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ABSTRACT: The iridium-catalyzed transfer hydrogenation of alkenes using 1,4-dioxane as a hydrogen donor is described. The 
use of 1,2-bis(dicyclohexylphosphino)ethane (DCyPE), featuring bulky and highly electron-donating properties, led to high catalyt-
ic activity. A polystyrene-cross-linking bisphosphine PS-DPPBz produced a reusable heterogeneous catalyst. These homogeneous 
and heterogeneous protocols achieved chemoselective transfer hydrogenation of alkenes over other potentially reducible functional 
groups such as carbonyl, nitro, cyano and imino groups in the same molecule. 

Transition metal catalyzed transfer hydrogenations are use-
ful methods for reducing polar unsaturated bonds in organic 
molecules due to their high chemoselectivity without the need 
to use flammable hydrogen gas or complex equipment.1 Fur-
thermore, they have potential for enantioselective catalysis. In 
fact, transfer hydrogenations of ketones2 and imines3 with 
protic H donor molecules such as 2-propanol and formic acid 
have been well established (Scheme 1a). Noyori–Ikariya-type 
transfer hydrogenation is a typical highly enantioselective 
reaction.4 In contrast, the chemoselective transfer hydrogena-
tion of C=C bonds in the presence of C=O bonds and other 
potentially reducible functional groups such as benzylic ethers, 
nitriles and imines is a long-standing challenge. Although 
transfer hydrogenation protocols achieving appreciable but 
incomplete chemoselectivities in favor of C=C bonds over 
ketoic C=O bonds have been reported,5–7 the substrates were 
restricted to conjugated enone derivatives or the selectivities 
relied on careful control of the reaction conditions. 

In our investigation of metal-catalyzed C(sp3)–H function-
alizations,8,9 we encountered a significant reduction of C=C 
bonds of alkenes with 1,4-dioxane as a two-H donor in the 
presence of [IrCl(cod)]2 and some bisphosphine ligands under 
reasonably mild reaction conditions (bath temperature 120–
145 °C, 1–4 mol% Ir, Scheme 1b). Importantly, this transfer 
hydrogenation was exclusively selective toward C=C bonds 
over C=O bonds of ketones, which are the preferred reduction 
sites under most transfer hydrogenation conditions.2,3 Alt-
hough a similar transfer hydrogenation of alkenes with 1,4-
dioxane catalyzed by the Wilkinson complex [RhCl(PPh3)3] 
had been reported in 1972, the reaction conditions were harsh 
(170 °C) and the substrate scope was limited to a few simple 
cycloalkenes.10 Therefore, we decided to investigate the inter-
esting Ir catalysis for ligand effects, substrate scope, and 
chemoselectivity, having applications in organic synthesis in 
mind. As a result, 1,2-bis(dicyclohexylphosphino)ethane 
(DCyPE) was identified as an optimal ligand, which produced, 
in combination with [IrCl(cod)]2, a catalyst that promoted the 

highly chemoselective transfer hydrogenation of conjugated 
polar alkenes and isolated non-polar alkenes in the presence of 
ketones or other potentially reducible functional groups. To 
date, a broadly useful and versatile metal-catalyzed protocol 
that enables selective transfer hydrogenation of isolated non-
polar alkenes in the presence of ketones has not been reported. 
Although Huang and co-workers recently realized a similar 
transformation through the utilization of ethanol as a hydrogen 
donor catalyzed by an Ir-NCP catalyst, only two isolated non-
polar alkenes were used and chemoselectivity was not totally 
controlled.11 

 
Scheme 1. Catalytic Transfer Hydrogenations 

 
 

