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Preface

We shall consider two theories related to semigroups. In part I, we consider
the theory of PM -monoids. The braid groups and the symmetric groups
have deep relations and have rich theories. The braid groups are generalized
to the Artin groups and the symmetric groups to the Coxeter groups [3].
We will consider two monoids analogous to the symmetric group Sn and the
braid group Bn, respectively. We first define a monoid Rn, which we call a
PM -monoid. A PM -monoid can be seen as an analogue of the rook monoid
defined by L. Solomon [27]. A PM -monoid is obtained in the context of a
compactification of the projective linear group defined by Mutsumi Saito [25].
The structure of a PM -monoid is described by a matched pair of Sn and a
collection of the ordered partition (Proposition 2.1.2). We show that a PM -
monoid has a presentation with generators and relations (Proposition 2.2.2).
This is an analogue of the fact that the rook monoid has a presentation with
generators and relations [27]. In the context of this presentation, we define
a braid PM -monoid denoted by RBn (Definition 2.3.1). The braid PM -
monoid is an analogue of the inverse braid monoid defined by D. Easdown
and T. G. Lavers [5]. As a main result of the part I, we will show that the
braid PM -monoid has a presentation by geometric braids and contains the
braid group (Theorem 2.3.7). This is an analogue of the fact that the braid
groups and the inverse braid monoids have the presentation by the geometric
braids [14],[5]. Moreover, we shall find a solution to the word problem of the
braid PM -monoid (Theorem 2.3.12). This statement is an analogue of the
fact that the braid groups and the inverse braid monoids have a solution to
the word problem [8],[33].

In part II, we develop the theory of knot semigroups, which were defined
by A. Vernitski in [33]. A knot semigroup is a cancellative semigroup whose
defining relations come in pairs of the form xy = yx and yx = zy arizing
from crossing points of a given knot diagram. This construction is similar
to the Wirtinger presentation of a knot group. Vernitski proved in [33] that
the knot semigroup of torus knots and twist knots are isomorphic to what he
calles alternating sum semigroups and conjectured that the knot semigroup of
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2-bridge knot is isomorphic to an alternating sum semigroup [33]. To support
this conjecture, we shall prove that the knot semigroup of the double twist
knot is isomorphic to an alternating sum semigroup (Theorem 4.1.2). Next,
we consider the growth of knot semigroups. To investigate the growth of knot
semigroups, we use the Gelfand-Kirillov dimension of semigroup algebra. As
a main result of this part, we construct a link invariant arizing from the
Gelfand-Kirillov dimension of algebra (Theorem 5.2.1). This research is a
first step connecting knot theory and semigroup theory.
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Chapter 1

Preliminaries

1.1 Semigroups

We shall explain basic concept related to semigroups.

1.1.1 Definitions

Definition 1.1.1. A semigroup is a set S equipped with a binary operation
S×S → S that is associative. Moreover, if S has an identity element 1, then
S is called a monoid.

Next we define the cancellative semigroups.

Definition 1.1.2. A semigroup S is called cancellative if it satisfies two
conditions : if xz = yz then x = y, and if xy = xz then y = z for x, y, z ∈ S.

We shall define an inverse semigroup.

Definition 1.1.3. An inverse semigroup is a semigroup S such that, for each
x ∈ S, there exists a unique y ∈ S such that

xyx = x, and yxy = y.

1.1.2 Presentations of a semigroup

Let X be a set, and X∗ the set of words of X. Let R be the subset of
X∗ × X∗. We define ∼ the smallest equivalence relation on X∗ containing
all pairs (w1rw2, w1r

′w2), where (r, r′) ∈ R and w1, w2 ∈ X∗. We define

⟨X | R⟩ := X∗/ ∼ .
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⟨X | R⟩ is called a semigroup presentation. The elements of X are called
generators and the elements of R are called relations.

The word problem for a presentation ⟨X | R⟩ is the following: given two
words w,w′ ∈ X∗ representing certain a, a′ ∈ ⟨X | R⟩, determine whether
a = a′.

1.2 Braid groups

We will review braid groups.

Definition 1.2.1. The braid group Bn is the group generated by n − 1
elements σ1, σ2, . . . , σn−1 with the braid relations

σiσj = σjσi (i = 1, 2, . . . , n− 1, |i− j| ≥ 2),

σiσi+1σi = σi+1σiσi+1 (i = 1, 2, . . . , n− 2).

An element of the braid group can be represented by a braid diagram.
We denote by I the closed interval [0, 1] in R. By a topological interval, we
mean a topological space homeomorphic to I = [0, 1].

Definition 1.2.2. A braid diagram on n strands is a set D ⊂ R × I split
as a union of n topological intervals called the strands of D such that the
following three conditions are met:

(1) The projection R× I → I maps each strand homeomorphically onto I.

(2) Every point of {1, 2, . . . , n}×{0, 1} is the endpoint of a unique strand.

(3) Every point of R × I belongs to at most two strands. At each inter-
section point of two strands, these strands meet transversely, and one
of them is distinguished and said to be undergoing, the other strands
being overgoing.

An example of a braid diagram is given below.
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Given two braid diagrams D1, D2 on n strands, their product D1D2 is ob-
tained by placing D1 on the top of D2 and squeezing the resulting diagram
into R× I.

D1D2 =

Denote by Bn the set of braid diagrams on n strands with multiplication
defined above. In fact, Bn becomes a group and the following theorem holds.

Theorem 1.2.3. The groups Bn and Bn are isomorphic.

1.3 Algebraic monoids

The definition of PM -monoid is motivated by the definition of the Renner
monoids. The Renner monoid appears in the algebraic monoid theory. So we
shall explain the algebraic monoid theory. Let K be an algebraically closed
field. Let Mn =Mn(K) denote the set of all n× n matrices over K.

Definition 1.3.1. A linear algebraic monoid is a submonoid of Mn which is
a Zariski closed subset.

Let M be a reductive monoid, i.e., M is a linear algebraic monoid which
is irreducible as an algebraic set and has a connected reductive group G of
units. Let T be a maximal torus of G. Then

R = NG(T )/T

is called a Renner monoid ([24] Definition 11.2), where the closure is taken
in Zariski topology. This contains the Weyl group W = NG(T )/T of G.
Renner monoids play the central role in the linear algebraic monoid the-
ory like Weyl groups do in the linear algebraic group theory, and have
the following properties. Let E(M) be the set of idempotents of M , and
P (e) = {g ∈ G | ge = ege} for e ∈ E(M). Let B be a Borel subgroup
containing T , and Λ(B) = {e ∈ E(T ) | P (e) ⊇ B}.
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Theorem 1.3.2 ([28] Theorem 5.10.). Let M be a reductive monoid, and
e ∈ Λ(B). Then

(1) R is a finite inverse monoid.

(2) The group of units of R coincide with W , and R =WE(R).

(3) E(R) ≃ E(T ).

(4) M =
∑
ρ∈R

BρB, and BρB = Bρ′B implies ρ = ρ′.

(5) If s is a Coxeter generator, then BsB ·BρB ⊆ BsρB ∪BρB.

(6) GeG =
∑

ρ∈WeW

BρB.

(7) If w0 ∈ W is the longest element, then Bw0eB is open and dense in
GeG.

1.4 Rook monoids

Let Rn be the set of n × n zero-one matrices which have at most one entry
equal to 1 in each row and in each column. The monoid Rn is called the rook
monoid, which is the Renner monod of type A. The rook monoid Rn has the
following presentation using a generating set and relations:

Theorem 1.4.1 ([10] Prop 1.6.). The rook monoid has a monoid presenta-
tion with generating set {s1, . . . , sn−1, e0, . . . , en−1} and defining relations:

s2i = 1 (1 ≤ i ≤ n− 1),

sisj = sjsi (1 ≤ i, j ≤ n− 1, |i− j| ≥ 2),

sisi+1si = si+1sisi+1 (1 ≤ i ≤ n− 1),

eiej = ejei = emin(i,j) (0 ≤ i, j ≤ n− 1),

ejsi = siej (1 ≤ i < j ≤ n− 1),

ejsi = siej = ej (0 ≤ j < i ≤ n− 1),

eisiei = siei−1 (1 ≤ i ≤ n− 1).
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1.5 Inverse braid monoids

We explain inverse braid monoids defined by D. Easdown and T.G. Lavers
[5].

Definition 1.5.1. The inverse braid group IBn is the group generated by
σ±
1 , σ

±
2 , . . . , σ

±
n−1, ϵ with relations

σiσ
−1
i = σ−1

i σi = 1 (i = 1, 2, . . . , n− 1),

σiσj = σjσi (i = 1, 2, . . . , n− 1, |i− j| ≥ 2),

σiσi+1σi = σi+1σiσi+1 (i = 1, 2, . . . , n− 2),

ϵ2 = ϵ = ϵσ2
n−1 = σ2

n−1ϵ,

ϵσi = σiϵ (i = 1, 2, . . . , n− 2),

ϵσn−1ϵ = σn−1ϵσn−1ϵ = ϵσn−1ϵσn−1.

The relation of the symmetric group and the braid group is generalized
to the relation of the rook monoid and the inverse braid monoid.

We next define a partial braid diagram. Take the usual coordinate system
for R3 (in which we think of the z-axis as pointing downwards). Choose
z0 < z1 and call the planes z = z0 and z1 upper and lower, respectively.
Mark n ≥ 1 distinct points P1, . . . , Pn on a line in the upper plane and
project them orthogonally onto the lower plane yielding points P ′

1, . . . , P
′
n.

An arc is the image of an embedding from interval [0, 1] into R3. A partial
braid on n strings is a system

β = {β1, . . . , βm}

of m arcs for some m ≤ n such that

(1) there is a rank m partial one-one mapping Φβ : {1, . . . , n} → {1, . . . , n}
with domain {i1, . . . , im} such that βi connects Pij to Pϕβ(ij) for j =
1, . . . ,m,

(2) each arc intersects each intermediate parallel plane between (and in-
cluding) the upper and lower planes exactly once,

(3) the union β1 ∪ · · · ∪ βm of the arcs intersect each intermediate parallel
plane between the upper and lower planes in exactly m distinct points.

If m = 0, we get the empty braid.
Two partial braids β = {β1, . . . , βm} and γ = {γ1, . . . , γm′} are called

equivalent if
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(1) Φβ = Φγ. In particular m = m′ and we may write the domain of Φβ as
{i1, . . . , im} for some i1 < · · · < im,

(2) β and γ are homotopy equivalent, which we mean that there exist
continuous maps

Fj : [0, 1]× [0, 1] → R3

for j = 1, . . . ,m, such that, for all t ∈ [0, 1],

Fj(t, 0) = βj(t) and Fj(t, 1) = γj(t),

for all s ∈ [0, 1],

Fj(0, s) = Pij and Fj(1, s) = P ′
Φβ(ij)

,

and, for each s ∈ [0, 1], if we define

βs = {βs1, . . . , βsm}

where
βsj (t) = Fj(s, t) for j = 1, . . . ,m,

then βs is itself a partial braid. Write β ≡ γ if β and γ are equivalent
and [β] for the equivalence class containing β.

Define the product β1β2 of two partial braids β1 and β2 as follows:

(1) translate β2 parallel to itself in space so that the upper plane of β2 and
the lower plane of β1 coincide,

(2) keeping the plane z = z0 fixed, contract the resulting system of arcs
so that the translated lower plane of β2 moves into the position of the
plane z = z1,

(3) remove any arcs that do not join the upper and lower planes.

