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Chapter 1

Introduction

A human visual perception, which we usually achieve with no effort, is the result of
unconscious, tremendous information processing in the brain. In neuroscience history,
understanding of "abnormal” systems promotes that of "normal” systems. The case
of patient H.M., whose medial temporal lobe was removed, significantly improved the
understanding of the memory system [1]. In this regard, a mysterious visual phenomenon,
visual hallucinations, might provide valuable insight into the normal vision.

Patients suffering from dementia with Lewy body (DLB) often see complex visual hal-
lucinations (CVH). Many pathological, clinical, and neuroimaging studies have provided
a wealth of insights, and several hypotheses converge on visual perception and attention
deficit [2, 3, 4]. However, the limitations of these approaches have prevented elucidation of
the neural basis, so that they fail to specify testable details of how normal vision develops
into CVH. It is time to try to embody such a model [5]. A mathematical model that
appropriately incorporates neuroscience findings is expected to provide testable details.

Neuroimaging studies do not necessarily provide consistent evidence [6], but hy-
pometabolism and hypoperfusion in the occipital region, which corresponds to the lower
visual cortex, are compatible with CVH [7, 8]. Limited imaging studies during CVH show
activity in the higher visual cortex [9, 10]. Recent studies have shown that patients with
DLB experience CVH through interaction with the visual environment [11, 12]. This find-
ing suggests that top-down information, which reflects internal context, may be used to
eliminate the ambiguity of visual environment [12, 13, 14, 15]. In other words, top-down
compensation mechanisms, as well as bottom-up deficits, may be associated with CVH.

We investigate one possible scenario of CVH that top-down information is being used
to compensate for the lack of bottom-up information. As a simplified model of the hal-
lucinatory situation, we assume a bottom-up and a top-down network. The bottom-up
network corresponds to the early visual areas of the occipital cortex and reflects the
external visual stimuli. The top-down network corresponds to the frontal cortex and
reflects contextual indices concerning visual objects [16]. In the brain, the structures
corresponding to our bottom-up and top-down subsystems project information to the in-
ferior temporal cortex (IT), which includes neurons sensitive to complex visual objects
such as faces or objects. We are interested in the effects of selective loss of the synapses
from the bottom-up network, and in how the plasticity of synapses (including those of the
top-down network) might change the neural activity. It may explain the hallucinatory
situation, especially if we assume that certain I'T neurons show increased activity by the
top-down input during CVH and the pre-reorganization representation of neurons remains
after reorganization.
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In terms of self-organization, theorists often assume constraints for computational
accounts of brain organization, function, and a goal-directed behavior [17, 18]. In par-
ticular, strategies are employed to optimize specific quantities, such as information and
prediction errors. This study proposes a new learning rule according to the information
maximization with the stochastic binary unit and shows that it can be understood as one
of the generalized Hebbian rules, which are the mathematical formulations closest to the
phenomenology of biological synaptic plasticity.

In Chapter 2, background knowledge in neuroscience is given. This includes visual
processing in the cerebral cortex, CVH mainly in DLB patients, the mathematical formu-
lation of synaptic plasticity associated with the Hebbian learning, related computational
works of CVH, and findings of phantom perception due to the network reorganization.
These findings lead to a scenario of the development of CVH, and support the validity
and uniqueness of our working hypothesis and computational model. In Chapter 3, we
introduce a mathematical model of neural networks and describe our method of investi-
gating the neural mechanism of CVH within the framework of computation theory. In
Chapter 4, we present the computation results. We explain how the proposed learning rule
can be understood as one of the Hebbian rules and what properties it has after learning.
Changes in neural activity through the reorganization process are understood as state
transitions. We conclude that one of the specific change corresponds to the proposed
scenario of CVH. Chapter 5 contains a discussion of the validation of our hypothesis and
computational model, including future works.



