

HOKKAIDO UNIVERSITY

Title	Assessment of bone forming ability of apatite-coated collagen scaffold prepared by a precursor-assisted biomimetic process [an abstract of entire text]
Author(s)	金本, 佑生実
Citation	北海道大学. 博士(歯学) 甲第13862号
Issue Date	2020-03-25
Doc URL	http://hdl.handle.net/2115/78505
Туре	theses (doctoral - abstract of entire text)
Note	この博士論文全文の閲覧方法については、以下のサイトをご参照ください。
Note(URL)	https://www.lib.hokudai.ac.jp/dissertations/copy-guides/
File Information	Yukimi_Kanemoto_summary.pdf

学位論文内容の要約

学位論文題目

Assessment of bone forming ability of apatite-coated collagen scaffold prepared by a precursor-assisted biomimetic process

(前駆体を利用した生体模倣プロセスにより作製され たアパタイト被覆コラーゲンスキャフォールドの骨形 成能の評価)

博士の専攻分野名称 博士(歯学) 氏名 金本 佑生実

Abstract

Three-dimensional collagen scaffold (CS) coated with low-crystalline apatite via a precursor-assisted biomimetic process reportedly enhanced cellular responses and blood vessels formation. In this study, Osteogenic properties of apatite-coated collagen scaffold (Ap-CS) were examined by in vitro cell culture tests and rat bone forming tests.

After oxygen plasma treatment, CS was alternately dipped in CaCl₂ and K₂HPO₄·3H₂O solutions to be pre-coated with CaP. Subsequently, the CS was immersed in a supersaturated CaP solution to be coated with apatite. The resulting Ap-CS was characterized by observation using a scanning electron microscope (SEM), and assessments of water absorption, Ca ion release, protein adsorption and enzyme resistance. Cytotoxic tests and real-time RT-PCR were carried out using MC3T3-E1 osteoblastic cells. In addition, bone forming ability of Ap-CS was histologically evaluated after implantation onto the rat skull.

SEM observation revealed that the surface of Ap-CS was covered with nanostructured deposition. It is considered that a layer of low-crystalline apatite was formed on CS through the precursor-assisted biomimetic process as reported previously. Ap-CS significantly increased water adsorption, Ca ion release, cationic protein adsorption and resistance to collagenase enzymatic effect, compared with CS. In cell culture studies, Ap-CS decreased the cell proliferation, however, the expression of bone formation markers, such as bone sialoprotein and osteocalcin, was promoted compared with CS. Ap-CS significantly promoted new bone augmentation of rat skull. Furthermore, residual scaffold was slight when compared to CS. In conclusion, Ap-CS exhibited bone forming activity to be beneficial for bone tissue engineering therapy.