializes to

several important graph polynomials (including the chromatic, flow and reliability

polynomials). Significant features of the Tutte polynomial have also been shown in

diverse areas of mathematics/sciences, for instances, it appears as the Jones and hom-

fly polynomials in knot theory (e.g., [Jae88]), as the Ising and Potts model partition

functions in statistical mechanics (e.g., [FK72]), and especially as the polynomial in-

variant of many objects in arrangement theory which is the main topic of discussion

in this thesis.

From the arrangement theoretical viewpoint, the Tutte polynomial is unquestion-

ably important because of the pervasiveness of its extensions from graphs to other

objects that have richer combinatorial and topological properties. These extensions

find applications to three broad types of arrangements. A hyperplane arrangement

is a finite collection of 1-codimensional subspaces in a vector space, which is one of

the most classical and appreciated types in the theory (e.g., [OT92]). Every undi-

rected graph gives rise to a matroid, and one can define for any matroid a Tutte

polynomial. To a given hyperplane arrangement H, there is a matroid naturally as-

sociated whose Tutte polynomial specializes to the characteristic polynomial χH(t),

the fundamental invariant carrying the combinatorial and topological information of

H. Beyond hyperplane arrangements, many attempts were made in order to deal

with arrangements of submanifolds inside a manifold. For example, arrangements

of 1-codimensional subtori in a torus, or toric arrangements due to De Concini-
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Procesi (e.g., [DCP05]). Toric arrangements have generated increasing interest re-

cently. Among the others, the matroids get generalized to arithmetic matroids in

pursuit of toric arrangements, with the arithmetic Tutte polynomials answering to

the Tutte polynomials (see [Moc12], [DM13]). In yet another consideration, a finite

list A of vectors in Z! determines a hyperplane arrangement A(R), a toric arrange-

ment A(S1), and especially a q-reduced arrangement A(Zq) of subgroups in the finite

abelian group Z!
q (e.g., [KTT08]). Evaluating the cardinality of the complement

of A(Zq) produces a quasi-polynomial invariant, the characteristic quasi-polynomial

χquasi
A (q). The name is justified by the fact that the first constituent of this quasi-

polynomial is identical with the characteristic polynomial χA(R)(t) of A(R). Further-

more, a coincidence has been observed from a large number of particular calculations

(e.g., [Sut98], [KTT07], [ACH15]), that the last constituent of χquasi
A (q) coincides with

the characteristic polynomial χA(S1)(t) of A(S1).

Thus we arrive at the natural and essential problem that how we can build a gen-

eral framework to study the arrangements and their Tutte-like polynomials en masse,

rather than individually. More precisely, we are looking for a “useful” framework that

(i) unifies concepts from the literature, and (ii) explains the “coincidences” among

them. The problem will be given an answer in this thesis.

Objective

The key observation that enables us to build such a framework is that the arrange-

ments and their polynomials mentioned above all are defined by means of counting

homomorphisms between abelian groups. As an answer to the problem, we propose

the notion of G-plexification defined for a finite list A of elements in a finitely gener-

ated abelian group Γ, and a torsion-wise finite abelian group G, with the associated

G-Tutte polynomial. The notion of (F, p, q)-arrangement (i.e., G-plexification with

G = F×(S1)p×Rq, p, q ≥ 0, F is a finite abelian group) provides important examples

of abelian Lie group arrangements and is a unification of a great number of concepts.
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In particular, when we specify Γ = Z!, and let G be R, S1, or Zq, we obtain the

G-plexification as the hyperplane, toric or q-reduced arrangement, respectively, and

the G-Tutte polynomial as the Tutte polynomial, arithmetic Tutte polynomial, or (a

generalization of) characteristic quasi-polynomial, respectively.

Having introduced the notion of G-Tutte polynomial, it is again natural and es-

sential to ask for what properties of the Tutte, arithmetic Tutte polynomials and

characteristic quasi-polynomial, there is an analogous result related to the G-Tutte

polynomial. It turns out that there are many properties that are preserved, but some

properties are not. In the present thesis, we study these properties through three

aspects: combinatorics, topology and matroid theory.

Organization

The structure of the thesis is as follows:

• In Chapter 1, we present a general theory of the G-Tutte polynomials.

In §1.1, we recall the definitions of typical arrangements and the associated

Tutte-like polynomials and their combinatorial and topological properties ap-

pearing in the literature: hyperplane arrangement and Tutte polynomial, toric

arrangement and arithmetic Tutte polynomial, q-reduced arrangement and char-

acteristic quasi-polynomial.

In §1.2, we define the concepts of G-plexifications of finitely generated abelian

groups and G-Tutte polynomials over torsion-wise finite abelian groups. We

prove that the G-plexifications and G-Tutte polynomials possess deletion-contraction

formulas (Proposition 1.2.1.9 and Corollary 1.2.2.13). Aside from the mentioned

specializations, we further give some other “unexpected” specializations of the

G-Tutte polynomial (Examples 1.2.2.20 and 1.2.2.21).

The results of this chapter are found in [LTY], a joint work with Y. Liu and M.

Yoshinaga.
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• In Chapter 2, we study the G-Tutte polynomials via combinatorics.

In §2.1, we define two different intersection posets of a (F, p, q)-arrangement

and prove that the corresponding characteristic polynomials can be expressed in

terms of the G-characteristic polynomials (Theorem 2.1.2.7 or Corollary 2.1.2.8).

The results of this section are found in [TY19], a joint work with M. Yoshinaga.

In §2.2, we explain two “coincidences”: the first one is the equivalence between

the chromatic quasi-polynomial and the Chen-Wang’s quasi-polynomial (Theo-

rem 2.2.1.5), the second one is the identity between the last constituent of the

chromatic quasi-polynomial and the characteristic polynomial of the generalized

toric arrangement (Corollary 2.2.1.9) which was mentioned in Motivation. The

results of this section are found in [Tra18] and [LTY].

In §2.3, we give two natural but nontrivial interpretations for every constituent

of the chromatic quasi-polynomial via subspace and toric viewpoints (Corollaries

2.3.1.1 and 2.3.2.5). The results of this section are found in [TY19].

In §2.4, we study the characteristic quasi-polynomials of the arrangements aris-

ing from irreducible root systems. We introduce the notion of A-Eulerian poly-

nomial and prove that this polynomial together with shift operator express the

characteristic quasi-polynomial of certain Weyl subarrangements in terms of

the Ehrhart quasi-polynomial of the fundamental alcove (Definition 2.4.3.2 and

Theorem 2.4.3.11). Finally, we give a computational result on the characteristic

quasi-polynomials of ideals of classical root systems with respect to the inte-

ger and root lattices via a connection with signed graphs (§2.4.5). The results

of this section are found in [ATY19], a joint work with A. U. Ashraf and M.

Yoshinaga and [Tra19].

• In Chapter 3, we study the G-Tutte polynomials via topology.

In §3.1, we show that the topological and semialgebraic Euler characteristics of

the complement of any (F, p, q)-arrangement can obtained as an evaluation of

the associated G-characteristic polynomial (Theorem 3.1.2.2).
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In §3.2, we prove that the Poincaré polynomial of any non-compact (F, p, q)-

arrangement (i.e., q > 0) can be expressed in terms of the associated G-

characteristic polynomial (Theorem 3.2.2.2). We emphasize that the non-compactness

plays a crucial role in our proof, without it many arguments may not work (Re-

mark 3.2.2.4 and Example 3.2.2.5).

The results of this chapter are found in [LTY].

• In Chapter 4, we study the G-Tutte polynomials via topology.

In §4.1, we show that the G-multiplicities satisfy only four over five arithmetic

matroid axioms, this is the first property of the arithmetic Tutte polynomial

that the G-Tutte polynomial does not preserve (Theorem 4.1.1.13 and Remark

4.1.1.14). However, the G-Tutte polynomial does possess a convolution formula

(Theorem 4.1.2.1).

In §4.2, we show another “non-preserving” property of the G-Tutte polynomial,

that is the G-Tutte polynomial may have negative coefficient (Example 4.2.1.1).

We give some ideas and partial answers to a question that under what conditions

the coefficients of the G-Tutte polynomial are positive (Theorem 4.2.1.2 and

Propositions 4.2.1.3, 4.2.2.2).

The results of this chapter are found in [LTY].
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1

1. A GENERAL THEORY OF G-TUTTE POLYNOMIALS

1.1 Known arrangements and their Tutte-like polynomials

In this section, we recall a setting that has been used to define and study many

types of arrangements, including hyperplane, toric and q-reduced arrangements. as-

sociated with each arrangement, there is a polynomial often named after Tutte which

encodes combinatorial, topological and enumerative information of the arrangement.

We will see that the polynomials arise from very similar manners and share many

common properties, giving us an evidence that there is a common framework to unify

them and suitable to the mentioned setting.

In this thesis, the term list is synonymous with multiset. For example, the list

A = {α,α} has 4 distinct sublists: S1 = ∅,S2 = {α},S3 = {α},S4 = {α,α} = A. We

distinguish S2 and S3, and hence A ! S2 = S3. If A is a list, then S ⊆ A indicates

that S is a sublist of A.

1.1.1 Hyperplane, toric and q-reduced arrangements

Let Γ :=
⊕!

i=1 Zβi % Z! be a free abelian group. Let A be a finite list (multiset)

of elements in Γ. Let (G,+) be an abelian group with the unit e ∈ G. For α =
∑!

i=1 aiβi ∈ A and mα ∈ G, define a subset Hα,mα,G of G! by

Hα,mα,G :=
{
z ∈ G! |

!∑

i=1

aizi ≡ mα

}
.

Note that Hα,mα,G is a subgroup G! when mα = e. Given a vector m = (mα)α∈A ∈ GA,

the arrangement of (A, m) with respect to Γ is defined by

(A, m)(G) := {Hα,mα,G | α ∈ A}.
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The complement of (A, m)(G) is defined by

M((A, m);Γ, G) := G! \
⋃

α∈A

Hα,mα,G.

The arrangement (A, m)(G) is said to be central if mα = e for all α ∈ A. In this

case, we simply write A and Hα,G instead of (A, m) and Hα,e,G, respectively.

The arrangement (A, m)(G) and its complement M((A, m);Γ, G) are important

objects of study in many contexts. We list some typical examples appearing in the

literature.

(i) When G is a field (e.g., G = C,R,Fq), A(G) is called the (affine) hyperplane

(or integral) arrangement of A w.r.t. Γ (e.g., [OT92]).

(ii) When G is C× or S1, A(G) is called the (affine) toric arrangement of A w.r.t.

Γ (e.g., [DCP05,Moc12]).

(iii) When G is a finite cyclic group Zq := Z/qZ, A(G) is called the (affine) q-reduced

arrangement of A w.r.t. Γ (e.g., [KTT08,KTT11]).

(iv) When G = Rc with c > 0, mα = e for all α ∈ A, A(G) is called the c-plexification

of A w.r.t. Γ (e.g., [Bjö94, §5.2]).

(v) When G = S1 × S1 (viewed as an elliptic curve), mα = e for all α ∈ A, A(G) is

called the elliptic (or abelian) arrangement of A w.r.t. Γ (e.g., [Bib16]).

In general, many properties of the arrangements depend on the choice of the free

abelian group Γ (e.g., see Proposition 1.2.2.22, §2.4.5).

1.1.2 (Arithmetic) Tutte and characteristic (quasi-)polynomials

For S ⊆ A, let MS denote the matrix of size #S × $ whose each column is

represented by α ∈ S. Denote by rS the rank of MS , in other words, rS is the

rank of the subgroup 〈S〉 ≤ Γ generated by S. The list A gives rise to a realizable
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(or representable) matroid represented by MA, and the (classical) Tutte polynomial

TA(x, y) of A (e.g., see §4.1.1) is defined by

TA(x, y) :=
∑

S⊆A

(x− 1)rA−rS (y − 1)#S−rS .

Let dS,1, . . . , dS,rS be the invariant factors of MS . Thus 1 ≤ dS,i is a positive integer

and dS,i divides dS,i+1 (1 ≤ i < rS). The (arithmetic) multiplicity m(S) of S is

defined to be
∏rS

i=1 dS,i. In other words, m(S) equals the cardinality of the torsion

subgroup of Z! quotient by the subgroup generated by the column vectors of MS .

The arithmetic Tutte polynomial T arith
A (x, y) of A is defined in [Moc12] as follows:

T arith
A (x, y) :=

∑

S⊆A

m(S)(x− 1)rA−rS(y − 1)#S−rS .

Remark 1.1.2.1. The definitions above make sense in a more general setting, namely

the free abelian group Γ is being replaced by any finitely generated abelian group in

a natural way. This is what Moci actually used to define the arithmetic Tutte poly-

nomial in [Moc12]. We use the same names, Tutte and arithmetic Tutte polynomials,

to call the polynomials in this setting.

It should be also noted that the above polynomials can be defined for more general

objects: matroids, arithmetic matroids [DM13] (see §4.1.1 for more details) and ma-

troids over Z [FM16]. From an arrangement theoretical viewpoint, we will introduce

the notion of G-Tutte polynomials in §1.2.2, giving another way for generalizing those

polynomials. Now let us restrict our discussion to the central arrangements, although

some of the results (e.g., those related to characteristic quasi-polynomials) hold true

for the non-central ones. The polynomials mentioned above encode combinatorial

and topological information of the arrangements. The characteristic polynomial of

the ranked poset of flats (e.g., [OT92, Definition 2.52]) is often known as “the com-

binatorics” of a hyperplane arrangement. For instance, Whitney showed that the

characteristic polynomial χA(R)(t) of the hyperplane arrangement A(R) is given by

(e.g., [Sta07, Theorem 2.4])

χA(R)(t) = (−1)rAt!−rATA(1− t, 0). (1.1.1)
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On the other hand, “the topology” of a hyperplane arrangement is often referred to

the Poincaré polynomial of its complement. For instance, the Poincaré polynomial of

M(A;Z!,Rc) is given by (e.g., [GM88,Bjö94])

PM(A;Z",Rc)(t) = trA·(c−1) · TA

(
1 + t

tc−1
, 0

)
. (1.1.2)

Note that the special cases c = 1 and c = 2 correspond to the famous formulas by

Zaslavsky [Zas75] and Orlik-Solomon [OS80], respectively. Similarly, as proved by De

Concini-Procesi [DCP05] and Moci [Moc12], the characteristic polynomial χA(S1)(t)

of the poset of layers (see, e.g., [Moc12, §5], §2.1.1) of the toric arrangement A(S1) is

χA(S1)(t) = (−1)rAt!−rAT arith
A (1− t, 0),

and the Poincaré polynomial of M(A;Z!,C×) is

PM(A;Z",C×)(t) = (1 + t)!−rA · trA · T arith
A

(
1 + 2t

t
, 0

)
. (1.1.3)

When G is an arbitrary finite cyclic group Zq (q ∈ Z>0), the dimension no longer

makes sense. However, M(A;Z!,Zq) still contains a number of interesting properties.

Kamiya-Takemura-Terao [KTT08, KTT11] proved that #M(A;Z!,Zq) is a quasi-

polynomial in q, denoted by χquasi
A (q), with period

ρA := lcm(dS,rS | S ⊆ A). (1.1.4)

This means that there exist polynomials fk
A(t) ∈ Z[t] (1 ≤ k ≤ ρA) such that for any

q ∈ Z>0 with q ≡ k mod ρA,

χquasi
A (q) = fk

A(q).

The polynomial fk
A(t) is called the k-constituent of χquasi

A (q). The authors called

the quasi-polynomial χquasi
A (q) the characteristic quasi-polynomial of A as a result of

the fact that the first constituent f 1
A(t) equals the characteristic polynomial χA(R)(t)

(e.g., [Ath96], [KTT08]). Furthermore, we will prove in Corollary 2.2.1.9 that the last

constituent f ρA
A (t) coincides with the characteristic polynomial χA(S1)(t). The men-

tioning properties open a new direction for studying the combinatorics and topology
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of hyperplane and toric arrangements in one single quasi-polynomial. The charac-

teristic quasi-polynomial also has many enumerative properties related to Ehrhart

theory, which we will in discuss in §2.4.

1.2 G-plexifications and G-Tutte polynomials

We observe that the concept of the arrangement (A, m)(G) in §1.1.1 can be re-

defined in a more general and abstract setting by viewing Γ as a finitely generated

abelian group (e.g., in [Moc12, §5] where G is S1 or C×). We shall call this pro-

cess the G-plexification. Moreover, associated with a G-plexification, we hope to find

a suitable notion of Tutte polynomial in a similar manner to how the (arithmetic)

Tutte polynomials were defined. As also pointed out by Moci [Moc12, §3.2], working

with finitely generated abelian groups is useful and somewhat essential so that the

wanted Tutte polynomial satisfy a deletion-contraction formula as the classical Tutte

polynomial does. For the sake of convenience, in this thesis, we choose to develop the

theory almost only on the central arrangements, and leave the affine case for future

research (some results on the non-central case will be mentioned in §2.4).

1.2.1 G-plexifications of finitely generated abelian groups

Let (G,+) be an abelian group with the unit e ∈ G. Let Γ be a finitely generated

abelian group, and let A ⊆ Γ be a finite list (multiset) of elements in Γ. Following

the procedure in §1.1.1, we now define the “arrangement” associated with the list A

over G.

The total space is Hom(Γ, G), the abelian group of all group homomorphisms from

Γ to G under point-wise addition. For each α ∈ A, we define the G-hyperplane with

respect to α as follows:

Hα,G := {ϕ ∈ Hom(Γ, G) | ϕ(α) = e}.
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In other words, Hα,G is the kernel of the following homomorphism naturally defined

by α

α : Hom(Γ, G) −→ G,ϕ -−→ ϕ(α).

Then the G-plexification (or G-arrangement) A(G) of A is the collection of the sub-

groups Hα,G

A(G) := {Hα,G | α ∈ A}.

The G-complement M(A;Γ, G) of A(G) is defined by

M(A;Γ, G) := Hom(Γ, G) \
⋃

α∈A

Hα,G.

Remark 1.2.1.1. Suppose that Γ % Z! and fix a basis {β1, . . . , β!} for Γ. Thus the

arrangement A(G) defined in §1.1.1 is indeed a G-plexification via the isomorphism

Hom(Γ, G) % G!, ϕ -−→ (ϕ(β1), . . . ,ϕ(β!)). In particular, the hyperplane, toric,

q-reduced, elliptic arrangements and c-plexification are G-plexifications.

Example 1.2.1.2. Suppose that Γ = Zd. Then

Hom(Γ, G) % G[d] := {x ∈ G | d · x = e}

is the subgroup of G of d-torsion points.

Example 1.2.1.3. Suppose that G = Zd. Then #M(A;Γ,Zq) is proved to be

a quasi-polynomial and is called the chromatic quasi-polynomial of A [BM14, §9].

Thus any characteristic quasi-polynomial (see §1.1.2) is indeed a chromatic quasi-

polynomial. A period ρA of the chromatic quasi-polynomial will be determined in

Definition 1.2.2.17 and Theorem 1.2.2.19. When no confusion arises, we use the

notations χquasi
A (q), fk

A(t) (1 ≤ k ≤ ρA) for both characteristic and chromatic quasi-

polynomials.

Example 1.2.1.4. Let Γ = Z⊕Z4 and G = C×. Then Hom(Γ, G) % C××{±1,±i},

which is a (real 2-dimensional) Lie group with 4 connected components. If α1 =

(2, 2) ∈ Γ, then Hα1,G = {(±1,±1), (±i,±i)} consists of 8 points. If α2 = (0, 2) ∈ Γ,

then Hα2,G = C× × {±1} is a union of two copies of C×.
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For each sublist S ⊆ A, we denote by rS the rank (as an abelian group) of the

subgroup 〈S〉 ≤ Γ generated by S. Additionally, rΓ denotes the rank of Γ. Given a

group K, denote by Ktor the torsion subgroup of K.

Definition 1.2.1.5. Following D’Adderio-Moci [DM13], we define the deletion A\S

as a list of elements in the same group Γ, and the contraction A/S as the list of cosets

{α | α ∈ A \ S} in the group Γ/〈S〉.

Proposition 1.2.1.6. For each S ⊆ A, set

HS,G :=
⋂

α∈S

Hα,G = {ϕ ∈ Hom(Γ, G) | ϕ(α) = e, ∀α ∈ S}.

Then

HS,G % Hom(Γ/〈S〉, G) % Hom((Γ/〈S〉)tor, G)×GrΓ−rS .

Proof. The first isomorphism follows from the exact sequence

0 −→ Hom(Γ/〈S〉, G) −→ Hom(Γ, G) −→ Hom(〈S〉, G).

From the structure theorem for finitely generated abelian groups, we may assume that

Γ/〈S〉 % (Γ/〈S〉)tor ⊕ ZrΓ−rS . The second isomorphism follows automatically.

Corollary 1.2.1.7. As sets,

M(A/S;Γ/〈S〉, G) %




ϕ ∈ Hom(Γ, G)

∣∣∣∣∣∣

ϕ(α) = e, for α ∈ S

ϕ(α) 0= e, for α ∈ A \ S




 .

Proof. By Proposition 1.2.1.6, Hom(Γ/〈S〉, G) % {ϕ ∈ Hom(Γ, G) | ϕ(α) = e, ∀α ∈

S}. The rest is clear.

Proposition 1.2.1.8.

Hom(Γ, G) %
⊔

S⊆A

M(A/S;Γ/〈S〉, G).

Proof. It is easily seen that for any ϕ ∈ Hom(Γ, G), S = Aϕ := {α ∈ A | ϕ(α) = e}

is the unique sublist S ⊆ A that satisfies ϕ ∈ M(A/S;Γ/〈S〉, G) (here we viewed

the isomorphism in Corollary 1.2.1.7 as the identification).
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Fix α ∈ A, define A′ := A \ {α}, Γ′ := Γ and A′′ := A/{α}, Γ′′ := Γ/〈α〉.

We call (A,A′,A′′) the triple (of lists) in Γ with the distinguished element α. By

Corollary 1.2.1.7, we can consider both M(A;Γ, G) and M(A′′;Γ′′, G) as subsets of

Hom(Γ, G) (they are in fact subsets of M(A′;Γ′, G)). These three sets are related by

the following set-theoretic deletion-contraction formula.

Proposition 1.2.1.9.

M(A′;Γ′, G) % M(A′′;Γ′′, G) 1M(A;Γ, G).

Proof. The set M(A′;Γ′, G) can be decomposed as {ϕ ∈ M(A′;Γ′, G) | ϕ(α) =

e} 1 {ϕ ∈ M(A′;Γ′, G) | ϕ(α) 0= e}. The first term on the right-hand side is

isomorphic to M(A′′;Γ′′, G), and the second term is equal to M(A;Γ, G).

1.2.2 G-Tutte polynomials over torsion-wise finite abelian groups

Recall that Γ is a finitely generated abelian group, and A is a finite list of el-

ements in Γ. Inspired by the concept of (multivariate) arithmetic Tutte polyno-

mial by [Moc12, BM14], we define the (multivariate) G-Tutte polynomial and the

G-characteristic polynomial for the list A and abelian group G. The main ingredient

is a refinement of the multiplicity m(S), and we require a condition on G so that the

new multiplicity remains finite.

Definition 1.2.2.1. An abelian group G is said to be torsion-wise finite if the sub-

group of d-torsion points G[d] (Example 1.2.1.2) is finite for all d > 0.

The class of torsion-wise finite groups is closed under taking subgroups and finite

direct products.

Example 1.2.2.2. The following are examples of torsion-wise finite abelian groups.

