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Introduction

The aim of this paper is to construct the sheaf morphism from the sheaf E R
X of

pseudodifferential operators to its symbol class S/N. Firstly we look back the histori-
cal background of pseudodiferential operators and mention the difference of two words
“pseudo-differential” and “pseudodifferential”.

The theory of pseudo-differential operators in real variables was done by Monvel [9]
and Monvel-Krée [10], and that in complex variables was done by Sato-Kawai-Kashiwara
[16]. In the case of real domain Monvel [9] introduced pseudo-differential operators of in-
finite order in the analytic category and Monvel-Krée [10] constructed the class of pseudo-
differential operators of finite order which are continuous on the class of Gevrey func-
tions. On the other hand, Sato-Kawai-Kashiwara [16] developed the theory of pseudo-
differential operators and its symbol theory by employing the sheaf cohomology theory
and they studied systems of differential equations in the complex domain. They defined
the sheaf PX of pseudo-differential operators, which is now denoted by E ∞

X and is called
the sheaf of microdifferential operators. Those two theories were finally linked up by
Kataoka [7]. He realized the symbols of operators in E R

X by utilizing the Radon transfor-
mations and it is known that pseudo-differential operators in [9] can be obtained by the
restriction of E R

X to the real domain.
While the essential idea of pseudodifferential operators had already been introduced

in [16], the explicit definition was not given. After a few years, Kashiwara and Kawai
gave the definition of the sheaf PR

X of pseudodifferential operators in [8]. However the
sheaf PR

X had not been named even at that time. Finally PR
X had been denoted by

E R
X after the work of Kashiwara-Schapira [11], and E R

X came to be called the sheaf of
pseudodifferential operators after the work of Aoki [2].

Since E R
X is explicitly defined by using the sheaf cohomology, Kataoka [7] introduced

symbols of pseudodifferential operators by the aid of the Radon transformations for the
study of E R

X in analytic category, and Aoki [1],[2] developed the symbol theory of E R
X . The

sheaf E R
X is sufficiently large class of differential operators so that it contains indispensable

operators like differential operators of fractional order, which are not contained in the
class E ∞

X of microdifferential operators.
In the foundation of Aoki’s symbol theory, however, there remain some issues. In this

paper we study one of those problems, which is the equivalence of the sheaf E R
X and its

symbol class S/N. Aoki had already proved the equivalence of each stalks of E R
X and

S/N in the following method:
Thanks to SKK [16] the stalk E R

X,z∗ has the following cohomological expression at a
point z∗ ∈ T ∗X

E R
X,z∗ = lim−→

r,ε

Hn
Gr,ε

(Ur ; O
(0,n)
X×X),

where Ur ranges through the family of open subsets of X × X and Gr,ε through the
family of closed subsets of X × X satisfying some appropriate conditions. By taking
convenient Stein coverings we can identify the right-hand side cohomology with the Čech
cohomology. Thus, by the Čech cohomology we can see that a pseudodifferential operator
P is represented by some holomorphic n-form ψ(z, z′ − z)dz′, i.e.,

P = [ψ(z, z′ − z)dz′].
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Via such a representation P = [ψ(z, z′ − z)dz′], Aoki defined the map of stalks

σ : E R
X,z∗ → Sz∗/Nz∗

by the formula

σ(P ) =

[∫ β1

β0

∮
γ2

· · ·
∮
γn

ψ(z, w)e⟨w,ζ⟩dw

]
∈ Sz∗/Nz∗ ,

where the path of the integration is taken suitably. (See [2].) Under this definition he
gave the following theorem.

Theorem 0.1 ([2], Theorem 4.3 and Theorem 4.5). There exists the homomorphism of
stalks

$ : Sz∗/Nz∗ −→ E R
X,z∗ .

Moreover $ ◦ σ = id and σ ◦$ = id.

However when we apply this argument to the set E R
X(V ) of sections on an open cone

V , we encounter several difficulties: There is no suitable Čech covering of Stein open
sets, that is, we cannot take a good representation of a section of E R

X . Furthermore we
cannot choose an appropriate path of the above integration in this global case.

To overcome these difficulties we apply the theory of Čech-Dolbeault cohomology,
which is introduced by Honda-Izawa-Suwa [4], to representation of E R

X(V ). They intro-
duce the Čech-Dolbeault complex and succeed in calculating local cohomology groups

Hn
M (X ; O

(p)
X ) by applying the simple Čech covering which consists of two open subsets

to the Dolbeault complex. As the Čech-Dolbeault complex consists of pairs (ω1, ω01)
of a (p, q)-form ω1 and a (p, q − 1)-form ω01 with coefficients in C∞ functions, we can

control the support of Čech-Dolbeault representative of Hn
M (X ; O

(p)
X ) under some suit-

able conditions by the aid of a partition of unity. Such a modification of supports is

not allowed if we calculate Hn
M (X ; O

(p)
X ) with the standard Čech coverings since the

standard Čech representation of cohomology groups take holomorphic functions as their
representatives. As important applications they construct several operations such as the
boundary value morphism, external products, integrations along fibers and so on from
the viewpoint of the Čech-Dolbeault cohomology. By making full use of these advantages
of the Čech-Dolbeault cohomology theory, we construct globally a sheaf morphism from
E R
X to S∞/N∞ of symbols as given in Theorem 4.1 of Section 4.
The plan of this paper is as follows. In Section 1 we prepare some notations and

definitions used in this paper, and in Section 2 we briefly recall the definitions of the
sheaf E R

X of pseudodifferential operators and the theory of Čech-Dolbeault cohomology.
Due to a fiber formula by Kashiwara-Schapira [12] it is known that the group E R

X(V ) of
the sections on an open cone V is represented by the inductive limit of local cohomology
groups. As important examples the Čech-Dolbeault representation of hyperfunctions
BM (M) and pseudodifferential operators E R

X(V ) are given. In Section 3 we introduce a
new symbol classS∞/N∞ called the symbols of C∞-type and prove that the symbol class
S∞/N∞ of C∞-type is equivalent to the classical one S/N. The work of Hörmander
[14] plays an important role in the proof. Section 5 gives the morphism ς from E R

X to
S∞/N∞ via Čech-Dolbeault representation. By the results in Section 4 we finally obtain
the sheaf morphism from E R

X to S/N. Well-definedness of ς is also given. Together with
Aoki’s results ς turns out to be an isomorphism of sheaves.
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1 Preliminaries

Through this paper we shall follow the notations and definitions introduced below.
We denote by Z,R and C the sets of integers, of real numbers and of complex numbers,

respectively. Moreover we set R+ = {r ∈ R | r > 0} and C× = {c ∈ C | c 6= 0}.
Let X be a complex manifold of dimension n and M a submanifold of X of codimen-

sion m. Set the diagonal set

∆X = {(z1, z2) ∈ X ×X | z1 = z2}.

We write ∆ instead of ∆X if there is no risk of confusion. One denote by p1 and p2 the
first and the second projections from X ×X to X, respectively.

X1 ×X2

p1

zzuu
uu
uu
uu
u

p2

$$I
II

II
II

II

X1 X2.

One denotes by τ : TX → X the canonical projection from the tangent bundle to X
and π : T ∗X → X that from the cotangent bundle to X.

Let ω be a (p, q)-form with coefficients in C∞-functions, and ∂z and ∂̄z the Dolbeault
operators with respect to the variable z, that is, for a local coordinate z = (z1, z2, . . . , zn),
the form ω can be written by

ω =
∑

|I|=p,|J|=q

fIJ(z)dz
I ∧ dz̄J .

Moreover the Dolbeault operators are written by

∂zω =

n∑
i=1

∑
|I|=p,|J|=q

∂

∂zi
fIJ(z)dzi ∧ dzI ∧ dz̄J ,

∂̄zω =

n∑
i=1

∑
|I|=p,|J|=q

∂

∂z̄i
fIJ(z)dz̄i ∧ dzI ∧ dz̄J .

Definition 1.1. We define several sheaves:

1. Let O
(p)
X be the sheaf of holomorphic p-forms on X. In particular O

(0)
X = OX is the

sheaf of holomorphic functions on X.

2. We denote by orX and orM/X = H m
M (ZX) the orientation sheaf on X and the

relative orientation sheaf on M , respectively.

3. Set Ω
(n)
X = O

(n)
X ⊗

CX

orX and O
(0,n)
X×X = OX×X ⊗

p−1
2 OX

p−1
2 Ω

(n)
X .

4. One denotes by C
∞,(p,q)
X the sheaf of (p, q)-forms with coefficients in C∞ on X.

5. One denotes by E R
X the sheaf of pseudodifferential operators on T ∗X.
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Let (z; ζ) be a local coordinate system of T ∗X. Set T̊ ∗X = T ∗X \ T ∗
XX where T ∗

XX
is the zero section. We identify T ∗

∆(X ×X) with T ∗X by the map

(z, z; ζ,−ζ) 7→ (z; ζ), (1.1)

which is induced from the first projection p1 : X ×X → X.

Definition 1.2. Let V be a set in T̊ ∗X. The set V is called a cone, or equivalently
called a conic set in T̊ ∗X if and only if

(z; ζ) ∈ V ⇒ (z; tζ) ∈ V for any t ∈ R+.

Remark 1.3. Let V be a set in T ∗X. We say that V is convex (resp. conic, resp.
proper) if for any z ∈ π(V ), the set π−1(z) ∩ V is convex (resp. conic, resp. proper).
Recall that a cone is said to be proper if its closure contains no lines.

Let V and V ′ be subsets in T ∗X. We write V ′ ⋐ V if V ′ is a relatively compact set
in V for the usual topology.