Specifically, stirring and heating of a solution of cyclic ke-
tone 1a (1.1 g, 8.0 mmol) bearing a tert-alkyl-substituted ter-
minal alkene moiety, [IrCl(cod)]2 (26.8 mg, 0.04 mmol, 1 
mol% Ir), and DCyPE (33.8 mg, 0.08 mmol, 1 mol%) in re-
fluxing 1,4-dioxane (10 mL) (bath temperature 120 °C) under 
argon atmosphere over 4 h led to complete conversion of the 
starting material and afforded the corresponding saturated 
ketone (2a) in 97% isolated yield (eq 1). Notably, no other 
reduction products 3a and 4a were produced. The protocol is 
operationally simple, and 1,4-dioxane serves as a good solvent 
for a range of organic compounds, suggesting a practical merit 
of this hydrogenation method.12,13 
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Monitoring reaction time courses by 1H NMR spectrosco-

py clearly showed the difference between 1,4-dioxane and 2-
propanol as hydrogen donors (Figure 1). Thus, consistent with 
the above-mentioned results from the gram-scale reaction, the 
Ir-catalyzed transfer hydrogenation (1 mol% Ir) of 1a (0.2 
mmol) in 1,4-dioxane heated at 120 °C in a sealed screw vial 
was exclusively chemoselective throughout the reaction (Fig-
ure 1a). On the other hand, the reaction in 2-propanol at 60 °C 
(4 mol% Ir) was only alkene-selective from the initiation of 
the reaction up to the half-conversion of the substrate (Figure 
1b). After the brief appearance of enol 3a (40 min, 57% conv. 
of 1a), overreduction product 4a started to form and became 
the major component at 90 min. A similar trend was observed 
in the transfer hydrogenation of a conjugated polar alkene (see 
SI). 

 

 
Figure 1. Time courses of transfer hydrogenation of 1a. a) 1a (0.2 
mmol), [IrCl(cod)]2 (1 mol% Ir), DCyPE (1 mol%), 1,4-dioxane 
(1 mL), 120 °C (Teflon®-sealed screw vial). b) 1a (0.2 mmol), 
[IrCl(cod)]2 (4 mol% Ir), DCyPE (4 mol%), 2-propanol (1 mL), 
60 °C (Teflon®-sealed screw vial). 

 
Other phosphines were also examined for ligand perfor-

mance in the transfer hydrogenation of 4-tert-butylstyrene 
(1b) with 1,4-dioxane on a smaller reaction scale (1b, 0.2 
mmol, 0.5 mol% Ir, Ir/L 1:1, 1,4-dioxane 1 mL, 120 °C in a 
sealed vial, 1 h). The results are summarized in Scheme 2. 
While monodentate phosphine ligands and large-bite-angle 
bisphosphine ligands such as Xantphos or DPPF were totally 

ineffective (see SI), 1,2-bis(diphenylphosphino)benzene 
(DPPBz) induced slight activity, giving 2b in 9% yield. The 
yield of 2b was improved to 44% with a bulkier variant (Sci-
OPP) of DPPBz having P-3,5-di-tert-butylphenyl groups in-
stead of the P-Ph groups. Similarly, another bulkier variant 
(DCyPBz) with P-Cy groups also gave an increased product 
yield of 26%. Changing the 1,2-phenylene backbone of 
DCyPBz to the 3,4-thiophene-diyl backbone (DCyPT) caused 
a significant increase of the yield (45%). This may be attribut-
ed to the higher electron-donating ability of the 3,4-thiophen-
diyl than the phenylene group. 

Similar trends were observed in the examination of 
bisphosphine ligands with saturated carbon backbones. Name-
ly, while a small-bite-angle ligand (DPPM) with P-Ph groups 
did not induce the reaction, changing the P-Ph groups to P-Cy 
groups (DCyPM) gave a highly active catalyst, leading to 89% 
yield. Analogously, the replacement of the P-Ph groups of 1,2-
bis(diphenylphosphino)ethane (DPPE) with P-Cy groups led 
to a dramatic increase in the product yield (from 5% to 99%), 
while the effect of the change to P-Et groups was only mar-
ginal (12% yield). Overall, the reactivity of the transfer hydro-
genation was enhanced by steric bulk and more electron-
donating ligands. 

