Doctoral Dissertation

Semigroups and Geometry，and Link invariants constructed by semigroups

（半群と幾何学及び半群から構成される絡み

目の不変量に関して）

Toshinori Miyatani

Depertment of Mathematics
Graduate School of Science，Hokkaido University

Preface

We shall consider two theories related to semigroups. In part I, we consider the theory of $\mathbb{P} M$-monoids. The braid groups and the symmetric groups have deep relations and have rich theories. The braid groups are generalized to the Artin groups and the symmetric groups to the Coxeter groups [3]. We will consider two monoids analogous to the symmetric group S_{n} and the braid group B_{n}, respectively. We first define a monoid \mathscr{R}_{n}, which we call a $\mathbb{P} M$-monoid. A $\mathbb{P} M$-monoid can be seen as an analogue of the rook monoid defined by L. Solomon [27]. A $\mathbb{P} M$-monoid is obtained in the context of a compactification of the projective linear group defined by Mutsumi Saito [25]. The structure of a $\mathbb{P} M$-monoid is described by a matched pair of S_{n} and a collection of the ordered partition (Proposition 2.1.2). We show that a $\mathbb{P} M$ monoid has a presentation with generators and relations (Proposition 2.2.2). This is an analogue of the fact that the rook monoid has a presentation with generators and relations [27]. In the context of this presentation, we define a braid $\mathbb{P} M$-monoid denoted by $\mathscr{R} \mathscr{B}_{n}$ (Definition 2.3.1). The braid $\mathbb{P} M$ monoid is an analogue of the inverse braid monoid defined by D. Easdown and T. G. Lavers [5]. As a main result of the part I, we will show that the braid $\mathbb{P} M$-monoid has a presentation by geometric braids and contains the braid group (Theorem 2.3.7). This is an analogue of the fact that the braid groups and the inverse braid monoids have the presentation by the geometric braids [14],[5]. Moreover, we shall find a solution to the word problem of the braid $\mathbb{P} M$-monoid (Theorem 2.3.12). This statement is an analogue of the fact that the braid groups and the inverse braid monoids have a solution to the word problem [8], [33].

In part II, we develop the theory of knot semigroups, which were defined by A. Vernitski in [33]. A knot semigroup is a cancellative semigroup whose defining relations come in pairs of the form $x y=y x$ and $y x=z y$ arizing from crossing points of a given knot diagram. This construction is similar to the Wirtinger presentation of a knot group. Vernitski proved in [33] that the knot semigroup of torus knots and twist knots are isomorphic to what he calles alternating sum semigroups and conjectured that the knot semigroup of

2-bridge knot is isomorphic to an alternating sum semigroup [33]. To support this conjecture, we shall prove that the knot semigroup of the double twist knot is isomorphic to an alternating sum semigroup (Theorem 4.1.2). Next, we consider the growth of knot semigroups. To investigate the growth of knot semigroups, we use the Gelfand-Kirillov dimension of semigroup algebra. As a main result of this part, we construct a link invariant arizing from the Gelfand-Kirillov dimension of algebra (Theorem 5.2.1). This research is a first step connecting knot theory and semigroup theory.

Contents

I PM-monoids and braid $\mathbb{P M}$-monoids 7
1 Preliminaries 9
1.1 Semigroups 9
1.1.1 Definitions 9
1.1.2 Presentations of a semigroup 9
1.2 Braid groups 10
1.3 Algebraic monoids 11
1.4 Rook monoids 12
1.5 Inverse braid monoids 13
1.6 Compactifications of projective linear groups 15
1.6.1 Motivation 15
1.6.2 Definition of $\mathbb{P} M$ 16
1.6.3 Topology of $\mathbb{P} M$ 16
1.6.4 Monoid structure of $\mathbb{P} \widetilde{M}$ 18
$2 \mathbb{P M}$-monoids 19
2.1 $\mathbb{P M}$-monoids and their structures 19
2.2 Properties of $\mathbb{P M}$-monoids 22
2.3 Braid \mathbb{P} M-monoids 26
2.3.1 Definitions of Braid $\mathbb{P M}$-monoids 26
2.3.2 \quad Braid diagrams of braid $\mathbb{P} M$-monoids 27
2.3.3 Automorphisms of free group and word problems 34
II Link invariants constructed by semigroups 37
3 Preliminaries 39
3.1 Knots and Links 39
3.1.1 definitions 39
3.2 Knot semigroups 40
3.2.1 Definitions 40
3.2.2 Alternating sum semigroups 41
3.2.3 Examples of knot semigroups 41
4 Knot semigroups of double twist knots 43
4.1 Statements 43
4.1.1 Conway's normal forms 43
4.1.2 A conjecture of the knot semigroups of 2-bridge knots 44
4.1.3 Double twist knots 44
4.2 Proof of theorem 45
5 Link invariants 57
5.1 Gelfand-Kirillov dimensions 57
5.2 Link invariants 59
5.3 Examples 63

Part I

$\mathbb{P M}$-monoids and braid $\mathbb{P M}$-monoids

Chapter 1

Preliminaries

1.1 Semigroups

We shall explain basic concept related to semigroups.

1.1.1 Definitions

Definition 1.1.1. A semigroup is a set S equipped with a binary operation $S \times S \rightarrow S$ that is associative. Moreover, if S has an identity element 1, then S is called a monoid.

Next we define the cancellative semigroups.
Definition 1.1.2. A semigroup S is called cancellative if it satisfies two conditions : if $x z=y z$ then $x=y$, and if $x y=x z$ then $y=z$ for $x, y, z \in S$.

We shall define an inverse semigroup.
Definition 1.1.3. An inverse semigroup is a semigroup S such that, for each $x \in S$, there exists a unique $y \in S$ such that

$$
x y x=x, \text { and } y x y=y .
$$

1.1.2 Presentations of a semigroup

Let X be a set, and X^{*} the set of words of X. Let R be the subset of $X^{*} \times X^{*}$. We define \sim the smallest equivalence relation on X^{*} containing all pairs $\left(w_{1} r w_{2}, w_{1} r^{\prime} w_{2}\right)$, where $\left(r, r^{\prime}\right) \in R$ and $w_{1}, w_{2} \in X^{*}$. We define

$$
\langle X \mid R\rangle:=X^{*} / \sim .
$$

$\langle X \mid R\rangle$ is called a semigroup presentation. The elements of X are called generators and the elements of R are called relations.

The word problem for a presentation $\langle X \mid R\rangle$ is the following: given two words $w, w^{\prime} \in X^{*}$ representing certain $a, a^{\prime} \in\langle X \mid R\rangle$, determine whether $a=a^{\prime}$.

1.2 Braid groups

We will review braid groups.
Definition 1.2.1. The braid group B_{n} is the group generated by $n-1$ elements $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n-1}$ with the braid relations

$$
\begin{aligned}
\sigma_{i} \sigma_{j} & =\sigma_{j} \sigma_{i} & & (i=1,2, \ldots, n-1,|i-j| \geq 2), \\
\sigma_{i} \sigma_{i+1} \sigma_{i} & =\sigma_{i+1} \sigma_{i} \sigma_{i+1} & & (i=1,2, \ldots, n-2) .
\end{aligned}
$$

An element of the braid group can be represented by a braid diagram. We denote by I the closed interval $[0,1]$ in \mathbb{R}. By a topological interval, we mean a topological space homeomorphic to $I=[0,1]$.

Definition 1.2.2. A braid diagram on n strands is a set $D \subset \mathbb{R} \times I$ split as a union of n topological intervals called the strands of D such that the following three conditions are met:
(1) The projection $\mathbb{R} \times I \rightarrow I$ maps each strand homeomorphically onto I.
(2) Every point of $\{1,2, \ldots, n\} \times\{0,1\}$ is the endpoint of a unique strand.
(3) Every point of $\mathbb{R} \times I$ belongs to at most two strands. At each intersection point of two strands, these strands meet transversely, and one of them is distinguished and said to be undergoing, the other strands being overgoing.

An example of a braid diagram is given below.

Given two braid diagrams D_{1}, D_{2} on n strands, their product $D_{1} D_{2}$ is obtained by placing D_{1} on the top of D_{2} and squeezing the resulting diagram into $\mathbb{R} \times I$.

Denote by \mathcal{B}_{n} the set of braid diagrams on n strands with multiplication defined above. In fact, \mathcal{B}_{n} becomes a group and the following theorem holds.

Theorem 1.2.3. The groups B_{n} and \mathcal{B}_{n} are isomorphic.

1.3 Algebraic monoids

The definition of $\mathbb{P} M$-monoid is motivated by the definition of the Renner monoids. The Renner monoid appears in the algebraic monoid theory. So we shall explain the algebraic monoid theory. Let K be an algebraically closed field. Let $M_{n}=M_{n}(K)$ denote the set of all $n \times n$ matrices over K.

Definition 1.3.1. A linear algebraic monoid is a submonoid of M_{n} which is a Zariski closed subset.

Let M be a reductive monoid, i.e., M is a linear algebraic monoid which is irreducible as an algebraic set and has a connected reductive group G of units. Let T be a maximal torus of G. Then

$$
R=\overline{N_{G}(T)} / T
$$

is called a Renner monoid ([24] Definition 11.2), where the closure is taken in Zariski topology. This contains the Weyl group $W=N_{G}(T) / T$ of G. Renner monoids play the central role in the linear algebraic monoid theory like Weyl groups do in the linear algebraic group theory, and have the following properties. Let $E(M)$ be the set of idempotents of M, and $P(e)=\{g \in G \mid g e=e g e\}$ for $e \in E(M)$. Let B be a Borel subgroup containing T, and $\Lambda(B)=\{e \in E(\bar{T}) \mid P(e) \supseteq B\}$.

Theorem 1.3.2 ([28] Theorem 5.10.). Let M be a reductive monoid, and $e \in \Lambda(B)$. Then
(1) R is a finite inverse monoid.
(2) The group of units of R coincide with W, and $R=W E(R)$.
(3) $E(R) \simeq E(\bar{T})$.
(4) $M=\sum_{\rho \in R} B \rho B$, and $B \rho B=B \rho^{\prime} B$ implies $\rho=\rho^{\prime}$.
(5) If s is a Coxeter generator, then $B s B \cdot B \rho B \subseteq B s \rho B \cup B \rho B$.
(6) $G e G=\sum_{\rho \in W e W} B \rho B$.
(7) If $w_{0} \in W$ is the longest element, then $B w_{0} e B$ is open and dense in $G e G$.

1.4 Rook monoids

Let R_{n} be the set of $n \times n$ zero-one matrices which have at most one entry equal to 1 in each row and in each column. The monoid R_{n} is called the rook monoid, which is the Renner monod of type A. The rook monoid R_{n} has the following presentation using a generating set and relations:

Theorem 1.4.1 ([10] Prop 1.6.). The rook monoid has a monoid presentation with generating set $\left\{s_{1}, \ldots, s_{n-1}, e_{0}, \ldots, e_{n-1}\right\}$ and defining relations:

$$
\begin{aligned}
s_{i}^{2} & =1 & & (1 \leq i \leq n-1), \\
s_{i} s_{j} & =s_{j} s_{i} & & (1 \leq i, j \leq n-1,|i-j| \geq 2), \\
s_{i} s_{i+1} s_{i} & =s_{i+1} s_{i} s_{i+1} & & (1 \leq i \leq n-1), \\
e_{i} e_{j} & =e_{j} e_{i}=e_{\min (i, j)} & & (0 \leq i, j \leq n-1), \\
e_{j} s_{i} & =s_{i} e_{j} & & (1 \leq i<j \leq n-1), \\
e_{j} s_{i} & =s_{i} e_{j}=e_{j} & & (0 \leq j<i \leq n-1), \\
e_{i} s_{i} e_{i} & =s_{i} e_{i-1} & & (1 \leq i \leq n-1) .
\end{aligned}
$$

1.5 Inverse braid monoids

We explain inverse braid monoids defined by D. Easdown and T.G. Lavers [5].

Definition 1.5.1. The inverse braid group $I B_{n}$ is the group generated by $\sigma_{1}^{ \pm}, \sigma_{2}^{ \pm}, \ldots, \sigma_{n-1}^{ \pm}, \epsilon$ with relations

$$
\begin{aligned}
\sigma_{i} \sigma_{i}^{-1} & =\sigma_{i}^{-1} \sigma_{i}=1 & & (i=1,2, \ldots, n-1), \\
\sigma_{i} \sigma_{j} & =\sigma_{j} \sigma_{i} & & (i=1,2, \ldots, n-1, \mid \\
\sigma_{i} \sigma_{i+1} \sigma_{i} & =\sigma_{i+1} \sigma_{i} \sigma_{i+1} & & (i=1,2, \ldots, n-2), \\
\epsilon^{2} & =\epsilon=\epsilon \sigma_{n-1}^{2}=\sigma_{n-1}^{2} \epsilon, & & \\
\epsilon \sigma_{i} & =\sigma_{i} \epsilon & & (i=1,2, \ldots, n-2), \\
\epsilon \sigma_{n-1} \epsilon & =\sigma_{n-1} \epsilon \sigma_{n-1} \epsilon=\epsilon \sigma_{n-1} \epsilon \sigma_{n-1} . & &
\end{aligned}
$$

The relation of the symmetric group and the braid group is generalized to the relation of the rook monoid and the inverse braid monoid.

We next define a partial braid diagram. Take the usual coordinate system for \mathbb{R}^{3} (in which we think of the z-axis as pointing downwards). Choose $z_{0}<z_{1}$ and call the planes $z=z_{0}$ and z_{1} upper and lower, respectively. Mark $n \geq 1$ distinct points P_{1}, \ldots, P_{n} on a line in the upper plane and project them orthogonally onto the lower plane yielding points $P_{1}^{\prime}, \ldots, P_{n}^{\prime}$. An arc is the image of an embedding from interval $[0,1]$ into \mathbb{R}^{3}. A partial braid on n strings is a system

$$
\beta=\left\{\beta_{1}, \ldots, \beta_{m}\right\}
$$

of m arcs for some $m \leq n$ such that
(1) there is a rank m partial one-one mapping $\Phi^{\beta}:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\}$ with domain $\left\{i_{1}, \ldots, i_{m}\right\}$ such that β_{i} connects $P_{i_{j}}$ to $P_{\phi^{\beta}\left(i_{j}\right)}$ for $j=$ $1, \ldots, m$,
(2) each arc intersects each intermediate parallel plane between (and including) the upper and lower planes exactly once,
(3) the union $\beta_{1} \cup \cdots \cup \beta_{m}$ of the arcs intersect each intermediate parallel plane between the upper and lower planes in exactly m distinct points. If $m=0$, we get the empty braid.

Two partial braids $\beta=\left\{\beta_{1}, \ldots, \beta_{m}\right\}$ and $\gamma=\left\{\gamma_{1}, \ldots, \gamma_{m^{\prime}}\right\}$ are called equivalent if
(1) $\Phi^{\beta}=\Phi^{\gamma}$. In particular $m=m^{\prime}$ and we may write the domain of Φ^{β} as $\left\{i_{1}, \ldots, i_{m}\right\}$ for some $i_{1}<\cdots<i_{m}$,
(2) β and γ are homotopy equivalent, which we mean that there exist continuous maps

$$
F_{j}:[0,1] \times[0,1] \rightarrow \mathbb{R}^{3}
$$

for $j=1, \ldots, m$, such that, for all $t \in[0,1]$,

$$
F_{j}(t, 0)=\beta_{j}(t) \text { and } F_{j}(t, 1)=\gamma_{j}(t)
$$

for all $s \in[0,1]$,

$$
F_{j}(0, s)=P_{i_{j}} \text { and } F_{j}(1, s)=P_{\Phi^{\beta}\left(i_{j}\right)}^{\prime},
$$

and, for each $s \in[0,1]$, if we define

$$
\beta^{s}=\left\{\beta_{1}^{s}, \ldots, \beta_{m}^{s}\right\}
$$

where

$$
\beta_{j}^{s}(t)=F_{j}(s, t) \text { for } j=1, \ldots, m \text {, }
$$

then β^{s} is itself a partial braid. Write $\beta \equiv \gamma$ if β and γ are equivalent and $[\beta]$ for the equivalence class containing β.

Define the product $\beta_{1} \beta_{2}$ of two partial braids β_{1} and β_{2} as follows:
(1) translate β_{2} parallel to itself in space so that the upper plane of β_{2} and the lower plane of β_{1} coincide,
(2) keeping the plane $z=z_{0}$ fixed, contract the resulting system of arcs so that the translated lower plane of β_{2} moves into the position of the plane $z=z_{1}$,
(3) remove any arcs that do not join the upper and lower planes.

For example, if

Then

$$
\begin{aligned}
& \text { Put } \\
& \qquad M_{n}=\{[\beta] \mid \beta \text { is a partial braid }\} .
\end{aligned}
$$

Then we have the following theorem.
Theorem 1.5.2 ([5] Theorem 3.1.). The monoids M_{n} and $I B_{n}$ are isomorphic.

1.6 Compactifications of projective linear groups

We explain the compactification of the projective linear group constructed by M. Saito [25].

1.6.1 Motivation

One strategy of compactification is constructing a "limit". Then we consider the set of all limit points and introduce a topology compatible with the limit. For instance Y. A. Neretin constructed a compactification of the projective linear group by this strategy called hinge [22].