• Every torsion-free abelian group (e.g., {0},Z,R,C) is torsion-wise finite.

• Every finitely generated abelian group is torsion-wise finite.
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• Every subgroup of the multiplicative group K× for any field K is torsion-wise

finite (e.g., (S1,×) and (C×,×)).

Example 1.2.2.3. (Z/2Z)∞ is not a torsion-wise finite group.

Remark 1.2.2.4. In this thesis, we are mainly interested in the torsion-wise finite

groups of the form

G % F × (S1)p × Rq,

where F is a finite abelian group and p, q ≥ 0. Note that every abelian Lie group

G with finitely many connected components is of this form (see, e.g., [HN12, Exer-

cise 9.3.7]). We call the associated G-plexification A(G) the (F, p, q)-arrangement.

Combinatorial and topological properties of this family of G-plexifications will be

described in Chapters 2 and 3.

Proposition 1.2.2.5. Let G be a torsion-wise finite abelian group. Let F be a finite

abelian group. Then Hom(F,G) is finite.

Proof. By the structure theorem, we may assume that F % Zd1 × · · ·× Zdk . Then

Hom(F,G) % G[d1]× · · ·×G[dk],

which is finite by definition.

Proposition 1.2.2.6.

(1) Let G1, G2 and Γ be groups. Then Hom(Γ, G1×G2) % Hom(Γ, G1)×Hom(Γ, G2).

In particular, if Hom(Γ, G1×G2) is finite, then #Hom(Γ, G1×G2) = #Hom(Γ, G1)×

#Hom(Γ, G2).

(2) Let d1, d2 be positive integers. Then

Hom(Zd1 ,Zd2) % Hom(Zd2 ,Zd1) % Zgcd(d1,d2).

In particular, #Hom(Zd1 ,Zd2) = gcd(d1, d2).

Proof. Straightforward.
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Unless otherwise stated, we assume that G is torsion-wise finite.

Definition 1.2.2.7. The G-multiplicity m(S;G) for each S ⊆ A is defined by

m(S;G) := #Hom ((Γ/〈S〉)tor, G) .

By Proposition 1.2.2.5, it is clear that m(S;G) is a finite number. Let us describe

m(S;G) more explicitly. Because Γ/〈S〉 is a finitely generated abelian group, it is

isomorphic to a group of the form Zd1⊕· · ·⊕Zdr⊕ZrΓ−rS . Thus (Γ/〈S〉)tor %
⊕r

i=1 Zdi ,

and

Hom((Γ/〈S〉)tor, G) %
r⊕

i=1

G[di].

Therefore, m(S;G) =
∏r

i=1#G[di].

Remark 1.2.2.8. It is also easily seen that Hom ((Γ/〈S〉)tor, G) is (non-canonically)

isomorphic to TorZ1 (Γ/〈S〉, G). Hence m(S;G) = #TorZ1 (Γ/〈S〉, G).

Definition 1.2.2.9. Assume that A = {α1, . . . ,αn} is a finite list of elements in a

finitely generated abelian group Γ, and G a torsion-wise finite group. Recall that rΓ

and rS denote the ranks of Γ and 〈S〉, respectively.

(1) The multivariate G-Tutte polynomial ZG
A(q, v1, . . . , vn) of A is defined by

ZG
A(q, v1, . . . , vn) :=

∑

S⊆A

m(S;G)q−rS
∏

αi∈S

vi.

(2) The G-Tutte polynomial TG
A (x, y) of A is defined by

TG
A (x, y) :=

∑

S⊆A

m(S;G)(x − 1)rA−rS (y − 1)#S−rS .

(3) The G-characteristic polynomial χG
A(t) of A is defined by

χG
A(t) :=

∑

S⊆A

(−1)#Sm(S;G) · trΓ−rS .

Proposition 1.2.2.10. The leading coefficient of χG
A(t) equals #M(A∩Γtor;Γtor, G).

Proof. Straightforward.
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Like the (multivariate) Tutte and arithmetic Tutte polynomials [BM14, Moc12,

Sok05], three polynomials above are related by the following formulas:

TG
A (x, y) = (x− 1)rA · ZG

A((x− 1)(y − 1), y − 1, . . . , y − 1), (1.2.1)

χG
A(t) = (−1)rA · trΓ−rA · TG

A (1− t, 0). (1.2.2)

Definition 1.2.2.11. Following [DM13, §4.4], we call α ∈ A a loop (resp., coloop) if

α ∈ Γtor (resp., rA = rA\{α} + 1). An element α that is neither a loop nor a coloop is

said to be proper.

Let (A,A′,A′′) be the triple with the distinguished element αi ∈ A.

Lemma 1.2.2.12. The multivariate G-Tutte polynomials satisfy

ZG
A(q, v) =





ZG

A′(q, v) + vi · ZG
A′′(q, v), if αi is a loop,

ZG
A′(q, v) + vi · q−1 · ZG

A′′(q, v), otherwise.

Proof. Proof follows along the lines of [BM14, Proof of Lemma 3.2].

Corollary 1.2.2.13. The G-Tutte polynomials satisfy

TG
A (x, y) =






TG
A′(x, y) + (y − 1)TG

A′′(x, y), if αi is a loop,

(x− 1)TG
A′(x, y) + TG

A′′(x, y), if αi is a coloop,

TG
A′(x, y) + TG

A′′(x, y), if αi is proper.

Proof. It follows from Lemma 1.2.2.12 and formula (1.2.1).

Corollary 1.2.2.14. The G-characteristic polynomials satisfy

χG
A(t) = χG

A′(t)− χG
A′′(t).

Proof. It follows from Corollary 1.2.2.13 and formula (1.2.2).

Recall the definitions of the Tutte polynomial TA(x, y) and the arithmetic Tutte

polynomial T arith
A (x, y) of A in Remark 1.1.2.1. The G-Tutte and G-characteristic

polynomials have several specializations. First, we mention the expected ones.
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Proposition 1.2.2.15. Suppose that G is a torsion-free abelian group. Then TG
A (x, y) =

TA(x, y).

Proof. This follows from the fact that Hom((Γ/〈S〉)tor, G) is the trivial group for all

S ⊆ A.

Proposition 1.2.2.16. Suppose that G is S1 or C×. Then TG
A (x, y) = T arith

A (x, y).

Proof. Note that #Hom((Γ/〈S〉)tor, G) = #(Γ/〈S〉)tor, which is equal to the multi-

plicity m(S) in the definition of the arithmetic Tutte polynomial (§1.1.2).

Definition 1.2.2.17. Suppose that Γ/〈S〉 %
⊕nS

i=1 ZdS,i ⊕ ZrΓ−rS where nS ≥ 0 and

1 < dS,i|dS,i+1. The LCM-period ρA of A is defined by

ρA := lcm(dS,nS | S ⊆ A).

Note that the LCM-period ρA defined above coincides with the number defined

in (1.1.4) when Γ % Z!. The arithmetic Tutte polynomial can also be seen as the

G-Tutte polynomial in terms of other group G.

Proposition 1.2.2.18. T
ZρA
A (x, y) = T arith

A (x, y).

Proof. Let G = ZρA . Since dS,i | ρA, we have #Hom(Z/dS,iZ, G) = dS,i for all S ⊆ A

and 1 ≤ i ≤ nS which follows from Proposition 1.2.2.6. Thus, m(S;G) = m(S) for

all S.

Theorem 1.2.2.19. The chromatic quasi-polynomial of A (Example 1.2.1.3) is iden-

tical with the Zq-characteristic polynomial of A, i.e.,

χquasi
A (q) = χZq

A (q).

As a result, the LCM-period ρA is a period of χquasi
A (q).

Proof. It is proved in [BM14, §9]. Alternatively, it is a special case of Theorem

3.1.2.5.

The G-Tutte polynomial also has some other specializations.
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Example 1.2.2.20. In [CS04, Sok05], partition functions of abelian group valued

Potts models were studied, and later were generalized to the arithmetic matroid set-

ting by Brändén-Moci [BM14, Theorem 7.4]. Brändén-Moci’s polynomial ZL(Γ, H,v)

is, in our terminology, equal to (#H)rΓ · ZH
L (#H, v1, . . . , vn), where L is a list of n

elements in Γ, and H is a finite abelian group. In the same paper, Brändén-Moci

also defined the Tutte quasi-polynomial QL(x, y), which is equal to T
Z(x−1)(y−1)

L (x, y)

for any fixed integers x and y.

Example 1.2.2.21. Both the modified Tutte-Krushkal-Renhardy polynomial for a

finite CW-complex (see [BBC14, §3], [DM18, §4] for details) and Bibby’s Tutte polyno-

mial for an elliptic arrangement [Bib16, Remark 4.4] can be expressed by T S1×S1
A (x, y).

Let σ : Γ1 −→ Γ2 be a homomorphism between finitely generated abelian groups.

The map σ induces a homomorphism

σ∗ : Hom(Γ2, G) −→ Hom(Γ1, G). (1.2.3)

Let α ∈ Γ1. It is easily seen that (σ∗)−1(Hα,G) = Hσ(α),G. Hence (1.2.3) induces a

map between the complements

σ∗|M(σ(A);Γ2 ,G) : M(σ(A);Γ2, G) −→ M(A;Γ1, G).

A natural question is to compare TG
A (x, y) and TG

σ(A)(x, y). This comparison is in

general difficult. However, in the case where Γ1 = Γ2 = Z! and G is a connected Lie

group, the constant terms of the G-characteristic polynomials can be controlled by

det(σ).

Proposition 1.2.2.22. Let Γ = Z!, σ : Γ −→ Γ be a homomorphism, A be a finite

list of elements in Γ, and G = (S1)p × Rq with p > 0. Then

χG
σ(A)(0) = | det(σ)|p · χG

A(0).

Proof. By formula (1.2.2), χG
A(t) is divisible by trΓ−rA. If det(σ) = 0, then rσ(A) <

$ = rΓ, and χG
σ(A)(t) is divisible by t. Therefore the left-hand side vanishes, and the

assertion holds trivially.
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We assume instead that det(σ) 0= 0. Note that for a sublattice L ⊆ Γ of rank $, we

have (Γ : σ(L)) = | det(σ)| · (Γ : L). Second, if rS = $, then (Γ/〈S〉)tor = Γ/〈S〉, and

we have m(S;G) = m(S; S1)p = #(Γ/〈S〉)p. Third, because σ : Γ −→ Γ is injective,

rσ(S) = rS and #σ(S) = #S for every sublist S ⊆ A. Therefore,

χG
σ(A)(0) =

∑

σ(S)⊆σ(A)
rσ(S)=!

(−1)#σ(S)m(σ(S);G)

=
∑

S⊆A
rS=!

(−1)#Sm(σ(S);G)

=
∑

S⊆A
rS=!

(−1)#S | det(σ)|pm(S;G)

= | det(σ)|p · χG
A(0).
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2. G-TUTTE POLYNOMIALS VIA COMBINATORICS

2.1 Combinatorics of (F, p, q)-arrangements

The notions of hyperplane, toric and q-reduced arrangements are unified by that of

G-plexifications (Remark 1.2.1.1), and more specifically, by that of (F, p, q)-arrangements

(Remark 1.2.2.4). Inspired by the pioneered work of Moci on combinatorics of gener-

alized toric arrangements, we will associate with any (F, p, q)-arrangement the partial

and total intersection posets and prove that the corresponding characteristic polyno-

mials can be expressed in terms of the G-characteristic polynomials.

2.1.1 Generalized toric arrangements

Let us first fix some definitions and notations throughout this section. Let Γ be a

finitely generated abelian group, and let A ⊆ Γ be a finite list (multiset) of elements

in Γ. The ranks of 〈S〉 for S ⊆ Γ and Γ are denoted by rS , rΓ, respectively. Given a

group K, denote by Ktor the torsion subgroup of K. Denote Stor := S ∩ Γtor.

Let (P,≤P) be a finite poset. The Möbius function µP of P is the function

µP : P × P −→ Z defined by

µP(a, b) :=






0 if a "P b,

1 if a =P b,

−
∑

a≤c<b µP(a, c) if a <P b.

A poset P is said to be ranked if for every a ∈ P, all maximal chains among those

with a as greatest element have the same length, denoted this common number by

rkP(a).

Now we briefly recall what has been known on combinatorics of generalized toric

arrangements following [Moc12, §5]. Set T := Hom(Γ, G) where G is either S1 or
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C×. The G-plexification A(G) is called the generalized toric arrangement defined

by A on T . In particular, when Γ % Z!, T is a torus and A(G) is called the toric

arrangement (see §1.1.1). To describe the combinatorics of A(G), we associate with

it an intersection poset LA(G), which is the set of all connected components of all

intersections of the G-hyperplanes (subvarieties) Hα,G. The poset LA(G) is ranked

by the dimension of its elements (layers). Note that the dimension is defined over

R (resp., C) when G = S1 (resp., G = C×). The characteristic polynomial often

regarded as “the combinatorics” of A(G) is defined by

χtoric
A (t) :=

∑

C∈LA(G)

µ(T C, C)tdim(C),

where T C is the connected component of T that contains C. In comparison with

the notation in §1.1.2, the notation χtoric
A (t) here means either χA(S1)(t) or χA(C×)(t)

depending on whether G is S1 or C×.

Moci showed that χtoric
A (t) can be computed by the arithmetic Tutte polynomial

T arith
A (x, y) in the same way as the Whitney’s theorem (formula (1.1.1)) showing how

the characteristic polynomial of a hyperplane arrangement is computed by the Tutte

polynomial.

Theorem 2.1.1.1. Assume that G is either S1 or C×. If Γ is a free abelian group and

0Γ /∈ A (or even if Γ is an arbitrary finitely generated abelian group with Ator = ∅),

then

χtoric
A (t) = (−1)rA · trΓ−rA · T arith

A (1− t, 0) = χG
A(t).

Proof. The first equality follows from [Moc12, Theorem 5.6]. The second follows from

Proposition 1.2.2.16.

2.1.2 Characteristic polynomials of (F, p, q)-arrangements

In the remainder of this subsection, we assume that G is an abelian Lie group

with finitely many connected components, i.e., G % (S1)p × Rq × F and F is a finite
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abelian group. In addition, we assume that the dimension is defined over R. Thus

g := dimR(G) = p+ q ≥ 0. For each S ⊆ A, by Proposition 1.2.1.6, we have

HS,G =
⋂

α∈S

Hα,G

% Hom((Γ/〈S〉)tor, G)× F rΓ−rS ×
(
(S1)p × Rq

)rΓ−rS .

(2.1.1)

We agree that T = Hom(Γ, G) := H∅,G. Each connected component of HS,G is

isomorphic to ((S1)p × Rq)
rΓ−rS . If either rΓ = 0 or g = 0, it can be identified with

a point. The set of the connected components of HS,G is denoted by cc(HS,G). The

following lemma is somewhat more general than [Moc12, Lemma 5.4].

Lemma 2.1.2.1. #cc(HS,G) = m(S;G) · (#F )rΓ−rS .

Proof. It follows directly from Definition 1.2.2.7 and (2.1.1).

Definition 2.1.2.2.

(1) The total intersection poset of A(G) is defined by

L = Ltot
A(G) := {connected components of nonempty HS,G | S ⊆ A},

whose elements, called layers, are ordered by reverse inclusion (D ≤L C if D ⊇ C).

(2) The total characteristic polynomial of A(G) is defined by

χtot
A(G)(t) :=

∑

C∈L

µ(T C, C)tdim(C).

Here T C is the connected component of T that contains C and µ := µL.

The set of minimal elements of L is exactly cc(T ). The connected components of

HA,G are maximal elements of L but the converse is not necessarily true. For each

C ∈ L, set

R(C) := {S ⊆ A | C ∈ cc(HS,G)}.

One observes that dim(C) = dim(HS,G) = g(rΓ − rS) for every S ∈ R(C). The

localization of A with respect to C is defined by

AC := {α ∈ A | C ⊆ Hα,G}. (2.1.2)
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Stated differently, AC is the unique maximal element of R(C) in the sense that S ⊆ AC

for every S ∈ R(C). We also can write

R(C) = {S ⊆ AC | rS = rAC}. (2.1.3)

Thus L is a ranked poset with a rank function given by

rkL(C) := rAC = codim(C)/g (C ∈ L).

We are interested in a particular subset scc(T ) of cc(T ),

scc(T ) := {Ti ∈ cc(T ) | (ATi)
tor = ∅}

= cc(T ) \
⋃

α∈Ator

cc(Hα,G).

By using the Inclusion-Exclusion principle,

#scc(T ) = #M(Ator;Γtor, G) · (#F )rΓ . (2.1.4)

Definition 2.1.2.3.

(1) The partial intersection poset of A(G) is defined by

Lpar := {C ∈ L | T C ∈ scc(T )},

and the Möbius function of Lpar is the restriction of µ i.e., µLpar = µ|Lpar×Lpar.

(2) The partial characteristic polynomial of A(G) is defined by

χpar
A(G)(t) :=

∑

C∈Lpar

µ(T C, C)tdim(C).

In other words, Lpar is the dual order ideal (e.g., [Sta11, §3.1]) of L generated by

scc(T ). It follows from the definition above that χpar
A(G)(t) = 0 if scc(T ) = ∅.

Remark 2.1.2.4. Removing from A(G) the hyperplanes Hα,G with α ∈ Ator does not

affect the structure of the poset, i.e.,

LA(G) = L(A\Ator)(G) = Lpar
(A\Ator)(G).
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As a consequence,

χtot
A(G)(t) = χtot

(A\Ator)(G)(t) = χpar
(A\Ator)(G)(t).

In particular, χtot
A(G)(t) = χpar

A(G)(t) if Ator = ∅.

In the lemma below, we generalize the result in [Moc12, Lemma 5.5] as we include

the possibility Ator 0= ∅.

Lemma 2.1.2.5. If C ∈ L, then

∑

S∈R(C)

(−1)#S =






µ(T C, C) if C ∈ Lpar,

0 if C /∈ Lpar.

Proof. The proof of the formula when C ∈ Lpar is processed by induction on rkL(C),

which runs essentially the same as that of [Moc12, Lemma 5.5]. Note that AD ⊆ AC

whenever C ⊆ D ⊆ T C. If (ATC)tor 0= ∅, then (AC)tor 0= ∅. The remaining part of the

formula follows from Proposition 2.2.2.5. Indeed, by (2.1.3)

∑

S∈R(C)

(−1)#S =
∑

S⊆AC
rS=rAC

(−1)#S

equals the coefficient of trΓ−rAC in f 1
AC

(t), which is 0.

Corollary 2.1.2.6. The Möbius function of L strictly alternates in sign. That is,

for all C ∈ L,

(−1)rkL(C)µ(T C, C) > 0.

Proof. Consider C ∈ Lpar. Note that f 1
AC

(t) = χ(AC)(R)(t) =
∑rΓ

j=rΓ−rAC
bjtj with

(−1)rΓ−jbj > 0 for all j (e.g., [Sta07, Corollary 3.5]). By Proof of Lemma 2.1.2.5,

µ(T C, C) is equal to the coefficient of trΓ−rAC in f 1
AC

(t), which strictly alternates in

sign, i.e., (−1)rACµ(T C, C) > 0. If C /∈ Lpar, we consider A \ Ator instead of A as

argued in Remark 2.1.2.4.

The main idea of the proof below is very similar to the one used in [Moc12,

Theorem 5.6]. We include it with a detailed proof for the sake of completeness.
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Theorem 2.1.2.7. Let G % (S1)p × Rq × F with g = p+ q ∈ Z>0. Then

χpar
A(G)(t) = χG

A (#F · tg) .

Proof. We must prove that

∑

C∈Lpar

µ(T C, C)tdim(C) =
∑

S⊆A

(−1)#Sm(S;G) · (#F )rΓ−rS · tg(rΓ−rS).

It is equivalent to proving that for all k = rΓ − rA, . . . , rΓ,

∑

C∈Lpar

gk=dim(C)

µ(T C, C) =
∑

S⊆A
k=rΓ−rS

(−1)#Sm(S;G) · (#F )rΓ−rS .

We have

∑

C∈Lpar

gk=dim(C)

µ(T C, C) =
∑

C∈L
gk=dim(C)

∑

S∈R(C)

(−1)#S

=
∑

S⊆A
rS=rΓ−k




∑

C∈cc(HS,G)

1



 (−1)#S

=
∑

S⊆A
k=rΓ−rS

(−1)#Sm(S;G) · (#F )rΓ−rS .

We have applied Lemma 2.1.2.5 in the first equality, switched roles of sums in the

second equality, and used Lemma 2.1.2.1 in the last equality.

Corollary 2.1.2.8. Let G % (S1)p × Rq × F with g = p+ q ∈ Z>0. Then

χtot
A(G)(t) = χG

A\Ator (#F · tg) .

Proof. It follows from Theorem 2.1.2.7 and Remark 2.1.2.4.

Remark 2.1.2.9. Although either Theorem 2.1.2.7 or Corollary 2.1.2.8 may not be

valid when g = 0, there is no loss of information in these formulations. Namely,

χpar
A(G)(t) = #scc(T ), and by equality (2.1.4) and Proposition 1.2.2.10, this equals the

“leading part” of χG
A (#F ) (the value of the leading term of χG

A (t) evaluated at #F ).

Similarly, χtot
A(G)(t) = #cc(T ), which is equal to the leading part of χG

A\Ator (#F ).



21

Remark 2.1.2.10. Note that when G = S1 (or G = C×) and Ator = ∅, χpar
A(G)(t) =

χtot
A(G)(t) = χtoric

A (t). The result of Moci (Theorem 2.1.1.1) is a special case of Theorem

2.1.2.7.

2.2 An equivalent formulation of chromatic quasi-polynomials

Our main focus in this section is the Brändén-Moci’s chromatic quasi-polynomial

(see Example 1.2.1.3) and we prove that this quasi-polynomial can be formulated

in a different way. Recall that the Kamiya-Takemura-Terao’s characteristic quasi-

polynomial (§1.1.2) is defined for a finite list of elements in Z!, and the chromatic

quasi-polynomial extends the definition to any finitely generated abelian group. In

a different setting involving two lists of elements in Z!, and by the elementary

divisor method which was initially used by Kamiya-Takemura-Terao, Chen-Wang

[CW12] found another generalization of the characteristic quasi-polynomial. We

prove that the Chen-Wang’s quasi-polynomial and the Brändén-Moci’s chromatic

quasi-polynomial are equivalent in the sense that the quasi-polynomials enumerate

the cardinalities of isomorphic sets. Several applications including the periodicity

of intersection posets of Zq-plexifications, an answer to a problem of Chen-Wang,

and computation of the characteristic polynomials of R-plexifications will also be

discussed.

2.2.1 Unify the quasi-polynomials

Since we will be greatly involved with quasi-polynomials, let us recall a precise

definition of them. A function g : Z → C is called a quasi-polynomial if there exist

ρ ∈ Z>0 and polynomials fk(t) ∈ Z[t] (1 ≤ k ≤ ρ) such that for any q ∈ Z>0 with

q ≡ k mod ρ,

g(q) = fk(q).

The number ρ is called a period and the polynomial fk(t) is called the k-constituent

of the quasi-polynomial g.
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Recall that for a finite list A of elements in a finitely generated abelian group Γ,

#M(A;Γ,Zq) is the chromatic quasi-polynomial of A. In particular, #M(A;Z!,Zq)

is the characteristic quasi-polynomial of A.