Definition 1.4. Let V be an open cone in T̊ ∗X. A set W ⊂ V is an infinitesimal wedge
of type V at infinity if for any K ⋐ V there exists δ > 0 such that

Kδ = {(z; tζ) | (z; ζ) ∈ K, t > δ} ⊂W.

In what follows W is called the infinitesimal wedge of type V for short.

Definition 1.5. Let V and V ′ be cones in T̊ ∗X with V ′ ⊂ V . The cone V ′ is a relatively
compact cone in V if there exists a relatively compact set K of V such that

V ′ = {(z; tζ) | t ∈ R+, (z; ζ) ∈ K}.

To clarify the differences, one is denoted by V ′ ⋐
cone

V if V ′ is a relatively compact cone

in V .

2 Pseudodifferential operators via the Čech-Dolbeault
cohomology

The aim of this section is to obtain the Čech-Dolbeault representation of pseudodif-
ferential operators.

2.1 The sheaf E R
X of pseudodifferential operators

Let X be a complex manifold of dimension n. The sheaf E R
X of pseudodifferential

operators on T ∗X is defined by

E R
X = H n(µ∆(O

(0,n)
X×X)), (2.1)

where µ∆(O
(0,n)
X×X) is the microlocalization of O

(0,n)
X×X along the diagonal set ∆. (For the

definition of µ, see [13].) One denotes by E R
X,z∗ the stalk of E R

X at a point z∗ ∈ T ∗X.
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Let us recall the normal deformation X̃2
∆ of X ×X along ∆. We denote by t ∈ R the

deformation parameter. Set Ω = {(z1, z2, t) ∈ X̃2
∆ | t > 0}. Then the following diagram

commutes

T∆(X ×X)
s //

τ

��

X̃2
∆

p

��

Ω
j

oo

p̃

~~||
||
||
||
||
||

∆
i

// X ×X,

where i and j are embeddings and p̃ = p ◦ j. (For the details, see [13].)

Definition 2.1. Let G be a subset of X ×X. The normal cone to G along ∆, denoted
by C∆(G), is the set

C∆(G) = T∆(X ×X) ∩ p̃−1(G).

Definition 2.2. Let V be a subset of T ∗X. The polar set V ◦ of V is defined by

V ◦ = {y ∈ TX | τ(y) ∈ π(V ) and Re 〈x, y〉 ≥ 0 for all x ∈ π−1τ(y) ∩ V }.

Theorem 2.3 ([11], Theorem 4.3.2). Let V be an open convex cone in T ∗X. We have

E R
X(V ) = lim−→

U,G

Hn
G∩U (U ;O

(0,n)
X×X), (2.2)

where U ranges through the family of open subsets of X ×X such that U ∩∆ = π(V )
and G through the family of closed subsets of X ×X such that C∆(G) ⊂ V ◦.

Remark 2.4. In the above argument, we can construct the polar set V ◦ of the cone
V ⊂ T ∗

∆(X×X) by the identification (1.1). Hereafter we sometimes use this identification
without notice.

2.2 The Čech-Dolbeault representation of E R
X

In the previous subsection we obtain the cohomological expression (2.2) of E R
X due

to a fiber formula by Kashiwara and Schapira. In this paragraph we briefly recall the
theory of Čech-Dolbeault cohomology introduced in [4] and obtain the Čech-Dolbeault
representation of the group E R

X(V ) of sections on an open convex cone V .
Let S be a closed subset of X. Set V0 = X \ S and let V1 be an open neighborhood

of S in X. For a covering V = {V0, V1} of X we set

C
∞,(p,q)
X (V) = C

∞,(p,q)
X (V0)⊕ C

∞,(p,q)
X (V1)⊕ C

∞,(p,q−1)
X (V01), (2.3)

where V01 = V0 ∩ V1. We define the differential ϑ̄ : C
∞,(p,q)
X → C

∞,(p,q+1)
X by

ϑ̄(ω0, ω1, ω01) = (∂̄ω0, ∂̄ω1, ω1 − ω0 − ∂̄ω01). (2.4)

Then we can easily see that ϑ̄ ◦ ϑ̄ = 0 and the pair (C
∞,(p,•)
X (V), ϑ̄) is a complex.

Definition 2.5. The Čech-Dolbeault cohomology Hp,q

ϑ̄
(V) of V of type (p, q) is the q-th

cohomology of the complex (C
∞,(p,•)
X (V), ϑ̄).
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Next we introduce the relative Čech-Dolbeault cohomology. Let V ′ = {V0} be a
covering of X \ S. We set

C
∞,(p,q)
X (V,V ′) = {(ω0, ω1, ω01) ∈ C

∞,(p,q)
X (V) | ω0 = 0} = C

∞,(p,q)
X (V1)⊕ C

∞,(p,q)
X (V01).

Then the pair (C
∞,(p,•)
X (V,V ′), ϑ̄) is a subcomplex of (C

∞,(p,•)
X (V), ϑ̄) which is called the

relative Čech-Dolbeault complex.

Definition 2.6. The relative Čech-Dolbeault cohomology Hp,q

ϑ̄
(V,V ′) of (V,V ′) of type

(p, q) is the q-th cohomology of the complex (C
∞,(p,•)
X (V,V ′), ϑ̄).

Here we have the following proposition.

Proposition 2.7 ([4], Proposition 4.6). The relative Čech-Dolbeault cohomologyHp,q

ϑ̄
(V,V ′)

is independent of the choice of V1 and determined uniquely up to isomorphism.

Therefore we can choose X as V1, and hereafter Hp,q

ϑ̄
(V,V ′) is also denoted by

Hp,q

ϑ̄
(X,X \ S).

Theorem 2.8 ([4], Theorem 4.9). There is a canonical isomorphism

Hp,q

ϑ̄
(X,X \ S) ' Hq

S(X ; O
(p)
X ). (2.5)

Example 2.9. Let M be a real analytic manifold of dimension n and X the complexi-
fication of M . Assume M to be oriented, and set V = {X,X \M} and V ′ = {X \M}.
Since we have

BM (M) = Hn
M (X;OX) = H0,n

ϑ̄
(X,X \M),

the representative ω = (ω1, ω01) of a hyperfunction u ∈ BM (M) is written in the forms

ω1 = f(z)dz̄, ω01 =

n∑
i=1

fi(z)dz̄ǐ,

satisfying the cocycle condition ϑ̄ω = 0. Here f(z) is a C∞-function on X, fi(z) is a
C∞-function on X\M , dz̄ = dz̄1∧dz̄2∧. . .∧dz̄n and dz̄ǐ = dz̄1∧. . . dz̄i−1∧dz̄i+1 . . .∧dz̄n.
Note that ω1 consists of the only one term.

We apply Theorem 2.8 to the cohomology Hn
G∩U (U ;O

(0,n)
X×X) in Theorem 2.3.

Definition 2.10. The sheaf C
∞,(p,q,r)
X×X is the sheaf of (p + q, r)-forms with coefficients

in C∞-functions which are holomorphic p-forms with respect to the first variables, holo-
morphic q-forms with respect to the second variables and antiholomorphic r-forms with
respect to the first and the second variables. In other words, for a local coordinate z =

(z1, z2) of X ×X and for an open subset V of X ×X, the form f(z1, z2) ∈ C
∞,(p,q,r)
X×X (V )

is written by

f(z1, z2) =
∑

|I|=p,|J|=q,|K|=r

fIJK(z1, z2)dz
I
1 ∧ dzJ2 ∧ dz̄K ,

where each fIJK(z1, z2) is a C
∞-function on V .
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Set V0 = U \ G and let V1 be an open neighborhood of G ∩ U in U . Moreover set
V01 = V0 ∩ V1. For coverings V = {V0, V1} of U and V ′ = {V0} of U \G, we define

C
∞,(p,q,r)
X×X (V,V ′) = C

∞,(p,q,r)
X×X (V1)⊕ C

∞,(p,q,r−1)
X×X (V01).

We can also define the differential ϑ̄ : C
∞,(p,q,r)
X×X (V,V ′) → C

∞,(p,q,r+1)
X×X (V,V ′) as usual,

and the pair (C
∞,(p,q,•)
X×X (V,V ′), ϑ̄) becomes a complex.

Definition 2.11. The r-th relative Čech-Dolbeault cohomology Hp,q,r

ϑ̄
(V,V ′) is the r-th

cohomology of the complex (C
∞,(p,q,•)
X×X (V,V ′), ϑ̄).

By Proposition 2.7 we can choose U as V1 and obtain the following theorem.

Theorem 2.12. There is a canonical isomorphism

H0,n,n

ϑ̄
(U,U \G) ' Hn

G∩U (U ; O
(0,n)
X×X). (2.6)

Thus the group of sections of the sheaf E R
X on an open convex cone V is expressed by

E R
X(V ) = lim−→

U,G

Hn
G∩U (U ; O

(0,n)
X×X) = lim−→

U,G

H0,n,n

ϑ̄
(U,U \G),

where U and G run in the same sets as those in Theorem 2.3.

Remark 2.13. The case of pseudodifferential operators is quite different from the one
of hyperfunctions. In this case the length of the relative Čech-Dolbeault complex

0 → C
∞,(0,n,0)
X×X (V,V ′) → C

∞,(0,n,1)
X×X (V,V ′) → . . .

→ C
∞,(0,n,2n)
X×X (V,V ′) → C

∞,(0,n,2n+1)
X×X (V,V ′) → 0

is equal to 2n + 1. Hence for the representative ω = (ω1, ω01) of an element u ∈
H0,n,n

ϑ̄
(U,U \ G), ω1 and ω01 consist of several terms satisfying the cocycle condition

ϑ̄ω = 0.