Let V be an n-dimensional vector space over \mathbb{C} and $A_{i} \in \operatorname{End}(V),(i=$ $1,2, \ldots)$. Suppose that the linear map

$$
A_{\epsilon}:=\sum_{i=0}^{m} A_{i} \epsilon^{i}
$$

is in $\operatorname{GL}(V)$ for $\epsilon \in \mathbb{R} \backslash\{0\}$. Dividing by nonzero scalar matrices we consider the projective linear map

$$
\begin{equation*}
\overline{A_{\epsilon}} \in \operatorname{PGL}(V) \tag{1.1}
\end{equation*}
$$

We want to define a "limit" $\lim _{\epsilon \rightarrow 0} \overline{A_{\epsilon}}$. To define a limit, we observe the action of $\overline{A_{\epsilon}}$ on $\mathbb{P}(V)$. For $\bar{x} \in \mathbb{P}(V)$ we have

$$
\lim _{\epsilon \rightarrow 0} \overline{A_{\epsilon}(x)}=\left\{\begin{array}{cl}
\overline{\overline{A_{0} x}} & \left(x \notin \operatorname{Ker} A_{0}\right) \\
\overline{A_{1} x} & \left(x \notin \operatorname{Ker} A_{0} \backslash \operatorname{Ker} A_{1}\right) \\
\overline{A_{2} x} & \left(x \notin \operatorname{Ker} A_{0} \cap \operatorname{Ker} A_{1} \backslash \operatorname{Ker} A_{2}\right) \\
\vdots &
\end{array}\right.
$$

Thus we define the limit of (1.1) as

$$
\begin{equation*}
\lim _{\epsilon \rightarrow 0} \overline{A_{\epsilon}}:=\left(\overline{A_{0}},\left.\overline{A_{1}}\right|_{\mathbb{P}\left(\operatorname{Ker} A_{0}\right)},\left.\overline{A_{2}}\right|_{\mathbb{P}\left(\operatorname{Ker} A_{0} \cap \operatorname{Ker} A_{1}\right)}, \ldots\right) . \tag{1.2}
\end{equation*}
$$

1.6.2 Definition of $\mathbb{P} M$

In order to construct a compactification of the projective linear group, we consider the set of forms of the right hand side of (1.2). We define the following sets. Let V be an n-dimensional vector space over \mathbb{C}. Set
and

$$
\widetilde{M}:=\widetilde{M}(V)=\left\{\left(A_{0}, A_{1}, \ldots, A_{m}\right) \left\lvert\, \begin{array}{c}
m=0,1,2, \ldots \\
0 \neq A_{i} \in \operatorname{End}(V)(0 \leq i \leq m) \\
\cap_{k=0}^{i-1} \operatorname{Ker} A_{k} \nsubseteq \operatorname{Ker} A_{i} \\
\cap_{k=0}^{m} \operatorname{Ker} A_{k}=0
\end{array}\right.\right\}
$$

Let $\mathbb{A}:=\left(A_{0}, A_{1}, \ldots, A_{m}\right) \in M$. Since $A_{i} \in \operatorname{Hom}\left(V_{i}, V\right) \backslash\{0\}$, we can consider the element $\overline{A_{i}} \in \mathbb{P H o m}\left(V_{i}, V\right)$ represented by A_{i}, and we can define

$$
\mathbb{P} \mathbb{A}:=\left(\overline{A_{0}}, \overline{A_{1}}, \ldots, \overline{A_{m}}\right)
$$

Let $\mathbb{P} M=\mathbb{P} M(V)$ denote the image of M under $\mathbb{P} . \mathbb{P} \widetilde{M}$ can be defined similarly.

1.6.3 Topology of $\mathbb{P} M$

We introduce a topology in $\mathbb{P} M$ which we can deal with the limit (1.2). We fix a Hermitian inner product on V. Let W be a subspace of V. By considering $V=W \oplus W^{\perp}$ via this inner product, we regard $\operatorname{Hom}(W, V)$ as a subspace of $\operatorname{End}(V)$. We consider the classical topology in $\mathbb{P} \operatorname{Hom}(W, V)$ for any subspace W of V.
Let $\mathbb{A}=\left(A_{0}, A_{1}, \ldots, A_{m}\right) \in M$. Then $A_{i} \in \operatorname{Hom}\left(V_{i}, V\right)$, where $V_{i}=V(\mathbb{A})_{i}=$ $\operatorname{Ker}\left(A_{i-1}\right)$. Let U_{i} be a neighborhood of $\overline{A_{i}}$ in $\mathbb{P} \operatorname{Hom}\left(V(\mathbb{A})_{i}, V\right)$. Then set

$$
\begin{align*}
U_{\mathbb{P A}}\left(U_{0}, \ldots, U_{m}\right)= & \left\{\mathbb{P \mathbb { B }}=\left(\overline{B_{0}}, \overline{B_{1}}, \ldots, \overline{B_{n}}\right)\right. \\
& { }^{\forall} i=1, \ldots, m,{ }^{\exists} j \in\{1, \ldots, n\} \text { s.t. } \tag{1.3}\\
& \left.\left\lvert\, \begin{array}{|}
& V(\mathbb{B})_{j} \supseteq V(\mathbb{A})_{i} \text { and } \\
\overline{\left.B_{j}\right|_{V(\mathbb{A})_{i}}} \in U_{i}
\end{array}\right.\right\} .
\end{align*}
$$

We will explain the fact that the sets (1.3) can define a topology that deal with the limit (1.2) by using the following example.

Example 1.6.1. Let V be a 4 -dimensional vector space over \mathbb{C}. Taking the standard basis, we identify $V \cong \mathbb{C}^{4}$. Let

$$
\begin{gathered}
\mathbb{A}=\left(A_{0}, A_{1}, A_{2}, A_{3}\right)=\left(\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 0 \\
1 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)\right), \\
\mathbb{B}(t)=\left(B_{0}(t), B_{1}(t)\right)=\left(\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & t & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 0 \\
1 & 0 \\
0 & t
\end{array}\right)\right),
\end{gathered}
$$

and let U_{i} be a neighborhood of $A_{i},(i=0,1,2,3)$. In the rule of $(1.2), \mathbb{B}(t)$ converges to \mathbb{A} when $t \rightarrow 0$. In terms of (1.3), we want to have

$$
\begin{equation*}
\mathbb{B}(t) \in U_{\mathbb{P A}}\left(U_{0}, U_{1}, U_{2}, U_{3}\right) \tag{1.4}
\end{equation*}
$$

when $t \ll 0$. In fact, (1.4) holds by the following :

$$
\begin{gathered}
V(\mathbb{B})_{0} \supseteq V(\mathbb{A})_{0}, \overline{\left.B_{0}(t)\right|_{V(\mathbb{A})_{0}}} \in U_{0} \text { since } \lim _{t \rightarrow 0} \overline{\left.B_{0}(t)\right|_{V(\mathbb{A})_{0}}}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \\
V(\mathbb{B})_{0} \supseteq V(\mathbb{A})_{1}, \overline{\left.B_{0}(t)\right|_{V(\mathbb{A})_{1}}} \in U_{1} \text { since } \lim _{t \rightarrow 0} \overline{\left.B_{0}(t)\right|_{V(\mathbb{A})_{1}}}=\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \\
V(\mathbb{B})_{1} \supseteq V(\mathbb{A})_{2}, \overline{\left.B_{1}(t)\right|_{V(\mathbb{A})_{2}}} \in U_{2} \text { since } \lim _{t \rightarrow 0} \overline{\left.B_{1}(t)\right|_{V(\mathbb{A})_{2}}}=\left(\begin{array}{ll}
0 & 0 \\
0 & 0 \\
1 & 0 \\
0 & 0
\end{array}\right), \\
V(\mathbb{B})_{1} \supseteq V(\mathbb{A})_{3}, \overline{\left.B_{1}(t)\right|_{V(\mathbb{A})_{3}}} \in U_{3} \text { since } \lim _{t \rightarrow 0} \overline{\left.B_{1}(t)\right|_{V(\mathbb{A})_{3}}}=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right) .
\end{gathered}
$$

In fact (1.3) induces a topology on $\mathbb{P} M$ by the following lemma.
Lemma 1.6.2 ([25] Lemma 3.2.). The sets

$$
\left\{U_{\mathbb{P A}}\left(U_{0}, \ldots, U_{m}\right) \mid U_{i} \text { is a neighborhood of } \overline{A_{i}}(0 \leq i \leq m)\right\}
$$

satisfy the axiom of a base of neighborhoods of $\mathbb{P A}$, and hence define a topology in $\mathbb{P} M$.

Moreover the following theorem holds.
Theorem 1.6.3 ([25] Theorem 5.1., Proposition 3.9, 3.10.). The set $\mathbb{P} M$ is compact, and $\mathrm{PGL}(V)$ is dense open in $\mathbb{P} M$.

Here we regard an element of $\operatorname{PGL}(V)$ as a one-term element of $\mathbb{P} M$, and $\mathbb{P} M$ is a compactification of $\operatorname{PGL}(V)$.

1.6.4 Monoid structure of $\mathbb{P} \widetilde{M}$

For $\mathbb{A}=\left(A_{0}, A_{1}, \ldots, A_{m}\right), \mathbb{B}=\left(B_{0}, B_{1}, \ldots, B_{n}\right) \in \mathbb{P} \widetilde{M}$, define $\mathbb{A} \mathbb{B}$ by removing the redundant matrices from

$$
\begin{align*}
\mathbb{A} \mathbb{B}=\left(A_{0} B_{0}, A_{1} B_{0}, \ldots,\right. & A_{m} B_{0}, A_{0} B_{1} \\
& \left.\ldots, A_{m} B_{1}, \ldots, A_{0} B_{n}, \ldots, A_{m} B_{n}\right) . \tag{1.5}
\end{align*}
$$

This defines a monoid structure on $\mathbb{P M}([25]$ Proposition 6.6.).

Chapter 2

PM-monoids

We shall define a $\mathbb{P} M$-monoid denoted by \mathscr{R}_{n}.

2.1 PM-monoids and their structures

We shall define a $\mathbb{P} M$-monoid denoted by \mathscr{R}_{n}, and reveal its structue. Let T be a maximal torus of PGL_{n}. Then we consider the following monoid

$$
\mathscr{R}_{n}=\overline{N_{\mathrm{PGL}_{n}}(T)} / T
$$

where the closure is taken in the topology of $\mathbb{P} M$. We call this monoid \mathscr{R}_{n} a $\mathbb{P} M$-monoid. We next consider the structure of a $\mathbb{P} M$-monoid. The structure of a $\mathbb{P} M$-monoid can be described in terms of a matched pairs. We first explain a matched pairs (cf. [18],[29]). Let S be a monoid. We denote the unit element of S by 1_{S}.

A matched pair of monoids means a triple (S, B, σ) such that S acts on B and B acts on S and these actions are compatible with each other.

Definition 2.1.1. Let S, B be monoids which have binary operations - : $S \times B \rightarrow B$ and $\leftharpoonup: S \times B \rightarrow S$. A matched pair of monoids means a triple (S, B, σ), where S, B are monoids and

$$
\sigma: S \times B \rightarrow B \times S,(s, b) \mapsto(s \rightharpoonup b, s \leftharpoonup b)
$$

is a map satisfying the following conditions :
(1) $s \rightharpoonup(t \rightharpoonup b)=s t \rightharpoonup b$,
(2) $s t \leftharpoonup b=(s \leftharpoonup(t \rightharpoonup b))(t \leftharpoonup b)$,
(3) $(s \leftharpoonup b) \leftharpoonup c=s \leftharpoonup b c$,
(4) $s \rightharpoonup b c=(s \rightharpoonup b)((s \leftharpoonup b) \rightharpoonup c)$,
(5) $1_{S} \rightharpoonup b=b$,
(6) $s \rightharpoonup 1_{B}=1_{B}$,
(7) $s \leftharpoonup 1_{B}=s$,
(8) $1_{S} \leftharpoonup b=1_{S}$
for $s, t \in S, b, c \in B$.
The product $B \times S$ forms a monoid with product

$$
(b, s)(c, t)=(b(s \rightharpoonup c),(s \leftharpoonup c) t) .
$$

This monoid is denoted by $B \bowtie_{\sigma} S$.
An ordered set partition of a set T is a list of pairwise disjoint nonempty subsets of T such that the union of these subsets is S. Let

$$
\left.\begin{array}{rl}
P_{n}=\left\{\left(\left\{i_{1}, \ldots, i_{k_{1}}\right\},\left\{i_{k_{1}+1}, \ldots, i_{k_{2}}\right\}, \ldots,\right.\right. & \left.\left\{i_{k_{m}+1}, \ldots, i_{n}\right\}\right) \\
& \left\{i_{1} \ldots, i_{n}\right\}=\{1, \ldots, n\} \\
1 \leq k_{1}<k_{2}<\cdots<k_{m-1}<n
\end{array}\right\} .
$$

An element of P_{n} is called an ordered set partitions of $[n]:=\{1,2, \ldots, n\}$. The set P_{n} has a monoid structure defined by
$\left(p_{1}, \ldots, p_{m}\right) *\left(p_{1}^{\prime}, \ldots, p_{m^{\prime}}^{\prime}\right):=\left(p_{1} \cap p_{1}^{\prime}, \ldots, p_{m} \cap p_{1}^{\prime}, \ldots, p_{1} \cap p_{m^{\prime}}^{\prime}, \ldots, p_{m} \cap p_{m^{\prime}}^{\prime}\right)$.
Then the following proposition holds.
Proposition 2.1.2. Let \mathscr{R}_{n} be the $\mathbb{P} M$-monoid, S_{n} the symmetric group and P_{n} the collection of the ordered set partitions of $[n]$. Define a map

$$
\varphi: P_{n} \times S_{n} \rightarrow S_{n} \times P_{n},\left(\left(p_{1}, \ldots, p_{m}\right), w\right) \mapsto\left(w,\left(w^{-1}\left(p_{1}\right), \ldots, w^{-1}\left(p_{m}\right)\right)\right) .
$$

Then

$$
\mathscr{R}_{n} \simeq S_{n} \bowtie_{\varphi} P_{n}
$$

Proof. Since $N_{\mathrm{PGL}_{n}}(T)=\left\{\sum_{j=1}^{n} t_{j} E_{\pi(j) j} \mid t_{j} \in \mathbb{C}^{*}, \pi \in S_{n}\right\}$, we have

$$
\overline{N_{\mathrm{PGL}_{n}}(T)}=\left\{\left(\sum_{j \in p_{1}} t_{j} E_{\pi(j) j}, \ldots, \sum_{j \in p_{m}} t_{j} E_{\pi(j) j}\right) \left\lvert\, \begin{array}{c}
t_{j} \in \mathbb{C}^{*}, \\
\left(p_{1}, \ldots, p_{m}\right) \in P_{n}, \pi \in S_{n}
\end{array}\right.\right\} .
$$

Thus
$\overline{N_{\mathrm{PGL}_{n}}(T)} / T=\left\{\left(\sum_{j \in p_{1}} E_{\pi(j) j}, \ldots, \sum_{j \in p_{m}} E_{\pi(j) j}\right) \mid\left(p_{1}, \ldots, p_{m}\right) \in P_{n}, \pi \in S_{n}\right\}$.
Then we have the following bijective correspondence as sets.

$$
\begin{align*}
\overline{N_{\mathrm{PGL}_{n}}(T)} / T & \simeq S_{n} \times P_{n}: \\
\left(\sum_{j \in p_{1}} E_{\pi(j) j}, \ldots, \sum_{j \in p_{m}} E_{\pi(j) j}\right) & \mapsto\left(\pi,\left(p_{1}, \ldots, p_{m}\right)\right) . \tag{2.1}
\end{align*}
$$

To introduce a monoid structure on $S_{n} \times P_{n}$, we recall a monoid structure of $\overline{N_{\mathrm{PGL}_{n}}(T)} / T$ (cf. (1.5)).

$$
\begin{aligned}
& \left(\sum_{j \in p_{1}} E_{\sigma(j) j}, \ldots, \sum_{j \in p_{m}} E_{\sigma(j) j}\right) \cdot\left(\sum_{k \in p_{1}^{\prime}} E_{\sigma^{\prime}(k) k}, \ldots, \sum_{k \in p_{n}^{\prime}} E_{\sigma^{\prime}(k) k}\right) \\
& =\left(\sum_{j \in p_{1}} E_{\sigma(j) j} \sum_{k \in p_{1}^{\prime}} E_{\sigma(k) k}, \sum_{j \in p_{2}} E_{\sigma(j) j} \sum_{k \in p_{1}^{\prime}} E_{\sigma(k) k}, \ldots, \sum_{j \in p_{m}} E_{\sigma^{\prime}(j) j} \sum_{k \in p_{n}^{\prime}} E_{\sigma^{\prime}(k) k}\right) \\
& =\left(\sum_{l \in \sigma^{\prime-1}\left(p_{1}\right) \cap p_{1}^{\prime}} E_{\sigma \sigma^{\prime}(l) l}, \sum_{l \in \sigma^{\prime-1}\left(p_{2}\right) \cap p_{1}^{\prime}} E_{\sigma \sigma^{\prime}(l) l}, \ldots, \sum_{l \in \sigma^{\prime-1}\left(p_{m}\right) \cap p_{n}^{\prime}} E_{\sigma \sigma^{\prime}(l) l}\right) .
\end{aligned}
$$

By the above calculation, we define a product on $S_{n} \times P_{n}$

$$
\begin{align*}
\left(\sigma,\left(p_{1}, \ldots, p_{m}\right)\right) \cdot & \left(\sigma^{\prime},\left(p_{1}^{\prime}, \ldots, p_{n}^{\prime}\right)\right) \\
& :=\left(\sigma \sigma^{\prime},\left(\sigma^{\prime-1}\left(p_{1}\right), \ldots, \sigma^{\prime-1}\left(p_{m}\right)\right) *\left(p_{1}^{\prime}, \ldots, p_{n}^{\prime}\right)\right) \tag{2.2}
\end{align*}
$$

Then (2.1) becomes an isomorphism of monoids. On the other hand, we define a map

$$
\varphi: P_{n} \times S_{n} \rightarrow S_{n} \times P_{n}:\left(\left(p_{1}, \ldots, p_{m}\right), \sigma\right) \mapsto\left(\sigma,\left(\sigma^{-1}\left(p_{1}\right), \ldots, \sigma^{-1}\left(p_{m}\right)\right)\right)
$$

Then $\left(P_{n}, S_{n}, \varphi\right)$ satisfies (1)-(8) in Definition 2.1.1, and becomes a matched pair. The monoid structure of $S_{n} \bowtie_{\varphi} P_{n}$ coincides with (2.2). Therefore

$$
\mathscr{R}_{n} \simeq S_{n} \bowtie_{\varphi} P_{n}
$$

as monoids.

