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Abstract 

The scientific interest in the atomic structure of quasicrystals (QCs), has never faded since Dan 

Shechtman’s discovery in 1982. So far, only about twenty QCs were analyzed quantitatively, which 

signifies how difficult the process of the structure analysis is. A lot of research has been dedicated to 

icosahedral (i) QCs in a Tsai-type family since the first binary Cd-Yb QC was discovered. In 2007, a 

highly-accurate atomic structure model of this QC, based on the cluster-approach, was developed. Since 

then, the model has served as a structural template for any other QC in this family. Such a template, 

however, does not exist for the Bergman family, which are formed mainly in the Zn-Mg-R (R = rare 

earth) systems. The discovery of Zn-Mg-R iQCs arose a great interest in their magnetic properties 

because well-localized magnetic moments are carried by the 4f electrons of the R ions which arrange 

quasiperiodically in the structure. Numerous measurements of magnetic moments show spin-glass-like 

behavior in a low-temperature regime. In order to explain the measured magnetic properties, a detailed 

atomic structure model of Bergman QC is needed and such a challenge was taken in this thesis. 

In chapter one a thorough introduction to the crystallography of QCs is given. It starts with 

historical background about the first observation of structures with a translational symmetry being 

broken. A whole subsection is dedicated to the definition of QCs as there is still a nomenclature 

confusion, even among scientists working in the field. The chapter ends with a summary about every of 

four known types of QCs with forbidden symmetries and the motivation of the thesis is explained.  

In chapter two the mathematical foundations of the crystallography of QCs are given. Two 

methods that were developed to represent mathematically the quasiperiodic structures are described in 

detail: the higher-dimensional approach, where the set of quasiperiodic points is lifted to 𝑛D space, with 

𝑛 > 3, for 3D structures and the Average Unit Cell approach (AUC). Those two approaches are shown 

to be complementary as long as the 𝑛D representation of the structure exists. 

Chapter three focuses on the Ammann-Kramer-Neri tiling (AKNT), which was formerly known 

as three-dimensional Penrose tiling, and its application to the structure solution of iQCs. The AKNT is 

shown to be built of two prototiles: oblate and prolate rhombohedra, associated with a golden ratio. 

Their spatial arrangement ensures the icosahedral symmetry. The projection method, involving a higher-

dimensional space is presented and a mathematical procedure of obtaining the AKNT from the 𝑛D space 

is discussed. The most important part of this chapter is a meticulous derivation of the structure factor of 

the AKNT. The AKNT serves as a quasilattice for the iQC and the geometric component of the structure 

factor is indispensable. 

Chapter four is dedicated to the full analysis of the atomic structure of the Zn-Mg-Tm P-type 

iQC. It starts with a review of the literature on Bergman QCs. The details on the crystal growth method 

and the diffraction experiment are presented. The next two subsections focus on the ab initio structure 

solution by a charge flipping method and a consecutive structure refinement of the model. After that, 

decoration of the asymmetric part of the rhombohedral units with clusters was found. It is shown that 



all the atoms belong to a triacontahedral cluster when the a-linkage along a 5-fold direction is allowed. 

In the end, the 𝑛D representation of the structure was plotted against a simple-decoration model. The 

refined model was proven to match the experimental results by calculating the crystallographic 𝑅 factor 

equal to 9.8% and the residual electron density is less than 4%. 

Chapter five is dedicated to the crystal growth and the local structure analysis of the Zn-Mg-Hf 

F-type iQC. It is also a Bergman QC, but due to the formation of the superstructure, the analysis is far 

more complicated. The 6D unit cell must be two times expanded in every direction with respect to the 

primitive lattice, resulting in having 32 centering translations. The experimental details are presented, 

including the first in the literature crystal growth, for this system, that ended with a high-quality 

monocrystals useful for X-ray diffraction. Based on the ab initio structure solution two types of clusters 

were identified. Both are Bergman-type but are differentiated by the preferential occupancy of the high-

symmetry nodes of the rhombic triacontahedral shell by Hf elements. 

Chapter six proceeds a discussion of the results and a research impact. First, the new model of 

the iQC, based on Zn-Mg-Tm system, is interpreted to show its significant differences with respect to 

the existing model of the Tsai-type QCs. First of all, the model is solved in the real space, not in the 

higher-dimensional space. Second, clusters are no longer building blocks of the structure and they appear 

as a result of atomic decoration of the rhombohedra of the AKNT with an edge length of 21.7 Å. Atomic 

clusters are no longer limited to be linked with b and c linkages but the additional a linkage is permitted. 

It is supported by the analysis of the electron density in the ab initio structure solution. The F-type 

Bergman QC manifests the same linkages even though two types of clusters must be considered. In the 

future perspective, the new model of Bergman QC will be generalized to all families of iQC, including 

F-type superstructure.
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1. Introduction 

Crystallography as a branch of science matured at the beginning of the XXth century when Max 

von Laue collected the first diffraction diagram of the X-ray radiation scattered over copper sulfate as a 

medium [1]. One year later William Lawrance Bragg together with his father William Henry Bragg 

conducted a series of experiments using a variety of crystals including pyrite, sodium chloride, quartz, 

etc. Their research concluded with the formulation of a law known today as the Braggs law [2]. 

According to this law, the maxims of the interference peaks occur for the specifically defined scattering 

angles. As stated in their paper, the diffraction peak is formed by beams reflected by adjacent 

crystallographic planes. The condition of the constructive interference between beams is realized only 

for certain angles. The model was vastly accepted by the research community and the crystallographic 

plane became a fundamental idea standing behind every analysis of the crystallographic structure. 

The concept of the periodicity being an inherent feature of every crystal dates back to the XVIIIth 

century and the work of Rene-Just Hauy. This French investigator was mesmerized by the broken calcite 

crystal which preserved its geometrical shape after several steps involving cutting it into smaller and 

smaller pieces. He concluded, it must be therefore built of an elementary building block that in the end 

could not be divided without changing the properties of the material. The discovery was published in 

1784 in the book Essai d’une theorie sur la structure des crystaux [3]. He is also responsible for the 

formulation of the symmetry rule. According to the rule only 1-, 2-, 3-, 4- and 6-fold rotational axis is 

possible in a crystal. This law is partially indebted to Johannes Kepler who substantiated that the 2D 

plane can be covered precisely by three polygons: the triangle, the square and the hexagon [4]. The 

covering by pentagons was always resulting in voids shaped into five-pointed stars. That observation 

was yet to be rediscovered. 

The dogma about periodicity as an indispensable part of the crystalline structure order became a 

motor of the progress. The unified group theory of crystals was developed by Auguste Bravais, Arthur 

Moritz Schoenflies and Jewgraf Fedorow [5, 6]. Later the mathematical methodology of the crystal 

structure solution was enriched by Arthur Lindo Patterson [7], Herbert Hauptman [8] and Jerome Karle 

[9]. The belief in a periodic invariance of the crystallographic lattice was constantly reassured by many 

diffraction experiments with different radiation sources. 

The first indication that the periodic symmetry can be broken was observed in 1927 by Dehlinger 

[10]. The additional lines in the Debye-Scherrer pattern could be explained by the periodical 

perturbation of the atomic positions. The modulation function in the reciprocal space was represented 

by the supplementary modulation vector required to index all the peaks. The peaks that did not match 

the periodic structure were called satellite reflections. 

Another type of modulation was spotted by Preston in the transitive phase of the AlCu alloy [11] 

and by Daniel and Lipson in Cu4FeNi3 [12]. The displacive modulation did not result in the reproduction 
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of the diffraction pattern. Only later, Hargreaves proposed the addition of the occupational modulation 

[13]. 

All the previous modulation vectors were commensurate with respect to the average structure. 

The first observation of the incommensurate modulation was made in AuCu alloy by Fujiwara [14]. 

Later, the incommensurate modulation was observed in the magnetic structure of rare-earth based alloys 

and since then, modulated structures are frequently found in many inorganic and biological crystals [15]. 

The breakthrough in the analysis of the incommensurately modulated structures was made by 

independent research of de Wolff [16] and Janner [17]. They both introduced the concept of the higher-

dimensional analysis. The main concept behind it is the existence of the multidimensional space that is 

periodical. Every modulation vector that is required to index the diffraction pattern increases the 

dimension of the multidimensional space by one. This mathematical analysis became, and still is, the 

basic tool for the structure solution of aperiodic crystals, implemented in, e.g. JANA2006 [18] and most 

recent version JANA2020.  

1.1 The discovery of quasicrystals 

The first officially known quasicrystal was discovered during a routine investigation of the rapidly 

cooled AlMn alloy in 1982 [19]. When the sample was scanned using the electron microscope the 

diffraction pattern exhibiting a 10-fold rotational axis was observed by Dan Shechtman what was 

meticulously noted in the lab book. Later, the 2-fold and 6-fold axis was also found in the same phase 

(Fig. 1 b) [19]). The angles under which each rotational axis was perceivable agreed with the icosahedral 

symmetry (Fig. 1 c) [19]); the odd-rotational symmetry was doubled due to Friedl’s law, therefore the 

sample exhibited 2-, 3- and 5-fold symmetry). Furthermore, the diffraction pattern could not be indexed 

in any known crystallographic setting. It must be emphasized that the local 5-fold rotational axis is 

prevalent in crystallography however, it cannot be associated with a long-range order of the 

crystallographic system if the structure is periodic. Furthermore, the stability tests proved the AlMn 

alloy was sensitive to the initial composition and the annealing time. When the sample was rapidly 

cooled only the amorphous phase could be obtained, slow cooling resulted in crystallization of the stable, 

periodic Al6Mn phase. The icosahedral phase containing 14% of manganese was metastable. 
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Figure 1. a) The electron diffraction pattern of rapidly cooled AlMn alloy seen at specific 

orientations of the sample, agreeing with the icosahedral point symmetry. Source: [19]; b) the 

stereographic projection of icosahedral symmetry. Source: [19] 

The publication was accepted in November of 1984 by Physical Review Letters after two years 

of the fierce battle with referees who rejected the possibility of the global 5-fold rotational symmetry 

being realized in a crystalline material [19]. It could not happen without the support of crystallographers: 

Ilan Blech, John Cahn and Denis Gratias who were listed as co-authors of the publication. Five weeks 

after the publication, Paul Steinhardt and Don Levine reported a geometrical construction, based on the 

arrangement of two rhombohedral units that realized an icosahedral symmetry [20]. Their work was 

based on the earlier work of Alan Mackay [21], Robert Ammann [22] and Roger Penrose [23]. In this 

article, the name quasicrystal was used for the first time in reference to crystals with a symmetry 

forbidden by classical crystallography. 

The most fierce opponent of the Shechtman’s discovery was Linus Pauling, a two times Nobel 

Prize nominee. In 1985 he published a model of multiple twins of the cubic crystals that lead to the 5-

fold symmetry axis [24]. For the model to work 1000 atoms were included in the unit cell. In the same 

year, the model was abolished by Bancel et al. [25]. Only after 1987, when An-Pang Tsai from Tohoku 

University discovered the first stable icosahedral quasicrystal in AlCuFe alloy [26], Pauling accepted 

quasicrystals as a legitimate phase. The famous Pauling’s quote best describe his disdains of 

Shechtman’s discovery: “There are no quasicrystals, only quasi-scientists”. Ironically, Dan Shechtman 

was awarded the Nobel Prize in Chemistry in 2011. 

After the discovery of numerous examples where periodic symmetry was broken, the International 

Union of Crystallography [27] announced the rephrasing of the definition of the crystal in 1991 by 

removing the condition that material displays a periodic symmetry. In the article published in 1992 in 

Acta Crystallographica A: Foundations and Advances we can read that: “ … by crystal we mean any 

solid having an essentially discrete diffraction diagram and by aperiodic crystal we mean any crystal 

a) b) 
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in which three-dimensional lattice periodicity can be considered to be absent ”. The crystal is not 

defined by its intrinsic properties or morphology but by its ability to create a discreet diffraction pattern. 

1.2 The definition of quasicrystal 

It is generally accepted that crystal is a solid possessing a long-range positional order. It justifies 

the decision of the Commission of Aperiodic Crystals, that works under the wings of IUCr, to shift from 

the microscopic definition of the crystal to a property expressed by the experimental setup [27]. The 

Bragg peaks are a valid indication of the existence of the long-range order. The definition that was 

decided to be temporary until a better understanding of the concept of order arises, stays to this day. The 

current definition is not only consistent with the notion of the long-range order used in condensed matter 

physics but also it is vague enough to not impose untrue constrains until more thorough research on the 

issue the realization of order is conducted. 

Crystals that possess a periodic symmetry are called periodic crystals and all others are called 

aperiodic crystals. There is still a problem of defining what a quasicrystal is. The common practice of 

associating quasicrystals with structures manifesting a symmetry axis incompatible with a periodic 

symmetry is wrong. We could go along the definition of quasicrystal proposed by Steinhardt and Levine, 

which is an abbreviation of quasiaperiodic crystal following the mathematical definition of 

quasiperiodicity (which includes periodicity as a special case) [28]. Let’s consider a function 𝜌(𝐫) that 

can be expanded into a superposition of the countable number of plane waves: 

 

 

𝜌(𝐫) = ∑ 𝜌(𝐤) exp(𝑖𝐤𝐫) ,

𝑘∈𝑽∗

 (1.1) 

 

where 𝐤 = ∑ ℎ𝒊𝐝𝑖
∗𝐷

𝒊=𝟏 , ℎ𝒊 ∈ ℤ. If all the wave vectors from the linear space 𝐕∗, spanned by base 

vectors 𝐚𝑖
∗, can be represented as the linear combination of 𝐷 base vectors with integer coefficients, than 

the function 𝜌(𝐫) is called quasiperiodic. The diffraction pattern of the quasiperiodic crystal can be 

therefore indexed with 𝐷 integers. It can be clearly understood from (1.1) that periodic crystal is a subset 

of all quasiperiodic crystals for which 𝐷 is equal to the physical dimension 𝑑. Only for a periodic crystal, 

the set of Bragg peaks is truly discreet. For quasiperiodic crystal with 𝐷 > 𝑑 the Fourier spectrum is 

dense – the distance between two wave vectors in a Fourier spectrum in the limit equal to 0. 

Experimentally, we cannot observe Bragg peaks below a certain threshold therefore the diffraction 

pattern in essentially discreet. 

Among quasiperiodic crystals, there are classes that do not challenge the paradigm of the 

periodicity and are known for a long time. Incommensurately modulated crystals and incommensurate 

composite crystals possess an aspect of periodicity. The former is just a periodically perturbed basic 
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periodic structure. The latter is a system composed of two or more interpenetrating subsystems that are 

mutually incommensurate. The peaks of the diffraction pattern of such crystals can be divided into two 

groups: main reflections, that are significantly brighter, describing an average structure and possible to 

be indexed in the periodic space group and satellite peaks arising from the modulation function. The 

crystal discovered by Shechtman [19] could not be pictured as the modification of the periodic structure 

and was intrinsically quasiperiodic due to the existence of the 5-fold symmetry. The term quasicrystal 

is frequently wrongly reserved for crystals with ‘non-crystallographic’ symmetry to set them apart from 

modulated structures. It comes from the need for differentiating modulated structures from innate 

quasiperiodic one. However, the criterion under which modulated and ‘intrinsically quasiperiodic’ 

structures could be separated is not easy to find. First of all, the diffraction pattern of modulated structure 

should manifest clear contrast between strong main reflections and weak satellite reflections but at some 

point, the discrepancy would fade e.g. when the amplitude of modulation engrossed. It is also evident 

in the case of modulation functions other than simple harmonic modulation. The simulation shows that 

by adding higher harmonics there exists a transition from the simple harmonic modulation to sawtooth 

modulation characteristic for the Fibonacci chain, which is generally referred to as a 1D quasicrystal 

[29]. The Fibonacci chain has both ‘quasicrystalline’ and modulated structure features. Namely, it can 

be viewed as a tiling of two units arranged aperiodically or resulting from substitution rules or be 

pictured as periodically modulated average periodic structure. It is therefore not evident which structure 

should be referred to as modulated structures and which as inborn quasiperiodic structures. The 

argument about the existence of the ‘forbidden’ crystallographic symmetry is also misguided because 

there are various examples of tiling models with ‘crystallographic’ point group symmetry. A very good 

example of such is a square Fibonacci tiling being a generalization of the Fibonacci chain with a 4-fold 

rotational symmetry [30]. It has a finite number of tiles with a determined tile frequency and finite 

number of vertex environments. Recently, it was reported that a square Fibonacci tiling can be used to 

characterize a distribution of fullerene particles deposited on the quasicrystalline 2-fold plane [31]. It is 

therefore not only a mathematical construction but a model realizable experimentally. 

To conclude the discussion on the definition of quasicrystal, the best yet definition is one given 

by Steinhardt and Levine i.e. the quasicrystal is a quasiperiodic crystal in a mathematical sense of the 

word ‘quasiperiodic’. Since the periodic crystal falls into this definition it can be specified that 

quasicrystal has 𝐷 > 𝑑. The definition was suggested by Ron Lifshitz [32, 33] and in my opinion, it is 

the best since the contrast between modulated and non-modulated structures is currently quantitatively 

impossible. 

In later parts of the thesis I describe only quasicrystal that are incompatible with a periodic 

symmetry. 
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1.3 Quasicrystalline strucutres 

From the statistical point of view, the quasiperiodic arrangement is rarely encountered in a 

laboratory environment, not mentioning naturally observed quasicrytsals. The main structural database 

contains more than 1 200 000 entries for periodic structures among which >188 000 belong to 

intermetallic/inorganic compounds. In comparison, the Bilbao Incommensurate Structures Database list 

152 incommensurate structures1 (with 24 composites). When it comes to quasicrystals with a forbidden 

symmetry only ~20 are quantitatively determined among ~50 known stable quasicrystals [34]. All of 

them are of laboratory provenience but there are quasicrystals discovered in nature. In the samples of 

mineral khatyrkite presumably coming from the Koryak region encompassing the northern part of the 

Kamchatka peninsula the AlCuFe icosahedral phase was found [35]. The stoichiometry was reported to 

be close to the synthetic counterpart. Since 2009 three quasicrystals, two icosahedral in AlCuFe system 

(Al65Cu20Fe15 – phase I and Al62Cu31.2Fe6.8 – phase II) [36] and one decagonal in Al71Ni24Fe3 [37], 

were reported based on the analysis of the rock sample. Even though in the beginning it was assumed 

that the rock sample was naturally made in a geological process, the evidence unambiguously indicates 

it is a part of the meteorite [38]. 

In theory, there is no restriction on what rotational symmetry a quasicrystal can have. However, 

only selected are realized in nature. In fact only 5-fold and 10-fold symmetry quasicrystals are stable 

among reported structures [39]. It can be justified by the observation that the icosahedral coordination 

is the most frequent atomic environment type in intermetallic phases [40]. There are however few reports 

of the quasicrystals with 8-fold [41] and 12-fold symmetry [42, 43]. However, they are considered 

metastable or disordered. Sometimes the 1D quasicrystals are also mentioned due to the existence of the 

characteristic 𝜏 = (1 + √5)/2 scaling, observable in quasicrystals with forbidden symmetry, but they 

can be well enough considered as modulated structures, therefore I do not go into their more detailed 

description. 

1.3.1 The icosahedral quasicrystal 

The icosahedral quasicrystals are quasiperiodic in all three dimensions of the real space and 

possess an icosahedral point group symmetry. So far only icosahedral quasicrystals are truly 3D 

aperiodic. There is a report of the 3D quasicrystal with a crystallographic point group symmetry but it 

has a well-identifiable lattice of main reflections, therefore it can be analyzed as a modulated structure 

[44]. The quasicrystal belonging to the icosahedral family was the first synthesized quasicrystal 

recognized to form an aperiodic structure in 1982 [19]. Surprisingly, many today known quasicrystals 

were identified before Shechtman’s discovery but the researchers did not realize the revelation, e. g. the 

aluminum-rich part of the Al-Cu-Fe system was studied, with a new phase reported in 1939 [45]. Only 

                                                      
1 The number of entries checked in the 26th of February 2020 
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in the late 80s, it was recognized as quasicrystalline [26]. The same applied to Al-Cu-Li [46] which was 

ironically the first stable quasicrystal ever synthesized [47]. In addition, the first system that forms a 

binary quasicrystal was obtained in 1971/72 [48, 49]  but it had to be rediscovered in 2000 [50, 51]. 

There are three types of icosahedral quasicrystals based on the prevalent type of the atomic cluster 

in the structure (Fig. 2). There can be either Mackay or pseudo-Mackay cluster [52], the Bergman cluster 

[53] and the Tsai cluster [51]. The distinction is not potent since there are examples when two types of 

clusters are needed to properly account all the atoms. That is principally correct in terms of the face-

centered icosahedral Mackay quasicrystal where both Mackay and Bergman clusters are needed for the 

structure description. It also applies to Tsai primitive icosahedral phase. Even though the structure is 

packed with Tsai clusters, according to the structure model, within the interstitial part of the structure 

the Bergman clusters appear. Nevertheless, such a classification of icosahedral quasicrystal types is 

standard in the literature. The justification for such nomenclature is the point density of one type of 

cluster, the quasicrystal is classified according to, is dominant. 

The Mackay quasicrystals are all based on Al as the main element, Cu or Pd as the second 

constituent and a transition metal of group 7 or 8 as the third component. The majority of them are face-

centered phases. The edge-length of the rhombohedral unit is ranging from 4.5Å − 4.6Å [54]. One of 

the most stable quasicrystal forming high-quality monocrystals is belonging to this category of 

icosahedral quasicrystals. It is AlCuFe phase and as was mentioned before, it is also the first quasicrystal 

encounter in natural environment. 

The Bergman quasicrystals are frequently referred to as Frank-Kasper quasicrystals because their 

periodical approximant crystals form tetrahedrally close-packed structures [55]. Almost all known 

Bergman quasicrystals are Zn-Mg based with the third element to be transition metal or rare-earth 

element. The only exceptions are the first discovered stable quasicrystal Al-Cu-Li [47] and Ti-Zr-Ni 

[56, 57]. Also, Al-Zn-Mg [58] is exceptional since it contains a p group element. Al-Zn-Mg is important 

for two reasons: it was the first structure investigated with a simple decoration model of the icosahedral 

structure and recently bulk superconductivity was reported in this system at 40 mK [59]. The 

rhombohedral edge-length varies from 5Å − 5.2Å [54]. 

Last but not least is the Tsai type quasicrystal that was the latest type of the icosahedral 

quasicrystal to be discovered. The discovery brought a major novelty to the understanding of the 

quasiperiodic order as Tsai type quasicrystals can exist as stable binary phases including Cd-Ca, Cd-Yb 

[50] and Zn-Sc [60, 61]. It shown that chemical entropy is not needed for the quasicrystalline phase to 

be formed. When it comes to the structure solution, the modeling of the atomic structure of the Cd5.7Yb 

brought the best-known model of the icosahedral quasicrystal that was utilized to solve vast instances 

of the structures [62]. The existence of only two elements in the structure that differ significantly in 

terms of the scattering power of the X-ray radiation (The atomic number for Cd is 𝑍 = 48 and for Yb is 

𝑍 = 70) decreased the degrees of freedom for the strucutre modelling and helped to designate the exact 
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places where specific atom can be. It is the richest family of quasicrystals and possibly the most varied 

in terms of types of elements.  It is mostly formed by Cd and Zn-Sc based alloys with an edge-length 

varying from  4.9Å for Zn-Sc based quasicrystal to  5.7Å for Cd-Rare Earth alloys. The family of the 

Tsai periodic approximant crystal is even greater with numerous 1/1 approximants with a bcc symmetry 

𝐼𝑚3̅. 

 

 

 

Figure 2. The local atomic clusters that constitute the basic building block of the icosahedral 

quasicrystals. Top: Mackay cluster in AlSiMn system; Mid: Bergman cluster in AlCuLi system; Bottom: 

Tsai cluster in i-CdYb. 

 

Icosahedral quasicrystals are considered to be Hume-Rothery alloys [63] where the ratio between 

the number of valance electrons and number of atoms plays a crucial role together with the ratio between 

valance radius of the atoms [64]. Typically Mackay quasicrystals have 𝑒/𝑎 ≈ 1.75 , Bergman 

quasicrystals have 𝑒/𝑎 ≈ 2.1 and for Tsai quasicrystals 𝑒/𝑎 ≈ 2.15 [65]. In addition, the increase in 

the valance atomic radii influence the formation of the quasicrystal from a different family what was 

observed for ternary Zn-Mg based alloys [66]. 

All known icosahedral quasicrystals are either face-centered or primitive phases. No indication 

of the body-centered icosahedral quasicrystal occurring in a real system exists. On the other hand. all 

theoretical simulations of the icosahedral quasicrystal based on a Lenard-Jones-Gauss potential or a 
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free-energy minimization result in a body-centred icosahedral phase [67, 68]. That is an interesting 

discrepancy between simulation and experiment but it is possibly caused by simulations being 

performed upon one-element systems which are proven to prefer a body-centered type of the structure 

[69].  

1.3.2 The decagonal quasicrystal 

The first reported metastable decagonal quasicrystal belongs to a rapidly cooled Al-Mn system 

[70, 71]. Surprisingly, the first stable decagonal quasicrystal was discovered in 1982 in Al10FeNi3but 

[72] was not identified as such until 1994 [73]. Officially, the stable decagonal quasicrystal was first 

reported in 1988 in the Al-Cu-Co system with a composition Al65Cu15Co20 [74]. 

The decagonal phase belongs to the class of axial quasicrystal that displays the aperiodic pattern 

in a 2D plane but is periodic in the third direction, perpendicular to this plane. The characteristic trait of 

the decagonal phase is the existence of the decagonal diffraction symmetry 10/𝑚 or 10/𝑚𝑚𝑚. The 

10-fold symmetry axis is parallel to the periodic direction. The decagonal quasicrystal is not periodic 

from layer to layer but is a stacking of 2, 4, 6 or 8 layers of atoms within one period. All known stable 

decagonal quasicrystals are ternary alloys with 2-, 4- and 6-layer periodicity. They are Al and Zn based 

compounds with few instances of Ga based 6-layer periodic metastable phase [75]. 

The structure of a decagonal quasicrystal is usually solved by arranging atomic clusters in vertices 

of the quasiperiodic tiling [76, 77, 78]. They are just structural building units that form a favorable local 

atomic environment including the rules of the constellation. Two clusters can overlap with atomic 

positions mutually coincide or no, therefore creating a split atomic position providing a space for a so-

called phason flip [79, 80]. In most cases, two different clusters are needed to properly recreate the 

structure of decagonal quasicrystal but there is an example of the structure where only one 20 nm and 

symmetry 10̅̅̅̅ 2𝑚 decagonal cluster is needed [81]. The Al64Cu14Co22 phase was identified as a 4-layer 

disordered phase but modeled with 2-layer periodicity due to the low resolution of the electron 

micrography. The interesting feature is all the clusters in the structure have the same orientation and 

there is only one allowed way of overlapping. It is an isostructure to the decagonal Al-Cu-Ir and Al-Cu-

Rh phase investigated by Kuczera et al. [82]. The X-ray diffraction dataset of Al-Cu-Rh is one of the 

highest quality obtainable for the decagonal quasicrystal with 2092 symmetrically independent 

reflections. Currently, it is used to investigate the limits of the decagonal structure modelling by 

incorporation of phason flips models, phenomenological multiple-scattering effects and new types of 

phonon corrections that assume uncorrelated local atomic oscillations [83, 84]. So far the best result of 

the refinement with the data is expressed in the crystallographic 𝑅- factor value equal to 6.08%. 
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1.3.3 The Octagonal quasicrystal 

The octagonal phase was discovered in 1987 in rapidly solidified V-Ni-Si and Cr-Ni-Si alloys 

[85]. Currently, there are only four known octagonal quasicrystals in intermetallic alloys [86, 85, 87, 

88]. A detailed model of the Mn80Si15Al5 was derived from HREM images under near-Scherzer defocus 

condition [89, 90]. The symmetry was determined to be 84/𝑚𝑚𝑐. The screw axis arises as a 

consequence of the mutual orientation of the second and fourth atomic plane, called B and B’ 

respectively in the paper, along the periodic direction. Those two planes are rotated with respect to each 

other by 45°. In total there are four atomic layers within 6.3 Å period. Only the first layer and the third, 

which share the same atomic decoration, display the 8-fold symmetry. Layers B and B’ have tetragonal 

symmetry.  