3 Classical symbols and symbols of C∞-type

While the classical symbol theory S/N of E R
X is based on holomorphic functions, the

Čech-Dolbeault expression is based on C∞-functions, and hence it is difficult to construct
the map from Čech-Dolbeault expression to the classical symbol class directly. In this
section we construct a new symbol class which is of C∞-type and show that the new
symbol class is isomorphic to the classical symbol class.

3.1 The sheaf S/N of classical symbols

First we review the classical symbol theory. Let z∗ = (z; ζ) be a local coordinate
system of T ∗X. First we construct two conic sheaves S and N on T̊ ∗X.

Definition 3.1. Let V ⊂ T̊ ∗X be an open cone.

7



1. A function f(z, ζ) is called a symbol on V if the following conditions hold.

(i) There exists an infinitesimal wedge W of type V such that

f(z, ζ) ∈ OT∗X(W ).

(ii) For any open cone V ′ ⋐
cone

V there exists an infinitesimal wedge W ′ ⊂ W of

type V ′ such that f(z, ζ) satisfies the following condition:

For any constant h > 0, there exists a constant C > 0 such that

|f(z, ζ)| ≤ C · eh|ζ| on W ′. (3.1)

2. A symbol f(z, ζ) on V is called a null-symbol if for any open cone V ′ ⋐
cone

V there

exist an infinitesimal wedge W ′ ⊂ W of type V ′ and constants h > 0 and C > 0
such that

|f(z, ζ)| ≤ C · e−h|ζ| on W ′. (3.2)

3. We denote by S(V ) and N(V ) the set of all the symbols on V and the set of all
the null-symbols on V , respectively. Moreover we set

Sz∗ = lim−→
V ∋z∗

S(V ),

Nz∗ = lim−→
V ∋z∗

N(V ),

where V runs through the family of open conic neighborhoods of z∗ ∈ T̊ ∗X.

Remark 3.2. A function f(z, ζ) satisfying the estimate (3.1) is said to be an infra-
exponential function. Similarly a function g(z, ζ) satisfying the estimate (3.2) is said to
be an exponentially small function.

Next we extend the sheaves S and N to the sheaves on T ∗X. We define the sheaves
S|T∗

XX and N|T∗
XX on the zero section T ∗

XX = X in the following way.

1. Let U be an open set in X. The group S|T∗
XX(U) of sections is a family of f(z, ζ) ∈

OT∗X(π−1(U)) where for any compact set K ⋐ U and for any constant h > 0 there
exists a constant C > 0 such that

|f(z, ζ)| ≤ C · eh|ζ| on π−1(K).

2. Set N|T∗
XX = 0.

Then the sheaves S and N are naturally extended to T ∗X.

Remark 3.3. Well-definedness of the sheaves S and N can be shown as follows. Let
V = {Vα}α∈A be a conic basis of T̊ ∗X which consists of open cones and U = {Uβ}β∈B

a basis of X. Then we can easily see that W = {Vα, π−1(Uβ)}α∈A,β∈B is a basis of
T ∗X. For any subsets V ∈ V and U ∈ U with π(V ) ⊂ U , the restriction ρV π−1(U) :
S(π−1(U)) → S(V ) is just given by f 7→ f |V .
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Next we construct the quotient sheaf S/N.

Proposition 3.4. Given an open cone V in T̊ ∗X, the group N(V ) of null-symbols is an
ideal of S(V ).

Proof. Let f(z, ζ) ∈ N(V ) and g(z, ζ) ∈ S(V ). We assume that f(z, ζ) and g(z, ζ) are
holomorphic on some common infinitesimal wedge W of type V . The definition of N
implies that for any V ′ ⋐

cone
V there exist an infinitesimal wedge W ′ of type V ′ and the

constants h > 0 and C > 0 such that

|f(z, ζ)| ≤ C · e−h|ζ|.

Similarly definition of S implies that for V ′, W ′ and h > 0 which are the same ones as
above, there exists a constant C ′ > 0 such that

|g(z, ζ)| ≤ C ′ · e 1
2h|ζ|.

Hence we obtain

|f(z, ζ) · g(z, ζ)| ≤ C · e−h|ζ| · C ′ · e 1
2h|ζ| ≤ CC ′ · e− 1

2h|ζ|.

One denotes by Ŝ/N the presheaf defined by the correspondence

V 7→ S(V )/N(V ),

where V is an open cone in T̊ ∗X, and let S/N be an associated sheaf to Ŝ/N. We have
the following exact sequence of sheaves

0 −→ N −→ S
κ1−→ S/N −→ 0. (3.3)

Here κ1 is the composition of the canonical morphisms S → Ŝ/N → S/N, and this
exact sequence induces the long exact sequence

0 → N(V ) → S(V ) → S/N(V ) → H1(V ;N) → · · · .

To treat S/N(V ) as it is a quotient group S(V )/N(V ), we claim H1(V ;N) = 0 for a
suitable V .

Theorem 3.5. Assume X to be a complex vector space and let Ṽ be a closed cone in
T̊ ∗X. Moreover assume that Ṽ satisfies the following three conditions.

1. A family of conic open neighborhoods of Ṽ has a cofinal family which consists of
Stein open cones in T̊ ∗X.

2. The projection π(Ṽ ) is compact in X.

3. There exists ζ0 ∈ Cn \ {0} such that

Ṽ ⊂ {(z; ζ) ∈ T̊ ∗X | z ∈ π(Ṽ ),Re 〈ζ, ζ0〉 > 0}.

9



Then Hk(Ṽ ;N) = 0 holds for any k > 0.

Example 3.6. We can construct a closed cone Ṽ satisfying the above three conditions
as follows. Let N be a natural number and f1(z), f2(z), . . . , fN (z) holomorphic functions
on X. Set

B =

N⋂
i=1

{|fi(z)| ≤ 1},

and assume B to be compact, and let Γ be a closed proper convex cone. Then Ṽ = B×Γ
satisfies the second and the third conditions in Theorem 3.5. A cofinal family of B × Γ
is given in the following way. We can take a family {Bε}ε∈R+

of open neighborhoods of
B as follows

Bε =
⋂

1≤i≤N

{|fi(z)| < 1 + ε}.

Since Γ is a closed proper convex cone we can take a cofinal family {Γλ}λ∈Λ which
consists of open convex conic neighborhoods of Γ. Then the family {Bε ×Γλ}(ε,λ)∈R+×Λ

is what we want.

For the proof of Proposition 3.5, we construct a soft resolution of N. First we intro-
duce the radial compactification T̂ ∗X of T ∗X with respect to the fibers.

Definition 3.7. The radial compactification DCn of Cn is defined by

DCn = Cn t S2n−1∞.

We define the fundamental system of neighborhoods. If z0 belongs to Cn a family of
fundamental neighborhoods of z0 consists of open sets

Bε(z0) = {z ∈ Cn | |z − z0| < ε}

for ε > 0, otherwise that of z0∞ consists of open sets

Gr(Γ) =

{
z ∈ Cn

∣∣∣∣ |z| > r,
z

|z|
∈ Γ

}
t Γ,

where r > 0 and Γ is an open neighborhood of z0∞ in S2n−1∞.

z0∞

Γ

Gr(Γ)

rO

Figure 1: Gr(Γ)

We denote by V the closure of V taken in DCn .
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Definition 3.8. The radial compactification T̂ ∗X of T ∗X with respect to the fiber is

T̂ ∗X =
⊔
z∈X

T ∗
zX.

Here T ∗
zX ' Cn

ζ = Cn
ζ t S2n−1∞.

The topology of T̂ ∗X is induced from that of DCn . Let V be an open set in T̂ ∗X.
We define several sheaves on T̂ ∗X.

Definition 3.9. 1. Let L̃2,loc be the sheaf of rapidly decreasing locally L2-functions.

Namely, for an open set V ⊂ T̂ ∗X, a function f(z, ζ) belongs to L̃2,loc(V ) if and
only if for any compact set W in V there exists a constant h > 0 such that

f(z, ζ) · eh|ζ| ∈ L2(W ∩ T ∗X).

2. Let L̃
(p,q)
2,loc be the sheaf of (p, q)-forms with coefficients in L̃2,loc

3. The sheaf L̃
(p,q)
2,loc is the subsheaf of L̃

p,q)
2,loc defined below:

A (p, q)-form f ∈ L̃
(p,q)
2,loc(V ) belongs to L̃

(p,q)
2,loc (V ) if and only if ∂̄f(z, ζ) ∈ L̃

(p,q+1)
2,loc (V ).

Lemma 3.10. The resolution of N

0 → N
∂̄→ L̃

(0,0)
2,loc

∂̄→ L̃
(0,1)
2,loc

∂̄→ · · · L̃ (0,2n)
2,loc → 0 (3.4)

is a soft resolution.

In order to prove Lemma 3.10, we show that the sequence

0 → L̃
(0,0)
2,loc (Ṽ ) → L̃

(0,1)
2,loc (Ṽ ) → · · · L̃ (0,2n)

2,loc (Ṽ ) → 0 (3.5)

is exact for any Ṽ which satisfies the assumptions of Theorem 3.5. Actually we obtain
Lemma 3.10 by applying the inductive limit lim−→

Int (Ṽ )∋z∗

to (3.5).

We recall the Hörmander’s existence theorem for the ∂̄ operator, which is crucial in
the proof of the exactness of (3.5).