2.2 Properties of $\mathbb{P M}$-monoids

A $\mathbb{P} M$-monoid has the following properties analogous to Theorem 1.3.2.
Proposition 2.2.1. Let $\mathscr{R}_{n}=\overline{N_{\mathrm{PGL}_{n}}(T)} / T$, and

$$
\begin{aligned}
\Lambda_{n}=\left\{\left(\sum_{j \in p_{1}} E_{j j},\right.\right. & \left.\sum_{j \in p_{2}} E_{j j}, \ldots, \sum_{j \in p_{n}} E_{j j}\right), \\
& \left.\left\lvert\, \begin{array}{c}
\left(p_{1}, \ldots, p_{n}\right) \\
\\
1 \leq\left(\left\{1, \ldots, k_{1}\right\}, \ldots,\left\{k_{m-1}+1, \ldots, n\right\}\right) \\
1 \leq k_{1}<k_{2}<\cdots<k_{m-1}<n
\end{array}\right.\right\} .
\end{aligned}
$$

(a) \mathscr{R}_{n} is a finite inverse monoid. Moreover the number of its elements is

$$
\begin{align*}
& \left|\mathscr{R}_{n}\right| \\
& \begin{aligned}
&=\sum_{r_{1}+\cdots+r_{m}=n}\binom{n}{r_{1}}^{2} r_{1}!\binom{n-r_{1}}{r_{2}}^{2} r_{2}! \\
& \ldots\binom{n-r_{1}-\cdots-r_{n-1}}{r_{n}}^{2} r_{n}!
\end{aligned} \\
& =n!\sum_{m=1}^{n} m!S(n, m) \tag{2.3}
\end{align*}
$$

where $S(n, m)$ is the Stirling number of the second kind, i.e., $S(n, m)$ is the number of ways of partitioning a set of n elements into m nonempty subsets.
(b) The unit group of \mathscr{R}_{n} coincide with $W:=N_{\mathrm{PGL}}(T) / T$, and $\mathscr{R}_{n}=$ $W E\left(\mathscr{R}_{n}\right)$.
(c) $E\left(\mathscr{R}_{n}\right)=\bigcup_{w \in W} w \Lambda_{n} w^{-1}$.
(d) $\mathscr{R}_{n}=\bigsqcup_{e \in \Lambda_{n}} W e W$.

Proof. (a) For any $(\sigma, p) \in \mathscr{R}_{n}$, let $(\sigma, p)^{*}:=\left(\sigma^{-1}, \sigma(p)\right)$. Then

$$
(\sigma, p)=(\sigma, p)(\sigma, p)^{*}(\sigma, p),(\sigma, p)^{*}=(\sigma, p)^{*}(\sigma, p)(\sigma, p)^{*}
$$

Thus \mathscr{R}_{n} is an inverse monoid. We next consider the number $\left|\mathscr{R}_{n}\right|$. We fix a partition $r_{1}+r_{2}+\cdots+r_{m}=n$. We first choose r_{1} columns and r_{1} rows among the n columns and n rows, and choose a placement of 1 's in the place
of $r_{1} \times r_{1}$ permutation matrices. Next we choose r_{2} columns and r_{2} rows among the $n-r_{1}$ columns and $n-r_{1}$ rows, and choose a placement of 1 's in the place of $r_{2} \times r_{2}$ permutation matrices. We repeat this process and sum up over partitions $r_{1}+r_{2}+\cdots+r_{m}=n$, and then we obtain the first equality of (2.3).

On the other hand, let $P_{n, m}$ be the collection of ordered set partitions of [n] with m blocks. Then $\left|P_{n, m}\right|=m!S(n, m)$ by the definition of the Stirling numbers of the second kind. Thus we obtain the second equality of (2.3) since $\left|P_{n}\right|=\sum_{m=1}^{n}\left|P_{n, m}\right|$ and $\left|\mathscr{R}_{n}\right|=\left|S_{n}\right|\left|P_{n}\right|$.
(b) First we see

$$
\begin{equation*}
E\left(\mathscr{R}_{n}\right)=\left\{\left(\sum_{j \in p_{1}} E_{j j}, \sum_{j \in p_{2}} E_{j j}, \ldots, \sum_{j \in p_{n}} E_{j j}\right) \mid\left(p_{1}, \ldots, p_{n}\right) \in P_{n}\right\} . \tag{2.4}
\end{equation*}
$$

In fact, if $(\sigma, p)(\sigma, p)=(\sigma, p)$ for $(\sigma, p) \in \mathscr{R}_{n}$, then $\sigma^{2}=\sigma$, i.e., $\sigma=e$. Then $\mathscr{R}_{n}=W E\left(\mathscr{R}_{n}\right)$.
(c) follows from (2.4)
(d)

$$
\begin{aligned}
& \bigsqcup_{e \in \Lambda_{n}} W e W \\
& =\left\{\begin{array}{r}
\left.\sigma\left(\sum_{j \in p_{1}} E_{j j}, \ldots, \sum_{j \in p_{n}} E_{j j}\right) \tau \left\lvert\, \begin{array}{c}
\left(p_{1}, \ldots, p_{n}\right)=\left(k_{1}, \ldots, k_{m-1}\right) \\
\sigma, \tau \in W
\end{array}\right.\right\} \\
=\left\{\left(\sum_{j \in p_{1}} E_{\sigma^{-1}(j) \tau(j)}, \ldots, \sum_{j \in p_{n}} E_{\sigma^{-1}(j) \tau(j)}\right) \left\lvert\, \begin{array}{c}
\left(p_{1}, \ldots, p_{n}\right)=\left(k_{1}, \ldots, k_{m-1}\right) \\
\sigma, \tau \in W
\end{array}\right.\right\} \\
=\left\{\left(\sum_{k \in \tau\left(p_{1}\right)} E_{(\tau \sigma)^{-1}(k) k}, \ldots, \sum_{k \in \tau\left(p_{n}\right)} E_{\left.(\sigma \tau)^{-1}(k) k\right) \mid}\right.\right. \\
\left(p_{1}, \ldots, p_{n}\right)=\left(k_{1}, \ldots, k_{m-1}\right) \\
\sigma, \tau \in W
\end{array}\right\}
\end{aligned}
$$

$$
=\mathscr{R}_{n}
$$

where we denote

$$
\begin{equation*}
\left(k_{1}, \ldots, k_{m-1}\right)=\left(\left\{1, \ldots, k_{1}\right\}, \ldots,\left\{k_{m-1}+1, \ldots, n\right\}\right) \tag{2.5}
\end{equation*}
$$

We construct a presentation for $\mathscr{R}_{n}=\overline{N_{\text {PGL }}(T)} / T$, similar to that of the rook monoid. We first define some notations. For $i=1, \ldots, n-1$ and a partition $\left(k_{1}, \ldots, k_{m-1}\right)$ (cf. (2.5)), if there exists $j \in\{1, \ldots, n\}$ such that $\{i, i+1\} \subseteq\left\{k_{j-1}+1, \ldots, k_{j}\right\}$, then we set

$$
i_{*}:=j .
$$

For $\sigma \in S_{n}$ we define a map $\varphi_{\sigma}: P_{n} \rightarrow P_{n}$ by

$$
\left(p_{1}, \ldots, p_{m}\right) \mapsto\left(\sigma^{-1}\left(p_{1}\right), \ldots, \sigma^{-1}\left(p_{m}\right)\right)
$$

We define a set

$$
\Pi_{n}=\left\{\left(k_{1}, \ldots, k_{m-1}\right): 1 \leq k_{1}<\cdots<k_{m-1}<n\right\}
$$

where $\left(k_{1}, \ldots, k_{m-1}\right)$ is (2.5). For $p \in P_{n}$, take an element $w \in S_{n}$ such that $w p w^{-1} \in \Pi_{n}$, and set

$$
u^{w}(p):=w p w^{-1} \in \Pi_{n} .
$$

We also set

$$
\operatorname{Ad}(\sigma)(e):=\sigma^{-1} e \sigma
$$

Using these notations we obtain the following monoid presentation of the $\mathbb{P} M$-monoid \mathscr{R}_{n}.

Proposition 2.2.2. The $\mathbb{P} M$-monoid \mathscr{R}_{n} has a monoid presentation with generating set

$$
\left\{s_{1}, \ldots, s_{n-1}, e_{k_{1}, \ldots, k_{m-1}}\left(1 \leq k_{1}<\cdots<k_{m-1}<n\right)\right\}
$$

and defining relations

$$
\begin{align*}
& s_{i}^{2}=1 \quad(1 \leq i \leq n-1), \tag{2.6}\\
& s_{i} s_{j}=s_{j} s_{i} \quad(1 \leq i, j \leq n-1,|i-j| \geq 2), \tag{2.7}\\
& s_{i} s_{i+1} s_{i}=s_{i+1} s_{i} s_{i+1} \quad(1 \leq i \leq n-1), \tag{2.8}\\
& e_{k_{1}, \ldots, k_{i_{*}}, \ldots, k_{m-1}} s_{i}=s_{i} e_{k_{1}, \ldots, k_{i_{*}}, \ldots, k_{m-1}} \tag{2.9}\\
& \binom{1 \leq i \leq n-1}{1 \leq k_{1}<\cdots<k_{i_{*}}<\cdots<k_{m-1}<n}, \\
& e_{k_{1}, \ldots, k_{m-1}} s_{i_{1}} \ldots s_{i_{r}} e_{l_{1}, \ldots, l_{m^{\prime}-1}}=\operatorname{Ad}\left(s_{j_{1}} \ldots s_{j_{t}}\right)\left(e_{q}\right) s_{i_{1}} \ldots s_{i_{r}} \tag{2.10}\\
& \left(\begin{array}{c}
1 \leq k_{1}<\cdots<k_{m-1}<n \\
1 \leq l_{1}<\cdots<l_{m^{\prime}-1}<n \\
\left\{i_{1}, i_{1}+1\right\} \nsubseteq\left\{k_{l-1}+1, \ldots, k_{l}\right\},{ }^{\forall} l=1, \ldots, n \\
q=u^{s_{j_{1}} \ldots s_{j_{t}}}\left(\left(k_{1}, \ldots, k_{m-1}\right) * \varphi_{\left(s_{i_{1}} \ldots s_{i_{r}}\right)^{-1}}\left(\left(l_{1}, \ldots, l_{m^{\prime}-1}\right)\right)\right)
\end{array}\right) .
\end{align*}
$$

Proof. Let

$$
e_{k_{1}, \ldots, k_{m-1}}:=\left(\sum_{j=1}^{k_{1}} E_{j j}, \sum_{j=k_{1}+1}^{k_{2}} E_{j j}, \ldots, \sum_{j=k_{m-1}+1}^{n} E_{j j}\right)
$$

and $s_{i}=(i, i+1)$. These elements satisfy the above relations. Let \mathscr{R}_{n}^{\prime} be the monoid generated by elements $s_{1}^{\prime}, \ldots, s_{n-1}^{\prime}, e_{k_{1}, \ldots, k_{m-1}}^{\prime}$ subject to the defining relations (2.6)-(2.10). Since \mathscr{R}_{n} satisfies (2.6)-(2.10), there is a surjective monoid homomorphism $\theta: \mathscr{R}_{n}^{\prime} \rightarrow \mathscr{R}_{n}$ such that $\theta\left(s_{i}^{\prime}\right)=s_{i}$ and $\theta\left(e_{k_{1}, \ldots, k_{m-1}}^{\prime}\right)=$ $e_{k_{1}, \ldots, k_{m-1}}$. Let $S_{n}^{\prime}=\left\langle s_{1}^{\prime}, \ldots, s_{n-1}^{\prime}\right\rangle \subseteq \mathscr{R}_{n}^{\prime}$. To show that $\theta: \mathscr{R}_{n}^{\prime} \rightarrow \mathscr{R}_{n}$ is an isomorphism of monoids, it suffices to show that $\left|\mathscr{R}_{n}^{\prime}\right| \leq\left|\mathscr{R}_{n}\right|$, where $\left|\mathscr{R}_{n}\right|$ is given by (2.3).
We consider the following set

$$
\begin{equation*}
\bigcup_{1 \leq k_{1}<\cdots<k_{m}<n} S_{n}^{\prime} e_{k_{1}, \ldots, k_{m-1}}^{\prime} S_{n}^{\prime} \tag{2.11}
\end{equation*}
$$

Using relations (2.9) and (2.10), we can show that the set (2.11) is stable under the left multiplication by $e_{k_{1}, \ldots, k_{m-1}}^{\prime}$ and S_{n}^{\prime}. The set (2.11) contains $e_{n}=1$. Thus the set (2.11) contains \mathscr{R}_{n}. Therefore we have

$$
\mathscr{R}_{n}^{\prime}=\bigcup_{1 \leq k_{1}<\cdots<k_{m}<n} S_{n}^{\prime} e_{k_{1}, \ldots, k_{m-1}}^{\prime} S_{n}^{\prime} .
$$

We fix $1 \leq k_{1}<\cdots<k_{m-1}<n$ and let

$$
\begin{aligned}
S_{k_{1}, \ldots, k_{m-1}}^{\prime} & :=\left\langle s_{1}^{\prime}, \ldots, s_{k_{1}-1}^{\prime}, s_{k_{1}+1}^{\prime}, \ldots, s_{k_{2}-1}^{\prime}, s_{k_{2}+1}^{\prime}, \ldots, s_{k_{m-1}-1}^{\prime}, s_{k_{m-1}+1}^{\prime}, \ldots, s_{n-1}^{\prime}\right\rangle \\
& \simeq S_{k_{1}} \times S_{k_{2}-k_{1}} \times \cdots \times S_{n-k_{m-1}}
\end{aligned}
$$

Write $S_{n}^{\prime}=S_{k_{1}, \ldots, k_{m-1}}^{\prime} X_{k_{1}, \ldots, k_{m-1}}$, where $X_{k_{1}, \ldots, k_{m-1}}$ is a set of coset representatives. Then by the relation (2.9) of the above relations,

$$
\begin{aligned}
e_{k_{1}, \ldots, k_{m-1}}^{\prime} S_{n}^{\prime} & =e_{k_{1}, \ldots, k_{m-1}}^{\prime} S_{k_{1}, \ldots, k_{m-1}}^{\prime} X_{k_{1}, \ldots, k_{m-1}} \\
& =S_{k_{1}, \ldots, k_{m-1}}^{\prime} e_{k_{1}, \ldots, k_{m-1}}^{\prime} X_{k_{1}, \ldots, k_{m-1}} \\
& \subseteq S_{n}^{\prime} e_{k_{1}, \ldots, k_{m-1}}^{\prime} X_{k_{1}, \ldots, k_{m-1}} .
\end{aligned}
$$

Thus

$$
\begin{aligned}
\left|S_{n}^{\prime} e_{k_{1}, \ldots, k_{m-1}}^{\prime} S_{n}^{\prime}\right| & \leq\left|S_{n}^{\prime} e_{k_{1}, \ldots, k_{m-1}}^{\prime} X_{k_{1}, \ldots, k_{m-1}}\right| \\
& \leq\left|S_{n}^{\prime} e_{k_{1}, \ldots, k_{m-1}}^{\prime}\right|\left|X_{k_{1}, \ldots, k_{m-1}}\right| \\
& =\frac{n!}{k_{1}!\left(k_{2}-k_{1}\right)!\ldots\left(n-k_{m-1}\right)!}\left|S_{n}^{\prime} e_{k_{1}, \ldots, k_{m-1}}\right| \\
& \leq \frac{(n!)^{2}}{k_{1}!\left(k_{2}-k_{1}\right)!\ldots\left(n-k_{m-1}\right)!} .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\left|\bigcup_{1 \leq k_{1}<\cdots<k_{m}<n} S_{n}^{\prime} e_{k_{1}, \ldots, k_{m-1}}^{\prime} S_{n}^{\prime}\right| & \leq \sum_{1 \leq k_{1}<\cdots<k_{m}<n} \frac{(n!)^{2}}{k_{1}!\left(k_{2}-k_{1}\right)!\ldots\left(n-k_{m-1}\right)!} \\
& =\sum_{r_{1}+\cdots+r_{m}=n} \frac{(n!)^{2}}{r_{1}!r_{2}!\ldots r_{m}!}
\end{aligned}
$$

On the other hand

$$
\begin{aligned}
& \sum_{r_{1}+\cdots+r_{m}=n}\binom{n}{r_{1}}^{2} r_{1}!\binom{n-r_{1}}{r_{2}}^{2} r_{2}!\ldots\binom{n-r_{1}-\cdots-r_{n-1}}{r_{n}}^{2} r_{n}! \\
= & \sum_{r_{1}+\cdots+r_{m}=n} \frac{(n!)^{2}}{r_{1}!r_{2}!\ldots r_{m}!} .
\end{aligned}
$$

Remark 2.2.3. In the relation (2.10), the adjustment by Ad is necessary since the right hand of (2.10) is not necessarily of the form $e_{k_{1}, \ldots, k_{m-1}} s_{i_{1}} \ldots s_{i_{r}}$. For example, in \mathscr{R}_{3}

$$
e_{2}\left(s_{2} s_{1} s_{2}\right) e_{1}=s_{1} s_{2} e_{1} s_{2} s_{1}\left(s_{2} s_{1} s_{2}\right)
$$

2.3 Braid \mathbb{P} M-monoids

2.3.1 Definitions of Braid $\mathbb{P M}$-monoids

We define a braid monoid according to Proposition 2.2.2. The notations are the same as those in Proposition 2.2.2, and we add the following notation. We denote by $\left.b\right|_{I}$ an element of braid group of $\# I$-strings which has strings in the place of any $i \in I$ for $b \in B_{n}$ and $I \subset\{1, \ldots, n\}$. If $s_{i_{1}}, \ldots, s_{i_{r}} \in B_{n}$ satisfy $\left.s_{i_{1}} \ldots s_{i_{r}}\right|_{I}=\left.i d\right|_{I}$, where $I \subset\{1, \ldots, n\}$ and $i d$ is the identity braid in B_{n}, then we abbreviate this condition as $\left.\left\{i_{1}, \ldots, i_{r}\right\}\right|_{I}=i d$.