Chapter 2

Background

In search of constructing a working hypothesis on the mechanism of complex visual hallu-
cinations (CVH), this chapter describes related physiological, medical, and computational
studies in neuroscience. We provide an overview of visual information processing in the
human brain, which is divided into two aspects of the processing system in Section 2.1.
We explain clinical and neurophysiological evidence regarding CVH in dementia with
Lewy body (DLB) in Section 2.2. We describe synaptic plasticity, especially conventional
mathematical formulation in Section 2.3. Finally, we overview the related computational
models of CVH and explain our working hypothesis in Section 2.4.
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Figure 2.1: Brain regions related to visual processing centered at IT cortex.
Each arrow represents a different effect on visual processing: external visual information
(in blue), attention of the task-relevant object (in green), or expectation of the identity
of the visual object (in orange). Abbreviations: IT, inferior temporal cortex; V4/V2/V1,
visual cortices; RSC, retrosplenial cortex; PHC, parahippocampal cortex; PRh, perirhinal
cortex; PFC (VLPFC/OFC), prefrontal cortex (ventrolateral PFC/ orbitofrontal cortex);
MPFC, medial prefrontal cortex; FEF, frontal eye field; IPS, intraparietal sulcus; LGN,
lateral geniculate nucleus.

2.1 Two visual processing

Visual information from the external world is processed in extensive areas, from the retina
to the visual associative cortices in humans. A vast number of systematic researches have

4
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been conducted and some basic mechanisms have been established. In the following
subsections, we divide two distinct visual processing, ”bottom-up” and ”top-down”, and
describe their basic characteristics. Fig. 2.1 summarizes the brain regions and their
connections that we will discuss.

2.1.1 Bottom-up process

The hierarchical parallel processing [19] could explain the bottom-up process for visual in-
formation. Parallelism refers to the processing of different properties of visual information
via several independent visual pathways. In visual processing, there are two well-known
pathways: dorsal visual stream and ventral visual stream [20]. The former, which is com-
posed of occipotoparietal cortex areas, is involved in the detection of visual spatial and
motor information. The latter, which is composed of occipototemporal cortex areas, is
involved in the detection of the visual features such as shapes or colors.

Hierarchy refers to serial processing across the cortices in each pathway. As the process
progresses, the size of the receptive field becomes larger, and it begins to use higher levels
of visual information. For example, each neuron in the primary visual cortex (V1), which
is the lowest domain of both streams, responds to the specific orientation within a tiny
region of a particular location in the retina. On the other hand, each neuron in the
inferior temporal cortex (IT), which is the higher domain of the ventral stream, responds
to complex shapes or objects within a large foveal region in the retina. The following
experimental procedure determines these specific responses of neurons .

We here take IT neurons as an example [21], which might be associated with CVH.
Single I'T neurons in the monkey show spike activities above baseline at 100 msec after
the presentation of visual stimuli, then peak at several tens msec. Therefore, by setting a
time window, several 10 to 100 msec around 100 msec after the presentation, and counting
the number of spikes within this window, the response of the neuron to visual stimuli can
be measured. Repetition of the same stimuli provides the average number of spikes per
second, i.e., the average firing rate. Although various extensions, such as the population
decoding, might be considered in the experimental studies, the primary characteristic of
the neural response is the average firing rate thus obtained.

IT neurons in the monkey are selective to complex visual images, including inanimate,
animate objects, human faces, or body parts [22]. However, it is not clear what these
neurons actually respond to, and there are two proposals [23]. One is a holistic-based
representation that responds to a whole face [24], and the other is a parts-based represen-
tation that responds to features contained in the face rather than the face itself [25, 22].
IT neurons with similar selectivities tend to be close together and form spatial clusters
such as columns (0.5 mm) and patches (5 mm) [26, 27]. These clusters can also be de-
tected by imaging in humans and monkeys because MRI has a spatial resolution of about
1 mm. Indeed, monkeys have similar category representations with humans [28]. These
brain activities in I'T are considered to follow a purely hierarchical bottom-up process in
the ventral stream since the top-down effects described below are at a minimal level.