Theorem 3.11 ([14], Theorem 4.4.2). Let Ω be a pseudoconvex open set in Cn and ϕ

any plurisubharmonic function in Ω. For every g ∈ L
(p,q)
2 (Ω, ϕ) with ∂̄g = 0 there is a

solution u ∈ L
(p,q)
2,loc(Ω) of the equation ∂̄u = g such that∫

Ω

|u|2e−φ(1 + |z|2)−2dλ ≤
∫
Ω

|g|2e−φdλ.

Remark 3.12. In Theorem 3.11 we adopt Hörmander’s notation. A form g ∈ L
(p,q)
2 (Ω, ϕ)

is a (p, q)-form on Ω with coefficients in square integrable functions with respect to the
measure e−φdλ where dλ is the Lebesgue measure.
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Now let us prove the exactness of (3.5). Let Ṽ be a closed cone which satisfies the

assumptions of Theorem 3.5 and set f̃(z, ζ) ∈ L̃
(0,q+1)
2,loc (Ṽ ). Then there exist a Stein

open cone V1 with Ṽ ⋐
cone

V1 and f(z, ζ) ∈ L̃
(0,q+1)
2,loc (V1) such that f̃(z, ζ) = f(z, ζ) on

Ṽ . Fix ζ0 ∈ Cn \ {0} whose existence is guaranteed by the third assumption in Theorem

3.5. We can assume |ζ0| = 1 without loss of generality. By the definition of L̃
(0,q+1)
2,loc

there exist an infinitesimal wedge W1 of type V1 and a constant h > 0 such that

f(z, ζ) · eh|ζ| ∈ L
(0,q+1)
2 (W1).

Let V2 be a Stein open cone with Ṽ ⋐
cone

V2 ⋐
cone

V1. From Definition 1.4 there exists a

compact set K of V1 such that

V2 = {(z; tζ) | t ∈ R+, (z, ζ) ∈ K}.

Then by the definition of an infinitesimal wedge W1, for such a compact set K there
exists a constant δ > 0 such that

Kδ = {(z; tζ) | (z; ζ) ∈ K, t > δ} ⊂W.

ζ0

V1

W1

O

ζ0

W2

V2O

Hζ0(δ)

Figure 2: W1 and W2

Hence for an open half space

Hζ0(δ) = {(z; ζ) ∈ T ∗X | z ∈ π(V1), Re 〈ζ − δζ0, ζ0〉 > 0},

the set W2 = V2 ∩Hζ0(δ) is a convex set. Then W2 is relatively compact set of V1 and
is a Stein infinitesimal wedge of type V2. Thus we can fix a small constant h′ < h so
that a function f(z, ζ) · eh′⟨ζ0,ζ⟩ satisfies the assumption of Theorem 3.11. Here we set a
plurisubharmonic function ϕ by

ϕ = − log(d(z, ζ)),

where d(z, ζ) = dist ((z; ζ), ∂W2) is the distance function. Setting F (z, ζ) = f(z, ζ) ·
eh

′⟨ζ0,ζ⟩, by Theorem 3.11 we can find u(z, ζ) ∈ L
(0,q)
2,loc(W2) such that ∂̄u = F and∫

W2

(|ζ|2 + 1)−2|u(z, ζ)|2 · e−φdλ ≤
∫
W2

|F (z, ζ)|2 · e−φdλ <∞. (3.6)

12



Hence setting g(z, ζ) = u(z, ζ) · e−h′⟨ζ0,ζ⟩ we have

∂̄g = e−h′⟨ζ0,ζ⟩ · ∂̄u(z, ζ) = e−h′⟨ζ0,ζ⟩ · F (z, ζ) = f(z, ζ).

In particular such a g(z, ζ) belongs to L̃
(0,q)
2,loc (Ṽ ) because of (3.6) and the exactness of

(3.5) has been proved.

Finally we can calculate the global cohomology Hk(Ṽ ;N) by using the resolution

Γ(Ṽ ; L̃
(0,•)
2,loc ) and get the vanishing Hk(Ṽ ;N) = 0 of the higher global cohomology for an

arbitrary natural number k.

Corollary 3.13. Let Ṽ be a closed cone satisfying the assumptions in Theorem 3.5.
Then an arbitrary element f(z, ζ) ∈ S/N(Ṽ ) is represented by some symbol f ′(z, ζ) ∈
S(Ṽ ).

The claim follows immediately from the exactness of the sequence

0 → N(Ṽ ) → S(Ṽ ) → S/N(Ṽ ) → 0.

3.2 The sheaf S∞/N∞ of symbols of C∞-type

Next we introduce symbols of C∞-type. Let V be an open cone in T̊ ∗X and z∗ = (z; ζ)
a local coordinate system of T ∗X. We construct conic sheaves S∞ and N∞ on T̊ ∗X.

Definition 3.14. We define the sheaf C∞
z Oζ as follows.

A function f(z, ζ) ∈ C∞
z Oζ(V ) ⇔ A function f(z, ζ) is a C∞-function on V

and a holomorphic on V in the second variables.

Remark 3.15. The sheaf C∞
z Oζ is invariant under the coordinate transformation of X.

Definition 3.16. 1. A function f(z, ζ) is said to be a null-symbol of C∞-type on V
if it satisfies the following conditions.

N1. There exists an infinitesimal wedge W of type V such that

f(z, ζ) ∈ C∞
z Oζ(W ).

N2. For any open cone V ′ ⋐
cone

V and any multi-indices α = (α1, α2, . . . , αn) ∈ Zn
≥0

and β = (β1, β2, . . . , βn) ∈ Zn
≥0, there exist an infinitesimal wedge W ′ ⊂W of

type V ′ and constants h > 0, C > 0 such that∣∣∣∣ ∂α∂zα ∂β

∂z̄β
f(z, ζ)

∣∣∣∣ ≤ C · e−h|ζ| on W ′.

2. A function f(z, ζ) is said to be a symbol of C∞-type on V if it satisfies the following
conditions.

S1. There exists an infinitesimal wedge W of type V such that

f(z, ζ) ∈ C∞
z Oζ(W ).
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S2. For any open cone V ′ ⋐
cone

V and any multi-indices α = (α1, α2, . . . , αn) ∈ Zn
≥0

and β = (β1, β2, . . . , βn) ∈ Zn
≥0, there exists an infinitesimal wedge W ′ ⊂ W

of type V ′ such that f(z, ζ) satisfies the following condition:

For any h > 0 there exists a constant C > 0 such that∣∣∣∣ ∂α∂zα ∂β

∂z̄β
f(z, ζ)

∣∣∣∣ ≤ C · eh|ζ| on W ′.

S3. The derivative
∂

∂z̄i
f(z, ζ) is a null-symbol on V for any i = 1, 2, . . . , n.

3. We denote by S∞(V ) and N∞(V ) the set of all the symbols of C∞-type on V and
the set of all the null-symbols of C∞-type on V , respectively. Moreover we set

S∞z∗ = lim−→
V ∋z∗

S∞(V ),

N∞
z∗ = lim−→

V ∋z∗

N∞(V ),

where V runs through the family of open conic neighborhoods of z∗.

As we showed in Remark 3.3, we can also extend the sheaf S∞ and N∞ to the sheaves
on T ∗X. Set S∞|T∗

XX = S|T∗
XX and N∞|T∗

XX = 0. Then the sheaves S∞ and N∞ are
well-defined on T ∗X.

Proposition 3.17. Let V be an open cone in T̊ ∗X. Then N∞(V ) is an ideal of S∞(V ).

Proof. Let f(z, ζ) ∈ N∞(V ) and g(z, ζ) ∈ S∞(V ). Then we can take an infinitesimal
wedge W of type V such that f(z, ζ) and g(z, ζ) are in C∞

z Oζ(W ). By the product rule
we have

∂α

∂zα
(f(z, ζ) · g(z, ζ)) =

∑
0≤α1≤α

∂α1

∂zα1
f(z, ζ) · ∂

α−α1

∂zα−α1
g(z, ζ).

By the assumption for any V ′ ⋐
cone

V there exists an infinitesimal wedge W ′ ⊂ W of

type V ′ such that f(z, ζ) satisfies the following condition: For any hα1
> 0 there exists

a positive constant Cα1
such that∣∣∣∣ ∂α1

∂zα1
f(z, ζ)

∣∣∣∣ ≤ Cα1 · ehα1
|ζ|.

Similarly for the same V ′ ⋐
cone

V and the same W ′ ⊂ W there exist constants h′α1
> 0

and C ′
α1
> 0 such that ∣∣∣∣ ∂α−α1

∂zα−α1
g(z, ζ)

∣∣∣∣ ≤ C ′
α1

· e−h′
α1

|ζ|.

Thus by taking hα1
=

1

2
h′α1

we obtain∣∣∣∣ ∂α∂zα (f(z, ζ) · g(z, ζ))
∣∣∣∣ ≤ ∑

0≤α1≤α

∣∣∣∣ ∂α1

∂zα1
f(z, ζ)

∣∣∣∣ · ∣∣∣∣ ∂α−α1

∂zα−α1
g(z, ζ)

∣∣∣∣
≤

∑
0≤α1≤α

Cα1
C ′

α1
· e

1
2h

′
α1

|ζ| · e−h′
α1

|ζ| ≤ mCe−
1
2h|ζ|,
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where h = min
0≤α1≤α

{h′α1
}, C = max

0≤α1≤α
{Cα1

C ′
α1
} and m is the number of α1 satisfying

0 ≤ α1 ≤ α. By the similar argument∣∣∣∣ ∂β∂z̄β (f(z, ζ) · g(z, ζ))
∣∣∣∣ ≤ C

−hβ |ζ|
β

holds for some Cβ > 0 and hβ > 0, and these complete the proof.