The atomic model of the structure was based on the Ammann-Beenker tiling with an edge-length 

of 8.2 Å. It is a two-tile tiling with squares and rhombuses with an acute angle of 45°. The cluster model 

of the structure with an octagonal cluster covering was proposed by Ben-Abraham and Gähler in 1999 

[41]. It was suggested that the formation of the densely packed atomic clusters governs the formation 

and stabilization of the aperiodic long-range order. 

Even though the 8-fold symmetry is not observed frequently in intermetallic compounds it is 

manufactured in metamaterials to obtain preferable optical properties [91]. 

1.3.4 The dodecagonal quasicrystal 

The dodecagonal 12-fold symmetry was first observed in Ni-Cr small particles and was originally 

called ‘crystalloids’ [42, 92]. The size of particles varied from 200 to 2000 Å in diameter. Even though 

the region of observation was narrow due to the limited size of the quasiperiodic phase, the characteristic 

square-triangle tiling with a few defects related to 30° rhombuses could be observed. The geometry of 

the dodecagonal quasilattice was originally proposed by Niizeki and Gahler [93, 94] based on the 

projection method. Similar tiling can be generated by the inflation method with a factor of 2 + √3 but 

this method, contrary to the projection method, is not deterministic [95]. The final tiling realizes two 

possible orientations of dodecagons that corresponds to the phason disorder [96]. The tiling consists of 

the equilateral triangle, the square and 30° thin rhombus but the rhombus is rarely occurring in real 

quasicrystals, therefore the occupation domain that generates the tiling must be engineered to create a 

correct rhombus-to-other prototiles ratio [94]. 

The second examples of the dodecagonal quasicrystals were rapidly solidified Vi3Ni2 and 

Vi15Ni10Si  alloys. Even though the region of quasicrystal was larger in the second case, still the thin 

rhombus was the occasional defect. The periodicity along the 12-fold direction was equal to 4.5 Å [97]. 

The first stable dodecagonal quasicrystal was synthesized in 1995 in Ta1.6Te [98]. It has a 

20.79 Å period along the 12-fold direction and well-corresponds to the square-triangle tiling in the 
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aperiodic plane. It is regarded as a random tiling structure with a second generation tiles with an edge 

length of 20 Å. 

One of the latest dodecagonal quasicrystals is Mn-rich Mn-Cr-Ni-Si alloy synthesized with an 

electric arc melting technique and later annealed in 700°C [99]. The symmetry of the quasicrystal is 

12/𝑚𝑚𝑚. The atomic model of the quasicrystal was based on the hexagonal approximant phase co-

existing in this system. The comparison of the calculated electron diffraction pattern and measured one 

was in a good agreement. 

Currently, the hot topic when it comes to dodecagonal quasicrystals in the observation of the first 

oxide quasicrystal derived from BaTiO3 [43]. Later the family of oxide quasicrystals was extended for 

SrTiO3 and its periodic approximants [100]. The atomic positions derived from HRTEM images 

correspond well with an ideal Niizeki-Gahler tiling showing the abundance of three tiles: the square, the 

equilateral triangle and thin rhombus in almost ideal frequency [101]. The recent study of the 

orientational distribution of each of the tiles shows an almost ideal agreement with the Niizeki-Gahler 

tiling presenting only 10% deviation from the homogeneous orientational distribution of squares, 

indicating the phasonic disorder in not significant, being a good candidate to investigate by the analytical 

model of phason flips [83]. 

1.4 Motivation and aim of the thesis 

The thesis addresses a very important missing piece in the study of the structure of the icosahedral 

quasicrystal. So far the detailed structure of quasicrystals belonging to two families is known i. e. the 

Mackay and Tsai type quasicrystals. The model of the Tsai-type quasicrystal was introduced for binary 

Cd-Yb in 2007 by Takakura et. al. [62] and extends the cluster shells by the rhombic triacontahedral 

shell becoming a part of a basic building block of the structure with two rhombohedral units filling the 

interstitial structure. The model of Mackay quasicrystal was proposed by Katz and Gratias in 1993 for 

Al-Cu-Fe [102] and is currently modified for the F-type Al-Cu-Ru quasicrystal to also encompass the 

cluster description. Even though the models of icosahedral quasicrystals are so successful, the attempt 

to model the Bergman type quasicrystal with the same principle did not result in a reliable model. The 

most problematic aspect of the structure seems the atomic decoration of the rhombohedra in the 

interstitial part is not unique and depends on the local vertex environment. Independent models of the 

Bergman quasicrystal appeared in the late 80s and early 90s but all faced the same issue – the chemical 

mixing between atomic elements was not physically substantiated [103, 104]. As consequence, models 

were too defected to be considered valid. The motivation was to develop a new model that presents a 

high-quality reliable atomic structure of the Bergman quasicrystal. 

My work introduces two major novelties. First of all, the structure of the P-type Zn-Mg-Tm 

icosahedral Bergman quasicrystal is solved using an innovative theoretical description within the 

framework of the tiling-and-decoration approach [55, 105]. The Ammann-Kramer-Neri tiling [106] is 
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used to find a unique decoration of rhombohedral units that correspond to ab initio structure solution by 

SUPERFLIP software [107]. The very good agreement with the experimental X-ray diffraction was 

achieved. The key point is the higher-dimensional approach was not used in calculations and the 

refinement was fully conducted in the physical space of the crystal. A similar approach has already been 

used for decagonal phases before but is the first instance such an approach was ventured for the 

icosahedral quasicrystal. It is hardly a simple generalization of the approach for 3D quasicrystals 

because both differ in a long-range order. 

Further research is dedicated to the local structure of the F-type Zn-Mg-Hf Bergman quasicrystal. 

This quasicrystal has never been obtained before in a quality adequate for the X-ray single-crystal 

diffraction, therefore my study is the first carried out on a high-quality sample with a synchrotron 

radiation. Even though the thesis does not present a final, infinite structure model of the F-type Bergman 

quasicrystal, I point out several observations of the local structure that can be used I the future as a guide 

for the development of the complete model. 

The calculations were performed in a self-written code prepared in MATLAB software 

environment. To my knowledge, it is the only existing code, beside QUASI07_08 software [108, 109], 

that allows to solve and refine the structure of the icosahedral quasicrystal. 
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2. The mathematical description of quasicrystals 

The structural analysis of aperiodic crystals is a challenging task on the grounds of the 

mathematical apparatus required to carry out the calculations. It is not different in a way it tries to replace 

the kinematical approximation of the diffraction. The reflection intensity is still the square of the crystal 

structure factor calculated for the scattering vector of the reflection. The problem is how to obtain a 

structure factor formula. There are two complementary and yet fundamentally diverse approaches: The 

higher dimensional (𝑛D) approach [110, 111, 112, 113]  and the Average Unit Cell (AUC) approach, 

also called the statistical approach [114, 115, 116]. 

2.1 The higher-dimensional approach 

Following the definition of the quasicrystal introduced in section 1.2 and formula (1.1), the 

electron density of the quasicrystal can be expressed as a Fourier Transform on a ℤ-module. The number 

of basis vectors required in the Fourier spectrum is equal to 𝐷. In the kinematical approach, the structure 

factor is a Fourier Transform of the crystal lattice, therefore the number of basis vectors required to 

index the diffraction pattern is equal to the rank 𝐷 of the quasicrystal. Each vector 𝐤 of the reciprocal 

space is equal to the linear combination of the basis vectors with integer coefficients: 𝐤 =

∑ ℎ𝒊𝐝𝑖
∗𝐷

𝒊=𝟏 , ℎ𝒊 ∈ ℤ. Each basis vector 𝐝𝑖
∗ in a Fourier spectrum of the quasicrystal can be lifted to the 𝑛D 

space, spanning the 𝐕∗ space. The higher-dimensional approach is therefore based on reciprocal space 

information provided by the diffraction experiment. The direct space 𝐕 can be constructed assuming a 

known relation between vectors of a direct and reciprocal space: 𝐝𝑖
∗𝐝𝑗 = 2𝜋𝛿𝑖𝑗. The direct space 𝐕 is 

spanned by vectors 𝐝𝑗 and has a dimension 𝐷 equal to the dimension of the reciprocal space. The linear 

combination of basis vectors 𝐝𝑗 forms a periodic lattice 𝐋 embedded in the 𝑛D space. 

The 𝑛D approach restores all symmetries and correlations of the quasicrystal. The number of 

possible space groups in the 𝑛D space is enormous. Even for 𝑛 = 4 there are 4894 space groups with 

271 point groups [117]. Not all the space groups are practically important. The orientation of the 

symmetry elements in the 𝑛D is defined by the isomorphism of the 3D and the 𝑛D point group. For 

instance, there are only two point groups for quasicrystals with an icosahedral symmetry: 𝑚3̅5̅ of order 

120 and 235 of order 60. Table 1. shows all 11 6D space groups that leave the hypercrystal invariant, 

the point group of which are isomorphous to the two possible icosahedral point groups. So far all known 

quasicrystals were identified to have a 𝑃𝑚3̅5̅ and 𝐹𝑚3̅5̅ symmetry. Complementary space groups exist 

for other types of quasicrystals as well, but since the thesis focuses on the icosahedral quasicrystals 

detail for other classes of aperiodic structures are not presented. 
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Table 1. 3D point groups of order 𝑘 corresponding to 6D space groups with icosahedral 

symmetry [118, 119]. 

3D point group 𝒌 6D space group Reflection conditions 

𝒎𝟑̅𝟓̅ 120 

𝑃𝑚3̅5̅ none 

𝑃𝑛3̅5̅ ℎ1ℎ2ℎ̅1ℎ̅2ℎ5ℎ6: ℎ5 − ℎ6 = 2𝑛 

𝐼𝑚3̅5̅ ℎ1ℎ2ℎ3ℎ4ℎ5ℎ6:∑ℎ𝑖

6

𝑖=1

= 2𝑛 

𝐹𝑚3̅5̅ ℎ1ℎ2ℎ3ℎ4ℎ5ℎ6: ∑ ℎ𝑖 + ℎ𝑗

6

𝑖≠𝑗=1

= 2𝑛 

𝐹𝑛3̅5̅ 
ℎ1ℎ2ℎ3ℎ4ℎ5ℎ6: ∑ ℎ𝑖 + ℎ𝑗

6

𝑖≠𝑗=1

= 2𝑛 

ℎ1ℎ2ℎ̅1ℎ̅2ℎ5ℎ6: ℎ5 − ℎ6 = 2𝑛 

235 60 

𝑃235 none 

𝑃2351 ℎ1ℎ2ℎ3ℎ4ℎ5ℎ6: ℎ1 = 5𝑛 

𝐼235 ℎ1ℎ2ℎ3ℎ4ℎ5ℎ6:∑ℎ𝑖

6

𝑖=1

= 2𝑛 

𝐼2351 ℎ1ℎ2ℎ3ℎ4ℎ5ℎ6:∑ℎ𝑖

6

𝑖=1

= 2𝑛 

𝐹235 
ℎ1ℎ2ℎ3ℎ4ℎ5ℎ6: ∑ ℎ𝑖 + ℎ𝑗

6

𝑖≠𝑗=1

= 2𝑛 

 

𝐹2351 
ℎ1ℎ2ℎ3ℎ4ℎ5ℎ6: ∑ ℎ𝑖 + ℎ𝑗

6

𝑖≠𝑗=1

= 2𝑛 

ℎ1ℎ2ℎ3ℎ4ℎ5ℎ6: ℎ1 = 5𝑛 

 

The symmetry groups that serve the purpose of the structural description of quasicrystals are 

inherently related to the 3D space, because of the isomorphism condition. The knowledge about the 

structure in 3D is essential. Even though the 𝑛D approach allows restoring periodicity we cannot forget 

the 𝑛D embedding is just a mathematical construction and it does not directly translates to the 3D space 

description, even though the relationship can be found. First of all, the space 𝐕∗ can be separated into 

two orthogonal subspaces, preserving the point group symmetry: 𝐕∗ = 𝐄∗∥⊕𝐄∗⊥, where 𝐄∗∥ is called 
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a parallel space and 𝐄∗⊥ is called a perpendicular space (see Fig. 3 for visualization, assuming 𝐕 space 

is 2D). The parallel space is also called the external space or the physical to stress its connection with a 

real space. The parallel space, also called inner or phasonic space, is a space orthogonal to parallel space 

that extends it to restore periodicity. The real space scattering vectors are projections of the 𝑛D vectors 

on the parallel space. The same applies to the direct space but the projection mechanism to obtain a 

quasiperiodic tiling is a little more ambiguous. In general, the projection scheme for the direct space is 

the following. Let 𝐕 be a 𝐷 dimensional linear space. The structure in the 𝑑 dimensional physical space 

𝐄∥ is obtained by projecting a lattice 𝐋 embedded in the space 𝐕. The lattice 𝐋 is spanned by the 𝐷 

dimensional vectors (𝐚1, … , 𝐚𝐷), in addition let 𝛾𝐷 be a unit cell of the lattice 𝐋. Subspace 𝐄∥ ⊂ 𝐕 does 

not contain any point of a lattice, except the origin. Let 𝐒 = 𝐄∥ + 𝛾𝐷 be an open strip in 𝐕, achieved by 

shifting 𝛾𝐷 along 𝐄∥. The union of all the 𝐷 − 𝑑 dimensional facets, fully contained inside a strip 𝐒 

constitutes a 𝐷 − 𝑑 dimensional surface, called the atomic surface (occupation domain, projection 

window), which projected onto 𝐄∥ creates an aperiodic tiling. The space 𝐄⊥ is an orthogonal completion 

of the space 𝐄∥. By orthogonal, the following condition is understood: if 𝐞 ∈ 𝐄∥ and 𝐞′ ∈ 𝐄⊥ than the 

inner product  𝐞 ∙  𝐞′ = 0. If the aperiodic tiling is considered canonical, the projection 𝐊 of the strip 𝐒 

onto 𝐄⊥ is the projection of 𝛾𝐷. As it was stated, 𝐄∥⋂𝐋 = 0, therefore a direct correspondence between 

vertices of quasiperiodic tiling and points in 𝐄⊥ exists. The projection 𝐊 is injective, therefore each 

vertex of the tiling is unambiguously related to one point in the space 𝐄⊥. The condition 𝐄∥⋂𝐋 = (0) 

means the slope of the projection strip 𝐒 is irrational. Apart from its consequence in the projection being 

injective, there is also another issue. Let  𝐄∥⋂𝐋 = 𝛂, where 𝛂 is the arbitrary point in the superspace. 

For two different 𝛂s two different distributions of points in the parallel space will be retrieved. However, 

all the tilings that are projected for the parallel space at different perpendicular space position are locally 

isomorphic, therefore possess identical diffraction patterns. The shift in the superspace is the same as if 

a common global phase was ascribed to each amplitude of the structure factor. Since the diffraction 

intensity is proportional to the squared structure factor, the global phase cancels out. More about the 

local isomorphism for the icosahedral tiling is in §3. In general, the projection of the parallel space does 

not have to be done on the basis of the strip defined by the unit cell 𝛾𝐷. In general, the shape of the 

atomic surface can be arbitrary, realizing a different local isomorphism. A great example is the Penrose 

tiling that is generated by a projection from a 5D space with the atomic surface being four pentagons. If 

for the same 5D space four pentagons will be replaced by five polygons: 2 pentagons and 3 decagons 

the General Penrose Tiling, not belonging to Penrose Local Isomorphism, can be generated [120, 121] 

(Fig. 4 [122]). The shape of the occupation domain is in this case defined by the section of five planes, 

perpendicular to the 𝑧⊥ direction, through the rhombicosahedron embedded in a perpendicular space of 

the 5D space. If cutting planes pass through its vertices a simple Penrose Tiling is generated. However, 

when the section planes are shifted along the 𝑧⊥ a whole class of Generalized tilings is constructed. Only 
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one parameter, a shift parameter distinguishes all the tilings. The shift parameter is usually given as 

normalized to be in the region [0, 1). 

The projection method, described above, is equivalent to the section method [113]. In every 

point of the lattice 𝐋, the atomic surface, embedded in the space 𝐄⊥, is located. The aperiodic tiling is 

constructed by points of the intersection of the parallel space 𝐄∥ with the atomic surface. Both methods 

are complementary but the section method is more intuitional to be utilized in practice. It is best 

explained by the following example of the 𝑛D embedding of the CdYb icosahedral quasicrystal. In Fig. 

3 the section, containing 5-fold axes, through a 6D electron density map of the CdYb quasicrystal is 

shown (two perpendicular directions: [1000000] and [011111] define figure axes). Three occupation 

domains are presented: vertex-, edge- and body-centered (respectively marked V, E, and B in the figure). 

In the section method whenever parallel space 𝐄∥ is intersected by the occupation domain, it corresponds 

to an atom in the physical space. It can be specifically known which atom is generated by which 

occupation domain. In the projection method, the information about the origin of the atomic position is 

lost because all the occupation domains are basically projected onto the 𝐄⊥ forming one, big occupation 

domain. In addition, the information about the location of each occupation domain in the superspace is 

lost. It is essential to calculate the structure factor. The relative location of each occupation domain with 

respect to each other introduces a phase to the structure factor that does not cancel out when absolute 

value is taken. It is not a global phase. For these reasons, the section method is more practical, whereas 

the projection method is very useful to grasp a basic intuition about the 𝑛D approach. 
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Figure 3. Top: The graphical representation of the projection method (left) and the section method 

(right). Details are explained in the text. Bottom: The section through the 6D electron density of the i-

CdYb quasicrystal contaiing 5-fold directions. Three occupation domains marked V, E, and B are 

highlighted within a 6D unit cell (red rectangle). 
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Figure 4. The General Penrose Tiling constructed for the shift parameter equal to 0, that 

constitutes a simple Pentose Tiling (a)) and for shift equal to 0.5 (b)). The shift parameter defines the 

position of the section planes through a 3D that is embedded in the perpendicular space of the decagonal 

quasicrystal. Source: figure based on the images found in [123, 122] 

 

2.2 The Average Unit Cell approach 

The first record of the AUC approach dates back to 1991 when Janusz Wolny in his habilitation 

book briefly proposed an analysis of aperiodic systems in reference to the periodic lattice that was 

constructed for a selected wave vector of the reciprocal space [116]. It was unfortunately only available 

in polish language. The first article about AUC, that appeared in an international journal, was published 

in 1998 [114]. 

The basic idea of the AUC is very different from the 𝑛D approach. The periodicity of the 

quasicrystal, in the higher dimensional analysis, is restored by lifting the structure to superspace, 

spanned by the set of basis vectors of the 3D reciprocal space, that form a ℤ-module. In the AUC the 

periodicity is imposed by the introduction of the periodic reference lattice. The reasoning standing 

behind such a construction is the following. Each atom of the quasicrystal occupies a certain position in 

the physical space. The arrangement is ordered, even though it is incompatible with periodicity. Since 

it is not ordered periodically it can be enforced by overlaying the structure with a periodic lattice. In 

general, the vectors that the lattice is built upon do not have to be orthogonal. It is however convenient 
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when the orthogonal system is chosen. By considering the atomic arrangement within each consecutive 

unit cell it could seem like there is no pattern and atoms appear to randomly choose the position inside 

of the unit cell of the reference lattice. The deeper analysis brings different conclusions. On average, the 

distribution of atomic coordinates within the unit cell forms a pattern dependent on the geometry of the 

quasicrystal. The arose distribution is called the Average Unit Cell as the information about the structure 

is not kept in each of the unit cells of the reference lattice, but after reducing all the unit cells into one, 

that expresses the statistic within the structure. 

Just like the occupation domain in the 𝑛D approach, the statistical distribution of the atomic 

coordinates is the mathematical object containing all structural information. The distribution is 

constructed by projecting atomic coordinated onto the periodic reference lattice, with a lattice constant 

𝜆𝑘 related to the length 𝑘 of the scattering vector 𝐤 according to the equation 𝜆𝑘 = 2𝜋𝑘
−1. The scattering 

vector can be arbitrarily selected from the reciprocal space of the quasicrystal but for the distribution to 

be related to Bragg peaks, the scattering vector also must indicate the Bragg reflection. It is possible to 

analyze the diffusive component of the Fourier spectrum by choosing the scattering vector away from 

the Bragg peak but it will be no further discussed. The distribution constructed for the scattering vector 

𝐤 will allow calculating the structure factor for all scattering vectors equal to 𝑛𝐤, where 𝑛 ∈ ℤ. The 

coordinate 𝑢 in the reference lattice of the 𝑗th atom is denoted as 𝑢𝑗 and is calculated using the coordinate 

𝑥𝑗: 

 

 𝑢𝑗 = 𝑥𝑗mod 𝜆𝑘. (2.1) 

 

The coordinate 𝑥𝑗 is calculated in the direct space in the direction given by the vector 𝐤. Equation 

(2.1) simply says that the new coordinate 𝑢𝑗 is the distance of the coordinate 𝑥𝑗 from the nearest node 

of the reference lattice (see Fig. 5 for a visualization). The reminder given by modulo operation is exactly 

this distance. The important point is the coordinates of atoms must be expressed in the basis of the 

reciprocal space vectors chosen for the construction of the reference lattice. The easiest choice is when 

selected vectors are collinear with an already existing basis. The coordinates after modulo projection are 

limited to the region [−𝜆𝑘/2, 𝜆𝑘/2 ). Any other region is also correct as long as its length is equal to 𝜆𝑘. 

It is similar to the position of the occupation domain in the perpendicular space. The shift of the 𝑢 

coordinates region is only a global phase that is insignificant during the structure factor calculations. 

The distribution of 𝑢𝑗 coordinates in the 𝑢 space defines the distribution 𝑃(𝑢) which gains probabilistic 

interpretation after the normalization. For quasicrystals, the distribution 𝑃(𝑢) is not enough to determine 

the structure factor. The crystal structure of quasicrystal is a two length-scale structure, therefore each 

vector of the reciprocal space can be represented as a sum of two vectors: the main 𝐤0 and the 

modulation vector 𝐪0, therefore 𝐤 = 𝑛𝐤0 +𝑚𝐪0, 𝑛,𝑚 ∈ ℤ. Here, the scaling 𝜉 of the crystal structure 
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is best visible as 𝑘0/𝑞0 = 𝜉. For icosahedral and decagonal quasicrystals 𝜉 = 𝜏 = (1 + √5)/2. The 

reference lattice must be constructed both for 𝐤0 and 𝐪0, which are collinear. Coordinates related to the 

reference lattice constructed for 𝐪0 are customarily denoted as 𝑣 and the coordinate of the jth atoms is 

𝑣𝑗. The complete information about the structure with two length-scales is stored in the two-parameter 

distribution 𝑃(𝑢, 𝑣). The number of required parameters is equal to the rank of the quasicrystal. In most 

applications there exist a mutual relation between 𝑢 and 𝑣 coordinates that can be expressed by a simple 

function. It is related to the scaling property between the main and the modulation vector. The existence 

of the relation 𝑣(𝑢) imposes the simplification of the statistical distribution. The distribution is non-zero 

in a region of the 𝑢𝑣 space that realizes the 𝑣(𝑢) relation which is a set of curves or a single curve in 

the simplest case. Therefore the distribution 𝑃(𝑢, 𝑣) can be replaced by the marginal distribution 𝑃(𝑢) 

only with the addition of the scaling relation 𝑣(𝑢). What is referred to as the AUC in the statistical 

description is exactly the marginal distribution. To show the basic idea of the structure factor calculation 

in the AUC method let’s consider a 1D example. Let 𝐤 = 𝑛𝐤0 +𝑚𝐪0, 𝑛,𝑚 ∈ ℤ. Since 𝐤0 and 𝐪0 are 

collinear vectors the notation can be replaced by norms of the vectors: 𝑘 = 𝑛𝑘0 +𝑚𝑞0. The structure 

factor formula is: 

 

 

𝐹(𝑛𝑘0 +𝑚𝑞0) =∑𝑓𝑗(𝑘) exp(𝑖(𝑛𝑘0 +𝑚𝑞0) 𝑥𝑗)

𝑁

𝑗=1

, (2.2) 

 

where 𝑓𝑗(𝑘) is the atomic scattering factor of jth atom and 𝑁 is the number of atoms. By using 

formula (2.1) for the reference lattice with a lattice constant 𝜆𝑘0 associated with the vector 𝐤0 and the 

reference lattice with a lattice constant 𝜆𝑞0 linked to the vector 𝐪0 equation (2.2) can be modified.  First 

of all, the coordinate 𝑥𝑗 must be derived from (2.1), where 𝑥𝑗 is pulled from the equation: 

 

 𝑥𝑗 = 𝑙𝜆𝑘0 + 𝑢𝑗, 𝑥𝑗 = 𝑝𝜆𝑞0 + 𝑣𝑗, 𝑙, 𝑝 ∈ ℤ. (2.3) 

 

The (2.3) cane by used to substitute 𝑥𝑗 in a formula (2.2), keeping in mind that 𝑘0 = 2𝜋/𝜆𝑘0 

and 𝑞0 = 2𝜋/𝑞𝑘0: 

 

 

𝐹(𝑛𝑘0 +𝑚𝑞0) =∑𝑓𝑗(𝑘)exp(𝑖
2𝜋

𝜆𝑘0
𝑛(𝑙𝜆𝑘0 + 𝑢𝑗) + 𝑖

2𝜋

𝜆𝑞0
𝑚(𝑝𝜆𝑞0 + 𝑣𝑗))

𝑁

𝑗=1

.

= ∑𝑓𝑗(𝑘) exp(𝑖𝑛𝑘0𝑢𝑗 + 𝑖𝑚𝑞0𝑣𝑗))

𝑁

𝑗=1

. 

(2.4) 
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If the number of atoms is large, the summation can be replaced by integration in the region of 

the AUC for a specific type of atom. If there are 𝑔 types of atom, than: 

 

 

𝐹(𝑛𝑘0 +𝑚𝑞0) =∑𝑓𝑔(𝑘)

𝑔

∫ 𝑃(𝑢)𝑔exp (𝑖𝑛𝑘0𝑢 + 𝑖𝑚𝑞0𝑣(𝑢))

𝐴𝑈𝐶

 (2.5) 

 

where 𝑃(𝑢)𝑔 is the distribution of the 𝑔 atom. If there is only one atom type in terms of the 

scattering form factor, then 

 

 

𝐹(𝑛𝑘0 +𝑚𝑞0) = 𝑓(𝑘) ∫ 𝑃(𝑢) exp(𝑖𝑛𝑘0𝑢 + 𝑖𝑚𝑞0𝑣(𝑢))d𝑢 .

𝐴𝑈𝐶

 (2.6) 

 

In further formulas I will assume 𝑓(𝑘) = 1 as it does not change general conclusions. According 

to formula (2.6), a whole Fourier spectrum can be obtained by the Fourier Transform of the distribution 

𝑃(𝑢), assuming relation 𝑣(𝑢). For icosahedral quasicrystal the 𝑣(𝑢) = −𝜏2𝑢 for each reciprocal space 

vector necessary to obtain a complete statistical distribution. The statistical distribution of the 

icosahedral quasicrystal is 𝑃(𝐮, 𝐯), where 𝐮 = [𝑢𝑥, 𝑢𝑦 , 𝑢𝑧] and 𝐯 = [𝑣𝑥, 𝑣𝑦, 𝑣𝑧], therefore three main 

and three modulation vectors are needed. 

If the linear scaling relation 𝑣(𝑢) = −𝜏2𝑢 is used in (2.6), then 

 

 

𝐹(𝑛𝑘0 +𝑚𝑞0) = ∫ 𝑃(𝑢) exp(𝑖𝑛𝑘0𝑢 − 𝑖𝑚𝑞0𝜏
2𝑢)d𝑢

𝐴𝑈𝐶

= ∫ 𝑃(𝑢) exp(𝑖𝑘0(𝑛 − 𝜏𝑚)𝑢)d𝑢 =

𝐴𝑈𝐶

∫ 𝑃(𝑢) exp(𝑖𝑤𝑢)d𝑢

𝐴𝑈𝐶

= 𝐹(𝑤) 

(2.7) 

 

Formula (2.7) shows that (𝑛,𝑚) the Fourier mode of the structure can be calculated as the 

Fourier Transform of the distribution 𝑃(𝑢) for the vector  𝑤 = 𝑘0(𝑛 − 𝜏𝑚). The vector 𝑤 is called a 

reduced vector and is used to plot the so-called envelope function (Fig. 5). The distribution 𝑃(𝑢) is a 

dense, uniform distribution for quasicrystalline tilings, therefore its Fourier Transform has a shape of 

the sine cardinal function. All the peaks from the diffraction pattern can be collapsed to this envelope 

function in the same way as all the atoms of the structure can be collapsed to one AUC. The envelope 
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function is very useful to show the effect of disorder on the diffraction pattern in quasicrystals or even 

to find the phases of the experimental diffraction peaks. 