 
Scheme 2. Ligand Effect on Transfer Hydrogenation 

 

 
Reaction conditions: 1b (0.2 mmol), [IrCl(cod)]2 (0.5 mol% Ir), 
DCyPE (0.5 mol%), 1,4-dioxane (1 mL), 120 °C (Teflon®-sealed 
screw vial), 1 h. Yield was determined by 1H NMR analysis of the 
crude product. 

 
With the optimized reaction conditions in hand, we then 

explored the transfer hydrogenation of various simple alkenes 
(Scheme 3). Styrene derivatives (1b–j) underwent transfer 
hydrogenation smoothly. In general, substrates with an elec-
tron-donating substituent at the para position of the aromatic 
ring were more reactive and required lower reaction tempera-
ture (120 °C) and catalyst loading (1 mol% Ir). Remarkably, 
the benzyloxy group in 1c and the nitro group in 1f remained 
untouched. Substrates bearing either exocyclic C=C bonds 
(1h) or cyclic olefinic bonds (1j) were hydrogenated in high 
yields. The protocol was also applicable to various aliphatic 
alkenes including not only monosubstituted or 1,1-
disubstituted terminal alkenes (1k,m,n) but also disubstituted 
or trisubstituted internal alkenes (1l,o,p), while tetrasubstituted 
alkenes such as 2,3-dimethyl-1H-indene and tetraphenyleth-
ylene did not participated in the present transfer hydrogenation 
even at higher reaction temperature (140 °C). Notably, the 
allyl and benzyl ether moieties of 1o were innocent of hydro-
genolysis reactivity. 
  

O

1a (8 mmol, 1.10 g) 2a (97%, 1.08 g)

[IrCl(cod)]2 (1 mol% Ir)
DCyPE (1 mol%)
1,4-dioxane (10 mL)
reflux (bath temp. 120 °C)
4 h

Me

O

Me

H H

O

Me+

H
H O

Me

H
H

H H
3a  0% 4a  0%

(1)+

0

20

40

60

80

100

0 40 80 120 160

0

20

40

60

80

100

0 40 80 120 160

1

4
3

1
2

Time (min)

Time (min)

C
on

ve
rs

io
n 

(%
)

C
on

ve
rs

io
n 

(%
)

a)

b)

2

tBu tBu

H
H[IrCl(cod)]2 (0.5 mol% Ir)

ligand (0.5 mol%)
1,4-dioxane (1 mL)
120 °C, 1 h

1b (0.20 mmol) 2b

Ph2P PPh2Ph2P PPh2

DPPE, 5%DPPM, 0%

S

Cy2P PCy2

DPPBz (R = Ph), 9%
SciOPP (R = 3,5-tBu-C6H3), 44%
DCyPBz (R = Cy), 26%R2P PR2 DCyPT, 45%

Cy2P PCy2Cy2P PCy2

DCyPE, 99%DCyPM, 89%
Et2P PEt2
DEtPE, 12%



 

Scheme 3. Scope of Simple Alkenes 

 

 
Reaction condition A: 1 (0.2 mmol), [IrCl(cod)]2 (1 mol% Ir), 
DCyPE (1 mol%), 1,4-dioxane (1 mL), 120 °C (Teflon®-sealed 
screw vial). Reaction condition B: 1 (0.2 mmol), [IrCl(cod)]2 (4 
mol% Ir), DCyPE (4 mol%), 1,4-dioxane (1 mL), 130 °C (Tef-
lon®-sealed screw vial). Yields of isolated product are shown. 
aYield was determined by 1H NMR analysis of the crude product. 

 
Alkynes also underwent the transfer hydrogenation using 

1,4-dioxane as H donor with the same catalyst. Diphenylacety-
lene (5) was converted to 1,2-diphenylethane (6) through dou-
ble transfer hydrogenation with 4 mol% Ir loading at 140 °C 
over 20 h (eq 2), while the reaction of a terminal alkyne phe-
nylacetylene suffered from significant oligomerization under 
the same reaction condition. 