Definition 2.3.1. The braid $\mathbb{P} M$-monoid is a monoid which is defined by the monoid presentation with generating set

$$
\left\{s_{1}^{ \pm 1}, \ldots, s_{n-1}^{ \pm 1}, e_{k_{1}, \ldots, k_{m-1}}\left(1 \leq k_{1}<\cdots<k_{m-1}<n\right)\right\}
$$

and defining relations

$$
\begin{align*}
s_{i} s_{i}^{-1} & =s_{i}^{-1} s_{i}=1 & & (1 \leq i \leq n-1), \tag{2.12}\\
s_{i} s_{j} & =s_{j} s_{i}, & & (1 \leq i, j \leq n-1,|i-j| \geq 2), \tag{2.13}\\
s_{i} s_{i+1} s_{i} & =s_{i+1} s_{i} s_{i+1} & & (1 \leq i \leq n-1), \tag{2.14}
\end{align*}
$$

$$
\begin{align*}
& s_{i_{1}}^{ \pm 1} \ldots s_{i_{r}}^{ \pm 1} e_{k_{1}, \ldots, k_{m-1}} s_{j_{1}}^{ \pm 1} \ldots s_{j_{t}}^{ \pm 1}=e_{k_{1}, \ldots, k_{m-1}} \tag{2.15}\\
& \binom{\left.\left\{i_{1}, \ldots, i_{r}, j_{1}, \ldots, j_{t}\right\}\right|_{\left\{k_{j-1}-1, \ldots, k_{j}\right\}}=i d}{\forall j=1, \ldots, m}, \\
& e_{k_{1}, \ldots, k_{m-1}} s_{i_{1}}^{ \pm 1} \ldots s_{i_{r}}^{ \pm 1} e_{l_{1}, \ldots, l_{m^{\prime}-1}}=\operatorname{Ad}\left(s_{j_{1}}^{ \pm 1} \ldots s_{j_{t}}^{ \pm 1}\right)\left(e_{q}\right) s_{i_{1}}^{ \pm 1} \ldots s_{i_{r}}^{ \pm 1} \tag{2.16}\\
& (2.16) \\
& \left(\begin{array}{c}
1 \leq k_{1}<\cdots<k_{m-1}<n \\
1 \leq l_{1}<\cdots<l_{m^{\prime}-1}<n \\
\\
q=u^{\left\{s_{1} j_{1} \ldots, \ldots s_{j_{t}}+1\right.}\left(\left(k_{1}, \ldots, k_{m-1}\right) * \varphi_{\left(s_{i_{1}} \ldots s_{i_{r}}\right)^{-1}}\left(\left(l_{1}, \ldots, l_{m^{\prime}-1}\right)\right)\right)
\end{array}\right)
\end{align*}
$$

2.3.2 Braid diagrams of braid $\mathbb{P} M$-monoids

We denote by \mathscr{M} the monoid defined in Definition 2.3.1. To describe the monoid \mathscr{M} geometrically we shall define $\mathbb{P} M$-braid and $\mathbb{P} M$-braid diagram. First, we explain a formal definition of $\mathbb{P} M$-braid and $\mathbb{P} M$-braid diagram. Next, we describe an informal explanation of $\mathbb{P} M$-braid diagrams.

First, we shall define an arc.
Definition 2.3.2. An arc is the image of an embedding from the unit interval $[0,1]$ into \mathbb{R}^{3}.

Let n be a fixed natural number, and m a natural number such that $m \leq n$. Take the usual coordinate system (x, y, z) for \mathbb{R}^{3}. Choose planes $z=z_{j}^{(i)}(i=1, \ldots, m, j=0,1)$ where

$$
z_{j}^{(i)}= \begin{cases}2 m-2 i+1 & (j=1) \\ 2 m-2 i & (j=0)\end{cases}
$$

Mark $n \geq 0$ distinct points $P_{1}^{i}, \ldots, P_{n}^{i}$ on a line in the plane $z=z_{1}^{(i)}$, and project this orthogonally on the plane $z=z_{0}^{(i)}$, yielding points $Q_{1}^{i}, \ldots, Q_{n}^{i}$ for each $i=1, \ldots, m$.

A $\mathbb{P} M$-braid on n strings is a system

$$
\beta=\left\{\beta_{1}, \ldots, \beta_{k_{1}}, \beta_{k_{1}+1}, \ldots, \beta_{k_{2}}, \beta_{k_{2}+1}, \ldots, \beta_{k_{m-1}+1}, \ldots, \beta_{n}\right\}
$$

of n arcs for some $1 \leq k_{1}<k_{2}<\cdots<k_{m-1}<n$ such that
(1) There exists a partial one-one mapping of rank k_{1}

$$
\Phi_{1}^{\beta}:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\}
$$

with domain $\left\{i_{1}, \ldots, i_{k_{1}}\right\}$ such that β_{j} connects $P_{i_{j}}^{1}$ to $Q_{\Phi_{1}^{\beta}\left(i_{j}\right)}^{1}$ for $j=$ $1, \ldots, k_{1}$.
There exists a partial one-one mapping of rank $k_{2}-k_{1}$

$$
\Phi_{2}^{\beta}:\{1, \ldots, n\} \backslash\left\{i_{1}, \ldots, i_{k_{1}}\right\} \rightarrow\{1, \ldots, n\} \backslash\left\{i_{1}, \ldots, i_{k_{1}}\right\}
$$

with domain $\left\{i_{k_{1}+1}, \ldots, i_{k_{2}}\right\}$ such that β_{j} connects $P_{i_{j}}^{2}$ to $Q_{\Phi_{1}^{\beta}\left(i_{j}\right)}^{2}$ for $j=k_{1}+1, \ldots, k_{2}$.

There exists a partial one-one mapping of rank $n-k_{m-1}$

$$
\Phi_{m}^{\beta}:\{1, \ldots, n\} \backslash\left\{i_{1}, \ldots, i_{k_{m-1}}\right\} \rightarrow\{1, \ldots, n\} \backslash\left\{i_{1}, \ldots, i_{k_{m-1}}\right\}
$$

with domain $\left\{i_{k_{m-1}+1}, \ldots, i_{n}\right\}$ such that β_{j} connects $P_{i_{j}}^{m}$ to $Q_{\Phi_{m}^{\beta}\left(i_{j}\right)}^{m}$ for $j=k_{m-1}+1, \ldots, n$.
(2) For $j=1, \ldots, m$, the arc β_{l} intersects the plane $z=z_{0}^{(j)}$ exactly once, and β_{l} intersects the plane $z=z_{1}^{(j)}$ exactly once, for $l=k_{j-1}+1, \ldots, k_{j}$, and β_{s} does not intersect $z=z_{0}^{(t)}, z=z_{1}^{(t)}$ for $s \neq t$.
(3) For $j=1, \ldots, m$ the union $\beta_{k_{j-1}+1} \cup \cdots \cup \beta_{k_{j}}$ of the arcs intersects each of parallel planes $z=z_{0}^{(j)}, z=z_{1}^{(j)}$ at exactly $k_{j}-k_{j-1}$ distinct points.

Example 2.3.3. Let $n=3$ and $m=2$. The following is a $\mathbb{P} M$-braid.

Two $\mathbb{P} M$-braids

$$
\begin{aligned}
& \beta=\left\{\beta_{1}, \ldots, \beta_{k_{1}}, \beta_{k_{1}+1}, \ldots, \beta_{k_{2}}, \beta_{k_{2}+1}, \ldots, \beta_{k_{m-1}+1}, \ldots, \beta_{n}\right\}, \\
& \gamma=\left\{\gamma_{1}, \ldots, \gamma_{k_{1}}, \gamma_{k_{1}+1}, \ldots, \gamma_{k_{2}}, \gamma_{k_{2}+1}, \ldots, \gamma_{k_{m^{\prime}-1}+1}, \ldots, \gamma_{n}\right\}
\end{aligned}
$$

are defined to be equivalent if
(1) $m=m^{\prime}$ and $\Phi_{i}^{\beta}=\Phi_{i}^{\gamma}$ for $i=1, \ldots, m$,
(2) β and γ are homotopy equivalent, i.e., there exist continuous maps

$$
F_{j}:[0,1] \times[0,1] \rightarrow \mathbb{R}^{3}, \quad(j=1, \ldots, m)
$$

such that for all $s, t \in[0,1]$,

$$
\begin{array}{ll}
F_{j}(t, 0)=\beta_{j}(t) & (j=1, \ldots, m), \\
F_{j}(t, 1)=\gamma_{j}(t) & \left(j=1, \ldots, k_{1}\right), \\
F_{j}(0, s)=P_{i_{j}}^{1} & \\
F_{j}(1, s)=Q_{\Phi_{1}^{\beta}\left(i_{j}\right)}^{1} & \left(j=k_{1}+1, \ldots, k_{2}\right), \\
F_{j}(0, s)=P_{i_{j}}^{2} & \ldots \\
F_{j}(1, s)=Q_{\Phi_{2}^{\beta}\left(i_{j}\right)}^{2} & \\
F_{j}(0, s)=P_{i_{j}}^{m} & \left(j=k_{m-1}+1, \ldots, n\right), \\
F_{j}(1, s)=P_{\Phi_{m}^{B}\left(i_{j}\right)}^{m} &
\end{array}
$$

and, for each $s \in[0,1]$ if we define

$$
\beta^{s}=\left\{\beta_{1}^{s}, \ldots, \beta_{m}^{s}\right\}
$$

where

$$
\beta_{j}^{s}(t)=F_{j}(s, t) \text { for } j=1, \ldots, n
$$

then β^{s} itself is a $\mathbb{P} M$-braid.
Define the product $\beta \gamma$ of two braids

$$
\begin{aligned}
\beta & =\left\{\beta_{1}, \ldots, \beta_{k_{1}}, \beta_{k_{1}+1}, \ldots, \beta_{k_{2}}, \beta_{k_{2}+1}, \ldots, \beta_{k_{m-1}+1}, \ldots, \beta_{n}\right\}, \\
\gamma & =\left\{\gamma_{1}, \ldots, \gamma_{k_{1}}, \gamma_{k_{1}+1}, \ldots, \gamma_{k_{2}}, \gamma_{k_{2}+1}, \ldots, \gamma_{k_{m^{\prime}-1}+1}, \ldots, \gamma_{n}\right\}
\end{aligned}
$$

as follows.

We first define an operation $\left(k_{i} l_{j}\right)$. Take $z_{1}^{(11)}>z_{0}^{(11)}>z_{1}^{(21)}>z_{0}^{(21)}>$ $\cdots>z_{1}^{(m 1)}>z_{0}^{(m 1)}>z_{1}^{(12)}>z_{0}^{(12)}>\cdots>z_{1}^{(m 2)}>z_{0}^{(m 2)}>\cdots>z_{1}^{\left(m m^{\prime}\right)}>$ $z_{0}^{\left(m m^{\prime}\right)}$.
$\left(k_{i} l_{j}\right):$
(1) Translate $\left\{\gamma_{l_{j-1}+1}, \ldots, \gamma_{l_{j}}\right\}$ parallel to itself so that the upper plane of $\left\{\gamma_{l_{j-1}+1}, \ldots, \gamma_{l_{j}}\right\}$ coincides with the lower plane of $\left\{\beta_{k_{i-1}+1}, \ldots, \beta_{k_{j}}\right\}$;
(2) Translate the above system of arcs so that the upper plane of $\left\{\beta_{k_{i-1}+1}, \ldots, \beta_{k_{j}}\right\}$ coincides with $z=z_{1}^{(i j)}$. Keeping $z=z_{1}^{(i j)}$ fixed, contract the resulting systems of arcs so that the translated lower plane of $\left\{\gamma_{l_{j-1}+1}, \ldots, \gamma_{l_{j}}\right\}$ lies into the position of $z=z_{0}^{(i j)}$;
(3) Remove any arc that do not now join the upper plane to the lower plane.

Then take the operations $\left(k_{1} l_{1}\right), \ldots,\left(k_{m} l_{1}\right),\left(k_{1} l_{2}\right), \ldots,\left(k_{m} l_{2}\right),\left(k_{1} l_{m^{\prime}}\right), \ldots,\left(k_{m} l_{m^{\prime}}\right)$, finally remove empty systems of arcs. The resulting $\mathbb{P} M$-braid is denoted by $\beta \gamma$.

Similar to the braid diagram, we define a $\mathbb{P} M$-braid diagram. A $\mathbb{P} M$-braid diagram is an image of the projection of $\mathbb{P} M$-braid concerning the second coordinate. At each intersection point of two strands, these strands meet transversely, and one of them is distinguished and said to be undergoing, the other strand being overgoing.

Informally, $\mathbb{P} M$-braid diagrams are considered braid diagrams which have some layers. n corresponds to the number of strings and m corresponds to the number of layers. The $z=z_{1}^{(i)}$ corresponds to the upper plane of each layers and $z=z_{0}^{(i)}$ corresponds to the lower plane of each layers. The strings of each layer are disjoint and the union of strings is full braids.

Example 2.3.4. The following is a $\mathbb{P} M$-braid diagram.

The equivalence of $\mathbb{P} M$-braid diagram is considered at each layer.

Example 2.3.5. The following $\mathbb{P} M$-braids are equivalent.

The product of $\mathbb{P} M$-braid diagrams are similar to the product of $\mathbb{P} M$ monoid. The product of each layer is the product of partial braids.

Example 2.3.6. Let β and γ be the following $\mathbb{P} M$-braids:

then $\beta^{2}, \beta \gamma, \gamma \beta$ are obtained as follows:

We denote by $[\beta]$ the homotopy equivalence class of β. Put

$$
\mathscr{R} \mathscr{B}_{n}=\{[\beta]: \beta \text { is a } \mathbb{P} M \text {-braid }\} .
$$

Theorem 2.3.7. The braid $\mathbb{P} M$-monoid \mathscr{M} is isomorphic to the monoid $\mathscr{R} \mathscr{B}_{n}$.

Proof. Let Ψ denote a map from the set of generators for \mathscr{M} into $\mathscr{R} \mathscr{B}_{n}$ given by

The relations in the presentation for \mathscr{M} hold for the images of the generators, so that Ψ induces a well-defined homomorphism, which we also denote by Ψ. To prove the assertion, it suffices to prove that Ψ is bijective. First we prove that Ψ is surjective. Take any $\theta \in \mathscr{R} \mathscr{B}_{n}$, and say θ has $k_{1}, k_{2}-k_{1}, \ldots, n-$ $k_{m}-1$-strings. Then there exist $s_{j_{1}}, \ldots, s_{j_{t}}, s_{i_{1}}, \ldots, s_{i_{r}}$ and $e_{k_{1}, \ldots, k_{m-1}}$ such that

$$
\theta=\left(\Psi\left(s_{j_{1}}\right) \ldots \Psi\left(s_{j_{t}}\right)\right)^{-1} \Psi\left(e_{k_{1}, \ldots, k_{m-1}}\right)\left(\Psi\left(s_{j_{1}}\right) \ldots \Psi\left(s_{j_{t}}\right)\right)\left(\Psi\left(s_{i_{1}}\right) \ldots \Psi\left(s_{i_{1}}\right)\right) .
$$

Thus Ψ is surjective. We next show that Ψ is injective. By the discussion in the proof of Proposition 2.2.2,

$$
\mathscr{M}=\bigsqcup_{1 \leq k_{1}<\cdots<k_{m-1}<n} B_{n} e_{k_{1}, \ldots, k_{m-1}} B_{n},
$$

where B_{n} is the Braid group. Let

$$
\Psi\left(b_{1} e_{k_{1}, \ldots, k_{m-1}} b_{2}\right)=\Psi\left(b_{1}^{\prime} e_{l_{1}, \ldots, l_{m^{\prime}-1}^{\prime}} b_{2}^{\prime}\right)
$$

where $b_{1}, b_{2}, b_{1}^{\prime}, b_{2}{ }^{\prime} \in B_{n}$. Since Ψ is a homomorphism of monoids and any of $b_{1}, b_{2}, b_{1}^{\prime}, b_{2}{ }^{\prime}$ has an inverse element, respectively, we can assume

$$
\Psi\left(b_{1} e_{k_{1}, \ldots, k_{m-1}} b_{2}\right)=\Psi\left(e_{l_{1}, \ldots, l_{m^{\prime}}-1}\right)
$$

First, it must be $m=m^{\prime}$ and $k_{1}=l_{1}, \ldots, k_{m-1}=l_{m-1}$. Since $\left.\Psi\left(b_{1}\right) \Psi\left(b_{2}\right)\right|_{\left\{k_{l-1}+1, \ldots, k_{l}\right\}}=$ $\left.i d\right|_{\left\{k_{l-1}+1, \ldots, k_{l}\right\}}$ for all $l=1, \ldots, n$. Then as elements of the braid group $\left.b_{1} b_{2}\right|_{\left\{k_{l-1}+1, \ldots, k_{l}\right\}}=\left.i d\right|_{\left\{k_{l-1}+1, \ldots, k_{l}\right\}}$. Therefore by the relation (2.15), $b_{1} e_{k_{1}, \ldots, k_{m-1}} b_{2}=$ $e_{k_{1}, \ldots, k_{m-1}}$. Thus Ψ is injective.

2.3.3 Automorphisms of free group and word problems

We will give a presentation of a $\mathbb{P} M$-braids by automorphisms of a free group and find a solution to the word problem in $\mathscr{R} \mathscr{B}_{n}$. We recall the cases : the classical braid group and an inverse braid monoid.
Let $F_{n}=F\left(x_{1}, \ldots, x_{n}\right)$ be the free group of rank n generated by $\left\{x_{1}, \ldots, x_{n}\right\}$. For $1 \leq k \leq n-1$, let $\tau_{k}: F_{n} \rightarrow F_{n}$ be the automorphism defined by

$$
\tau_{k}:\left\{\begin{array}{l}
x_{k} \mapsto x_{k}^{-1} x_{k+1} x_{k} \\
x_{k+1} \mapsto x_{k} \\
x_{l} \mapsto x_{l}
\end{array} \quad \text { if } l \neq k, k+1\right.
$$

Then the mapping $s_{k} \mapsto \tau_{k}(1 \leq k \leq n-1)$ determines a representation $\rho: B_{n} \rightarrow \operatorname{Aut}\left(F_{n}\right)$ called Artin representation. The following theorem was proved by E. Artin.