 

 

Figure 5. a): The visualization of the projection scheme of the atomic coordinates onto the 

periodic reference lattice. Two lattices: one corresponding to vector 𝐤0 and the second to 𝐤 = 𝐪0 are 

shown; b) The 𝑃(𝑢, 𝑣) distribution of the 1D quasicrystals. It is a uniform distribution along a straight 

line in a 𝑢𝑣 space. Marginal distributions 𝑃(𝑢) and 𝑃(𝑣) are also plotted; c) The envelopes plotted upon 

the diffraction peaks. It can be seen that the envelope is generated by only the part of the distribution 

that does not touches the boundaries of the reference lattice; d) the envelope function of the uniform 

distribution – sine cardinal function. The intensity varies with the introduciton of the phason disorder, 

therefore the shape of the envelope function can be used to distinguis strucutres with different magnitude 

of disorder; e) the 𝑣(𝑢) relation frequently encountered in quasicrystals with a frobidden symmetry. 

 

The AUC approach was used to find the structure factor of simple 1D quasicrystal [124], 

modulated structure [29], the Penrose tiling [125] and also the Ammann-Kramer-Neri tiling [126]. 

Several decagonal quasicrystals were solved based on the AUC approach by assigning the atomic 

decoration to rhombuses constituting the aperiodic tiling [127, 82]. In addition, thanks to the 

a) 

b) 

c) 

d) e) 
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probabilistic interpretation of the distribution function in the AUC, the new approach to the phason 

disorder was developed, assuming a statistical character of phason rearrangement in the tiling [128, 129, 

130]. The statistical analysis of quasicrystals is a powerful tool that requires more attention. 

 

2.3 The Correspondence between the AUC and the nD approach 

The 𝑛D approach is the most frequently used method to construct the model of the quasicrystal. 

The role of an atom in this approach is played by the occupation domain – a multidimensional object 

that is extended in the perpendicular space. In the physical space, it is represented by a single point. This 

point becomes an atom in the projected structure if the occupation domain crosses the parallel space. 

Due to the finite resolution of the experiment, the occupation domain in the section through the electron 

density map shows some smearing along the parallel space. The occupation domain can be, in general, 

placed in any position within the unit cell of the 𝑛D periodic lattice. As a consequence, similarly to 

periodic structures, apart from a primitive lattice also face-centered and body-centered lattices are 

possible, even though only a primitive and face centered are experimentally proven. 

It can be shown that the AUC is an oblique projection of the atomic surface onto the physical 

space. For that reason, the occupation domain acquires a physical interpretation, which states that the 

occupation domain is a probability distribution 𝑃(𝑢) lifted up to higher dimensions. As long as the 

multidimensional superspace exists for a given system, the two approaches are equivalent. This is true, 

for instance for model structures like the Penrose tiling or Fibonacci chain. On the other hand, there are 

numerous systems where multidimensional analysis cannot be used, however the AUC still can be 

constructed. The simple case is a structure disordered by phonons or a Thus-Morse sequence with a 

singular-continuous Fourier Spectrum. The higher dimensional approach works only for the Bragg peaks 

and sinc the Thus-Morse sequence does not have them, it cannot be utilized [131]. The AUC can be 

constructed for an arbitrary scattering vector, therefore the method does not cease to be applied. 

The proof that the AUC is a projection of the occupation domain is simple and now will be 

carried out for a 1D structure with a 𝜏 scaling, which is lifted to 2D superspace. The following relation 

is true: 

 

 𝐺 ∙ 𝑟 = 𝑘∥𝑥∥ + 𝑘⊥𝑥⊥ = 0, (2.8) 

   

where 𝐺 = [𝑘∥, 𝑘⊥] and 𝑟 = [𝑥∥, 𝑥⊥]. The relation (2.8) uses the orthogonality condition 

between vectors of the direct and reciprocal space. Let’s now expand the parallel components of 

equation (2.8) using formula (2.1) and in the same time 𝑘∥ = 𝑛𝑘0∥ +𝑚𝑞0∥, 𝑘⊥ = 𝑛𝑘0⊥ +𝑚𝑞0⊥: 
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 𝑘∥𝑥∥ = 𝑛𝑘0∥(𝑙𝜆𝑘0∥ + 𝑢) + 𝑚𝑞0∥(𝑙𝜆𝑞0∥ + 𝑣). (2.9) 

 

Let’s use the relation between the lattice constant and the length of the scattering vector: 

 

 𝑘∥𝑥∥ = 𝑛𝑘0∥𝑢 +𝑚𝑞0∥𝑣. (2.10) 

 

Any component of (2.10) that gave the integer multiplicity of 2𝜋 was removed as it is irrelevant 

when it comes to the structure factor calculation (i.e. it does not change the exponent). Let’s substitute 

(2.8) with (2.10) and group components with respect to the peak index: 

 

 𝑛𝑘0∥𝑢 +𝑚𝑞0∥𝑣 + 𝑛𝑘0⊥𝑥⊥ +𝑚𝑞0⊥𝑥⊥

= 𝑛(𝑘0∥𝑢 + 𝑘0⊥𝑥⊥) + 𝑚(𝑞0∥𝑣 + 𝑞0⊥𝑥⊥) = 0. 
(2.11) 

 

The relation (2.11) must be true for all the indices, therefore each bracket must be equal to 0: 

 

 
𝑘0∥𝑢 + 𝑘0⊥𝑥⊥ = 0 → 𝑢 = −

𝑘0⊥
𝑘0∥

𝑥⊥, 

𝑞0∥𝑣 + 𝑞0⊥𝑥⊥ → 𝑣 = −
𝑞0⊥
𝑞0∥

𝑥⊥. 

(2.12) 

 

From (2.12) it is evident, that coordinates in the AUC approach are proportional to 

corresponding coordinates in the 𝑛D (see Fig. 6 [132]). The proportionality coefficients 
𝑘0⊥

𝑘0∥
 and 

𝑞0⊥

𝑞0∥
 

define a slope of the line along which the projection of the perpendicular coordinate onto the physical 

space is performed. The value of the coefficient is not unique and depends on the scattering vector 

chosen for the construction of the reference lattice. As a consequence, even though the shape of the 

occupation domain is uniquely determined for a particular structure, there exists an infinite family of 

probability distributions associated with the structure.  

Equation (2.12) can be also used to prove the scaling relation 𝑣(𝑢) = −𝜏2𝑢. The proof starts by 

combining equations (2.12) for 𝑢 and 𝑣 by deriving 𝑥⊥: 

 

 
𝑣 =

𝑘0∥
𝑘0⊥

𝑞0⊥
𝑞0∥

𝑢. (2.13) 
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It was already stated that the scaling between the main vector and the modulation vector is equal 

to 𝜏, therefore 𝑘0∥/𝑞0∥ = 𝜏. Now we have to derive 𝑞0⊥/𝑘0⊥. It is done as follows. The reciprocal space 

vector 𝐺 is equal to: 

 

 

𝐺 = (
𝑘∥
𝑘⊥
) = (

𝑘0∥ 𝑞0∥
𝑘0⊥ 𝑞0⊥

)
⏞        

𝐆m

(
𝑛
𝑚
). 

(2.14) 

 

There are two row vectors in the projection matrix 𝐆m: (𝑘0∥, 𝑞0∥  ) and (𝑘0⊥, 𝑞0⊥ ). Since they 

scan the reciprocal space their inner product must be equal to 0 (for orthogonal basis): 

 

 (𝑘0∥, 𝑞0∥ ) ∙ (𝑘0⊥, 𝑞0⊥ ) = 𝑘0∥𝑘0⊥ + 𝑔0∥𝑞0⊥ = 0 →
𝑘0∥

𝑔0∥
=

−
𝑞0⊥

𝑘0⊥
= 𝜏.  

(2.15) 

 

By substituting (2.15) to (2.13): 

 

 𝑣 = −𝜏2𝑢. (2.16) 

 

Equation (2.16) expresses the scaling relation 𝑣(𝑢) used in equation (2.7). That concludes the 

proof. 

The equivalence of the AUC and the 𝑛D approach creates a possibility to exploit the best 

properties of each approach at the same time [133]. The AUC approach is not useful to construct the 

aperiodic tiling since it is constructed for an already existing structure. However, it provides a necessary 

interpretation of the occupation domain in the context of the physical space, namely it represents a 

probability of finding atoms in a specific environment. The probabilistic interpretation of the occupation 

domain helps to analyze the statistic of the structure, which is the only feature derived in the diffraction 

experiment and the study based on the Bragg peaks. After the aperiodic tiling is generated with the direct 

projection method from the superspace, the obtained positions in the physical space do not need to be 

additionally projected onto the reference lattice of the AUC to carry out the statistical analysis. The 

occupation domain, as equivalent to the distribution function, can be used without losing any necessary 

information.   
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Figure 6. The relation between the occupation domain (atomic surface, denoted as AS) and the 

AUC. The AUC can be considered as a projection of the AS onto the physical space. The projection is 

defined by the choice of the reciprocal space vector for which the reference lattice is construcuted. The 

figure clearly shows the relations between 𝑢 and 𝑥⊥ coordinates. Source: [132] 
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3. The Ammann-Kramer-Neri tiling 

Currently, only one 3D tiling is used as a quasilattice for the icosahedral quasicrystal. The tiling 

is frequently called a 3D Penrose tiling, even though Sir Roger Penrose was not involved in its 

construction nor study. It is due to their similarities: both manifest the same 𝜏 scaling, where 𝜏 is a 

golden mean ratio; both are built of two units, geometrically very similar and finally, the section through 

the 3D Penrose tiling, perpendicular to 5-fold axis, gives the Penrose tiling. The 3D Penrose tiling is 

also called Ammann tiling or nowadays Ammann-Kramer-Neri tiling (AKNt), which is a name adapted 

for the thesis, to honor original researchers involved in the studies of the tiling [106]. Among tilings 

with icosahedral symmetry, there is also a so-called Socolar-Steinhardt tiling [134] that originally was 

shown to be generated by the generalized dual method [135] that is related with a grid projection method 

by de Bruijin [136]. Recently a recursive growth procedure based on the inflation rules that were used 

to construct quasiperiodic tiling from the very beginning [20], was proposed [137], that allows 

calculating the structure factor [138]. That makes it a valid alternative for the superspace approach. 

However, now the Socolar-Steinhardt tiling is not explored as a quasilattice for icosahedral structures 

explicitly, as standard methods are enough successful.  

The AKNt is composed of two kinds of prototiles: a prolate and an oblate rhombohedron with 

equal edge length 𝑎𝑟 (Fig. 7). The faces of rhombohedra have the shape of a rhombus with an acute 

angle 𝜃 = atan(2) = 63.44°. The volumes of both units (𝑉𝑝 for prolate and 𝑉𝑜 for oblate) are: 𝑉𝑝 =

4

5
𝑎𝑟
3sin

2𝜋

5
 and 𝑉𝑜 =

4

5
𝑎𝑟
3sin

𝜋

5
. The ratio between the volumes  𝑉𝑝/𝑉𝑜 = 𝜏. As it was already mentioned, 

𝜏 = (1 + √5)/2 is equal to the golden mean ratio, being a characteristic scaling for decagonal and 

icosahedral quasicrystals. Some 1D aperiodic structures are classified as quasicrystals instead of 

modulated structures just because they exhibit 𝜏 scaling. It signifies the importance of the scaling in the 

structural analysis. Another important property, associated with scaling, is the relative frequency of each 

unit to appear in the tiling. The prolate-to-oblate rhombohedron ratio is also equal to 𝜏. As a 

consequence, the point density 𝐷𝑝, which is equal to number of vertices (atoms) in the tiling divided by 

the volume is equal to 𝐷𝑝 =
𝜏+1

𝜏𝑉𝑝+𝑉𝑜
=

𝜏

𝑎𝑟
3 sin

2𝜋

5
. The point density is used in the structure analysis as a 

space-filling parameter that indicates whether some atoms are missing in the structure model. 
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Figure 7. Two units of the AKNt: prolate (red) and oblate (green) rhombihedron. 

 

In order to construct any aperiodic tiling, the rule of assembling units must be known. Such rules 

are called matching rules and indicate the most favorable local configurations. There is a rule of 

connecting to rhombohedra, discovered by Robert Ammann [22]. However, the rules are known to be 

at least weak matching rules that enforce a quasicrystalline order [139]. Whether they are perfect 

matching rules, i.e. enforce a single local isomorphism class, is still not rigorously proven, even though 

they can be used in force growth of the perfectly ordered icosahedral quasicrystal when seeded with a 

cluster [140]. 

The question of a local isomorphism has both a mathematical and a physical significance. The 

quasicrystal packings belonging to two different local isomorphism classes have a different local 

arrangement of unit tiles. Structures obtained as a decoration of the unit tiles will have different local 

atomic environment. In addition, two tilings belonging to different local isomorphism class can have 

diffraction peaks in the same positions of the reciprocal space but different intensities. Last but not least, 

they differ by the free-energy. Since the entropy of the quasicrystal depends on the number of units 

rearrangements it must be counted in the same local isomorphism. Two tilings are locally isomorphic if 

any finite region in either tiling exists somewhere in the other. 

The perfect matching rules are proven for the Socolar-Steinhardt tiling, associated with Ammann 

tilings, built of four zonohedra and not two rhombohedra. Those four zonohedra are: rhombic 

triacontahedron, rhombic icosahedron, rhombic dodecahedron and prolate rhombohedra (Fig. 8). Each 

shape comes from ascribing a unit cell to each singularity type occurring in a Fibonacci hexagrid 

obtained by a grid-projection method. Each plane of the hexagrid is defined by the equation 𝐫𝐞𝑛 = 𝑁 +

𝛼𝑛 + 1/𝜏⌊𝑁/𝜏 + 𝛽𝑛⌋, where 𝐞𝑛 are vectors of the icosahedral setting and 𝛼𝑛 =
1

𝜏
, 𝛽𝑛 = −1/2,𝑁𝜖ℤ. 

The singular point of the hexagrid is a point where more than three planes intersect. The cell dual to a 

singularity is composed of vertices that are generated by points dual to open regions in a grid space, that 

surrounds the singularity. In a hexagrid there exist a sixfold singularity. The dual shape is exactly a 
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rhombic triacontahedron. A rhombic icosahedron is related to a fivefold singularity, whereas a rhombic 

dodecahedron comes from a dual to a fourfold singularity. The prolate rhombohedra are generated by 

non-singular intersections. The infinite tiling of zonohedra can be constructed by assembling units along 

hexagrid planes, called  Ammann planes in the context of the Ammann tiling, or by decomposition rules 

(inflation/deflation rules). The decoration of each zonohedron by Ammann planes is simple, i.e. there 

exists only one, unique decoration. The matching rules for zonohedra come from the demand that two 

neighboring units match face to face and the planes that decorate each zonohedron continue along the 

same plane across the interface. 

 

Figure 8. Four zonohedra in the Socolar-Steinhardt tiling. From left: prolate rhombohedron, 

rhombic dodecahedron, rhombic icosahedron and rhombic triacontahedron. 

 

The tiling with zonohedra as units do not have an oblate rhombohedron among them. However, 

each zonohedron is a polyhedron that can be decomposed into fundamental rhombohedra: prolate and 

oblate. Rhombic triacontahedron is built out of 10 oblate and 10 prolate rhombohedra, rhombic 

icosahedron out of 5 prolate and 5 oblate rhombohedra and finally rhombic dodecahedron require two 

units of each type. Such a decomposed tiling can be obtained by a projection method. The Ammann 

plane decoration of zonohedra can be viewed therefore as a decoration of oblate and prolate 

rhombohedra. There is one problem with finding such a decoration. For instance, two prolate 

rhombohedra, depending on a local environment can be decorated in a different way by Ammann planes, 

therefore there is no one, single rule of decomposing rhombohedra or assembling them into the infinite 

tiling. It is directly connected to the decomposition of the zonohedra into rhombohedra. Namely, the 

decomposition can be done in numerous ways. Let’s consider a rhombic dodecahedron, that is generated 

by the fourfold singularity. It can be decomposed into two prolate and two oblate rhombohedra. At the 

same time, rhombic dodecahedron is the basic geometry that produces a phason flip site. Phason flip is 

a shift of one site, that changes the inner pattern of the geometry but leaves the exterior intact. In Fig. 9 

the position A can be shifted to the position A’. Even though the faces of the rhombic dodecahedron stay 

intact the interior arrangement of rhombohedra is an inversion of original with respect to the geometric 

center of the rhombic dodecahedron. Therefore the decomposition of it can be done in two ways, that 

brake local order. It is known that phason flip changes the intensities of the diffraction pattern, therefore 
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the zonohedra tiling can, in general, be decomposed into tilings that can be distinguished by their 

diffraction pattern. The Socolar-Steinhardt tiling, even though belongs to the class of Ammann tilings 

is not locally isomorphic to the tiling obtained by the projection method.  

 

Figure 9. The rhombic dodecahedron that constitutes a basic phason flip geometry in the 

icosahedral lattice. The flip of the postion A to position A’ leaves the outer shape intact but changes an 

inner configuration of the rhombohedra. 

 

3.1 The reciprocal and direct space of the icosahedral quasicrystal 

The AKNt is a tiling with icosahedral symmetry therefore, it can serve as a quasilattice for the 

structure solution of the icosahedral quasicrystal. The diffraction pattern of the icosahedral quasicrystal 

can be indexed with a sextet of integers, therefore each diffraction vector 𝐆 = ∑ ℎ𝑖𝐚𝑖
∗𝟔

𝑖=1 , ℎ𝑖 ∈ ℤ and 𝐚𝑖
∗ 

are the vectors in a 3D reciprocal space that form a ℤ-module. There are several indexing schemes in 

use, therefore one has to keep in mind the used indices can refer to different indexation schemes. 

Elser’s indexation scheme is among the most popular [112]. In this setting the reciprocal basis 

vectors 𝐚𝑖
∗ are directed from the center toward the vertices of icosahedron: 

 

 𝐚1
∗ = 𝑎∗(0 0 1),  

𝐚𝑖
∗ = 𝑎∗(sin(𝜃)cos(2𝜋𝑖/5) sin(𝜃)sin(2𝜋𝑖/5) cos (𝜃)),

𝑖 = 2,… , 6, 

(3.1) 

 

with  tanθ = 2, where 𝜃 is the angle between two adjacent axes, 𝑎∗ = |𝐚𝑖
∗|. Vectors 𝐚𝑖

∗ can be 

considered parallel space projections of the basis vectors 𝐝𝑖
∗ of the 6D reciprocal space 𝐕∗: 

 

A A’ 
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𝐝1
∗ = 2𝜋𝑎∗

(

  
 

0
0
1
0
0
1)

  
 
,  𝐝𝑖

∗ = 2𝜋𝑎∗

(

 
 
 

s𝜃cos(2𝜋𝑖/5) 

s𝜃sin(2𝜋𝑖/5)
1

−s𝜃cos(4𝜋𝑖/5)

−s𝜃sin(2𝜋𝑖/5)
−c𝜃 )

 
 
 
, 𝑖 = 2,… , 6, (3.2) 

 

where s𝜃 ≡ sin𝜃 and c𝜃 ≡ cos𝜃. Each vector  𝐝𝑖
∗ has parallel and perpendicular space 

components:  𝐝𝑖
∗ = (𝐚𝑖

∗∥, 𝐚𝑖
∗⊥). Here 𝐚𝑖

∗∥ ≡ 𝐚𝑖
∗; the ‘∥’ was written to emphasize that the first three 

coordinates of the vector  𝐝𝑖
∗ always represent the parallel space components of the 6D vector and three 

last elements belong to the perpendicular space. It is also valid for the direct space notation. The direct 

6D basis can be obtained as a result of the orthogonality condition: 

 

          

 

𝐝1 = 𝑎𝑟

(

  
 

0
0
1
0
0
1)

  
 
,  𝐝𝑖 = 𝑎𝑟

(

 
 
 

s𝜃cos(2𝜋𝑖/5) 

s𝜃sin(2𝜋𝑖/5)
1

−s𝜃cos(4𝜋𝑖/5)

−s𝜃sin(2𝜋𝑖/5)
−c𝜃 )

 
 
 
, 𝑖 = 2,… , 6, (3.3) 

 

where 𝑎𝑟 =
1

2𝑎∗
 is the length of the edge of the rhombohedral unit. The direct and reciprocal 

lattice parameters are: 

 | 𝐝𝑖
∗| = 𝑎∗√2, 𝛼𝑖𝑗 = 90°, 𝑖, 𝑗 = 1,… , 6 

| 𝐝𝑖| = 𝑎
∗√2, 𝛼𝑖𝑗 = 90°, 𝑖, 𝑗 = 1,… , 6 

(3.4) 

 

The angle 𝛼𝑖𝑗 between each of two basis vectors of the direct and the reciprocal space is equal 

to 90° therefore the 6D unit cell is a hypercube. The volume of the hypercube is: 

 

 
𝑉 = 𝑎6𝐷

6 = | 𝐝𝑖|
6 = (

1

𝑎∗√2
)
6

= (𝑎𝑟√2)
6
, (3.5) 

 

where 𝑎6𝐷 is a lattice constant of the 6D lattice. It is evident that 𝑎6𝐷 = 𝑎𝑟√2. 

Alternatively, there exists another common setting of the reciprocal basis [108]. The same six-

star of reciprocal basis vectors is used, however in a different orientation. It is a Cartesian coordinate 

system oriented along twofold axes of the icosahedron: 
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𝐖𝑝
∗ =

2𝜋𝑎∗

√𝜏 + 2

(

  
 

1 𝜏 𝜏 0 −1 0
𝜏 0 0 1 𝜏 1
0 1 −1 −𝜏 0 𝜏
𝜏 −1 −1 0 −𝜏 0
−1 0 0 𝜏 −1 𝜏
0 𝜏 −𝜏 1 0 −1)

  
 
, (3.6) 

 

where each column of the matrix 𝐖𝑝
∗ represents one vector 𝐝𝑖

∗ expressed in the coordinate 

system oriented along twofold axes. It must be stated once more, that the indices used in this setting are 

exactly the same as in the former setting; only the orientation of the coordinate system has changed. The 

projection matrix 𝑴 between those two coordinates system is the following: 

 

 

𝑴 = (

cos𝜋/10 sin𝜋/10 0
−cos𝜃/2sin𝜋/10 cos𝜃/2cos𝜋/10 sin𝜃/2
sin𝜃/2sin𝜋/10 −sin𝜃/2cos𝜋/10 cos𝜃/2

), 
 

(3.7) 

 

where the column vector must be multiplied from the right side of the matrix 𝑴 to obtain the 

coordinates of the vector in the new setting. 

Another indexation scheme is based on a cubic basis, according to Cahn’s basis [141]. In this 

scheme not only the coordinate system is chosen along twofold axes but also the basis vectors do not 

point toward the corners of icosahedron but are collinear with the twofold axes.  Let’s call new vectors 

𝐟𝑖
∗. They can be constructed as a linear combination of vectors 𝐝𝑖

∗: 

 

 

(

 
 
 
 

𝐟1
∗

𝐟2
∗

𝐟3
∗

𝐟4
∗

𝐟5
∗

𝐟6
∗)

 
 
 
 

=
1

2

(

 
 
 

0 1̅ 0 0 0 1
0 0 1̅ 0 1 0
1 0 0 1̅ 0 0
0 1 0 0 0 1
0 0 1 0 1 0
1 0 0 1 0 0)

 
 
 

(

 
 
 
 

𝐝1
∗

𝐝2
∗

𝐝3
∗

𝐝4
∗

𝐝5
∗

𝐝6
∗)

 
 
 
 

. 

 

(3.8) 

The same transformation applies to the indices in both settings: 

 

 

(

  
 

ℎ
ℎ′

𝑘
𝑘′

𝑙
𝑙′)

  
 
=
1

2

(

 
 
 

0 1̅ 0 0 0 1
0 0 1̅ 0 1 0
1 0 0 1̅ 0 0
0 1 0 0 0 1
0 0 1 0 1 0
1 0 0 1 0 0)

 
 
 

(

 
 
 

ℎ1
ℎ2
ℎ3
ℎ4
ℎ5
ℎ6)

 
 
 

, (3.9) 

  

where primed index refers to 𝜏 larger vector, when projected onto the parallel space. 
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3.2 The projection method for the AKNt 

 

The AKNt is a so-called canonical tiling, generated by a canonical projection from a 6D space. 

Every tiling for which the occupation domain is a projection of the 6D unit cell is called canonical. It 

should not be confused with canonical cells that are used to express the atomic arrangement in periodic 

approximants of the quascirystals [142]. 

The 6D unit cell has 64 vertices, among which 32 constitute the vertices of the occupation 

domain and the rest are contained within the occupation domain. The shape of the occupation domain 

of the AKNt is a rhombic triacontahedron, manifesting full icosahedral point symmetry, with an edge-

length equal to the edge-length of the rhombohedral unit. The nodes of the AKNt can be found by 

projecting 6D lattice points onto the perpendicular space with the use of the projection matrix 𝐖 built 

of columnar vectors  𝐝𝑖: 

 

𝐖 = 𝑎𝑟

(

 
 
 
 
 
 
 
0 s𝜃cos

4π

5
s𝜃cos

6π

5
s𝜃cos

8π

5
s𝜃 s𝜃cos

2π

5

0 s𝜃sin
4π

5
s𝜃sin

6π

5
s𝜃sin

8π

5
0 s𝜃sin

2π

5
1 c𝜃 c𝜃 c𝜃 c𝜃 c𝜃

0 −s𝜃cos
8π

5
−s𝜃cos

2π

5
−s𝜃cos

6π

5
−s𝜃 −s𝜃cos

4π

5

0 −s𝜃sin
8π

5
−s𝜃sin

2π

5
−s𝜃sin

6π

5
0 −s𝜃sin

4π

5
1 −c𝜃 −c𝜃 −c𝜃 −c𝜃 −c𝜃 )

 
 
 
 
 
 
 

. (3.10) 

 

The point 𝐫L of the 6D lattice 𝐋, projected via matrix 𝐖 has coordinates: 

 

 𝐫V = 𝐖 ∙ 𝐫L, 

𝐫V = (𝒙∥, 𝒚∥, 𝒛∥, 𝒙⊥, 𝒚⊥, 𝒛⊥), 

𝐫L =∑𝛼𝑖𝐞𝑖

6

𝑖=1

, 𝛼𝑖 ∈ ℤ, 

(3.11) 

 

where 𝐞𝑖- vector with an ith element equal to 1 and the rest elements equal to 0. 

If the perpendicular space coordinates of the projected point (indicated with a subscript ‘⊥’) are 

contained within the rhombic triacontahedron, its projection onto the parallel space corresponds to the 

node of the AKNt (Fig. 10). If the projected point is not part of the rhombic triacontahedron, it is rejected 

from further calculations. In order to check whether a point belongs to the volume defined by the 

rhombic triacontahedron, the following condition must be satisfied. If 𝐧 is a normal to the face of 
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rhombic triacontahedron and 𝐫V
⊥ is a projection of the point 𝐫L onto the perpendicular space, then point  

𝐫V
⊥ belongs in the occupation domain if 

 

 𝐧 ∙ (𝐫V
⊥ − 𝐫p) ≤ 0, 

𝐫p = 𝐫V
⊥ −  𝐧 ∙ (𝐧 ∙ (𝐫V

⊥ − 𝐫)), 
(3.12) 

 

where 𝐫 is an arbitrary point belonging to the face of rhombohedron and 𝐫p is a point of the 

projection of 𝐫V
⊥ onto the face of rhombohedron. The condition (3.12) must be valid for every face of 

the rhombic triacontahedron. From the point of view of numerical calculations, there can be a problem 

of a calculation precision for the points belonging to the surface of the triacontahedra. It is better to make 

an inequality condition stronger to avoid points that are incorrectly assigned as belonging to AKNt.  