 

 
 
The chemoselectivity of this protocol toward C=C hydro-

genation was further examined with various functionalized 
alkenes as showcased in Scheme 4. Benzylideneacetone deriv-
atives (1q–w) bearing electron-donating or withdrawing 
groups on the aromatic ring were suitable substrates, providing 
the desired products with excellent yields and exclusive 
chemoselectivity. The protocol was applicable to the sulfide-
functionalized enone (1v), although a higher reaction tempera-
ture and longer reaction time were required. The aromatic ring 
could be polycyclic (1x, 1y) or S-heterocyclic (1ab). An ali-
phatic conjugated enone (1z) and chalcone (1aa) also under-
went clean C=C reduction. The protocol was also applicable to 
more sterically hindered enones such as 4,4-dimethyl-2-
cyclohexene-1-one (1ac) and (E)-4-phenylpent-3-en-2-one 
(1ad). Conjugated enoates (1ae, 1af) and an enamide (1ag) 
were also reduced at the C=C bond. 

Scheme 4 also shows the scope of functionalized non-polar 
alkenes. Terminal alkenes bearing an acetophenone or cyclo-
hexanone (1ah–al) underwent site-selective reduction at the 
alkene moiety. Tolerance toward nitro and cyano groups was 
confirmed in the reaction of the biphenyl derivatives 1am and 
1an. The C=N bond in N-sulfonyl ketimine 1ao also remained 
untouched. The chemoselective transfer hydrogenation of an 

estrone derivative (1ap) highlights the synthetic utility of this 
hydrogenation method. 
 
Scheme 4. Alkene-Selective Transfer Hydrogenation 

 

 
Reaction conditions: 1 (0.2 mmol), [IrCl(cod)]2 (4 mol% Ir), 
DCyPE (4 mol%), 1,4-dioxane (1 mL), 130 °C (Teflon®-sealed 
screw vial), 10 h. Yields shown are of isolated product. aRun at 
145 °C (glass pressure tube) over 48 h. bRun in 1,4-dioxane (1.5 
mL) at 145 °C (glass pressure tube) over 48 h. cYield was deter-
mined by 1H NMR analysis of the crude product. 
 

To gain insight into the mechanism, the effects of deuter-
ated 1,4-dioxane were investigated. Thus, the Ir-catalyzed 
transfer hydrogenation of 1c (0.1 mmol, 4 mol% Ir) in a mixed 
solvent system composed of 1,4-dioxane (0.3 mL) and 1,4-
dioxane-d8 (0.3 mL) conducted at 130 °C proceeded at a much 
reduced rate than in the single component non-deuterated 1,4-
dioxane, resulting in the formation of 2c in only 48% yield 
after 24 h with no D-incorporation in the product (eq 3). When 
the reaction was performed in the single component deuterated 
solvent 1,4-dioxane-d8 (0.3 mL) under the same reaction con-
ditions, the deuterated product was obtained in 13% yield with 
82% D-incorporation in the methylene group and 118% D-
incorporation in the methyl group (eq 4). These results prove 
that 1,4-dioxane is the hydrogen donor. The unusually high 
kinetic isotope effect suggests that dissociations of two differ-
ent C(sp3)–H bonds in 1,4-dioxane, one at C(2) and the other 
at C(3), doubly affect the rate of the catalysis. Namely, it is 
suggested that both C(2)–H oxidative addition to an Ir center 
forming an Ir-monohydride species and the subsequent b-
hydride elimination giving an Ir(III) dihydride species may 
contribute to the total kinetics of the catalysis. Furthermore, 
the unequal D-incorporation at C(a) and C(b) of 2c is sugges-
tive of the occurrence of β-hydride elimination of a benzylic 
alkyliridium intermediate.  
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On the basis of the above experimental results, a catalytic 