To define the Chen-Wang’s quasi-polynomial, in the following paragraph, we spec-

ify Γ = Z!. Let q ∈ Z>0, and set Z×
q := Zq \ {0}. For simplicity of notation, we use

the same symbols A and z for the realizations of the list A ⊆ Z! and the element

z ∈ Z!
q as matrices of size $×#A and 1× $, respectively. Let B be another finite list

in Z!. Chen-Wang [CW12] defined

CW(A,B,Z!; q) :=




z ∈ Z!
q

∣∣∣∣∣∣

z · A ∈ (Z×
q )

#A

z · B = (0)#B




 ,

and applied the elementary divisor method of [KTT08] to show that the cardi-

nality #CW(A,B,Z!; q) is a quasi-polynomial in q. The notion of Chen-Wang’s

quasi-polynomials strictly generalizes that of characteristic quasi-polynomials because

M(A;Z!,Zq) = CW(A,B,Z!; q) when B is the zero matrix, and #M(∅;Z!,Zq) = q!

while #CW(∅,B,Z!; q) still depends on B.

Proposition 2.2.1.1. Any Chen-Wang’s quasi-polynomial is a chromatic quasi-polynomial.

Proof. By Corollary 1.2.1.7 together with the isomorphism Hom(Z!,Zq) % Z!
q,

CW(A,B,Z!; q) % M((A 1 B)/B;Z!/〈B〉,Zq).

The converse of Proposition 2.2.1.1 is also true as we will see in the lemma below.

Lemma 2.2.1.2. If Γ % Zr⊕Zd1⊕ · · ·⊕Zds , then we can find two lists Q ⊆ L ⊆ Zr+s

with rQ = s such that A = L/Q.

Proof. We can view Γ % Zr+s/〈Q〉, where Q = {q1, . . . , qs} ⊆ Zr+s, qi has di in the

(r + i)-th coordinate and 0 elsewhere. Thus A can be identified with a list of cosets

A = {a1, . . . , ak} with ai ∈ Zr+s. We choose a representative ai ∈ Zr+s for each

coset, which is determined up to a linear combination of elements from Q. Define

Ã := {a1, . . . , ak} ⊆ Zr+s, and L := Ã 1Q ⊆ Zr+s. Thus A = L/Q.
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Remark 2.2.1.3. The construction of the lists Ã and L presented in Lemma 2.2.1.2

is probably well-known among experts, for instance [DM13, §3.4], wherein it plays a

crucial role in proving the representability of the duals of arithmetic matroids.

Proposition 2.2.1.4. Any chromatic quasi-polynomial is a Chen-Wang’s quasi-polynomial.

Proof. With the notation as in Lemma 2.2.1.2, we can write

M(A;Γ,Zq) = CW(Ã, Q,Zr+s; q).

Theorem 2.2.1.5. The Chen-Wang’s and the Brändén-Moci’s chromatic quasi-polynomials

are equivalent in the sense that they enumerate the cardinalities of isomorphic sets.

Proof. It follows directly from Propositions 2.2.1.1 and 2.2.1.4.

Lemma 2.2.1.2 is also useful to prove the periodicity of intersection posets of the

Zq-plexification A(G). Following the idea of [KTT08, §3], we define the poset

LA(Zq) :=
{
HS,Zq 0= ∅ | S ⊆ A

}
,

ordered by reverse inclusion.

Theorem 2.2.1.6. There exist positive integers q0, ρL such that the intersection poset

LA(Zq) is periodic in q > q0 with a period ρL, i.e.,

LA(Zq+nρL ) % LA(Zq) (as posets) for all q > q0 and n ∈ Z>0.

Proof. Using the notation as in Lemma 2.2.1.2, for each S = {ai1 , . . . , ais} ⊆ A, we

can idenfity HS,Zq with
⋂s

j=1Haij ,Zq ∩ HQ,Zq , which is clearly an element of LL(Zq).

Thus the Hasse diagram1 of LA(Zq) is isomorphic (as directed graphs) to that of

L′ := {Y ∈ LL(Zq) | Y ⊆ HQ,Zq}. By [KTT08, Corollary 3.3], there exists q0 ∈ Z>0

such that LL(Zq+nρL ) % LL(Zq) for all q > q0 and n ∈ Z>0. Here ρL is the LCM-period

of the list L. In particular, the isomorphism induces the periodicity of L′. This

completes the proof.

1Hasse diagram of a poset P is the directed graph whose vertices are the elements of P and whose
edges are the pairs (a, b) with the edge going upward from a to b whenever b covers a.
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Now from Theorems 2.2.1.5 and 1.2.2.19 we know that the following concepts

are equivalent: the chromatic, Chen-Wang’s quasi-polynomials and Zq-characteristic

polynomial of A. We use the common notation χquasi
A (q) to denote these quasi-

polynomials, and also write fk
A(t) for the k-constituents (1 ≤ k ≤ ρA).

Proposition 2.2.1.7.

(1) For any k with 1 ≤ k ≤ ρA, fk
A(t) = χZk

A (t).

(2) χquasi
A (q) satisfies the GCD-property, i.e., fa

A(t) = f b
A(t) if gcd(a, ρA) = gcd(b, ρA).

(3) For any k with 1 ≤ k ≤ ρA, if gcd(q, ρA) = k, then χquasi
A (q) = fk

A(q).

Proof. See [CW12, Theorem 2.3].

Corollary 2.2.1.8. χS1
A (t) = χ

ZρA
A (t) = f ρA

A (t).

Proof. The first equality is clear from Propositions 1.2.2.16 and 1.2.2.18. The second

equality follows from Proposition 2.2.1.7(1).

Corollary 2.2.1.9. The last constituent f ρA
A (t) (resp., f ρA

A\Ator(t)) of the chromatic

quasi-polynomial of A (resp., A \ Ator) coincides with the partial (resp., total) char-

acteristic polynomial of the generalized toric arrangement A(S1) of A, i.e.,

χpar
A(S1)(q) =f ρA

A (t),

χtot
A(S1)(t) =f ρA

A\Ator(t).

In particular, when Ator = ∅,

χtoric
A (t) = χtot

A(S1)(t) = χpar
A(S1)(q) = f ρA

A (t).

Proof. By definitions, χtoric
A (t) = χtot

A(S1)(t) (see §2.1). The rest follows from Theorem

2.1.2.7 and Corollaries 2.1.2.8, 2.2.1.8.

Fix α ∈ A. Let (A,A′,A′′) be the triple in Γ with the distinguished element α.
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Theorem 2.2.1.10 (Deletion-Contraction formula).

χquasi
A (q) = χquasi

A′ (q)− χquasi
A′′ (q).

Proof. This follows directly from Corollary 1.2.2.14 and Theorem 1.2.2.19 by letting

G = Zq. It can also be proved by Proposition 1.2.1.9.

Remark 2.2.1.11. Using Theorem 2.2.1.10, the Deletion-Restriction formula in [CW12,

Lemma 3.3] can be exhibited by setting A as the contraction list (A 1 B)/B, where

A 0= ∅ and B are finite lists in Z!.

Corollary 2.2.1.12. If k ≤ min{ρA′ , ρA′′}, then the k-constituents satisfy

fk
A(t) = fk

A′(t)− fk
A′′(t).

Proof. Note that the LCM-period of any deletion/contract list is a divisor of the LCM-

period of the parent list. The formula follows from Corollary 1.2.2.14 and Proposition

2.2.1.7(1).

Remark 2.2.1.13. The LCM-period of χquasi
A (q) is not necessarily the minimum period.

We clarify it by an example. Let Γ = Z2 ⊕ Z2, A = {α, β} # Γ with α = (0, 0) and

β = (1, 0). Then ρA = 2, while the minimum period is actually 1 and χquasi
A (q) = 0

for every q. Note that this fact can also be clarified by another class of examples

originated from [CW12, Example 4.2].

We close this subsection by giving an answer to a problem asked by Chen-Wang

in [CW12, Problem 2].

Problem 2.2.1.14. Let A1 and A2 be finite lists in Z! with rA2 = $. Assume that

#CW(A1,A2,Z!; q) = 0 for every q ∈ Z>0. Then there exists α ∈ A1 such that

α ∈ 〈A2〉.

Answer. The statement is true if and only if $ = 1. By Proposition 2.2.1.1, we rewrite

the assumption as #M(A;Γ,Zq) = 0 where A = (A1 1A2)/A2, and Γ = Z/〈A2〉 is

a finite group. Assume that $ = 1. Then Γ % Zd for some d ∈ Z>0. Suppose to the
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contrary that for every α ∈ A1, α /∈ 〈A2〉. It is equivalent to saying that a 0= 0 for

all a ∈ A. Set T := {z ∈ C | zd = 1}. For each a ∈ A with 1 ≤ a ≤ d − 1, set

Ta := {z ∈ T | za = 1}. By Theorem 1.2.2.19, the degree of χquasi
A (q) is 0. Moreover,

the last constituent of χquasi
A (q) can be computed by using Proposition 2.2.1.7 as

follows:

f ρA
A (t) = χZ/ρAZ

A (t) = #

(

T \
⋃

a∈A

Ta

)

> 0,

which is a contradiction. For $ ≥ 2, we show that the statement is not true by

providing a counterexample. Let us first prove the following fact: if Γ = Zd1⊕· · ·⊕Zd"

is a finite abelian group containing at least two distinct nonidentity elements of order

2, say β1, β2, and A = {α ∈ Γ | α 0= 0Γ}, then #M(A;Γ,Zq) = 0 for every q ∈ Z>0.

Indeed by definition,

M(A;Γ,Zq) = {ϕ ∈ Hom(Γ,Zq) | ϕ(α) 0= 0, for all α ∈ A},

= {ϕ ∈ Hom(Γ,Zq) | ϕ is injective}.

If the above set is nonempty, then ϕ(α), ϕ(β) are distinct and both have order 2

in Zq. This contradiction implies that #M(A;Γ,Zq) = 0. By Proposition 2.2.1.4,

#CW(Ã, Q,Z!; q) = 0. Now choose Γ = Z!
2 with $ ≥ 2, and let A1 = Ã, A2 = Q.

2.2.2 Application to real hyperplane arrangements

As mentioned in §1.1.2, if Γ = Z!, then f 1
A(t) = χA(R)(t). However, this formula

may fail if Γ is any finitely generated abelian group. It is because the list A may

contain torsion elements of Γ, and f 1
A(t) vanishes while by definition χA(R)(t) is never

0. Thus it is natural to ask of which real arrangement, the characteristic polynomial

agrees with f 1
A(t); and of which list, the first constituent of the characteristic quasi-

polynomial agrees with χA(R)(t). These questions will be answered in this subsection.

More generally, we will give two interpretations for every constituent through subspace

and toric viewpoints in §2.3.
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In the following setting and until before Proposition 2.2.2.3, we restrict our at-

tention to the case Γ = Z!, and view A as a finite list of nonzero vectors in Z!.

We regard {ε1, . . . , ε!} as the standard basis for R!, and equip to it the standard

inner product (·, ·). Then the R-plexification A(R) is an arrangement of (possi-

bly repeated) hyperplanes in R! with each hyperplane Hα,R can be identified with

Hα = {x ∈ R! | (α, x) = 0}. Let LA(R) be the intersection poset of A(R) (see §2.1.2).

Here the partial and total intersection posets are the same. Note that we require the

intersection poset to be a set, not multiset. Also, the ambient space R! can be added

to the arrangement without affecting the arrangement’s intersection poset. For each

X ∈ LA(R), the localization of A(R) on X is defined by

A(R)X := {H ∈ A(R) | X ⊆ H},

and the restriction A(R)X of A(R) to X is defined by

A(R)X := {H ∩X | H ∈ A(R) \ A(R)X}.

Denote by X⊥ the orthogonal complement of X in R!. Set

AX := A ∩X⊥ ⊆ A.

Proposition 2.2.2.1. The following formulas are valid at level of multisets:

(1) A(R)X = (AX)(R).

(2) A(R)X = (A/AX)(R).

Proof. The proof of (1) is straightforward. To prove (2), for every X ∈ LA(R) with

X 0= R!, we use X =
⋂

H∈A(R)X
H , the longest expression of X in terms of intersection

of the hyperplanes in A(R). To see A(R)X = (A/AX)(R) as multisets, note that

the number of occurrences of each element Hβ,R ∩ X in these multisets is equal to

#{γ ∈ A \ AX | γ ∈ spanR{β,AX}}.

Lemma 2.2.2.2. χA(R)X (t) = f 1
A/AX

(t).
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Proof. It is essentially proved in [CW12, Corollary 2.4] (see also [Ath96, Corollary

6.1]). The idea is to use Whitney’s theorem (see (1.1.1)) and Proposition 2.2.2.1.

Unless otherwise stated, in the remainder of this subsection, we assume that Γ is

an arbitrary finitely generated abelian group. Now we give an arrangement theoretic

realization for A(R).

Proposition 2.2.2.3. If Ator = ∅, then A(R) is an integral arrangement, and also

can be realized as a restriction of L(R) where L is a finite list in some free abelian

group.

Proof. We use the notation as in Lemma 2.2.1.2. Set X := HQ,R ∈ LL(R), then

Q = L ∩ X⊥ = LX . The condition Ator = ∅ is crucial, otherwise it may happen

that Q # LX . By Proposition 2.2.2.1, A(R) = (L/LX)(R) = L(R)X . This means

that A(R) is the restriction of L(R) to X, and also can be identified with an integral

arrangement in RrΓ .

Next, we prove an important property of χquasi
A (q), which is the main theorem of

this subsection.

Theorem 2.2.2.4. χA(R)(t) = f 1
A\Ator(t).

Proof. If Ator = ∅, we apply Proposition 2.2.2.3 and Lemma 2.2.2.2. For the case

Ator 0= ∅, note that A(R) and (A \ Ator)(R) have the same intersection poset.

The 1-constituent f 1
A(t) sometimes can be regarded as the chromatic polynomial

defined on a graph, for example, via connection with graphic arrangements (e.g.,

[OT92, §2.4]). It is well-known (and easy to show) that the graphical chromatic

polynomial is identical to 0 if the graph contains some (graph theoretic) loop. Recall

from Definition 1.2.2.11 that an element α ∈ A is called a loop if α ∈ Γtor. We prove

in the proposition below that a similar result holds for f 1
A(t).

Proposition 2.2.2.5. If Ator 0= ∅, then f 1
A(t) = 0.
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Proof. Use Corollary 2.2.1.12 (viewing as k = 1) to reduce the problem to the case

that A = F 1 T with F and T 0= ∅ consist of only coloops and loops, respectively.

Then apply Proposition 2.2.1.7(1).

Remark 2.2.2.6. There is a neater proof: fix α ∈ Ator and break f 1
A(t) into two

summations with one of them is taken over B ⊆ A,α ∈ B.

Corollary 2.2.2.7.

f 1
A(t) =






0 if Ator 0= ∅,

χA(R)(t) if Ator = ∅.

Proof. It follows directly from Theorem 2.2.2.4 and Proposition 2.2.2.5.

Example 2.2.2.8. Let Γ = Z2⊕Z4, A = {α, β, γ} # Γ with α = (2, 2, 1), β = (0, 2, 3)

and γ = (0, 0, 3). Then ρA = ρA\{γ} = 8, and

χquasi
A (q) =






0 if gcd(q, 8) = 1,

q2 if gcd(q, 8) = 2,

3q2 − 4q + 4 if gcd(q, 8) = 4,

3q2 − 12q + 12 if gcd(q, 8) = 8.

χquasi
A\{γ}(q) =






q2 − 2q + 1 if gcd(q, 8) = 1,

2q2 − 4q + 4 if gcd(q, 8) = 2,

4q2 − 8q + 8 if gcd(q, 8) = 4,

4q2 − 16q + 16 if gcd(q, 8) = 8.

Note that (A \ {γ})(R) = L(R)X , where L(R) = {{2x + 2y + z = 0}, {2y + 3z =

0}, {z = 0}} ⊆ R3 and X = {z = 0}, which can also be identified with the integral

arrangement {{x+ y = 0}, {y = 0}} in R2. In either way,

χ(A\{γ})(R)(t) = f 1
A\{γ}(t) = t2 − 2t+ 1.
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Corollary 2.2.2.9. For q ∈ Z>0, we have

∑

S⊆A

χquasi
A/S (q) = #Hom(Γ,Zq). (2.2.1)

As a result, if Γ % Zr ⊕ Zd1 ⊕ · · ·⊕ Zds, then

∑

S⊆A

f 1
A/S(t) = tr, (2.2.2)

∑

S⊆A

f
ρA/S

A/S (t) = d1 · · · drt
r. (2.2.3)

Proof. Formula (2.2.1) follows from the definition of chromatic quasi-polynomials

(Example 1.2.1.3) and Proposition 1.2.1.8. Formulas (2.2.2), (2.2.3) are immediate

consequences of Formula (2.2.1) and Proposition 2.2.1.7(3).

From Corollary 2.2.2.9, we see that the following well-known formula (e.g., [OS83,

(3.2)]) for integral arrangments is a consequence of Formula (2.2.2).

Corollary 2.2.2.10. Assume Γ = Z! and 0Γ /∈ A. For every X ∈ LA(R), we have

∑

Y ∈LA(R)

Y⊆X

χA(R)Y (t) = tdim(X). (2.2.4)

Proof. Given X ∈ LA(R), replacing A,Γ in the Formula (2.2.2) by A/AX , Z!/〈AX〉,

respectively, we obtain

∑

AX⊆S⊆A

f 1
(A/AX )/(S/AX )(t) = t!−rAX . (2.2.5)

Notice that dim(X) = $− rAX , and (A/AX)/(S/AX) can be identified with the list

A/S in Z!/〈S〉. In addition, by Proposition 2.2.2.5 we can write (2.2.5) as

∑

Y ∈LA(R)

AX⊆AY ⊆A

f 1
A/AY

(t) = tdim(X). (2.2.6)

Thus Formula (2.2.4) follows from Lemma 2.2.2.2 and Identity (2.2.6) above.
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2.3 Arrangement theoretic interpretations of the constituents

As mentioned in the previous subsection, we are interested in a question that

given a constituent of a chromatic polynomial how we can describe it in connection

with arrangement characteristic polynomials? Less is known, except for the first and

the last (Corollaries 2.2.1.8 and 2.2.2.7). An attempt was made to describe certain

classes of the constituents appeared in [DFM18, §10.3.3]. In this section, we give two

complete interpretations for the constituents through subspace and toric viewpoints.

The subspace interpretation is obtained from the combinatorics of A(Rdim(G) × Zk),

while the toric interpretation is obtained from the arithmetics of A(S1) (or A(C×))

by appropriately extracting its intersection poset.

2.3.1 Via subspace viewpoint

Corollary 2.3.1.1. Let G = Rg × Zk with g > 0 and 1 ≤ k ≤ ρA. Then

χpar
A(G) (t) = fk

A(k · tg).

Proof. It follows from Theorem 2.1.2.7 and Proposition 2.2.1.7(1) that

χpar
A(G) (t) = χRg×Zk

A (k · tg) = χZk
A (k · tg) = fk

A(k · tg).

Let us explain Corollary 2.3.1.1 in more details. For nontriviality, we assume

that scc(T ) 0= ∅ (e.g., when Ator = ∅), and rΓ > 0. Each connected component

of T = Hom(Γ,Rg × Zk) is isomorphic to RgrΓ . For each Ti ∈ scc(T ), the poset

Li = {C ∈ L | C ⊆ Ti} is isomorphic to the total (or equivalently, partial) intersection

poset of a Rg-plexification Gi in RgrΓ (or g-plexification in the sense of [Bjö94, §5.2],

see §1.1.1), with each Gi is possibly empty and defined over the integers. Thus after

a rescaling of variable, each constituent records the summation of the total charac-

teristic polynomials of the Gi’s, i.e.,

fk
A(kt

q) =
∑

Ti∈scc(T )

χtot
Gi
(t). (2.3.1)
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Remark 2.3.1.2. In particular, when g = 1, each Gi becomes an integral hyperplane

arrangement Hi (Proposition 2.2.2.3). The conclusion related to the first constituent

(k = 1) in Corollary 2.3.1.1 is the same as that stated in Corollary 2.2.2.7. In

particular, if Γ = Z!, each hyperplane Hα,R×Zk
in T can be identified with Hα,R×Hα,Zk

in R! × Z!
k. Each arrangement Hi turns out to be a subarrangement of A(R), and

in which components of T that the components of Hα,R×Zk
locate depends on the

arithmetics of the list A.

Example 2.3.1.3. Let Γ = Z2, A = {α, β, γ} # Z2 with α = (−1, 1), β = (0, 2), and

γ = (0, 4). Then

χquasi
A (q) =






q2 − 2q + 1 if gcd(q, 4) = 1,

q2 − 3q + 2 if gcd(q, 4) = 2,

q2 − 5q + 4 if gcd(q, 4) = 4.

Set Gk := R× Zk with k ∈ {1, 2, 4}. The Hasse diagrams (arrow omitted) of LA(Gk)

are drawn in Figures 2.1, 2.2, 2.3. The total characteristic polynomials χtot
A(Gk)

(t)

are computed according to the “×n”, indicator of the number of isomorphic Hasse

diagrams of Li’s.

•

•

!!!!

""
""

•

""""

!!
!!

•

×1

Figure 2.1: χtot
A(G1)

(t) = t2 − 2t+ 1 = f 1
A(t).

Now we give a discussion on reciprocity laws for every constituent fk
A(t). By

[CW12, Theorem 1.2], (−1)!CW(A,B,Z!;−q) ≥ 0 for all q ∈ Z>0. Thus by Theorem

2.2.1.5, (−1)rΓfk
A(−t) ≥ 0 for all t ∈ Z>0. Also, this fact can be derived from formula
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•

•

!!!!

""
""

•

""""

!!
!!

•

×2

•

•

×2

Figure 2.2: χtot
A(G2)

(t) = 4t2 − 6t+ 2 = f 2
A(2t).

•

•

!!!!

""
""

•

""""

!!
!!

•

×4

•

•

×12

Figure 2.3: χtot
A(G4)

(t) = 16t2 − 20t+ 4 = f 4
A(4t).

(2.3.4) in this paper. It is natural to ask whether the evaluations (−1)rΓfk
A(−t) have

any combinatorial meaning. A partial answer is probably well-known when Γ = Z!

that (−1)rΓfk
A(−t) can be expressed in terms of the Ehrhart quasi-polynomial of an

“inside-out” polytope [BZ06]. The construction of the polytope and the hyperplanes

cutting through it can be found in [KTT08, §2.2] (with some modification).

Owing to equality (2.3.1) and Remark 2.3.1.2, we can give an answer to the

aforementioned question. For nontriviallity, we assume that rΓ > 0. The reciprocity

laws for the characteristic polynomial of an integral arrangement have been formulated

by several methods, e.g., [Ath10], [BS18, §7], [Wan15, §4]. Thus the reciprocity laws

for any (nonzero) constituent fk
A(t) can be obtained from the reciprocity laws of the

polynomials χHi(t) (at least the method from [Ath10] is applicable here) as follows:

(−1)rΓfk
A(−t) =

∑

i

(−1)rΓχHi

(
−t

k

)
. (2.3.2)
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2.3.2 Via toric viewpoint

We may expect if there exists a “nicer” expression to describe every constituent

without making any rescaling of variable. It turns out that such expression can be

obtained from the toric arrangement by appropriately extracting its poset of layers.

Now let us turn to the second interpretation via toric arrangement viewpoint. In the

remainder of this subsection, we assume that G is either S1 or C×. We retain the

notation of the total group T = Hom(Γ, G), and its identity is denoted by 1. For

each k ∈ Z, consider the homomorphism

Ek : T −→ T via ϕ -→ ϕk := ϕ · · ·ϕ.

Definition 2.3.2.1.