 

 

Figure 10. a) The rhombic triacontahedron as a projection window for the AKNt; b) The generated 

AKNt with the prolate (red) and oblate (green) rhombohedra distinguished. The outline of the 

dodecahedral shape is given; c) the graphical representation of the condition (3.12), which allows to 

select nodes of the 6D lattice that form the AKNt. Source: part b) taken from [143] 

 

The AKNt is composed of two rhombohedral units called prolate and oblate. The other 

frequently used names are acute and obtuse rhombohedra, respectively. Two rhombohedra are spanned 

a) b) 

c) 
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by vectors of the icosahedral setting, in which vectors are directed to the corners of the icosahedron. 

Each rhombohedron is spanned by three vectors (Fig. 11 [143]).  

 

Figure 11. Two rhombohedra as spanned by vectors of the icosahedral setting. Source: [143] 

 

The prolate rhombohedron is spanned by vectors pointing toward vertices of icosahedron 

constituting one of its twenty faces. The long body-diagonal of the rhombohedron is collinear with a 3-

fold direction, going through the middle of the triangular face. It is more difficult to visualize the oblate 

rhombohedron being spanned by vectors of the icosahedral setting because those three vectors do not 

point toward vertices of the same face of the icosahedron. However, it is still true that the body-diagonal, 

this time the short one, is collinear with a 3-fold axis. In an icosahedron there are twenty 3-fold axes 

however, half of them are related to remaining by the inversion symmetry. The number of symmetry 

independent 3-fold axes, when corresponded to long and short-body diagonals of rhombohedra 

determine how many possible orientations of each rhombohedron can be found in the AKNt. Since there 

are ten 3-fold axes, that means there are ten orientations for each rhombohedron. Each of two types of 

rhombohedra can be additionally divided into two classes. Within the same class, rhombohedra are 

symmetrically dependent with respect to the rotation around 5-fold axis, which is directed along the 𝑧-
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axis (along the vector  𝐚𝑖). Such a subdivision is very convenient with respect to the structure factor 

calculations. 

Within the occupation domain, the region representing each of the rhombohedrons can be 

distinguished (Fig. 12). It was already mentioned that the occupation domain is a perpendicular space 

representation of the points in the physical space. Even more, each local arrangement of points in the 

physical space has a certain shape within the occupation domain. At this moment I will focus on the 

distribution of the reference vertex of each type of rhombohedra within the occupation domain. 

All the nodes of the AKNt form a rhombic triacontahedron but a subset of those points will form 

a different polyhedron that is contained within the rhombic triacontahedron. A rhombohedron has eight 

vertices. If I choose one of those vertices as a reference vertex, the geometry of a rhombohedron is 

uniquely determined by vectors originating from this vertex. In the first step, I am interested in what is 

the shape of rhombohedron in the perpendicular space. The perpendicular space rhombohedron is 

spanned by exactly the same vectors but their perpendicular space components. It is easy to find that the 

oblate rhombohedron has the shape of a prolate rhombohedron in the perpendicular space and the prolate 

rhombohedron has the shape of an oblate rhombohedron. Now, by shifting the perpendicular space 

rhombohedron within the boundaries defined by the rhombic triacontahedron a perpendicular space 

representation of the reference vertex draws a pattern in the perpendicular space. None of the vertices 

of rhombohedron can cross the rhombic triancontahedron, because that would mean the vertex is 

generating a position in the parallel space that is not a part of the AKNt. The shape defined by all the 

possible positions of the reference vertex is once again a rhombohedron. For the oblate one, the 

distribution has the shape of an oblate rhombohedron and for the prolate one, a prolate rhombohedron. 

All the distributions of the reference vertex, for two types of rhombohedra in 10 orientations each, are 

shown in Fig. 12. 

The following naming convention helps to uniquely define what is the type and the orientation 

of the rhombohedron. The prolate rhombohedron can be denoted as 𝐿 and the oblate one as 𝑆. Such a 

notation is usually used to denote two possible bonds in the Fibonacci chain that serves as a toy model 

for many investigations done for quasicrystals. In this context, 𝐿 stands for ‘long’ and 𝑆 stands for 

‘short’, which is rather intuitional. Also, such a notation is used to denote two rhombuses in the Penrose 

tiling, where a thick rhombus is called 𝐿 and a thin is called 𝑆. The same notation can be adapted for the 

AKNt since only two units, among which one is 𝜏 larger in volume than another, are necessary to 

construct the tiling. The unit is characterized not only by its type but also the orientation. The orientation 

of the unit is given by three vectors originating from one of its vertices and are spanning the 

rhombohedron. For instance, the prolate rhombohedron shown in Fig. 11 is founded on vectors: 𝐚1, 

 𝐚3,  𝐚4. Therefore the rhombohedron can be called 𝐿134. The type and the orientation is uniquely 

determined is such a notation. The order of indices in the subscript does not matter due to the threefold 

symmetry. The reference vertex of the rhombohedron is also automatically known, since there is only 
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one vertex where vectors in such an orientation are originating. For instance, the notation 𝐿1̅3̅4̅ refers to 

the rhombohedron of the same type and orientation as 𝐿134 but the reference vertex is the vertex laying 

on the opposite side of the long body-diagonal. 

 

Figure 12. The distribution of the reference vertices of the prolate and oblate rhombohedron. On 

the left-hand side exemplary distributions are given, whereas on the right-hand side all the distributions 

are plotted, divided into symmetrically related with respect to the 5-fold axis. Source: the righhand side 

taken from [126]. 

 

The AKNt has two unique properties associated with the 6D representation that have 

consequences in further calculations. First, let’s consider the generators of the symmetry operations of 

the 6D space group isomorphic with a 3D icosahedral point group: Γ(5), Γ(3), Γ(2), Γ(1̅), Γ(𝑚). The 

fivefold symmetry is particularly important. It’s matrix representation is: 

 

 

Γ(5) =

(

  
 

1 0 0 0 0 0
0 0 0 0 0 1
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0)

  
 
. (3.13) 

 

Matrix (3.13) can be block-diagonalized by the similarity operation with the matrix 𝐖 to give 

the irreducible representation in the orthogonal, parallel and perpendicular subspaces: 
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Γ(5)𝐖 = 𝐖Γ(5)𝐖
−1 =

(

 
 
 
 
 
 
 
cos

2𝜋

5
sin
2𝜋

5
0 0 0 0

−sin
2𝜋

5
cos

2𝜋

5
0 0 0 0

0 0 1 0 0 0

0 0 0 cos
4𝜋

5
sin
4𝜋

5
0

0 0 0 −sin
4𝜋

5
cos

4𝜋

5
0

0 0 0 0 0 1)

 
 
 
 
 
 
 

= (
Γ∥(5)𝐖 0

0 Γ⊥(5)𝐖
). 

(3.14) 

 

From (3.14) it is evident that a 
2𝜋

5
 rotation around a fivefold axis in the parallel space corresponds 

to a 
4𝜋

5
 rotation in the perpendicular space. That means the distributions of reference vertices of 

rhombohedra 𝐿126 and 𝐿123, which are symmetric with respect to a rotation 
2𝜋

5
 along a vector  𝐚1, are 

symmetric to each other in the perpendicular space with respect to the rotation along a 𝐚1
⊥ about angle 

4𝜋

5
. 

Another important property is the Bravais hyperlattice 𝐋 is invariant under the action of the 

scaling matrix: 

 

 

𝑆 =
1

2

(

  
 

1 1 1 1 1 1
1 1 1 1̅ 1̅ 1
1 1 1 1 1̅ 1̅
1 1̅ 1 1 1 1̅
1 1̅ 1̅ 1 1 1
1 1 1̅ 0 1 1)

  
 
. (3.15) 

 

The matrix 𝑆 can be block-diagonalised with the matrix 𝐖, by a similarity operation, to give 

components of the scaling operations in two subspaces: 

 

 

𝑆𝐖 =

(

 
 
 
 
 
 

τ 0 0 0 0 0
0 τ 0 0 0 0
0 0 τ 0 0 0

0 0 0 −
1

τ
0 0

0 0 0 0 −
1

τ
0

0 0 0 0 0 −
1

τ)

 
 
 
 
 
 

= (
𝑆𝐖
∥ 0

0 S𝐖
⊥
). (3.16) 
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After the inflation, the parallel space becomes τ times larger, but the perpendicular space 

components are compressed τ times and additionally, they are inversed. The 𝑃 lattice is invariant not 

after the single action of the matrix 𝑆 but 𝑆3 [144]. Therefore the rhombohedra in the inflated AKNt 

have 𝜏3 longer edge-length, and the perpendicular space distribution shrinks (−1)3𝜏3 times. The 𝐹 

lattice can be inflated just by the matrix 𝑆. In conclusion, primitive icosahedral quasicrystals exhibit 𝜏3 

scaling, whereas face-centered icosahedral quasicrystals exhibit τ scaling. It affects both the direct space 

and the reciprocal space. 

 

3.3 The structure factor 

The structure factor formula is the basic mathematical tool to compare the atomic structure with 

the experimental diffraction data. The structure factor is the Fourier Transform of the electron density 

in the crystal, no matter whether the crystal is periodic or not. The atomic structure can be pictured as a 

convolution of the lattice and the atomic decoration of the unit cell in the case of periodic crystal. Even 

though the notion of periodicity is invalid for a quasicrystal (at least in the physical space) the lattice-

and-decoration approach still can be used. In this case, the periodic lattice is replaced by the aperiodic 

tiling which serves as a quasilattice. For a tiling to be quasiperiodic, at least two tiles are necessary. The 

electron density 𝜌 in an aperiodic crystal with two units: 𝐿 and 𝑆 can be expressed as a sum over all their 

possible orientations: 

 

 

𝜌 =∑(𝜌𝐿𝑜 ∗ 𝜌𝐿𝑜
𝑎𝑡𝑜𝑚𝑖𝑐 + 𝜌𝑆𝑜 ∗ 𝜌𝑆𝑜

𝑎𝑡𝑜𝑚𝑖𝑐)

𝑜

, (3.17) 

 

where 𝑜 enumerates all possible orientations of the units 𝐿 and 𝑆. 𝜌𝐿𝛼(𝜌𝑆𝛼) is a subset of the 

nodes form a tiling that corresponds to reference vertices of all the tiles of the type 𝐿(𝑆) in the orientation 

𝑜. The atomic decoration of the tile can be orientation-dependent, in general, but usually the symmetry 

of the crystal imposes the same decoration for a particular type of the tile, independently on the 

orientation. In the AKNt each type of the tile occurs in ten possible orientations, therefore the sum in 

(3.17) runs from one to ten. The Fourier Transform of (3.17) yields [126]: 

 

 

𝐹(𝐤) = ∑(𝐹(𝐤)𝑜
𝐿∑𝑓𝑗(𝐤)𝛼𝑗𝑝𝑗𝑒

2𝜋𝑖𝒌𝐫j

𝑁1

𝑗=1

)

10

𝑜=1

+∑(𝐹(𝐤)𝑜
𝑆∑𝑓𝑗(𝐤)𝛼𝑗𝑝𝑗𝑒

2𝜋𝑖𝐤𝐫j

𝑁2

𝑗=1

) ,

10

𝑙=1

 

(3.18) 
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where 𝐹(𝐤)𝑜
𝐿  (𝐹(𝐤)𝑜

𝑆) is the Fourier Transform of the reference points of rhombohedron 𝐿(𝑆) 

in the orientation 𝑜, 𝑁1(2) – number of atoms decorating rhombohedron 𝐿(𝑆), 𝑓𝑗(𝐤) – atomic form factor 

of the 𝑗th atom, 𝛼𝑗 – part of the atom laying within rhombohedron and 𝑝𝑗 – a probability that a site 𝑗 is 

occupied (often called site of fraction parameter (SOF)) and 𝑁1(2) – the number of atoms in the unit 

𝐿(𝑆). For now, the corrections for atomic disorder, except for SOF, are not taken into account. The 

position of the 𝑗th atom 𝐫j is calculated with respect to the reference vertex of the rhombohedral unit, 

from which the spanning vectors are originating. It is best to express the coordinates of the vector 𝐫j in 

the basis of vectors spanning the rhombohedral unit: 𝐫j = 𝑥𝐟1
∥ + 𝑦𝐟2

∥ + 𝑧𝐟3
∥, where 𝑥, 𝑦, 𝑧𝜖[0, 1] (Fig. 

13). Let’s consider for instance the rhombohedron 𝐿126 with 𝐟1
∥ = 𝐚1

∥ , 𝐟2
∥ = 𝐚2

∥ , 𝐟3
∥ = 𝐚6

∥ . By representing 

the atomic vector in reduced coordinates, the symmetry equivalent positions can be easily found. For 

instance if 𝑥 = 𝑦 = 𝑧 that means the site lays on a long body-diagonal of a rhombohedron, being 

collinear with a vector 𝐚1
∥ + 𝐚2

∥ + 𝐚6
∥ . If 𝑥 = 0 then site lays on the face spanned by vectors 𝐚2

∥  and 𝐚6
∥ . 

Also in this form, the coordinates are independent on the orientation of rhombohedron and do not have 

to be transformed to calculate the atomic component of the structure factor. In order to reconstruct vector  

𝐫j for the rhombohedron in the other orientation, the vector [𝑥, 𝑦, 𝑧] must be multiplied by corresponding 

vectors that span the other rhombohedron.  

 

Figure 13. The atomic position vector 𝐫j can be represented in the basis of vectors spanning two 

rhombohedral units. The coefficients of the linear combination are within [0, 1] region and allow to 

easily find symmetry-dependent special positions in a thombohedron. Spanning vectors of each type of 

rhombohedron are shown. 

 

3.3.1 The geometric structure factor 

The geometric part of the structure factor is associated with the Fourier Transform of the 

reference vertices positions of structure units in the tiling. The calculation is the easiest to be conducted 

in the 𝑛D or the AUC space. In the real space, the set of projected 6D lattice points is discrete and 
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unbound. The 𝐹(𝐤)𝑜
𝐿(𝑆)

 component, which is the part of the structure factor related to the lattice of 

quasicrystal, is equal to: 

 

 
𝐹(𝐤)𝑜

𝐿(𝑆)
=∑exp(𝑖𝐤𝐫𝑖

ref)

∞

𝑖=1

, (3.19) 

 

Where 𝐫𝑖
ref is the position of the reference vertex of the 𝑖th rhombohedron in the quasilattice. It 

is an infinite sum over all the rhombohedral units. In the perpendicular space, the set of projected nodes 

is also discrete but it is bound to the shape of rhombohedron as it is shown in Fig. 12. The set of projected 

points is dense, meaning between two, arbitrarily chosen points there always exists the third point. It is, 

therefore, possible to change the infinite sum into an integral over a bounded region, keeping in mind 

that 𝐤𝐫𝑖
ref = −𝐤⊥ ∙ 𝐫𝑖⊥

ref, what comes from (2.8): 

 

 
𝐹(𝐤)𝑜

𝐿(𝑆)
= ∫ 𝑃(𝐫⊥

ref) exp(−𝑖𝐤⊥ ∙ 𝐫⊥
ref)d𝐫⊥

ref

∆𝐿(𝑆)𝑜

, (3.20) 

 

where ∆𝐿(𝑆)𝑜 corresponds to the shape of the distribution in the perpendicular space generated 

by reference vertices of rhombohedra 𝐿(𝑆)𝑜 and 𝐫⊥
ref is the coordinate of the reference vertex in the 

perpendicular space. The 𝐤⊥ is a perpendicular space vector obtained as a projection of the 6D reciprocal 

space vector 𝐆 = ∑ 𝒉𝑖𝐝𝐢
∗𝟔

𝑖=1  onto the perpendicular space. It is easy to see that (3.20) has a similar form 

to (2.7), even so, the former is written in the 𝑛D coordinates and the latter is written in the AUC units. 

The equivalence of those two approaches is once again evident. 

The integral (3.20) can be easily solved in the oblique coordinates setting [145]. The region 

∆𝐿(𝑆)𝑜 has the shape of rhombohedron that is spanned by three vectors, for now let’s name them 

𝐟1
⊥, 𝐟2

⊥, 𝐟3
⊥, originating from the same vertex. Those three vectors define the oblique basis. Every point 

𝐫⊥
ref of the distribution ∆𝐿(𝑆)𝑜 can be obtained as a linear combination of those three vectors: 𝐫⊥

ref =

𝑥𝐟1
⊥ + 𝑦𝐟2

⊥ + 𝑧𝐟3
⊥, 𝑥, 𝑦, 𝑧 ∈ [0, 1]. Coordinates 𝑥, 𝑦, 𝑧 become the new integration variables. The 

coordinates of the 𝐤⊥ must also be expressed in the oblique basis: 𝐤⊥ = 𝑞1𝐟1
⊥∗ + 𝑞2𝐟2

⊥∗ + 𝑞3𝐟3
⊥∗, where 

𝑞𝑖 = 𝐤⊥ ∙ 𝐟𝑖
⊥ and 𝐟𝑖

⊥∗ ∙ 𝐟𝑗
⊥ = 2𝜋𝛿𝑖𝑗 , 𝑖, 𝑗 = 1, 2, 3. Formula (3.20) in the oblique basis 𝐟1

⊥, 𝐟2
⊥, 𝐟3

⊥takes the 

form: 

 

 
𝐹(𝐤)𝑜

𝐿(𝑆)
= 𝑉exp(−i𝐤⊥𝐫or

⊥ )∫ d𝑥
1

0

∫ d𝑦
1

0

∫ exp(−𝑖[𝑞1, 𝑞2, 𝑞3 ] ∙ [𝑥, 𝑦, 𝑧])d𝑧 ,
1

0

 (3.21) 
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where 𝐫or
⊥  is the position of the vertex from which the oblique basis vectors originate and 𝑉 =

|𝐟1
⊥ ∙ (𝐟2

⊥ × 𝐟3
⊥)|.  After the integration, the result is: 

 

 
𝐹(𝐤)𝑜

𝐿(𝑆)
=
𝑖𝑉exp(−i𝐤⊥𝐫or

⊥ )

𝑞1𝑞2𝑞3
[exp(−𝑖𝑞1) − 1][exp(−𝑖𝑞2) − 1][exp(−𝑖𝑞3)

− 1], 

(3.22) 

 

where 𝑉 = |𝐟1
⊥ ∙ (𝐟2

⊥ × 𝐟3
⊥)|. The integral (3.22) must differentiated with respect to certain 

values of 𝑞𝑖: 

if 𝑞3 = 0, 𝑞1 = 𝑞, 𝑞2 = 𝑝/𝑞2 = 0, 𝑞1 = 𝑞, 𝑞3 = 𝑝/𝑞1 = 0, 𝑞2 = 𝑞, 𝑞3 = 𝑝: 

 

 
𝐹(𝐤)𝑜

𝐿(𝑆)
=
−𝑖𝑉exp(−i𝐤⊥𝐫or

⊥ )

𝑞𝑝
[exp(−𝑖𝑞) − 1][exp(−𝑖𝑝) − 1]; (3.23) 

 

if 𝑞3 = 0, 𝑞1 = 0, 𝑞2 = 𝑞/𝑞2 = 0, 𝑞1 = 0, 𝑞3 = 𝑞/𝑞2 = 0, 𝑞3 = 0, 𝑞1 = 𝑞: 

 

 
𝐹(𝐤)𝑜

𝐿(𝑆)
=
−𝑖𝑉exp(−i𝐤⊥𝐫or

⊥ )

𝑞
[exp(−𝑖𝑞) − 1]; (3.24) 

 

if 𝑞1 = 0, 𝑞2 = 0, 𝑞3 = 0: 

 𝐹(𝐤)𝑜
𝐿(𝑆)

= 𝑉exp(−i𝐤⊥𝐫or
⊥ ). (3.25) 

 

In Table 2 the information about vectors spanning each distribution of the rhombohedron and 

the origin of the oblique basis is given. Numbers ‘1’ and ‘2’ define two classes within which 

rhombohedra are symmetric to each other with respect to the rotation around the fivefold axis directed 

along the vector 𝐝𝟏 (for the icosahedral setting 1). All the distributions can be recovered by applying 

the rotation symmetry to each of the spanning vector. The one must remember the rotation 2𝜋/5 in a 

real space corresponds to a rotation 4𝜋/5 in a perpendicular space. 

 

Table 2. The vectors spanning the distribution of the reference vertex in a perpendicular space. 

To obtain all the distributions, a rotation along 𝐝1
⊥ 5-fold axis must be made. 

 𝐟𝟏
⊥ 𝐟𝟐

⊥ 𝐟𝟑
⊥ 𝐫𝐨𝐫

⊥  

Prolate 1 (𝑳𝟏𝟐𝟔) 𝐝3
⊥ 𝐝5

⊥ 𝐝4
⊥ [0, 0, 0] 

Prolate 2 (𝑳𝟒̅𝟔𝟐) 𝐝3
⊥ 𝐝5

⊥ −𝐝1
⊥ 𝐝1

⊥ + 𝐝4
⊥ 

Oblate 1 (𝑺𝟏𝟑̅𝟔̅) 𝐝2
⊥ 𝐝4

⊥ 𝐝5
⊥ 𝐝3

⊥ + 𝐝6
⊥ 
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Oblate 2 (𝑺𝟐𝟓𝟔̅) 𝐝3
⊥ −𝐝1

⊥ 𝐝4
⊥ 𝐝6

⊥ + 𝐝1
⊥ 

 

3.3.2 The SOF and site occupancy 

Not every atomic site must be fully occupied with the probability equal to one. Due to the atomic 

disorder happening in the structure some sites can be partially occupied. It must be remembered that the 

structure solution obtained from the X-ray diffraction with the use of Bragg reflections is the average 

structure. If the atomic arrangement in the structure allows for certain atoms to maneuver in a structure 

what can be obtained by the diffraction is the average position, resulting in split atomic positions. In 

quasicrystals, the natural cause of partially occupied sites is the phason disorder. As it was shown in 

Fig. 9 the flip of the atom from site A to A’ makes each site partially occupied by an atom, therefore in 

the model, the probability that each site is occupied must be assigned. In the structure refinement the 

parameter 𝑝𝑗 in equation (3.18) is a free parameter that is adjusted by the optimization algorithm. 

Apart from partially occupied sited the chemical mixing between atomic elements can occur, 

i.e. one atomic site can be occupied by two or more different atomic elements. For a particular atomic 

site, that is chemically disordered, an average scattering form factor 𝑓𝑎𝑣(𝐤) can be introduced: 

 

 

𝑓𝑎𝑣(𝐤) =∑𝑝𝑒𝑖𝑓𝑖(𝐤)

𝑁

𝑖=1

,∑𝑝𝑒𝑖

𝑁

𝑖=1

= 1, (3.26) 

 

where 𝑓𝑖(𝐤) is a scattering form factor of the 𝑖th element occupying a certain site. Sum of all 

probabilities 𝑝𝑒𝑖 has to add up to one since an atomic site cannot be occupied by more than one full 

atom. It can, however, be the partially occupied site, therefore a total probability, apart from probabilities 

of chemical mixing, can be lower than one. The parameter 𝑝𝑗 in the equation (3.18) is meant to represent 

the partially occupied site, therefore it should not be confused with 𝑝𝑒𝑖 in equation (3.26) that represents 

chemical mixing probability. It is differentiated purposely to distinct those two situations. 

Apart from the action of disorder, some positions in the atomic model are high-symmetry sites. 

For instance, an atom on the face of the unit, that is used as a building block of the structure, is shared 

with an adjacent unit. Therefore the part of an atom that lays within a unit is half of the full atom. In 

addition, when an asymmetric part of the unit is used for calculations to reduce the number of parameters 

in the model, only a fraction of an atom lays within the asymmetric unit on the high-symmetry sites. 

The fractions must be taken into account otherwise one atom would be taken multiple times during 

calculations. In the formula (3.18), it is dealt with by adding a parameter 𝛼𝑗. It says what part of an atom 

exists within the structure unit. The high-symmetry sites can be classified into three groups: face-sites, 

edge-sites and vertex-sites. When an atom in on the face of the unit, the fraction 𝛼𝑗 = 0.5. For the edge-
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sites the fraction of an atom can be calculated with the use of an angle between two faces that intersect 

to create an edge. The angle can be extracted using the inner product between normal vectors of the 

faces. If 𝐧1 is the normal vector of the first face and 𝐧2 is the normal vector of the second face, than 

 

 

𝛼𝑗 =
π − acos (

𝐧1 ∙ 𝐧2
‖𝐧1‖‖𝐧2‖

)

2𝜋
. 

(3.27) 

 

Both vectors 𝐧1 and 𝐧2 must point outward the center of polyhedron in order for formula (3.27) 

to be valid. When the fraction site is calculated for a vertex-site the following formula can be used [146]: 

 

 
𝛼𝑗 =

2

4𝜋
atan(

|(𝐚 × 𝐛) ∙ 𝑐|

‖𝐚‖‖𝐛‖‖𝐜‖ + (𝐚 ∙ 𝐛)‖𝐜‖ + (𝐚 ∙ 𝐜)‖𝐛‖ + (𝐛 ∙ 𝐜)‖𝐚‖
), (3.28) 

 

where 𝐚, 𝒃, 𝒄 are vectors pointing out of the vertex in which the fraction site is calculated. In 

(3.28) the division with 4𝜋, whereas in (3.27) the division with 2𝜋 is made. It is due to the fact, that in 

(3.27) the fraction of the full planar angle (2𝜋 is a full angle) is calculated, whereas in (3.28) the fraction 

of a solid angle (4𝜋 is a full angle) is calculated. In Table 3 the values of fractions are given with the 

label presented in Figure 14. 

 

Table 3. The list of all fraction parameters 𝛼𝑗, depending on the type of rhombohedron and the 

position of an atom within the rhombohedral unit. 

 SITE 1 2 3 4 5 6 

PROLATE 

Edge-

site 
0.1 0.25 0.3 0.25 0.1 1/6 

Vertex-

site 
1/120 0.075 0.75 1/120 - - 

OBLATE 

Edge-

site 
0.2 0.25 0.1 0.25 0.2 1/6 

Vertex-

site 
7/120 1/4 1/4 7/120 - - 
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Figure 14. Labels corresponding to site number in Table 3. Squares correspond to edge-sites and 

circles correspond to vertex-sites. 

 

3.3.3 Phason and phonon disorder 

This chapter will describe the deviations of the atomic structure from the idealized mathematical 

model. Two types of disorder, directly affecting the calculation of the structure factor and in some way 

correlated with each other, are particularly important - phononic and phasonic disorder. The first applies 

to both periodic and aperiodic structures. The second is characteristic of aperiodic structures and is 

closely related to the spatial arrangement of atoms. 

 

3.3.3.1 Phonons 

The correlated movement of atoms resulting from the thermal excitation of atoms is called a 

phonon. Atoms can vibrate in a complicated manner in many of the available modes. The analysis of 

possible vibration modes is carried out using the fact of the lattice periodicity, thanks to which the 

number of possible vibration modes of the structure is finite. The situation is quite different in 

quasicrystals. Lack of translational symmetry means that there can be many oscillating states of atoms. 

In order to theoretically describe the vibrations of the quasicrystalline structure, the existing 

hydrodynamic model for periodic crystals was used and extended to quasicrystals [79, 147] by using the 

superspace approach. Unfortunately, the level of knowledge is still not enough to clearly determine how 

atoms behave in the quasicrystal under the influence of thermal excitation. The existence of an acoustic 

branch for quasicrystals is well confirmed, both experimentally and in simulations carried out for large 

quasicrystalline periodic approximants [148, 149]. Therefore, according to the theory of acoustic 

vibrations, it should be right to apply an exponential correction to the intensity of diffraction peaks in 

the form of the Debye-Waller formula. However, the same research shows the existence of optical 

modes as strong as the acoustic modes, but it is difficult to find dispersion relations in them. Optical 

modes are highly localized and dispersive, which has been confirmed for a number of quasicrystals 

[150]. This undermines the validity of the exponential amendment for the analysis of atomic vibrations 
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in an uncorrelated manner, subjected to the action of local potential. Therefore, one may be tempted to 

apply the amendment assuming local harmonic vibrations, which are independent of the environment. 