Theorem 2.3.8 ([1],[2]). (1) The Artin representation $\rho: B_{n} \rightarrow \operatorname{Aut}\left(F_{n}\right)$ is faithful.
(2) An automorphism $\alpha \in \operatorname{Aut}\left(F_{n}\right)$ belongs to $\operatorname{Im} \rho$ if and only if $\alpha\left(x_{n} \ldots x_{2} x_{1}\right)=$ $x_{n} \ldots x_{2} x_{1}$ and there exists a permutation $\sigma \in S_{n}$ such that $\alpha\left(x_{k}\right)$ is conjugate to $x_{\sigma(k)}$ for all $1 \leq k \leq n$.

The braid group B_{n} can be viewed as a subgroup of $\operatorname{Aut}\left(F_{n}\right)$. Moreover this yields a solution to the word problem in B_{n}.

Next recall the case of the inverse braid monoid studied by V. V. Vershinin [33]. Let $E F_{n}$ be a monoid of partial isomorphisms of a free group defined as follows. Let a be an element of rook monoid R_{n}, and J_{k} the image of a. Let elements i_{1}, \ldots, i_{k} belong to the domain of definition of a. The monoid $E F_{n}$ consists of isomorphisms

$$
F\left(x_{i_{1}}, \ldots, x_{i_{k}}\right) \rightarrow F\left(x_{j_{1}}, \ldots, x_{j_{k}}\right)
$$

expressed by

$$
f_{a}\left(x_{i}\right)= \begin{cases}w_{i}^{-1} x_{a(i)} w_{i} & \left(i \in\left\{i_{1}, \ldots, i_{k}\right\}\right) \\ \text { not defined } & \text { (otherwise) }\end{cases}
$$

We define a map ϕ_{n} from $I B_{n}$ to $E F_{n}$ expanding the Artin representation ρ by the condition that $\phi_{n}\left(e_{j}\right)$ as a partial isomorphism of F_{n} is given by the formula

$$
\phi_{n}\left(e_{j}\right)\left(x_{i}\right)= \begin{cases}x_{i} & (i \leq j) \\ \text { not defined } & (i>j)\end{cases}
$$

Theorem 2.3.9 ([33] Theorem 2.2.). The homomorphism ϕ_{n} is a monomorphism.
Theorem 2.3.10 ([33] Theorem 2.3.). The monomorphism ϕ_{n} gives a solution to the word problem for the inverse braid monoid.

Let $\mathscr{E} F_{n}$ be a monoid of sequence of partial isomorphisms of the free group F_{n} defined as follows.

Let $\mathbb{A}=\left(\sigma,\left(\left\{i_{1}, \ldots, i_{k_{1}}\right\}, \ldots,\left\{i_{k_{m-1}+1}, \ldots, n\right\}\right)\right) \in \mathscr{R}_{n}$. The monoid $\mathscr{E} F_{n}$ consists of sequence of isomorphisms $\boldsymbol{f}_{\mathbb{A}}=\left(f_{A_{1}}, \ldots, f_{A_{m}}\right)$, where for $j=$ $1, \ldots, m$

$$
f_{A_{j}}: F\left(x_{i_{k_{j-1}+1}}, \ldots, x_{i_{k_{j}}}\right) \rightarrow F\left(x_{\sigma\left(i_{k_{j-1}+1}\right)}, \ldots, x_{\sigma\left(i_{k_{j}}\right)}\right)
$$

is defined by

$$
f_{A_{j}}\left(x_{l}\right)= \begin{cases}w_{l}^{-1} x_{A_{j}(l)} w_{l} & \left(l \in\left\{i_{k_{j-1}+1}, \ldots, i_{k_{j}}\right\}\right) \\ \text { not defined } & \text { (otherwise })\end{cases}
$$

where w_{i} is a word on $x_{\sigma\left(i_{k_{j-1}+1}\right)}, \ldots, x_{\sigma\left(i_{k_{j}}\right)}$. We define a map φ_{n} from $\mathscr{R} \mathscr{B}_{n}$ to $\mathscr{E} F_{n}$ extending the Artin representation ρ by the condition that $\varphi_{n}\left(e_{k_{1}, \ldots, k_{m-1}}\right)$ as a sequence of partial isomorphisms of F_{n} is given by the formula

$$
\varphi_{n}\left(e_{k_{1}, \ldots, k_{m-1}}\right)\left(x_{i}\right)=\left(f_{1}\left(x_{i}\right), \ldots, f_{m-1}\left(x_{i}\right)\right)
$$

where

$$
f_{j}\left(x_{i}\right)= \begin{cases}x_{i} & \left(k_{j-1} \leq i \leq k_{j}\right) \\ \text { not defined } & \left(i<k_{j+1}, i>k_{j}\right)\end{cases}
$$

for $j=1, \ldots, m-1$.
Proposition 2.3.11. The homomorphism φ_{n} is a monomorphism.
Proof. Let $\mathscr{R} \mathscr{B}_{n}^{(m)}$ be the set of $\mathbb{P} M$-braids which have m layers. Then as a set we have the following decomposition :

$$
\begin{aligned}
\mathscr{R} \mathscr{B}_{n} & =\bigsqcup_{m \geq 1}{\mathscr{R} \mathscr{B}_{n}^{(m)}} \\
& =\bigsqcup_{m \geq 1} \bigsqcup_{\left(p_{1}, \ldots, p_{m}\right) \in P_{n}, \sigma \in S_{n}} B\left(p_{1}, \sigma\left(p_{1}\right)\right) \times \cdots \times B\left(p_{m}, \sigma\left(p_{m}\right)\right),
\end{aligned}
$$

where $B\left(p_{i}, \sigma\left(p_{i}\right)\right)$ is the braid group starting at p_{i} and ending at $\sigma\left(p_{i}\right)$. Let $\# p_{i}=r_{i}$. Then consider the following diagram:

$$
\begin{aligned}
& B_{r_{1}} \times \cdots \times B_{r_{m}} \xrightarrow{I d \times \cdots \times I d} B_{r_{1}} \times \cdots \times B_{r_{m}} \\
& \rho_{1} \times \cdots \times \rho_{m} \downarrow \downarrow \varphi_{n} \quad{ }^{\downarrow} \psi^{\psi\left(p_{1}, \sigma\left(p_{1}\right)\right) \times \cdots \times \psi\left(p_{m}, \sigma\left(p_{m}\right)\right)} \\
& B\left(p_{1}, \sigma\left(p_{1}\right)\right) \times \cdots \times B\left(p_{m}, \sigma\left(p_{m}\right)\right) \xrightarrow{\varphi_{n}} \mathscr{E} F_{n} .
\end{aligned}
$$

The above diagram is commutative since the diagram (2.6) in [33] is commutative. Thus φ_{n} is a monomorphism.

Theorem 2.3.12. The morphism ϕ_{n} gives a solution to the word problem for the braid $\mathbb{P} M$-monoid.

Proof. This assertion holds by the following fact : Two words represent the same element of the monoid if and only if they have the same action on the finite set of generators of the free group.

Part II

Link invariants constructed by semigroups

Chapter 3

Preliminaries

3.1 Knots and Links

We will explain basic concepts related to knots and links.

3.1.1 definitions

Let \mathbb{R}^{n} be the n-dimensional Euclidean space, and S^{n} the n-dimensional sphere.
Definition 3.1.1. A link L of m components is a subset of S^{3}, or of \mathbb{R}^{3} that consists of m disjoint, simple closed curves. A link of one component is a knot.

Definition 3.1.2. Links L_{1} and L_{2} in S^{3} are equivalent if there is an orientation preserving homeomorphism $h: S^{3} \rightarrow S^{3}$ such that $h\left(L_{1}\right)=h\left(L_{2}\right)$.

Let $p: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be a projection on plane. Let L be a link. The image of L in \mathbb{R}^{2} by p together with "over and under" information at the crossing is called the link diagram of L.
Theorem 3.1.3. Any two links L_{1} and L_{2} are equivalent if and only if the link diagrams of L_{1} and L_{2} are deformed by a sequence of Reidemeister moves.

The Reidemister moves are of three types, shown below.

Type I

Type II

3.2 Knot semigroups

We will explain knot semigroups.

3.2.1 Definitions

We define a knot semigroup defined by A. Vernitski [33]. By an arc we mean a continuous line on a knot diagram from one undercrossing to another undercrossing. For example, consider the knot diagram $T(2,3)$ on Figure 1. It has three arcs, denoted by a, b, and c.

Let K be a knot diagram. We shall define a semigroup, which we call the knot semigroup of

Figure 1: $T(2,3)$ K, and denote by $M(K)$. We assume that each arc is denoted by a letter. Then we define two defining relations $x y=y z$ and $y x=z y$ at crossing, where $\operatorname{arcs} x$ and z form the undercrossing and arc y is the overcrossing. We define these relations at every crossing. The cancellative semigroup generated by arc letters with these defining relations is the knot semigroup of the knot diagram. This construction is the analogy of the Wirtinger presentation of knot group [34].

The definition of the knot semigroup naturally generalizes from diagrams of knots to diagrams of links. For example, the diagram of the Hopf link in Figure 2 contains two arcs a, b and two crossings, each defining a single relation $a b=b a$. Hence, its

Figure 2: Hopf link
knot semigroup is the free commutative semigroup with two generators.

3.2.2 Alternating sum semigroups

We shall recall an alternating sum semigroup defined by A. Vernitski [33]. Let G be either $\mathbb{Z}_{n}:=\mathbb{Z} / n \mathbb{Z}$ or \mathbb{Z}. Let B be a subset of G, and B^{+}the set of words of B. By the alternating sum of a word $b_{1} b_{2} b_{3} b_{4} \ldots b_{k} \in B^{+}$we shall mean the value of $b_{1}-b_{2}+b_{3}-b_{4}+\cdots+(-1)^{k+1} b_{k}$ calculated in G. The notation $\operatorname{alt}\left(b_{1} b_{2} \ldots b_{k}\right)$ denote the value, i.e.,

$$
\operatorname{alt}\left(b_{1} b_{2} \ldots b_{k}\right)=b_{1}-b_{2}+b_{3}-b_{4}+\cdots+(-1)^{k+1} b_{k}
$$

We also define the following notation. $\left|b_{1} b_{2} \ldots b_{k}\right|$ denote the length of the word $b_{1} b_{2} \ldots b_{k}$. We shall say that two words $u, v \in B^{+}$are in relation \sim if and only if
(1) $|u|=|v|$,
(2) $\operatorname{alt}(u)=\operatorname{alt}(u)$.

The relation \sim is a congruence on B^{+}. The semigroup $\operatorname{AS}(G, B)$ denote the factor semigroup $B^{+} / \sim \operatorname{AS}(G, B)$ is called an alternating sum semigroup.

We shall also recall a strong alternating sum semigroup defined by A. Vernitski [33]. The sets G and B are as above. Let us say that $g \in G$ is even (resp. odd) in G if g can be represented in the form $g=2 h$ (resp. $g=2 h+1$) for some $h \in G$. Let $w \in B^{+}$. The notation $|w|_{e}$ denote the number of entries in w which are even in G. We shall say that two words $u, v \in B^{+}$are in relation \approx if and only if
(1) $|u|=|v|$,
(2) $\operatorname{alt}(u)=\operatorname{alt}(v)$,
(3) $|u|_{e}=|v|_{e}$.

The relation \approx is a congruence on B^{+}. The semigroup $\operatorname{SAS}(G, B)$ denote the factor semigroup $B^{+} / \approx \operatorname{SAS}(G, B)$ is called a strong alternating sum semigroup.

3.2.3 Examples of knot semigroups

Trivial knots

Let \mathbb{N} be the semigroup of positive integers. The semigroup \mathbb{N} is a cancellative semigroup. The diagram of the trivial knot contains one arc and no crossings (Figure 3). Therefore, its knot semigroup is isomorphic to the semigroup \mathbb{N}.

Torus knots and torus links

Figure 3: Trivial knots

A torus knot $T(2, n)$ consists of n half-twists (Figure 4.). We recall the knot semigroup $M(T(2, n))$ of a knot diagram $T(2, n)$ (with an odd n) and the knot semigroup of a link diagram $T(2, n)$ (with an even n) proved by A. Vernitski [33].

Theorem 3.2.1 ([33] Theorem 3.). Let n be an odd integer. The knot semigroup $M(T(2, n))$ of the torus knot diagram $T(2, n)$ is isomorphic to the alternating sum semi-

Figure 4 : Torus knots group $\operatorname{AS}\left(\mathbb{Z}_{n}, \mathbb{Z}_{n}\right)$.
Theorem 3.2.2 ([33] Theorem 13.). Let n be an even integer. The knot semigroup $M(T(2, n))$ of the torus link diagram $T(2, n)$ is isomorphic to the strong alternating sum semigroup $\operatorname{SAS}\left(\mathbb{Z}_{n}, \mathbb{Z}_{n}\right)$.

Since $\operatorname{SAS}\left(\mathbb{Z}_{n}, \mathbb{Z}_{n}\right)=\operatorname{AS}\left(\mathbb{Z}_{n}, \mathbb{Z}_{n}\right)$ for odd values of n, we have the following corollary.

Corollary 3.2.3 ([33] Corollary 14.). The knot semigroup $M(T(2, n))$ of the diagram $T(2, n)$ for every positive n is isomorphic to the strong alternating sum semigroup $\operatorname{SAS}\left(\mathbb{Z}_{n}, \mathbb{Z}_{n}\right)$.

Twist knots

A twist knot, which we shall denote $\mathfrak{t w}_{n}$ consists of n clockwise half-twists and 2 anticlockwise halftwists (Figure 5). We recall the knot semigroup $M\left(\mathfrak{t w}_{n}\right)$ of a knot diagram $\mathfrak{t w}_{n}$ proved by A. Vernitski [33]. The notation $[n+2]$ denote the set $\{0,1, \ldots, n+2\}$.
Theorem 3.2.4 ([33] Theorem 15.). The knot

Figure 5: Twist knots semigroup $M\left(\mathfrak{t w}_{n}\right)$ of the twist knot diagram $\mathfrak{t w}_{n}$ is isomorphic to the alternating sum semigroup $\operatorname{AS}\left(\mathbb{Z}_{2 n+1},[n+2]\right)$.

Chapter 4

Knot semigroups of double twist knots

In this chapter we will explain knot semigroups of double twist knots.

4.1 Statements

The plan of this section faithfully follows that of Section 7 of [33]. First we explain Conway's normal form of 2-bridge knot.

4.1.1 Conway's normal forms

Any 2-bridge knot has a presentation, which can be deformed as in figure, where a_{i} indicates $\left|a_{i}\right|(\neq 0)$ crossing points with sign $\epsilon_{i}=a_{i} /\left|a_{i}\right|= \pm 1$.

(n is odd)

$$
\text { (} n \text { is even) }
$$

We denote the 2-bridge knot with this knot diagram by $C\left(a_{1}, a_{2}, \ldots, a_{n}\right)$, which is called Conway's normal form.

4.1.2 A conjecture of the knot semigroups of 2-bridge knots

The torus knots and the twist knots are the 2-bridge knots. Then we have the following conjecture by A. Vernitski ([33] Conjecture 23.).
Conjecture 4.1.1. The knot semigroup of the 2-bridge knot is isomorphic to an alternating sum semigroup.

4.1.3 Double twist knots

To support Conjecture 4.1 .1 we prove that the knot semigroup of the double twist knot is isomorphic to an alternating sum semigroup.

Figure6 : Double twist knots
A double twist knot, which we shall denote by $\mathfrak{d} \mathfrak{t w}_{n}^{l}$ consists of n clockwise half-twists and l anticlockwise half-twists, where l, n indicate the number of crossing points (Figure 5). Then we have the following theorem.

Theorem 4.1.2. Let $n, l \geq 1$ be integers. Suppose the integer $n l$ is an even integer. Then the knot semigroup $M\left(\mathfrak{d t w}_{n}^{l}\right)$ of the double twist knot diagram $\mathfrak{d} \mathfrak{t w}_{n}^{l}$ is isomorphic to the alternating sum semigroup

$$
\operatorname{AS}\left(\mathbb{Z}_{l n+1},\{0,1, \ldots, n, 1 \cdot n+1, \ldots(l-1) \cdot n+1\}\right)
$$

Remark 4.1.3. The double twist knot is the 2-bridge knot $C(l, n)$.
Remark 4.1.4. Let $l=2$ in Theorem 4.1.2. Then

$$
\{0,1, \ldots, 1 \cdot n+1\}=[n+2] .
$$

Thus Theorem 4.1.2 implies Theorem 3.2.4.
Remark 4.1.5. Let $l=1$ in Theorem 4.1.2. Then

$$
\begin{aligned}
M\left(\mathfrak{d t w}_{n}^{1}\right) & \simeq \operatorname{AS}\left(\mathbb{Z}_{n+1},\{0,1, \ldots, n, 0 \cdot n+1\}\right) \\
& \simeq \operatorname{AS}\left(\mathbb{Z}_{n+1},\{0,1, \ldots, n\}\right) \\
& \simeq \operatorname{AS}\left(\mathbb{Z}_{n+1}, \mathbb{Z}_{n+1}\right) .
\end{aligned}
$$

On the other hand, $\mathfrak{d t w}_{n}^{1} \simeq T(2, n+1)$ as knots. By Theorem 3.2.1,

$$
M(T(2, n+1)) \simeq \operatorname{AS}\left(\mathbb{Z}_{n+1}, \mathbb{Z}_{n+1}\right)
$$

Thus Theorem 4.1.2 holds in the case of $l=1$.
Remark 4.1.6. We consider the following knot $C(m, l, n)$.