(1) For each k ∈ Z, the k-total intersection poset of A(G) is defined by

L[k] = {C ∈ L | 1 ∈ Ek(C)}.

(2) The k-total characteristic polynomial of A(G) is defined by

χk -tot
A(G)(t) :=

∑

C∈L[k]

µ(T C, C)tdim(C).

The cover relation in L is preserved in L[k] i.e., if C covers D in L and C ∈ L[k]

then D ∈ L[k], which implies that L[k] is an order ideal (e.g., [Sta11, §3.1]). For

each S ⊆ A, note that HS,G is a subtorus of T whose each connected component is

isomorphic to the torus GrΓ−rS . Let C1

S ∈ cc(HS,G) be the identity component of HS,G,

that is, the connected component that contains 1. Thus cc(HS,G) can be identified

with the quotient group HS,G/C1

S . In the lemma below, we generalize [Moc12, Lemma

5.4] in an arithmetical manner.

Lemma 2.3.2.2. Fix k ∈ Z>0. For each S ⊆ A, we have

#(cc(HS,G) ∩ L[k]) = m(S;Zk).
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Proof. For each S ⊆ A, the homomorphism Ek induces the endomorphism Ek of

HS,G/C1

S with

ker(Ek) = cc(HS,G) ∩ L[k]. (2.3.1)

Using the identification HS,G = Hom(Γ/〈S〉, G) and a decomposition Γ/〈S〉 = (Γ/〈S〉)tor⊕

(Γ/〈S〉)free, we can write

C1

S = {ϕ ∈ HS,G | ϕ(x) = 1, ∀x ∈ (Γ/〈S〉)tor}.

Applying the left exact functor Hom(−, G) to the following exact sequence

0 −→

(
Γ

〈S〉

)

tor

−→
Γ

〈S〉
−→

Γ

〈S〉
/

(
Γ

〈S〉

)

tor

−→ 0,

we obtain

HS,G/C
1

S % Hom((Γ/〈S〉)tor, G). (2.3.2)

Furthermore, Ek induces the endomorphism Ẽk of Hom((Γ/〈S〉)tor, G) with

ker(Ẽk) = Hom((Γ/〈S〉)tor, G[k]). (2.3.3)

Here G[k] = {x ∈ G | xk = 1} % Zk. Combining (2.3.1), (2.3.2) and (2.3.3) we get

#(cc(HS,G) ∩ L[k]) = m(S;Zk), as desired.

Definition 2.3.2.3.

(1) For each k ∈ Z, the k-partial intersection poset of A(G) is defined by

Lpar[k] := {C ∈ Lpar | 1 ∈ Ek(C)}.

(2) The k-partial characteristic polynomial of A(G) is defined by

χk -par

A(G)(t) :=
∑

C∈Lpar[k]

µ(T C, C)tdim(C).

Theorem 2.3.2.4. If q ∈ Z>0, then

χq-par

A(G)(q) = χquasi
A (q).
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Proof. Very similar to Proof of Theorem 2.1.2.7 including the use of Lemma 2.3.2.2.

Corollary 2.3.2.5. If 1 ≤ k ≤ ρA, then

χk -par

A(G)(t) = fk
A(t).

Corollary 2.3.2.6. If q ∈ Z>0 and 1 ≤ k ≤ ρA, then

χq-tot

A(G)(q) =χquasi
A\Ator(q),

χk -tot
A(G)(t) =fk

A\Ator(t).

Proof. It follows from Theorem 2.3.2.4 and Corollary 2.3.2.5.

Remark 2.3.2.7. Note that when G = S1 (or G = C×) and Ator = ∅, we have f ρA
A (t) =

χρA-par

A(G) (t) = χρA-tot

A(G) (t) = χtoric
A (t). The result of Moci (Theorem 2.1.1.1) is a special

case of Corollary 2.3.2.5 because by Corollary 2.2.1.8, χS1
A (t) = χC×

A (t) = f ρA
A (t).

By Theorem 2.3.2.4, we can write

χquasi
A (q) =

rΓ∑

j=rΓ−rA

(−1)rΓ−jβj(q)q
j, (2.3.4)

with each coefficient βj(q) is a periodic function given by

βj(q) = (−1)rΓ−j
∑

C∈Lpar(q)
j=dim(C)

µ(T C, C) ≥ 0.

It is easily seen that if a, b ∈ Z>0 and a | b, then Lpar[a] ⊆ Lpar[b]. This obvious

inclusion between the subposets implies the result in [CW12, Theorem 1.2] about the

inequality of the constituent coefficients.

Corollary 2.3.2.8 (Theorem 1.2, [CW12]). If a, b are positive integers and a divides

b, then for all j with rΓ − rA ≤ j ≤ rΓ,

0 ≤ βj(a) ≤ βj(b).

Proof. Note that µ strictly alternates in sign (Corollary 2.1.2.6).
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Example 2.3.2.9. Let Γ = Z2, A = {α, β, γ} # Z2 with α = (−1, 1), β = (0, 2), and

γ = (0, 4) as in Example 2.3.1.3. The Hasse diagrams (arrow omitted) of Lpar[k] are

drawn in Figures 2.4, 2.5, 2.6. The k-partial characteristic polynomials χk -par

A(G)(t) are

computed according to the subposets extracted from L.

{(1, 1)}

{z2 = 1}

##
##

##
##

{z−1
1 z2 = 1}

$$$$$$$$$$$$$$

%%
%%
%%
%%
%

G2

Figure 2.4: χ1-par

A(G)(t) = t2 − 2t+ 1 = f 1
A(t).

{(1, 1)} {(−1,−1)}

{z2 = 1}

&&
&&

&&
&&

&&
{z2 = 1} {z−1

1 z2 = 1}

''''''''''''''''''''

((((((((((((

))
))
))
))
))
))
))

G2

Figure 2.5: χ2-par

A(G)(t) = t2 − 3t+ 2 = f 2
A(t).

2.4 Characteristic quasi-polynomials and root systems

In this section, we study the characteristic quasi-polynomials through a very well-

behaved class of arrangements, the class of Weyl arrangements arising from irre-

ducible root systems. Let H be a Weyl arrangement. We introduce the notion of A-

Eulerian polynomial producing an Eulerian-like polynomial for any subarrangement

of H. This polynomial together with shift operator describe how the characteris-
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{(1, 1)} {(−1,−1)} {(i, i)} {(−i,−i)}

{z2 = 1}
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1 z2 = 1}
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...
...

...
...

..

G2

Figure 2.6: χ4-par

A(G)(t) = t2 − 5t+ 4 = f 4
A(t).

tic quasi-polynomial of a certain class of subarrangements of H can be expressed in

terms of the Ehrhart quasi-polynomial of the fundamental alcove. The method can

also be extended to define two types of deformed Weyl subarrangements containing

the families of the extended Shi, Catalan, Linial arrangements and to compute their

characteristic quasi-polynomials. We obtain several known results in the literature

as specializations, including the formula of the characteristic polynomial of H via

Ehrhart theory due to Athanasiadis [Ath96], Blass-Sagan [BS98], Suter [Sut98] and

Kamiya-Takemura-Terao [KTT10]; and the formula relating the number of coweight

lattice points in the fundamental parallelepiped with the Lam-Postnikov’s Eulerian

polynomial [LP18] due to Yoshinaga [Yos18b]. Finally, using information from signed

graphs, we give a numerical description of the characteristic quasi-polynomials of

ideals of classical root systems with respect to the integer and root lattices.

2.4.1 Root systems and Worpitzky partition

Our standard references for root systems and their Weyl groups is [Hum90]. As-

sume that V = R! with the standard inner product (·, ·). Let Φ be an irreducible

(crystallographic) root system in V with the Coxeter number h and the Weyl group

W . Fix a positive system Φ+ ⊆ Φ and let ∆ := {α1, . . . ,α!} be the set of simple roots

(base) of Φ associated with Φ+. Define the partial order 4 on Φ+ such that β1 4 β2

if and only if β1 − β2 =
∑!

i=1 niαi with all ni ∈ Z≥0. A subset I of Φ+ is called an
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ideal if, for β1, β2 ∈ Φ+, β1 4 β2, β1 ∈ I then β2 ∈ I. For β =
∑!

i=1 ciαi ∈ Φ+, the

height of β is defined by ht(β) :=
∑!

i=1 ci. The highest root (w.r.t. 4), denoted by

α̃ ∈ Φ+, can be expressed uniquely as a linear combination α̃ =
∑!

i=1 ciαi (ci ∈ Z>0).

Set α0 := −α̃, c0 := 1, and ∆̃ := ∆ ∪ {α0}. Then we have the linear relation

c0α0 + c1α1 + · · ·+ c!α! = 0.

The coefficients ci are important in our study and will appear frequently throughout

the section.

For α ∈ V \ {0}, denote α∨ := 2α
(α,α) . The root lattice Q(Φ), coroot lattice Q(Φ∨),

weight lattice Z(Φ), and coweight lattice Z(Φ∨) are defined as follows:

Q(Φ) :=
!⊕

i=1

Zαi,

Q(Φ∨) :=
!⊕

i=1

Zα∨
i ,

Z(Φ) := {x ∈ V | (α∨
i , x) ∈ Z (1 ≤ i ≤ $)},

Z(Φ∨) := {x ∈ V | (αi, x) ∈ Z (1 ≤ i ≤ $)}.

Then Q(Φ) is a subgroup of Z(Φ) of finite index f , and similarly Q(Φ∨) is a sub-

group of Z(Φ∨) of index f . The number f is called the index of connection. Let

{*∨
1 , . . . ,*

∨
! } ⊆ Z(Φ∨) be the dual basis of the base ∆, namely, (αi,*∨

j ) = δij . Then

Z(Φ∨) =
⊕!

i=1 Z*
∨
i .

For m ∈ Z and α ∈ Φ, the affine hyperplane Hα,m is defined by

Hα,m := {x ∈ V | (α, x) = m}.

A connected component of V \
⋃

α∈Φ+,m∈Z Hα,m is called an alcove. The fundamental

alcove A◦ is defined by

A◦ :=




x ∈ V

∣∣∣∣∣∣

(αi, x) > 0 (1 ≤ i ≤ $),

(α0, x) > −1




 .

The closure A◦ = {x ∈ V | (αi, x) ≥ 0 (1 ≤ i ≤ $), (α0, x) ≥ −1} is a simplex, which

is the convex hull of 0,*∨
1 /c1, . . . ,*

∨
! /c! ∈ V . The supporting hyperplanes of the
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facets of A◦ are Hα1,0, . . . , Hα",0, Hα0,−1. The affine Weyl group Waff := W $ Q(Φ∨)

acts simply transitively on the set of alcoves and admits A◦ as a fundamental domain

for its action on V .

The fundamental domain P♦ of the coweight lattice Z(Φ∨), called the fundamental

parallelepiped, is defined by

P♦ :=
!∑

i=1

(0, 1]*∨
i

= {x ∈ V | 0 < (αi, x) ≤ 1 (1 ≤ i ≤ $)}.

Let N := #W
f , and denote [N ] := {1, 2, . . . , N}. Then the set Σ of all alcoves

contained in P♦ has cardinality N (see, e.g., [Hum90, Theorem 4.9]). Let us write

Σ = {A◦
i ⊆ P♦ | i ∈ [N ]},

where each A◦
i is written uniquely as

A◦
i =




x ∈ V

∣∣∣∣∣∣

(α, x) > kα (α ∈ I),

(β, x) < kβ (β ∈ J)




 ,

where kα ∈ Z≥0, kβ ∈ Z>0 and the sets I, J ⊆ Φ+ with #(I 1 J) = $+ 1 indicate the

constraints on x ∈ V according to the inequality symbols >, <, respectively.

Definition 2.4.1.1. For each A◦
i ∈ Σ, the partial closure A♦

i of A◦
i is defined by

A♦
i :=




x ∈ V

∣∣∣∣∣∣

(α, x) > kα (α ∈ I),

(β, x) ≤ kβ (β ∈ J)




 .

Theorem 2.4.1.2 (Worpitzky partition).

P♦ =
⊔

i∈[N ]

A♦
i .

Proof. See, e.g., [Yos18b, Proposition 2.5], [Hum90, Exercise 4.3].
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2.4.2 Characteristic and Ehrhart quasi-polynomials

Let us recall the notion of affine q-reduced arrangement (or Zq-plexification) in

§1.1.1. Let Γ =
⊕!

i=1 Zβi % Z! be a free abelian group. Let L be a finite list (multiset)

of elements in Γ. For α =
∑!

i=1 aiβi ∈ L and mα ∈ Z, set

Hα,mα,Zq =
{
z ∈ Z!

q |
!∑

i=1

aizi ≡ mα

}
.

Given a vector m = (mα)α∈L ∈ ZL, the affine q-reduced arrangement of (L, m) w.r.t.

Γ is

(L, m)(Zq) = {Hα,mα,Zq | α ∈ L}.

The complement of (L, m)(Zq) is

M((L, m);Γ,Zq) = Z!
q \
⋃

α∈L

Hα,mα,Zq .

For each S ⊆ L, write Γ/〈S〉 %
⊕nS

i=1 ZdS,i ⊕ZrΓ−rS where nS ≥ 0 and 1 < dS,i|dS,i+1.

The LCM-period ρL of L is

ρL = lcm(dS,nS | S ⊆ L).

It is not hard to see that ρB divides ρL for any B ⊆ L.

Theorem 2.4.2.1. #M((L, m);Γ,Zq) is a monic quasi-polynomial in q for which

ρL is a period. The quasi-polynomial is called the characteristic quasi-polynomial of

(L, m) w.r.t. Γ, and denoted by χquasi
(L,m)(q).

Proof. See [KTT08, Theorem 2.4] and [KTT11, Theorem 3.1].

For a real affine hyperplane arrangement H, denote by χH(t) the characteristic

polynomial (e.g., see [OT92, Definition 2.52]) of H.

Theorem 2.4.2.2. The first constituent of χquasi
(L,m)(q) coincides with the characteristic

polynomial of the R-plexification (L, m)(R), i.e.,

f 1
(L,m)(t) = χ(L,m)(R)(t).
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Proof. See, e.g., [KTT08, Theorem 2.5] and [KTT11, Remark 3.3].

Convention: From §2.4.2 to §2.4.4, for every Ψ ⊆ Φ+(⊆ Q(Φ)), the characteristic

quasi-polynomial χquasi
Ψ (q) is always defined with respect to the root lattice Γ = Q(Φ).

In §2.4.5, our computation will be involved with another choice of lattice, the integer

lattice.

For each Ψ ⊆ Φ+, define the Weyl arrangement of Ψ by HΨ := {Hα | α ∈ Ψ},

where Hα = {x ∈ V | (α, x) = 0} is the hyperplane orthogonal to α. It is not hard to

see that Hα % Hα,R (as vector spaces), thus we can view HΨ as the R-plexification of

Ψ, i.e., HΨ = Ψ(R). In standard terminology, HΦ+ is known with the name Weyl (or

Coxeter) arrangement, and clearly HΨ is a (Weyl) subarrangement of HΦ+ .

Remark 2.4.2.3. Sometimes, when we say “the” characteristic quasi-polynomial of

(L, m)(Zq) or of (L, m)(R), we literally mean χquasi
(L,m)(q). In particular, χquasi

Ψ (q) will

be referred to the characteristic quasi-polynomial χquasi
HΨ

(q) of HΨ. We will use this

notation later in §2.4.4 when we deal with deformed Weyl arrangements of Ψ.

Let Γ be a lattice. For a polytope P with vertices in the rational vector space

generated by Γ, the Ehrhart quasi-polynomial LP(q) of P with respect to Γ is defined

by

LP(q) := #(qP ∩ Γ).

We denote by P◦ the relative interior of P. Similarly, we can define

LP◦(q) := #(qP◦ ∩ Γ).

For q > 0, the following Ehrhart reciprocity law holds:

LP(−q) = (−1)dimPLP◦(q).

Convention: Throughout the section, the Ehrhart quasi-polynomials LA◦(q), LA◦(q)

are defined with respect to the coweight lattice Γ = Z(Φ∨).

Let F0 := Hα0,−q, Fi := Hαi,0 (1 ≤ i ≤ $) denote the supporting hyperplanes of

the facets of qA◦. Then the number of coweight lattice points in qA◦ after removing

some facets can be computed by LA◦ with the scale factor of dilation being reduced.
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Proposition 2.4.2.4. Let {i1, . . . , ik} ⊆ {0, 1, . . . , $}. Suppose that q > ci1+ · · ·+cik .

Then

#(qA◦ ∩ Z(Φ∨) \ (Fi1 ∪ · · · ∪ Fik)) = LA◦(q − (ci1 + · · ·+ cik)).

In particular, for q ∈ Z,

LA◦(q) = LA◦(q − h).

Proof. See [Yos18b, Corollaries 3.4 and 3.5].

In general, it is not easy to find explicit formulas which involve both characteristic

and Ehrhart quasi-polynomials. With regards to root systems, there is an interesting

relation between these quasi-polynomials.

Theorem 2.4.2.5.

χquasi
Φ+ (q) =

#W

f
LA◦(q).

Proof. See, e.g., [KTT10], [Yos18b, Proposition 3.7].

Theorem 2.4.2.6. The minimum period of χquasi
Φ+ (q) is equal to lcm(c1, . . . , c!). Fur-

thermore, by a case-by-case argument, we can verify that the minimum period coin-

cides with the LCM-period ρΦ+.

Proof. See [KTT10, Corollary 3.2 and Remark 3.3].

Corollary 2.4.2.7. χquasi
Φ+ (q) > 0 (equivalently, LA◦(q) > 0) if and only if q ≥ h.

Proof. See, e.g., [KTT10, Corollary 3.4].

We can generalize the result above to have a formula for χquasi
Ψ (q) for any Ψ ⊆ Φ+

in terms of lattice point counting functions. It will also explain why the choice of

lattices for the characteristic and Ehrhart quasi-polynomials is important. In the

proposition below, we view Ψ as a list with possible repetitions of elements.

Proposition 2.4.2.8. Let m = (mα)α∈Ψ be a vector in ZΨ. Set

X(Ψ,m)(q) := qP♦ ∩ Z(Φ∨) \
⋃

α∈Ψ,k∈Z

Hα,kq+mα,



44

Y(Ψ,m)(q) := {x ∈ Z(Φ∨)/qZ(Φ∨) | (α, x) 0≡ mα mod q, ∀α ∈ Ψ}.

We have bijections between sets

X(Ψ,m)(q) % Y(Ψ,m)(q) % M((Ψ, m);Z!,Zq).

As a result,

χquasi
(Ψ,m)(q) = #X(Ψ,m)(q) = #Y(Ψ,m)(q).

Proof. The bijection X(Φ+,m)(q) % Y(Φ+,m)(q) is proved in [Yos18b, §3.3]. We can use

exactly the same argument applied to any Ψ. The proof of YΨ(q) % M(Ψ;Z!,Zq) for

an arbitrary Ψ ⊆ Φ+ runs as follows:

Y(Ψ,m)(q) = {x =
!∑

i=1

zi*
∨
i | (α, x) 0≡ mα mod q, ∀α ∈ Ψ}

= {x =
!∑

i=1

zi*
∨
i | (

!∑

i=1

Sijαi,
!∑

i=1

zi*
∨
i ) 0≡ mα mod q, (1 ≤ j ≤ #Ψ)}

% {z = (z1, . . . , z!) ∈ Z!
q |

!∑

i=1

ziSij 0≡ mα mod q, (1 ≤ j ≤ #Ψ)}

= M((Ψ, m);Z!,Zq).

Remark 2.4.2.9. The bijection XΦ+(q) % M(Φ+;Z!,Zq) appeared (without proof)

in [KTT10, Proof of Theorem 3.1]. Theorem 2.4.2.5 is a special case of Proposition

2.4.2.8 because χquasi
Φ+ (q) = #XΦ+(q) = #W

f LA◦(q) [Yos18b, §3.3].

2.4.3 Eulerian polynomials for Weyl subarrangements

Let Ψ ⊆ Φ+, and set Ψc := Φ+ \Ψ.

Definition 2.4.3.1. The descent dscΨ with respect to Ψ is the function dscΨ : W →

Z≥0 defined by

dscΨ(w) :=
∑

0≤i≤!, w(αi)∈−Ψc

ci.



45

Definition 2.4.3.2. The (arrangement theoretical Eulerian or) A-Eulerian polyno-

mial of Ψ is defined by

EΨ(t) :=
1

f

∑

w∈W

th−dscΨ(w).

Remark 2.4.3.3.

(a) If Ψ = Φ+, then dscΦ+(w) = 0 for all w ∈ W , and EΦ+(t) = #W
f th.

(b) If Ψ = ∅, then dsc∅ = dsc = cdes, the descent statistic (see, e.g., [LP18, Definition

6.2], [Yos18b, Definition 4.1]). Then E∅(t) = RΦ(t), the generalized Eulerian

polynomial (e.g., [Yos18b, Definition 4.4]). Note that if Φ is of type A!, then

RΦ(t) = A!(t), the classical $-th Eulerian polynomial [LP18, Theorem 10.1].

Lemma 2.4.3.4. For all w ∈ W , 0 ≤ dscΨ(w) < h. In particular, EΨ(0) = 0.

Proof. If Ψ = Φ+, then the statements are clearly true by Remark 2.4.3.3(a). Assume

that Ψ 0= Φ+. If w(αi) /∈ −Ψc for some 1 ≤ i ≤ $, then dscΨ(w) < h. Otherwise, we

have w(α0) = −
∑!

i=1 ciw(αi) ∈ Φ+. Thus w(α0) /∈ −Ψc, and hence dscΨ(w) < h.

Lemma 2.4.3.5.

(i) Let w ∈ W . Suppose that w induces a permutation on ∆̃. If w(αi) = αpi, then

ci = cpi.

(ii) Let w1, w2 ∈ W . If there exists γ ∈ V such that w1(A◦) = w2(A◦) + γ, then

dscΨ(w1) = dscΨ(w2).

Proof. (i) is exactly [Yos18b, Lemma 4.3(1)], and (ii) is similar to [Yos18b, Lemma

4.3(2)].

Let A′ be an arbitrary alcove. We can write A′ = w(A◦) + γ for some w ∈ W and

γ ∈ Q(Φ∨). By Lemma 2.4.3.5, we can extend dscΨ to a function on the set of all

alcoves (in particular, on the set Σ of alcoves contained in P♦) as follows:

Definition 2.4.3.6.

dscΨ(A
′) := dscΨ(w).
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Theorem 2.4.3.7.

EΨ(t) =
∑

i∈[N ]

th−dscΨ(A◦
i ).

Proof. Similar to [Yos18b, Theorem 4.7].

In what follows, we shall sometimes abuse terminology and call a face of A◦
i (resp.,

P♦) that is contained in the partial closure A♦
i (resp., P♦), a face of A♦

i (resp., P♦).

Definition 2.4.3.8. A subset Ψ ⊆ Φ+ is said to be compatible (with the Worpitzky

partition) if for each A♦
i ⊆ P♦ the following condition holds: if A♦

i ∩ Hα,mα 0= ∅ for

α ∈ Ψ, mα ∈ Z, then there exist β ∈ Ψ, mβ ∈ Z such that A♦
i ∩Hα,mα ⊆ A♦

i ∩Hβ,mβ

and A♦
i ∩Hβ,mβ

is a facet of A♦
i .

Example 2.4.3.9. Clearly, Ψ is compatible if Ψ = ∅, or Ψ = Φ+. If Ψ = {α̃}, where

α̃ is the highest root, then Ψ is not compatible because Hα̃,ht(α̃) intersects with P♦

only at x =
∑!

i=1*
∨
i .