One denotes by ̂S∞/N∞ the presheaf defined by the correspondence

V 7→ S∞(V )/N∞(V ),

where V is an open cone in T̊ ∗X, and let S∞/N∞ be an associated sheaf to ̂S∞/N∞.
We have the following exact sequence of sheaves.

0 −→ N∞ −→ S∞ κ2−→ S∞/N∞ −→ 0. (3.7)

Here κ2 is the composition of the canonical morphisms S∞ → ̂S∞/N∞ → S∞/N∞. As

is in the previous subsection, we want the exactness of the sequence on Ṽ

0 → N∞(Ṽ ) → S∞(Ṽ ) → S∞/N∞(Ṽ ) → 0,

where Ṽ satisfies the assumptions in Theorem 3.5, and this exactness is guaranteed by
the following argument. We have the commutative diagram

0 // N(Ṽ ) //

ι2(Ṽ )
��

S(Ṽ )
κ1(Ṽ )

//

ι1(Ṽ )
��

S/N(Ṽ ) //

ι(Ṽ )
��

0

0 // N∞(Ṽ ) // S∞(Ṽ )
κ2(Ṽ )

// S∞/N∞(Ṽ ),

where ι1(Ṽ ) and ι2(Ṽ ) are canonical inclusions and horizontal sequences are exact. As-

suming ι(Ṽ ) is an isomorphism, the surjectivity of κ2(Ṽ ) follows from the fact that the

composition ι(Ṽ ) ◦ κ1(Ṽ ) is a surjective, and hence, we have the exact sequence.
It shall be proved in the next subsection that ι is an isomorphism between S/N and

S∞/N∞.

Corollary 3.18. Let Ṽ be a closed cone satisfying the assumptions in Theorem 3.5.
Then an arbitrary element f(z, ζ) ∈ S∞/N∞(Ṽ ) is represented by some symbol f ′(z, ζ) ∈
S∞(Ṽ ).

3.3 The equivalence of two symbol classes

The aim of this subsection is to prove the equivalence of S/N and S∞/N∞.
By the definitions of classical symbols and symbols of C∞-type, there exist canonical

inclusions
ι1 : S ↪→ S∞, ι2 : N ↪→ N∞,

which induce the morphism
ι : S/N −→ S∞/N∞.
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Theorem 3.19. The induced morphism

ι : S/N −→ S∞/N∞

is an isomorphism of sheaves.

By the definitions we have S/N|T∗
XX = S∞/N∞|T∗

XX = D∞
X . Hence Theorem 3.19

holds obviously on the zero section T ∗
XX and it is sufficient to prove Theorem 3.19 on

T̊ ∗X.
Since we have already had the map

ι : S/N → S∞/N∞,

it suffices to show ιz∗ to be an isomorphism of stalks at z∗ ∈ T̊ ∗X.
For this purpose we prepare the following proposition. As the problem is local, we

may assume that T ∗X ' Cn
z × Cn

ζ until the end of this subsection. In addition we can
take z∗ = z∗0 = (0 ; 1, 0, . . . , 0) without loss of generality. Let D = D1(r1, 0)×D2(r2, 0)×
· · · ×Dn(rn, 0) be a polydisc in Cn

z where Di(ri, 0) is an open disc in C whose radius is
ri and the center is at the origin. Set

V = D × Γ,

where Γ is an open convex cone containing (1, 0, . . . , 0) ∈ Cn
ζ .

We denote by N∞,(p,q) the sheaf of (p, q)-forms on T ∗X with respect to the variables
z with coefficients in N∞.

Proposition 3.20. Let V = D×Γ be an open set defined above and let f ∈ N∞,(p,q)(V )
satisfy ∂̄zf = 0. For any polydisc D′ ⋐ D we can find u ∈ N∞,(p,q+1)(V ′) where
V ′ = D′ × Γ such that ∂̄zu = f on V ′.

Proof. By the induction with respect to k, we prove that the lemma is true if f does not
contain dz̄k+1, . . . , dz̄n. If k = 0, it is obvious that f = 0. Assuming that it has been
proved when k is replaced by k − 1, we write

f = dz̄k ∧ g + h,

g =
∑′

|I|=p

∑′

|J|=q

gIJdz
I ∧ dz̄J .

Here g is a sum of (p, q)-forms on V with coefficients in C∞
z Oζ and h is a sum of (p, q+1)-

forms on V with coefficients in C∞
z Oζ . Moreover g and h do not contain dz̄k, . . . , dz̄n

and
∑′

means that we sum only over increasing multi-indices. Since ∂̄f = 0, we have

∂gIJ
∂z̄j

= 0,

for j > k so that gIJ is analytic in these variables.
We want to construct the solution GIJ of the equation

∂GIJ

∂z̄k
= gIJ .

16



For this purpose we fix a C∞-function ψ on Dk(rk, 0) with compact support such that
ψ(zk) = 1 on a neighborhood D′′ ⊂ D of D′, and set

GIJ = (2π
√
−1)−1

∫∫
(τ − zk)

−1ψ(τ)gIJ(z1, . . . , zk−1, τ, zk+1, . . . , zn)dτ ∧ dτ̄

= −(2π
√
−1)−1

∫∫
τ−1ψ(zk − τ)gIJ(z1, . . . , zk−1, zk − τ, zk+1, . . . , zn)dτ ∧ dτ̄.

The last integral representation show that GIJ is a C∞
z Oζ function. We confirm that

GIJ satisfies the condition N2. in Definition 3.16.
Let α = (α1, α2, . . . , αn) ∈ Zn

≥0 and β = (β1, β2, . . . , βn) ∈ Zn
≥0 be multi-indices.

Hereafter gIJ(z1, . . . , zk−1, zk − τ, zk+1, . . . , zn) is also denoted by gIJ(zk − τ) for short.
Then we have∣∣∣∣ ∂α∂zα ∂β

∂z̄β
GIJ

∣∣∣∣ =(2π)−1

∣∣∣∣∫∫ τ−1 · ∂
α

∂zα
∂β

∂z̄β
(ψ(zk − τ)gIJ(zk − τ))dτ ∧ dτ̄

∣∣∣∣
=(2π)−1

∣∣∣∣∫∫ τ−1 · ∂
α

∂τα
∂β

∂τ̄β
(ψ(zk − τ)gIJ(zk − τ))dτ ∧ dτ̄

∣∣∣∣ .
Here we can calculate the integrand as follows.

τ−1 ∂
α

∂τα
∂β

∂τ̄β
(ψ(zk − τ)gIJ(zk − τ))

=
∑

0≤α′≤α

∑
0≤β′≤β

τ−1 ∂
α′

∂τα′

∂β
′

∂τ̄β′ ψ(zk − τ) · ∂
α−α′

∂τα−α′

∂β−β′

∂z̄β−β′ gIJ(zk − τ).

Since ψ(zk − τ) has a compact support and gIJ is of N∞-type,∣∣∣∣∣
∫∫

τ−1 · ∂
α′

∂τα′

∂β
′

∂τ̄β′ ψ(zk − τ) · ∂
α−α′

∂τα−α′

∂β−β′

∂z̄β−β′ gIJ(zk − τ)dτ ∧ τ̄

∣∣∣∣∣ ≤ Cα′β′e−hα′β′ |ζ|

holds for some Cα′β′ > 0 and hα′β′ > 0. As the sets {α ∈ Zn
≥0 | 0 ≤ α′ ≤ α} and

{β ∈ Zn
≥0 | 0 ≤ β′ ≤ β} are finite we obtain∣∣∣∣ ∂α∂zα ∂β

∂z̄β
GIJ

∣∣∣∣ ≤ Ce−h|ζ|

for some C > 0 and h > 0.
We construct the solution u with the family {GIJ} of functions. Set

G =
∑′

I,J

GIJdz
I ∧ dz̄J .

It follows that

∂̄G =
∑′

I,J

∑′

j

∂G

∂z̄j
dz̄j ∧ dzI ∧ dz̄J = dz̄k ∧ g + h1,

where h1 is the sum when j runs from 1 to k−1 and does not involve dz̄k, . . . , dz̄n. Thus
by the inductive hypothesis we can find v so that ∂̄v = f − ∂̄G and u = v +G satisfies
the equation ∂̄u = f . The proof has been completed.
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Now we are ready to prove Theorem 3.19.

Proof. It is sufficient to prove that the stalks of sheaves are isomorphic to each other.
One denotes by

ιz∗ : Sz∗/Nz∗ −→ S∞
z∗/N∞

z∗

the induced morphism from ι : S/N → S∞/N∞. The injectivity of ιz∗ is obvious. We
prove the surjectivity.

Set F ∈ S∞
z∗ and let f ∈ S(V ) be a representative of F on some open cone V = D×Γ.

Then f satisfies ∂̄f ∈ N∞
(0,1)(V ) and ∂̄2f = 0. By Proposition 3.20 there exist D′ ⋐ D

and g ∈ N∞(V ′) where V ′ = D′×Γ such that ∂̄g = ∂̄f . This implies that f−g ∈ S(V ′).
Set F ′ = (f − g)z∗ . Then we have F ′ = ι−1

z∗ (F ) and the proof has been completed.

4 The equivalence of E R
X and S∞/N∞

In this section X is assumed to be a complex vector space of dimension n. We identify
X ×X with TX by the map

% : X ×X 3 (z, w) 7→ (z, w − z) ∈ TX, (4.1)

then we can easily see that the following diagram commutes

X ×X
ϱ

//

p1
##H

HH
HH

HH
HH

TX

τ
}}zz
zz
zz
zz

X.

The aim of this section is to construct the sheaf morphism ς : E R
X −→ S∞/N∞ and

prove the following theorem.