In the average unit cell model, it is possible to take into account an atom deflection associated with local 

vibrations. All that is needed is an additional component in (2.1), associated with the atom's deflection 

from the equilibrium position for the reference lattice associated with the main vector 𝑘 and the 

modulation vector 𝑞 (𝑢𝑝 and 𝑣𝑝): 

 

 𝑥 = 𝑛𝜆𝑘 + 𝑢 + 𝑢𝑝, 

𝑥 = 𝑚𝜆𝑞 + 𝑣 + 𝑣𝑝. 
(3.29) 

Let 𝑢𝑛𝑒𝑤 = 𝑢 + 𝑢𝑝 and 𝑣𝑛𝑒𝑤 = 𝑣 + 𝑣𝑝. Thus, the new variables in the AUC are the sum of 

statistical variables: positions resulting from geometry and atomic deflections from the equilibrium 

position. They cause that the probability distribution, previously homogeneous and non-zero along the 

v(u) curve, becomes smeared (Fig. 15 [84]). The new probability distribution, taking into account the 

average structure, becomes smeared at the edges, and the linear relation v(u) becomes invalid. It is 

necessary to use a general probability distribution, which is a convolution of the undisturbed distribution 

of atomic positions and the distribution of vibrations in the structure. The convolution is only possible 

if the atom's deflection from the equilibrium position is independent of this position, which is true for 

localized modes. It can be shown that the quasicrystalline structure factor can be written as the product 

of the factor responsible for atomic vibrations 𝐹p(𝑘), and the part related to quasicrystalline geometry 

𝐹0(𝑘) [65]: 

 

 
𝐹(𝑘) = ∫ 𝑃(𝑢)ei𝑘0(𝑛−𝜏𝑚)𝑢

𝜆𝑘

0

d𝑢∫ 𝐺(𝑢p)𝑒
𝑖𝑘0(𝑛+𝑚/𝜏)𝑢p

𝜆𝑘

0

d𝑢p

= 𝐹0(𝑘)𝐹p(𝑘), 

(3.30) 

 

where 𝐺(𝑢p) is a distribution function of atomic fluctuations around an equilibrium. The rest of 

the variables are the same as in (2.6). If the assumption that atomic vibrations are harmonic and are 

locally independent, than:  

 

 
𝐺(𝑢p) =

1

𝜋𝐴

1

√1 − (
𝑢p
𝐴 )

2
, 

(3.31) 

 

where 𝐴 – the amplitude of oscillation. The Fourier Transform of (3.31) is a Bessel function of 

the first kind rank 0. 
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Figure 15. The influence of tha atomic vibrations on the diffraction pattern (a)) and the shape of 

the atomic distribution function in the AUC scheme (b) and c)). It is evident that for the similar 

magnitude of atomic vibrations, for short 𝑘 vectors the Gaussian Debye-Waller factor and the Bessel 

correction is the same, however for localized modes a bump in the intensities is expected for a high 

values of the 𝑘 vectors. In a) the vector 𝑘 is normalized by the norm of the (1, 0) vector; b): the 𝑣(𝑢) 

relation is no longer linear but is smeard along a [1, 1] direction in the 𝑣𝑢 space; c): the marginal 

distribution stops being a uniform distorbution. Source: [84] 

 

3.3.3.2 Phasons 

Phase disorder is an intrinsic feature of the quasicrystalline structures [151]. In the 𝑛D model, 

phason can be identified with a wave of disturbances propagating only in the perpendicular space [152]. 

In the physical space, this wave causes the atom to jump to energetically equivalent positions, as seen 

in Fig. 9. Phasons are speculated to play an important role in understanding why quasicrystals are stable 

[153]. The in situ observation of the growth of quasicrystals clearly shows that the growth takes place 

by adding successive atomic layers, strongly defective, followed by the process of structure relaxation 

(Fig. 16 [154]). The arrangement of atoms is similar or ideally as it would appear from a computer-

a) 
b) 

c) 
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generated mathematical model of structure [154]. However, there are cases when the structure remains 

strongly defective in terms of phonon disorder, i.e. a random type structure is created [155]. 

 

Figure 16. Growth Al70.8Ni19.7Co9.5 as seen by HRTEM at 1183 K. Model planes (left) were 

obtained from electron microscopy images. The distances between the planes form a series of long "L" 

and short "S" distances, forming a Fibonacci sequence. This sequence spoils, as shown in (b), after 

which, due to the relaxation of the structure, it rebuilds through phase shift (C). The order of the layers 

becomes consistent with the mathematical formula of the Fibanacci sequence. Source: [154] 

 

An important issue is the effect of phase jumps on the diffraction pattern (Fig. 17). As the number of 

phase jumps increases, the intensity of the diffraction peaks changes (Fig. 17 b)). This issue is so 

important that with the current models it is impossible to obtain a correct quasicrystalline structure 

model without the presence of a correction for this effect. The larger the disorder, the more defective 

the structure, leading to an amorphous structure (Fig. 17 d)). However, the conditions for which a 

random type structure is created instead of an energetically stabilized ordered structure with a small 

number of phonon defects are unknown. The main reason is the lack of refinement of the phonon 

disorder. The only existing correction for phase disorder is the generalization of the Debye-Waller 

function to the perpendicular space. It is a Gaussian correction depending on the square of the length of 

the perpendicular component of the wave vector [152]: 

 

 
𝐷𝑝ℎ𝑎𝑠(𝐤) = exp (−

1

16𝜋2
𝐤⊥
2𝑏𝑝ℎ𝑎𝑠

2 ). (3.32) 
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However, the condition of its operation is the presence of a large phase disorder, on the border of the 

existence of an ordered structure. In any other case, it is not justified. After all, the Gaussian model is 

often used, giving the opportunity to refine the phason disorder. It is not true in the whole disorder range 

(Fig. 17 c) [130]), because only for large phason disorder the probability distribution of atomic positions 

begins to resemble the Gaussian distribution [130]. What is interesting, even so the distribution function 

of the tiling with phasosn flips become Gaussian, the diffraction peak scaling with the size of the sample 

is still Bragg-like, i.e. 𝐼~𝑁2, where 𝐼 – intensity of the diffraction peak (Fig. 17 c)). Only after the 

disorder become even more significant, the scaling indicate the amorphic strucutre is formed. 

 

 

 

Figure 17. The role of the phason disorder in the diffraction pattern analysis. After a series of the 

consecutive phason flips (a)) the distribution becomes gaussian-like, influencing the envelope function 

that becomes narrower and resemble a normal curve. However, even for the gaussian-like atomic 

distribution, the scaling of the diffraction peaks is Bragg-like (c)), being proportional to 𝑁2. Only after 

thousands of phsaon flips the scaling of the diffraction peak becomes amorphic (d)), where 𝐼~𝑁. Source: 

[130] 

a) b) 

c) d) 
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4. The structure of the Bergman ZnMgTm icoshaedral 

quasicrystal 

This chapter is a republication of the article published in Acta Cryst. A76, (2020), 180-196 [143], 

available online: http://journals.iucr.org/a/issues/2020/02/00/ae5079/index.html. The first paragraph of 

the article was excluded as the introductory part about the icosahedral quasicrystals was done in chapter 

1 and 2 of this thesis. 

4.1 The review on the Bergman iQC 

The interest in icosahedral Frank-Kasper phases (FK) [55, 105] rose with the discovery of the 

face centered icosahedral (FCI) AlMgLi [156] and AlMgPd [157]. Their structure is built out of the 

Bergman cluster which is formed of the dense packing of tetrahedra. After the report by Luo et al. [158] 

that iQC is formed in ZnMgY many iQC phases were found in the ZnMgRE (RE – rare earth element) 

ternary alloys. The first to be grown were FCI phases with Y, Tb, Dy, Ho and Er [159]. After series of 

investigations, primitive icosahedral (PI) phases were also grown by rapid solidification with Nd, Sm, 

Gd, Tb, Ho, Er, Tm, Yb, Lu and Y [160]. Apart from the iQC, the decagonal QC is also found in ZnMgM 

(M=Y, Dy, Ho, Er, Tm and Lu) [161]. The atomic diameter was shown to play a role in the stabilization 

of the decagonal phase. Similar mechanism was observed for ZnMg based alloys with a third, trivalent 

element [66]. The larger the atomic radius, the higher the concentration of the trivalent element in the 

QC. What is more, for atomic radius ~1.65 Å the PI phase is preferred, rather than the FCI phase, that is 

formed for the atomic radius ~1.75 Å. 

The atomic structures of both PI and FCI Bergman QC were studied in AlCuLi [104] and 

AlMgLi [162] system respectively. The structure of AlCuLi was first investigated by Elswijk et al. [103] 

constituting a so-called EHSB model based on the simple decoration scheme [163]. The simple 

decoration scheme assumes the atomic decoration of two original rhombohedra in vertices and mid-

edges. The AR is additionally decorated with two atoms on a longer body-diagonal, dividing it in a 

proportion τ/1/τ, where τ is the golden ratio. The next take on the structure was made by Yamamoto who 

introduced major modifications to the EHSB model by removing mid-edges atoms form the AR and 

replacing them with edge-off center positions [104]. Additionally, the positions of the 12-fold vertices 

were left unoccupied as they created short distance with edge-off center atoms. The decoration was 

settled to reflect the local atomic arrangement in the R-AlCuLi cubic approximant as the strong affinity 

of QC and periodic approximant was known. The same decoration was proposed to explain the structure 

of the cubic AlZnMg [58]. Based on the local information derived from the approximant crystal, the 6D 

model of the QC could be constructed. The model is not reliable due to strong mixing of Al, Cu, Li 

atoms. Later, the model of the FCI AlMgLi was proposed [162]. The same decoration as for the PI 
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AlCuLi was used, but the reproduction of the superlattice reflections required two icosahedral lattices, 

with even- and odd-parity nodes. 

The more recent model of the Bergman QC was proposed for the PI ZnMgHo QC [164]. The 

model was based on the result of the ab initio phasing of the diffraction amplitudes with LDEM (low 

density elimination method) [165, 166], implemented in lodemac [165] and known structures of the FK 

approximants [167, 168]. The model was founded on the same framework as the model of the CdYb 

iQC [62]. Instead of Tsai, Bergman clusters are assumed to occupy the subset of the 12-fold vertices of 

the AKNt. The additional shell of the rhombic triacontahedron (RTH), that encompasses the so-called 

“gluing” atoms is considered among traditional shells of the Bergman cluster. The same cluster 

expansion was originally proposed for Tsai-type QCs approximants. A whole model was set in a 6D 

space. The three ODs: vertex-centered (ODV), body-centered (ODB) and edge-centered (ODE) are 

created from the archetype truncated triacontahedron generating the 12-fold vertex environment of the 

AKNt. The choice of such an archetype OD ensures, that only two types of links between clusters are 

possible: the b-linkage along a 2-fold direction and the c-linkage along a 3-fold direction. The a-linkage 

along a 5-fold direction is excluded as it is not observed in approximant crystals and is said to create 

short interatomic distances. Unfortunately, the model by Takakura et al. [164] of the Bergman QC does 

not include the interstitial atoms, that are atoms outside of the cluster. In the Tsai-type QC the space 

between clusters is filled with OR and AR decorated according to the simple decoration scheme 

observed in 1/1 and 2/1 cubic approximants [169, 170]. In the Bergman QC, a unique decoration of two 

rhombohedra does not exist. It is a local-environment dependent, therefore the complete shape of the 

OD is difficult to obtain. 

The present work on the structure of Bergman QC was motivated by two major factors. Firstly, 

the Zn-Mg-Rare-Earth QCs are still investigated with respect to the magnetic properties and the search 

for the long-range magnetic order [171]. The rare-earth ions provide the well-localized magnetic 

moments originating from the 4f electrons. The problem of moment interaction in the quasilattice could 

be therefore resolved. So far only the spin-glass-like behavior at the low temperature was observed with 

no magnetic long-range-order. Existing model of the rare-earth atoms distribution in the FCI Bergman 

phase does not explain the moment’s frozen state [172].  

Secondly, our research is driven by the deep desire to acquire reliable model of the Bergman 

QC especially now, when recently the superconductivity in AlZnMg iQC was discovered [59]. That 

discovery fascinated not only researchers in the area of aperiodic crystals but also the community 

working in strongly correlated electron systems. This is an ideal time to extend the potential application 

of the QCs and explore their peculiar properties. The knowledge about the structure of the Bergman QC 

will play in this venture a major role. 
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4.2 Experimental details 

Single grains of ZnMgTm iQC were grown by a solution growth technique [173]. High purity 

elements of Zn (Nilaco, 99.99%), Mg (Nilaco, 99.99%) and Tm (Rare Metallic co ltd., 99.9%) with the 

nominal composition of  Zn62.8Mg33.6Tm3.6 were put in an alumina crucible and sealed inside a silica 

ample together with 1/3 atm of argon. The elements in the crucible were melted at 1023 K for 5 h and 

cooled down to 863 K with a cooling rate -2 K/h using a muffle furnace. After holding at this temperature 

for about 50 h, the silica ample was quenched in water. The grains of Zn-Mg-Tm iQC, which have a 

shiny fracture surface, were embedded in a solidified solution. The chemical composition of the iQC 

was determined to be Zn69.5Mg20.9Tm9.6 by a wavelength dispersive X-ray spectroscopy (WDX) on an 

electron probe micro analyser (EPMA: JEOL, JXA-8530F). 

The single crystal X-ray intensity data were collected on a single crystal diffractometer [174] 

with MoKα (λ = 0.71073 Å) radiation at ambient temperature. The specimen with a size of 

0.07×0.06×0.04 mm3, which was cut out from a large single grain, was used.  The intensity data set was 

processed using the software package CryAlisPro [174]. Totally 1190808 reflections which were 

reduced to a data set of unique 3953 reflections, assuming the space group P𝑚3̅5̅, indexed with sextet 

integers with Rint = 0.062 were observed. Of these 3010 reflections meet the condition for Fo > 3σ(Fo). 

The icosahedral lattice constant 𝑎 was determined to be equal to 5.128(3) Å. The list of all diffraction 

reflections is available as a supportive information to the publication [143]. 

4.3 The ab initio structure solution 

The derivation of the initial model for the refinement of aperiodic crystals, especially QCs 

lacking the average, periodic structure, became much more convenient since the algorithm for the phase 

retrieval of diffraction amplitudes was invented. There are two iterative algorithms serving the purpose: 

LDEM [165] implemented in a QUASI07_08 package  [109, 108] and charge flipping algorithm [175] 

used in the Superflip software [107]. The ab initio phase retrieval allows to obtain a value of the 

crystallographic R-factor around 14-18 % in most cases, what helps immensely to construct an atomic 

model of the structure. The phase retrieval could not be so accurate unless the high-quality diffraction 

data weren’t accessible. Fortunately, modern detectors allow to collect hundreds of thousands of 

diffraction peaks with a high-precision. 

The 3010 symmetrically independent reflections were used in a phase retrieval and subsequently 

used to calculate the electron density. The ab initio structure solution with Superflip resulted in an 𝑅 =

14.5% what allows us to consider the electron density calculated with the retrived phases of the 

diffraction peaks approximates well a real structure. At this stage the preliminary analysis of the 

structure began. 
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The standard practice is to calculate the 2D high-symmetry sections through the electron density 

in the 6D space. From the sections, the general information on the atomic distribution in the structure 

can be obtained. In Fig. 18 a) the section containing two perpendicular 5-fold axes: [100000] and 

[011111] is presented. Three ODs are manifested: ODV (marked V), ODB (marked B) and ODE (marked 

E). Those three ODs are known from the previous study of the ZnMgHo [164], which is isotructural to 

ZnMgTm. Contrary to the Tsai-type iQC, where cluster centers are generated by the ODB, in this 

structure the ODV, enclosed in the red dashed ellipsoid, spawns the positions of the 12-fold vertices of 

the AKNt. The empty electron density, manifested in the center of the ODV, means the cluster center 

sites should be unoccupied. In addition, the electron density in the ODV is relatively small, meaning 

rare-earth elements do not occupy those positions. Tm atoms are expected to occupy the positions 

generated by the ODB, as a high concentration of the electron density is located there. Furthermore, in 

the same figure the white dashed circle shows the overlay of the ODE and the ODB. That is the possible 

phason flip site that occurs along a 5-fold direction in the 3D real space. 

In Fig. 18 d) the section through the cluster center in the electron density in 3D real space is 

shown. The image is perpendicular to a 2-fold axis. The characteristic pattern formed by all the five 

shells of the Bergman cluster is presented. The shells are the following: small icosahedron, large 

icosahedron, dodecahedron, soccer-ball polyhedron and the rhombic triacontahedron. The classical 

Bergan cluster’s shells are expanded by considering the rhombic triacontahedron shell as a part of the 

cluster. Each of the high electron density sites in Fig. 18 d) is related to its corresponding place in Fig. 

18 e) showing the 3D shape of each shell. The highest concentration of the electron density occurs at 

the nodes of the #5 shell. It means that the rare-earth elements occupy all the vertices of the last shell of 

the RTH cluster. 

In Fig. 18 d) no splitting of atomic sites can be perceived but in the sections a)-c) the markers, 

indicating such a splitting occurs, are detected. In Fig. 18 b) and c) the white arrow shows the splitting 

of the electron density along a 2-fold and a 3-fold direction, along the perpendicular space component 

of the 6D space. Additionally, the electron density is shifted along a parallel space direction. That means, 

in the atomic model, that split-atomic positions are highly expected. Even more, the splitting of the 

atoms along a 2-fold direction occurs perpendicularly to a radial in the cluster as a radial direction is 

always directed along a 3-fold and a 5-fold axis. 
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Figure 18. The 2D high-symmetry sections through the 6D electron density, obtained by the phase 

retrieval, containing a) 5-fold, b) 2-fold and c) 3-fold axes both in parallel space (𝐫∥) and perpendicular 

space (𝐫⊥); d) the section through the RTH cluster centre showing the pattern characteristic for the 

Bergman cluster. All the five shells are shown in e) as a 3D object. The plane section through each shell 

is marked with the same colour in d) and e) for a guidance. 

 

In order to further explore the ab initio structure solution, an extended 2D section through the 

3D electron density is presented (Fig. 19). The area of 90 × 90 Å2 was calculated perpendicularly to 

one of the 2-fold axis. Such an orientation of the section allows to find the location of clusters easily. 

Three patches of the electron density were selected and magnified for the further discussion. 

The top patch 1. in Fig. 19 shows a very clear, undistorted electron density distribution. The 

high concentration of the density occurs at the sites corresponding to the nodes of the #5 shell of the 

RTH cluster. Those are the Tm atom positions. Inner shells are also occupied by rather heavy element 

like Zn or Zn/Tm mixed atom. The cluster center in this case is empty, confirming the result of the 

ZnMgHo [164]. 

The patch 2. shows two clusters, ‘A’ and ‘B’ linked together by the short b-linkage with a length 

of 8.9 Å. The intersection of two RTH clusters along the short b-linkage forms a rhombic dodecahedron 
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with small pyramids on top and bottom, represented in Fig. 19 both in the form of 2D section and a 3D 

visualization. Such a linkage is not observed in the approximant crystals and does not appear in a set of 

the 12-fold sphere packing vertices, therefore the traditional model that constituents the cluster approach 

that was used for the Tsai-type CdYb iQC cannot incorporate such a linkage. Interestingly, the cluster 

center in both clusters is not empty and a rather heavy atom is occupying this site. It is however not the 

feature of the short b-linkage, but those two presented clusters form also the a-linkage that is shown in 

the patch 3. The presence of the central atom caused a deformation of the inner sites generated by the 

small icosahedron (#1 shell) along a 5-fold direction. Site ‘a’ of the cluster ‘A’ is generated by the ODE, 

which was shown to intersect with the ODB in Fig. 18 a) along a 5-fold direction, leading to the phason 

flip. The site ‘a’ is co-shared with the neighboring cluster ‘B’. This site in the cluster ‘B’ is part of the 

#5 shell which is generated by the ODB. That is exactly the phason flip site from Fig. 18 a) marked with 

a white dashed circle. The same reasoning applies to the site ‘b’. 

In the last patch 3., the a-linkage along a 5-fold direction is shown. The intersection of two RTH 

clusters forms a rhombic icosahedron. The formation of the a-linkage is visualized in 3D. The a-linkage 

appears in the 12-fold vertices of the AKNt, but according to the standard practice it is removed from 

the cluster model as it creates too short interatomic distances and has not been seen in approximant 

crystals. Indeed, the position, which is created by the #5 shell of the cluster ‘D’ and by the #1 shell of 

the cluster ‘C’ are very close to each other but do not overlay (position ‘c’ ('d’)). Consequently, the 

distortion of the electron density along a 5-fold direction is created. What interesting is that once again 

the centres of the clusters connected via the a-linkage is occupied by rather heavy atom. This atom can 

be both interpreted as a central atom or the atom occupying the node of the #2 icosahedral shell of the 

neighbor cluster. The other interesting position is the site ‘e’ occupied by a heavy atom. It can be 

interpreted as the position generated by the node of the triacontahedron ‘C’ or the node belonging to the 

#3 dodecahedral shell from the cluster ‘D’. That means that the Tm element can be found either on the 

#5th triacontahedral shell or on the #3 dodecahedral shell. 

A separate figure is dedicated to the b- and c-linkages (Fig. 20). Due to the existence of the a-

linkage Tm elements were said to occupy the #3 dodecahedral shell. However, it is not the only reason. 

As it was pointed out in Fig. 20 a) the c-linkage (12.2 Å) also contribute to co-sharing atoms from the 

#5 triacontahedral shell with #3 dodecahedral shell. Atoms ‘a’ and ‘b’ are mutually exchanged between 

two clusters forming the c-linkage. Contrary to the a-linkage the positions overlay ideally, and no atomic 

splitting is generated. Nevertheless, it can be concluded that Tm atoms are occupying both #3 shell and 

#5 shell as a by-product of the c- and a-linkages. 

Interestingly, the b-linkage (14.1 Å) also causes a small atomic disorder in the structure. The 

atomic sites ‘c’ in Fig 20 b) are part of the #4 shell of the cluster ’D’. The same atoms should appear in 

the cluster ’C’. However, due to the short distance, they are absent. What remains is a weak electron 
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density enclosed with a dotted line. We can expect the atomic sites ‘c’ to form a split atomic position as 

well. Positions ‘d’ are co-shared by clusters, but no disorder is created.   

 

Figure 19. The 2D section through the 3D electron density. The area of  90 × 90 Å2, calculated in 

the plane perpendicular to a 2-fold direction is shown. Three patches are highlighted: 1. - the undistorted 

Bergman cluster; 2. - the short b-linkage; 3. – the a-linkage. The 3D visualization of both linkages is 

also presented.  
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Figure 20. a) The section through the c-linkage occurring in the structure of i-ZnMgTm with RTH 

clusters marked with a red line. The 3D visualization is provided. Atoms ‘a’ (‘b’) are co-shared by the 

#5 shell of cluster ‘B’ (‘A’) and #3 shell of cluster ‘A’ (‘B’); b) The section through the b-linkage 

occurring in the structure. The indication of the split atomic sites ‘c’ is made.   

 

In order to show the splitting of the atomic sites along a 3-fold and a 2-fold direction, the 

isosurface with a contour plot were calculated (Fig. 21). In Fig. 21 a) the splitting of the one of atoms 

belonging to the #3 dodecahedral shell is shown. The site ‘a’ is located on a 3-fold axis directed from 

the center of the cluster, which part is shown in the picture (red line). Fig. 21 b) presents the top view of 

the contour plot, along a 5-fold axis. The splitting is shown to occur along a 2-fold axis, perpendicularly 

to the radial direction of the cluster. Since the ODB generates the positions on the nodes of the 

dodecahedron, this splitting corresponds to the situation indicated by the white arrow in Fig. 18 b). Fig. 

21 c) shows the splitting of the atomic site ‘b’, belonging to the #2 icosahedral shell. In Fig. 21 d) the 
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splitting is shown to occur along a 3-fold axis. This is the splitting indicated by the white arrow in Fig. 

18 c), occurring for the ODV, which generates the positions on the #2 icosahedral shell. 

 

Figure 21. The isosurface plot in two perpendicular planes with the contour slice plot (in the 

vertical plane) for the 3D electron density map. a) The isometric view with the position ‘a’ indicated by 

an arrow and dotted circle and recognised as the split atomic site on the dodecahedron (section through 

the dodecahedron marked with dark blue line). The splitting occurs perpendicularly to the cluster’s radial 

direction which is a 2-fold direction and corresponds to the position indicated by the white arrow in Fig. 

18 b). The outline of the RTH cluster is drawn with the red line. Additionally, the outline of the outer 

icosahedron is marked with an orange line b) the top view of a); c) The isometric view with the position 

‘b’ recognised as the split atomic site on the outer icosahedron along a 3-fold direction. Such a split 

position corresponds to that indicated by the white arrow in Fig. 18 c). The contour of the RTH cluster 
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is drawn with the red line alongside the contour of the #2 icosahedron that is marked with an orange line 

and the contour of the #3 dodecahedral shell marked with a dark blue line; d) the top view of c). The 

specific directions are indicated with red arrows. The positions of the planes in which the electron 

densities are calculated in the isometric views in a) and c) are pictured with grey planes together with 

the orientation of the vectors in the icosahedral setting.  

 

4.4 The structure model 

The infinite structure model of the Bergman ZnMgTm iQC was constructed by ascribing the 

atomic decoration to two golden rhombohedra in the AKNt. Even though, the AKNt is indirectly used 

in all the models of iQC i.e. provides the 12-fold vertex environment and defines the atomic decoration 

of the interstitial part, it has never been utilized as a quasilattice for which the prototiles are building 

blocks of the structure. The main reason why it was never used is the unique decoration of rhombohedra 

cannot be determined in real structures [176, 177, 178]. To our knowledge, the latter statement has never 

been tested, nor proven for the inflated tiling. PI QCs obey the 𝜏3 scaling rule [144]. Therefore, the 

edge-length of the golden rhombohedra can be inflated from a regular 5.13 Å to 21.7 Å. We faithfully 

decided to try this approach and carry out the structure modelling. Of course, we worked with a strong 

assumption that the structure is well modelled by the decorated AKNt, which is 𝜏3 inflated. 

To find the decoration of the inflated rhombohedra, the electron density in randomly selected 

rhombohedra of the AKNt was calculated (Fig. 22). The electron density is subjected to small 

discrepancies between selected rhombohedra due to the limited amount of diffraction data and the phase 

retrieval, which although is very satisfying, cannot be considered complete. The complete reconstruction 

would be possible only with the infinite number of diffraction peaks and that is impossible for obvious 

reasons. In order to minimalize the electron density variations, the average electron density was 

calculated over chosen rhombohedra. That helped to obtain a good approximation of the atomic 

distribution inside rhombohedral units. It must be stated, that the decoration of each rhombohedron was 

repeatable. Therefore, the 𝜏3 scaled rhombohedra can be considered as proper building blocks of the 

structure. The maxima in the electron density correspond to the real space atomic positions. 

Approximately 800 positions were determined for AR and 500 for OR. Such a large number of atoms 

in the building blocks of the structure would be impossible to refine as only 3010 diffraction reflections 

are at disposal. The number of parameters was reduced by using the symmetry of each rhombohedron. 

By applying the 3-fold rotation and mirror symmetries the volume of rhombohedron, which is 

considered independent in a course of the structural refinement, was reduced by the factor of six. For 

the final model 148 atomic positions in AR and 104 for OR were used. 

The last information required to finish the preparation of the initial model is the elements 

distribution in the rhombohedra. Fortunately, Zn, Mg and Tm differ significantly in term of the atomic 
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scattering factor for X-rays therefore they can be rather clearly distinguished in the electron density map. 

In Fig. 22 we have plotted histograms of the calculated electron density for the found maxima. For both 

AR and OR three Gaussian-like distributions can be found. Each one corresponds to the specific element 

that is: the first Gaussian, closest to the origin, counts instances of Mg, which is the lightest element 

with the atomic number 𝑍 = 12. The next broad distribution is assigned to zinc with 𝑍 = 30. It is also 

the largest distribution as the content of Zn in the iQC is around 69%. The smallest distribution belongs 

to Tm, which is also the heaviest element in the structure with 𝑍 = 69. The histogram is normalized. 