Definition 2.4.3.10. Let f : Z → C be a function and let P (S) = a0+a1S+· · ·+anSn

be a polynomial in S. The shift operator via P (S) acting on f is defined by

(P (S)f)(t) :=
n∑

k=0

akf(t− k).

Theorem 2.4.3.11. If Ψ is compatible, then

χquasi
Ψ (q) = (EΨ(S)LA◦)(q).

Proof. The proof is similar in spirit to [Yos18b, Proof of Theorem 4.8]. Since both

sides are quasi-polynomials, it is sufficient to prove the formula for q 6 0 (actually,

q > h is sufficient). For i ∈ [N ], we have

#

(

qA♦
i ∩ Z(Φ∨) \

⋃

µ∈Ψ,k∈Z

Hµ,kq

)

=#





x ∈ Z(Φ∨)

∣∣∣∣∣∣∣∣∣

(α, x) > qkα (α ∈ I)

(β, x) < qkβ (β ∈ J ∩Ψ)

(δ, x) ≤ qkδ (δ ∈ J ∩Ψc)
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=LA◦(q − h + dscΨ(A
◦
i )).

Note that we used Definition 2.4.1.1 of A♦
i in the first equality. We applied Proposition

2.4.2.4 and Definition 2.4.3.6 in the second equality. More precisely, if A◦
i = w(A◦)+γ

for some w ∈ W and γ ∈ Q(Φ∨), then qA◦
i can be written as

qA◦
i =




x ∈ V

∣∣∣∣∣∣

(−w(α0), x) < q((−w(α0), γ) + 1),

(−w(αi), x) < q(−w(αi), γ), (1 ≤ i ≤ $)




 .

Thus the half-spaces defined by (δ, x) ≤ qkδ (δ ∈ J ∩ Ψc) correspond exactly to the

roots αi ∈ ∆̃ satisfying w(αi) ∈ −Ψc. The compatibility of Ψ ensures that if a lattice

point in a face qA♦
i ∩ Hβ,qkβ (β ∈ Ψ) is removed, then all the lattice points in any

facet qA♦
i ∩Hγ,qkγ (γ ∈ Ψ) containing qA♦

i ∩Hβ,qkβ also get removed.

By the Worpitzky partition (Theorem 2.4.1.2) and Proposition 2.4.2.8, we have

χquasi
Ψ (q) =

∑

i∈[N ]

#

(

qA♦
i ∩ Z(Φ∨) \

⋃

µ∈Ψ,k∈Z

Hµ,kq

)

=
∑

i∈[N ]

LA◦(q − h + dscΨ(A
◦
i )).

Now using Theorem 2.4.3.7 together with the shift operator (Definition 2.4.3.10), we

conclude that

χquasi
Ψ (q) = (EΨ(S)LA◦)(q).

Proposition 2.4.3.12.

∑

q≥1

LA◦(q)tq =
th

∏!
i=0(1− tci)

.

Proof. See, e.g., [KTT10, Proof of Theorem 3.1].

Theorem 2.4.3.13.

(i)
∑

q≥1

χquasi
Φ+ (q)tq =

#W
f th

∏!
i=0(1− tci)

.
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(ii) Let RΦ(t) be the generalized Eulerian polynomial (see Remark 2.4.3.3(b)). Then

∑

q≥1

q!tq =
RΦ(t)∏!

i=0(1− tci)
.

Proof. For a proof of (i), see, e.g., [Ath96], [BS98, Theorem 4.1], [KTT10, Theorem

3.1]. (ii) follows from [LP18, Theorem 10.1].

Theorem 2.4.3.14. If Ψ is compatible, then

∑

q≥1

χquasi
Ψ (q)tq =

EΨ(t)∏!
i=0(1− tci)

.

Proof. By Theorem 2.4.3.11, Corollary 2.4.2.7 and Proposition 2.4.3.12, we have

∑

q≥1

χquasi
Ψ (q)tq =

∑

q≥1

∑

i∈[N ]

LA◦(q + dscΨ(A
◦
i ))t

q

=
∑

i∈[N ]

t−dscΨ(A◦
i )
∑

q≥1

LA◦(q + dscΨ(A
◦
i ))t

q+dscΨ(A◦
i )

=
∑

i∈[N ]

t−dscΨ(A◦
i )
∑

nξ≥h

LA◦(nξ)t
nξ

=

∑
i∈[N ] t

h−dscΨ(A◦
i )

∏!
i=0(1− tci)

=
EΨ(t)∏!

i=0(1− tci)
.

Remark 2.4.3.15. By Remark 2.4.3.3, Theorems 2.4.3.11 and 2.4.3.14, if

(a) Ψ = Φ+, then we recover Theorems 2.4.2.5 and 2.4.3.13(i).

(b) Ψ = ∅, then we recover [Yos18b, Theorem 4.8] and Theorem 2.4.3.13(ii).

2.4.4 Deformations of Weyl subarrangements

Let Ψ ⊆ Φ+, and recall the notation Ψc = Φ+ \ Ψ. Let a ≤ b be integers, and

denote [a, b] := {m ∈ Z | a ≤ m ≤ b}. Also, if b ≥ 1, then write [b] instead of [1, b].

Definition 2.4.4.1. Let a ≤ b, c ≤ d be integers. Define two types of the deformed

Weyl arrangements of Ψ as follows:
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(Type I) I[a,b]Ψ := {Hα,m | α ∈ Ψ, m ∈ [a, b]}.

(Type II) II[a,b],[c,d]Ψ,Ψc := I[a,b]Ψ ∪ I[c,d]Ψc .

Remark 2.4.4.2.

(a) There is an obvious duality II[a,b],[c,d]Ψ,Ψc = II[c,d],[a,b]Ψc,Ψ . We can list some specializa-

tions: I[a,b]∅ = ∅ the empty arrangement, II[a,b],[c,d]∅,Φ+ = H[c,d]
Φ+ the truncated affine

Weyl arrangement, including the extended Shi, Catalan, Linial arrangements,

see, e.g., [SP00, §9]. In addition, I[a,b]Φ+ = II[a,b],[a,b]Ψ,Ψc = H[a,b]
Φ+ . We refer the reader

to [Ath99], [Ath04], [Yos18b] and [Yos18a] for more details on the characteristic

(quasi-)polynomials of H[a,b]
Φ+ .

(b) The deformed Weyl arrangements of an arbitrary Ψ are less well-known. When

Φ is of type A, the deleted (or graphical) Shi arrangement, see, e.g., [Ath96, §3]

or [AR12], is the product [OT92, Definition 2.13] of the one dimensional empty

arrangenment and II[0,1],[0,0]Ψ,Ψc .

Definition 2.4.4.3. For w ∈ W , define

dscΨ(w) :=
∑

0≤i≤!, w(αi)∈−Ψ

ci,

ascΨ(w) :=
∑

0≤i≤!, w(αi)∈Ψc

ci,

ascΨ(w) :=
∑

0≤i≤!, w(αi)∈Ψ

ci.

Obviously, ascΨ(w) + ascΨ(w)+ dscΨ(w) + dscΨ(w) = h for all w ∈ W . Similar to

Lemma 2.4.3.4, each function defined above takes values in [0, h− 1]. Furthermore,

asc∅(w) = ascΦ+(w) = ascΨ(w) + ascΨ(w),

dsc∅(w) = dscΦ+(w) = dscΨ(w) + dscΨ(w).

Similar to Definition 2.4.3.6, we can extend the functions above to functions on the

set of all alcoves.
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Now let us formulate a deformed version of Proposition 2.4.2.4. Set

F [ai,bi]
i :=

⋃

m∈[ai,bi]

Hαi,m (1 ≤ i ≤ $),

F [a0,b0]
0 :=

⋃

m∈[a0,b0]

Hα0,−q+m.

Proposition 2.4.4.4. Let {i1, . . . , ik} ⊆ [0, $], and let bij ≥ 0 for all 1 ≤ j ≤ k.

Suppose that q >
∑

j∈[k](bij + 1)cij . Then

#



qA◦ ∩ Z(Φ∨) \
⋃

j∈[k]

F
[0,bij ]

ij



 = LA◦(q −
∑

j∈[k]

(bij + 1)cij ).

Proof. The formula was implicitly used in [Yos18b, §5] and its proof is very similar

to the non-deformed case. Note that if i ∈ [$], then

#
(
qA◦ ∩ Z(Φ∨) \ F [0,bi]

i

)
= #





x ∈ Z(Φ∨)

∣∣∣∣∣∣∣∣∣

(αi, x) ≥ bi + 1

(αj, x) ≥ 0 (j ∈ [$] \ {i})

(α0, x) ≥ −q






= LA◦(q − (bi + 1)ci).

Here the last equality follows from the bijection x -→ x + (bi + 1)*∨
1 . The proof for

i = 0 is similar. Then apply the formula above repeatedly.

Remark 2.4.4.5. If we replace the interval [0, bij ] in Proposition 2.4.4.4 by [a, bij ] with

a ≥ 1, there might be a large change in the right-hand side of the formula above. For

example, if 1 ≤ a1 ≤ b1, then

#
(
qA◦ ∩ Z(Φ∨) \ F [a1,b1]

1

)
= LA◦(q − (b1 + 1)c1) + LA◦(q)− LA◦(q − a1c1).

Theorem 2.4.4.6. Let Ψ be a compatible subset of Φ+.

(i) If a, b ≥ 0, then

χquasi

I[−a,b]
Ψ

(q) =
∑

i∈[N ]

LA◦(q − (b+ 1)ascΨ(A
◦
i )− ascΨ(A

◦
i )− (a + 1)dscΨ(A

◦
i )).
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(ii) If b ≥ 1, then

χquasi

I[1,b]Ψ

(q) =
∑

i∈[N ]

LA◦(q − (b+ 1)ascΨ(A
◦
i )− ascΨ(A

◦
i )).

Proof. Proofs of (i) and (ii) are similar, and both are similar in spirit to the proof

of [Yos18b, Theorem 5.1]. See also Proof of Theorem 2.4.3.11 in this paper. First, we

give a proof for (i). Since both sides are quasi-polynomials, it is sufficient to prove

the equality for q 6 0 (actually, q > (a+b+3)h is sufficient). By Proposition 2.4.4.4,

for i ∈ [N ],

#



qA♦
i ∩ Z(Φ∨) \

⋃

µ∈Ψ,k∈Z,m∈[−a,b]

Hµ,kq+m





=#






x ∈ Z(Φ∨)

∣∣∣∣∣∣∣∣∣∣∣∣

(α, x) ≥ qkα + b+ 1 (α ∈ I ∩Ψ)

(η, x) > qkη (η ∈ I ∩Ψc)

(β, x) ≤ qkβ − a− 1 (β ∈ J ∩Ψ)

(δ, x) ≤ qkδ (δ ∈ J ∩Ψc)






=LA◦(q − (b+ 1)ascΨ(A
◦
i )− ascΨ(A

◦
i )− (a+ 1)dscΨ(A

◦
i )).

By Proposition 2.4.2.8, we have

χquasi

I
[−a,b]
Ψ

(q) =
∑

i∈[N ]

LA◦(q − (b+ 1)ascΨ(A
◦
i )− ascΨ(A

◦
i )− (a+ 1)dscΨ(A

◦
i )).

For (ii), note that for i ∈ [N ],

#



qA♦
i ∩ Z(Φ∨) \

⋃

µ∈Ψ,k∈Z,m∈[1,b]

Hµ,kq+m





=#






x ∈ Z(Φ∨)

∣∣∣∣∣∣∣∣∣∣∣∣

(α, x) ≥ qkα + b+ 1 (α ∈ I ∩Ψ)

(η, x) > qkη (η ∈ I ∩Ψc)

(β, x) ≤ qkβ (β ∈ J ∩Ψ)

(δ, x) ≤ qkδ (δ ∈ J ∩Ψc)






=LA◦(q − (b+ 1)ascΨ(A
◦
i )− ascΨ(A

◦
i )).



52

Remark 2.4.4.7. Theorem 2.4.4.6 is a generalization of several known results.

(a) When Ψ = Φ+, we obtain [Ath04, Theorem 1.2] (a = b ≥ 0), and Theorem 5.1

(a = b−1 ≥ 0), Theorem 5.2 (b ≥ 1), Theorem 5.3 (b = n+k, a = k−1, n, k ≥ 1)

in [Yos18b]. When Ψ = ∅, we obtain [Yos18b, Theorem 4.8].

(b) When Ψ ⊆ Φ+ is compatible and a = b = 0, we obtain Theorem 2.4.3.11.

By using the same method, we have the following result for the arrangements of

type II.

Theorem 2.4.4.8. Let Ψ be a compatible subset of Φ+.

(i) If a, b, c, d ≥ 0, then

χquasi

II[a,b],[c,d]Ψ,Ψc
(q) =

∑

i∈[N ]

LA◦(q − (b+ 1)ascΨ(A
◦
i )− (d+ 1)ascΨ(A

◦
i )

− (a + 1)dscΨ(A
◦
i )− (c+ 1)dscΨ(A

◦
i )).

(ii) If a, b ≥ 0, d ≥ 1, then

χquasi

II[a,b],[1,d]Ψ,Ψc
(q) =

∑

i∈[N ]

LA◦(q − (b+ 1)ascΨ(A
◦
i )− (d+ 1)ascΨ(A

◦
i )

− (a+ 1)dscΨ(A
◦
i )).

(iii) If b, d ≥ 1, then

χquasi

II
[1,b],[1,d]
Ψ,Ψc

(q) =
∑

i∈[N ]

LA◦(q − (b+ 1)ascΨ(A
◦
i )− (d+ 1)ascΨ(A

◦
i )).

Remark 2.4.4.9.

(a) One can work with other intervals [a, b] but the computation may become more

complicated (see Remark 2.4.4.5).

(b) One can define and study the arrangement
⊔n

k=1 I
[ak ,bk]
Ψk

where Φ+ =
⊔n

k=1Ψk with

n ≥ 3. See, e.g., [Ath96, Theorem 3.11] for an example when n = 3. We choose

not to develop this direction here.
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It is interesting to compare the following result with [AR12, Theorem 3.2] and

[Ath96, Theorem 3.9].

Corollary 2.4.4.10. Define MΨ(t) :=
1
f

∑
w∈W th+ascΨ(w). If Ψ is compatible, then

χquasi

II[0,1],[0,0]Ψ,Ψc
(q) = (MΨ(S)LA◦)(q).

2.4.5 Classical root systems, ideals and signed graphs

In this subsection, with a combinatorial ingredient of signed graphs, we compute

the characteristic quasi-polynomial of every ideal of a given classical root system

with respect to the integer and root lattices. The method used here is numerical and

greatly different to that of §2.4.3, and that would be interesting to compare them.

Let us recall some notations on root systems from §2.4.1. Let Φ be an irreducible

(crystallographic) root system in V = R!. Fix a positive system Φ+ ⊆ Φ and the

associated base ∆ = {α1, . . . ,α!} ⊆ Φ+.

Let us recall the recent advance towards the study of the ideals. Let Θ(k) ⊆ Φ+

be the set consisting of positive roots of height k. Let I be an ideal of Φ+ and set

M := max{ht(β) | β ∈ I}. The height distribution of I is defined as a sequence of

positive integers:

(i1, . . . , ik, . . . , iM),

where ik := #Θ(k) for 1 ≤ k ≤ M . The dual partition DP(I) of (the height distribu-

tion of) I is given by a sequence of nonnegative integers:

DP(I) :=
(
(0)!−i1 , (1)i1−i2, . . . , (M − 1)iM−1−iM , (M)iM

)
,

where notation (a)b means the integer a appears exactly b times. Although the

definition of the dual partition seems to esteem the (increasing) order of components

in the sequence, this requirement is not important in this subsection. Two dual

partitions of an ideal are conventionally identical if the partitions differ only by a

re-ordering of the components.



54

Theorem 2.4.5.1. Any ideal subarrangement HI is free (in the sense of Terao) and

the set of exponents coincides with DP(I).

Proof. See [ABC+16].

Corollary 2.4.5.2. For any ideal I ⊆ Φ+, the characteristic polynomial χHI (Φ, t) of

HI factors as follows:

χHI (Φ, t) =
!∏

i=1

(t− di),

where DP(I) = (d1, . . . , d!).

Proof. See [ABC+16].

Let us recall some notions on characteristic quasi-polynomials from §2.4.2. For

simplicity of notation, an integral matrix M and the list of its column vectors will

be denoted by the same symbol M . For each Ψ ⊆ Φ+, we assume that an $ × #Ψ

integral matrix SΨ = [Sij ] satisfies

Ψ =
{ !∑

i=1

Sijαi | 1 ≤ j ≤ #Ψ
}
.

In other words, SΨ is the coefficient matrix of Ψ with respect to the base ∆. Denote

Z×
q = Zq \ {0}. Then χquasi

SΨ
(Φ, q) is called the characteristic quasi-polynomial of Ψ

with respect to the root lattice Γ =
⊕!

i=1 Zαi, and interpreted by the formula

χquasi
SΨ

(Φ, q) = #{z ∈ Z!
q | z · SΨ ∈ (Z×

q )
#Ψ}.

In the remainder of this subsection, we are mainly interested in the root system

Φ of classical type (ABCD). Let us recall briefly the constructions of these root

systems2 following [Bou68, Chapter VI, §4]. Let {ε1, . . . , ε!} be an orthonormal basis

for V . If $ ≥ 2 then

Φ(B!) = {±εi (1 ≤ i ≤ $),±(εi ± εj) (1 ≤ i < j ≤ $)},

2We decided to omit the construction of type A root systems as the calculation on this type follows
from those on the other types (e.g., see formula (2.4.1)).
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with #Φ(B!) = 2$2 is an irreducible root system in V of type B!. We may choose a

positive system

Φ+(B!) = {εi (1 ≤ i ≤ $), εi ± εj (1 ≤ i < j ≤ $)}.

Define αi := εi − εi+1, for 1 ≤ i ≤ $− 1, and α! := ε!. Then ∆(B!) = {α1, . . . ,α!} is

the base associated with Φ+(B!). We may express

Φ+(B!) = {εi =
∑

i≤k≤!

αk (1 ≤ i ≤ $), εi − εj =
∑

i≤k<j

αk (1 ≤ i < j ≤ $),

εi + εj =
∑

i≤k<j

αk + 2
∑

j≤k≤!

αk (1 ≤ i < j ≤ $)}.

For any Ψ ⊆ Φ+(B!), we write TΨ = [Tij ] for the coefficient matrix of Ψ with respect to

the orthonormal basis. Then χquasi
TΨ

(Φ, q) is called the characteristic quasi-polynomial

of Ψ with respect to the integer lattice Γ =
⊕!

i=1Zεi. The matrices TΨ and SΨ are

related by TΨ = P (B!) · SΨ, where P (B!) is an unimodular matrix of size $× $ given

by

P (B!) =





1

−1 1

−1
. . .

1

−1 1





.

Similarly, let $ ≥ 2, an irreducible root system of type C! is given by

Φ(C!) = {±2εi (1 ≤ i ≤ $),±(εi ± εj) (1 ≤ i < j ≤ $)},

Φ+(C!) = {2εi (1 ≤ i ≤ $), εi ± εj (1 ≤ i < j ≤ $)},

∆(C!) = {αi = εi − εi+1 (1 ≤ i ≤ $− 1), α! = 2ε!},

Φ+(C!) = {2εi = 2
∑

i≤k<!

αk + α! (1 ≤ i ≤ $), εi − εj =
∑

i≤k<j

αk (1 ≤ i < j ≤ $),

εi + εj =
∑

i≤k<j

αk + 2
∑

j≤k<!

αk + α! (1 ≤ i < j ≤ $)}.
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Finally, let $ ≥ 3, an irreducible root system of type D! is given by

Φ(D!) = {±(εi ± εj) (1 ≤ i < j ≤ $)},

Φ+(D!) = {εi ± εj (1 ≤ i < j ≤ $)},

∆(D!) = {αi = εi − εi+1 (1 ≤ i ≤ $− 1), α! = ε!−1 + ε!},

Φ+(D!) = {εi + ε! =
∑

i≤k≤!−2

αk + α! (1 ≤ i < $),

εi − εj =
∑

i<k<j

αk (1 ≤ i < j ≤ $),

εi + εj =
∑

i≤k<j

αk + 2
∑

j≤k<!−1

αk + α!−1 + α! (1 ≤ i < j < $)}.

From the constructions above, we obtain the comparison of the height placements of

positive roots in Φ(B!), Φ(C!) and Φ(D!) as in Table 2.1.

Remark 2.4.5.3. The matrix SΨ is independent of the choice of base for Φ, while

TΨ is not. In addition, the characteristic quasi-polynomials with respect to the root

lattice have a nice expression in terms of the Ehrhart quasi-polynomials of the closed

fundamental alcoves with respect to the coweight lattice (see Theorem 2.4.3.11). We

shall see that the computation related to the integer lattice is simpler, and the relation

T = P · S enables us to carry out the computation in the root lattice case.

Root Height in B! Height in C! Height in D!

εi

(1 ≤ i ≤ ")
"− i+ 1 None None

2εi

(1 ≤ i ≤ ")
None 2("− i) + 1 None

εi + εj

(1 ≤ i < j ≤ ")
2"− i− j + 2 2"− i − j + 1 2"− i− j

εi − εj

(1 ≤ i < j ≤ ")
j − i j − i j − i

Table 2.1: Height placements in Φ(B!), Φ(C!) and Φ(D!).



57

In the language of signed graphs following [Zas81, §5], we can associate with each

subset Ψ ⊆ Φ+(B!) a signed graph G := G(Ψ) = (VG, EG+ , EG−, LG) on the vertex

set

VG := {vi, vj | εi ∈ Ψ or εi − εj ∈ Ψ or εi + εj ∈ Ψ},

with the set of positive edges EG+ := {e+ij | εi + εj ∈ Ψ}, the set of negative edges

EG− := {e−ij | εi − εj ∈ Ψ}, and the set of loops LG := {$i | εi ∈ Ψ}. Alternatively,

if Ψ ⊆ Φ+(C!), we can define LG := {$i | 2εi ∈ Ψ}. To extract information from Ψ

by using G(Ψ), we associate with it an unordered sequence of nonnegative integers,

denoted

SG(Ψ) := (p1, . . . , p!),

where for each i (1 ≤ i ≤ $)

pi := #{e+ij | e
+
ij ∈ EG+}+#{e−ij | e

−
ij ∈ EG−}+#{$i | $i ∈ LG}.

Notice that in general, pi is not the degree of the vertex vi in G(Ψ).

Remark 2.4.5.4. Strictly speaking, following the general theory of signed graphs in

[Zas82], one would prefer to say an element of LG(Ψ) is a halfedge and a negative

loop when Ψ is a subset of Φ+(B!) and Φ+(C!), respectively. Since we treat the

root systems of type B,C separately, there will be no signed graphs containing both

halfedges and negative loops. In this subsection, we simply call them loops.

Let I be an ideal of Φ+. When Φ is of type B! or C!, DP(I) = SG(I), while

DP(I) 0= SG(I) if Φ is of type D!. Also, SG(I) does not determine I, for instance,

I1 = {ε4−ε5} and I2 = {ε4+ε5} are distinct ideals of Φ+(D5), but SG(I1) = SG(I2) =

(0, 0, 0, 1, 0).