Theorem 4.1. The sheaf E R
X of pseudodifferential operators is isomorphic to the sheaf

S/N of the classical symbol class.

4.1 The map ς from E R
X to S∞/N∞

Let Ṽ be a closed convex proper cone in T̊ ∗X, and let V and V ′ be open convex
proper cones with Ṽ ⋐

cone
V ′ ⋐

cone
V . Assume π(Ṽ ) is compact, and π(V ′) and π(V ) are

relatively compact sets. Recall that we have the cohomological expression

E R
X(V ) = lim−→

U,G

Hn
G∩U (U ;O

(0,n)
X×X)

under suitable conditions. If we have already obtained the map

ς̃ : Hn
G∩U (U ; O

(0,n)
X×X) → S∞/N∞(V ′),

by taking inductive limits lim−→
U,G

and lim−→
Ṽ ⋐

cone
V ′ ⋐

cone
V

to ς̃ in this order, we have

ςṼ : E R
X(Ṽ ) −→ S∞/N∞(Ṽ ).
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Hence our aim is to construct the map ς̃ concretely.
We recall the γ-topology on TX. Let γ be a closed convex cone in TX.

Definition 4.2. The γ-topology on TX is the topology for which the open sets Ω satisfy:

1. Ω is open for the usual topology.

2. Ω+̊γ = Ω.

Here +̊ is defined by

Ω+̊γ =
⊔

z∈τ(Ω)

(Ωz + γz),

where Ωz = Ω ∩ τ−1(z) and γz = γ ∩ τ−1(z). In particular if γz = ∅, set Ωz + γz = Ωz.

An open set V of TX is called γ-open if V is open in the sense of γ-topology.
Now let us construct the map

ς̃ : Hn
G∩U (U ; O

(0,n)
X×X) −→ S∞/N∞(V ′).

Let Γ1 and Γ2 be open convex proper cones in T ∗X such that

1. V ′ ⋐
cone

Γ2 ⋐
cone

Γ1 ⋐
cone

V .

2. G ∩ U ⊂ %−1(Int (Γ◦
1)) ∪∆ in p−1

1 (π(V ′)).

Remark 4.3. By taking U sufficiently small, we can guarantee the existence of Γ1 since
G is tangent to %−1(V ◦) near the edge.

%−1(V ′◦)

%−1(V ◦)

G

U

%−1(γ1)%−1(γ2)

Figure 3: Geometrical relations in X ×X

We construct the paths of the integrations in the following way. Set γi = Γ◦
i for

i = 1, 2. Let D1 and D2 be open domains in X ×X with C∞-smooth boundaries such
that
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D1. %(Di) is a γi-open set for i = 1, 2.

D2. ∆(π(V ′)) ⊂ D1, where ∆ : X → X ×X is a diagonal embedding.

D3. D2 ∩ p−1
1 (π(V ′)) ⊂ Int (γ2).

D4. D ∩ p−1
1 (π(V ′)) ⊂ U where D = D1 \D2.

D5. E ∩ p−1
1 (π(V ′)) ⊂ U \G where E = ∂D1 \D2.

D6. ∂D1 and ∂D2 intersect transversally in p−1
1 (π(V ′))

D7. p−1
1 (z) and ∂D1 (resp. ∂D2) intersect transversally for any z ∈ π(V ′).

Example 4.4. Except the conditions D6. and D7., such D1 and D2 can be easily
constructed in the following way. Set

D̂1 =
⊔

z∈π(V ′)

{(z, v) ∈ TzX | distTzX(v, γ1 ∩ τ−1(z)) < ε1},

D̂2 =
⊔

z∈π(V ′)

{(z, v) ∈ TzX | distTzX(v, τ−1(z) \ γ2)) > ε2},

for ε1, ε2 > 0. Then D1 = %−1(D̂1) and D2 = %−1(D̂2) satisfy the conditions D1.∼D5. if
we take sufficiently small ε1 and ε2.

Moreover slightly modifyingD1 andD2 we can obtainD1 andD2 with C
∞-boundaries

which satisfy all the above conditions.

%−1(D̂1)

γ1

%−1(D̂2)

γ2

Figure 4: The figure of D̂1 and D̂2

Let D1 and D2 be open domains in X × X satisfying the above conditions. Set
D = D1 \D2, E = ∂D1 \D2, Dz = D ∩ p−1

1 (z) and Ez = E ∩ p−1
1 (z).
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Definition 4.5. Let u belong toH0,n,n

ϑ̄
(U,U\G) and let ω = (ω1, ω01) be a representative

of u. The map

ς̃ : Hn
G∩U (U ; O

(0,n)
X×X) = H0,n,n

ϑ̄
(U,U \G) → S∞/N∞(V ′) (4.2)

is defined by

ς̃(ω)(z, ζ) =

∫
Dz

ω1(z, w) · e⟨w−z,ζ⟩ −
∫
Ez

ω01(z, w) · e⟨w−z,ζ⟩. (4.3)

In the next paragraph we will show well-definedness of ς̃. More precisely we shall
prove that ς̃ is independent of the choices of the domains D1, D2 and a representative ω
of u.

4.2 Well-definedness of the map ς̃

Well-definedness of ς̃ follows from the proposition below. Let V and V ′ be the same
as in the previous subsection.

Proposition 4.6. Let ω = (ω1, ω01) be a representative of u ∈ H0,n,n

ϑ̄
(U,U \ G). The

map ς̃ has the following properties.

1. The image ς̃(ω) belongs to S∞(V ′).

2. The image ς̃(ω) belongs to N∞(V ′) if ω is equal to 0 as an element of the relative
Čech-Dolbeault cohomology.

3. The image ς̃(ω) does not depend on the choices of D1 and D2.

For the proof of Proposition 4.6 we expect ς̃ and ∂
∂z (resp. ς̃ and ∂

∂z̄ ) to be commu-

tative. However ς̃ and ∂
∂z (resp. ς̃ and ∂

∂z̄ ) do not commute in general since the paths
Dz and Ez of the integrations ς̃ depend on the variables z. We start with surmounting
this difficulty.

For a fixed point z0 ∈ X and a constant ε > 0, set

B(z0, ε) = {z ∈ X | |z − z0| < ε}.

We denote by D̃(z0, ε) and Ẽ(z0, ε) subsets in X ×X defined by

D̃(z0, ε) = B(z0, ε)× p2(Dz0) ⊂ X ×X,

Ẽ(z0, ε) = B(z0, ε)× p2(Ez0) ⊂ X ×X.

We also set

ς̂z0(ω) =

∫
D̃(z0,ε)∩p−1

1 (z0)

ω1(z, w) · e⟨w−z,ζ⟩ −
∫
Ẽ(z0,ε)∩p−1

1 (z0)

ω01(z, w) · e⟨w−z,ζ⟩.

Lemma 4.7. Let z0 ∈ π(V ′) and let ω = (ω1, ω01) be a representative of u ∈ H0,n,n

ϑ̄
(U,U\

G). Then there exists a constant ε > 0 such that the difference on π−1(B(z0, ε)) of the
integrations

ς̂z0(ω) =

∫
D̃(z0,ε)∩p−1

1 (z)

ω1(z, w) · e⟨w−z,ζ⟩ −
∫
Ẽ(z0,ε)∩p−1

1 (z)

ω01(z, w) · e⟨w−z,ζ⟩
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and

ς̃(ω) =

∫
Dz

ω1(z, w) · e⟨w−z,ζ⟩ −
∫
Ez

ω01(z, w) · e⟨w−z,ζ⟩

belongs to the null class N∞(V ′ ∩ π−1(B(z0, ε))).

Proof. It suffices to prove that ς̂z0(ω) − ς̃(ω) satisfies the condition N2. in Definition
3.16. Since the domains D1 and D2 are smooth we can assume the following properties
by taking ε sufficiently small.

(i) (z, z) ∈ D̃(z0, ε) for z ∈ B(z0, ε).

(ii) ∂D̃(z0, ε) \ Ẽ(z0, ε) ⊂ %−1(γ2).

Here we take domains D′ and D̃′(z0, ε) in X ×X such that

1. D′ ⊂ D and D̃′(z0, ε) ⊂ D̃(z0, ε).

2. ∂D \ E ⊂ ∂D′ and ∂D̃(z0, ε) \ Ẽ(z0, ε) ⊂ D̃′(z0, ε).

3. For any z ∈ B(z0, ε), D
′ ∩ p−1

1 (z) = D̃′(z0, ε) ∩ p−1
1 (z) on U \ %−1(γ2).

Set

E′ = ∂D′ \ (∂D \ E),

Ẽ′(z0, ε) = ∂D̃′(z0, ε) \ (∂D̃(z0, ε) \ Ẽ(z0, ε)).

By the Stoke’s formula we have

ς̂z0(ω) =

∫
D̃(z0,ε)∩p−1

1 (z)

ω1(z, w) · e⟨w−z,ζ⟩ −
∫
Ẽ(z0,ε)∩p−1

1 (z)

ω01(z, w) · e⟨w−z,ζ⟩

=

∫
D̃′(z0,ε)∩p−1

1 (z)

ω1(z, w) · e⟨w−z,ζ⟩ −
∫
Ẽ′(z0,ε)∩p−1

1 (z)

ω01(z, w) · e⟨w−z,ζ⟩,

and

ς̃(ω) =

∫
Dz

ω1(z, w) · e⟨w−z,ζ⟩ −
∫
Ez

ω01(z, w) · e⟨w−z,ζ⟩

=

∫
D′

z

ω1(z, w) · e⟨w−z,ζ⟩ −
∫
E′

z

ω01(z, w) · e⟨w−z,ζ⟩.