Three Gaussian functions were fitted to the histogram plot. The type of atom is assigned to each site by 

the condition of the intensity in this position. If its intensity lies within 2𝜎 from corresponding Gaussian 

function’s maximum the element is ascribed unambiguously and is not subjected to the further 

refinement. If the intensity lies between distributions corresponding to particular elements this position 

is left as mixed site  and the ratio of occupation is refined. That procedure led to the initial composition 

of Zn68Mg24Tm8, which is in a good agreement with the experiment. 

The crystallographic R-factor of the starting model is equal to 35%. That value, even though 

large for inorganic crystals, does not negatively verify our model. Firstly, at this stage of investigation 

the model was not refined. Secondly, the phason disorder is known to be a dominant factor affecting the 

intensity of the diffraction peak. Lack of the phasonic correction can lead to 𝑅 = 27% even though the 

atomic model of the QC is very good [83]. 

 

 

Figure 22. The visualization of the isosurface electron density inside of the prototiles of the AKNt. 

The green (red) isosurface was plotted for 1/10 (1/3) of the maximal intensity. Two orientation for each 
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rhombohedron are shown. The orientation is expressed by arrows directing toward base-vectors of the 

icosahedral setting. The method of finding the atomic sites based on the electron density is shown. The 

algorithm finds the maxima which are assumed to be the centres of atoms for the initial model of the 

iQC. The atomic elements are ascribed to each site based on the distribution intensity in this site. Three 

Gauss distributions correspond to three elements found in the sample of ZnMgTm alloy. The strongest 

intensity is ascribed to Tm, whereas the weakest is Mg. 

 

4.5 The structure refinement 

The structure solution and refinement were based on the real-space modelling of atomic 

positions. The atomic elements were assigned to specific positions in the rhombohedra and later, by 

assembling rhombohedral units to form the AKNt, a whole structure in physical space was recreated. 

The real-space structure refinement, based on the average unit cell (AUC) approach, that is known to 

work exclusively in the physical space, was previously used for decagonal structures [127, 82].  Its main 

principle is the construction of the atomic distribution function [132, 179].  The distribution arises from 

projection of all positions on the periodic, reference lattice. In practical application, only the reference 

vertex of the rhombohedra must be projected because positions of atoms are related to that chosen site 

by vector translation. The AUC approach was never used for the structure refinement of the iQC, 

therefore a whole methodology including the code for the structure refinement had to be developed from 

scratch. 

The refinement of the structure was conducted with the use of the own code written in Matlab 

software environment. The library fmincon was used to optimize the parameter of the structure with the 

interior-point algorithm as a solver. The chosen solver satisfies bounds at each iteration and does not 

have to operate on full matrices what saves time, especially for problems with large number of 

parameters. The structure factor calculation is based on the tiling-and-decoration scheme, where the 

geometric part of the structure factor is separated from the atomic part [126]. The geometric part is the 

Fourier transform of the distribution related to one vertex of each rhombohedra, that was selected as a 

reference site. The atomic positions are given exactly with respect to the coordinates of the reference 

site. The geometric component is multiplied by the sum of the plane waves scattered over each atom, 

multiplied by the phononic Debye-Waller factor and the atomic scattering factor. 

In the structure refinement, 763 free parameters in total were refined. Those include: atomic 

coordinates, phononic atomic displacement parameters (ADPs) (isotropic), phasonic ADP in a general 

Debye-Waller formula [152, 80] (one parameter for a whole structure), extinction parameter [180] and 

a scale factor between experimental and calculated structure amplitudes. Additionally, for the mixed 

atoms the partial occupation probability for each element was refined, with the restriction that all have 

to sum up to 1. Since many atoms of the model are placed on the edges or the faces of the reduced units 
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of rhombohedra, the coordinate positions of those atoms are fixed and are not subjected to the action of 

the optimization algorithm. Parameters are refined against 3010 diffraction peaks what makes the 

reflections-to-parameters ratio ~3.9. The given ratio, however low for an inorganic structure, allows to 

perform the structure refinement. The number of parameters is quite large due to the large size of 

rhombohedra. The reduction of the size of rhombohedra is not possible since the model is restrained by 

the 𝜏3 scaling and a regular size of rhombohedra cannot be decorated uniquely. The larger size (𝜏6 

inflated one) would be irrational from the numerical point of view, since the volume of the rhombohedra 

would grow 𝜏9 times with respect to already inflated tiles and the number of atoms would grow to tens 

of thousands. 

After the structure refinement, which resulted in a wonderful 𝑅 = 9.8% no short atomic 

distances are observed, except for the high-symmetry sites with partially occupied atomic sites (Fig. 23). 

We have allowed for only small shift of atom from the original position (< 1Å in each cycle of the 

refinement program) what restrain the atoms from freely slide within the structure. We can observe a 

few instances of Zn/Mg mixed occupancies, Zn/Tm and very few where all three elements are found to 

be mixed, however mostly occupied by Zn/Mg and trace-amounts of Tm. Such mixing is not unusual in 

Bergman phases and is observed for approximant crystals in ternary ZnMg based alloys [181]. The final 

composition after the refinement was concluded to be Zn66.7Mg25.1Tm8.2 with 𝑒/𝑎 = 2.08 and a point 

density equal to 0.062 Å−3. It is in an acceptable agreement with the experiment. Nevertheless, there is 

a significant deviation from the experimental composition, especially considering Zn to Mg ratio, which 

does not affect 𝑒/𝑎 ratio. Such a deviation is rather common not only for ZnMg based QCs but also for 

their approximants. The discrepancy up to 3 at.% is not rare. The question is whether a significant 

disorder observed in those structures, both positional and chemical in nature, is an intrinsic component 

that should be accepted [182]. 

 

Figure 23. The correlation plot 𝐹calcvs 𝐹obs (left). The 𝑅 = 9.8%. The atomic decoration of two 

rhombohedra of AKNt after the refinement (right). The edge-length is equal to 21.7 Å. Tm atoms are 

located in the vertices of rhomboidal faces and form a rhombus in the mid of each face. Those are related 

by 𝜏3scaling property. Only 1/6th of each rhombohedron is refined.  
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4.6 The RTH covering 

The structure was refined within the scheme of the atomic decoration of golden rhombohedra 

forming the AKNt. The standard method of the modelling of the iQC and approximants is the cluster-

based approach where the local atomic arrangement is expressed by three known so far families of 

clusters. It is interesting to see how our refined structure corresponds to the cluster model. 

It is intriguing that all the atoms in our model correspond to some sites of the Bergman cluster. 

In fact, by covering the inflated rhombohedra with RTH clusters, we can assign every single atom to 

RTH cluster forming a kind of quasiperiodic covering. A covering is usually discussed for decagonal 

QC e.g. the Gummelt cluster has such property [183] but it was never elaborated nor implied for an iQC. 

That feat is not possible for the 12-fold sphere packing based model of iQC. If b- and c-linkages are 

allowed exclusively, the interstitial part of the structure always arises. In our case such a distinction 

between RTH cluster sites and interstitial structure is unnecessary. It would be even inappropriate since 

there is no condition that would allow us to select the clusters that are considered ‘proper’. It is caused 

by the existence of the a-linkage along a 5-fold direction and the short b-linkage along a 2-fold direction. 

Those linkages are excluded from the cluster-based approach as they create too-short interatomic 

distances, what was shown in §4.3 and are never seen in the approximant crystals. The length of each 

linkage, appears in our model, is the following. The length 𝑏 of the b-linkage is equal to 

𝑎(4 + 8/√5)1/2=14.1 Å. The length 𝑐 of the c-linkage is equal to 𝑏√3/2 = 12.2 Å. The length of the 

a-linkage is equal to the edge-length of original (not inflated) rhombohedra, that is 5.13 Å. The short b-

linkage can be calculated from the b-linkage by subtracting the original lattice constant, resulting in 

8.9 Å. 

The short linkages create split atomic positions that have to be dealt with. In our model, for the 

way the atomic positions were identified by looking for the maxima in the electron density, one of two 

split atomic maxima can be unoccupied as the algorithm removes one maximum if two are too close to 

each other. Those positions are e.g. the atoms belonging to the icosahedron from the #2 icosahedral shell 

of clusters located on the edges of rhombohedra (marked ‘a’ and ‘d’ in Fig. 24). That does not worsen 

the model, but high phononic ADPs for such positions are expected (see §4.8.3). The site ‘a’ is 

unoccupied because it would be too close to the site ‘b’. The same reasoning applies to the site ‘d’. The 

site ‘b’ and ‘c’ exhibit a substantial freedom of movement along a 5-fold direction, that is reflected in 

the electron density map. That is the phason flip site. Due to the steric condition the site ‘a’ can be 

unoccupied, as it is presented, or occupied depending on how far the atom ‘b’ is from the cluster center. 

We can see that in the electron density map the site ‘a’ could be partially occupied or occupied by a light 

element, but due to the low electron density it remained empty in the model. Contrary to the site ‘a’, the 

site ‘d’ shows no indication of the atom (Fig. 24 right). 
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There is another site that deserves some attention. The site ‘e’ is shared by the #1 shell of both 

interacting clusters. The question is whether this site creates short distance that should be filled by a 

split atom. In the electron density map, there is no trace of the smearing along 5-fold direction. However, 

due to the maneuverability of the sites ‘c’ and ‘b’, there is a possibility that the site ‘e’ will be able to 

glide along 5-fold axis. Nevertheless, in the model it is occupied by one atom. 

The other intriguing question is that whether the cluster center is occupied by an atom or not. In 

our model the occupied center site is created by the existence of the a-linkage. The atom occupying the 

node of the icosahedron from the #2 icosahedral shell is located right where the center of the nearby 

cluster is located. That is very well represented in Fig. 24, both in a refined structure model and an 

electron density obtained from the ab initio phasing. Only the clusters located on the long body-diagonal 

of the AR are not exhibiting the occupied center as they are connected by the c-linkage and do not 

exhibit any a-linkage. However, they are linked by the short b-linkage with neighboring clusters. 

Our refined model shows all the features that were also found in the ab initio structure solution. 

At this point we would like to state that at the very early stage of the iQC structure solution, there was 

an attempt of constructing the iQC with two types of the RTH clusters only: small one and big one [184]. 

The model was derived for the cubic R-Al5CuLi3 approximant of the AlCuLi QC. The crucial difference 

with respect to our approach is we do not include the second, smaller rhombic triacontahedron in-

between large RTH clusters. All the shells of RTH covering derived from our model can be seen in Fig. 

25 for the asymmetric part of rhombohedra. 

 

Figure 24. The formation of the a-linkage in the asymmetric part of the OR. The #1 shell (yellow 

line) and the #2 shell (black line) of linked clusters are shown. The position ‘a’ (‘d’) is unoccupied due 

to the close vicinity of the atom ‘b’ (‘c’). The site ‘a’ shows some non-zero electron density (right) but 

in the refined model this site is unoccupied. The position ‘e’ is a potential split position created as an 

overlay of two neighbouring #1 shells. The rhombic triacontahedral shell was not plotted in the atomistic 

model as it would make a picture indistinct. 
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10 sites in the asymmetric part of the AR and 7 sites in the OR were found to host the RTH 

cluster. Those sites are listed in Table 4. To create this list, we have used the known relation for 𝜏- 

scaling: every number can be expressed as equal to 𝑝 + 𝑞 𝜏⁄ , where 𝑝, 𝑞 ∈ ℤ . The list shows (𝑝, 𝑞) 

values of the sites in the rhombohedra. 

 

Table 4. RTH clusters positions in two rhombohedra: AR and OR. The notation gives (𝑝, 𝑞) 

values of the reduced coordinates of cluster centres. For example, the position 𝑟 of the cluster centre is 

equal to 𝑟 = 𝑋𝐟1 + 𝑌𝐟2 + 𝑍𝐟3, where 𝐟1, 𝐟2, 𝐟3 are vectors spanning edges of the rhombohedra. For the 

AR those vectors are 𝐚1, 𝐚2, 𝐚6 respectively and for the OR 𝐚1, −𝐚3, −𝐚6. 

 

Rhombohedron 

Type 

X Y Z 

AR 

(0, 1) (0, 1) (0, 1) 

(1, -1) (1, -1) (1, -1) 

(0, 1) (0, 0) (0, 0) 

(1, -1) (0, 0) (0, 0) 

(2, -2) (2, -3) (2, -2) 

(-1, 3) (-1, 2) (-1, 2) 

(1, 0) (0, 0) (0, 1) 

(1, 0) (0, 0) (1,-1) 

(1, 0) (1,-1) (1, 0) 

(1, 0) (0, 1) (1, 0) 

OR 

(0, 1) (0, 0) (0, 0) 

(1, -1) (0, 0) (0, 0) 

(1, 0) (0, 0) (0, 1) 

(1, 0) (0, 0) (1, -1) 

(1, 0) (1, -1) (1, 0) 

(1, 0) (0, 1) (1, 0) 

(0, 1) (1, -1) (0, 1) 

 

To illustrate the refined structure, in Fig. 26 the 2D projections of the atomic arrangement along 

2-, 3- and 5-fold directions are shown. The RTH cluster covering and the AKNt are plotted over the 

generated atomic sites for guidance. Since the cut through the AKNt perpendicularly to a 5-fold direction 

is known to form a Penrose tiling it is not surprising the 5-fold section exhibits a similar atomic 

arrangement as the decagonal QCs. 
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Figure 25. All the shells of the Bergman cluster plotted in reference of the asymmetric part of AR 

(left) and OR (right). The colours represent atoms the same as in Fig. 23. Each of the atoms belongs to 

one of the cluster’s shell. 
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Figure 26. The ZnMgTm iQC structure projected along 5-fold (top), 3-fold (mid) and 2-fold 

(bottom) directions. The thickness of the projected structure is equal to 2 Å. Black bonds define the 

frame of the RTH cluster, whereas the yellow bond indicates the edges of the 𝜏3 inflated rhombohedra 

in the AKNt. 

 

4.7 The higher-dimensional model 

The traditional approach, with 𝑛D, involves modeling of the ODs located in the internal space 

being orthogonal to the physical space. Our model, even though based on the real-space, can be still 

lifted to the 6D space to compare our result with previous attempt on the Bergman-type QC. In order to 

lift the structure to 6D the large portion (>500 000) of the atomic positions was generated. All the 
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positions were represented as 6D vectors, where the physical space coordinates were derived from the 

structure itself and the internal space coordinates were assigned 0. It is due to the principle of the section 

method where the physical space coordinate is generated as an intersection of the physical space with 

the OD. That always occurs for the internal space coordinates equal to 0. After multiplying the 6D vector 

of each atom by the inverse projection matrix 𝐖−𝟏 (inversion of the 3.10), the coordinates in the 6D 

space were found. The coordinates were then reduced to one 6D unit cell by the modulo 1 operation. 

Every position of the generated structure was then assigned to the corresponding OD. The assignment 

is not deterministic because of the phason flip sites that allow for an atom to be ascribed to two different 

ODs with equal probability. The recreated ODs are plotted in Fig. 27, in comparison to their equivalents 

coming from the simple-decoration model [163]. The inner part of the ODB generates Tm atoms in the 

structure. Tm is only located in that OD what corresponds well with the 5-fold section plotted in Fig. 

18. In the ODV the inner part is empty what also very well corresponds to the plot in Fig. 18 obtained 

from the ab initio phasing procedure. Those positions are related to the cluster centres in the body-

diagonal of the AR. The ODE is located at the low-symmetry site (5̅𝑚) what is also recreated in our 

model. The recreated ODs are resembling to those for the simple-decoration model in terms of size and 

shape, but the details are different. For instance, we can see unoccupied sites along 3-fold direction in 

the ODV and ODB. That fine structure corresponds to fine-tuning carried out by Yamamoto to solve the 

structure of AlCuLi iQC [104]. He additionally modified the simple-decoration model by removing the 

atom form the 12-fold vertices (empty centre in ODB), and also removing some atoms inside of the 

rhombic dodecahedron laying on the mid-edges positions and putting atoms in off-edge-centre positions. 

However, the fine details of the ODs are different, e.g. we observe an aggregation of Mg atoms nearby 

5-fold vertices in the ODV, which does not occur in Yamamoto’s model possibly due to its idealized 

decoration of off-centre mid-edges positions. In addition, our model is significantly more ordered 

chemically. 

The last test of our model was the comparison between the calculated high-symmetry sections 

through the 6D space. The phases obtained from the refined structure served to calculate the electron 

density map using the experimental diffraction amplitudes and ones recovered from the model (Fig. 28).  

By calculating the residual electron density |∆𝜌| < 4%𝜌𝑚𝑎𝑥 we can conclude that our model does not 

miss any significant amount of atoms in the structure. The comparison with other Bergman QCs is 

impossible since no other contemporary model of this QC exists. 
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Figure 27. Three ODs of the ZnMgTm iQC lifted to the 6D space: the ODB (𝑚3̅5̅), ODV (𝑚3̅5̅) 

and ODE (5̅𝑚). The Tm is accumulated only in the ODB . The empty centre of ODV is reproduced very 

well in the present model. 

 

Figure 28. The high-symmetry 2D sections through the 6D space resulting from the Fourier 

transform of the experimental diffraction pattern (top), our model after the refinement (mid) and the 
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differential electron density map (bottom). The small residual density validates the correctness of the 

model. The red rectangle shows the 6D unit cell. 

 

4.8 Discussion 

4.8.1 Tiling approach vs cluster model 

The model of the ZnMgTm Bergamn iQC was constructed in the tiling-and-decoration scheme, 

where two golden rhombohedra of the AKNt where chosen as building blocks of the model. This 

alternative to the cluster approach definition of the model was previously proposed based on the 

structure refinement of the 2/1 cubic approximant of the AlZnMg QC [185]. Unfortunately, the model 

was never finished, possibly due to the problem with finding a unique atomic decoration of AR and OR. 

We dealt with this problem by proposing 𝜏3 inflated rhombohedra as fundamental building blocks of 

the structure. The question someone could ask is whether such an approach is justified. In fact, that 

question is much deeper. So far, all the structure solutions of QCs make a presumption, that a long-

range-order is well-approximated by the tiling. Sometimes, the assumption is explicit, when e.g. the 

structure of decagonal QC is built upon the Penrose tiling. In other situations, like in the case of iQCs, 

this assumption is hidden when only the subset of the 12-fold vertices of the AKNt is used to define the 

locations of cluster centres. Either way, the property of tiling is exploited, even though it is still unknown 

whether a particular tiling well characterizes the structure of QC. There is an attempt to generalize the 

tilings during the structure refinement of the decagonal QCs [122, 123], but such a work does not exist 

for the AKNt. 

It is difficult to say, whether the cluster approach contradicts or is equivalent to the tiling 

approach in the context of the iQC. The solved structure exhibits the a-linkage and the short b-linkage 

which are absent in the cluster model. That would mean those two approaches cannot be equivalent. But 

what if the interstitial structure in the cluster model could be interpreted in terms of the clusters but with 

different atomic decoration? It is already known that atoms in the Tsai-type QC model form a Bergman 

cluster in the interstitial part [164]. If RTH clusters were assigned to cover the interstitial part, the 

additional linkages to known b- and c-, that were observed in our study, could naturally arise. We believe 

that a new model of the Tsai-type QC, based on the AKNt decoration would be beneficial for better 

understanding to the structure of iQCs.  

4.8.2 Rare-Earth distribution 

The location of Tm atoms in the present model is particularly important. The main reason is the 

magnetic properties of the Zn-Mg-Rare-Earth QC originate from the 4f electrons of the rare-earth ions, 

interacting via the indirect Ruderman-Kittel-Kasuya-Yoshida exchange [186, 187, 188]. So far, all the 
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research conducted on the Zn-Mg-Rare-Earth QCs shows the spin-glass-like behavior at low 

temperature and no clear indication of the long-range-order was reported. The nature of the frozen state 

is still under discussion [189]. 

One of the attempts on the theoretical investigation of the magnetic ordering in the FCI QCs 

was made by Sato [172], who proposed a model, where the rare-earths atoms are forming the network 

of edge-sharing dodecahedra with an edge length of 5.5 Å. However, the dodecahedral spin object does 

not explain why the spin correlation is terminated at the finite length. From the geometrical point of 

view, there is no reason why two adjacent dodecahedra should behave as isolated objects what was 

indicated by the author. Even though the question remains open, the dodecahedron as a spin object at 

least explains the magnetic diffuse scattering in the neutron diffraction pattern. 

Recently, a FCI Bergman QC was investigated in the ZnMgHf in terms of the local atomic 

arrangement, especially dedicated to the positions of the Hf elements [190]. Similar to rare-earth 

elements, Hf seems to occupy the #5 rhombic triacontahedral shell of the Bergman cluster. In that study, 

the Hf elements are not only located in the 3-fold vertices of the RTH cluster, forming the dodecahedron, 

but also in the 5-fold vertices of the second cluster, forming the icosahedron. In principle, the existence 

of two types of clusters, differing by the preferential occupation of the high-symmetry sites by Hf, is the 

reason the face-centered ordering is realized. This new result could benefit for the better modelling of 

the magnetic properties in Bergman QCs, however, the complete structure solution of the FCI QC is still 

missing. 

The result of the refinement of the PI ZnMgTm QC is in some way even more complex in terms 

of the Tm elements distribution than what is already known for the FCI phase. In Fig. 29 the distribution 

of atoms in the rhombic dodecahedron is shown focusing on the Tm atoms. All the Tm atoms are on the 

vertices of the rhombic triacontahedra (Fig. 29 a)), however not all the vertices are occupied by Tm 

atoms. It is difficult to point out a rule stating which site of the cluster is occupied. Both 3-fold and 5-

fold vertices in the same cluster can be occupied at the same time, therefore the exclusion rule valid for 

the FCI does not apply. The #5 shell of the RTH cluster, beside Tm atoms, is occupied by Zn and Zn/Tm 

atoms. Some vertices are occupied by the Zn atoms solely. Such a not unique decoration of cluster sites 

originates from clusters overlapping along more than b- and c-linkages. The number of local 

environments of clusters grows when the a- and the short b-linkages are additionally allowed. Therefore, 

the cluster does not well represent the local chemical order. 

The rhombic dodecahedron can be decomposed into 2 ARs and 2 ORs. Inside of the shown 

dodecahedron the short b-linkage (white clusters in Fig. 29 a), b) and c)) originates from two adjacent 

ORs, contributing to a formation of the small rhombic dodecahedron. In Fig. 29 d) – f) the decoration 

of the small dodecahedron, resulting from the intersection of two RTH clusters is shown. Tm atoms are 

gathered on the ring occupying the vertices of dodecahedron but the sites that lay on the plane 

perpendicularly to the linkage direction are occupied by Zn and Zn/Tm mix atoms (sites ‘a’ in Fig. 29 
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d)). These sites are generated by the overlay of the rhombic triacontahedron and inner icosahedron 

resulting in a split atomic position, as it was mentioned during the discussion of Fig. 19. The Zn/Mg and 

Mg atoms are located on the surface of the rhombic face, creating a split position along 2-fold direction 

Those sites are generated by the #4 soccer-ball polyhedral shell. Zn atoms form a hexagonal ring inside 

of the rhombic dodecahedron perpendicular to a 3-fold direction (Fig. 29 f)). In this ring sites ‘b’ are 

coming from the nodes of the #2 icosahedral shell, the sites ‘c’ are generated by the #3 dodecahedral 

shell and the sites ‘d’ are once again generated by the #4 soccer-ball polyhedral shell. 

In Fig. 29 a) and b) not all the RTH clusters are plotted. For the sake of simplicity, only the 

clusters for which one of the faces lays on the face of the dodecahedron, forming a rhombus of Tm 

atoms are plotted. In Fig. 29 g) the 2D projection, along a 5-fold axis, of the Tm atoms in the structure 

is shown. The frame of the RTH clusters are plotted for guidance, to indicate each of the atoms belongs 

to the vertex of the #5 shell. The Tm-Tm distance is equal to the edge-length of the rhombic 

triacontahedron. Even though it was estimated to be 5.13 Å, the Tm-Tm distance in the presented cut 

through the structure is equal to 5.23 Å between the nearest neighbours and 8.65 Å between the second 

nearest neighbours atoms. 
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Figure 29. The atomic decoration of the dodecahedral motif in the refined structure of ZnMgTm 

Bergman iQC. The rare-earth atoms in a) and all the atoms in b), occupying the RTH’s #5 rhombic 

triacontahedral shell are shown. The inner blue dodecahedron is 𝜏3 times smaller with respect to the 

green one showing the scaling property; c) the intersection of the RTH clusters inside of the 

dodecahedron, forming a short b-linkage. The atoms occupying the vertices of triacontahedron and all 

the atoms in the small dodecahedron are shown. In the d), e), f) the atomic decoration of the small 

dodecahedra, created by the intersection of two RTH clusters along short b-linkage is shown. d) shows 

the outer atoms, e) shows Mg and mix occupation atoms and f) shows Zn atoms inside of the small 

dodecahedron; g) the piece of the structure projected along a 5-fold axis presenting the distribution of 

Tm atoms. The 1Å depth is shown. The black bonds determine the frame of the RTH cluster. 
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4.8.3 Atomic ADPs and Disorder 

The refined structure model of the ZnMgTm iQC shows rather small chemical and positional 

disorders, comparing to known Bergman QC approximants [181, 185]. The maximal atomic mean 

square displacement parameter 〈𝑢𝑥𝑦𝑧
2 〉, related with B-factors according to the formula 𝐵 = 8𝜋2〈𝑢𝑥𝑦𝑧

2 〉, 

found in the refined structure is equal to 0.061 Å2. It is estimated for one of the Tm atoms in the OR. 

Such a value is still almost three times lower than for the Zn18 position is the ZnMgZr 1/1 cubic 

approximant [181]. In Fig. 30 the atomic mean square displacement was plotted for each atom from the 

asymmetric part of AR and OR. We decided to thoroughly analyze the origin of large displacement 

parameter for atoms that exhibit 〈𝑢𝑥𝑦𝑧
2 〉 > 0.05 Å2. The threshold was chosen arbitrarily for practical 

reasons just to present the idea why the large displacement occurs. 

Seven atoms from AR satisfy this condition: 11, 44, 60, 72, 92, 114 and 145. Labels correspond 

to numbers given in Table S1. All the above listed atoms experience rather significant displacement in 

the course of the structure refinement. The shift is about 1 Å from the position in the initial model. In all 

the cases, such a substantial rearrangement is induced by the existence of the split atomic site that in our 

model was not assumed and instead only one fully occupied atom was considered. An atom 11 is Zn 

located at the face of AR. It is generated by the #4 soccer-ball polyhedral shell, that was indicated in 

Fig. 20 to exhibit a considerable disorder. Atoms 60 and 72 are Zn atoms generated by the #3 

dodecahedral shell. The nodes of the dodecahedron become disordered due to the formation of the a-

linkage. Atoms 92 and 114 are Zn generated by the #1 icosahedral shell. The strong displacement of the 

positions is justified by the a-linkage formed by RTH clusters. The behavior is similar to what was 

presented for the sites ‘a’ and ‘b’ in Fig. 24. Due to the absence of the atom in the site ‘a’, the atom ‘b’ 

has a space for mobility along a 5-fold direction. In the case of the atom 92 such a mobility occurs along 

the long-body diagonal of AR. Atoms 44 and 145 are Tm atoms located in the vertices of AR. Their 

potential maneuverability is caused by the absent atom in sites ‘a’ and ‘d’ in Fig. 24. In addition, these 

atomic positions were fixed during the structure refinement in the vertices of AR.  Therefore, it might 

not be at their optimal position. 

OR manifests less atoms that are significantly disordered in terms of ADPs. Only three atoms 

satisfy the above-mentioned condition: 15, 62 and 65. An atom 15 is Zn, generated by #2 icosahedral 

shell, forming the a-linkage. Atoms 62 and 65 are Tm atoms laying on the face of OR, sharing the same 

face of the #5 shell. Positions of Tm atoms can be affected by rather strongly disordered Mg atoms, 

generated by #4 soccer-ball polyhedral shell, that surround the atom 62. Any disturbance of the #4 shell 

will affect the #5 shell. Those two Tm atoms show two largest mean displacement parameters:  0.060 Å2 

for the atom 62 and 0.061 Å2 for the atom 65. Also, three extreme Tm-Tm bond lengths are occurring 

in this patch: Tm62 − Tm38 = 4.3 Å, Tm62 − Tm65 = 5 Å and Tm38 − Tm65 = 5.8 Å. 
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It can be speculated what is better for the structure refinement - the explicit split atomic position 

or a single atom with a large displacement parameter. It is a difficult question especially in the context 

of QCs. Since the number of local environments in QCs is significantly larger than those in approximant 

crystals, principally in the Bergman QC where additional linkages are identified, it could be extremely 

tedious to assign all the split atomic positions correctly. Therefore, we decided not to introduce any 

more split positions and accept a little larger phononic ADPs. 