For example, if

α = β =

Then

αβ = = =
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Put
Mn = {[β] | β is a partial braid }.

Then we have the following theorem.

Theorem 1.5.2 ([5] Theorem 3.1.). The monoids Mn and IBn are isomor-
phic.

1.6 Compactifications of projective linear groups

We explain the compactification of the projective linear group constructed
by M. Saito [25].

1.6.1 Motivation

One strategy of compactification is constructing a “limit”. Then we consider
the set of all limit points and introduce a topology compatible with the limit.
For instance Y. A. Neretin constructed a compactification of the projective
linear group by this strategy called hinge [22].

Let V be an n-dimensional vector space over C and Ai ∈ End(V ), (i =
1, 2, . . . ). Suppose that the linear map

Aϵ :=
m∑
i=0

Aiϵ
i

is in GL(V ) for ϵ ∈ R\{0}. Dividing by nonzero scalar matrices we consider
the projective linear map

Aϵ ∈ PGL(V ). (1.1)

We want to define a “limit” lim
ϵ→0

Aϵ. To define a limit, we observe the action

of Aϵ on P(V ). For x ∈ P(V ) we have

lim
ϵ→0

Aϵ(x) =


A0x (x ̸∈ KerA0)

A1x (x ̸∈ KerA0\KerA1)

A2x (x ̸∈ KerA0 ∩KerA1\KerA2)
... .

Thus we define the limit of (1.1) as

lim
ϵ→0

Aϵ := (A0, A1|P(KerA0), A2|P(KerA0∩KerA1), . . . ). (1.2)
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1.6.2 Definition of PM
In order to construct a compactification of the projective linear group, we
consider the set of forms of the right hand side of (1.2). We define the
following sets. Let V be an n-dimensional vector space over C. Set

M :=M(V ) =

(A0, A1, . . . , Am) |

m = 0, 1, 2, . . .
0 ̸= Ai ∈ Hom(Vi, V ) (0 ≤ i ≤ m)

V0 = V, Vm+1 = 0
Vi+1 = Ker(Ai) (0 ≤ i ≤ m)


and

M̃ := M̃(V ) =

(A0, A1, . . . , Am) |

m = 0, 1, 2, . . .
0 ̸= Ai ∈ End(V ) (0 ≤ i ≤ m)

∩i−1
k=0KerAk ̸⊆ KerAi
∩mk=0KerAk = 0

 .

Let A := (A0, A1, . . . , Am) ∈ M . Since Ai ∈ Hom(Vi, V )\{0}, we can con-
sider the element Ai ∈ PHom(Vi, V ) represented by Ai, and we can define

PA := (A0, A1, . . . , Am).

Let PM = PM(V ) denote the image of M under P. PM̃ can be defined
similarly.

1.6.3 Topology of PM
We introduce a topology in PM which we can deal with the limit (1.2). We fix
a Hermitian inner product on V . Let W be a subspace of V . By considering
V = W ⊕W⊥ via this inner product, we regard Hom(W,V ) as a subspace of
End(V ). We consider the classical topology in PHom(W,V ) for any subspace
W of V .
Let A = (A0, A1, . . . , Am) ∈M . Then Ai ∈ Hom(Vi, V ), where Vi = V (A)i =
Ker(Ai−1). Let Ui be a neighborhood of Ai in PHom(V (A)i, V ). Then set

UPA(U0, . . . , Um) =

{
PB = (B0, B1, . . . , Bn)

|
∀i = 1, . . . ,m,∃ j ∈ {1, . . . , n} s.t.

V (B)j ⊇ V (A)i and
Bj|V (A)i ∈ Ui

}
.

(1.3)

We will explain the fact that the sets (1.3) can define a topology that deal
with the limit (1.2) by using the following example.
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Example 1.6.1. Let V be a 4-dimensional vector space over C. Taking the
standard basis, we identify V ∼= C4. Let

A = (A0, A1, A2, A3) =



1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,


0 0 0
1 0 0
0 0 0
0 0 0

 ,


0 0
0 0
1 0
0 0

 ,


0
0
0
1


 ,

B(t) = (B0(t), B1(t)) =



1 0 0 0
0 t 0 0
0 0 0 0
0 0 0 0

 ,


0 0
0 0
1 0
0 t


 ,

and let Ui be a neighborhood of Ai, (i = 0, 1, 2, 3). In the rule of (1.2), B(t)
converges to A when t→ 0. In terms of (1.3), we want to have

B(t) ∈ UPA(U0, U1, U2, U3) (1.4)

when t << 0. In fact, (1.4) holds by the following :

V (B)0 ⊇ V (A)0, B0(t)|V (A)0 ∈ U0 since lim
t→0

B0(t)|V (A)0 =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,

V (B)0 ⊇ V (A)1, B0(t)|V (A)1 ∈ U1 since lim
t→0

B0(t)|V (A)1 =


0 0 0
1 0 0
0 0 0
0 0 0

 ,

V (B)1 ⊇ V (A)2, B1(t)|V (A)2 ∈ U2 since lim
t→0

B1(t)|V (A)2 =


0 0
0 0
1 0
0 0

 ,

V (B)1 ⊇ V (A)3, B1(t)|V (A)3 ∈ U3 since lim
t→0

B1(t)|V (A)3 =


0
0
0
1

 .

In fact (1.3) induces a topology on PM by the following lemma.

Lemma 1.6.2 ([25] Lemma 3.2.). The sets

{UPA(U0, . . . , Um)|Ui is a neighborhood of Ai (0 ≤ i ≤ m)}

satisfy the axiom of a base of neighborhoods of PA, and hence define a topology
in PM .
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Moreover the following theorem holds.

Theorem 1.6.3 ([25] Theorem 5.1., Proposition 3.9, 3.10.). The set PM is
compact, and PGL(V ) is dense open in PM .

Here we regard an element of PGL(V ) as a one-term element of PM , and
PM is a compactification of PGL(V ).

1.6.4 Monoid structure of PM̃
For A = (A0, A1, . . . , Am), B = (B0, B1, . . . , Bn)∈ PM̃ , define AB by remov-
ing the redundant matrices from

AB = (A0B0, A1B0, . . . ,AmB0, A0B1,

. . . , AmB1, . . . , A0Bn, . . . , AmBn).
(1.5)

This defines a monoid structure on PM̃ ([25] Proposition 6.6.).



Chapter 2

PM-monoids

We shall define a PM -monoid denoted by Rn.

2.1 PM-monoids and their structures

We shall define a PM -monoid denoted by Rn, and reveal its structue. Let T
be a maximal torus of PGLn. Then we consider the following monoid

Rn = NPGLn(T )/T,

where the closure is taken in the topology of PM . We call this monoid
Rn a PM -monoid. We next consider the structure of a PM -monoid. The
structure of a PM -monoid can be described in terms of a matched pairs. We
first explain a matched pairs (cf. [18],[29]). Let S be a monoid. We denote
the unit element of S by 1S.

A matched pair of monoids means a triple (S,B, σ) such that S acts on
B and B acts on S and these actions are compatible with each other.

Definition 2.1.1. Let S,B be monoids which have binary operations ⇀:
S ×B → B and ↼: S ×B → S. A matched pair of monoids means a triple
(S,B, σ), where S,B are monoids and

σ : S ×B → B × S, (s, b) 7→ (s ⇀ b, s ↼ b)

is a map satisfying the following conditions :

(1) s ⇀ (t ⇀ b) = st ⇀ b,

(2) st ↼ b = (s ↼ (t ⇀ b))(t ↼ b),

(3) (s ↼ b)↼ c = s ↼ bc,

19



20

(4) s ⇀ bc = (s ⇀ b)((s ↼ b)⇀ c),

(5) 1S ⇀ b = b,

(6) s ⇀ 1B = 1B,

(7) s ↼ 1B = s,

(8) 1S ↼ b = 1S

for s, t ∈ S, b, c ∈ B.

The product B × S forms a monoid with product

(b, s)(c, t) = (b(s ⇀ c), (s ↼ c)t).

This monoid is denoted by B ⋊⋉σ S.
An ordered set partition of a set T is a list of pairwise disjoint nonempty

subsets of T such that the union of these subsets is S. Let

Pn =

{
({i1, . . . , ik1}, {ik1+1, . . . , ik2}, . . . , {ikm+1, . . . , in})

| {i1 . . . , in} = {1, . . . , n}
1 ≤ k1 < k2 < · · · < km−1 < n

}
.

An element of Pn is called an ordered set partitions of [n] := {1, 2, . . . , n}.
The set Pn has a monoid structure defined by

(p1, . . . , pm)∗ (p′1, . . . , p′m′) := (p1∩p′1, . . . , pm∩p′1, . . . , p1∩p′m′ , . . . , pm∩p′m′).

Then the following proposition holds.

Proposition 2.1.2. Let Rn be the PM -monoid, Sn the symmetric group
and Pn the collection of the ordered set partitions of [n]. Define a map

φ : Pn × Sn → Sn × Pn, ((p1, . . . , pm), w) 7→ (w, (w−1(p1), . . . , w
−1(pm))).

Then
Rn ≃ Sn ⋊⋉φ Pn.

Proof. Since NPGLn(T ) = {
n∑
j=1

tjEπ(j)j | tj ∈ C∗, π ∈ Sn}, we have

NPGLn(T ) =

{(∑
j∈p1

tjEπ(j)j, . . . ,
∑
j∈pm

tjEπ(j)j

)
| tj ∈ C∗,
(p1, . . . , pm) ∈ Pn, π ∈ Sn

}
.
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Thus

NPGLn(T )/T =

{(∑
j∈p1

Eπ(j)j, . . . ,
∑
j∈pm

Eπ(j)j

)
| (p1, . . . , pm) ∈ Pn, π ∈ Sn

}
.

Then we have the following bijective correspondence as sets.

NPGLn(T )/T ≃ Sn × Pn :(∑
j∈p1

Eπ(j)j, . . . ,
∑
j∈pm

Eπ(j)j

)
7→ (π, (p1, . . . , pm)).

(2.1)

To introduce a monoid structure on Sn×Pn, we recall a monoid structure of
NPGLn(T )/T (cf. (1.5)).(∑

j∈p1

Eσ(j)j, . . . ,
∑
j∈pm

Eσ(j)j

)
·

∑
k∈p′1

Eσ′(k)k, . . . ,
∑
k∈p′n

Eσ′(k)k


=

∑
j∈p1

Eσ(j)j
∑
k∈p′1

Eσ(k)k,
∑
j∈p2

Eσ(j)j
∑
k∈p′1

Eσ(k)k, . . . ,
∑
j∈pm

Eσ′(j)j

∑
k∈p′n

Eσ′(k)k


=

 ∑
l∈σ′−1(p1)∩p′1

Eσσ′(l)l,
∑

l∈σ′−1(p2)∩p′1

Eσσ′(l)l, . . . ,
∑

l∈σ′−1(pm)∩p′n

Eσσ′(l)l

 .

By the above calculation, we define a product on Sn × Pn

(σ, (p1, . . . , pm))·(σ′, (p′1, . . . , p
′
n))

:= (σσ′, (σ′−1
(p1), . . . , σ

′−1
(pm)) ∗ (p′1, . . . , p′n)).