Here we write D′
z and E′

z instead of D′ ∩ p−1
1 (z) and E′ ∩ p−1

1 (z) for short, respectively.
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Therefore we obtain

ς̂z0(ω)− ς̃(ω)

=

(∫
D̃(z0,ε)∩p−1

1 (z)

ω1(z, w) · e⟨w−z,ζ⟩ −
∫
Ẽ(z0,ε)∩p−1

1 (z)

ω01(z, w) · e⟨w−z,ζ⟩

)

−
(∫

Dz

ω1(z, w) · e⟨w−z,ζ⟩ −
∫
Ez

ω01(z, w) · e⟨w−z,ζ⟩
)

=

(∫
D̃′(z0,ε)∩p−1

1 (z)

ω1(z, w) · e⟨w−z,ζ⟩ −
∫
D′

z

ω1(z, w) · e⟨w−z,ζ⟩

)

−

(∫
Ẽ′(z0,ε)∩p−1

1 (z)

ω01(z, w) · e⟨w−z,ζ⟩ −
∫
E′

z

ω01(z, w) · e⟨w−z,ζ⟩

)
.

As D̃′(z0, ε) ∩ p−1
1 (z0) and D′

z (resp. Ẽ′(z0, ε) ∩ p−1
1 (z0) and E′

z) coincide in the

domain U \ %−1(γ2) by the definitions of D̃′(z0, ε) and D′ (resp. Ẽ′(z0, ε) and E′), we
obtain ∫

D̃′(z0,ε)∩p−1
1 (z0)

ω1(z, w) · e⟨w−z,ζ⟩ −
∫
D′

z

ω1(z, w) · e⟨w−z,ζ⟩

=

∫
D̃′(z0,ε)∩p−1

1 (z0)∩ϱ−1(γ2)

ω1(z, w) · e⟨w−z,ζ⟩ −
∫
D′

z∩ϱ−1(γ2)

ω1(z, w) · e⟨w−z,ζ⟩.

We estimate the former integration. Let α ∈ Zn
≥0 and β ∈ Zn

≥0 be multi-indices. Since
the path of the integration does not depend on z, we have∣∣∣∣∣ ∂α∂zα ∂β

∂z̄β

∫
D̃′(z0,ε)∩p−1

1 (z0)∩ϱ−1(γ2)

ω1(z, w) · e⟨w−z,ζ⟩

∣∣∣∣∣
=

∣∣∣∣∣
∫
D̃′(z0,ε)∩p−1

1 (z0)∩ϱ−1(γ2)

∂α

∂zα
∂β

∂z̄β
(ω1(z, w) · e⟨w−z,ζ⟩)

∣∣∣∣∣
=

∣∣∣∣∣∣
∫
D̃′(z0,ε)∩p−1

1 (z0)∩ϱ−1(γ2)

∑
0≤α′≤α

∂α
′

∂zα′

∂β

∂zβ
ω1(z, w) ·

∂α−α′

∂zα−α′ e
⟨w−z,ζ⟩

∣∣∣∣∣∣
≤

∑
0≤α′≤α

∫
D̃′(z0,ε)∩p−1

1 (z0)∩ϱ−1(γ2)

∣∣∣∣∣ ∂α
′

∂zα′

∂β

∂zβ
ω1(z, w) ·

∂α−α′

∂zα−α′ e
⟨w−z,ζ⟩

∣∣∣∣∣
=

∑
0≤α′≤α

∫
D̃′(z0,ε)∩p−1

1 (z0)∩ϱ−1(γ2)

∣∣∣∣∣ ∂α
′

∂zα′

∂β

∂zβ
ω1(z, w) · (−ζ)α−α′

e⟨w−z,ζ⟩

∣∣∣∣∣ ≤ Ce−h|ζ|

for some C > 0 and h > 0.
Next we estimate the latter integration. Let D′

z ∩ %−1(γ2) = tN
i=1Ki be a partition
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such that each Ki is bounded measurable subset in p−1
1 (z). Then we have∣∣∣∣∣ ∂α∂zα ∂β

∂z̄β

∫
D′

z∩ϱ−1(γ2)

ω1(z, w) · e⟨w−z,ζ⟩

∣∣∣∣∣ =
∣∣∣∣∣ ∂α∂zα ∂β

∂z̄β

∫
⊔N

i=1Ki

ω1(z, w) · e⟨w−z,ζ⟩

∣∣∣∣∣
≤

N∑
i=1

∣∣∣∣ ∂α∂zα ∂β

∂z̄β

∫
Ki

ω1(z, w) · e⟨w−z,ζ⟩
∣∣∣∣ .

Give the local coordinate (z, w) = (z1, . . . , zn, w1, . . . , wn) for an open neighborhood Ui

of Ki and consider the coordinate transformation

Φi : (z, w) −→ (z, w̃i)

such that Li = Φi(Ki) is independent of the variables z. Then we have

∂α

∂zα
∂β

∂z̄β

∫
Ki

ω1(z, w) · e⟨w−z,ζ⟩ =
∂α

∂zα
∂β

∂z̄β

∫
Li

ω̃1(z, w̃
i) · e⟨w−z,ζ⟩ · |JΦi

| .

Here ω̃1(z, w̃
i) = ω1(z, w) holds under the coordinate transform Φi, and JΦi

is the
Jacobian.

Remark 4.8. The existence of the coordinate transformation Φi is guaranteed by the
condition D7.

As the domain Ki is independent of the variables z we obtain∣∣∣∣ ∂α∂zα ∂β

∂z̄β

∫
Ki

ω1(z, w) · e⟨w−z,ζ⟩
∣∣∣∣

=

∣∣∣∣ ∂α∂zα ∂β

∂z̄β

∫
Li

ω̃1(z, w̃
i) · e⟨w−z,ζ⟩ · |JΦi

|
∣∣∣∣

≤
∫
Li

∣∣∣∣ ∂α∂zα ∂β

∂z̄β
(ω̃1(z, w̃

i) · |JΦi | · e⟨w−z,ζ⟩)

∣∣∣∣
≤
∫
Li

∑
0≤α′≤α

∣∣∣∣∣ ∂α
′

∂zα′

∂β

∂z̄β
(ω̃1(z, w̃

i) · |JΦi
|) · ∂

α−α′

∂zα−α′ e
⟨w−z,ζ⟩

∣∣∣∣∣
≤

∑
0≤α′≤α

∫
Li

∣∣∣∣∣ ∂α
′

∂zα′

∂β

∂z̄β
(ω̃1(z, w̃

i) · |JΦi |) · (−ζ)α−α′
e⟨w−z,ζ⟩

∣∣∣∣∣ .
Since ω̃1(z, w̃

i) · |JΦi
| is a C∞-function, the absolute value of its derivative is bounded

on Li. Hence there exist C > 0 and h > 0 such that

N∑
i=1

∣∣∣∣ ∂α∂zα ∂β

∂z̄β

∫
Ki

ω1(z, w) · e⟨w−z,ζ⟩
∣∣∣∣ ≤ N∑

i=1

Ce−h|ζ| ≤MCe−h|ζ|

hold. We can apply the same argument to∫
Ẽ′(z0,ε)∩p−1

1 (z)

ω01(z, w) · e⟨w−z,ζ⟩ −
∫
E′

z

ω01(z, w) · e⟨w−z,ζ⟩

and these complete the proof.
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The corollary below follows immediately from Lemma 4.7.

Corollary 4.9. Let ω = (ω1, ω01) be a representative of u ∈ H0,n,n

ϑ̄
(U,U \G). For any

i = 1, . . . , n the symbols
∂

∂zi
ς̃(ω1, ω01),

∂

∂z̄i
ς̃(ω1, ω01) (4.4)

are equal to

ς̃

(
∂

∂zi
ω1,

∂

∂zi
ω01

)
, ς̃

(
∂

∂z̄i
ω1,

∂

∂z̄i
ω01

)
(4.5)

in S∞/N∞(V ′), respectively.

Proof. Due to Lemma 4.7 we can identify

ς̃(ω1, ω01)(z, ζ) =

∫
Dz

ω1(z, w) · e⟨w−z,ζ⟩ −
∫
Ez

ω01(z, w) · e⟨w−z,ζ⟩

with ∫
Dz0

ω1(z, w) · e⟨w−z,ζ⟩ −
∫
Ez0

ω01(z, w) · e⟨w−z,ζ⟩

as in the symbol class S∞/N∞(V ′). On the other hands, since the domains Dz0 and
Ez0 do not depend on z we have

∂

∂z

(∫
Dz0

ω1(z, w) · e⟨w−z,ζ⟩ −
∫
Ez0

ω01(z, w) · e⟨w−z,ζ⟩

)

=

∫
Dz0

∂

∂z
ω1(z, w) · e⟨w−z,ζ⟩ −

∫
Ez0

∂

∂z
ω01(z, w) · e⟨w−z,ζ⟩

=ς̃

(
∂

∂z
ω1,

∂

∂z
ω01

)
.

By the same argument the second claim holds and these complete the proof.

Now we start the proof of Proposition 4.6. In the following proof the Dolbeault
operator ∂̄z + ∂̄w is denoted by ∂̄ without notice.

Proof. 1. We can divide Dz into two subsets Dz,1(ε) and Dz,2(ε) in p
−1
1 (z) for suffi-

ciently small ε > 0 which have piecewise smooth boundaries such that

(a) G ∩Dz,1(ε) = ∅.
(b) ∂Ez(ε) = ∂(∂Dz \ Ez).

(c) Dz,2(ε) ⊂ (%−1(γ2) ∪ B((z, z), ε)) ∩ p−1
1 (z) where B((z, z), ε) is an open ball

in X ×X with radius ε whose center is at (z, z).