Then we have the following conjecture.
Conjecture 4.1.7. Let $l, m, n \geq 1$ be integers. Suppose the integer ($m l+$ $1) n+m$ is odd. Then the knot semigroup $M(C(m, l, n))$ of the knot diagram $C(m, l, n)$ is isomorphic to the alternating sum semigroup

$$
\operatorname{AS}\left(\mathbb{Z}_{(m l+1) n+m}, \bigcup_{i=0}^{n+1}\{i\} \cup \bigcup_{j=0}^{l+1}\{j n+1\} \cup \bigcup_{k=0}^{m-1}\{(k l+1) n+k\}\right)
$$

4.2 Proof of theorem

We shall prove Theorem 4.1.2.
Suppose that A^{+} / κ is a knot semigroup, where A is the set of arcs and κ is a cancellative congruence on the free semigroup A^{+}induced by the defining relations of the knot semigroup. Let \sim be a congruence on B^{+}, where B is an alphabet of the same size as A. We shall establish an isomorphism between A^{+} / κ and B^{+} / \sim by the following lemma.

Lemma 4.2.1 ([33] Lemma 2.). Suppose A and B are sets. Consider a bijection $\phi: A \rightarrow B$. It induces an isomorphism between A^{+}and B^{+}, which we shall denote by ϕ^{+}. Suppose a congruence κ on A^{+}and a congruence \sim on B^{+}are such that for each $u, v \in A^{+}$if $u \kappa v$ then $\phi(u) \sim \phi(v)$. Then ϕ induces a mapping from A^{+}to B^{+}, which we shall denote by ψ. Moreover, ψ is a homomorphism. Suppose a subset of B^{+}exists, which we shall call the set of canonical words, such that in each class of \sim there is exactly one canonical word and at least one word of each class of κ is mapped by ϕ^{+}to a canonical word. Then ψ is an isomorphism between A^{+} / κ and B^{+} / \sim.

Let

$$
A=\left\{a_{0}, \ldots, a_{n}, a_{n+1}, a_{2 n+1}, \ldots, a_{(l-2) n+1}, a_{(l-1) n+1}\right\}
$$

be the set of arcs as in the following figure.

Denote the set $\{0,1, \ldots, n, 0 \cdot n+1,1 \cdot n+1, \ldots(l-1) \cdot n+1\}$ by $C_{n, l}$. Consider a mapping ϕ from A to $C_{n, l}$ defined as $a_{i} \mapsto i$. It induces an isomorphism A^{+} to $C_{n, l}^{+}$, which we shall denote by ϕ^{+}. Then we have the following Lemma.

Lemma 4.2.2. The equality $a_{i} a_{i+j}=a_{i+k} a_{i+j+k}$ is true in $M\left(\mathfrak{d t w}_{n}^{l}\right)$ for all values of i, j, k such that $0 \leq i \leq i+j \leq i+j+k \leq n+1$.

Proof. The relations in $M\left(\mathfrak{d t w}_{n}^{l}\right)$ are the equalities

$$
a_{i-1} a_{i}=a_{i} a_{i+1},
$$

and

$$
a_{i} a_{i-1}=a_{i+1} a_{i}
$$

for all $i=1,2, \ldots, n$ (from the crossings at the bottom of the diagram), and the equalities

$$
a_{(l-j-1) n+1} a_{(l-j) n+1}=a_{(l-j) n+1} a_{(l-j+1) n+1},
$$

and

$$
a_{(l-j) n+1} a_{(l-j-1) n+1}=a_{(l-j+1) n+1} a_{(l-j) n+1}
$$

for all $j=0,1, \ldots, l-1$ (from the crossings at the top of the diagram), where $a_{l n+1}=a_{0}$. Applying relations of the type $a_{i-1} a_{i}=a_{i} a_{i+1}$ repeatedly, we obtain $a_{i} a_{i+1}=a_{i+k} a_{i+1+k}$ for all values of i, k such that $0 \leq i \leq i+1 \leq$ $i+1+k \leq n+1$. Similarly, we can obtain $a_{i} a_{i-1}=a_{i+k} a_{i-1+k}$ for all values of i, k such that $0 \leq i-1 \leq i \leq i+k \leq n+1$. Consider

$$
a_{i} a_{i+j} a_{i+j+1}=a_{i} a_{i+1} a_{i+2}=a_{i+2} a_{i+3} a_{i+2}=a_{i+2} a_{i+j+2} a_{i+j+1}
$$

Hence $a_{i} a_{i+j}=a_{i+2} a_{i+j+2}$ by the cancellative rule. This proves that $a_{i} a_{i+j}=$ $a_{i+k} a_{i+j+k}$ for all values of i, j, k such that $0 \leq i \leq i+j \leq i+j+k \leq n+1$ and even k.

We shall prove that $a_{0} a_{0}=a_{1} a_{1}$.
(1) Suppose the integer l is an even number.

Consider

$$
\begin{aligned}
a_{n+1} a_{\{l-(l-2)\} n+1} a_{\{l-(l-2)\} n+1} & =a_{\{l-(l-2)\} n+1} a_{\{l-(l-3)\} n+1} a_{\{l-(l-2)\} n+1} \\
& =a_{\{l-(l-2)\} n+1} a_{\{l-(l-2)\} n+1} a_{n+1} \\
& =a_{\{l-(l-2)\} n+1} a_{n+1} a_{1} \\
& =a_{n+1} a_{1} a_{1} .
\end{aligned}
$$

Hence we have $a_{\{l-(l-2)\} n+1} a_{\{l-(l-2)\} n+1}=a_{1} a_{1}$.
Next consider

$$
\begin{aligned}
a_{\{l-(l-3)\} n+1} a_{\{l-(l-4)\} n+1} a_{\{l-(l-4)\} n+1} & =a_{\{l-(l-4)\} n+1} a_{\{l-(l-5)\} n+1} a_{\{l-(l-4)\} n+1} \\
& =a_{\{l-(l-4)\} n+1} a_{\{l-(l-4)\} n+1} a_{\{l-(l-3)\} n+1} \\
& =a_{\{l-(l-4)\} n+1} a_{\{l-(l-3)\} n+1} a_{\{l-(l-2)\} n+1} \\
& =a_{\{l-(l-3)\} n+1} a_{\{l-(l-2)\} n+1} a_{\{l-(l-2)\} n+1}
\end{aligned}
$$

Hence $a_{\{l-(l-4)\} n+1} a_{\{l-(l-4)\} n+1}=a_{\{l-(l-2)\} n+1} a_{\{l-(l-2)\} n+1}$.
Since l is even, $a_{0} a_{0}=a_{1} a_{1}$.
(2) Suppose the integer l is an odd number.

Since $n l$ is even, n is an even number. Consider

$$
\begin{aligned}
a_{(l-1) n+1} a_{0} a_{0} & =a_{0} a_{n} a_{0} \\
& =a_{0} a_{0} a_{(l-1) n+1} \\
& =a_{0} a_{(l-1) n+1} a_{(l-2) n+1} \\
& =a_{(l-1) n+1} a_{(l-2) n+1} a_{(l-2) n+1}
\end{aligned}
$$

Hence $a_{0} a_{0}=a_{(l-2) n+1} a_{(l-2) n+1}$. Since this equation holds and n is an even number,

$$
a_{0} a_{0}=a_{(l-2) n+1} a_{(l-2) n+1}=\cdots=a_{n+1} a_{n+1}=a_{1} a_{1}
$$

We shall prove that $a_{0} a_{j}=a_{1} a_{j+1}$ for all values of $j=0,1, \ldots, n$. Let j be an odd number. Consider

$$
a_{0} a_{0} a_{j}=a_{j-1} a_{j-1} a_{j}=a_{j-1} a_{j} a_{j+1}=a_{0} a_{1} a_{j+1}
$$

Hence $a_{0} a_{j}=a_{1} a_{j+1}$.
Let j be even and positive. Consider

$$
\begin{aligned}
a_{0} a_{0} a_{j} & =a_{1} a_{1} a_{j} \quad\left(\text { since } a_{0} a_{0}=a_{1} a_{1} .\right) \\
& =a_{j-1} a_{j-1} a_{j} \\
& =a_{j-1} a_{j} a_{j+1} \\
& =a_{j-2} a_{j-1} a_{j+1} \\
& =a_{0} a_{1} a_{j+1} .
\end{aligned}
$$

Hence $a_{0} a_{j}=a_{1} a_{j+1}$.
Now suppose k is odd. If i is even, we have

$$
\begin{aligned}
a_{i} a_{i+j} & =a_{0} a_{j} \\
& =a_{1} a_{j+1} \\
& =a_{i+1} a_{i+j+1} \\
& =a_{(i+1)+(k-1)} a_{(i+j+1)+(k-1)} \\
& =a_{i+k} a_{i+j+k}
\end{aligned}
$$

If i is odd, we have

$$
\begin{aligned}
a_{i} a_{i+j} & =a_{1} a_{j+1} \\
& =a_{0} a_{j} \\
& =a_{i+1} a_{i+j+1} \\
& =a_{(i+1)+(k-1)} a_{(i+j+1)+(k-1)} \\
& =a_{i+k} a_{i+j+k}
\end{aligned}
$$

Lemma 4.2.3. The equality $a_{i n+1} a_{(i+j) n+1}=a_{(i+k) n+1} a_{(i+j+k) n+1}$ is true in $M\left(\mathfrak{d t w}_{n}^{l}\right)$ for all values of i, j, k such that $0 \leq i \leq i+j \leq i+j+k \leq l+1$.

Proof. Applying relations of the type

$$
a_{(l-j-1) n+1} a_{(l-j) n+1}=a_{(l-j) n+1} a_{(l-j+1) n+1}
$$

repeatedly, we obtain

$$
a_{i n+1} a_{(i+1) n+1}=a_{(i+k) n+1} a_{(i+1+k) n+1}
$$

for all values of i, k such that $0 \leq i \leq i+1 \leq i+1+k \leq l+1$. Similarly, we can obtain

$$
a_{i n+1} a_{(i-1) n+1}=a_{(i+k) n+1} a_{(i-1+k) n+1}
$$

for all values of i, k such that $0 \leq i-1 \leq i \leq i+k \leq l+1$. Consider

$$
\begin{aligned}
a_{i n+1} a_{(i+j) n+1} a_{(i+j+1) n+1} & =a_{i n+1} a_{(i+1) n+1} a_{(i+2) n+1} \\
& =a_{(i+2) n+1} a_{(i+3) n+1} a_{(i+2) n+1} \\
& =a_{(i+2) n+1} a_{(i+j+2) n+1} a_{(i+j+1) n+1}
\end{aligned}
$$

Hence $a_{i n+1} a_{(i+j) n+1}=a_{(i+2) n+1} a_{(i+j+2) n+1}$. This proves that

$$
a_{i n+1} a_{(i+j) n+1}=a_{(i+k) n+1} a_{(i+j+k) n+1}
$$

for all values of i, j, k such that $0 \leq i \leq i+j \leq i+j+k \leq l+1$ and even k. We shall prove that $a_{1} a_{1}=a_{n+1} a_{n+1}$.
(1) Suppose l is odd.

Since n is even, $a_{1} a_{1}=a_{n+1} a_{n+1}$.
(2) Suppose l is even, and n is even.

Consider

$$
a_{2} a_{1} a_{1}=a_{1} a_{0} a_{1}=a_{1} a_{1} a_{2}=a_{1} a_{2} a_{3}=a_{2} a_{3} a_{3}
$$

Hence $a_{1} a_{1}=a_{3} a_{3}$. This proves that $a_{1} a_{1}=a_{n+1} a_{n+1}$.
(3) Suppose l is even and n is odd.

Consider

$$
\begin{aligned}
a_{n} a_{n+1} a_{n+1} & =a_{n-1} a_{n} a_{n+1} \\
& =a_{n-1} a_{n-1} a_{n} \\
& =a_{n-1} a_{n-2} a_{n-1} \\
& =a_{n} a_{n-1} a_{n-1}
\end{aligned}
$$

Hence $a_{n+1} a_{n+1}=a_{n-1} a_{n-1}$. Since n is odd, $a_{n+1} a_{n+1}=a_{0} a_{0}$. Since l is even, $a_{0} a_{0}=a_{1} a_{1}$. Thus $a_{n+1} a_{n+1}=a_{1} a_{1}$.

We shall prove that $a_{1} a_{j n+1}=a_{n+1} a_{(j+1) n+1}$ for all values $j=0,1, \ldots, n$. Let j be an odd number. Consider

$$
\begin{aligned}
a_{1} a_{1} a_{j n+1} & =a_{(j-1) n+1} a_{(j-1) n+1} a_{j n+1} \\
& =a_{(j-1) n+1} a_{j n+1} a_{(j+1) n+1} \\
& =a_{1} a_{n+1} a_{(j+1) n+1}
\end{aligned}
$$

Hence $a_{1} a_{j n+1}=a_{n+1} a_{(j+1) n+1}$.
Let j be even and positive. Consider

$$
\begin{aligned}
a_{1} a_{1} a_{j n+1} & =a_{n+1} a_{n+1} a_{j n+1} \\
& =a_{(j-1) n+1} a_{(j-1) n+1} a_{j n+1} \\
& =a_{(j-1) n+1} a_{j n+1} a_{(j+1) n+1} \\
& =a_{(j-2) n+1} a_{(j-1) n+1} a_{(j+1) n+1} \\
& =a_{1} a_{n+1} a_{(j+1) n+1}
\end{aligned}
$$

Hence $a_{1} a_{j n+1}=a_{n+1} a_{(j+1) n+1}$.
Suppose k is odd. If i is even, we have

$$
\begin{aligned}
a_{i n+1} a_{(i+j) n} & =a_{1} a_{j n+1} \\
& =a_{n+1} a_{(j+1) n+1} \\
& =a_{(i+1) n+1} a_{(i+j+1) n+1} \\
& =a_{\{(i+1)+(k-1)\} n+1} a_{\{(i+j+1)+(k-1)\} n+1} \\
& =a_{(i+k) n+1} a_{(i+j+k) n+1} .
\end{aligned}
$$

If i is odd, we have

$$
\begin{aligned}
a_{i n+1} a_{(i+j) n} & =a_{n+1} a_{(j+1) n+1} \\
& =a_{1} a_{j n+1} \\
& =a_{(i+1) n+1} a_{(i+j+1) n+1} \\
& =a_{\{(i+1)+(k-1)\} n+1} a_{\{(i+j+1)+(k-1)\} n+1} \\
& =a_{(i+k) n+1} a_{(i+j+k) n+1} .
\end{aligned}
$$

Lemma 4.2.4. The equality $a_{p n+1} a_{q} a_{r n+1}=a_{(p+1) n+1} a_{q} a_{(r-1) n+1}$ is true in $M\left(\mathfrak{d t w}_{n}^{l}\right)$ for all values p, q, r such that $0 \leq p \leq n-1,1 \leq r \leq l$, and $q \notin\{0,2 n+1, \ldots,(l-1) n+1\}$.

Proof. Consider

$$
\begin{aligned}
a_{(p+1) n+1} a_{p n+1} a_{q} a_{r n+1} & =a_{n} a_{0} a_{q} a_{r n+1} \\
& =a_{n} a_{n-q+1} a_{n+1} a_{r n+1} \\
& =a_{n} a_{n-q+1} a_{1} a_{(r-1) n+1} \\
& =a_{n} a_{n} a_{q} a_{(r-1) n+1} \\
& =a_{n+1} a_{n+1} a_{q} a_{(r-1) n+1} \\
& =a_{(p+1) n+1} a_{(p+1) n+1} a_{q} a_{(r-1) n+1} .
\end{aligned}
$$

Hence $a_{p n+1} a_{q} a_{r n+1}=a_{(p+1) n+1} a_{q} a_{(r-1) n+1}$.
Lemma 4.2.5. The equality $a_{p} a_{q} a_{r}=a_{p+1} a_{q} a_{r-1}$ is true in $M\left(\mathfrak{d t w}_{n}^{l}\right)$ for all values p, q, r such that $p \in\{0,1, \ldots, n\}, r \in\{1,2, \ldots, n+1\}, q \in\{0,2 n+$ $1, \ldots,(l-1) n+1\}$.
Proof. Suppose $q=0$. Then

$$
a_{p} a_{0} a_{r}=a_{p+1} a_{1} a_{r}=a_{p+1} a_{0} a_{r-1} .
$$

Suppose $q \in\{2 n+1, \ldots,(l-1) n+1\}$. Consider

$$
\begin{aligned}
a_{p+1} a_{p} a_{k n+1} a_{r} & =a_{1} a_{0} a_{k n+1} a_{r} \\
& =a_{1} a_{(l-k) n+1} a_{1} a_{r} \\
& =a_{1} a_{(l-k) n+1} a_{0} a_{r-1} \\
& =a_{k n+1} a_{0} a_{0} a_{r-1} \\
& =a_{k n+1} a_{1} a_{1} a_{r-1} \\
& =a_{k n+1} a_{(k-1) n+1} a_{(k-1) n+1} a_{r-1} \\
& =a_{n+1} a_{1} a_{(k-1) n+1} a_{r-1} \\
& =a_{2 n+1} a_{n+1} a_{(k-1) n+1} a_{r-1} \\
& =a_{n+1} a_{n+1} a_{k n+1} a_{r-1} \\
& =a_{p+1} a_{p+1} a_{k n+1} a_{r-1}
\end{aligned}
$$

Hence $a_{p} a_{q} a_{r}=a_{p+1} a_{q} a_{r-1}$.
Canonical words in $C_{n, l}^{+}$will be defined as words of the form 000^{t-2} or $c 00^{t-2}$ or $0 c 0^{t-2}$ or $d c 0^{t-2}$, where $t \geq 2$ is the length of the word and $c \in$ $\{1,2, \ldots, n\}, d \in\{2 n+1,3 n+1, \ldots,(l-1) n+1\}$.

Consider a non-negative integer valued parameter $\pi(w)$ of a word w in $C_{n, l}^{+}$, which is 0 if the first two entries in w are 00 or $c 0$ or $0 c$ or $d c$ for some $c \in\{1, \ldots, n\}, d \in\{2 n+1, \ldots,(l-1) n+1\}$ and which is 1 otherwise. Define the defect of a word $w=b_{1} b_{2} \ldots b_{t}$ in $C_{n, l}^{+}$as a word $\pi(w) b_{3} \ldots b_{t}$. Defects are assumed to be ordered antilexicographically.