(2.2)

Then (2.1) becomes an isomorphism of monoids. On the other hand, we
define a map

φ : Pn × Sn → Sn × Pn : ((p1, . . . , pm), σ) 7→ (σ, (σ−1(p1), . . . , σ
−1(pm))).

Then (Pn, Sn, φ) satisfies (1)-(8) in Definition 2.1.1, and becomes a matched
pair. The monoid structure of Sn ⋊⋉φ Pn coincides with (2.2). Therefore

Rn ≃ Sn ⋊⋉φ Pn

as monoids.
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2.2 Properties of PM-monoids

A PM -monoid has the following properties analogous to Theorem 1.3.2.

Proposition 2.2.1. Let Rn = NPGLn(T )/T , and

Λn =

{
(
∑
j∈p1

Ejj,
∑
j∈p2

Ejj, . . . ,
∑
j∈pn

Ejj),

| (p1, . . . , pn) = ({1, . . . , k1}, . . . , {km−1 + 1, . . . , n})
1 ≤ k1 < k2 < · · · < km−1 < n

}
.

(a) Rn is a finite inverse monoid. Moreover the number of its elements is

|Rn|

=
∑

r1+···+rm=n

(
n
r1

)2

r1!

(
n− r1
r2

)2

r2!

. . .

(
n− r1 − · · · − rn−1

rn

)2

rn!

= n!
n∑

m=1

m!S(n,m),

(2.3)

where S(n,m) is the Stirling number of the second kind, i.e., S(n,m)
is the number of ways of partitioning a set of n elements into m non-
empty subsets.

(b) The unit group of Rn coincide with W := NPGL(T )/T , and Rn =
WE(Rn).

(c) E(Rn) =
∪
w∈W

wΛnw
−1.

(d) Rn =
⊔
e∈Λn

WeW .

Proof. (a) For any (σ, p) ∈ Rn, let (σ, p)
∗ := (σ−1, σ(p)). Then

(σ, p) = (σ, p)(σ, p)∗(σ, p), (σ, p)∗ = (σ, p)∗(σ, p)(σ, p)∗.

Thus Rn is an inverse monoid. We next consider the number |Rn|. We fix
a partition r1 + r2 + · · · + rm = n. We first choose r1 columns and r1 rows
among the n columns and n rows, and choose a placement of 1’s in the place
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of r1 × r1 permutation matrices. Next we choose r2 columns and r2 rows
among the n− r1 columns and n− r1 rows, and choose a placement of 1’s in
the place of r2 × r2 permutation matrices. We repeat this process and sum
up over partitions r1+r2+ · · ·+rm = n, and then we obtain the first equality
of (2.3).

On the other hand, let Pn,m be the collection of ordered set partitions of
[n] with m blocks. Then |Pn,m| = m!S(n,m) by the definition of the Stirling
numbers of the second kind. Thus we obtain the second equality of (2.3)

since |Pn| =
n∑

m=1

|Pn,m| and |Rn| = |Sn||Pn|.

(b) First we see

E(Rn) =

{
(
∑
j∈p1

Ejj,
∑
j∈p2

Ejj, . . . ,
∑
j∈pn

Ejj) | (p1, . . . , pn) ∈ Pn

}
. (2.4)

In fact, if (σ, p)(σ, p) = (σ, p) for (σ, p) ∈ Rn, then σ
2 = σ, i.e., σ = e. Then

Rn = WE(Rn).
(c) follows from (2.4)
(d)⊔
e∈Λn

WeW

=

{
σ(
∑
j∈p1

Ejj, . . . ,
∑
j∈pn

Ejj)τ | (p1, . . . , pn) = (k1, . . . , km−1)
σ, τ ∈ W

}

=

{
(
∑
j∈p1

Eσ−1(j)τ(j), . . . ,
∑
j∈pn

Eσ−1(j)τ(j)) |
(p1, . . . , pn) = (k1, . . . , km−1)

σ, τ ∈ W

}

=

{
(
∑

k∈τ(p1)

E(τσ)−1(k)k, . . . ,
∑

k∈τ(pn)

E(στ)−1(k)k) |

(p1, . . . , pn) = (k1, . . . , km−1)
σ, τ ∈ W

}
= Rn,

where we denote

(k1, . . . , km−1) = ({1, . . . , k1}, . . . , {km−1 + 1, . . . , n}). (2.5)
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We construct a presentation for Rn = NPGL(T )/T , similar to that of the
rook monoid. We first define some notations. For i = 1, . . . , n − 1 and a
partition (k1, . . . , km−1) (cf. (2.5)), if there exists j ∈ {1, . . . , n} such that
{i, i+ 1} ⊆ {kj−1 + 1, . . . , kj}, then we set

i∗ := j.

For σ ∈ Sn we define a map φσ : Pn → Pn by

(p1, . . . , pm) 7→ (σ−1(p1), . . . , σ
−1(pm)).

We define a set

Πn = {(k1, . . . , km−1) : 1 ≤ k1 < · · · < km−1 < n},

where (k1, . . . , km−1) is (2.5). For p ∈ Pn, take an element w ∈ Sn such that
wpw−1 ∈ Πn, and set

uw(p) := wpw−1 ∈ Πn.

We also set
Ad(σ)(e) := σ−1eσ.

Using these notations we obtain the following monoid presentation of the
PM -monoid Rn.

Proposition 2.2.2. The PM -monoid Rn has a monoid presentation with
generating set

{s1, . . . , sn−1, ek1,...,km−1 (1 ≤ k1 < · · · < km−1 < n)}

and defining relations

s2i = 1 (1 ≤ i ≤ n− 1), (2.6)

sisj = sjsi (1 ≤ i, j ≤ n− 1, |i− j| ≥ 2), (2.7)

sisi+1si = si+1sisi+1 (1 ≤ i ≤ n− 1), (2.8)

ek1,...,ki∗ ,...,km−1si = siek1,...,ki∗ ,...,km−1 (2.9)(
1 ≤ i ≤ n− 1

1 ≤ k1 < · · · < ki∗ < · · · < km−1 < n

)
,

ek1,...,km−1si1 . . . sirel1,...,lm′−1
= Ad(sj1 . . . sjt)(eq)si1 . . . sir (2.10)

1 ≤ k1 < · · · < km−1 < n
1 ≤ l1 < · · · < lm′−1 < n

{i1, i1 + 1} ⊈ {kl−1 + 1, . . . , kl},∀ l = 1, . . . , n
q = usj1 ...sjt ((k1, . . . , km−1) ∗ φ(si1 ...sir )

−1((l1, . . . , lm′−1)))

 .
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Proof. Let

ek1,...,km−1 :=

 k1∑
j=1

Ejj,

k2∑
j=k1+1

Ejj, . . . ,
n∑

j=km−1+1

Ejj

 ,

and si = (i, i+1). These elements satisfy the above relations. Let R ′
n be the

monoid generated by elements s′1, . . . , s
′
n−1, e

′
k1,...,km−1

subject to the defining
relations (2.6)-(2.10). Since Rn satisfies (2.6)-(2.10), there is a surjective
monoid homomorphism θ : R ′

n → Rn such that θ(s′i) = si and θ(e
′
k1,...,km−1

) =
ek1,...,km−1 . Let S ′

n = ⟨s′1, . . . , s′n−1⟩ ⊆ R ′
n. To show that θ : R ′

n → Rn is an
isomorphism of monoids, it suffices to show that |R ′

n| ≤ |Rn|, where |Rn| is
given by (2.3).
We consider the following set∪

1≤k1<···<km<n

S ′
ne

′
k1,...,km−1

S ′
n. (2.11)

Using relations (2.9) and (2.10), we can show that the set (2.11) is stable
under the left multiplication by e′k1,...,km−1

and S ′
n. The set (2.11) contains

en = 1. Thus the set (2.11) contains Rn. Therefore we have

R ′
n =

∪
1≤k1<···<km<n

S ′
ne

′
k1,...,km−1

S ′
n.

We fix 1 ≤ k1 < · · · < km−1 < n and let

S ′
k1,...,km−1

:= ⟨s′1, . . . , s′k1−1, s
′
k1+1, . . . , s

′
k2−1, s

′
k2+1, . . . , s

′
km−1−1, s

′
km−1+1, . . . , s

′
n−1⟩

≃ Sk1 × Sk2−k1 × · · · × Sn−km−1 .

Write S ′
n = S ′

k1,...,km−1
Xk1,...,km−1 , where Xk1,...,km−1 is a set of coset represen-

tatives. Then by the relation (2.9) of the above relations,

e′k1,...,km−1
S ′
n = e′k1,...,km−1

S ′
k1,...,km−1

Xk1,...,km−1

= S ′
k1,...,km−1

e′k1,...,km−1
Xk1,...,km−1

⊆ S ′
ne

′
k1,...,km−1

Xk1,...,km−1 .

Thus

|S ′
ne

′
k1,...,km−1

S ′
n| ≤ |S ′

ne
′
k1,...,km−1

Xk1,...,km−1 |
≤ |S ′

ne
′
k1,...,km−1

||Xk1,...,km−1 |

=
n!

k1!(k2 − k1)! . . . (n− km−1)!
|S ′
nek1,...,km−1 |

≤ (n!)2

k1!(k2 − k1)! . . . (n− km−1)!
.
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Therefore

|
∪

1≤k1<···<km<n

S ′
ne

′
k1,...,km−1

S ′
n| ≤

∑
1≤k1<···<km<n

(n!)2

k1!(k2 − k1)! . . . (n− km−1)!

=
∑

r1+···+rm=n

(n!)2

r1!r2! . . . rm!
.

On the other hand∑
r1+···+rm=n

(
n
r1

)2

r1!

(
n− r1
r2

)2

r2! . . .

(
n− r1 − · · · − rn−1

rn

)2

rn!

=
∑

r1+···+rm=n

(n!)2

r1!r2! . . . rm!
.

Remark 2.2.3. In the relation (2.10), the adjustment by Ad is necessary
since the right hand of (2.10) is not necessarily of the form ek1,...,km−1si1 . . . sir .
For example, in R3

e2(s2s1s2)e1 = s1s2e1s2s1(s2s1s2).

2.3 Braid PM-monoids

2.3.1 Definitions of Braid PM-monoids

We define a braid monoid according to Proposition 2.2.2. The notations are
the same as those in Proposition 2.2.2, and we add the following notation.
We denote by b|I an element of braid group of #I-strings which has strings
in the place of any i ∈ I for b ∈ Bn and I ⊂ {1, . . . , n}. If si1 , . . . , sir ∈ Bn

satisfy si1 . . . sir |I = id|I , where I ⊂ {1, . . . , n} and id is the identity braid in
Bn, then we abbreviate this condition as {i1, . . . , ir}|I = id.