Besides positional disorder, the structure model displays some chemical disorder. The mixed 

atoms are predominantly occupying the positions on the edges of rhombohedra, generated by the #1 

icosahedral shell, where the a-linkage is formed. In this case Zn/Mg mix site is generated. Additional 

mixing occurs for atoms on the dodecahedral shell e. q. atoms 131 and 121 of the AR, forming the c-

linkage. The site is co-shared with the vertex position of the triacontahedral shell. Those positions are 

Zn/Mg mixes with trace amounts of Tm atoms. It could however be the artefact of the refinement since 

the number of peaks to parameters ratio is low. The number of mix atoms are also occurring for the sites 

co-shared by the soccer-ball polyhedral and the most inner icosahedron in the short b-linkage. Such a 

site is e. g. the position 49 of the AR being occupied by Zn/Tm mix in a ratio 0.63/0.37. At this point 

we cannot point out, if it exists, a clear selectivity rule for chemical species to occupy a specific position 

in the shells of clusters. However it is evident that mixing of the chemical species occurs as a 

consequence of the overlay of the atomic shells of neighboring clusters. 

The partially occupied sites are the atoms 104 and 101 from the OR, that are generated by the 

#4 soccer-ball polyhedral shell, and 146, 147 and finally 148 from the AR. The atom 146 forms a phason 

flip site with the atom 55. The atom 147 is generating a close distance with the atom 145. It is therefore 

no surprising that low occupancy of the site 147 with probability 0.15 is obtained. 

Finally, we would like to comment on the magnitude of the phason disorder. The phason 

correction was made by the general Debye-Waller formula with the phasonic ADP equal to 1.44 Å2. 

That value is rather low comparing to other known iQCs [61, 62, 191], which is around 3.5 Å2. By 

curiosity, the phasonic ADP was forcefully set to 0 Å2, to check how much the value of the R-factor 

would change. To our surprise, the R-factor almost did not change and was equal to 9.9%. That is a very 

important result. The phasonic disorder is known to be correlated to single atomic jumps or the frozen 

lattice disorder associated with the tiling. Single atomic jumps to some extent can be modelled by 

introducing partial occupancies. However, nothing can be done about the lattice part. The lattice 

randomization by phasons is what can only be modelled by phasonic Debye-Waller factor [83, 130]. 

Since our result stays the same when the phasonic ADP is neglected, that means the tiling is correctly 

chosen. That could mean the AKNt very well describes the structure of the Bergman QC.  
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Figure 30. The mean square displacement parameters (〈𝑢𝑥𝑦𝑧
2 〉) plotted for atoms in the asymmetric 

part of the AR (left) and OR (right). The cut-off value of 0.05 Å2 is shown (red-dotted line). The labels 

of atoms that exceed the threshold are given. 
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5. The local structure of the ZnMgHf F-type quasicrystal 

This is an Accepted Manuscript of an article published online by Taylor & Francis in 

Materials Science and Technology in 2019, available online: 

http://wwww.tandfonline.com/10.1080/02670836.2019.1612579. 

The additional section about the analysis of the local structure with respect to the cluster 

linkages was added. 

5.1 Introduction 

ZnMgHf alloy [192, 193]  is an ideal candidate to investigate the conditions of the QC formation. 

It was discovered by a chemical substitution of elements in the  ZnMgSc [66] phase forming a P-type i-

QC with Tsai clusters. Surprisingly, the original premise that the structure will be similar in terms of  a 

geometry of the cluster was incorrect and the QC was formed with Bergman clusters [192]. Apart from 

potential scientific benefits, enriching the knowledge about phase stability mechanisms, ZnMgHf has 

plausible industrial applications. ZnMg alloys are extensively studied for their mechanical properties 

[194, 195]. Excellent strength after precipitation with ZnMgY QCs was observed [196] however due to 

a high cost of yttrium it did not find a market. On the other side hafnium, as a cheaper element, could 

be a suitable replacement. In the ZnMgHf system the existence of both P-type (Zn85Mg7Hf8) and F-

type QC (Zn77Mg17Hf6) was reported along the periodic phase (Zn76Mg20Hf4) which appeared to be a 

1/1 cubic approximant to the F-type QC [193]. Previous studies were performed by means of powder 

X-ray diffraction (XRD), to carry out a phason strain analysis, and an electron microscopy to identify 

phases in a sample. For most, the composition range in 873 K for each phase was determined with 

EPMA concluding the composition for each element to be varying in the range of 3 at. % for Zn and Mg 

and 2 at. % for Hf [193]. The local cluster environment takes the form of the Bergman-type for the F-

type phase and the Tsai-type for the P-type phase. The rule of 𝑒/𝑎 is preserved suggesting the Hume-

Rothery mechanism of stabilization. The cluster environment was observed under an electron 

microscope with a HAADF-STEM technique [193]. An indication that the Bergman cluster is indeed 

forming the structure came with the analysis by Gomez et al. [181] who performed a structure refinement 

of the 1/1 cubic approximant of ZnMgTM, TM={Hf, Zr, Ti} QCs from a single crystal XRD. Those 

periodic isostructures are built of two types of Bergman clusters distinguished by the TM atom positions. 

Due to high disorder occurring in the sample and the complexity of the structure the agreement of the 

model with the experimental diffraction data is not ideal (𝑅 = 7.35% for ZnMgHf) and the composition 

is significantly different from the experimentally observed (up to 3 at. % for Zn atoms). Nevertheless, 

close enough to be convinced of the correctness of the model. The distinction between clusters is 

primarily made by the TM atom’s preference in the occupation of the high-symmetry positions of the 

rhombic triacontahedral outer shell. The cluster centered at the unit cell’s vertex (V-RTH) has 5-fold 

http://wwww.tandfonline.com/DOI
http://wwww.tandfonline.com/DOI
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vertices occupied by TM, whereas the one centered in the middle of the unit cell (B-RTH) has 3-fold 

vertices occupied by TM. What is also interesting, is the peculiar type of disorder observable in the 

electron density map. Atoms seem to fluctuate significantly along the 5-fold direction meaning that the 

atomic cluster is distorted. Even though the structure of the approximant crystals was solved by XRD, 

the same lacks for the F-type QC. The main problem was an absence of a good quality single crystals of 

a proper size, necessary for succeeding in the structure analysis. As it was already mentioned, all 

previous experiments on this QC were performed with the use of the electron microscopy on small 

crystals in the range of tens of nanometers. In this paper we report a successful synthesis of good quality 

ZnMgHf F-type QCs with a max diameter ~300 μm (see Fig. 32). After an initial screening for the best 

crystalline grain, the single crystal XRD was performed using a synchrotron radiation and a local cluster 

structure was derived using a charge flipping algorithm [107, 175]. The synthesis was checked to be 

repeatable, resulting with high-quality crystals at each time. 

5.2 Synthesis 

The QC was synthesized by a high-temperature reaction of pure elements. High purity Zn 

(Nilaco 4N), Mg (Nilaco 4N) and Hf (99.9%) were used. The rod of Zn (~1 cm in a diameter) was cut 

into discs (~1 mm thick) and subsequently each disc was additionally split in halves. The rod of Mg 

(~0.5 cm in a diameter) was also cut into discs (~1 mm thick) without further processing. Hf takes a 

form of a sponge out of which small grains were selected. Since no single grain of size suitable for a 

single crystal XRD was grown after the first attempt, we experimented with an initial composition and 

altered a heat treatment in order to obtain faceted grains, which would be a marker of a good quality 

sample. For the first synthesis the initial composition was adapted from Hasegawa et al. [192]: 

Zn77Mh17Hf6. The elements were put into the Al2O3 crucible, with the toughest (Hf) to melt on the 

bottom and Zn on top as it has the lowest melting point among used elements. Afterwards, the 

components were sealed in a quartz tube under Ar atmosphere (back pressure ~600 Torr) after previous 

evacuation to a pressure of 2.1 ∙ 10−6 Torr. The heat treatment, adapted from Ohhashi et al., [193], was 

executed in a muffle furnace. First, we performed a rapid heating up to 923 K in 6h, finally reaching 

973 K after additional 1h. We avoided exceeding 973 K for the high content of Zn in the sample which 

boils at 1180 K and could intensely evaporate. The sample was kept in 973 K for 12 h to melt 

constituents. Even so the melting point of Hf is much higher (2504 K), it is dissolved by Zn-Mg melt. 

After cooling the sample with a ratio of -2.8 K/h we reached the annealing temperature (823 K) in which 

a sample was held for 7 d (144 h). The process was finalized by quenching the sample in water and 

breaking a quartz tube. Within two attempts no faceted QC were observed even though the F-type phase 

was existing with trace amounts of Zn and Zn2Mg Lavas phase [197] (Fig. 31). To check the crystal for 

phase transitions we performed a DTA experiment with a heating ratio equal to 10 K/min. The phase 

transition starting from 843 K is seen (Fig. 32 right). We performed a third attempt to grow the F-type 
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QC with a plan to set the annealing temperature to 833 K. Since we also observed a strong evaporation 

of Zn we intended to increase its amount to 79 at. % while decreasing the Mg content to 13 at. % and 

increasing Hf content to 7 at. %. Using the same elements as before and the same preparations conditions 

we resulted with faceted QCs visible under an optical microscope (Fig. 32 left).    

 

 

Figure 31. The shape of the sample after preparation (left) and the magnification (80x) of reflective 

grains found in the sample (right). The existence of the F-type ZnMgHf QC was confirmed with a 

powder XRD. No faceted QCs were observed. 

 

 

 

Figure 32. The DTA figure (heating phase) showing phase transition around 843 K (right). The 

peak, starting around 373 K shows water evaporation. The faceted QCs with pentagonal dodecahedron 

shape were observed under optical microscope after annealing in 833 K (left). 

 

5.3 Characterization 

To confirm the existence of an icosahedral phase in the sample with no faceted QC the powder 

XRD with CuKa radiation was performed with the use of in-house Rigaku RINT-2000 diffractometer. 
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The sample was grinded in an agate-mortar to obtain grains < 25 𝜇𝑚. The indexation was performed in 

a 6D Elser base [112] identifying the first high peak as a 422222 5-fold reflection. All peaks were 

identified in the vicinity of ∆2𝜃 = 0.04° (Fig. 33). The systematic extinction rule characteristic for the 

F-type QC (all indices are even or odd) is observed. The quality of the sample was checked by the 

analysis of the peak broadening with respect to parallel (𝑘𝑝𝑎𝑟) and perpendicular (𝑘𝑝𝑒𝑟) component of 

the six-dimensional scattering vector. The existence of a phason strain, typical only for QC structures is 

reflected by the dependence of the peak position with respect to 𝑘𝑝𝑒𝑟. It is responsible for breaking the 

icosahedral symmetry and the reduction of the long-range order. Within our sample, the regular lattice 

strain with respect to 𝑘𝑝𝑎𝑟 is observed, however no relation with 𝑘𝑝𝑒𝑟 is present, meaning the phason 

strain is absent in the structure. The annealing treatment is known to reduce the phason strain in the 

crystal and since the sample was extensively annealed in an elevated temperature it is not visible in our 

sample. 

 

 

 

Figure 33. The diffraction pattern of the F-type icosahedral ZnMgHf QC indexed in the Elser base 

(top). The inset plot shows 𝑎𝑖𝑐𝑜 lattice constant fit. The width of the peak and a peak shift plotted with 

respect to the 𝑘𝑝𝑎𝑟 and 𝑘𝑝𝑒𝑟 (bottom). No phason strain is reported, only regular linear strain is observed. 
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The composition of the crystal after a successful growth of the faceted grains with the altered 

temperature program was checked with WDX on EPMA (Fig. 34) 

 

 

Figure 34. The BSE (Back-Scattered Electron) images of the single crystal phases of ZnMgHf. Zn 

and Hf islands are detected. 

 

The average composition after the measurement of the elements’ content in eight different points 

for each grain was concluded to be: Zn80,7Mg11,7Hf7,5. The standard deviation of the atomic 

composition is < 0.2 at. %. It is significantly different than the composition reported during previous 

research [19, 20]. The surplus of Mg and the deficiency of Zn in previous studies could be the reason 

for lack of the observation of large single crystals. The significant mixing between Zn/Mg could lead to 

the presence of disorder, affecting crystalline growth. 

The existence of the F-type centering in the QC was also proven with an electron diffraction. 

In the Fig. 35 three characteristic rotational symmetries are shown, including a 5-fold symmetry (10-

fold due to Friedel’s law). A characteristic 𝜏 = (1 + √5)/2 scaling is being shown in the diffraction 

diagram involving 2-fold symmetry. That is a clear indication of the superlattice existence. 
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Figure 35. The electron diffraction of the ZnMgHf icosahedral QC in the plane perpendicular to 

the 5-fold (left), 3-fold (mid) and 2-fold (right) axis. The 𝜏 = (1 + √5)/2 scaling characteristic for the 

F-type QC is observed along 5-fold direction of the 2-fold symmetry diffraction pattern 

5.4 The local structure 

The single crystal diffraction data was collected at the Crystal beam line at synchrotron SOLEIL. 

The measurement was conducted at 120 K with the incident energy of 21.28 keV. Two runs with 

different exposure time were collected to cover the wide dynamic range of peaks’ intensities. The 

integration of the reflection data was conducted with a CrysAlisPro software [174] and 4197 independent 

reflections were collected. The Superflip software [107] was used to assign phases to the diffraction 

peaks resulting in the crystallographic R = 22.41%. The value of the R-factor allows to discuss the main 

features of the structure however, fine details must be discussed only after the refinement. The electron 

density map, which was obtained from the phased diffraction data, shows the existence of Bergman 

clusters. At this point we can confirm that the F-type ordering is executed by a chemical substitution of 

high symmetry positions in a cluster resulting in two atomic decorations of the clusters (Fig. 36). The 

difference is best visible by observing the Hf’s position in the rhombic triacontahedron. The first version 

of the cluster has large electron density accumulation in 3-fold vertices of the triacontahedron. It 

corresponds to B-RTH cluster from the model of 1/1 approximant by Gomez et al. [181]; Hf in the 

second cluster is located in 5-fold positions of the triacontahedron, just like in the V-RTH cluster in the 

latter model. Even though the similarity between the structure of the approximant crystal and the QC is 

significant we are unable to assign the atomic decoration to remaining positions in the cluster due to low 

a contrast between Zn and Mg in the electron density. Further analysis will be possible after the structure 

model of the F-type QC is ready for the refinement. The other characteristic trait of the structure is that 

it exhibits a significant disorder in the inner shells of the B-RTH cluster. What is interesting, a similar 

disorder manifests itself in the B-RTH cluster in Gomez et al.’s model [181]. The atomic position, 

particularly occurring in the inner shell is highly diffused outward along 5-fold direction. It is a proof of 

high relaxation of the atomic shells, possibly due to the existence of a free atom in the cluster center. 

The V-RTH cluster seems to lack the atom in the center of the cluster. The isosurface plot of the electron 

densities represents all the shells of the cluster confirming Bergman cluster to be formed (Fig. 37). 
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Figure 36. The section through the cluster center calculated from the phased diffraction data. Two 

types of Bergman clusters are visible: Hf occupies 3-fold vertices of the rhombic triacontahedron (left) 

and 5-fold position (right). That confirms the existence of the similar clusters in the QC as in the 

approximant crystal reported by Gomez et al.  

 

 

 

Figure 37. The Bergman cluster in the i-ZnMgHf F-type QC is composed of five shells: (from left) 

rhombic triacontahedron, soccer-ball polyhedral, dedecahedron, icosahedron and inner icosahedron. The 
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vertices contributing to high intensity positions visible in the contour plot are related to sections through 

each shell of the cluster. A 3D visualization of the complete cluster by a calculation of the isosurfaces 

in the electron density map is shown (bottom right). 

 

Similarly to the analysis of the ZnMgTm iQC, discussed in §4.3, the sections through a 6D 

electron density were calculated based on the results of the phasing with a SUPERFLIP software. The 

electron density maps are plotted in Fig. 38. Just by comparing the axis units in Fig. 18 and Fig. 38 it is 

evident that a 6D unit cell, that in both figures is outlined with a red rectangle, for the ZnMgHf F-type 

QC is doubled. It is another indication about the formation of the superlattice in the case of the FCI QC. 

The even vertex OD, labeled as 𝑛0 in Fig. 38 exhibit an empty center, similarly to the corresponding  

OD in Fig. 18. As it was pointed out, the V-RTH cluster has an empty cluster center, therefore it is not 

surprising that the 𝑛𝐷 embedding of those sites is unoccupied. Apart from 𝑛0 domain, there is also a 𝑛1 

domain, occupying odd nodes of the 6D lattice and a 𝑏𝑐0 that is a body-center OD within a unexpanded 

unit cell. All three ODs are visible in the 5-fold section (a)) and the 3-fold section (b)) but a 2-fold 

section shows no signs of the superlattice and only an 𝑛0 domain is present. Since the high electron 

density is accumulated in the 𝑛1 domain, that means Hf is occupying vertices corresponding to those 

sites. 
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Figure 38. The 2D sections through the 6D electron density of the ZnMgHf F-type Bergman 

quasicrystal. Sections containing 5-fold axes (a)), 3-fold axes (b)) and 2-fold axes (c)) are presented. In 

each figure the outline of the 6D unit cell is plotted (red rectangle) together with vectors representing 

parallel (𝑟∥) and perpendicular (𝑟⊥) space. 

 

The reason why within the 2-fold section the unit cell is not doubled is very clearly visible when the 2D 

section through the 3D real space is calculated. In Fig. 39 a block 100Å × 100Å is plotted 

perpendicularly to the 2-fold axis. With a green and red line an outline of the RTH cluster is plotted. 

The green corresponds to the cluster with Hf atoms occupying the 3-fold vertices of the triacontahedral 

shell (B-RTH) and the red corresponds to the cluster with Hf atoms in the 5-fold vertices of the 

triacontahedral shell (V-RTH). Selected clusters within the section were outlined to vizualize all the 

interesting features. What can be perceived straight away is the clusters are connected via tha a-linkage, 

therefore the cluster covering developed for the ZnMgTm strucuture is valid. What goes beyond a simple 

PI quasicrystal is the a-linkage occurs between V-RTH and B-RTH. Two clusters of the same type are 

never connected along the a-linkage (patch 2.). The same applies for the c-linkage (patch 3.) The 

supercell evident in the 5- and 3-fold section through the 6D electron density in Fig. 38 is therefore 

caused by two types of cluster that alternately appear in the structure. If there was no other cluster, the 

a) 

b) 

c) 
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strucutre would be a PI. Let’s now focus on the linkages along 2-fold axes. A short b-linkage is also 

present in the strucutre of the F-type QC (patch 1.) but contrary to what was true for the a- and c- linkage, 

the b-linkage is always connecting two clusters of the same type. That is true both for the V-RTH and 

B-RTH cluster. That is the reason why in the 2-fold section through the 6D electron density the unit cell 

is not doubled.  

 

 

 

Figure 39. The 100Å × 100Å 2D section through the 3D electron density in the real space, 

perpendicular to the 2-fold axis. V-RTH cluster (red) and B-RTH cluster are outlined to indicate 

characteristic linkages. Patch 1. Shows a b-linkage, patch 2. Represents an a-linkage and patch 3. Marks 

a c-linkage. Only a b-linkage (both short and regular) can connect two clusters of the same type. 
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6. Summary 

6.1 ZnMgTm P-type iQC 

The structure model for the PI ZnMgTm QC is proposed based on the atomic decoration of the 

two rhombohedra in Ammann-Kramer-Neri tiling. The rhombohedra used in the model are 𝜏3 inflated 

in comparison to standard lattice size. The inflation allows to evade the problem of an ambiguous 

decoration of rhombohedra in the interstitial part of the structure existing in a cluster-based model. The 

ambiguity was the main obstacle for the construction of the occupation domains for the structure 

modelling in a 6D embedding. For the structure refinement, we resigned from the higher-dimensional 

approach for the sake of the real-space approach. Since the structure modelling was based on the real-

space atomic decoration of rhombohedra it is redundant to lift the structure to 6D just for the refinement. 

The iQC was classified as the Bergman QC based on the inner structure of the rhombic 

triacontahedral cluster. The 3D electron density map, reconstructed after phasing with Superflip, shows 

four possible linkages between rhombic triacontahedral clusters. Apart from known b- and c-linkages 

there are short b- and a-linkages. The interaction of atoms due to the existence of additional linkages 

creates split atomic positions in the high-symmetry sites of the structure and a few instances of large 

ADPs. All the characteristic features observed in the ab initio structure solution are well represented in 

the refined structure.   

The refinement resulted in a very good agreement of the calculated structure factor with the 

experimental diffraction amplitudes measured by the crystallographic R-factor equal to 9.8% with the 

reflections-to-parameters ratio of about 3.9. The model shows an inherent chemical mixing of atoms 

which is commonly observed for ZnMg-Rare-Earth QCs and approximants. 

The analysis of the refined structure in terms of the Bergman cluster distribution shows two 

major novelties: 

1 A whole structure can be represented as a covering by rhombic triacontahedral clusters. 

All the atoms are generated by the vertices of five shells of the Bergman cluster 

expanded with the most outer shell of rhombic triacontahedron. No interstitial part of 

the structure must be distinguished contrary to what was proposed for binary CdYb QC. 

2 Apart from the b- and the c-linkages given by the 12-fold sphere packing geometry, the 

short b- and a-linkages are present in the model. The linkage along a 5-fold direction is 

primarily responsible for the occurrence of the occupied cluster centers observed in the 

electron density map. The node of the #2 icosahedral shell interpenetrates the central 

position of the neighboring cluster being perceived as a lonely atom inside the cluster. 

The a-linkage does not introduce short interatomic distances as the sites that are in close 
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vicinity to each other become split atomic sites. In reality, those sites are giving space 

for the occurrence of the phason flips. 

The main question is whether a proposed model, with the cluster covering, could be used to two 

other families of iQC: Tsai and Mackay. Before the attempt of the structure modelling is made we cannot 

answer this question. To our knowledge it can be that only Bergman QC demonstrates such a peculiar 

atomic structure. 

When it comes to the rare-earth atom distribution it is difficult to unambiguously tell which 

cluster sites are occupied by this element. In principle the Tm element is located at the vertices of 

triacontahedron but due to the short a-linkage and the c-linkage the inner dodecahedral shell can also be 

occupied by Tm atoms. To our knowledge the occupation of the triacontahedron by Tm depends on the 

local arrangement of the RTH clusters but the number of such local environments is much greater than 

those of the standard cluster-based model with b- and c-linkages only. It is therefore much more 

convenient to use the golden rhombohedra than cluster to tell where the atoms in the structure really are. 

6.2 ZnMgHf F-type iQC 

The high-quality, faceted single crystals of the ZnMgHf F-type QC were synthesized with the 

use of the self-flux crystal growth technique, reaching a diameter of up to ~ 300 µm. The synthesis 

process known from literature was refined based on the known results published before in the literature 

and in-house DTA measurements. The quality of grown crystals was satisfactory to conduct an X-ray 

diffraction experiment using a synchrotron facility, which resulted in a dataset of more than 4000 

symmetry independent diffraction peaks that were used further for the local structure designation.  

The local structure of the F-type Bergman QC was solved and analyzed based on the result of 

the ab initio structure solution made by the charge flipping algorithm implemented in the SUPERFLIP 

software. The self-consistent algorithm allows assigning phases to diffraction Bragg peaks and therefore 

retrieve the electron density which corresponds to the distribution of atoms in the structure. The 

convergent of the structure model with experimental data was finalized with the crystallographic R-

factor equal to 22.4%. Even though it is higher than results obtainable e.g. P-type structures it allows to 

retrieve the structure features even without the atomic structure refinement.  

The structure was proven to be a Bergman type iQC based on the shape of the local atomic 

cluster. Two types of clusters were found: The RTH cluster with Hf distributed in the 3-fold vertices of 

the triacontahedral shell and the RTH cluster with Hf distributed in the 5-fold vertices of the 

triacontahedral shell. It well corresponds to the result of the atomic structure refinement performed upon 

1/1 cubic periodic approximant crystals of the ZnMg(Hf, Ti, Zr) known in the literature. For the 

approximant crystals, two clusters were also distinguished: V-RTH cluster located in the vertices of the 

unit cell and B-RTH cluster located in the center of the unit cell. The V-RTH cluster corresponds to the 

cluster with Hf located in 5-fold vertices of the triacontahedral shell and B-RTH to the other one. In 
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addition, both in the approximant crystals and now in the QC, the B-RTH cluster is distorted along 5-

axes pointing from the center of clusters due to the center of a cluster being occupied by atomic species. 

V-RTH clusters seem to be empty in the center, which is also evident in the 2D sections through the 6D 

electron density. 

The large 100Å × 100Å block of the real space electron density was calculated, perpendicular 

to the 2-fold direction. By analyzing the cluster distribution within a calculated section, the existence of 

a-linkages and short b-linkages was confirmed alongside regular b- and c-linkages known from the 

structure model of the Tsai iQC. What is specific for the F-type structure is the a-linkage and the c-

linkage connect clusters of different types i.e. V-RTH cluster is linked with B-RTH cluster and never 

two clusters of the same type are linked with those linkages. It is constrain imposed by the F-type 

superlattice formation (or rather a superlattice is formed due to a specific linkage rule between clusters). 

It is confirmed by the 𝑛𝐷 sections were 3- and 5-fold sections exhibit a superlattice, whereas a 2-fold 

section does not show the unit cell to be doubled. In the real space, two clusters of the same type can be 

connected only along a b-linkage. 

Currently, an infinite structure model of the F-type Bergman QC has not been developed.  
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Supporting information  

In Table S1 the list of the refined parameters of the ZnMgTm structure is submitted [143]. 

Coordinates x, y and z are given in a rhombohedron-spanning base, what means real-structure 𝐫 

coordinate vector is obtained as follows:  𝑟 = 𝑋𝐟1 + 𝑌𝐟2 + 𝑍𝐟3, where 𝐟1, 𝐟2, 𝐟3 are vectors spanning 

edges of the rhombohedra. For the AR those vectors are 𝐚1, 𝐚2, 𝐚6 respectively and for the OR 𝐚1, −𝐚3, 

−𝐚6. The letter ‘L’ stands for an acute rhomb and the letter ‘S’ stands for a obtuse rhombus. SOF defines 

site of fraction: 1 means the position is fully occupied, 0 means there is no atom there. The column 

labeled „Fraction” gives the ratio of atom inside a rhombus depending on it position in a rhombus f. i. 

atom on the edge is only in half inside a rhombus. Variable 〈𝑢2𝑥𝑦𝑧〉 defines mean atomic displacement. 

Table S1 The list of parameters describing the structure model of ZnMgTm iQC. 