Computation on ideals

In the remainder of this subsection, we assume that Φ is of classical type. We sum-

marize some easy cases that the computation of the characteristic quasi-polynomials

is manageable thanks to Corollary 2.4.5.2. The minimum period coincides with the
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LCM-period (see Theorem 2.4.2.6). So the minimum period of χquasi
SI

(A!, q) is 1 for

every I ⊆ Φ+; hence χquasi
SI

(A!, q) = χHI (A!, q). For other cases, the minimum period

of χquasi
SI

(Φ, q) is at most 2; hence we know the 1-constituents: f 1
SI
(Φ, t) = χHI (Φ, t).

We are left with the task of determining f 2
SI
(Φ, t), or equivalently, χquasi

SI
(Φ, q) when

q is even, and Φ is of type B, C or D. Turning the problem around, we would like to

verify Corollary 2.4.5.2 by using the information of ideals via signed graphs without

relying on the freeness, which we will do in Theorem 2.4.5.16.

Type B root systems

By [KTT07, Theorem 4.1]3, if Ψ ⊆ Φ+(B!),

χquasi
SΨ

(B!, q) = χquasi
TΨ

(B!, q).

Let I be an ideal of Φ+(B!). Assume that DP(I) = SG(I) = (d1, . . . , d!). For

each k (1 ≤ k ≤ $), write dk = d(+)
k + d(−)

k + d(0)k for a partition of dk with

d(0)k :=






0 if εk /∈ I,

1 if εk ∈ I.

d(±)
k := #{εk ± εj | εk ± εj ∈ I}.

The partitions give rise to a partition of I which we call it the B-partition, as follows:

I = I0 1 I− 1 I+, where

I0 := {εi | εi ∈ I}

I± := {εi ± εj | εi ± εj ∈ I}.

We work out the computation on type B root systems slowly and painstakingly

so that it can serve as a template for the computations on type C, D root systems to

come.
3Note that the number b(q) in [KTT07, Theorem 4.1] should be read as b(q) =

∏m
i=1 gcd{q, di},

where di’s are invariant factors of the matrix P . In particular, if det(P ) takes the value in {1, 2},
then b(q) = gcd{q, det(P )}. Hence [KTT07, Theorem 4.1] is valid if Φ is a classical root system.
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If εi+εj /∈ I for all i, j, then the computation is considered on type A root systems.

For all q ∈ Z>0,

χquasi
TI

(B!, q) = #
{
z ∈ Z!

q | zi 0= zj (εi − εj ∈ I)
}
=

!∏

i=1

(q − di). (2.4.1)

This is because there are (q − d!) ways to choose z!, (q − d!−1) ways to choose z!−1,

etc.

Now assume that some εi + εj ∈ I with 1 ≤ i < j ≤ $. In particular, εi ∈ I

because εi + εj 4 εi + ε! 4 εi. Set s := min{1 ≤ k ≤ $ | εk ∈ I}. Denote R := I \ R′

where R′ := {εi − εj ∈ I | 1 ≤ i < s, i < j ≤ $}. For any β1, β2 ∈ R with β1 4 β2, the

difference β1−β2 can be written as a linear combination with the positive coefficients

of elements in R ∩∆(B!). Thus R is an ideal of the root subsystem of Φ(B!) of type

B!−s+1 with a base given by ∆(B!−s+1) = {αs, . . . ,α!}. In addition, for all q ∈ Z>0,

χquasi
TI

(B!, q) = χquasi
TR

(B!−s+1, q) ·
s−1∏

i=1

(q − di).

Then it suffices to consider s = 1, i.e., ε1 ∈ I. For such ideals, d(−)
k = $− k, d(0)k = 1

for 1 ≤ k ≤ $.

Lemma 2.4.5.5. Let I be an ideal of Φ+(B!) with ε1 ∈ I. Set J := I \ I0.

(a) J is an ideal of Φ+(D!).

(b) DP(J) = (p1, . . . , p!) with pk = d(−)
k + d(+)

k−1 for all 1 ≤ k ≤ $. Here we agree that

d(2)0 ≡ 0.

Proof. The proof of (a) is straightforward by the definition of ideals. The proof of

(b) follows from the height placements in Table 2.1.

Theorem 2.4.5.6. Under the Lemma 2.4.5.5’s assumptions, if q ∈ Z>0 is even,

χquasi
TI

(B!, q) = χquasi
TJ

(D!, q − 1) =
!∏

i=1

(q − pi − 1).
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Proof. The proof of the first equality is similar to (but more general than) that

of [KTT07, Lemma 4.4(11)].

χquasi
TI

(B!, q) = #





z ∈ Z!

q

∣∣∣∣∣∣∣∣∣

zi 0= zj (1 ≤ i < j ≤ $),

zi + zj 0= 0 (εi + εj ∈ I),

zi 0= 0 (1 ≤ i ≤ $)






= #





(z1, . . . , z!) ∈ Z!

∣∣∣∣∣∣∣∣∣

zi 0= zj (1 ≤ i < j ≤ $),

zi + zj 0= q (εi + εj ∈ I),

1 ≤ zi ≤ q − 1 (1 ≤ i ≤ $)






= #





(v1, . . . , v!) ∈ Z!

∣∣∣∣∣∣∣∣∣

vi 0= vj (1 ≤ i < j ≤ $),

vi + vj 0= 0 (εi + εj ∈ I),

− q−2
2 ≤ vi ≤

q−2
2 (1 ≤ i ≤ $)






= #





(t1, . . . , t!) ∈ Z!

∣∣∣∣∣∣∣∣∣

ti 0= tj (1 ≤ i < j ≤ $),

ti + tj 0= q − 1 (εi + εj ∈ I),

0 ≤ ti ≤ q − 2 (1 ≤ i ≤ $)






= #




u ∈ Z!
q−1

∣∣∣∣∣∣

ui 0= uj (1 ≤ i < j ≤ $),

ui + uj 0= 0 (εi + εj ∈ J)






= χquasi
TJ

(D!, q − 1).

We have used the following changes of variables

vi = zi −
q

2
and ti =






vi if vi ≥ 0,

vi + q − 1 if vi < 0.

The second equality follows from Lemma 2.4.5.5 and Corollary 2.4.5.2.

Example 2.4.5.7. Table 2.2 shows the B-partition of an ideal I = {α ∈ Φ+(B5) |

ht(α) ≤ 7} (in colored region), with I0, I−, I+ are colored red, green, blue, respec-

tively. Table 2.3 shows the corresponding partition of the ideal J = I \ I0 in Φ+(D5).

In this case, DP(I) = (7, 7, 5, 3, 1) and DP(J) = (4, 5, 5, 3, 1). Hence for even q ∈ Z>0,

we have

χquasi
TI

(B!, q) = (q − 2)(q − 4)(q − 5)(q − 6)2.
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Height

9 ε1 + ε2

8 ε1 + ε3

7 ε1 + ε4 ε2 + ε3

6 ε1 + ε5 ε2 + ε4

5 ε1 ε2 + ε5 ε3 + ε4

4 ε1 − ε5 ε2 ε3 + ε5

3 ε1 − ε4 ε2 − ε5 ε3 ε4 + ε5

2 ε1 − ε3 ε2 − ε4 ε3 − ε5 ε4

1 ε1 − ε2 ε2 − ε3 ε3 − ε4 ε4 − ε5 ε5

7 7 5 3 1 DP(I)

Table 2.2: The B-partition of an ideal I in Φ+(B5).

Height

7 ε1 + ε2

6 ε1 + ε3

5 ε1 + ε4 ε2 + ε3

4 ε1 − ε5 ε1 + ε5 ε2 + ε4

3 ε1 − ε4 ε2 − ε5 ε2 + ε5 ε3 + ε4

2 ε1 − ε3 ε2 − ε4 ε3 − ε5 ε3 + ε5

1 ε1 − ε2 ε2 − ε3 ε3 − ε4 ε4 − ε5 ε4 + ε5

4 5 5 3 1 DP(J)

Table 2.3: The resulting partition of J = I \ I0 in Φ+(D5).
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Remark 2.4.5.8. When I = Φ+(B!), DP(I) = (2$− 1, 2$− 3, . . . , 3, 1) and DP(J) =

($− 1, 2$− 3, . . . , 3, 1). Thus for even q ∈ Z>0, we have

χquasi
SΦ+

(B!, q) = χquasi
TΦ+

(B!, q) = (q − 2)(q − 4) . . . (q − (2$− 2))(q − $),

which recovers the result of [KTT07, Theorem 4.8] for type B root systems.

Type C root systems

By [KTT07, Theorem 4.1], for any Ψ ⊆ Φ+(C!) and for even q ∈ Z>0, we have

χquasi
SΨ

(C!, q) =
1

2

(
χquasi
TΨ

(C!, q) + FΨ(C!, q)
)
,

FΨ(C!, q) := #{z ∈ Z!
q | z · TΨ + g · SΨ ∈ (Z×

q )
#Ψ},

g := (0, 0, . . . , 1) ∈ Z!
q.

Let I be an ideal of Φ+(C!) with DP(I) = SG(I) = (d1, . . . , d!). We need only

consider εi + εj ∈ I for some 1 ≤ i < j ≤ $. In particular, 2εk ∈ I for all j ≤ k ≤ $.

Set s := min{1 ≤ k ≤ $ | 2εk ∈ I}. Define R := I \{εi± εj ∈ I | 1 ≤ i < s, i < j ≤ $}.

Thus R itself is the positive system of a root system of type C!−s+1 with a base given

by ∆(C!−s+1) = {αs, . . . ,α!}. Furthermore, for all q ∈ Z>0, we have

χquasi
TI

(C!, q) = χquasi
TR

(C!−s+1, q) ·
s−1∏

i=1

(q − di),

FI(C!, q) = FR(C!−s+1, q) ·
s−1∏

i=1

(q − di).

Then it suffices to consider s = 1 or equivalently, I = Φ+(C!). The computations

of χquasi
TΦ+

(C!, q), FΦ+(C!, q) and χquasi
SΦ+

(C!, q) were already done in [KTT07, Theorem

4.7 and §4.3]. More direct computations are also obtainable. For instance, when q is

even, we have

χquasi
TΦ+

(C!, q) = #{z ∈ Z!
q | zi /∈ {0, q/2,±zj}, 1 ≤ i < j ≤ $}

=
!∏

i=1

(q − (di + 1)).
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Example 2.4.5.9. Table 2.4 shows an example of an ideal I # Φ+(C5) (in enclosed

region). In this case, DP(I) = (4, 6, 5, 3, 1). Hence for even q ∈ Z>0, we have

χquasi
TI

(C!, q) = (q − 6)2(q − 4)2(q − 2),

FΦ+(C!, q) = (q − 6)(q − 4)2(q − 2)q,

χquasi
SI

(C!, q) = (q − 6)(q − 4)2(q − 3)(q − 2).

Height

9 2ε1

8 ε1 + ε2

7 ε1 + ε3 2ε2

6 ε1 + ε4 ε2 + ε3

5 ε1 + ε5 ε2 + ε4 2ε3

4 ε1 − ε5 ε2 + ε5 ε3 + ε4

3 ε1 − ε4 ε2 − ε5 ε3 + ε5 2ε4

2 ε1 − ε3 ε2 − ε4 ε3 − ε5 ε4 + ε5

1 ε1 − ε2 ε2 − ε3 ε3 − ε4 ε4 − ε5 2ε5

4 6 5 3 1 DP(I)

Table 2.4: An ideal I in Φ+(C5).

Type D root systems

The computation on this type requires a bit more effort. By [KTT07, Theorem

4.1], if Ψ ⊆ Φ+(D!) and q is even,

χquasi
SΨ

(D!, q) =
1

2

(
χquasi
TΨ

(D!, q) + FΨ(D!, q)
)
, (2.4.2)

FΨ(D!, q) := #{z ∈ Z!
q | z · TΨ + g · SΨ ∈ (Z×

q )
#Ψ},
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g := (0, 0, . . . , 1) ∈ Z!
q.

Let I be an ideal of Φ+(D!). We need only consider εi + εj ∈ I for some 1 ≤ i <

j ≤ $. In particular, ε!−1 + ε! ∈ I. Define

s := min{2 ≤ k ≤ $ | εk−1 + εk ∈ I}. (2.4.3)

If ε!−1 − ε! /∈ I, we must have s = $. Then the computation can be reduced (up to

a bijection) to that on the type A root systems, which can be done easily. Suppose

henceforth that ε!−1 − ε! ∈ I, and set

r := min{1 ≤ k ≤ $ | εk + ε! ∈ I and εk − ε! ∈ I}.

Obviously, r ≤ s− 1. Assume that SG(I) = (p1, . . . , p!) with for each i

pi = #{εi − µi,jεj ∈ I | µi,j ∈ {±1}}. (2.4.4)

Define R := I \ {εi ± εj ∈ I | 1 ≤ i < r, i < j ≤ $}. Thus R is an ideal of the root

subsystem of Φ(D!) of type D!−r+1 with a base given by ∆(D!−r+1) = {αr, . . . ,α!}.

Furthermore, for all q ∈ Z>0, we have

χquasi
TI

(D!, q) = χquasi
TR

(D!−r+1, q) ·
r−1∏

i=1

(q − pi),

FI(D!, q) = FR(D!−r+1, q) ·
r−1∏

i=1

(q − pi).

Then it suffices to consider r = 1, i.e., ε1±ε! ∈ I. For such ideals, p(−)
i = p(−)

i+1+1 = $−i

for 1 ≤ i ≤ $−1. Moreover, the subset {εi±εj | s−1 ≤ i < j ≤ $} ⊆ I is the positive

system of a root subsystem of Φ(D!) of type D!−s+2. Thus pi ≤ pi+1 + 1, p(+)
i ≤ p(+)

i+1

for all 1 ≤ i ≤ s − 3, and pi + 2 = pi−1 for s ≤ i ≤ $. We will need the following

lemma.

Lemma 2.4.5.10. Let Ψ be a subset of Φ+(B!) such that {εi ± εj | s− 1 ≤ i < j ≤

$} ⊆ Ψ for some 2 ≤ s ≤ $. Assume that SG(Ψ) = (p1, . . . , p!) with pi ≤ pi+1 + 1 for

all 1 ≤ i ≤ s− 3. Then Ψ is an ideal of Φ+(B!).
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Proof. For β1, β2 ∈ Φ+(B!), β1 4 β2, β1 ∈ Ψ, we will prove that β2 ∈ Ψ. Note that

for each β ∈ Φ+(B!), we have #{γ ∈ Φ+(B!) | β − γ ∈ ∆(B!)} ≤ 2. Since β1 4 β2,

there exists a path in the Hasse diagram of Φ+(B!) connecting β1 and β2.4 It follows

that this path must lie entirely within Ψ, yielding β2 ∈ Ψ.

Let Π be an irreducible root system of type B!−1 with a base given by ∆ = {αi =

εi − εi+1 (1 ≤ i ≤ $ − 2), α!−1 = ε!−1}. We define a sequence of subsets {Uk}!k=1

(depending on I) of Π+(B!−1) classified into two types as follows:

(i) Type I,

SG(Uk) = (p1, . . . , pk−1, p̂k, pk+1 + 1, . . . , p! + 1), (2.4.5)

for 1 ≤ k ≤ s− 2. Here p̂k means omission.

(ii) Type II,

SG(Uk) = (p1 − τ1,k, . . . , ps−2 − τs−2,k, ps−1 − 1, . . . , p!−1 − 1), (2.4.6)

for s− 1 ≤ k ≤ $, 1 ≤ n ≤ s− 2, with

τn,k :=






0 if εn + εk /∈ I

1 if εn + εk ∈ I.

It is easily seen that τn,k ≤ τn+1,k (as well as τn,k ≤ τn,k+1), hence pn − τn,k ≤

pn+1 − τn+1,k + 1 for all 1 ≤ n ≤ s− 3. By Lemma 2.4.5.10, the subsets {Uk}!k=1 are

indeed ideals of Π+(B!−1). We also define

K := I 1 {εk | 1 ≤ k ≤ $}. (2.4.7)

Then again by Lemma 2.4.5.10, K is an ideal of Φ+(B!) with

SG(K) = (p1 + 1, p2 + 1, . . . , p! + 1).

The following result is a generalization of [KTT07, Lemma 4.4(12)].

4This fact is true for any root system, which is a consequence of, e.g., [Som05, Lemma 3.2].
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Lemma 2.4.5.11. Let I be an ideal of Φ+(D!) so that ε1 ± ε! ∈ I. For all q ∈ Z>0,

we have

χquasi
TI

(D!, q) =
!∑

k=1

χquasi
TUk

(B!−1, q) + χquasi
TK

(B!, q), (2.4.8)

where Uk and Kare defined in (2.4.5), (2.4.6), (2.4.7).

Proof. With the notion of contraction lists (see Definition 1.2.1.5), we can write

χquasi
TUk

(B!−1, q) = χquasi
Ak

(B!, q) with Ak := TI∪{ε",...,εk}/T{εk} for 1 ≤ k ≤ $. For all

q ∈ Z>0, by applying the Deletion-Contraction formula (Theorem 2.2.1.10) recur-

sively, we get

χquasi
TI

(D!, q) = χquasi
TU"

(B!−1, q) + χquasi
TI∪{ε"}

(B!, q)

= χquasi
TU"

(B!−1, q) + χquasi
TU"−1

(B!−1, q) + χquasi
TI∪{ε",ε"−1}

(B!, q)

= · · ·

=
!∑

k=1

χquasi
TUk

(B!−1, q) + χquasi
TK

(B!, q).

In Lemma 2.4.5.12 and Theorem 2.4.5.13 below, we use the same assumption and

notation as in Lemma 2.4.5.11.

Lemma 2.4.5.12. For even q ∈ Z>0, we have

FI(D!, q) = FI∪{2εs,...,2ε"}(C!, q) =
!∏

i=1

(q − pi).

Proof. This follows from the height placements in Table 2.1.

Theorem 2.4.5.13. For even q ∈ Z>0, we have

χquasi
SI

(D!, q) =
1

2

(
!∑

k=1

χquasi
TUk

(B!−1, q) + χquasi
TK

(B!, q) +
!∏

i=1

(q − pi)

)

.

Proof. This follows from formula (2.4.2), and Lemmas 2.4.5.11, 2.4.5.12.
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Example 2.4.5.14. Table 2.6 shows an example of the ideal I = {α ∈ Φ+(D5) |

ht(α) ≤ 6} (in colored region), with positive roots contributing to p1, p2, p3, p4 are

colored in green, pink, blue, red, respectively. In this case, s = 2 since ε2+ ε3 ∈ I, but

ε1+ ε2 /∈ I. We have SG(I) = (7, 6, 4, 2, 0), and the computation on the ideals K and

Uk for even q ∈ Z>0 is given in Table 2.5. By Theorem 2.4.5.13, for even q ∈ Z>0, we

have

χquasi
SI

(D!, q) = (q − 2)(q − 4)(q3 − 13q2 + 51q − 51).

Ideals DP Roots of χquasi
T

K (8, 7, 5, 3, 1) 7, 6, 5, 4, 2

U1, U2 (7, 5, 3, 1) 6, 4, 4, 2

U3, U4, U5 (6, 5, 3, 1) 5, 4, 4, 2

Table 2.5: Computation of Example 2.4.5.14.

Remark 2.4.5.15. When I = Φ+(D!), SG(I) = (2$−2, 2$−4, . . . , 2, 0), DP(I) = ($−

1, 2$−3, . . . , 3, 1), DP(K) = (2$−1, 2$−3, . . . , 3, 1), and DP(Uk) = (2$−3, . . . , 3, 1)

for all 1 ≤ k ≤ $. Note that s = 2, so there is no ideal Uk of type I. Then by Lemma

2.4.5.11, for odd q ∈ Z>0

χquasi
SΦ+

(D!, q) = χquasi
TΦ+

(D!, q) = (q − 1)(q − 3) . . . (q − (2$− 3))(q − ($− 1)),

which agrees with Corollary 2.4.5.2. Moreover, for even q ∈ Z>0

χquasi
SΦ+

(D!, q) = (q − 2)(q − 4) . . . (q − (2$− 4))

(
q2 − 2($− 1)q +

$($− 1)

2

)
,

which recovers the result of [KTT07, Theorem 4.8] for type D root systems.



68

Height

7 ε1 + ε2

6 ε1 + ε3

5 ε1 + ε4 ε2 + ε3

4 ε1 − ε5 ε1 + ε5 ε2 + ε4

3 ε1 − ε4 ε2 − ε5 ε2 + ε5 ε3 + ε4

2 ε1 − ε3 ε2 − ε4 ε3 − ε5 ε3 + ε5

1 ε1 − ε2 ε2 − ε3 ε3 − ε4 ε4 − ε5 ε4 + ε5

7 6 4 2 0 SG(I)

Table 2.6: I = {α ∈ Φ+(D5) | ht(α) ≤ 6} in Φ+(D5).

Applications

The last constituent of every characteristic quasi-polynomial is proved to be identi-

cal with the characteristic polynomial of the corresponding toric arrangement (Corol-

lary 2.2.1.8). The first application that we obtain automatically from our computa-

tions is a full description of the toric arrangement characteristic polynomials defined

by the ideals in terms of the signed graphs.

For the second application, we give a direct verification of Corollary 2.4.5.2 when

Φ is any classical root system. We restrict the discussion to type D root systems as

the other cases are easy. For any ideal I ⊆ Φ+(D!) with SG(I) = (p1, . . . , p!) defined

in (2.4.4), we write

pi = p(+)
i + p(−)

i ,where, p(±)
i := #{εi ± εj | εi ± εj ∈ I},

for each 1 ≤ i ≤ $. It is easily seen that DP(I) = (d1, . . . , d!) with

di = p(−)
i + p(+)

i−1.

Here we agree that p(+)
0 = 0.
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Theorem 2.4.5.16. Let I be an ideal of Φ+(D!). For odd q ∈ Z>0, we have

χquasi
TI

(D!, q) =
!∏

i=1

(q − di) . (2.4.9)

Proof. It suffices to prove Theorem 2.4.5.16 when ε1 ± ε! ∈ I, as the other cases

are straightforward. For such ideals, d1 = $ − 1, di = p(−)
i + p(+)

i−1 = pi−1 − 1 for

all 2 ≤ i ≤ $. We recall the notation of the parameter s defined in (2.4.3) that

s = min{2 ≤ k ≤ $ | εk−1 + εk ∈ I}. It follows from Lemma 2.4.5.11 and Remark

2.4.5.15 that both sides of (2.4.9) are divisible by
∏!

i=s (q − pi−1 + 1). Hence we need

only prove the following:

A+B + C = (q − $+ 1)
s−1∏

i=2

(q − pi−1 + 1) , (2.4.10)

where

A :=
s−1∏

i=1

(q − pi − 1) ,

B :=
s−2∑

k=1

(q − p1) . . . (q − pk−1)(q − pk+1 − 1) . . . (q − ps−1 − 1),

C =
!∑

k=s−1

Ck, with Ck :=
s−2∏

n=1

(q − pn + τn,k) ,

and τn,k is defined in (2.4.6). Since τn,s−1 = 0 for all 1 ≤ n ≤ s − 2, Cs−1 =
∏s−2

i=1 (q − pi). It is routine to check that

A+B + Cs−1 =
s−1∏

i=1

(q − pi) . (2.4.11)

Write Mτ = [τn,k] for a matrix of size (s− 2)× ($− s+1) whose entries are the τn,k’s

(the columns indexed by the set {s, . . . , $}). Then

Mτ =





0 · · · 0 · · · · · · 0 1 · · · 1

0 · · · 0 · · · 1 · · · 1 · · · 1
...

...
...

...
...