Definition 2.3.1. The braid PM -monoid is a monoid which is defined by
the monoid presentation with generating set

{s±1
1 , . . . , s±1

n−1, ek1,...,km−1 (1 ≤ k1 < · · · < km−1 < n)}

and defining relations

sis
−1
i = s−1

i si = 1 (1 ≤ i ≤ n− 1), (2.12)

sisj = sjsi, (1 ≤ i, j ≤ n− 1, |i− j| ≥ 2), (2.13)

sisi+1si = si+1sisi+1 (1 ≤ i ≤ n− 1), (2.14)



27

s±1
i1
. . . s±1

ir
ek1,...,km−1s

±1
j1
. . . s±1

jt
= ek1,...,km−1 (2.15)(

{i1, . . . , ir, j1, . . . , jt}|{kj−1−1,...,kj} = id
∀j = 1, . . . ,m

)
,

ek1,...,km−1s
±1
i1
. . . s±1

ir
el1,...,lm′−1

= Ad(s±1
j1
. . . s±1

jt
)(eq)s

±1
i1
. . . s±1

ir

(2.16)
1 ≤ k1 < · · · < km−1 < n
1 ≤ l1 < · · · < lm′−1 < n

{i1, i1 + 1} ⊈ {kl−1 + 1, . . . , kl},∀ l = 1, . . . ,m

q = us
±1
j1
...s±1

jt ((k1, . . . , km−1) ∗ φ(si1 ...sir )
−1((l1, . . . , lm′−1)))

 .

2.3.2 Braid diagrams of braid PM-monoids

We denote by M the monoid defined in Definition 2.3.1. To describe the
monoid M geometrically we shall define PM -braid and PM -braid diagram.
First, we explain a formal definition of PM -braid and PM -braid diagram.
Next, we describe an informal explanation of PM -braid diagrams.

First, we shall define an arc.

Definition 2.3.2. An arc is the image of an embedding from the unit interval
[0, 1] into R3.

Let n be a fixed natural number, and m a natural number such that
m ≤ n. Take the usual coordinate system (x, y, z) for R3. Choose planes

z = z
(i)
j (i = 1, . . . ,m, j = 0, 1) where

z
(i)
j =

{
2m− 2i+ 1 (j = 1)

2m− 2i (j = 0).

Mark n ≥ 0 distinct points P i
1, . . . , P

i
n on a line in the plane z = z

(i)
1 , and

project this orthogonally on the plane z = z
(i)
0 , yielding points Qi

1, . . . , Q
i
n

for each i = 1, . . . ,m.
A PM -braid on n strings is a system

β = {β1, . . . , βk1 , βk1+1, . . . , βk2 , βk2+1, . . . , βkm−1+1, . . . , βn}

of n arcs for some 1 ≤ k1 < k2 < · · · < km−1 < n such that

(1) There exists a partial one-one mapping of rank k1

Φβ
1 : {1, . . . , n} → {1, . . . , n}
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with domain {i1, . . . , ik1} such that βj connects P
1
ij
to Q1

Φβ
1 (ij)

for j =

1, . . . , k1.
There exists a partial one-one mapping of rank k2 − k1

Φβ
2 : {1, . . . , n}\{i1, . . . , ik1} → {1, . . . , n}\{i1, . . . , ik1}

with domain {ik1+1, . . . , ik2} such that βj connects P 2
ij

to Q2

Φβ
1 (ij)

for

j = k1 + 1, . . . , k2.

. . . . . .

There exists a partial one-one mapping of rank n− km−1

Φβ
m : {1, . . . , n}\{i1, . . . , ikm−1} → {1, . . . , n}\{i1, . . . , ikm−1}

with domain {ikm−1+1, . . . , in} such that βj connects P
m
ij

to Qm

Φβ
m(ij)

for

j = km−1 + 1, . . . , n.

(2) For j = 1, . . . ,m, the arc βl intersects the plane z = z
(j)
0 exactly once,

and βl intersects the plane z = z
(j)
1 exactly once, for l = kj−1+1, . . . , kj,

and βs does not intersect z = z
(t)
0 , z = z

(t)
1 for s ̸= t.

(3) For j = 1, . . . ,m the union βkj−1+1∪· · ·∪βkj of the arcs intersects each
of parallel planes z = z

(j)
0 , z = z

(j)
1 at exactly kj − kj−1 distinct points.

Example 2.3.3. Let n = 3 and m = 2. The following is a PM -braid.
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Two PM -braids

β = {β1, . . . , βk1 , βk1+1, . . . , βk2 , βk2+1, . . . , βkm−1+1, . . . , βn},
γ = {γ1, . . . , γk1 , γk1+1, . . . , γk2 , γk2+1, . . . , γkm′−1+1, . . . , γn}

are defined to be equivalent if

(1) m = m′ and Φβ
i = Φγ

i for i = 1, . . . ,m,

(2) β and γ are homotopy equivalent, i.e., there exist continuous maps

Fj : [0, 1]× [0, 1] → R3, (j = 1, . . . ,m)

such that for all s, t ∈ [0, 1],

Fj(t, 0) = βj(t)
Fj(t, 1) = γj(t)

(j = 1, . . . ,m),

Fj(0, s) = P 1
ij

Fj(1, s) = Q1

Φβ
1 (ij)

(j = 1, . . . , k1),

Fj(0, s) = P 2
ij

Fj(1, s) = Q2

Φβ
2 (ij)

(j = k1 + 1, . . . , k2),

. . .

Fj(0, s) = Pm
ij

Fj(1, s) = Pm

Φβ
m(ij)

(j = km−1 + 1, . . . , n),

and, for each s ∈ [0, 1] if we define

βs = {βs1, . . . , βsm},

where
βsj (t) = Fj(s, t) for j = 1, . . . , n,

then βs itself is a PM -braid.

Define the product βγ of two braids

β = {β1, . . . , βk1 , βk1+1, . . . , βk2 , βk2+1, . . . , βkm−1+1, . . . , βn},
γ = {γ1, . . . , γk1 , γk1+1, . . . , γk2 , γk2+1, . . . , γkm′−1+1, . . . , γn}

as follows.
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We first define an operation (kilj). Take z
(11)
1 > z

(11)
0 > z

(21)
1 > z

(21)
0 >

· · · > z
(m1)
1 > z

(m1)
0 > z

(12)
1 > z

(12)
0 > · · · > z

(m2)
1 > z

(m2)
0 > · · · > z

(mm′)
1 >

z
(mm′)
0 .

(kilj) :

(1) Translate {γlj−1+1, . . . , γlj} parallel to itself so that the upper plane of
{γlj−1+1, . . . , γlj} coincides with the lower plane of {βki−1+1, . . . , βkj};

(2) Translate the above system of arcs so that the upper plane of {βki−1+1, . . . , βkj}
coincides with z = z

(ij)
1 . Keeping z = z

(ij)
1 fixed, contract the resulting

systems of arcs so that the translated lower plane of {γlj−1+1, . . . , γlj}
lies into the position of z = z

(ij)
0 ;

(3) Remove any arc that do not now join the upper plane to the lower
plane.

Then take the operations (k1l1),. . . ,(kml1),(k1l2),. . . ,(kml2),(k1lm′),. . . ,(kmlm′),
finally remove empty systems of arcs. The resulting PM -braid is denoted by
βγ.

Similar to the braid diagram, we define a PM -braid diagram. A PM -braid
diagram is an image of the projection of PM -braid concerning the second
coordinate. At each intersection point of two strands, these strands meet
transversely, and one of them is distinguished and said to be undergoing, the
other strand being overgoing.

Informally, PM -braid diagrams are considered braid diagrams which have
some layers. n corresponds to the number of strings and m corresponds to
the number of layers. The z = z

(i)
1 corresponds to the upper plane of each

layers and z = z
(i)
0 corresponds to the lower plane of each layers. The strings

of each layer are disjoint and the union of strings is full braids.

Example 2.3.4. The following is a PM -braid diagram.

β =

The equivalence of PM -braid diagram is considered at each layer.
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Example 2.3.5. The following PM -braids are equivalent.

β = γ =

The product of PM -braid diagrams are similar to the product of PM -
monoid. The product of each layer is the product of partial braids.

Example 2.3.6. Let β and γ be the following PM -braids:

β =
β1
β2

= γ =
γ1
γ2

=

then β2, βγ, γβ are obtained as follows:

β2 =

β1β1
β2β1
β1β2
β2β2

= = =
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βγ = γβ =

We denote by [β] the homotopy equivalence class of β. Put

RBn = {[β] : β is a PM -braid}.

Theorem 2.3.7. The braid PM-monoid M is isomorphic to the monoid
RBn.

Proof. Let Ψ denote a map from the set of generators for M into RBn given
by

si 7→

s−1
i 7→
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ek1,...,km−1 7→

The relations in the presentation for M hold for the images of the generators,
so that Ψ induces a well-defined homomorphism, which we also denote by Ψ.
To prove the assertion, it suffices to prove that Ψ is bijective. First we prove
that Ψ is surjective. Take any θ ∈ RBn, and say θ has k1, k2 − k1, . . . , n −
km − 1-strings. Then there exist sj1 , . . . , sjt , si1 , . . . , sir and ek1,...,km−1 such
that

θ = (Ψ(sj1) . . .Ψ(sjt))
−1Ψ(ek1,...,km−1)(Ψ(sj1) . . .Ψ(sjt))(Ψ(si1) . . .Ψ(si1)).

Thus Ψ is surjective. We next show that Ψ is injective. By the discussion in
the proof of Proposition 2.2.2,

M =
⊔

1≤k1<···<km−1<n

Bnek1,...,km−1Bn,

where Bn is the Braid group. Let

Ψ(b1ek1,...,km−1b2) = Ψ(b
′

1el1,...,lm′−1
b
′

2),

where b1, b2, b
′
1, b2

′ ∈ Bn. Since Ψ is a homomorphism of monoids and any of
b1, b2, b

′
1, b2

′ has an inverse element, respectively, we can assume

Ψ(b1ek1,...,km−1b2) = Ψ(el1,...,lm′−1).
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First, it must bem = m
′
and k1 = l1, . . . , km−1 = lm−1. Since Ψ(b1)Ψ(b2)|{kl−1+1,...,kl} =

id|{kl−1+1,...,kl} for all l = 1, . . . , n. Then as elements of the braid group
b1b2|{kl−1+1,...,kl} = id|{kl−1+1,...,kl}. Therefore by the relation (2.15), b1ek1,...,km−1b2 =
ek1,...,km−1 . Thus Ψ is injective.

2.3.3 Automorphisms of free group and word problems

We will give a presentation of a PM -braids by automorphisms of a free group
and find a solution to the word problem in RBn. We recall the cases : the
classical braid group and an inverse braid monoid.
Let Fn = F (x1, . . . , xn) be the free group of rank n generated by {x1, . . . , xn}.
For 1 ≤ k ≤ n− 1, let τk : Fn → Fn be the automorphism defined by

τk :


xk 7→ x−1

k xk+1xk

xk+1 7→ xk

xl 7→ xl if l ̸= k, k + 1.

Then the mapping sk 7→ τk (1 ≤ k ≤ n − 1) determines a representation
ρ : Bn → Aut(Fn) called Artin representation. The following theorem was
proved by E. Artin.

Theorem 2.3.8 ([1],[2]). (1) The Artin representation ρ : Bn → Aut(Fn) is
faithful.
(2) An automorphism α ∈ Aut(Fn) belongs to Imρ if and only if α(xn . . . x2x1) =
xn . . . x2x1 and there exists a permutation σ ∈ Sn such that α(xk) is conjugate
to xσ(k) for all 1 ≤ k ≤ n.

The braid group Bn can be viewed as a subgroup of Aut(Fn). Moreover
this yields a solution to the word problem in Bn.