Lemma 4.2.6. A word in $C_{n, l}^{+}$is canonical if and only if its defect is a word consisting of 0 s.

Proof. The result follows from the form of canonical word.
Lemma 4.2.7. Let u be a word in A^{+}. Unless the defect of $\phi(u)$ is a word consisting of $0 s$, there is a word v in A^{+}such that $u=v$ in $M\left(\mathfrak{d t w}_{n}^{l}\right)$ and the defect of $\phi(v)$ is less than the defect of $\phi(u)$.

Proof. Suppose the defect of $\phi(u)$ has a non-zero entry at a position which is not the first one. This means that at some position $d \geq 3$ there is a non-zero entry r in $\phi(u)$. Let $u=u^{\prime} a_{p} a_{q} a_{r} u^{\prime \prime}$, where $u^{\prime}, u^{\prime \prime} \in A^{+}$and $p, q, r \in C_{n, l}$ with $r \neq 0$.
(1) Suppose $q \notin\{0,2 n+1,3 n+1, \ldots,(l-1) n+1\}$.

1. If $r \notin\{2 n+1, \ldots,(l-1) n+1\}$, then we define

$$
v=u^{\prime} a_{p} a_{q-1} a_{r-1} u^{\prime \prime} .
$$

2. Suppose $r \in\{2 n+1,3 n+1, \ldots,(l-1) n+1\}$.

- If $p \notin\{0,2 n+1, \ldots,(l-1) n+1\}$, then we define

$$
v=u^{\prime} a_{p-1} a_{q-1} a_{r} u^{\prime \prime} .
$$

- If $p \in\{0,2 n+1, \ldots,(l-1) n+1\}$, then define

$$
v=u^{\prime} a_{\left(k^{\prime}+1\right) n+1} a_{q} a_{(k-1) n+1} u^{\prime \prime},
$$

where $p=k^{\prime} n+1, r=k n+1$. The words u and v are equal by the Lemma 4.2.4.
(2) Suppose $q \in\{0,2 n+1, \ldots,(l-1) n+1\}$.

1. If $p \in\{2 n+1, \ldots,(l-1) n+1\}$ or $r \in\{2 n+1, \ldots,(l-1) n+1\}$, then we define

$$
v=u^{\prime} a_{\left(k^{\prime}-1\right) n+1} a_{(k-1) n+1} a_{r} u^{\prime \prime}
$$

where $p=k^{\prime} n+1, q=k n+1$, or

$$
v=u^{\prime} a_{p} a_{(k-1) n+1} a_{\left(k^{\prime \prime}-1\right) n+1} u^{\prime \prime}
$$

where $q=k n+1, r=k^{\prime \prime} n+1$.
2. If $p, r \notin\{2 n+1,3 n+1 \ldots,(l-1) n+1\}$, then we define

$$
v=u^{\prime} a_{p+1} a_{q} a_{r-1} u^{\prime \prime} .
$$

By the Lemma 4.2.5, $u=v$.
In each case, $u=v$ in $M\left(\mathfrak{d t w}_{n}^{l}\right)$, and the defect of $\phi(v)$ is less than the defect of $\phi(u)$.

Suppose the defect of $\phi(u)$ has a non-zero entry only at the first position. Let $u=a_{p} a_{q} u^{\prime}$, where $u^{\prime} \in A^{+}$and $p, q \in C_{n}^{l}$.
(1) If $p, q \in\{1,2, \ldots, n+1\}$, let $m=\min (p, q)$, then define

$$
v=a_{p-m} a_{q-m} u^{\prime} .
$$

(2) If $p, q \in\{2 n+1, \ldots,(l-1) n+1\}$, let $p=k n+1, q=k^{\prime} n+1$ and $m=\min \left(k, k^{\prime}\right)$. If $m=k^{\prime}$, then we define

$$
v=a_{(k-m) n+1} a_{\left(k^{\prime}-m\right) n+1} u^{\prime} .
$$

If $m=k$, then we use the following case (3).
(3) If $p \in\{1,2, \ldots, n\}, q \in\{2 n+1, \ldots,(l-1) n+1\}$, then consider

$$
\begin{aligned}
a_{p} a_{k n+1} a_{n-p+1} & =a_{0} a_{k n+1} a_{n+1} \\
& =a_{(l-k) n+1} a_{1} a_{n+1} \\
& =a_{(l-k+1) n+1} a_{n+1} a_{n+1} \\
& =a_{(l-k+1) n+1} a_{n-p+1} a_{n-p+1} .
\end{aligned}
$$

Hence $a_{p} a_{k n+1}=a_{(l-k+1) n+1} a_{n-p+1}$. Then we define

$$
v=a_{(l-k+1) n+1} a_{n-p+1} u^{\prime},
$$

where $q=k n+1$.
(4) If $p \in\{2 n+1 \ldots,(l-1) n+1\}, q=n+1$, then we define

$$
v=a_{(k-1) n+1} a_{1} u^{\prime},
$$

where $p=k n+1$.
(5) If $p=n+1, q \in\{2 n+1, \ldots,(l-1) n+1\}$, then we consider

$$
a_{n+1} a_{k n+1}=a_{(l-k+1) n+1} a_{0}=a_{(l-k+2) n+1} a_{n} .
$$

Then we define

$$
v=a_{(l-k+2) n+1} a_{n} u^{\prime} .
$$

(6) If $p \in\{n+1,2 n+1, \ldots,(l-1) n+1\}, q=0$, then we consider

$$
a_{k n+1} a_{0}=a_{1} a_{(l-k) n+1}=a_{(k+1) n+1} a_{n}
$$

Then we define

$$
v=a_{(k+1) n+1} a_{n} u^{\prime},
$$

where $p=k n+1$.
(7) If $p=0, q \in\{n+1,2 n+1, \ldots,(l-1) n+1\}$, then consider

$$
a_{0} a_{k n+1}=a_{(l-k) n+1} a_{1}
$$

Then we define

$$
v=a_{(l-k) n+1} a_{1} u^{\prime},
$$

where $q=k n+1$.
In each case, $u=v$ in $M\left(\mathfrak{d t w}_{n}^{l}\right)$, and the defect $\phi(v)$ is a word consisting of 0s.

Then we have the following corollary.
Corollary 4.2.8. Every word in A^{+}is equal in $M\left(\mathfrak{d t w}_{n}^{l}\right)$ to a word in A^{+} which is mapped by ϕ to a word with a defect consisting of 0 s.

Proof of Theorem 4.1.2. The relations in $M\left(\mathfrak{d t w}_{n}^{l}\right)$ are listed in the proof of Lemma 4.2.2. For each relation $u=v$ the words $\phi(u)$ and $\phi(v)$ have the same length and the same alternating sum calculated in $\mathbb{Z}_{l n+1}$. Thus by Lemma 4.2.1, ϕ^{+}induces a homomorphism $\psi: M\left(\mathfrak{d t w}_{n}^{l}\right) \rightarrow C_{n, l}^{+} / \sim$.

Consider two canonical words u, v which are \sim equivalent. We shall show that each class of \sim contains at most one canonical word.
(1) Suppose their alternating sums are both 0 .

1. If u, v are form of $c 00^{t-2}$ or $0 c 0^{t-2}$, where $c \in\{1,2, \ldots, n\}$, then since the canonical word can have at most one non-zero entry, both words consist only of 0 s and, therefore are equal.
2. If u or v is form of $d c 0^{t-2}$, where $c \in\{1,2, \ldots, n\}, d \in\{2 n+$ $1, \ldots,(l-1) n+1\}$, then the alternating sum of $d c 0^{t-2}$ is $d-c$. If $d \neq 0$ or $c \neq 0$, then since $d-c=0$, this contradicts $c \in$ $\{1,2, \ldots, n\}, d \in\{2 n+1, \ldots,(l-1) n+1\}$. Therefore both words u, v consist only of 0 s , and are equal.
(2) Suppose two canonical words share the same non-zero alternating sum.
3. If $u=c_{1} 00^{t-2}, v=c_{2} 00^{t-2}$, then since both alternating sums are the same, $c_{1}=c_{2}$. Thus $u=v$.
4. If $u=0 c_{1} 0^{t-2}, v=0 c_{2} 0^{t-2}$, then $u=v$ by the same reason of 1 .
5. If $u=c_{1} 00^{t-2}, v=0 c_{2} 0^{t-2}$, then $c_{1}=-c_{2}$ in $\mathbb{Z}_{n l+1}$. Since $c_{1}, c_{2} \in$ $\{1,2, \ldots, n\}$, this case is impossible.
6. If $u=c_{1} 00^{t-2}, v=0 c_{2} 0^{t-2}$, then $c_{1}=d_{2}-c_{2}$ in $\mathbb{Z}_{l n+1}$. Since $c_{1}, c_{2} \in\{1,2, \ldots, n\}, d \in\{2 n+1, \ldots,(l-1) n+1\}$, this case is impossible $\left(c_{1}+c_{2} \leq 2 n, d_{2} \geq 2 n\right)$.
7. If $u=0 c_{1} 0^{t-2}, v=d_{2} c_{2} 0^{t-2}$, then $-c_{1}=d_{2}-c_{2}$ in $\mathbb{Z}_{l n+1}$. If $c_{2}-c_{1}>0$, this case is impossible. If $c_{2}-c_{1}>0$, this case is also impossible $\left(l n+1+c_{2}-c_{1}>(l-1) n+1, d_{2} \leq(l-1) n+1\right)$.
8. If $u=d_{1} c_{1} 0^{t-2}, v=d_{2} c_{2} 0^{t-2}$, then $d_{1}-c_{1}=d_{2}-c_{2}$ in $\mathbb{Z}_{l n+1}$. Since $c_{1}, c_{2} \in\{1,2, \ldots, n\}, d_{1}, d_{2} \in\{2 n+1, \ldots,(l-1) n+1\}$, this case is impossible.

Thus each class of \sim contains at most one canonical word.
Consider a word $w \in C_{n, l}^{+}$which has length t and alternating sum s. We shall show that each class of \sim contains at least one canonical word.
(1) If $s \in\{0,1, \ldots, n\}$, then canonical word $s 00^{t-2}$ is \sim equivalent to w.
(2) If $s \in\{(l-1) n+1, \ldots, l n+1\}$, let $q=-s$. Then $0 q 0^{t-2}$ is \sim equivalent to w.
(3) If $s \in\{n+1, \ldots,(l-1) n\}$, then w is \sim equivalent to $d(-c) 0^{t-2}$ for some $c \in\{1,2, \ldots, n\}, d \in\{2 n+1, \ldots,(l-1) n+1\}$.

Thus each class of \sim contains at least one canonical word.
By Corollary 4.2 and Lemma 4.2 .6 , each word in A^{+}is equal in $M\left(\mathfrak{d} \mathfrak{t w}_{n}^{l}\right)$ to a word mapped by ϕ to a canonical word. Now Theorem 4.1.2 follows from Lemma 4.2.1.

Chapter 5

Link invariants

In this section, we consider the growth of semigroup algebras of knot semigroups. To investigate the growth, we use the Gelfand-Kirillov dimension. As an application we construct a link invariant.

5.1 Gelfand-Kirillov dimensions

First, we explain the definition of Gelfand-Kirillov dimension.
Let k be a field and A a finitely generated algebra over k. If V is a subspace of A, we denote by V^{n} the subspace spanned by all products of elements of V of length n. By generating subspace, we will mean a finitedimensional subspace of A which generates A as algebra, and which contains 1. The growth function associated to a generating subspace V is

$$
f_{V}(n)=\operatorname{dim}_{k} V^{n} .
$$

An algebra A is said to have polynomial growth if there are positive real numbers c, r such that

$$
\begin{equation*}
f_{V}(n) \leq c n^{r} \tag{5.1}
\end{equation*}
$$

for all n. We will see below that this is independent of the choice of generating spaces.
Lemma 5.1.1. Let A be a finitely generated k-algebra, and let V, W be generating subspaces. If $f_{V}(n) \leq c n^{r}$ for all n, then there is a c^{\prime} such that $f_{W}(n) \leq c^{\prime} n^{r}$ for all n.

Proof. Assume that $f_{V}(n) \leq c n^{r}$. Since $A=\cup V^{n}$ and W is finite-dimensional, $W \subset V^{s}$ for some s. Then $W^{n} \subset V^{s n}$, hence

$$
f_{W}(n) \leq f_{V}(s n) \leq c s^{r} n^{r}=c^{\prime} n^{r}
$$

Definition 5.1.2. The Gelfand-Kirillov dimension of an algebra A with polynomial growth is the infimum of the real numbers r such that (5.1) holds for some c :

$$
\mathrm{GK} \operatorname{dim}(A)=\inf \left\{r \mid f_{V}(n) \leq c n^{r}\right\}
$$

If A does not have polynomial growth, then we define GK $\operatorname{dim}(A)=\infty$.
The Gelfand-Kirillov dimension can be represented as follows:
Lemma 5.1.3. Let A be an algebra. Then we have

$$
\text { GK } \operatorname{dim}(A)=\inf \{r \mid f(n) \leq p(n)\}
$$

for some polynomial p of degree r.
Proof. Since $\left\{r \mid f(n) \leq c n^{r}\right\} \subset\{r \mid f(n) \leq p(n)\}$, we have

$$
\inf \left\{r \mid f_{V}(n) \leq c n^{r}\right\} \geq \inf \{r \mid f(n) \leq p(n)\}
$$

Let $r=\inf \left\{r \mid f_{V}(n) \leq c n^{r}\right\}$ and, $r^{\prime}=\inf \{r \mid f(n) \leq p(n)\}$. Assume that $r>r^{\prime}$. We write $p(n)=c_{r^{\prime}} n^{r^{\prime}}+c_{r^{\prime}-1} n^{r^{\prime}-1}+\cdots+c_{0}$. Then we have

$$
\begin{aligned}
p(n) & =c_{r^{\prime}} n^{r^{\prime}}+c_{r^{\prime}-1} n^{r^{\prime}-1}+\cdots+c_{0} \\
& \leq c_{r^{\prime}} n^{r^{\prime}}+c_{r^{\prime}-1} n^{r^{\prime}}+\cdots+c_{0} n^{r^{\prime}} \\
& =\left(c_{r^{\prime}}+c_{r^{\prime}-1}+\cdots+c_{0}\right) n^{r^{\prime}} .
\end{aligned}
$$

Since $r>r^{\prime}$, this contradicts the equality $r=\inf \left\{r \mid f_{V}(n) \leq c n^{r}\right\}$. Therefore

$$
\inf \left\{r \mid f_{V}(n) \leq c n^{r}\right\}=\inf \{r \mid f(n) \leq p(n)\}
$$

Example 5.1.4. (1) Let $A=k\left[x_{1}, \ldots, x_{d}\right]$. If V is the space spanned by $\left\{1, x_{1}, \ldots, x_{d}\right\}$, then V^{n} is the space of polynomials of degree $\leq n$. The dimension of this space is $\binom{n+d}{d}$ since the number of the basis of V^{n} is the number of combination which we choose n elements from $\left\{1, x_{1}, \ldots, x_{d}\right\}$ allowing the overwrapping. Since $f(n)=\operatorname{dim} V^{n}=\binom{n+d}{d}$ is the polynomial of degree d and by Lemma 5.1.3, we have GK $\operatorname{dim}(A)=d$.
(2) Let $A=k\left\langle x_{1}, \ldots, x_{d}\right\rangle$ be the noncommutative polynomial algebra. Let V be the space spanned by $\left\{1, x_{1}, \ldots, x_{d}\right\}$. The dimension of this space is $d^{n}+d^{n-1}+\cdots+d+1$. Thus GK $\operatorname{dim}(A)=\infty$.

5.2 Link invariants

We can prove that the Gelfand-Kirillov dimension of semigroup algebra of knot semigrop is a link invariant. Let L be a link. Then we let $k(M(L))$ be a semigroup algebra of a knot semigroup of L.
Theorem 5.2.1. Let L_{1}, L_{2} be links. If L_{1} and L_{2} are equivalent then

$$
\mathrm{GK} \operatorname{dim}\left(k\left(M\left(L_{1}\right)\right)\right)=\mathrm{GK} \operatorname{dim}\left(k\left(M\left(L_{2}\right)\right)\right)
$$

Proof. For a link L, by Theorem 3.1.3 it is enough to prove that GK $\operatorname{dim}(k(M(L)))$ is invariant under Reidemeister move I, II, III.

GK $\operatorname{dim}(k(M(L)))$ is invariant under Reidemeister move I since $M(L)$ is. Let L, L^{\prime} be the same links, except in the neighborhood of a point where they are as shown in the following figure.