Here we set Ez(ε) = ∂Dz,1(ε) ∩ ∂Dz,2(ε).
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%−1(γ1)%−1(γ2)

G

%−1(γ1)%−1(γ2)

G

Figure 5: The subsets D1,ε and D2,ε

radius ε

%−1(γ2)

G

E(ε)

Figure 6: Eε near the vertex

By the Stoke’s formula we have∫
Dz,1(ε)

ω1(z, w) · e⟨w−z,ζ⟩ =

∫
Dz,1(ε)

∂̄ω01(z, w) · e⟨w−z,ζ⟩

=

∫
Ez+E(ε)

ω01(z, w) · e⟨w−z,ζ⟩.

For any h > 0, by retaking ε small enough to satisfy Re 〈w − z, ζ〉 ≤ h|ζ| in
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B((z, z), ε) ∩ p−1
1 (z), we can see that∣∣∣∣ ∂α∂zα ∂β

∂z̄β
ς̃(ω)

∣∣∣∣
=

∣∣∣∣∣
∫
Dz,2(ε)

∂α

∂zα
∂β

∂z̄β
ω1(z, w) · e⟨w−z,ζ⟩ +

∫
E(ε)

∂α

∂zα
∂β

∂z̄β
ω01(z, w) · e⟨w−z,ζ⟩

∣∣∣∣∣
≤
∫
Dz,2(ε)

∣∣∣∣ ∂α∂zα ∂β

∂z̄β
ω1(z, w)

∣∣∣∣ · eRe ⟨w−z,ζ⟩ +

∫
E(ε)

∣∣∣∣ ∂α∂zα ∂β

∂z̄β
ω01(z, w)

∣∣∣∣ · eRe⟨w−z,ζ⟩

≤C · eh|ζ|.

Next we check that
∂

∂z̄i
ς̃(ω) belongs to N∞(V ′) for any i = 1, 2, . . . , n. By the

Stoke’s formula and the facts that (∂̄z + ∂̄w)ω01 = ω1 and ∂̄zω1 = −∂̄wω1, we
obtain

∣∣∂̄z ς̃(ω)∣∣ =
∣∣∣∣∣
∫
Dz,2(ε)

∂̄zω1(z, w) · e⟨w−z,ζ⟩ +

∫
E(ε)

∂̄zω01(z, w) · e⟨w−z,ζ⟩

∣∣∣∣∣
=

∣∣∣∣∣−
∫
Dz,2(ε)

∂̄wω1(z, w) · e⟨w−z,ζ⟩

+

∫
E(ε)

(ω1(z, w)− ∂̄wω01(z, w)) · e⟨w−z,ζ⟩

∣∣∣∣∣
=

∣∣∣∣∣
∫
∂Dz,2(ε)

ω1(z, w) · e⟨w−z,ζ⟩

−
∫
E(ε)

ω1(z, w) · e⟨w−z,ζ⟩ +

∫
∂E(ε)

ω01(z, w) · e⟨v,ζ⟩
∣∣∣∣∣

=

∣∣∣∣∣
∫
∂Dz,2(ε)\E(ε)

ω1(z, w) · e⟨w−z,ζ⟩ +

∫
∂E(ε)

ω01(z, w) · e⟨w−z,ζ⟩

∣∣∣∣∣ .
By the construction of the partitions Dz,1 and Dz,2 we obtain ∂Dz,2(ε) \ E(ε) ⊂
Int (%−1(γ2)) and ∂E(ε) ⊂ Int (%−1(γ2)), and hence there exist positive constants
h and C such that∣∣∣∣∣

∫
∂Dz,2(ε)\E(ε)

ω1(z, w) · e⟨w−z,ζ⟩ +

∫
∂E(ε)

ω01(z, w) · e⟨w−z,ζ⟩

∣∣∣∣∣
≤
∫
∂Dz,2(ε)\E(ε)

|ω1(z, w)| · e−h|ζ| +

∫
∂E(ε)

|ω01(z, w)| · e−h|ζ|

≤C · e−h|ζ|,

and we obtain the claim.

2. In addition to the assumption in the above proof we assume that ω is equal to
0 as an element in the relative Čech-Dolbeault cohomology. Then there exists
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τ = (τ1, τ01) ∈ C
∞,(0,n,n−1)
X×X (V,V ′) with ϑ̄τ = ω. By substituting (ω1, ω01) =

(∂̄τ1, τ1 − ∂̄τ01) we have

ς̃(ω) =

∫
Dz,2(ε)

ω1(z, w) · e⟨w−z,ζ⟩ +

∫
E(ε)

ω01(z, w) · e⟨w−z,ζ⟩

=

∫
Dz,2(ε)

∂̄τ1(z, w) · e⟨w−z,ζ⟩ +

∫
E(ε)

(τ1(z, w)− ∂̄τ01(z, w)) · e⟨w−z,ζ⟩.

Since the integrations∫
Dz,2(ε)

∂̄zτ1(z, w) · e⟨w−z,ζ⟩,

∫
E(ε)

∂̄zτ01(z, w) · e⟨w−z,ζ⟩

vanish, we have∫
Dz,2(ε)

∂̄τ1(z, w) · e⟨w−z,ζ⟩ +

∫
E(ε)

(τ1(z, w)− ∂̄τ01(z, w)) · e⟨w−z,ζ⟩

=

∫
∂Dz,2(ε)\E(ε)

τ1(z, w) · e⟨w−z,ζ⟩ +

∫
∂E(ε)

τ01(z, w) · e⟨w−z,ζ⟩.

By the same argument as in the proof of 1, we can find constants h > 0 and C > 0
such that∣∣∣∣∣

∫
∂Dz,2(ε)\E(ε)

τ1(z, w) · e⟨w−z,ζ⟩ +

∫
∂E(ε)

τ01(z, w) · e⟨w−z,ζ⟩

∣∣∣∣∣
≤
∫
∂Dz,2(ε)\E(ε)

|τ1(z, w)| · e−h|ζ| +

∫
∂E(ε)

|τ01(z, w)| · e−h|ζ| ≤ C · e−h|ζ|.

3. The claim follows immediately from the argument in the above proofs.

The corollary below follows from Proposition 4.6.

Corollary 4.10. The map ς̃ is well-defined.

In the subsequent section we prove the main theorem.

4.3 The proof of the main Theorem 4.1

First we briefly recall the classical symbol theory introduced by Aoki [2].
Let Uc, Zc,ε and V (ν) subsets in X ×X defined in [2], Page 184. Then we have the

following cohomological expression

EX,z∗ = lim−→
c,ε

Hn
Zc,ε

(Uc ; O
(0,n)
X×X).

Here we take z∗ = (0;λ, 0, . . . , 0) with λ ∈ C×. Moreover we set

V =

n⋂
ν=1

V (ν), V̂ (ν) =
⋂
i ̸=ν

V (i).
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Then we have the following exact sequence

n⊕
ν=1

Γ(V̂ (ν) ; O
(0,n)
X×X) −→ Γ(V ; O

(0,n)
X×X) −→ Hn

Zc,ε
(Uc ; O

(0,n)
X×X) −→ 0.

Hence any pseudodifferential operator P ∈ E R
X,z∗ can be represented as an equivalence

of a holomorphic form ψ(z, z′)dz′ ∈ Γ(V ; O
(0,n)
X×X). By the aid of Radon transformations

Aoki defined the symbol mapping σ at point z∗ by

σ : E R
X,z∗ ' lim−→

c,ε

Hn(W,W ′ ; O
(0,n)
X×X) −→ (S/N)z∗ .

The following theorem established by Aoki is crucial.

Theorem 4.11 ([2], Theorem 4.3 and Theorem 4.5). The symbol mapping σ is an
isomorphism of stalks.

For the proof of this theorem Aoki constructed the inverse map

$ : (S/N)z∗ −→ E R
X,z∗ ,

and had confirmed that σ ◦$ = id and $ ◦ σ = id.
Now let us prove Theorem 4.1. As a consequence of Subsections 4.1 and 4.2, we have

a well-defined morphism
ςṼ : E R

X(Ṽ ) −→ S∞/N∞(Ṽ )

for any closed convex proper cone Ṽ in T̊ ∗X with π(Ṽ ) being compact.

Let Ṽ ′ be a closed convex proper cone contained in Ṽ . Then, it follows from Propo-
sition 4.6 that we have the following commutative diagram:

E R
X(Ṽ )

ςṼ //

��

S∞/N∞(Ṽ )

��

E R
X(Ṽ ′)

ςṼ ′
// S∞/N∞(Ṽ ′).

Since the family of closed convex proper cones in T̊ ∗X is a basis of sets on which a conic
sheaf can be defined, the family {ςṼ }Ṽ of morphisms gives a sheaf morphism on T̊ ∗X

ς : E R
X −→ S∞/N∞.

Thus we have obtained a sheaf morphism from E R
X to the symbol space of C∞-type.

The rest of the problem is to show ς to be an isomorphism, and it suffices to show the
morphism ςz∗ : E R

X,z∗ → (S∞/N∞)z∗ of stalks is isomorphic. It is easy to see that the
diagram

(S/N)z∗

ιz∗

��

E R
X,z∗

σ
55lllllllllllll

ςz∗ ))RR
RRR

RRR
RRR

RR

(S∞/N∞)z∗
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commutes at each z∗ ∈ T̊ ∗X, where σ is a symbol map described above. The vertical
arrow in the diagram is isomorphic by Theorem 3.19 and σ is also isomorphic by Theorem
4.11. Hence ςz∗ is also isomorphic, which completes the proof of Theorem 4.1.
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