Next recall the case of the inverse braid monoid studied by V. V. Vershinin
[33]. Let EFn be a monoid of partial isomorphisms of a free group defined
as follows. Let a be an element of rook monoid Rn, and Jk the image of a.
Let elements i1, . . . , ik belong to the domain of definition of a. The monoid
EFn consists of isomorphisms

F (xi1 , . . . , xik) → F (xj1 , . . . , xjk)

expressed by

fa(xi) =

{
w−1
i xa(i)wi (i ∈ {i1, . . . , ik})

not defined (otherwise) .
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We define a map ϕn from IBn to EFn expanding the Artin representation ρ
by the condition that ϕn(ej) as a partial isomorphism of Fn is given by the
formula

ϕn(ej)(xi) =

{
xi (i ≤ j)

not defined (i > j).

Theorem 2.3.9 ([33] Theorem 2.2.). The homomorphism ϕn is a monomor-
phism.

Theorem 2.3.10 ([33] Theorem 2.3.). The monomorphism ϕn gives a solu-
tion to the word problem for the inverse braid monoid.

Let EFn be a monoid of sequence of partial isomorphisms of the free
group Fn defined as follows.

Let A = (σ, ({i1, . . . , ik1}, . . . , {ikm−1+1, . . . , n})) ∈ Rn. The monoid EFn
consists of sequence of isomorphisms fA = (fA1 , . . . , fAm), where for j =
1, . . . ,m

fAj
: F (xikj−1+1

, . . . , xikj ) → F (xσ(ikj−1+1), . . . , xσ(ikj ))

is defined by

fAj
(xl) =

{
w−1
l xAj(l)wl (l ∈ {ikj−1+1, . . . , ikj})

not defined (otherwise) ,

where wi is a word on xσ(ikj−1+1), . . . , xσ(ikj ). We define a map φn from

RBn to EFn extending the Artin representation ρ by the condition that
φn(ek1,...,km−1) as a sequence of partial isomorphisms of Fn is given by the
formula

φn(ek1,...,km−1)(xi) = (f1(xi), . . . , fm−1(xi)),

where

fj(xi) =

{
xi (kj−1 ≤ i ≤ kj)

not defined (i < kj+1, i > kj)

for j = 1, . . . ,m− 1.

Proposition 2.3.11. The homomorphism φn is a monomorphism.

Proof. Let RB(m)
n be the set of PM -braids which have m layers. Then as a

set we have the following decomposition :

RBn =
⊔
m≥1

RB(m)
n

=
⊔
m≥1

⊔
(p1,...,pm)∈Pn,σ∈Sn

B(p1, σ(p1))× · · · ×B(pm, σ(pm)),
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where B(pi, σ(pi)) is the braid group starting at pi and ending at σ(pi). Let
#pi = ri. Then consider the following diagram:

Br1 × · · · × Brm
Id×···×Id //

ρ1×···×ρm
��

Br1 × · · · × Brm

ψ(p1,σ(p1))×···×ψ(pm,σ(pm))

��
B(p1, σ(p1))× · · · ×B(pm, σ(pm))

φn // EFn.

The above diagram is commutative since the diagram (2.6) in [33] is commu-
tative. Thus φn is a monomorphism.

Theorem 2.3.12. The morphism ϕn gives a solution to the word problem
for the braid PM-monoid.

Proof. This assertion holds by the following fact : Two words represent the
same element of the monoid if and only if they have the same action on the
finite set of generators of the free group.



Part II

Link invariants constructed by
semigroups
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Chapter 3

Preliminaries

3.1 Knots and Links

We will explain basic concepts related to knots and links.

3.1.1 definitions

Let Rn be the n-dimensional Euclidean space, and Sn the n-dimensional
sphere.

Definition 3.1.1. A link L of m components is a subset of S3, or of R3 that
consists of m disjoint, simple closed curves. A link of one component is a
knot.

Definition 3.1.2. Links L1 and L2 in S3 are equivalent if there is an orien-
tation preserving homeomorphism h : S3 → S3 such that h(L1) = h(L2).

Let p : R3 → R2 be a projection on plane. Let L be a link. The image of
L in R2 by p together with “over and under” information at the crossing is
called the link diagram of L.

Theorem 3.1.3. Any two links L1 and L2 are equivalent if and only if
the link diagrams of L1 and L2 are deformed by a sequence of Reidemeis-
ter moves.

The Reidemister moves are of three types, shown below.

39
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3.2 Knot semigroups

We will explain knot semigroups.

3.2.1 Definitions

Figure 1 : T (2, 3)

We define a knot semigroup defined by A. Vernitski
[33]. By an arc we mean a continuous line on a knot
diagram from one undercrossing to another under-
crossing. For example, consider the knot diagram
T (2, 3) on Figure 1. It has three arcs, denoted by
a, b, and c.

Let K be a knot diagram. We shall define a
semigroup, which we call the knot semigroup of
K, and denote by M(K). We assume that each arc is denoted by a letter.
Then we define two defining relations xy = yz and yx = zy at crossing, where
arcs x and z form the undercrossing and arc y is the overcrossing. We define
these relations at every crossing. The cancellative semigroup generated by
arc letters with these defining relations is the knot semigroup of the knot
diagram. This construction is the analogy of the Wirtinger presentation of
knot group [34].

Figure 2 : Hopf link

The definition of the knot semigroup naturally
generalizes from diagrams of knots to diagrams of
links. For example, the diagram of the Hopf link in
Figure 2 contains two arcs a, b and two crossings,
each defining a single relation ab = ba. Hence, its
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knot semigroup is the free commutative semigroup
with two generators.

3.2.2 Alternating sum semigroups

We shall recall an alternating sum semigroup defined by A. Vernitski [33].
Let G be either Zn := Z/nZ or Z. Let B be a subset of G, and B+ the set of
words of B. By the alternating sum of a word b1b2b3b4 . . . bk ∈ B+ we shall
mean the value of b1 − b2 + b3 − b4 + · · · + (−1)k+1bk calculated in G. The
notation alt(b1b2 . . . bk) denote the value, i.e.,

alt(b1b2 . . . bk) = b1 − b2 + b3 − b4 + · · ·+ (−1)k+1bk.

We also define the following notation. |b1b2 . . . bk| denote the length of the
word b1b2 . . . bk. We shall say that two words u, v ∈ B+ are in relation ∼ if
and only if

(1) |u| = |v|,

(2) alt(u) = alt(u).

The relation ∼ is a congruence on B+. The semigroup AS(G,B) denote the
factor semigroup B+/ ∼. AS(G,B) is called an alternating sum semigroup.

We shall also recall a strong alternating sum semigroup defined by A.
Vernitski [33]. The sets G and B are as above. Let us say that g ∈ G is
even (resp. odd) in G if g can be represented in the form g = 2h (resp.
g = 2h + 1) for some h ∈ G. Let w ∈ B+. The notation |w|e denote the
number of entries in w which are even in G. We shall say that two words
u, v ∈ B+ are in relation ≈ if and only if

(1) |u| = |v|,

(2) alt(u) = alt(v),

(3) |u|e = |v|e.

The relation ≈ is a congruence on B+. The semigroup SAS(G,B) denote
the factor semigroup B+/ ≈. SAS(G,B) is called a strong alternating sum
semigroup.

3.2.3 Examples of knot semigroups

Trivial knots
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Figure 3 : Trivial knots

Let N be the semigroup of positive integers. The
semigroup N is a cancellative semigroup. The di-
agram of the trivial knot contains one arc and no
crossings (Figure 3). Therefore, its knot semigroup
is isomorphic to the semigroup N.

Torus knots and torus links

Figure 4 : Torus knots

A torus knot T (2, n) consists of n half-twists
(Figure 4.). We recall the knot semigroup
M(T (2, n)) of a knot diagram T (2, n) (with
an odd n) and the knot semigroup of a link
diagram T (2, n) (with an even n) proved by
A. Vernitski [33].

Theorem 3.2.1 ([33] Theorem 3.). Let n
be an odd integer. The knot semigroup
M(T (2, n)) of the torus knot diagram T (2, n)
is isomorphic to the alternating sum semi-
group AS(Zn,Zn).

Theorem 3.2.2 ([33] Theorem 13.). Let n be an even integer. The knot
semigroup M(T (2, n)) of the torus link diagram T (2, n) is isomorphic to the
strong alternating sum semigroup SAS(Zn,Zn).

Since SAS(Zn,Zn) = AS(Zn,Zn) for odd values of n, we have the following
corollary.

Corollary 3.2.3 ([33] Corollary 14.). The knot semigroup M(T (2, n)) of the
diagram T (2, n) for every positive n is isomorphic to the strong alternating
sum semigroup SAS(Zn,Zn).

Twist knots

Figure 5 : Twist knots

A twist knot, which we shall denote twn consists
of n clockwise half-twists and 2 anticlockwise half-
twists (Figure 5). We recall the knot semigroup
M(twn) of a knot diagram twn proved by A. Ver-
nitski [33]. The notation [n + 2] denote the set
{0, 1, . . . , n+ 2}.

Theorem 3.2.4 ([33] Theorem 15.). The knot
semigroup M(twn) of the twist knot diagram twn is isomorphic to the al-
ternating sum semigroup AS(Z2n+1, [n+ 2]).



Chapter 4

Knot semigroups of double
twist knots

In this chapter we will explain knot semigroups of double twist knots.

4.1 Statements

The plan of this section faithfully follows that of Section 7 of [33]. First we
explain Conway’s normal form of 2-bridge knot.

4.1.1 Conway’s normal forms

Any 2-bridge knot has a presentation, which can be deformed as in figure,
where ai indicates |ai| (̸= 0) crossing points with sign ϵi = ai/|ai| = ±1.

(n is odd)

43
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(n is even)

We denote the 2-bridge knot with this knot diagram by C(a1, a2, . . . , an),
which is called Conway’s normal form.

4.1.2 A conjecture of the knot semigroups of 2-bridge
knots

The torus knots and the twist knots are the 2-bridge knots. Then we have
the following conjecture by A. Vernitski ([33] Conjecture 23.).

Conjecture 4.1.1. The knot semigroup of the 2-bridge knot is isomorphic
to an alternating sum semigroup.

4.1.3 Double twist knots

To support Conjecture 4.1.1 we prove that the knot semigroup of the double
twist knot is isomorphic to an alternating sum semigroup.

Figure6 : Double twist knots

A double twist knot, which we shall denote by dtwl
n consists of n clockwise

half-twists and l anticlockwise half-twists, where l, n indicate the number of
crossing points (Figure 5). Then we have the following theorem.

Theorem 4.1.2. Let n, l ≥ 1 be integers. Suppose the integer nl is an even
integer. Then the knot semigroup M(dtwl

n) of the double twist knot diagram
dtwl

n is isomorphic to the alternating sum semigroup

AS(Zln+1, {0, 1, . . . , n, 1 · n+ 1, . . . (l − 1) · n+ 1}).
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Remark 4.1.3. The double twist knot is the 2-bridge knot C(l, n).

Remark 4.1.4. Let l = 2 in Theorem 4.1.2. Then

{0, 1, . . . , 1 · n+ 1} = [n+ 2].

Thus Theorem 4.1.2 implies Theorem 3.2.4.

Remark 4.1.5. Let l = 1 in Theorem 4.1.2. Then

M(dtw1
n) ≃ AS(Zn+1, {0, 1, . . . , n, 0 · n+ 1})

≃ AS(Zn+1, {0, 1, . . . , n})
≃ AS(Zn+1,Zn+1).