Unit 

Type 

Nr x y z p(Zn) p(Mg) p(Tm) SOF 〈𝑢2𝑥𝑦𝑧〉 [Å
2]  Fraction 

L 1 1.0000 1.0000 1.0000 0.0000 0.0000 1.0000 1.0000 0.032873 0.0083 

L 2 0.8511 0.8511 0.8511 1.0000 0.0000 0.0000 1.0000 0.014136 0.166667 

L 3 1.0000 0.8490 0.8489 1.0000 0.0000 0.0000 1.0000 0.014304 0.5 

L 4 0.7654 0.7655 0.7654 0.0000 0.0000 1.0000 1.0000 0.017362 0.166667 

L 5 1.0000 0.7656 0.7656 0.6017 0.0000 0.3983 1.0000 0.004038 0.25 

L 6 0.7065 0.7087 0.7066 1.0000 0.0000 0.0000 1.0000 0.03697 0.166667 

L 7 0.7361 0.6186 0.6186 1.0000 0.0000 0.0000 1.0000 0.011544 0.5 

L 8 0.8503 0.6170 0.6170 1.0000 0.0000 0.0000 1.0000 0.010316 0.5 

L 9 1.0000 0.6357 0.6096 0.0000 0.0000 1.0000 1.0000 0.010224 0.25 

L 10 0.7298 0.5490 0.5490 1.0000 0.0000 0.0000 1.0000 0.002974 0.5 

L 11 1.0000 0.5634 0.5428 1.0000 0.0000 0.0000 1.0000 0.05667 0.5 

L 12 0.5258 0.5258 0.5250 1.0000 0.0000 0.0000 1.0000 0.039609 0.166667 

L 13 0.6961 0.4836 0.4836 1.0000 0.0000 0.0000 1.0000 0.019586 0.5 

L 14 0.8493 0.4787 0.4787 1.0000 0.0000 0.0000 1.0000 0.016645 0.5 

L 15 1.0000 0.4931 0.4333 1.0000 0.0000 0.0000 1.0000 0.026908 0.5 
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L 16 0.4688 0.4688 0.4688 0.0000 0.0000 1.0000 1.0000 0.0087 0.166667 

L 17 1.0000 0.3843 0.3843 0.0000 0.0000 1.0000 1.0000 0.006281 0.25 

L 18 0.3768 0.3635 0.3462 1.0000 0.0000 0.0000 1.0000 0.030785 0.166667 

L 19 0.4971 0.3820 0.3819 1.0000 0.0000 0.0000 1.0000 0.014663 0.5 

L 20 0.6149 0.3837 0.3797 1.0000 0.0000 0.0000 1.0000 0.013353 0.5 

L 21 0.7679 0.3818 0.3740 0.0000 0.0000 1.0000 1.0000 0.008512 0.5 

L 22 0.4948 0.3128 0.3128 1.0000 0.0000 0.0000 1.0000 0.010262 0.5 

L 23 0.7308 0.3091 0.3088 1.0000 0.0000 0.0000 1.0000 0.010794 0.5 

L 24 0.2346 0.2355 0.2350 0.0000 0.0000 1.0000 1.0000 0.018126 0.166667 

L 25 0.4707 0.2407 0.2407 0.6863 0.0000 0.3137 1.0000 0.012074 0.5 

L 26 0.6102 0.2398 0.2398 1.0000 0.0000 0.0000 1.0000 0.007521 0.5 

L 27 0.7327 0.2384 0.2384 1.0000 0.0000 0.0000 1.0000 0.009739 0.5 

L 28 0.8576 0.2329 0.2329 1.0000 0.0000 0.0000 1.0000 0.006094 0.5 

L 29 1.0000 0.2405 0.2405 1.0000 0.0000 0.0000 1.0000 0.011048 0.25 

L 30 0.1530 0.1533 0.1529 1.0000 0.0000 0.0000 1.0000 0.039365 0.166667 

L 31 0.7597 0.1483 0.1483 0.3929 0.0000 0.6071 1.0000 0.008154 0.5 

L 32 0.2680 0.1461 0.1402 1.0000 0.0000 0.0000 1.0000 0.011936 0.5 

L 33 0.3845 0.1610 0.1295 1.0000 0.0000 0.0000 1.0000 0.00872 0.5 

L 34 0.5213 0.1452 0.1452 1.0000 0.0000 0.0000 1.0000 0.003104 0.5 

L 35 0.7120 0.0863 0.0863 1.0000 0.0000 0.0000 1.0000 0.014675 0.5 

L 36 0.2637 0.0727 0.0727 1.0000 0.0000 0.0000 1.0000 0.010787 0.5 

L 37 0.4981 0.0730 0.0730 1.0000 0.0000 0.0000 1.0000 0.006758 0.5 

L 38 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 0.0332 0.0083 

L 39 0.2340 0.0000 0.0000 0.5331 0.0000 0.4669 1.0000 0.004593 0.1 

L 40 0.3869 0.0000 0.0000 1.0000 0.0000 0.0000 1.0000 0.021 0.1 

L 41 0.5042 0.0000 0.0000 1.0000 0.0000 0.0000 1.0000 0.014783 0.1 

L 42 0.6021 0.0000 0.0000 1.0000 0.0000 0.0000 1.0000 0.046273 0.1 

L 43 0.8357 0.0000 0.0000 0.4471 0.4293 0.1236 1.0000 0.00122 0.1 

L 44 1.0000 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 0.05824 0.075 
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L 45 1.0000 0.1500 0.1969 1.0000 0.0000 0.0000 1.0000 0.049964 0.5 

L 46 0.9278 0.7039 0.7271 0.5000 0.5000 0.0000 1.0000 0.009076 1 

L 47 0.9175 0.3365 0.3368 1.0000 0.0000 0.0000 1.0000 0.011649 0.5 

L 48 0.8529 0.6191 0.7349 1.0000 0.0000 0.0000 1.0000 0.004927 1 

L 49 0.6176 0.5061 0.6176 0.6313 0.0000 0.3687 1.0000 0.011912 0.5 

L 50 0.6213 0.3836 0.4987 1.0000 0.0000 0.0000 1.0000 0.013214 1 

L 51 0.8419 0.3622 0.4812 1.0000 0.0000 0.0000 1.0000 0.005434 1 

L 52 0.3827 0.2660 0.3827 1.0000 0.0000 0.0000 1.0000 0.008038 0.5 

L 53 0.3835 0.1527 0.2648 1.0000 0.0000 0.0000 1.0000 0.000855 1 

L 54 0.6180 0.1175 0.2307 0.8343 0.0000 0.1657 1.0000 0.008275 1 

L 55 0.8091 0.0000 0.1207 0.3806 0.3419 0.2775 1.0000 0.006894 0.5 

L 56 0.6190 0.0000 0.1159 1.0000 0.0000 0.0000 1.0000 0.015657 0.5 

L 57 0.8489 0.7359 0.8608 1.0000 0.0000 0.0000 1.0000 0.005441 0.5 

L 58 0.8595 0.2310 0.3554 1.0000 0.0000 0.0000 1.0000 0.010848 1 

L 59 0.8506 0.1067 0.2459 1.0000 0.0000 0.0000 1.0000 0.017778 1 

L 60 0.8065 0.4662 0.6012 1.0000 0.0000 0.0000 1.0000 0.05784 1 

L 61 0.6102 0.2402 0.3825 1.0000 0.0000 0.0000 1.0000 0.020974 1 

L 62 0.3871 0.0000 0.1519 1.0000 0.0000 0.0000 1.0000 0.009769 0.5 

L 63 0.6877 0.5045 0.6884 1.0000 0.0000 0.0000 1.0000 0.020141 0.5 

L 64 0.6898 0.1166 0.3094 1.0000 0.0000 0.0000 1.0000 0.006825 1 

L 65 0.9278 0.1162 0.3103 1.0000 0.0000 0.0000 1.0000 0.006839 1 

L 66 0.1566 0.0000 0.1566 1.0000 0.0000 0.0000 1.0000 0.011243 0.5 

L 67 0.9267 0.7346 0.9267 1.0000 0.0000 0.0000 1.0000 0.009881 0.5 

L 68 0.9263 0.4992 0.6917 1.0000 0.0000 0.0000 1.0000 0.011715 1 

L 69 0.9263 0.3549 0.5472 1.0000 0.0000 0.0000 1.0000 0.007913 1 

L 70 0.5194 0.3238 0.5173 0.0000 1.0000 0.0000 1.0000 0.020522 1 

L 71 0.6936 0.2659 0.4553 0.5000 0.5000 0.0000 1.0000 0.002657 1 

L 72 0.5486 0.1395 0.3272 1.0000 0.0000 0.0000 1.0000 0.056672 1 

L 73 1.0000 0.7663 1.0000 0.5303 0.0000 0.4697 1.0000 0.007744 0.1 
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L 74 1.0000 0.6118 0.8693 1.0000 0.0000 0.0000 1.0000 0.004573 0.5 

L 75 0.7614 0.5257 0.7614 1.0000 0.0000 0.0000 1.0000 0.003028 0.5 

L 76 0.6188 0.3861 0.6190 1.0000 0.0000 0.0000 1.0000 0.011987 0.5 

L 77 0.7580 0.3842 0.6365 1.0000 0.0000 0.0000 1.0000 0.029957 1 

L 78 1.0000 0.3720 0.6280 0.0000 0.0000 1.0000 1.0000 0.004578 0.5 

L 79 0.7332 0.3174 0.5452 1.0000 0.0000 0.0000 1.0000 0.005226 1 

L 80 0.3823 0.1548 0.3823 1.0000 0.0000 0.0000 1.0000 0.011897 0.5 

L 81 0.7664 0.1424 0.3857 1.0000 0.0000 0.0000 1.0000 0.00159 1 

L 82 1.0000 0.1501 0.3850 1.0000 0.0000 0.0000 1.0000 0.010919 0.5 

L 83 0.4979 0.0801 0.3057 1.0000 0.0000 0.0000 1.0000 0.00665 1 

L 84 0.2379 0.0000 0.2379 0.5935 0.0000 0.4065 1.0000 0.026855 0.25 

L 85 0.3852 0.0000 0.2343 1.0000 0.0000 0.0000 1.0000 0.019391 0.5 

L 86 0.4799 0.0000 0.2272 1.0000 0.0000 0.0000 1.0000 0.009426 0.5 

L 87 0.6130 0.0000 0.2319 1.0000 0.0000 0.0000 1.0000 0.011236 0.5 

L 88 0.7333 0.0000 0.2292 1.0000 0.0000 0.0000 1.0000 0.01801 0.5 

L 89 0.8681 0.0000 0.2130 0.4932 0.4754 0.0313 1.0000 0.000147 0.5 

L 90 1.0000 0.0000 0.2331 0.6111 0.0000 0.3889 1.0000 0.007479 0.3 

L 91 0.8504 0.6168 0.8613 1.0000 0.0000 0.0000 1.0000 0.001548 0.5 

L 92 0.4378 0.2199 0.4760 1.0000 0.0000 0.0000 1.0000 0.050347 0.5 

L 93 0.8829 0.2637 0.4499 1.0000 0.0000 0.0000 1.0000 0.0208 1 

L 94 1.0000 0.2379 0.4755 0.0000 1.0000 0.0000 1.0000 0.006703 0.5 

L 95 0.2402 0.0635 0.3394 0.5000 0.5000 0.0000 1.0000 0.01057 1 

L 96 1.0000 0.4989 0.7637 0.5000 0.5000 0.0000 1.0000 0.045612 0.5 

L 97 0.7582 0.3917 0.7582 1.0000 0.0000 0.0000 1.0000 0.007662 0.5 

L 98 0.8837 0.3770 0.7713 1.0000 0.0000 0.0000 1.0000 0.006571 1 

L 99 0.8798 0.3118 0.6887 1.0000 0.0000 0.0000 1.0000 0.008387 1 

L 100 0.6201 0.2343 0.6200 0.0000 0.0000 1.0000 1.0000 0.009647 0.5 

L 101 0.5213 0.1410 0.5248 0.0000 1.0000 0.0000 1.0000 0.004961 0.5 

L 102 0.6415 0.0773 0.4511 0.4323 0.3932 0.1744 1.0000 0.012161 1 
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L 103 0.6180 0.0000 0.3783 0.0000 0.0000 1.0000 1.0000 0.004508 0.5 

L 104 0.7760 0.0000 0.3624 1.0000 0.0000 0.0000 1.0000 0.01251 0.5 

L 105 0.8824 0.0000 0.3849 1.0000 0.0000 0.0000 1.0000 0.009183 0.5 

L 106 1.0000 0.6137 1.0000 1.0000 0.0000 0.0000 1.0000 0.023861 0.1 

L 107 0.8552 0.4776 0.8552 0.0000 0.0000 1.0000 1.0000 0.004587 0.5 

L 108 1.0000 0.3937 0.7638 1.0000 0.0000 0.0000 1.0000 0.011252 0.5 

L 109 0.8548 0.2335 0.6148 0.0000 0.0000 1.0000 1.0000 0.003821 1 

L 110 1.0000 0.2356 0.6195 1.0000 0.0000 0.0000 1.0000 0.001 0.5 

L 111 0.6440 0.1494 0.5266 0.0000 1.0000 0.0000 1.0000 0.002106 1 

L 112 0.7626 0.1419 0.5290 0.0000 1.0000 0.0000 1.0000 0.00288 1 

L 113 0.4870 0.0826 0.4865 0.5000 0.5000 0.0000 1.0000 0.03872 0.5 

L 114 0.8291 0.0662 0.4610 1.0000 0.0000 0.0000 1.0000 0.054452 1 

L 115 1.0000 0.0000 0.3843 1.0000 0.0000 0.0000 1.0000 0.00157 0.3 

L 116 0.3814 0.0000 0.3816 0.0000 0.0000 1.0000 1.0000 0.03286 0.25 

L 117 0.9273 0.5012 0.9273 1.0000 0.0000 0.0000 1.0000 0.003327 0.5 

L 118 0.6914 0.2703 0.6914 1.0000 0.0000 0.0000 1.0000 0.010665 0.5 

L 119 0.9251 0.1179 0.5449 1.0000 0.0000 0.0000 1.0000 0.003723 1 

L 120 0.7611 0.2698 0.7611 1.0000 0.0000 0.0000 1.0000 0.007963 0.5 

L 121 0.7694 0.1534 0.6376 0.4633 0.4592 0.0775 1.0000 0.003509 1 

L 122 1.0000 0.4964 1.0000 1.0000 0.0000 0.0000 1.0000 0.018359 0.1 

L 123 1.0000 0.3851 0.8850 1.0000 0.0000 0.0000 1.0000 0.012448 0.5 

L 124 1.0000 0.1173 0.6082 1.0000 0.0000 0.0000 1.0000 0.00027 0.5 

L 125 0.7631 0.0000 0.5239 0.0000 1.0000 0.0000 1.0000 0.00982 0.5 

L 126 1.0000 0.0000 0.5013 1.0000 0.0000 0.0000 1.0000 0.006276 0.3 

L 127 0.4638 0.0000 0.4638 1.0000 0.0000 0.0000 1.0000 0.014981 0.5 

L 128 0.5235 0.0000 0.5494 1.0000 0.0000 0.0000 1.0000 0.033669 0.5 

L 129 0.9047 0.3390 0.9444 0.0000 1.0000 0.0000 1.0000 0.034888 0.5 

L 130 0.8535 0.2349 0.8535 0.0000 0.0000 1.0000 1.0000 0.010161 0.5 

L 131 0.8890 0.1483 0.7578 0.4879 0.4954 0.0168 1.0000 0.006345 1 
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L 132 0.8488 0.0000 0.6177 1.0000 0.0000 0.0000 1.0000 0.003507 0.5 

L 133 1.0000 0.3796 1.0000 1.0000 0.0000 0.0000 1.0000 0.03631 0.1 

L 134 0.7678 0.1433 0.7678 1.0000 0.0000 0.0000 1.0000 0.01058 1 

L 135 0.6830 0.0712 0.6830 0.0000 1.0000 0.0000 1.0000 0.00080 0.5 

L 136 0.8825 0.0706 0.6889 1.0000 0.0000 0.0000 1.0000 0.00703 1 

L 137 0.6186 0.0000 0.6186 0.0000 0.0000 1.0000 1.0000 0.001323 0.25 

L 138 1.0000 0.0000 0.6109 1.0000 0.0000 0.0000 1.0000 0.022068 0.3 

L 139 1.0000 0.1558 0.8848 0.0000 1.0000 0.0000 1.0000 0.00874 0.5 

L 140 1.0000 0.2343 1.0000 0.5000 0.5000 0.0000 1.0000 0.012799 0.1 

L 141 0.7600 0.0000 0.7600 1.0000 0.0000 0.0000 1.0000 0.006012 0.25 

L 142 1.0000 0.0000 0.7366 0.5000 0.5000 0.0000 1.0000 0.005993 0.3 

L 143 0.9229 0.0804 0.8775 0.0000 1.0000 0.0000 1.0000 0.000544 1 

L 144 0.8609 0.0000 0.8609 1.0000 0.0000 0.0000 1.0000 0.006281 0.25 

L 145 1.0000 0.0000 1.0000 0.0000 0.0000 1.0000 1.0000 0.058382 0.075 

L 146 0.8982 0.0000 0.1374 0.0000 1.0000 0.0000 0.7306 0.034549 0.5 

L 147 1.0000 0.1055 0.1055 0.0000 1.0000 0.0000 0.1519 0.0326 0.5 

L 148 1.0000 0.6233 0.7554 0.0000 1.0000 0.0000 0.3005 0.02886 0.5 

S 1 1.0000 1.0000 1.0000 0.0000 0.0000 1.0000 1.0000 0.036567 0.0583 

S 2 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 0.022625 0.0583 

S 3 0.6166 0.6166 0.6166 1.0000 0.0000 0.0000 1.0000 0.03383 0.166667 

S 4 0.3741 0.3741 0.3741 0.4650 0.4504 0.0846 1.0000 0.025619 0.166667 

S 5 0.8141 0.7208 0.8143 0.4756 0.4632 0.0611 1.0000 0.001454 0.5 

S 6 0.2647 0.1913 0.1905 0.0000 1.0000 0.0000 1.0000 0.020908 0.5 

S 7 0.6205 0.5014 0.6205 1.0000 0.0000 0.0000 1.0000 0.026266 0.5 

S 8 1.0000 0.8831 0.8513 0.0000 1.0000 0.0000 0.5000 0.022971 0.5 

S 9 0.1189 0.0000 0.1531 0.4912 0.4873 0.0215 1.0000 0.026512 0.25 

S 10 0.4987 0.3894 0.3894 1.0000 0.0000 0.0000 1.0000 0.014267 0.5 

S 11 0.3844 0.2370 0.3844 0.5798 0.0000 0.4202 1.0000 0.003734 0.5 

S 12 0.7680 0.6190 0.6190 0.5964 0.0000 0.4036 1.0000 0.002986 0.5 
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S 13 1.0000 0.8540 0.8862 0.0000 1.0000 0.0000 0.5000 0.024701 0.5 

S 14 1.0000 0.7662 1.0000 0.5000 0.5000 0.0000 1.0000 0.023374 0.2 

S 15 0.8568 0.6572 0.7453 1.0000 0.0000 0.0000 1.0000 0.050424 1 

S 16 0.2172 0.0000 0.2172 1.0000 0.0000 0.0000 1.0000 0.04403 0.25 

S 17 0.2643 0.0000 0.0000 0.5234 0.0000 0.4766 1.0000 0.014926 0.2 

S 18 0.6231 0.3866 0.6231 1.0000 0.0000 0.0000 1.0000 0.003165 0.5 

S 19 0.6182 0.3811 0.5003 0.7047 0.0000 0.2953 1.0000 0.007213 1 

S 20 1.0000 0.7605 0.7365 0.5000 0.5000 0.0000 0.5000 0.021984 0.5 

S 21 0.2435 0.0000 0.1523 0.0000 1.0000 0.0000 1.0000 0.033685 0.5 

S 22 0.4169 0.1881 0.2557 1.0000 0.0000 0.0000 1.0000 0.014343 1 

S 23 0.5861 0.3690 0.3760 1.0000 0.0000 0.0000 1.0000 0.032031 0.5 

S 24 1.0000 0.7306 0.7680 0.0000 1.0000 0.0000 0.5000 0.027225 1 

S 25 0.8124 0.5037 0.8124 1.0000 0.0000 0.0000 1.0000 0.00349 0.5 

S 26 0.5026 0.1938 0.4286 1.0000 0.0000 0.0000 1.0000 0.011372 1 

S 27 0.8013 0.4898 0.5655 1.0000 0.0000 0.0000 1.0000 0.00959 1 

S 28 0.5014 0.1870 0.1870 0.7210 0.0000 0.2790 1.0000 0.008939 0.5 

S 29 0.6145 0.2630 0.6152 1.0000 0.0000 0.0000 1.0000 0.001743 0.5 

S 30 0.7306 0.3740 0.3740 1.0000 0.0000 0.0000 1.0000 0.008081 0.5 

S 31 1.0000 0.6183 0.7658 1.0000 0.0000 0.0000 1.0000 0.008822 0.5 

S 32 0.3860 0.0000 0.2374 1.0000 0.0000 0.0000 1.0000 0.014928 0.5 

S 33 1.0000 0.6053 1.0000 1.0000 0.0000 0.0000 1.0000 0.032032 0.2 

S 34 1.0000 0.6252 0.8816 1.0000 0.0000 0.0000 1.0000 0.004522 0.5 

S 35 0.3868 0.0000 0.3842 0.0000 0.0000 1.0000 1.0000 0.037418 0.25 

S 36 0.7760 0.3842 0.6240 1.0000 0.0000 0.0000 1.0000 0.008097 1 

S 37 0.6158 0.2291 0.3754 0.7298 0.0000 0.2702 1.0000 0.00494 1 

S 38 1.0000 0.6149 0.6149 0.0000 0.0000 1.0000 1.0000 0.005805 0.25 

S 39 0.3816 0.0000 0.1173 1.0000 0.0000 0.0000 1.0000 0.005259 0.5 

S 40 0.3985 0.0000 0.0000 1.0000 0.0000 0.0000 1.0000 0.042503 0.2 

S 41 0.5722 0.1166 0.4272 1.0000 0.0000 0.0000 1.0000 0.011388 1 
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S 42 0.6108 0.1505 0.6304 0.4102 0.3799 0.2099 1.0000 0.019232 0.5 

S 43 0.8482 0.3770 0.7600 1.0000 0.0000 0.0000 1.0000 0.034987 1 

S 44 0.8340 0.3808 0.5027 0.0000 1.0000 0.0000 1.0000 0.005585 1 

S 45 0.6107 0.1451 0.2259 1.0000 0.0000 0.0000 1.0000 0.033832 1 

S 46 0.8533 0.3739 0.3737 1.0000 0.0000 0.0000 1.0000 0.026036 0.5 

S 47 1.0000 0.5011 1.0000 1.0000 0.0000 0.0000 1.0000 0.032064 0.2 

S 48 1.0000 0.4904 0.7702 0.0000 1.0000 0.0000 0.5000 0.027896 0.5 

S 49 0.5002 0.0000 0.2255 0.5000 0.5000 0.0000 1.0000 0.017368 0.5 

S 50 0.5005 0.0000 0.0000 1.0000 0.0000 0.0000 1.0000 0.016273 0.2 

S 51 0.7691 0.2433 0.6271 0.0000 1.0000 0.0000 1.0000 0.035515 1 

S 52 0.7663 0.2447 0.5057 0.0000 1.0000 0.0000 1.0000 0.002018 1 

S 53 0.7612 0.2341 0.3728 0.0000 1.0000 0.0000 1.0000 0.030168 1 

S 54 0.8120 0.2648 0.8120 1.0000 0.0000 0.0000 1.0000 0.009134 0.5 

S 55 0.9970 0.4906 0.8165 0.0000 1.0000 0.0000 0.5000 0.03414 1 

S 56 0.7330 0.1846 0.1846 1.0000 0.0000 0.0000 1.0000 0.005164 0.5 

S 57 0.7546 0.1396 0.6168 0.0000 1.0000 0.0000 1.0000 0.004572 1 

S 58 1.0000 0.3870 1.0000 1.0000 0.0000 0.0000 1.0000 0.038332 0.2 

S 59 0.6333 0.0000 0.6333 0.0000 0.0000 1.0000 1.0000 0.034813 0.25 

S 60 1.0000 0.3851 0.8478 1.0000 0.0000 0.0000 1.0000 0.018075 0.5 

S 61 0.6188 0.0000 0.3400 0.0000 0.0000 1.0000 1.0000 0.045286 0.5 

S 62 1.0000 0.4207 0.6026 0.0000 0.0000 1.0000 1.0000 0.059987 0.5 

S 63 0.6197 0.0000 0.2344 0.0000 1.0000 0.0000 1.0000 0.032525 0.5 

S 64 0.6173 0.0000 0.1216 1.0000 0.0000 0.0000 1.0000 0.007151 0.5 

S 65 1.0000 0.3509 0.3509 0.0000 0.0000 1.0000 1.0000 0.060805 0.5 

S 66 0.6105 0.0000 0.0000 1.0000 0.0000 0.0000 1.0000 0.038066 0.2 

S 67 0.8613 0.2332 0.3677 1.0000 0.0000 0.0000 1.0000 0.008294 1 

S 68 0.8089 0.1129 0.6053 1.0000 0.0000 0.0000 1.0000 0.032505 1 

S 69 0.8937 0.2312 0.6278 0.0000 1.0000 0.0000 1.0000 0.013581 1 

S 70 0.7689 0.1210 0.3845 0.0000 1.0000 0.0000 0.5000 0.024404 1 
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S 71 0.8873 0.1955 0.8104 1.0000 0.0000 0.0000 1.0000 0.015815 1 

S 72 0.8095 0.1150 0.4268 0.0000 1.0000 0.0000 0.5000 0.022575 1 

S 73 0.8034 0.1165 0.1906 1.0000 0.0000 0.0000 1.0000 0.00778 1 

S 74 0.7490 0.0000 0.7546 1.0000 0.0000 0.0000 1.0000 0.029904 0.25 

S 75 1.0000 0.2606 0.2354 0.0000 1.0000 0.0000 1.0000 0.030194 0.5 

S 76 1.0000 0.2705 1.0000 0.5119 0.0000 0.4881 1.0000 0.011688 0.2 

S 77 0.7715 0.0000 0.6273 1.0000 0.0000 0.0000 1.0000 0.016214 0.5 

S 78 1.0000 0.2347 0.7656 0.6249 0.0000 0.3751 1.0000 0.013864 0.5 

S 79 0.7581 0.0000 0.5090 0.5000 0.5000 0.0000 1.0000 0.012018 0.5 

S 80 1.0000 0.2320 0.6182 0.0000 1.0000 0.0000 1.0000 0.029963 0.5 

S 81 0.7676 0.0000 0.3865 0.0000 1.0000 0.0000 1.0000 0.027702 0.5 

S 82 1.0000 0.2305 0.4993 0.5000 0.5000 0.0000 1.0000 0.023557 0.5 

S 83 0.7656 0.0000 0.2356 1.0000 0.0000 0.0000 1.0000 0.015771 0.5 

S 84 1.0000 0.2331 0.3789 1.0000 0.0000 0.0000 1.0000 0.021104 0.5 

S 85 0.7397 0.0000 0.0000 0.5120 0.0000 0.4880 1.0000 0.005249 0.2 

S 86 0.8469 0.0000 0.8886 0.4804 0.4721 0.0475 1.0000 0.030208 0.25 

S 87 0.8620 0.0000 0.7748 0.0000 1.0000 0.0000 1.0000 0.034707 0.5 

S 88 1.0000 0.1152 0.6192 1.0000 0.0000 0.0000 1.0000 0.013057 0.5 

S 89 0.8506 0.0000 0.3863 1.0000 0.0000 0.0000 1.0000 0.025576 0.5 

S 90 0.8586 0.0000 0.1414 1.0000 0.0000 0.0000 1.0000 0.023994 0.5 

S 91 0.8820 0.0000 0.6190 1.0000 0.0000 0.0000 1.0000 0.007789 0.5 

S 92 1.0000 0.1186 0.3797 1.0000 0.0000 0.0000 1.0000 0.008419 1 

S 93 1.0000 0.0000 1.0000 0.0000 0.0000 1.0000 1.0000 0.029466 0.025 

S 94 1.0000 0.0000 0.7665 0.5003 0.0000 0.4997 1.0000 0.023321 0.1 

S 95 1.0000 0.0000 0.6100 1.0000 0.0000 0.0000 1.0000 0.028762 0.1 

S 96 1.0000 0.0000 0.5002 1.0000 0.0000 0.0000 1.0000 0.026407 0.1 

S 97 1.0000 0.0000 0.3870 1.0000 0.0000 0.0000 1.0000 0.033026 0.1 

S 98 1.0000 0.0000 0.2343 0.5036 0.0000 0.4964 1.0000 0.017773 0.1 

S 99 1.0000 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 0.029022 0.025 
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S 100 1.0000 0.1349 0.8564 1.0000 0.0000 0.0000 1.0000 0.011128 0.5 

S 101 1.0000 0.0966 0.9330 0.0000 1.0000 0.0000 0.7037 0.02959 0.5 

S 102 1.0000 0.4646 0.5343 1.0000 0.0000 0.0000 0.9609 0.01795 0.5 

S 103 0.5291 0.0000 0.4369 1.0000 0.0000 0.0000 0.9353 0.036378 0.5 

S 104 0.9202 0.0000 0.0974 0.0000 1.0000 0.0000 0.3474 0.028711 0.5 
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