L

L'

We can assume GK $\operatorname{dim}(k(M(L)))$, GK $\operatorname{dim}\left(k\left(M\left(L^{\prime}\right)\right)\right)<\infty$. Then

$$
\begin{aligned}
& k(M(L)) \simeq k\left\langle x_{1}, \ldots, x_{m}, a, b, c\right\rangle /\left\langle I_{a, b} \cup\left\{\begin{array}{c}
b a-a c \\
a b-c a
\end{array}\right\}\right\rangle, \\
& k\left(M\left(L^{\prime}\right)\right) \simeq k\left\langle x_{1}, \ldots, x_{m}, a, b\right\rangle /\left\langle I_{a, b}\right\rangle,
\end{aligned}
$$

where x_{1}, \ldots, x_{m} are labels of arcs except a, b, c, and $I_{a, b}$ is a set of relations except $b a-a c, a b-c a$. Let

$$
\begin{aligned}
& V=\left\langle x_{1}, \ldots, x_{m}, a, b, c\right\rangle /\left\langle I_{a, b} \cup\left\{\begin{array}{l}
b a-a c \\
a b-c a
\end{array}\right\}\right\rangle, \\
& V^{\prime}=\left\langle x_{1}, \ldots, x_{m}, a, b\right\rangle /\left\langle I_{a, b}\right\rangle .
\end{aligned}
$$

We can prove that

$$
(V /\langle c-1\rangle)^{n} \simeq\left(V^{\prime} /\langle b-1\rangle\right)^{n}
$$

for $n \geq 2$ as follows: we have

$$
(V /\langle c-1\rangle)^{n} \simeq\left(\left\langle x_{1}, \ldots, x_{m}, a, b, c\right\rangle /\left\langle I_{a, b} \cup\left\{\begin{array}{l}
b a-a c \\
a b-c a
\end{array}\right\} \cup\{c-1\}\right\rangle\right)^{n} .
$$

In this space, $c=1$ and then $b a=a c=a \cdot 1=a$. By the cancellativity of knot semigroups, we have $b=1$. Thus we have,

$$
\begin{aligned}
(V /\langle c-1\rangle)^{n} & \simeq\left(\left\langle x_{1}, \ldots, x_{m}, a, b, c\right\rangle /\left\langle I_{a, b} \cup\left\{\begin{array}{l}
b a-a c \\
a b-c a
\end{array}\right\} \cup\{c-1\}\right\rangle\right)^{n} \\
& \simeq\left\langle x_{1}, \ldots, x_{m}, a\right\rangle /\left\langle I_{a, 1}\right\rangle .
\end{aligned}
$$

On the other hand

$$
\begin{aligned}
\left(V^{\prime} /\langle b-1\rangle\right)^{n} & \simeq\left\langle x_{1}, \ldots, x_{m}, a, b\right\rangle /\left\langle I_{a, b} \cup\{b-1\}\right\rangle \\
& \simeq\left\langle x_{1}, \ldots, x_{m}, a\right\rangle /\left\langle I_{a, 1}\right\rangle .
\end{aligned}
$$

Therefore we have

$$
(V /\langle c-1\rangle)^{n} \simeq\left(V^{\prime} /\langle b-1\rangle\right)^{n} .
$$

Then we have the following exact sequences for $n \geq 2$.

$$
\begin{aligned}
& 0 \rightarrow\langle c-1\rangle^{n} \rightarrow V^{n} \rightarrow\left(V^{n} /\langle c-1\rangle\right)^{n} \rightarrow 0, \\
& 0 \rightarrow\langle b-1\rangle^{n} \rightarrow V^{n} \rightarrow\left(V^{n} /\langle b-1\rangle\right)^{n} \rightarrow 0 .
\end{aligned}
$$

Since

$$
\begin{aligned}
& f_{V}(n)=\operatorname{dim} V^{n}=\operatorname{dim}(V /\langle c-1\rangle)^{n}+\operatorname{dim}\langle c-1\rangle^{n} \\
& f_{V^{\prime}}(n)=\operatorname{dim} V^{\prime n}=\operatorname{dim}\left(V^{\prime} /\langle b-1\rangle\right)^{n}+\operatorname{dim}\langle b-1\rangle^{n}
\end{aligned}
$$

and

$$
(V /\langle c-1\rangle)^{n} \simeq\left(V^{\prime} /\langle b-1\rangle\right)^{n},
$$

we have

$$
f_{V}(n)=f_{V^{\prime}}(n) \text { for all } n \geq 2 .
$$

Let c be a real number such that

$$
f_{V}(n), f_{V^{\prime}}(n) \leq c
$$

Let

$$
R=\inf \left\{r \mid f_{V}(n) \leq c n^{r}\right\}, R^{\prime}=\inf \left\{r \mid f_{V}^{\prime}(n) \leq c n^{r}\right\}
$$

Assume that $R<R^{\prime}$. Since GK $\operatorname{dim}(k(M(L)))=r$ is finite, there exists a real number c^{\prime} such that

$$
f_{V^{\prime}}(n)=f_{V}(n) \leq c^{\prime} n^{r}
$$

Thus we have

$$
f_{V^{\prime}}(1) \leq \max \left\{c, c^{\prime}\right\}, f_{V^{\prime}}(n) \leq \max \left\{c, c^{\prime}\right\} n^{r} .
$$

Since $R<R^{\prime}$, this contradicts $R^{\prime}=\inf \left\{r \mid f_{V}^{\prime}(n) \leq c n^{r}\right\}$. Therefore,

$$
\mathrm{GK} \operatorname{dim}(k(M(L)))=\mathrm{GK} \operatorname{dim}\left(k\left(M\left(L^{\prime}\right)\right)\right) .
$$

Thus GK $\operatorname{dim}(k(M(L)))$ is invariant under the Reidemeister move II.
Next let L, L^{\prime} be the same links, except in the neighborhood of a point where they are as shown in Figure.

L

We can assume GK $\operatorname{dim}(k(M(L)))$, GK $\operatorname{dim}\left(k\left(M\left(L^{\prime}\right)\right)\right)<\infty$. Then

$$
\begin{aligned}
& k(M(L)) \simeq k\left\langle x_{1}, \ldots, x_{m}, a, b, c, d, e, f\right\rangle /\left\langle I_{a, b, c, d, f} \cup J\right\rangle, \\
& k\left(M\left(L^{\prime}\right)\right) \simeq k\left\langle x_{1}, \ldots, x_{m}, a, b\right\rangle /\left\langle I_{a, b, c, d, f}^{\prime} \cup J^{\prime}\right\rangle,
\end{aligned}
$$

where

$$
\begin{aligned}
& J=\left\{\begin{array}{l}
a c-c d \\
c a-d c
\end{array}\right\} \cup\left\{\begin{array}{l}
b c-c e \\
c b-e c
\end{array}\right\} \cup\left\{\begin{array}{l}
f d-d e \\
d f-e d
\end{array}\right\}, \\
& J^{\prime}=\left\{\begin{array}{l}
e a-a b \\
a e-b a
\end{array}\right\} \cup\left\{\begin{array}{l}
f c-c e \\
c f-e c
\end{array}\right\} \cup\left\{\begin{array}{l}
d c-c a \\
c d-a c
\end{array}\right\},
\end{aligned}
$$

and x_{1}, \ldots, x_{m} are labels of arcs except a, b, c, d, e, f, and $I_{a, b, c, d, f}, I_{a, b, c, d, f}^{\prime}$ is a set of relations except J, J^{\prime}.

$$
\begin{aligned}
V & =\left\langle x_{1}, \ldots, x_{m}, a, b, c, d, e, f\right\rangle /\left\langle I_{a, b, c, d, f} \cup J\right\rangle, \\
V^{\prime} & =\left\langle x_{1}, \ldots, x_{m}, a, b, c, d, e, f\right\rangle /\left\langle I_{a, b, c, d, f}^{\prime} \cup J^{\prime}\right\rangle .
\end{aligned}
$$

We can prove

$$
(V /\langle a-1\rangle)^{n} \simeq\left(V^{\prime} /\langle d-1\rangle\right)^{n}
$$

for $n \geq 2$ as follows: we have

$$
(V /\langle a-1\rangle)^{n} \simeq\left(\left\langle x_{1}, \ldots, x_{m}, a, b, c, d, e, f\right\rangle /\left\langle I_{a, b, c, d, f} \cup J \cup\{a-1\}\right\rangle\right)^{n} .
$$

In this space, $a=1$ and then $c d=a c=1 \cdot c=c$. By the cancellativity of knot semigroups, we have $d=1$. Since $f c=c e$, we obtain $f=e$. Thus we have

$$
\begin{aligned}
(V /\langle a-1\rangle)^{n} & \simeq\left(\left\langle x_{1}, \ldots, x_{m}, a, b, c, d, e, f\right\rangle /\left\langle I_{a, b, c, d, f} \cup J \cup\{a-1\}\right\rangle\right)^{n} \\
& \simeq\left(\left\langle x_{1}, \ldots, x_{m}, b, c, f\right\rangle /\left\langle I_{1, b, c, 1, f} \cup\left\{\begin{array}{l}
b c-c f \\
c b-f c
\end{array}\right\}\right\rangle\right)^{n} .
\end{aligned}
$$

On the other hand,

$$
\left(V^{\prime} /\langle d-1\rangle\right)^{n} \simeq\left(\left\langle x_{1}, \ldots, x_{m}, a, b, c, d, e, f\right\rangle /\left\langle I_{a, b, c, d, f}^{\prime} \cup J^{\prime} \cup\{d-1\}\right\rangle\right)^{n} .
$$

In this space, $d=1$ and then $c a=d c=1 \cdot c=c$. By the cancellativity of knot semigroups, we have $\mathrm{a}=1$. Since $e a=a b$, we have $e=b$. Thus we have

$$
\begin{aligned}
\left(V^{\prime} /\langle d-1\rangle\right)^{n} & \simeq\left(\left\langle x_{1}, \ldots, x_{m}, a, b, c, d, e, f\right\rangle /\left\langle I_{a, b, c, d, f}^{\prime} \cup J^{\prime} \cup\{d-1\}\right\rangle\right)^{n} \\
& \simeq\left(\left\langle x_{1}, \ldots, x_{m}, b, c, f\right\rangle /\left\langle I_{1, b, c, 1, f}^{\prime} \cup\left\{\begin{array}{l}
f c-c b \\
c f-b c
\end{array}\right\}\right\rangle\right)^{n} .
\end{aligned}
$$

Therefore

$$
(V /\langle a-1\rangle)^{n} \simeq\left(V^{\prime} /\langle d-1\rangle\right)^{n} .
$$

Then we have the following exact sequences for $n \geq 2$.

$$
\begin{aligned}
& 0 \rightarrow\langle a-1\rangle^{n} \rightarrow V^{n} \rightarrow\left(V^{n} /\langle a-1\rangle\right)^{n} \rightarrow 0, \\
& 0 \rightarrow\langle e-1\rangle^{n} \rightarrow V^{n} \rightarrow\left(V^{n} /\langle d-1\rangle\right)^{n} \rightarrow 0 .
\end{aligned}
$$

Since

$$
\begin{aligned}
& f_{V}(n)=\operatorname{dim} V^{n}=\operatorname{dim}(V /\langle a-1\rangle)^{n}+\operatorname{dim}\langle a-1\rangle^{n} \\
& f_{V^{\prime}}(n)=\operatorname{dim} V^{\prime n}=\operatorname{dim}\left(V^{\prime} /\langle d-1\rangle\right)^{n}+\operatorname{dim}\langle d-1\rangle^{n}
\end{aligned}
$$

and

$$
(V /\langle a-1\rangle)^{n} \simeq\left(V^{\prime} /\langle d-1\rangle\right)^{n},
$$

we have

$$
f_{V}(n)=f_{V^{\prime}}(n) \text { for all } n \geq 2
$$

Then we can prove that GK $\operatorname{dim}(k(M(L)))=\mathrm{GK} \operatorname{dim}\left(k\left(M\left(L^{\prime}\right)\right)\right)$ by the similar way of the case of the Reidemeister move II. Therefore GK $\operatorname{dim}(k(M(L)))$ is invariant under the Reidemeister move III.

5.3 Examples

We calculate some examples of GK $\operatorname{dim}(k(M(L)))$ for a link L.
Example 5.3.1. Let L_{1} be a Hopf link (Figure 2). Since

$$
\begin{aligned}
k\left(M\left(L_{1}\right)\right) & \simeq k\langle a, b\rangle /\langle a b-b a\rangle \\
& \simeq k[a, b],
\end{aligned}
$$

$\operatorname{GK} \operatorname{dim}\left(k\left(M\left(L_{1}\right)\right)\right)=2$. On the other hand let L_{2} be the following link.

Since

$$
\begin{equation*}
k\left(M\left(L_{2}\right)\right) \simeq k\langle a, b\rangle, \tag{5.2}
\end{equation*}
$$

GK $\operatorname{dim}\left(k\left(M\left(L_{2}\right)\right)\right)=\infty$. Therefore we can conclude that $L_{1} \not 千 L_{2}$.
Example 5.3.2. We shall consider torus knots $T(2, n)$ and double twist knots $\mathfrak{d t w}_{m}^{l}$. Let V be a generating subspace of $k(M(T(2, n)))$. Then by Theorem 3.2.1,

$$
f_{V}(d)=\operatorname{dim} V^{d}=n d+1 .
$$

Since $f_{V}(d)$ is a polynomial of degree 1 and by Lemma 5.1.3, $\operatorname{GK} \operatorname{dim}(k(M(T(2, n))))=$ 1. Let V^{\prime} be a generating subspace of $k\left(M\left(\mathfrak{d t w}_{m}^{l}\right)\right)$. Then by Theorem 4.1.2,

$$
f_{V^{\prime}}(d)= \begin{cases}1 & (d=0) \\ (l m+1) d+m+l-l m & (d>0)\end{cases}
$$

Since $f_{V^{\prime}}(d)$ is a polynomial of degree 1 and by Lemma 5.1.3, GK $\operatorname{dim}\left(k\left(M\left(\mathfrak{d t w}_{m}^{l}\right)\right)\right)=$ 1.

Bibliography

[1] E. Artin, Theorie der Zpfe. Abh. Math. Sem. Hamburgischen Univ. 4 (1925), 4772.
[2] E. Artin, Theory of braids. Annals of Math. 48 (1947), 101126.
[3] E. Brieskorn, K. Saito, Artin-Gruppen und Coxeter-Gruppen. Inventiones math. 17, 245-271, (1972).
[4] D. Easdown, J. East, D. G. FitzGerald, Presentations of factorizable inverse monoids. Acta Universitatis Szeged., Acta Sci. Math. 71, 509520 (2005) .
[5] D. Easdown, T. G. Lavers, The inverse braid monoid. Advances in Mathematics 186 (2004) 438-455.
[6] E. Fedell, J. V. Buskirk, The braid groups of E^{2} and S^{2}. Duke Math. J. 29 (1962) 243-257.
[7] B. Farb, D. Margalit, A primer on mapping class groups. Princeton university press (2012).
[8] J. Gonzalez-Meneses, Basic results on braid groups. Annales mathematiques BlaisePascal Volume 18, no1 (2011), 15-59.
[9] E. Godelle, A note on Renner monoids. hal-00373601.
[10] E. Godelle, The braid rook monoid. International Journal of Algebra and Computation Vol. 18, No. 4 (2008) 779-802.
[11] A. Joyal, R. Street, Braded monoidal categories. Macquaria Math. Reports No. 8500067 (1985).
[12] A. Joyal, R. Street, Braded tensor categories. Adv. Math. 102 no. 1, 20-78 (1993).
[13] R. Karoui, V. V. Vershinin, On the inverse mapping class monoids. Journal of Knot Theory and Its Ramifications Vol. 19, No. 02, 163-179 (2010).
[14] C. Kassel, V. Turaev. Braid Groups. Graduate Texts in Mathematics 247 Springer (2000).
[15] A. Kawauchi, A survey of knot theory. Birkhauser (1996).
[16] G. R. Krause, T. H. Lenagan, Growth of Algebras and Gelfand-Kirillov Dimension. Graduate Studies in Mathematics. American Mathematical Society (1991).
[17] W. B. R. Lickorish, An Introduction to Knot Theory. Graduate Texts in Mathematics 175 (1997), Springer.
[18] D. K. Matsumoto, Y. Shibukawa, Quantum Yang-Baxter Equation, Braded Semigroups, and Dynamical Yang-Baxter Maps. Tokyo Journal of Mathematics, Vol. 38, No. 1, (2015) 227-237.
[19] T. Miyatani, On $\mathbb{P} M$-monoids and braid $\mathbb{P} M$-monoids. Topology and its applications, 274 (2020) 107118.
[20] T. Miyatani, On knot semigroups and Gelfand-Kirillov dimensions. arXiv:1907.00569 (2019).
[21] K. Murasugi, Knot theory and its applications. Springer Science \& Business Media (2007).
[22] Y. A. Neretin, Geometry of $\mathrm{GL}_{n}(\mathbb{C})$ at infinity: Hinges, complete collineations, projective compactifications, and universal boundary, in The orbit method in geometry and physics (Marseille 2000), 297327, Progress in Mathematics, vol. 213, Birkhauser, Boston, 2003.
[23] L. Paris, Braid groups and Artin groups. Handbook on Teichmuller theory, Volume II, EMS Publishing House, 2008.
[24] M. S. Putcha, Linear algebraic Monoids. London Mathematical Society Lecture Note Series 133, 1988.
[25] M. Saito, Projective Linear Monoids and Hinges. arXiv:1711.01397, 2017.
[26] Y. Shibukawa, Dynamical braided monoids and dynamical Yang-Baxter maps. Quantum groups and quantum topology (edited by A. Masuoka), 80-89, RIMS Kokyuroku 1714, 2010.
[27] L. Solomon, Representation of the rook monoid. Journal of Algebra 256 (2002) 309-342.
[28] L. Solomon, An introduction to reductive monoids, Semigroups, formal languages and groups, J. Fountain, Ed., Kluwer Academic Publishers, 1995, 295-352.
[29] M. Takeuchi, Survey on matched pairs of groups-an elementary approach to the ESS-LYZ theory, Non commutative geometry and quantum groups (Warsaw, 2001), Banach Center Publ., 61, Polish Acad. Sci., Warsaw (2003), 305-331 .
[30] M Takeuchi, Matched pairs of groups and bismash products of Hopf algebras. Comm. Algebra 9 (1981), no. 8, 841-882.
[31] A. Vernitski, Describing semigroups with defining relations of the form $x y=y z$ and $y x=z y$ and connection with knot theory. Semigroup Forum, Volume 95, 1-17 (2016).
[32] A. Vernitski, L. Tunsi, C. Ponchel, A. Lisitsa, Dihedral semigroups, their defining relations and an application to describing knot semigroups of rational links. Semigroup Forum, Volume 97, 75-86 (2018).
[33] V. V. Vershinin, On the inverse braid monoid. Topology and its Applications Volume 156, Issue 6, 1153-1166, 2009.
[34] S. K. Winker, Quandles, knot invariants, and the n-fold branched cover. PhD thesis, University of Illinois at Chicago (1984).
[35] O. Zariski, On the Poincare group of rational plane curves, Am. J. Math. (1936), 58, 607-619.