On the other hand, dtw1
n ≃ T (2, n+ 1) as knots. By Theorem 3.2.1,

M(T (2, n+ 1)) ≃ AS(Zn+1,Zn+1).

Thus Theorem 4.1.2 holds in the case of l = 1.

Remark 4.1.6. We consider the following knot C(m, l, n).

Then we have the following conjecture.

Conjecture 4.1.7. Let l,m, n ≥ 1 be integers. Suppose the integer (ml +
1)n+m is odd. Then the knot semigroup M(C(m, l, n)) of the knot diagram
C(m, l, n) is isomorphic to the alternating sum semigroup

AS(Z(ml+1)n+m,

n+1∪
i=0

{i} ∪
l+1∪
j=0

{jn+ 1} ∪
m−1∪
k=0

{(kl + 1)n+ k}).

4.2 Proof of theorem

We shall prove Theorem 4.1.2.
Suppose that A+/κ is a knot semigroup, where A is the set of arcs and κ

is a cancellative congruence on the free semigroup A+ induced by the defining
relations of the knot semigroup. Let ∼ be a congruence on B+, where B is an
alphabet of the same size as A. We shall establish an isomorphism between
A+/κ and B+/ ∼ by the following lemma.



46

Lemma 4.2.1 ([33] Lemma 2.). Suppose A and B are sets. Consider a
bijection ϕ : A→ B. It induces an isomorphism between A+ and B+, which
we shall denote by ϕ+. Suppose a congruence κ on A+ and a congruence ∼
on B+ are such that for each u, v ∈ A+ if uκ v then ϕ(u) ∼ ϕ(v). Then ϕ
induces a mapping from A+ to B+, which we shall denote by ψ. Moreover,
ψ is a homomorphism. Suppose a subset of B+ exists, which we shall call
the set of canonical words, such that in each class of ∼ there is exactly one
canonical word and at least one word of each class of κ is mapped by ϕ+ to
a canonical word. Then ψ is an isomorphism between A+/κ and B+/ ∼.

Let

A = {a0, . . . , an, an+1, a2n+1, . . . , a(l−2)n+1, a(l−1)n+1}

be the set of arcs as in the following figure.

Denote the set {0, 1, . . . , n, 0·n+1, 1·n+1, . . . (l−1)·n+1} by Cn,l. Consider
a mapping ϕ from A to Cn,l defined as ai 7→ i. It induces an isomorphism A+

to C+
n,l, which we shall denote by ϕ+. Then we have the following Lemma.

Lemma 4.2.2. The equality aiai+j = ai+kai+j+k is true in M(dtwl
n) for all

values of i, j, k such that 0 ≤ i ≤ i+ j ≤ i+ j + k ≤ n+ 1.

Proof. The relations in M(dtwl
n) are the equalities

ai−1ai = aiai+1,

and

aiai−1 = ai+1ai
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for all i = 1, 2, . . . , n (from the crossings at the bottom of the diagram), and
the equalities

a(l−j−1)n+1a(l−j)n+1 = a(l−j)n+1a(l−j+1)n+1,

and
a(l−j)n+1a(l−j−1)n+1 = a(l−j+1)n+1a(l−j)n+1

for all j = 0, 1, . . . , l − 1 (from the crossings at the top of the diagram),
where aln+1 = a0. Applying relations of the type ai−1ai = aiai+1 repeatedly,
we obtain aiai+1 = ai+kai+1+k for all values of i, k such that 0 ≤ i ≤ i+ 1 ≤
i+ 1+ k ≤ n+ 1. Similarly, we can obtain aiai−1 = ai+kai−1+k for all values
of i, k such that 0 ≤ i− 1 ≤ i ≤ i+ k ≤ n+ 1. Consider

aiai+jai+j+1 = aiai+1ai+2 = ai+2ai+3ai+2 = ai+2ai+j+2ai+j+1.

Hence aiai+j = ai+2ai+j+2 by the cancellative rule. This proves that aiai+j =
ai+kai+j+k for all values of i, j, k such that 0 ≤ i ≤ i+ j ≤ i+ j + k ≤ n+ 1
and even k.

We shall prove that a0a0 = a1a1.

(1) Suppose the integer l is an even number.
Consider

an+1a{l−(l−2)}n+1a{l−(l−2)}n+1 = a{l−(l−2)}n+1a{l−(l−3)}n+1a{l−(l−2)}n+1

= a{l−(l−2)}n+1a{l−(l−2)}n+1an+1

= a{l−(l−2)}n+1an+1a1

= an+1a1a1.

Hence we have a{l−(l−2)}n+1a{l−(l−2)}n+1 = a1a1.
Next consider

a{l−(l−3)}n+1a{l−(l−4)}n+1a{l−(l−4)}n+1 = a{l−(l−4)}n+1a{l−(l−5)}n+1a{l−(l−4)}n+1

= a{l−(l−4)}n+1a{l−(l−4)}n+1a{l−(l−3)}n+1

= a{l−(l−4)}n+1a{l−(l−3)}n+1a{l−(l−2)}n+1

= a{l−(l−3)}n+1a{l−(l−2)}n+1a{l−(l−2)}n+1.

Hence a{l−(l−4)}n+1a{l−(l−4)}n+1 = a{l−(l−2)}n+1a{l−(l−2)}n+1.
Since l is even, a0a0 = a1a1.

(2) Suppose the integer l is an odd number.
Since nl is even, n is an even number. Consider

a(l−1)n+1a0a0 = a0ana0

= a0a0a(l−1)n+1

= a0a(l−1)n+1a(l−2)n+1

= a(l−1)n+1a(l−2)n+1a(l−2)n+1.
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Hence a0a0 = a(l−2)n+1a(l−2)n+1. Since this equation holds and n is an
even number,

a0a0 = a(l−2)n+1a(l−2)n+1 = · · · = an+1an+1 = a1a1.

We shall prove that a0aj = a1aj+1 for all values of j = 0, 1, . . . , n. Let j be
an odd number. Consider

a0a0aj = aj−1aj−1aj = aj−1ajaj+1 = a0a1aj+1.

Hence a0aj = a1aj+1.
Let j be even and positive. Consider

a0a0aj = a1a1aj (since a0a0 = a1a1.)

= aj−1aj−1aj

= aj−1ajaj+1

= aj−2aj−1aj+1

= a0a1aj+1.

Hence a0aj = a1aj+1.
Now suppose k is odd. If i is even, we have

aiai+j = a0aj

= a1aj+1

= ai+1ai+j+1

= a(i+1)+(k−1)a(i+j+1)+(k−1)

= ai+kai+j+k.

If i is odd, we have

aiai+j = a1aj+1

= a0aj

= ai+1ai+j+1

= a(i+1)+(k−1)a(i+j+1)+(k−1)

= ai+kai+j+k.

Lemma 4.2.3. The equality ain+1a(i+j)n+1 = a(i+k)n+1a(i+j+k)n+1 is true in
M(dtwl

n) for all values of i, j, k such that 0 ≤ i ≤ i+ j ≤ i+ j + k ≤ l + 1.
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Proof. Applying relations of the type

a(l−j−1)n+1a(l−j)n+1 = a(l−j)n+1a(l−j+1)n+1

repeatedly, we obtain

ain+1a(i+1)n+1 = a(i+k)n+1a(i+1+k)n+1

for all values of i, k such that 0 ≤ i ≤ i+1 ≤ i+1+ k ≤ l+1. Similarly, we
can obtain

ain+1a(i−1)n+1 = a(i+k)n+1a(i−1+k)n+1

for all values of i, k such that 0 ≤ i− 1 ≤ i ≤ i+ k ≤ l + 1. Consider

ain+1a(i+j)n+1a(i+j+1)n+1 = ain+1a(i+1)n+1a(i+2)n+1

= a(i+2)n+1a(i+3)n+1a(i+2)n+1

= a(i+2)n+1a(i+j+2)n+1a(i+j+1)n+1.

Hence ain+1a(i+j)n+1 = a(i+2)n+1a(i+j+2)n+1. This proves that

ain+1a(i+j)n+1 = a(i+k)n+1a(i+j+k)n+1

for all values of i, j, k such that 0 ≤ i ≤ i+ j ≤ i+ j + k ≤ l+ 1 and even k.
We shall prove that a1a1 = an+1an+1.

(1) Suppose l is odd.
Since n is even, a1a1 = an+1an+1.

(2) Suppose l is even, and n is even.
Consider

a2a1a1 = a1a0a1 = a1a1a2 = a1a2a3 = a2a3a3.

Hence a1a1 = a3a3. This proves that a1a1 = an+1an+1.

(3) Suppose l is even and n is odd.
Consider

anan+1an+1 = an−1anan+1

= an−1an−1an

= an−1an−2an−1

= anan−1an−1.

Hence an+1an+1 = an−1an−1.Since n is odd, an+1an+1 = a0a0. Since l is
even, a0a0 = a1a1. Thus an+1an+1 = a1a1.
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We shall prove that a1ajn+1 = an+1a(j+1)n+1 for all values j = 0, 1, . . . , n. Let
j be an odd number. Consider

a1a1ajn+1 = a(j−1)n+1a(j−1)n+1ajn+1

= a(j−1)n+1ajn+1a(j+1)n+1

= a1an+1a(j+1)n+1.

Hence a1ajn+1 = an+1a(j+1)n+1.
Let j be even and positive. Consider

a1a1ajn+1 = an+1an+1ajn+1

= a(j−1)n+1a(j−1)n+1ajn+1

= a(j−1)n+1ajn+1a(j+1)n+1

= a(j−2)n+1a(j−1)n+1a(j+1)n+1

= a1an+1a(j+1)n+1.

Hence a1ajn+1 = an+1a(j+1)n+1.
Suppose k is odd. If i is even, we have

ain+1a(i+j)n = a1ajn+1

= an+1a(j+1)n+1

= a(i+1)n+1a(i+j+1)n+1

= a{(i+1)+(k−1)}n+1a{(i+j+1)+(k−1)}n+1

= a(i+k)n+1a(i+j+k)n+1.

If i is odd, we have

ain+1a(i+j)n = an+1a(j+1)n+1

= a1ajn+1

= a(i+1)n+1a(i+j+1)n+1

= a{(i+1)+(k−1)}n+1a{(i+j+1)+(k−1)}n+1

= a(i+k)n+1a(i+j+k)n+1.

Lemma 4.2.4. The equality apn+1aqarn+1 = a(p+1)n+1aqa(r−1)n+1 is true in
M(dtwl

n) for all values p, q, r such that 0 ≤ p ≤ n − 1, 1 ≤ r ≤ l, and
q ̸∈ {0, 2n+ 1, . . . , (l − 1)n+ 1}.



51

Proof. Consider

a(p+1)n+1apn+1aqarn+1 = ana0aqarn+1

= anan−q+1an+1arn+1

= anan−q+1a1a(r−1)n+1

= ananaqa(r−1)n+1

= an+1an+1aqa(r−1)n+1

= a(p+1)n+1a(p+1)n+1aqa(r−1)n+1.

Hence apn+1aqarn+1 = a(p+1)n+1aqa(r−1)n+1.