2.1.2 Top-down process

Attentions for visual perception are typical examples of the top-down effects for which be-
havior, human imaging, and single cell studies have been examined [29]. Tt is a voluntary
process that preferentially treats a task-relevant stimulus over irrelevant ones. One exam-
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ple shows the attentional effect in the visual cortex of the behavioral monkey [30]. Firing
rate for the presentation of multiple stimuli within the receptive field keeps the relation
of the linear summation of each firing rate at a single presentation, and the balance is
biased toward the attended stimulus. In other words, attention alters the contribution of
weight to the firing rate. Several attentional effects on the firing rate in the visual cortex
have been considered [31, 32], but all of these effects only facilitate neural response to
visual input, rather than driving perception itself.

Attention signals to visual areas are projected from the frontal and parietal cortices,
especially lateral intraparietal cortex (LIP) and frontal eye field (FEF) [33]. Human
neuroimaging studies also support this finding and report increased activity during the
maintenance of attention in the absence of visual stimuli in FEF and the intraparietal
sulcus (IPS) [34], which is the human homologue of the monkey LIP [35].

Expectations are similar but distinct top-down examples compared with attentions.
Both effects facilitate visual perception, but expectations constraint interpretation by
using prior information about the visual environment, whereas attentions prioritize visual
stimuli related to the behavioral goal [36]. Limited studies examine the neural correlation
at a single cell level, but several candidates are being considered. One candidate of
expectations comes from a series of experiments examining long-term memory reported in
the higher visual cortex. These studies directly demonstrated the importance of the role of
the lateral prefrontal cortex (PFC) neurons to I'T neurons during a paired association task
in adult monkeys. The perirhinal cortex (PRh) is also necessary for associative learning
in IT [37, 38]. On the other hand, several studies proposed that expectations occur as
a suppressed effect on sensory neurons for the prediction stimuli [39]. For example, one
study showed the increased activity of I'T neurons in response to unpredicted stimuli than
in response to predicted stimuli [40].

Human neuroimaging studies have inferred the source of other top-down signals of
expectation. For example, the increased activation in the parahippocampal cortex (PHC)
and the retrosplenial complex (RSC) was found, when visual objects associated with a
particular context (e.g., a hardhat) were compared with ones not related to any specific
contexts (e.g., a fly) [41]. Although posterior PHC corresponds to the parahippocampal
place area, which is involved in visual-spatial information such as a particular landmark
or scene [42], it has been proposed that PHC is more generally involved in contextual
information, including non-spatial information [43]. The orbitofrontal cortex (OFC) sends
an initial guess to IT based on the low spatial frequency visual information [44, 45].
Furthermore, the medial prefrontal cortex (MPFC) is also involved in the expectation
toward the face [46].

2.2 Complex Visual Hallucinations

Disorders that experience visual hallucinations include neurodegenerative disorders such
as dementia with Lewy body (DLB), Parkinson’s disease (PD), and Parkinson’s disease
with dementia (PDD), eye disease, schizophrenia, epilepsy, migraine, or arousal disorders
such as narcolepsy as well as drug inducing or sensory deprivation [47]. In this study,
we mainly focus on the visual hallucinations of DLB, but also provide findings regarding
other symptoms to complement the missing evidence in DLB. In particular with PDD
and DLB, they might have the same neural basis of CVH because Lewy pathology and
characteristics of CVH are common [48].
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2.2.1 Phenomenological findings

Visual hallucinations are defined as ”involuntary images that are experienced as real
during the waking state but for which there is no objective reality” [2]. Complex visual
hallucinations (CVH) include people, animals, and objects, on the other hand, simple
hallucinations include dots, lines, and flashes [2]. The prevalence of CVH within each
group is approximately 70 % in DLB [49], 50 % in PDD [49], 10 % in PD [49], 30 % in
shizophrenia [50], and 15 % in eye disease [51]. Simple hallucinations are associated with
eye disease [52] or migraine (known as a migraine aura).

In DLB and PDD, visual hallucinations are mostly complex, lasting for minutes rather
than seconds or hours [48]. Patients commonly see a single colored object in the central
visual field, superimposed onto a normal background scene. Hallucinated objects are
static in more than 50 % cases, but moving objects or scenes are also experienced.