reaction pathway for the transfer hydrogenation of an alkene 
with 1,4-dioxane can be proposed as outlined in Scheme 5. 
Oxidative addition of a C(sp3)–H bond in 1,4-dioxane to the 
Ir(I) center in A yields Ir(III) monohydride B. Subsequent β-
hydride elimination generates Ir(III) dihydride species C, 
which, depending on the nature of the phosphine ligand bound 
to the Ir atom, should be in equilibrium with hydride-bridged 
dimeric iridium complex C-dimer as an off cycle species.14 
The alkene coordinates to C to form D. This is followed by 
insertion of the alkene to the Ir–H bond of D to form Ir-alkyl 
complex E, which undergoes reductive elimination to produce 
the 1,2-hydrogenation product 2 with regeneration of A.15,16 

 
Scheme 5. Proposed Reaction Pathway 

 
 
According to this C(sp3)–H activation triggered reaction 

pathway, the ligand electronic effect favoring the electron-rich 
nature may be due to the promotion of oxidative addition of 
the C(sp3)–H bond of 1,4-dioxane in A to form B, while the 
favorable effect of the sterically hindered bisphosphine ligands 
can be ascribed to an inhibitory effect for the dimerization of 
C. 

This mechanistic consideration prompted us to use a poly-
styrene-cross-linking bisphosphine PS-DPPBz17,18 as an effec-
tive ligand for a reusable heterogeneous catalyst system 
(Scheme 6), as its excellent ligand performance has been 
demonstrated for some heterogeneous transition metal cataly-
sis. The characteristic ligand property was due to spatial isola-
tion of the bisphosphine unit in the polymer matrix, inhibiting 
the formation of a bischelated metal complex or a dimer of a 
monochelate complex (c.f. C-dimer in Scheme 5). Specifically, 
the hydrogenation of 1a (1 mmol) with 1,4-dioxane (0.33 M) 
at 145 °C in the presence of [IrCl(cod)]2 and PS-DPPBz (Ir/L 
1:1, 1 mol% Ir) was complete at 4 h (98% yield by 1H NMR 
analysis) (Scheme 6, 1st run). The [Ir-(PS-DPPBz)] catalyst in 
a form of orange-colored beads could be reused until the third 
reaction cycle without a significant reduction of the product 
yield under the identical reaction conditions (4–5 h), while the 
catalytic efficiency was gradually reduced after the third cycle. 

 
Scheme 6. Heterogeneous Transfer Hydrogenation of 1a 
with 1,4-Dioxane and the [Ir-(PS-DPPBz)] Catalyst System 

 
Reaction conditions: 1a (1 mmol), [IrCl(cod)]2 (0.005 mmol, 1 
mol% Ir), PS-DPPBz (0.1 mmol/g, 0.01 mmol, 1 mol%), 1,4-
dioxane (0.33 M), 145 °C (glass pressure tube). Yield was deter-
mined by 1H NMR analysis of crude product. 

 
In conclusion, we have developed a new operationally 

simple method for the transfer hydrogenation of alkenes with 
1,4-dioxane as a hydrogen donor. The commercially available 
bulky and electron-rich ligand DCyPE was identified to be a 
particularly high-performing ligand. A polystyrene-cross-
linking bisphosphine PS-DPPBz produced a reusable hetero-
geneous catalyst. In contrast to the transition metal catalyzed 
transfer hydrogenation with protic hydrogen donor reagents or 
solvents, the present hydrogenation protocol is alkene selec-
tive in the presence of polar unsaturated bonds such as C=O, 
C=N and CºN bonds. Mechanistically, this hydrogenation is 
triggered by oxidative addition of a 1,4-dioxane C(sp3)–H 
bond. We anticipate this method to find widespread applica-
tion in organic synthesis. Studies toward developing an 
asymmetric version of this transformation are underway. 
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