Lemma 4.2.5. The equality apaqar = ap+1aqar−1 is true in M(dtwl
n) for all

values p, q, r such that p ∈ {0, 1, . . . , n}, r ∈ {1, 2, . . . , n + 1}, q ∈ {0, 2n +
1, . . . , (l − 1)n+ 1}.

Proof. Suppose q = 0. Then

apa0ar = ap+1a1ar = ap+1a0ar−1.

Suppose q ∈ {2n+ 1, . . . , (l − 1)n+ 1}. Consider

ap+1apakn+1ar = a1a0akn+1ar

= a1a(l−k)n+1a1ar

= a1a(l−k)n+1a0ar−1

= akn+1a0a0ar−1

= akn+1a1a1ar−1

= akn+1a(k−1)n+1a(k−1)n+1ar−1

= an+1a1a(k−1)n+1ar−1

= a2n+1an+1a(k−1)n+1ar−1

= an+1an+1akn+1ar−1

= ap+1ap+1akn+1ar−1.

Hence apaqar = ap+1aqar−1.

Canonical words in C+
n,l will be defined as words of the form 000t−2 or

c00t−2 or 0c0t−2 or dc0t−2, where t ≥ 2 is the length of the word and c ∈
{1, 2, . . . , n}, d ∈ {2n+ 1, 3n+ 1, . . . , (l − 1)n+ 1}.

Consider a non-negative integer valued parameter π(w) of a word w in
C+
n,l, which is 0 if the first two entries in w are 00 or c0 or 0c or dc for some

c ∈ {1, . . . , n}, d ∈ {2n+1, . . . , (l−1)n+1} and which is 1 otherwise. Define
the defect of a word w = b1b2 . . . bt in C+

n,l as a word π(w)b3 . . . bt. Defects
are assumed to be ordered antilexicographically.
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Lemma 4.2.6. A word in C+
n,l is canonical if and only if its defect is a word

consisting of 0s.

Proof. The result follows from the form of canonical word.

Lemma 4.2.7. Let u be a word in A+. Unless the defect of ϕ(u) is a word
consisting of 0s, there is a word v in A+ such that u = v in M(dtwl

n) and
the defect of ϕ(v) is less than the defect of ϕ(u).

Proof. Suppose the defect of ϕ(u) has a non-zero entry at a position which is
not the first one. This means that at some position d ≥ 3 there is a non-zero
entry r in ϕ(u). Let u = u′apaqaru

′′, where u′, u′′ ∈ A+ and p, q, r ∈ Cn,l with
r ̸= 0.

(1) Suppose q ̸∈ {0, 2n+ 1, 3n+ 1, . . . , (l − 1)n+ 1}.

1. If r ̸∈ {2n+ 1, . . . , (l − 1)n+ 1}, then we define

v = u′apaq−1ar−1u
′′.

2. Suppose r ∈ {2n+ 1, 3n+ 1, . . . , (l − 1)n+ 1}.
· If p ̸∈ {0, 2n+ 1, . . . , (l − 1)n+ 1}, then we define

v = u′ap−1aq−1aru
′′.

· If p ∈ {0, 2n+ 1, . . . , (l − 1)n+ 1}, then define

v = u′a(k′+1)n+1aqa(k−1)n+1u
′′,

where p = k′n + 1, r = kn + 1. The words u and v are equal
by the Lemma 4.2.4.

(2) Suppose q ∈ {0, 2n+ 1, . . . , (l − 1)n+ 1}.

1. If p ∈ {2n+ 1, . . . , (l− 1)n+ 1} or r ∈ {2n+ 1, . . . , (l− 1)n+ 1},
then we define

v = u′a(k′−1)n+1a(k−1)n+1aru
′′,

where p = k′n+ 1, q = kn+ 1, or

v = u′apa(k−1)n+1a(k′′−1)n+1u
′′,

where q = kn+ 1, r = k′′n+ 1.
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2. If p, r ̸∈ {2n+ 1, 3n+ 1 . . . , (l − 1)n+ 1}, then we define

v = u′ap+1aqar−1u
′′.

By the Lemma 4.2.5, u = v.

In each case, u = v inM(dtwl
n), and the defect of ϕ(v) is less than the defect

of ϕ(u).
Suppose the defect of ϕ(u) has a non-zero entry only at the first position.

Let u = apaqu
′, where u′ ∈ A+ and p, q ∈ C l

n.

(1) If p, q ∈ {1, 2, . . . , n+ 1}, let m = min(p, q), then define

v = ap−maq−mu
′.

(2) If p, q ∈ {2n + 1, . . . , (l − 1)n + 1}, let p = kn + 1, q = k′n + 1 and
m = min(k, k′). If m = k′, then we define

v = a(k−m)n+1a(k′−m)n+1u
′.

If m = k, then we use the following case (3).

(3) If p ∈ {1, 2, . . . , n}, q ∈ {2n+ 1, . . . , (l − 1)n+ 1}, then consider

apakn+1an−p+1 = a0akn+1an+1

= a(l−k)n+1a1an+1

= a(l−k+1)n+1an+1an+1

= a(l−k+1)n+1an−p+1an−p+1.

Hence apakn+1 = a(l−k+1)n+1an−p+1. Then we define

v = a(l−k+1)n+1an−p+1u
′,

where q = kn+ 1.

(4) If p ∈ {2n+ 1 . . . , (l − 1)n+ 1}, q = n+ 1, then we define

v = a(k−1)n+1a1u
′,

where p = kn+ 1.

(5) If p = n+ 1, q ∈ {2n+ 1, . . . , (l − 1)n+ 1}, then we consider

an+1akn+1 = a(l−k+1)n+1a0 = a(l−k+2)n+1an.

Then we define
v = a(l−k+2)n+1anu

′.
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(6) If p ∈ {n+ 1, 2n+ 1, . . . , (l − 1)n+ 1}, q = 0, then we consider

akn+1a0 = a1a(l−k)n+1 = a(k+1)n+1an.

Then we define
v = a(k+1)n+1anu

′,

where p = kn+ 1.

(7) If p = 0, q ∈ {n+ 1, 2n+ 1, . . . , (l − 1)n+ 1}, then consider

a0akn+1 = a(l−k)n+1a1

Then we define
v = a(l−k)n+1a1u

′,

where q = kn+ 1.

In each case, u = v in M(dtwl
n), and the defect ϕ(v) is a word consisting of

0s.

Then we have the following corollary.

Corollary 4.2.8. Every word in A+ is equal in M(dtwl
n) to a word in A+

which is mapped by ϕ to a word with a defect consisting of 0s.

Proof of Theorem 4.1.2. The relations in M(dtwl
n) are listed in the proof of

Lemma 4.2.2. For each relation u = v the words ϕ(u) and ϕ(v) have the same
length and the same alternating sum calculated in Zln+1. Thus by Lemma
4.2.1, ϕ+ induces a homomorphism ψ :M(dtwl

n) → C+
n,l/ ∼.

Consider two canonical words u, v which are ∼ equivalent. We shall show
that each class of ∼ contains at most one canonical word.

(1) Suppose their alternating sums are both 0.

1. If u, v are form of c00t−2 or 0c0t−2, where c ∈ {1, 2, . . . , n}, then
since the canonical word can have at most one non-zero entry,
both words consist only of 0s and, therefore are equal.

2. If u or v is form of dc0t−2, where c ∈ {1, 2, . . . , n}, d ∈ {2n +
1, . . . , (l − 1)n + 1}, then the alternating sum of dc0t−2 is d − c.
If d ̸= 0 or c ̸= 0, then since d − c = 0, this contradicts c ∈
{1, 2, . . . , n}, d ∈ {2n+1, . . . , (l−1)n+1}. Therefore both words
u, v consist only of 0s, and are equal.

(2) Suppose two canonical words share the same non-zero alternating sum.
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1. If u = c100
t−2, v = c200

t−2, then since both alternating sums are
the same, c1 = c2. Thus u = v.

2. If u = 0c10
t−2, v = 0c20

t−2, then u = v by the same reason of 1.

3. If u = c100
t−2, v = 0c20

t−2, then c1 = −c2 in Znl+1. Since c1, c2 ∈
{1, 2, . . . , n}, this case is impossible.

4. If u = c100
t−2, v = 0c20

t−2, then c1 = d2 − c2 in Zln+1. Since
c1, c2 ∈ {1, 2, . . . , n}, d ∈ {2n + 1, . . . , (l − 1)n + 1}, this case is
impossible (c1 + c2 ≤ 2n, d2 ≥ 2n).

5. If u = 0c10
t−2, v = d2c20

t−2, then −c1 = d2 − c2 in Zln+1. If
c2 − c1 > 0, this case is impossible. If c2 − c1 > 0, this case is also
impossible (ln+ 1 + c2 − c1 > (l − 1)n+ 1, d2 ≤ (l − 1)n+ 1).

6. If u = d1c10
t−2, v = d2c20

t−2, then d1 − c1 = d2 − c2 in Zln+1.
Since c1, c2 ∈ {1, 2, . . . , n}, d1, d2 ∈ {2n+1, . . . , (l− 1)n+1}, this
case is impossible.

Thus each class of ∼ contains at most one canonical word.
Consider a word w ∈ C+

n,l which has length t and alternating sum s. We shall
show that each class of ∼ contains at least one canonical word.

(1) If s ∈ {0, 1, . . . , n}, then canonical word s00t−2 is ∼ equivalent to w.

(2) If s ∈ {(l−1)n+1, . . . , ln+1}, let q = −s. Then 0q0t−2 is ∼ equivalent
to w.

(3) If s ∈ {n + 1, . . . , (l − 1)n}, then w is ∼ equivalent to d(−c)0t−2 for
some c ∈ {1, 2, . . . , n}, d ∈ {2n+ 1, . . . , (l − 1)n+ 1}.

Thus each class of ∼ contains at least one canonical word.
By Corollary 4.2 and Lemma 4.2.6, each word in A+ is equal in M(dtwl

n) to
a word mapped by ϕ to a canonical word. Now Theorem 4.1.2 follows from
Lemma 4.2.1.





Chapter 5

Link invariants

In this section, we consider the growth of semigroup algebras of knot semi-
groups. To investigate the growth, we use the Gelfand-Kirillov dimension.
As an application we construct a link invariant.

5.1 Gelfand-Kirillov dimensions

First, we explain the definition of Gelfand-Kirillov dimension.
Let k be a field and A a finitely generated algebra over k. If V is a

subspace of A, we denote by V n the subspace spanned by all products of
elements of V of length n. By generating subspace, we will mean a finite-
dimensional subspace of A which generates A as algebra, and which contains
1. The growth function associated to a generating subspace V is

fV (n) = dimk V
n.

An algebra A is said to have polynomial growth if there are positive real
numbers c, r such that

fV (n) ≤ cnr (5.1)

for all n. We will see below that this is independent of the choice of generating
spaces.

Lemma 5.1.1. Let A be a finitely generated k-algebra, and let V,W be gen-
erating subspaces. If fV (n) ≤ cnr for all n, then there is a c′ such that
fW (n) ≤ c′nr for all n.

Proof. Assume that fV (n) ≤ cnr. SinceA = ∪V n andW is finite-dimensional,
W ⊂ V s for some s. Then W n ⊂ V sn, hence

fW (n) ≤ fV (sn) ≤ csrnr = c′nr.
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Definition 5.1.2. The Gelfand-Kirillov dimension of an algebra A with poly-
nomial growth is the infimum of the real numbers r such that (5.1) holds for
some c:

GKdim(A) = inf{r | fV (n) ≤ cnr}.