0 · · · 0 1 · · · · · · 1 · · · 1




,
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with the number of 1’s on the n-th row is exactly p(+)
n , and the entries on the k-th

column contribute to the evaluation of Ck. Thus

!∑

k=s

Ck =
s−2∑

n=0

(
p(+)
n+1 − p(+)

n

) n∏

i=1

(q − pi)
s−2∏

i=n+1

(q − pi + 1) . (2.4.12)

Now combining (2.4.11) and (2.4.12) with a rigorous check, we obtain (2.4.10).
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3. G-TUTTE POLYNOMIALS VIA TOPOLOGY

3.1 Euler characteristics of (F, p, q)-arrangements

In this section, we show a first topological property of the G-Tutte polynomial.

We prove that the topological and semialgebraic Euler characteristics of the com-

plement of any (F, p, q)-arrangement can obtained as an evaluation of the associated

G-characteristic polynomial. In particular, in the case of arrangement of finite groups

(i.e., (F, 0, 0)-arrangement), we obtain a generalization of Theorem 1.2.2.19.

3.1.1 Topological and semialgebraic Euler characteristics

We first recall the notion of Euler characteristic for semialgebraic sets (see [Cos07,

BPR06] for further details). A subset X ⊆ Rn is said to be a semialgebraic set if it

is expressed as a finite union of sets of the form:

{x ∈ Rn | p(x) = 0, q1(x) > 0, . . . , qm(x) > 0},

where m ≥ 0, and p, q1, . . . , qm ∈ R[x1, . . . , xn]. Every semialgebraic set X has a de-

composition X =
⊔N

i=1Xi such that each semialgebraic subset Xi is semialgebraically

homeomorphic to the open simplex σdi = {(x1, . . . , xdi) ∈ Rdi | xi > 0,
∑

xi < 1} for

some di = dimXi. The semialgebraic Euler characteristic of X is defined by

esemi(X) =
N∑

i=1

(−1)di .

The Euler characteristic esemi(X) is independent of the choice of decomposition. Fur-

thermore, it satisfies the following additivity and multiplicativity (e.g., [Cos07])

esemi(X 1 Y ) = esemi(X) + esemi(Y ),

esemi(X × Y ) = esemi(X)× esemi(Y ).
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Remark 3.1.1.1. If X is compact, then esemi(X) is equal to the topological Euler

characteristic etop(X) :=
∑

i≥0(−1)ibi(X) (bi(X) is the i-th Betti number). How-

ever, unlike the topological Euler characteristic, the semialgebraic Euler character-

istic esemi(X) is not homotopy invariant. Even contractible semialgebraic sets have

different semialgebraic Euler characteristics, e.g., esemi([0, 1]) = 1, esemi(R≥0) = 0,

esemi(R) = −1.

For a locally compact semialgebraic set X, the semialgebraic Euler characteristic is

known to be equal to the Euler characteristic of the Borel-Moore homology HBM
i (X)

(see [Cos07, Chapter 1] for details). If X is a manifold (without boundary), we have

an isomorphism HBM
i (X) % HdimX−i(X) (see [Ive86, Theorem 4.7, Chapter IX]).

Thus esemi(X) and etop(X) are related by the following formula:

esemi(X) = (−1)dimX · etop(X). (3.1.1)

3.1.2 Euler characteristics of (F, p, q)-arrangements

In the remainder of this subsection, we assume that A is a finite list of elements

in a finitely generated abelian group Γ. We also assume that G is an abelian Lie

group with finitely many connected components, i.e., G = (S1)p × Rq × F with

g = dimR(G) = p + q ≥ 0 and F is a finite abelian group. Such a group G can

be realized as a semialgebraic set, where the group operations are defined by C∞

semialgebraic maps. Hence subsets defined by using group operations are always

semialgebraic sets.

Proposition 3.1.2.1.

esemi(G) =





0, if p > 0,

(−1)g ·#F, if p = 0,

etop(G) =





0, if p > 0,

#F, if p = 0.

Proof. Straightforward.
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The space M(A;Γ, G) is a semialgebraic set, and, if it is not empty, it is also a

manifold (without boundary) of dimM(A;Γ, G) = grΓ. We prove that the topological

and semialgebraic Euler characteristics of M(A;Γ, G) can be computed by the G-

Tutte polynomial (in fact, by the G-characteristic polynomial) of A.

Theorem 3.1.2.2.

esemi(M(A;Γ, G)) = χG
A(esemi(G)),

etop(M(A;Γ, G)) = (−1)g·rΓ · χG
A ((−1)g · etop(G)) .

Proof. We can compute esemi(M(A;Γ, G)) by using the additivity of esemi(−), the

Inclusion-Exclusion principle and Proposition 1.2.1.6 as follows:

esemi(M(A;Γ, G)) =
∑

S⊆A

(−1)#S · esemi

(
⋂

α∈S

Hα,G

)

=
∑

S⊆A

(−1)#S ·m(S;G) · esemi(G)rΓ−rS

= χG
A(esemi(G)).

Remark 3.1.2.3. We can also prove Theorem 3.1.2.2 by using the deletion-contraction

formula (Proposition 1.2.1.9). Note that if A = ∅, then χG
A(t) = #Hom(Γtor, G) · trΓ .

Hence χG
A(esemi(G)) = #Hom(Γtor, G) · esemi(G)rΓ = esemi(Hom(Γ, G)). Theorem

3.1.2.2 then follows easily from Proposition 1.2.1.9 and Corollary 1.2.2.14 by induction

on #A.

Remark 3.1.2.4. Theorem 3.1.2.2 is a generalization of [Moc12, Theorem 5.15] by

viewing G = S1,Γ = Z!.

Now we prove a generalization of Theorem 1.2.2.19 by replacing Zq by any finite

abelian group.

Theorem 3.1.2.5. If G is a finite abelian group (i.e., g = 0), then

#M(A;Γ, G) = χG
A(#G).
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Proof. If G is finite, then M(A;Γ, G) is also a finite set. Proposition 3.1.2.1 and

Theorem 3.1.2.2 complete the proof.

Let Φ be an irreducible root system of rank $, and let Γ := ZΦ be the root lattice

of Φ. Consider the list A := Φ+ ⊆ Γ of positive roots. Let W be the Weyl group of

Φ, and let f be the index of connection.

Proposition 3.1.2.6. The constant term of the characteristic polynomial of the toric

arrangement of Φ+ can be computed as follows:

χtoric
Φ+ (0) =

(−1)!#W

f
.

Proof. Recall from §2.4.2 the notation LA◦(q) of the Ehrhart quasi-polynomial of the

closed fundamental alcove A◦ w.r.t. the coweight lattice. By Theorem 2.4.2.5, the

Ehrhart reciprocity law, and the fact that LA◦(0) = 1 (e.g., [BS18, Exercise 5.15]),

we have

f
ρΦ+

Φ+ (0) =
(−1)!#W

f
LA◦(0) =

(−1)!#W

f
.

By Corollary 2.2.1.9,

χtoric
Φ+ (0) = f

ρΦ+

Φ+ (0) =
(−1)!#W

f
.

Remark 3.1.2.7. The Cartan matrix of Φ whose determinant is the index of connec-

tion f expresses the change of basis between the root lattice and the weight lattice. It

follows from Propositions 1.2.2.22 and 3.1.2.6 that the constant term of the character-

istic polynomial of the toric arrangement w.r.t. the weight lattice equals (−1)!#W .

This gives a new proof for [Moc12, Corollary 7.4].

Corollary 3.1.2.8 (Theorem 7.3, [Moc12]).

esemi(M(Φ+;Γ,C×)) = etop(M(Φ+;Γ,C×)) =
(−1)!#W

f
.

Proof. Note that etop(C×) = esemi(C×) = 0 (Proposition 3.1.2.1). Theorem 3.1.2.2

and Proposition 3.1.2.6 complete the proof.
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3.2 Poincaré polynomials of non-compact (F, p, q)-arrangements

As a next step after the formulas of the Euler characteristics in the previous

section, we are interested in finding the relation between the Poincaré polynomial of

a (F, p, q)-arrangement and the G-Tutte polynomial. In this section, we prove that

the Poincaré polynomial of any non-compact (F, p, q)-arrangement (i.e., q > 0) can

be expressed in terms of the associated G-characteristic polynomial. To this end, we

introduce two special classes of homology cycles called the torus and meridian cycles

in H∗(M(A;Γ, G),Z). The former provides a version of lifts of cycles in a compact

torus, while the latter generates the entire homology group H∗(M(A;Γ, G),Z). Then

we prove that the Poincaré polynomials satisfy a recursive formula, which in turn

prove the desired formula. It turns out that the non-compactness plays a crucial role

in our proof, without it many arguments may not work.

3.2.1 Torus and meridian cycles

Assume that G % (S1)p ×Rq × F with g = dimR(G) = p+ q ≥ 0 and F is a finite

abelian group. Write Gc = F×(S1)p (compact part) and V = Rq (non-compact part).

Let Γ be a finitely generated abelian group. Fix a decomposition Γ = Γtor ⊕ Γfree,

where Γfree % ZrΓ . Note that Hom(Γtor, V ) % {0}. Thus

Hom(Γ, G) % Hom(Γ, Gc)× Hom(Γfree, V ), (3.2.1)

% Hom(Γtor, Gc)×Hom(Γfree, Gc)× Hom(Γfree, V ). (3.2.2)

The first component Hom(Γtor, Gc) of (3.2.2) is a finite abelian group, the second

component Hom(Γfree, Gc) is a compact abelian Lie group (not necessarily connected),

and the third component is Hom(Γfree, V ) % V rΓ % Rq·rΓ.

Let α = (β, η) ∈ Γtor ⊕ Γfree. According to decomposition (3.2.1), the subgroup

Hα,G ⊆ Hom(Γ, G) can be expressed as

Hα,G = Hα,Gc ×Hη,V ,
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where Hα,Gc ⊆ Hom(Γ, Gc) and Hη,V ⊆ Hom(Γfree, V ). If α ∈ Γtor, or equivalently

α = (β, 0), then using (3.2.2) gives

Hα,G = Hβ,Gc ×Hom(Γfree, Gc)×Hom(Γfree, V ),

where Hβ,Gc is a subgroup of the finite abelian group Hom(Γtor, Gc). In this case,

Hα,G is a collection of connected components of Hom(Γ, G).

Similarly, the complement can be expressed as

M({α};Γ, G) = Hom(Γ, G) \Hα,G

= (Hom(Γtor, Gc) \Hβ,Gc)× Hom(Γfree, Gc)× Hom(Γfree, V ).

More generally, if A ⊆ Γtor ⊆ Γ, then

M(A;Γ, G) =

(

Hom(Γtor, Gc) \
⋃

α∈A

Hα,Gc

)

× Hom(Γfree, Gc)× Hom(Γfree, V )

= M(A;Γtor, Gc)×Hom(Γfree, Gc)× Hom(Γfree, V ).

(3.2.3)

Therefore, M(A;Γ, G) is a collection of some of the connected components of Hom(Γ, G).

Let A ⊆ Γ be a finite list of elements. Recall the notation Ator = A ∩ Γtor. As

mentioned above, M(Ator;Γ, G) is a collection of components of Hom(Γ, G). Consider

the following diagram:

M(A;Γ, G)
⊆

−−−−→ M(Ator;Γ, G)
⊆

−−−−→ Hom(Γ, G) 7 (f, t, v)
O

Oπ

M(Ator;Γ, Gc)
⊆

−−−−→ Hom(Γ, Gc) 7 (f, t),

(3.2.4)

where π : Hom(Γ, G) −→ Hom(Γ, Gc) is the projection defined by π(f, t, v) = (f, t)

for (f, t, v) ∈ Hom(Γtor, Gc)× Hom(Γfree, Gc)× Hom(Γfree, V ) % Hom(Γ, G).

Now assume that q > 0. The fiber of the projection π is isomorphic to Hom(Γ, V ) %

V rΓ % Rq·rΓ. Then

M(A \ Ator;Γ, V ) = Hom(Γ, V ) \
⋃

α∈A\Ator

Hα,V
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is the complement of a collection of proper subspaces. Hence it is non-empty. Fix an

element v0 ∈ M(A \ Ator;Γ, V ). For a given (f, t) ∈ Hom(Γ, Gc), define iv0(f, t) :=

(f, t, v0). This induces a map

iv0 : M(Ator;Γ, Gc) −→ M(A;Γ, G),

which is a section of the projection π|M(A;Γ,G) : M(A;Γ, G) −→ M(Ator;Γ, Gc) in

(3.2.4).

Definition 3.2.1.1. Assume that q > 0. A cycle γ ∈ H∗(M(A;Γ, G),Z) is said to

be a torus cycle if there exist a connected component T ⊆ M(Ator;Γ, Gc), a cycle

γ̃ ∈ H∗(T,Z) ⊆ H∗(M(Ator;Γ, Gc),Z) and v0 ∈ M(A \ Ator;Γ, V ) such that

γ = (iv0)∗(γ̃).

The subgroup of H∗(M(A;Γ, G),Z) generated by torus cycles is denoted by Htorus
∗ (A(G)).

Remark 3.2.1.2. If q > 1, then the homology class (iv0)∗(γ̃) is independent of the

choice of v0 ∈ M(A \ Ator;Γ, V ), because M(A \ Ator;Γ, V ) is connected. On the

other hand, if q = 1, then the subspace Hα,V is a real hyperplane in Hom(Γ, V ) %

V rΓ. Hence the homology class (iv0)∗(γ̃) may depend on the connected component of

V rΓ \
⋃

Hα,V which contains v0.

Lemma 3.2.1.3. Assume that q > 0. Let α ∈ A \ Ator, and A′ = A \ {α}. Then

the map ι : Htorus
∗ (A(G)) −→ Htorus

∗ (A′(G)) induced by the inclusion M(A;Γ, G) ↪→

M(A′;Γ, G) is surjective.

Proof. Let (iv0)∗(γ̃) ∈ H∗(M(A′;Γ, G),Z) be a torus cycle. If v0 /∈ Hα,V , then

(iv0)∗(γ̃) is clearly contained in the image of the map ι. If v0 ∈ Hα,V , since M(A \

Ator;Γ, V ) is nonempty, there exists a small perturbation v′0 of v0 such that v′0 ∈

M(A\Ator;Γ, V ) (see Remark 3.2.1.2). Then Htorus
∗ (A(G)) 7 (iv′0)∗(γ̃) -−→ (iv0)∗(γ̃) ∈

Htorus
∗ (A′(G)).

The torus cycles defined previously are not enough to generate the homology

group H∗(M(A;Γ, G),Z). We also need to consider meridians of Hα,G to generate
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H∗(M(A;Γ, G),Z). Let us first recall the notion of layers (Definition 2.1.2.2). A layer

of A(G) is a connected component of a non-empty intersection of elements of A(G).

Let S ⊆ A. By Proposition 1.2.1.6 (see also (2.1.1)), every connected component of

HS,G =
⋂

α∈S Hα,G is isomorphic to

(
(S1)p × Rq

)rΓ−rS .

We sometimes call the number rS the rank of the layer. Since H∅,G = Hom(Γ, G),

a connected component of Hom(Γ, G) is a layer of rank 0. Similarly, a connected

component of Hα,G for α ∈ A \ Ator is a layer of rank 1.

Let L be a layer. Recall from (2.1.2) the notion of localization of A w.r.t L by

AL = {α ∈ A | L ⊆ Hα,G}, and denote AL := A/AL. Note that L can be considered

as a rank 0 layer of AL(G). Define

ML(A) :=L \
⋃

Hα,G 0⊇L

Hα,G

=L ∩M(AL;Γ/〈AL〉, G).

Note that we considered M(AL;Γ/〈AL〉, G) as a subset of Hom(Γ, G) as in Proposi-

tion 1.2.1.8.

Let L1 ⊆ Hom(Γ, G) be a rank 1 layer of A(G), and let L0 be the rank 0 layer

that contains L1. We wish to define the meridian homomorphism

µε
L0/L1

: H∗(M
L1(A),Z) −→ H∗+ε·(g−1)(M

L0(A),Z),

where g = dimG = p + q > 0 and ε ∈ {0, 1}. Since the normal bundle of L1 in

L0 is trivial, there is a tubular neighborhood U of ML1(A) in L0 such that U %

ML1(A) × Dg with the identification ML1(A) = ML1(A) × {0}, where Dg is the

g-dimensional disk. Then U ∩ ML0(A) % ML1(A) × Dg∗, where Dg∗ := Dg \ {0}.

We denote the corresponding inclusion by i : ML1(A) × Dg∗ ↪→ ML0(A). For a

given γ ∈ H∗(ML1(A),Z), define the element µε
L0/L1

(γ) ∈ H∗+ε·(g−1)(ML0(A),Z) as

follows:

(0) When ε = 0, let p0 ∈ Dg∗. Then γ × [p0] ∈ H∗(ML1(A)) ⊗ H0(Dg∗) ⊆

H∗(ML1(A)×Dg∗), and µ0
L0/L1

(γ) := i∗(γ × [p0]).
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(1) When ε = 1, let Sg−1 ⊆ Dg∗ be a sphere of small radius. Then γ × [Sg−1] ∈

H∗(ML1(A)) ⊗ Hg−1(Dg∗) ⊆ H∗+g−1(ML1(A) × Dg∗) (this part is essentially

the Gysin homomorphism). Now define µ1
L0/L1

(γ) := i∗(γ × [Sg−1]).

Similarly, we can define the meridian map

µε
Lj/Lj+1

: H∗(M
Lj+1(A),Z) −→ H∗+ε·(g−1)(M

Lj(A),Z)

between layers Lj ⊇ Lj+1 with consecutive ranks.

Definition 3.2.1.4. A cycle γ ∈ Hd(M(A;Γ, G),Z) is called a meridian cycle if

there exists some k ≥ 0 and

(a) a flag L0 ⊇ L1 ⊇ · · · ⊇ Lk of layers with rankLj = j, such that L0 ∩

M(A;Γ, G) 0= ∅ (or equivalently, L0 ⊆ M(Ator;Γ, G)),

(b) a sequence ε1, . . . , εk ∈ {0, 1}, and

(c) a torus cycle τ ∈ Hd−(g−1)
∑k

i=1 εi
(MLk(A),Z),

such that

γ = µε1
L0/L1

◦ µε2
L1/L2

◦ · · · ◦ µεk
Lk−1/Lk

(τ).

We call the minimum such k the depth of γ.

By definition, a meridian cycle of depth 0 is a torus cycle of a connected component

L0. Furthermore, a cycle γ ∈ H∗(M(A;Γ, G),Z) is a meridian cycle of depth k > 0

if and only if there exist layers L0 ⊇ L1 of rank 0 and 1 respectively, with L0 ∩

M(A;Γ, G) 0= ∅, ε ∈ {0, 1} and a meridian cycle γ′ ∈ H∗−ε·(g−1)(ML1(A),Z) of

depth (k − 1) such that γ = µε
L0/L1

(γ′).

Note that in Definition 3.2.1.4, ML0(A) is a non-empty open subset of M(A;Γ, G).

Hence we have the induced injection H∗(ML0(A),Z) ↪→ H∗(M(A;Γ, G),Z). We de-

note by Hmerid
∗ (A(G)) the submodule of H∗(M(A;Γ, G),Z) generated by the images

of meridian cycles. It is clear that

Htorus
∗ (A(G)) ⊆ Hmerid

∗ (A(G)) ⊆ H∗(M(A;Γ, G),Z).
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Lemma 3.2.1.5. Assume that q > 0. Let α ∈ A \Ator, and let A′ = A \ {α}. Then

Hmerid
∗ (A(G)) −→ Hmerid

∗ (A′(G)) (3.2.5)

is surjective.

Proof. We prove this by induction on #(A \ Ator) and the depth k of the meridian

cycle γ. If #(A \ Ator) = 1, then A′ = Ator. In this case, the meridian cycles of

M(A′;Γ, G) are torus cycles, and the statement follows from Lemma 3.2.1.3. Now

assume that #(A \Ator) > 1. Let γ ∈ H∗(M(A′;Γ, G),Z) be a meridian cycle of A′.

Suppose that γ can be expressed as γ = µε1
L0/L1

◦ · · · ◦ µεk
Lk−1/Lk

(τ), as in Definition

3.2.1.4. If k = 0, then γ = τ is a torus cycle. Hence, again by Lemma 3.2.1.3, γ is

contained in the image of the map (3.2.5). We may therefore assume that k > 0. Let

γ′ = µε2
L1/L2

◦ · · · ◦ µεk
Lk−1/Lk

(τ). Then γ′ ∈ Hmerid
∗−ε1·(g−1)((A

′)L1(G)) is a meridian cycle

of depth (k − 1). We separate the proof into two cases depending on whether α is a

loop in AL1.

Suppose that α is a loop in AL1. Then Hα,G either contains L1 or does not

intersect L1. In either case, ML1(A) = ML1(A′). Hence the tubular neighborhood

U of ML1(A′) satisfies U ∩ ML0(A′) = U ∩ ML0(A) = U \ L1, and the meridian

cycle γ = µε
L0/L1

(γ′) can be constructed in ML0(A) ⊆ ML0(A′). Consequently, γ is

contained in the image Hmerid
∗ (A(G)) −→ Hmerid

∗ (A′(G)).

Suppose that α is not a loop in AL1 . Then, by the induction hypothesis, there

exists a meridian cycle γ̃′ ∈ Hmerid
∗−ε1·(g−1)(A

L1(G)) that is sent to γ′ by the induced map

Hmerid
∗−ε1·(g−1)(A

L1(G)) −→ Hmerid
∗−ε1·(g−1)((A

′)L1(G)), γ̃′ -−→ γ′.

Using the following commutative diagram, we can conclude that γ is also contained

in the image:

γ̃′ ∈ Hmerid
∗−ε1·(g−1)(A

L1(G)) −−−→ Hmerid
∗−ε1·(g−1)((A

′)L1(G)) 7 γ′

µ
ε1
L0/L1

O
Oµ

ε1
L0/L1

Hmerid
∗ (A(G)) −−−→ Hmerid

∗ (A′(G)) 7 γ.



81

3.2.2 Mayer-Vietoris sequences and Poincaré polynomials

For simplicity of notation, in this subsection, we denote M(A) := M(A;Γ, G),

M(A′) := M(A′;Γ, G), and M(A′′) := M(A′′;Γ′′, G).

Theorem 3.2.2.1. Let A be a finite list of elements in a finitely generated abelian

group Γ, and let G = (S1)p ×Rq × F , where F is a finite abelian group. Assume that

q > 0, and let g = dimG = p+ q. Then the following hold:

(i) H∗(M(A),Z) is generated by the meridian cycles. That is H∗(M(A),Z) =

Hmerid
∗ (A(G)), and furthermore it is torsion free.

(ii) If α is not a loop, then H∗(M(A),Z) −→ H∗(M(A′),Z) is surjective.

(iii) Let α ∈ A. Then

PM(A)(t) =





PM(A′)(t)− PM(A′′)(t), if α is a loop,

PM(A′)(t) + tg−1 · PM(A′′)(t), if α is not a loop.

Proof. We first note that when α is a loop, M(A′) = M(A)1M(A′′) is a decompo-

sition into disjoint open subsets. Thus (iii) is obvious when α is a loop.

We prove the other results by induction on #(A \ Ator). If A = Ator, then (i)

follows from

H∗(M(A),Z) = Hmerid
∗ (A(G)) = Htorus

∗ (A(G))

(see (3.2.3)), and there is nothing to prove for (ii) and (iii).

Assume that A \ Ator 0= ∅, and suppose that α ∈ A \ Ator. Let U be a tubular

neighborhood of M(A′′) in M(A′), as in §3.2.1. Set U∗ := U∩M(A) % M(A′′)×Dg∗.