If A does not have polynomial growth, then we define GKdim(A) = ∞.

The Gelfand-Kirillov dimension can be represented as follows:

Lemma 5.1.3. Let A be an algebra. Then we have

GKdim(A) = inf{r | f(n) ≤ p(n)}

for some polynomial p of degree r.

Proof. Since {r | f(n) ≤ cnr} ⊂ {r | f(n) ≤ p(n)}, we have

inf{r | fV (n) ≤ cnr} ≥ inf{r | f(n) ≤ p(n)}.

Let r = inf{r | fV (n) ≤ cnr} and, r′ = inf{r | f(n) ≤ p(n)}. Assume that
r > r′. We write p(n) = cr′n

r′ + cr′−1n
r′−1 + · · ·+ c0. Then we have

p(n) = cr′n
r′ + cr′−1n

r′−1 + · · ·+ c0

≤ cr′n
r′ + cr′−1n

r′ + · · ·+ c0n
r′

= (cr′ + cr′−1 + · · ·+ c0)n
r′ .

Since r > r′, this contradicts the equality r = inf{r | fV (n) ≤ cnr}. There-
fore

inf{r | fV (n) ≤ cnr} = inf{r | f(n) ≤ p(n)}.

Example 5.1.4. (1) Let A = k[x1, . . . , xd]. If V is the space spanned by
{1, x1, . . . , xd}, then V n is the space of polynomials of degree ≤ n. The di-

mension of this space is

(
n+ d
d

)
since the number of the basis of V n is the

number of combination which we choose n elements from {1, x1, . . . , xd} al-

lowing the overwrapping. Since f(n) = dimV n =

(
n+ d
d

)
is the polynomial

of degree d and by Lemma 5.1.3, we have GKdim(A) = d.
(2) Let A = k⟨x1, . . . , xd⟩ be the noncommutative polynomial algebra. Let
V be the space spanned by {1, x1, . . . , xd}. The dimension of this space is
dn + dn−1 + · · ·+ d+ 1. Thus GKdim(A) = ∞.
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5.2 Link invariants

We can prove that the Gelfand-Kirillov dimension of semigroup algebra of
knot semigrop is a link invariant. Let L be a link. Then we let k(M(L)) be
a semigroup algebra of a knot semigroup of L.

Theorem 5.2.1. Let L1, L2 be links. If L1 and L2 are equivalent then

GKdim(k(M(L1))) = GKdim(k(M(L2))).

Proof. For a link L, by Theorem 3.1.3 it is enough to prove that GKdim(k(M(L)))
is invariant under Reidemeister move I, II, III.

GKdim(k(M(L))) is invariant under Reidemeister move I since M(L) is.
Let L,L′ be the same links, except in the neighborhood of a point where they
are as shown in the following figure.

We can assume GKdim(k(M(L))),GKdim(k(M(L′))) <∞. Then

k(M(L)) ≃ k⟨x1, . . . , xm, a, b, c⟩/⟨Ia,b ∪
{
ba− ac
ab− ca

}
⟩,

k(M(L′)) ≃ k⟨x1, . . . , xm, a, b⟩/⟨Ia,b⟩,

where x1, . . . , xm are labels of arcs except a, b, c, and Ia,b is a set of relations
except ba− ac, ab− ca. Let

V = ⟨x1, . . . , xm, a, b, c⟩/⟨Ia,b ∪
{
ba− ac
ab− ca

}
⟩,

V ′ = ⟨x1, . . . , xm, a, b⟩/⟨Ia,b⟩.

We can prove that
(V/⟨c− 1⟩)n ≃ (V ′/⟨b− 1⟩)n

for n ≥ 2 as follows: we have

(V/⟨c− 1⟩)n ≃ (⟨x1, . . . , xm, a, b, c⟩/⟨Ia,b ∪
{
ba− ac
ab− ca

}
∪ {c− 1}⟩)n.
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In this space, c = 1 and then ba = ac = a · 1 = a. By the cancellativity of
knot semigroups, we have b = 1. Thus we have,

(V/⟨c− 1⟩)n ≃ (⟨x1, . . . , xm, a, b, c⟩/⟨Ia,b ∪
{
ba− ac
ab− ca

}
∪ {c− 1}⟩)n

≃ ⟨x1, . . . , xm, a⟩/⟨Ia,1⟩.

On the other hand

(V ′/⟨b− 1⟩)n ≃ ⟨x1, . . . , xm, a, b⟩/⟨Ia,b ∪ {b− 1}⟩
≃ ⟨x1, . . . , xm, a⟩/⟨Ia,1⟩.

Therefore we have
(V/⟨c− 1⟩)n ≃ (V ′/⟨b− 1⟩)n.

Then we have the following exact sequences for n ≥ 2.

0 → ⟨c− 1⟩n → V n → (V n/⟨c− 1⟩)n → 0,

0 → ⟨b− 1⟩n → V n → (V n/⟨b− 1⟩)n → 0.

Since

fV (n) = dimV n = dim(V/⟨c− 1⟩)n + dim⟨c− 1⟩n,
fV ′(n) = dimV ′n = dim(V ′/⟨b− 1⟩)n + dim⟨b− 1⟩n,

and
(V/⟨c− 1⟩)n ≃ (V ′/⟨b− 1⟩)n,

we have
fV (n) = fV ′(n) for all n ≥ 2.

Let c be a real number such that

fV (n), fV ′(n) ≤ c.

Let
R = inf{r | fV (n) ≤ cnr}, R′ = inf{r | f ′

V (n) ≤ cnr}.

Assume that R < R′. Since GKdim(k(M(L))) = r is finite, there exists a
real number c′ such that

fV ′(n) = fV (n) ≤ c′nr.

Thus we have

fV ′(1) ≤ max{c, c′}, fV ′(n) ≤ max{c, c′}nr.



61

Since R < R′, this contradicts R′ = inf{r | f ′
V (n) ≤ cnr}. Therefore,

GKdim(k(M(L))) = GKdim(k(M(L′))).

Thus GKdim(k(M(L))) is invariant under the Reidemeister move II.
Next let L,L′ be the same links, except in the neighborhood of a point

where they are as shown in Figure.

We can assume GKdim(k(M(L))),GKdim(k(M(L′))) <∞. Then

k(M(L)) ≃ k⟨x1, . . . , xm, a, b, c, d, e, f⟩/⟨Ia,b,c,d,f ∪ J⟩,
k(M(L′)) ≃ k⟨x1, . . . , xm, a, b⟩/⟨I ′a,b,c,d,f ∪ J ′⟩,

where

J =

{
ac− cd
ca− dc

}
∪
{
bc− ce
cb− ec

}
∪
{
fd− de
df − ed

}
,

J ′ =

{
ea− ab
ae− ba

}
∪
{
fc− ce
cf − ec

}
∪
{
dc− ca
cd− ac

}
,

and x1, . . . , xm are labels of arcs except a, b, c, d, e, f , and Ia,b,c,d,f , I
′
a,b,c,d,f is

a set of relations except J, J ′.

V = ⟨x1, . . . , xm, a, b, c, d, e, f⟩/⟨Ia,b,c,d,f ∪ J⟩,
V ′ = ⟨x1, . . . , xm, a, b, c, d, e, f⟩/⟨I ′a,b,c,d,f ∪ J ′⟩.

We can prove
(V/⟨a− 1⟩)n ≃ (V ′/⟨d− 1⟩)n

for n ≥ 2 as follows: we have

(V/⟨a− 1⟩)n ≃ (⟨x1, . . . , xm, a, b, c, d, e, f⟩/⟨Ia,b,c,d,f ∪ J ∪ {a− 1}⟩)n.
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In this space, a = 1 and then cd = ac = 1 · c = c. By the cancellativity of
knot semigroups, we have d = 1. Since fc = ce, we obtain f = e. Thus we
have

(V/⟨a− 1⟩)n ≃ (⟨x1, . . . , xm, a, b, c, d, e, f⟩/⟨Ia,b,c,d,f ∪ J ∪ {a− 1}⟩)n

≃ (⟨x1, . . . , xm, b, c, f⟩/⟨I1,b,c,1,f ∪
{
bc− cf
cb− fc

}
⟩)n.

On the other hand,

(V ′/⟨d− 1⟩)n ≃ (⟨x1, . . . , xm, a, b, c, d, e, f⟩/⟨I ′a,b,c,d,f ∪ J ′ ∪ {d− 1}⟩)n.

In this space, d = 1 and then ca = dc = 1 · c = c. By the cancellativity of
knot semigroups, we have a=1. Since ea = ab, we have e = b. Thus we have

(V ′/⟨d− 1⟩)n ≃ (⟨x1, . . . , xm, a, b, c, d, e, f⟩/⟨I ′a,b,c,d,f ∪ J ′ ∪ {d− 1}⟩)n

≃ (⟨x1, . . . , xm, b, c, f⟩/⟨I ′1,b,c,1,f ∪
{
fc− cb
cf − bc

}
⟩)n.

Therefore

(V/⟨a− 1⟩)n ≃ (V ′/⟨d− 1⟩)n.

Then we have the following exact sequences for n ≥ 2.

0 → ⟨a− 1⟩n → V n → (V n/⟨a− 1⟩)n → 0,

0 → ⟨e− 1⟩n → V n → (V n/⟨d− 1⟩)n → 0.

Since

fV (n) = dimV n = dim(V/⟨a− 1⟩)n + dim⟨a− 1⟩n,
fV ′(n) = dimV ′n = dim(V ′/⟨d− 1⟩)n + dim⟨d− 1⟩n,

and

(V/⟨a− 1⟩)n ≃ (V ′/⟨d− 1⟩)n,

we have

fV (n) = fV ′(n) for all n ≥ 2.

Then we can prove that GKdim(k(M(L))) = GKdim(k(M(L′))) by the sim-
ilar way of the case of the Reidemeister move II. Therefore GKdim(k(M(L)))
is invariant under the Reidemeister move III.
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5.3 Examples

We calculate some examples of GKdim(k(M(L))) for a link L.

Example 5.3.1. Let L1 be a Hopf link (Figure 2). Since

k(M(L1)) ≃ k⟨a, b⟩/⟨ab− ba⟩
≃ k[a, b],

GKdim(k(M(L1))) = 2. On the other hand let L2 be the following link.

Since
k(M(L2)) ≃ k⟨a, b⟩, (5.2)

GKdim(k(M(L2))) = ∞. Therefore we can conclude that L1 ̸≃ L2.

Example 5.3.2. We shall consider torus knots T (2, n) and double twist
knots dtwl

m. Let V be a generating subspace of k(M(T (2, n))). Then by
Theorem 3.2.1,

fV (d) = dimV d = nd+ 1.

Since fV (d) is a polynomial of degree 1 and by Lemma 5.1.3, GKdim(k(M(T (2, n)))) =
1. Let V ′ be a generating subspace of k(M(dtwl

m)). Then by Theorem 4.1.2,

fV ′(d) =

{
1 (d = 0)

(lm+ 1)d+m+ l − lm (d > 0) .

Since fV ′(d) is a polynomial of degree 1 and by Lemma 5.1.3, GKdim(k(M(dtwl
m))) =

1.
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