Consider the Mayer-Vietoris sequence associated with the covering M(A′) = U ∪

M(A). We have the following diagram:

−−−−→ Hk(U∗)
fk−−−−→ Hk(U)⊕Hk(M(A))

gk−−−−→ Hk(M(A′)) −−−−→
Ph1

Ph2

Ph3

Hmerid
k (U∗)

f ′

k−−−−→ Hmerid
k (U)⊕Hmerid

k (A(G))
g′

k−−−−→ Hmerid
k (A′(G)),
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where Hmerid
∗ (U∗) = Hmerid

∗ (A′′(G))⊗H∗(Dg∗) and Hmerid
k (U) % Hmerid

k (A′′(G)). The

first line is a part of the Mayer-Vietoris long exact sequence. The vertical arrows

h1, h2 and h3 are the inclusions of the subgroups generated by the meridian cycles.

By the induction hypothesis, h1 and h3 are isomorphic. Lemma 3.2.1.5 implies that

g′k is surjective. Hence, gk is also surjective. The surjectivity of gk+1 implies that fk is

injective. Therefore, the long exact sequence breaks into short exact sequences. The

torsion freeness follows immediately. Thus

rankHk(U) + rankHk(M(A)) = rankHk(U
∗) + rankHk(M(A′)),

which implies the inductive formula (iii). A diagram chase shows that h2 is also

surjective. Hence H∗(M(A),Z) = Hmerid
∗ (A(G)).

If G = (S1)p × Rq × F as in the previous theorem, the Poincaré polynomial of G

is

PG(t) = (1 + t)p ×#F.

We can compute the Poincaré polynomial of the complement M(A) using PG(t) and

the G-Tutte/characteristic polynomial.

Theorem 3.2.2.2. Let G be a non-compact abelian Lie group with finitely many

connected components. Set g = dimG. Then

PM(A)(t) = PG(t)
rΓ−rA · trA(g−1) · TG

A

(
PG(t)

tg−1
+ 1, 0

)

= (−tg−1)rΓ · χG
A

(
−
PG(t)

tg−1

)
.

Proof. We prove the result by induction on #A. Suppose that A = ∅. Then M(A) =

Hom(Γ, G) % Hom(Γtor, G)×GrΓ, and χG
A(t) = #Hom(Γtor, G)×trΓ. Theorem 3.2.2.2

follows immediately.

Suppose A 0= ∅. Then, using Corollary 1.2.2.14 and Theorem 3.2.2.1 (iii), Theorem

3.2.2.2 can be proved by induction.

Remark 3.2.2.3. Theorem 3.2.2.2 recovers the known formulas (1.1.2) and (1.1.3).
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Remark 3.2.2.4. If G is a compact group, then Theorem 3.2.2.2 is not valid unless

A = ∅ (see Example 3.2.2.5 for the simplest example). There are several steps that

fail for compact groups. For example the surjectivity of torus cycles (Lemma 3.2.1.3)

fails, so the proof of the surjectivity of meridian cycles (Lemma 3.2.1.5) does not work.

Furthermore, the existence of the fundamental class is an obstruction for breaking

the Mayer-Vietoris sequence into short exact sequences.

Example 3.2.2.5. Let G = S1,Γ = Z, and A = {α} with α = 1 ∈ Z. Then

rΓ = rA = 1 and g = dimG = 1. By definitions, T S1
A (x, y) = x and χS1

A (t) = t − 1.

The right-hand side of the second formula in Theorem 3.2.2.2 is equal to 2 + t.

However, since M(A) = S1 \ {pt} is homeomorphic to R, we have PM(A)(t) = 1, and

the formula fails.
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4. G-TUTTE POLYNOMIALS VIA MATROID THEORY

4.1 Relationship with arithmetic matroids

The G-Tutte polynomial is defined by inspiration of the arithmetic Tutte polyno-

mial, and we have seen that they share a number of combinatorial and topological

properties. Associated with an arithmetic Tutte polynomial, there is a matroidal

structure defined through a system of axioms on the arithmetic multiplicities. It is

natural to investigate the relationship between the G-multiplicity and the axioms,

that is the main objective of this section. In addition, we present a G-Tutte poly-

nomial version of convolution formula, a feature known to be possessed by several

well-known polynomials including Tutte and arithmetic Tutte polynomials.

4.1.1 G-multiplicities and arithmetic matroid axioms

Definition 4.1.1.1. A matroid M = (E, r) is a finite list E with a rank function

r : 2E → Z≥0 such that:

(1) if A ⊆ E, then r(A) ≤ |A|,

(2) if A ⊆ B ⊆ E, then r(A) ≤ r(B),

(3) if A,B ⊆ E, then r(A ∪ B) + r(A ∩B) ≤ r(A) + r(B).

Example 4.1.1.2. Let E be a finite list of elements in a finitely generated abelian

group Γ. For S ⊆ E, denote r(S) := rS (= rank(〈S〉Z)). Then (E, r) defines a

matroid. Matroids of this form are called realizable (or representable).

Definition 4.1.1.3. The Tutte polynomial of a matroid M = (E, r) is defined by

TM(x, y) :=
∑

A⊆E

(x− 1)r(E)−r(A)(y − 1)|A|−r(A).
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More generally, let m be a function m : 2E → R, called the multiplicity function. The

Tutte polynomial of (M, m) is defined by

T(M,m)(x, y) :=
∑

A⊆E

m(A) · (x− 1)r(E)−r(A)(y − 1)|A|−r(A).

Definition 4.1.1.4. Let M = (E, r) be a matroid. If R ⊆ S ⊆ E, let [R, S] := {A ⊆

E | R ⊆ A ⊆ S}. The set [R, S] is called a molecule if S = R 1 F 1 T , and for each

A ∈ [R, S],

r(A) = r(R) + |A ∩ F |.

A molecule [R, S] is said to be extreme if either F = ∅, or T = ∅.

Proposition 4.1.1.5.

(i) If [R, S] is a molecule and [R′, S ′] ⊆ [R, S], then [R′, S ′] is a molecule.

(ii) A molecule [R, S] is extreme if either r(R) = r(S) (i.e., F = ∅), or r(S) =

r(R) + |S \R| (i.e., T = ∅).

Proof. Straightforward.

Let M = (E, r) be a matroid. Let m be an integral multiplicity function, i.e.,

m : 2E → Z.

Definition 4.1.1.6. The triple (E, r,m) is called a quasi-arithmetic matroid if the

multiplicities m satisfy

(Q1) for all A ⊆ E and a ∈ E, if r(A ∪ {a}) = r(A), then m(A ∪ {a}) | m(A);

otherwise m(A) | m(A ∪ {a}),

(Q2) if [R, S] is a molecule with S = R 1 F 1 T , then

m(R) ·m(S) = m(R 1 F ) ·m(R 1 T ).

Definition 4.1.1.7. The triple (E, r,m) is called a
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(P) pseudo-arithmetic matroid if for every molecule [R, S],

ρ(R, S) := (−1)|T |
∑

A∈[R,S]

(−1)|S|−|A|m(A) ≥ 0.

(NP) nearly pseudo-arithmetic matroid if for every extreme molecule [R, S],

ρ(R, S) ≥ 0.

(RP) relatively pseudo-arithmetic matroid if for every non-extreme molecule [R, S],

ρ(R, S) ≥ 0.

Clearly, a matroid together with a multiplicity function satisfy (P) if and only if

they satisfy (NP) and (RP).

Proposition 4.1.1.8. The multiplicities m satisfy (Q2) and (NP) if and only if they

satisfy (Q2) and (P).

Proof. See [BM14, §2].

Definition 4.1.1.9 (§2.3, [DM13]). The triple (E, r,m) is called an arithmetic ma-

troid if the multiplicities m satisfy (Q1), (Q2) and (P).

Definition 4.1.1.10 (§4.2, [DM13]). Let AM = (E, r,m) be an arithmetic matroid.

The Tutte polynomial TAM(x, y) of AM is called the arithmetic Tutte polynomial.

Clearly, any matroid is an arithmetic matroid with trivial multiplicity function,

i.e., m(A) = 1 for all A ⊆ E. Thus, the Tutte polynomial is a specialization of the

arithmetic Tutte polynomial.

Theorem 4.1.1.11. Let PAM = (E, r,m) be a pseudo-arithmetic matroid. Then

the coefficients of the Tutte polynomial TPAM(x, y) are nonnegative integers.

Proof. See [BM14, Theorem 4.5]
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Example 4.1.1.12 (§2.4, [DM13], §5, [BM14]). Let (E, r) be a realizable matroid

(see Example 4.1.1.2). For A ⊆ E, let m(A) = #(Γ/〈A〉)tor. Then (E, r,m) is an

arithmetic matroid. Arithmetic matroids of this form are called realizable (or repre-

sentable).

Unless otherwise stated, we assume that A = {α1, . . . ,αn} is a finite list of ele-

ments in a finitely generated abelian group Γ. Let G be a torsion-wise finite abelian

group (Definition 1.2.2.1). We can define for the realizable matroid (A, r) a multi-

plicity function by using the definition of G-multiplicity in Definition 1.2.2.7, more

precisely, m(S;G) = #Hom((Γ/〈S〉)tor, G) for S ⊆ A. We wish to investigate the

relationship between the G-multiplicities and arithmetic matroid axioms mentioned

previously.

To do that, we need the construction of the dual of a representable arithmetic

matroid described in [DM13, §3.4]. Let us recall the construction briefly (actually,

the construction has been described in Lemma 2.2.1.2 for serving other purpose).

Assume that Γ can be expressed as Γ = Zm/〈v1, . . . ,vh〉. Choose a representative

α̃i ∈ Zm of αi ∈ Γ for each i ∈ [n]. Define

Γ† := Zn+h/〈t(α̃1, . . . , α̃n,v1, . . . ,vh)〉,

where the denominator is the subgroup generated by m columns of the (n + h)×m

matrix t(α̃1, . . . , α̃n,v1, . . . ,vh). Let ei be the standard basis of Zn+h. Set α†
i := ei ∈

Γ† for i ∈ [n]. Now we have the list A† = {α†
1, . . . ,α

†
n}. It is proved in [DM13, §3.4]

that for a subset S ⊆ [n], we have

r†S = #S − r[n] + rSc ,

(Γ†/〈α†
i | i ∈ S〉)tor % (Γ/〈αi | i ∈ Sc〉)tor,

(4.1.1)

where Sc = [n] \ S, rS = rank〈αi | i ∈ S〉 and r†S = rank〈α†
i | i ∈ S〉 (the second

relation in (4.1.1) is not a canonical isomorphism). Note that A† has rank rA† =

#A− rA.

Denote the G-multiplicity of (Γ†,A†) by

m†(S;G) := #Hom
(
(Γ†/〈α†

i | i ∈ S〉)tor, G
)
.
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The operation (−)† is reflexive in the sense that

rS = #S − r†[n] + r†Sc ,

m(S;G) = m†(Sc;G),
(4.1.2)

and the G-Tutte polynomials satisfy

TG
A†(x, y) = TG

A (y, x). (4.1.3)

Convention: In what follows, a dot under a letter indicates the parameter in the

summation. For instance,
∑

S⊆B
•
⊆T indicates that S and T are fixed, and B is running

between them.

Theorem 4.1.1.13. Let G be a torsion-wise abelian finite group. Then the G-

multiplicities satisfy (Q1) and (NP). In other words, they satisfy the following four

properties (we borrow the numbering from [DM13, §2.3]).

(1) If S ⊆ A and α ∈ A satisfy rS∪{α} = rS , then m(S ∪ {α};G) divides m(S;G).

(2) If S ⊆ A and α ∈ A satisfy rS∪{α} = rS+1, then m(S;G) divides m(S∪{α};G).

(4) If S ⊆ T ⊆ A and rS = rT , then

ρ(S, T ;G) :=
∑

S⊆B
•
⊆T

(−1)#B−#Sm(B;G) ≥ 0.

(5) If S ⊆ T ⊆ A and rT = rS +#(T \ S), then

ρ∗(S, T ;G) :=
∑

S⊆B
•
⊆T

(−1)#T −#Bm(B;G) ≥ 0.

Additionally, if G is a (torsion-wise finite) divisible abelian group, that is, the multiplication-

by-k map k : G −→ G is surjective for any positive integer k, then the G-multiplicities

satisfy (Q2), i.e., they satisfy the following.

(3) If S ⊆ T ⊆ A and T is a disjoint union T = S 1 B 1 C such that for all

S ⊆ R ⊆ T , we have rR = rS +#(R ∩ B), then

m(S;G) ·m(T ;G) = m(S 1 B;G) ·m(S 1 C;G).
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Proof. By [BM14, Lemma 5.2], there exists a group epimorphism (Γ/〈S〉)tor −→

(Γ/〈S∪{α}〉)tor. Applying the functor Hom(−, G) to this epimorphism, Property (1)

follows. By the above construction, (r†, m†) satisfies Property (1), which is equivalent

to Property (2) for (r,m) by the duality (4.1.2).

We prove Property (4) by showing that ρ(S, T ;G) is the cardinality of a certain

finite set. Property (4) is clearly true if S = T , so assume that S # T . Let us define

Γ′ by

Γ′ := {g ∈ Γ | ∃n > 0 such that n · g ∈ 〈S〉}.

It is also characterized by (Γ/〈S〉)tor = Γ′/〈S〉. By the assumption rS = rT , we have

S ⊆ T ⊆ Γ′. If S ⊆ B ⊆ T , then (Γ/〈B〉)tor = Γ′/〈B〉. Therefore, Hom((Γ/〈B〉)tor, G) =

Hom(Γ′/〈B〉, G) can be considered as a subset of Hom((Γ/〈S〉)tor, G) = Hom(Γ′/〈S〉, G).

By the Inclusion-Exclusion principle and Proposition 1.2.1.6, we have

ρ(S, T ;G) =
∑

S⊆B
•
⊆T

(−1)#B−#S ·m(B;G)

=
∑

S⊆B
•
⊆T

(−1)#B−#S ·#Hom(Γ′/〈B〉, G)

= #M(T /S;Γ′/〈S〉, G),

which is clearly non-negative. We can prove Property (5) by an argument similar to

that for Property (2) by using the duality.

Finally, to prove Property (3) we generalize the argument used in [DM13, Lemma

2.6]. We consider the following diagram composing of two short exact sequences:

0 −−−−→

(
Γ

〈S 1 C〉

)

tor

−−−−→

(
Γ

〈T 〉

)

tor

−−−−→

(
Γ

〈T 〉

)

tor

/

(
Γ

〈S 1 C〉

)

tor

−−−−→ 0

P#

0 −−−−→

(
Γ

〈S〉

)

tor

−−−−→

(
Γ

〈S 1 B〉

)

tor

−−−−→

(
Γ

〈S 1 B〉

)

tor

/

(
Γ

〈S〉

)

tor

−−−−→ 0.

Note that the isomorphism indicated by the vertical arrow is proved in [BM14, Lemma

5.3]. Since G is divisible, G is an injective Z-module and the functor Hom(−, G) is

exact. Applying the functor Hom(−, G) to the diagram we obtain Property (3).
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Remark 4.1.1.14. When G is a connected abelian Lie group, that is, G = (S1)p×Rq, G

is a torsion-wise finite and divisible group. Theorem 4.1.1.13 is valid. We can see that

Property (3) fails in many cases. For example, let Γ = Z2, S = {(0, 2)}, B = {(2, 1)},

C = {(0, 1)} and G = Z2. Then (Γ/〈S〉)tor % Z2, (Γ/〈S∪B〉)tor % Z4, (Γ/〈S∪C〉)tor %

{0}, (Γ/〈T 〉)tor % Z2, and m(S;G) ·m(T ;G) = 4 0= 2 = m(S 1 B;G) ·m(S 1 C;G).

4.1.2 Convolution formula

As proved in Corollary 1.2.2.13, the G-Tutte polynomial possesses a deletion-

contraction formula as the (arithmetic) Tutte polynomials do. We prove that the

G-Tutte polynomials also satisfy a convolution formula, a feature known to be shared

by many polynomials.

Theorem 4.1.2.1. Let A be a finite list in a finitely generated group Γ, and let G1

and G2 be torsion-wise finite groups. Then

TG1×G2
A (x, y) =

∑

B
•
⊆A

TG1
B (0, y) · TG2

A/B(x, 0).

Proof. The right-hand side of the formula is equal to

∑

B
•
⊆A






∑

S
•
⊆B

m(S;G1)(−1)rB−rS (y − 1)#S−rS






×






∑

B⊆T
•
⊆A

m(T ;G2)(x− 1)rA−rB−(rT −rB)(−1)#T −#B−(rT −rB)






=
∑

S
•
⊆B

•
⊆T

•
⊆A

m(S;G1)m(T ;G2)(x− 1)rA−rT (y − 1)#S−rS(−1)#T −#B−rT −rS

=
∑

S
•
=B

•
=T

•
⊆A

m(S;G1)m(S;G2)(x− 1)rA−rS(y − 1)#S−rS

+
∑

S
•
#T

•
⊆A





m(S;G1)m(T ;G2)(x− 1)rA−rT (y − 1)#S−rS

∑

S⊆B
•
⊆T

(−1)#T −#B−rT −rS





.
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The first term is equal to TG1×G2
A (x, y) by the multiplicativity m(S;G1 × G2) =

m(S;G1) · m(S;G2) (see Proposition 1.2.2.6). The second term vanishes because,

when S # T , we have
∑

S⊆B
•
⊆T (−1)#B = 0.

The classical convolution formula [ELV98,KRS99] for matroids representable over

Q is obtained from Theorem 4.1.2.1 by replacing G1 and G2 by {0}. Theorem 4.1.2.1

can also be specialized to the Backman-Lenz’s convolution formula [BL16] when G1×

G2 = S1 × {0} or {0}× S1.

4.2 Coefficients of G-Tutte polynomials

We have already seen that the G-Tutte polynomial can not be directly associated

with a realizable arithmetic matroid as the G-multiplicities satisfy only four over five

required axioms. Furthermore, although the arithmetic Tutte polynomial is a poly-

nomial with positive coefficients, we will show that the positivity of the coefficients is

not preserved for the G-Tutte polynomial. This leaves us with a question under what

conditions the coefficients of the G-Tutte polynomial are positive. We propose some

ideas and partial answers.

4.2.1 (Non-)positivity of coefficients

In general, the G-Tutte polynomial can have negative coefficients as in the next

example.

Example 4.2.1.1. Let Γ = Z⊕Z4, let A = {α, β} ⊆ Γ with α = (2, 1) and β = (0, 2),

and let G = Z4. Then by direct computation, we have

TG
A (x, y) = 2xy + 2x+ 2y − 2.

This also produces a counter-example to axiom (P) in Definition 4.1.1.7. Note that

[∅,A] is a molecule, and

ρ(∅,A;G) = (−1) ·
∑

B⊆A

(−1)2−#Bm(B;G) = −2 < 0.
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As hinted in the example above, to obtain the positivity of the coefficients of G-

Tutte polynomial, some condition either on the group G or the list A is needed. The

first idea is to keep the generality of A, and restrict G.

Theorem 4.2.1.2. Let G be a torsion-wise finite divisible abelian group. Then the

coefficients of the G-Tutte polynomial TG
A (x, y) are nonnegative integers.

Proof. It is proved in Theorem 4.1.1.13 that the pair (Γ,A) together with the G-

multiplicities form an arithmetic matroid. Theorem 4.1.1.11 completes the proof.

Owing to the deletion-contraction formula (Corollary 1.2.2.13) and the convolution

formula (Theorem 4.1.2.1) we propose some other ideas to approach the positivity

problem.

Proposition 4.2.1.3. Let G be a torsion-wise finite abelian group. The coefficients

of the G-Tutte polynomial TG
A (x, y) are nonnegative integers if the group G satisfies

one of the following conditions:

(i) for any finite list D ⊆ Γ containing no proper elements, the coefficients of the

G-Tutte polynomial TG
D (x, y) are nonnegative integers.

(ii) for any finite list D ⊆ Γ,

TG
D (0, 0) =

∑

B⊆D

(−1)rD−#Bm(B;G) ≥ 0.

Proof. (i) follows from Corollary 1.2.2.13 because we can write TG
A (x, y) as a sum

of the G-Tutte polynomials of the lists having no proper elements. (ii) follows from

Theorem 4.1.2.1 because

TG
A (x, y) =

∑

B
•
⊆A

TG
B (0, y) · T {0}

A/B(x, 0)

=
∑

B
•
⊆A

T {0}
A/B(x, 0)




∑

S
•
⊆B

T {0}
S (0, y) · TG

B/S(0, 0)



 .

Note also that the coefficients of the classical Tutte polynomial (i.e., the {0}-Tutte

polynomial) are nonnegative integers.
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4.2.2 An interpretation of coefficients

As suggested previously, to obtain the positivity we may look at the second idea,

that is to keep the generality of G, and put some condition on the list A. We prove

that if A consists of only torsion elements of Γ, then TG
A (x, y) is a polynomial in y

by definition, and it always has nonnegative coefficients. Moreover, the coefficients of

the G-Tutte polynomial can be explicitly described.

Theorem 4.2.2.1. Let G be a torsion-wise finite abelian group. Suppose that A is

contained in Γtor. Then

TG
A (x, y) =

#A∑

k
•
=0





∑

S
•
⊆A

#S
•
=k

#M(A/S;Γtor/〈S〉, G)




yk.

In particular, TG
A (x, y) is a polynomial in y with nonnegative coefficients.

Proof. By assumption, rA = rS = 0 and (Γ/〈S〉)tor = Γtor/〈S〉 for every S ⊆ A.

Using Proposition 1.2.1.8, we have

TG
A (x, y) =

∑

S
•
⊆A

#Hom(Γtor/〈S〉, G) · (y − 1)#S

=
∑

S
•
⊆A

#Hom(Γtor/〈S〉, G) ·
#S∑

k
•
=0

yk · (−1)#S−k ·



#S

k





=
#A∑

k
•
=0

yk ·
∑

S
•
⊆A

#S
•
≥k

(−1)#S−k



#S

k




∑

S⊆T
•
⊆A

#M(A/T ;Γtor/〈T 〉, G)

=
#A∑

k
•
=0

yk ·
∑

T
•
⊆A

#T
•
≥k

#M(A/T ;Γtor/〈T 〉, G) ·
∑

S
•
⊆T

#S
•
≥k

(−1)#S−k



#S

k





=
#A∑

k
•
=0

yk ·
∑

T
•
⊆A

#T
•
≥k

#M(A/T ;Γtor/〈T 〉, G) ·
∑

k≤m
•
≤#T

(−1)m−k



m

k



 ·



#T

m
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=
#A∑

k
•
=0

yk ·
∑

T
•
⊆A

#T
•
≥k

#M(A/T ;Γtor/〈T 〉, G) ·



#T

k




∑

k≤m
•
≤#T

(−1)m−k



#T − k

m− k





=
#A∑

k
•
=0

yk ·
∑

T
•
⊆A

#T
•
=k

#M(A/T ;Γtor/〈T 〉, G).

Proposition 4.2.2.2. Let G be a torsion-wise finite group.

(i) If A ⊆ Γ consists of loops (i.e., A ⊆ Γtor), then TG
A (x, y) has positive coeffi-

cients.

(ii) If A ⊆ Γ consists of coloops (i.e., rA = #A), then TG
A (x, y) has positive coeffi-

cients.

Proof. (i) follows immediately from Theorem 4.2.2.1. (ii) follows immediately from

(i) and (4.1.3) (note that if A consists of coloops, then A† consists of loops).
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