A wide range of cognitive deficits is known in DLB patients. Compared with
Alzheimer’s disease, visual perception and visual attention deficits are highlighted,
whereas memory deficits are preserved [53]. Indeed, these two deficits are also associ-
ated with CVH in DLB [54, 55, 56]. Also, PD patients with CVH have more significant
deficits in object and face identification associated with higher visual regions [15, 57].

CVH in DLB patients may not be discrete symptoms and be associated with symptoms
such as illusions or minor hallucinations. Patients with DLB tend to see pareidolias
compared with AD or control people [11]. Seeing pareidolias is also associated with CVH
[12]. Recent studies focus on minor hallucinations as a precursor to CVH in PD patients
[58, 59], while another study suggests that these symptoms are independent [60].

2.2.2 Neuropathological findings: During hallucinations

Direct observations of brain activity during CVH in DLB patients have hitherto not been
made; however, increased activity across the visual cortex during CVH has been recorded
in brain imaging studies of PD [9, 10] and eye disease patients [61, 62]. In particular,
the content of hallucinations (such as colors, faces, and objects) seems to be correlated
with activity in the corresponding functional specializations of the visual cortex [61]. This
increased activity may reflect the activity of neurons selective to complex visual features
such as animals or humans. However, the only study in PD reported decreased activity
in the fusiform gyri within IT and increased activity in other areas such as the frontal
cortex [63]. There is limited direct evidence that the source of IT activity comes from
outside IT during CVH [64], including the co-occurrence increased activity in the frontal
region [10, 62].

2.2.3 Neuropathological findings: Associations with hallucina-
tions

DLB and PD are neuropathologically characterized by Lewy bodies, which is the aggrega-
tion of a-synuclein. Lewy bodies are associated with neurodegeneration and might cause
CVH. In limited studies of association with hallucinations mainly in PD and DLB, Lewy
bodies have been observed in IT [65], parahippocampus [65], amygdala [65, 66, 67], frontal
[57], temporal [67], parietal [67], and anterior cingulate cortex [57]. Structural imaging
studies suggest a wide range of grey matter loss across cortical-subcortical regions in PD
and PDD [68, 69, 70]. In these studies, however, a cognitive level between PD patients
was not controlled, and brain atrophy can be related to cognitive differences rather than
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the presence of CVH [71]. In a neuroimaging study that controls the cognitive level in
PD patients, CVH was associated with atrophy, mainly in occipital regions. In contrast,
dementia was associated with the frontal cortex and medial temporal lobes [72].

Indeed, abnormalities other than atrophy in the visual cortex have been consistently
reported. Hypometabolism and hypoperfusion in this area have also been reported with
relation to CVH in DLB [7, 8] and PD [73, 74, 75]. Furthermore, fMRI studies during
visual perception tasks have reported hypoactivation in this area of DLB [76] and PD pa-
tients [77, 78]. Despite no association between Lewy body deposition in the visual cortex
and CVH [79], phosphorylation a-synuclein aggregates, which is smaller than Lewy body,
have been located at presynapses; this abnormality may lead to the loss of postsynap-
tic dendrite spines in DLB patients [80]. White matter loss in the inferior longitudinal
fasciculus or occipito-parietal regions might be associated with this pathological finding
(81, 82].

CVH might be associated with neocortical cholinergic deficits, rather than a neuronal
loss in the neocortex [83]. Neuronal loss by the aggregation of Lewy bodies, especially in
the nucleus basalis of Meynert (NBM), leads to a decrease in acetylcholine (ACh) projec-
tions and the reduction of cortical choline acetyltransferase activity [84]. Decreased uptake
of ACh in the occipital region has been involved in hypometabolism in DLB and PDD
[85, 86]. Although there is a complex and not yet fully understood interplay between the
CVH and the contribution of medical treatment, increasing ACh by acetylcholinesterase
inhibitors has been reported to improve visual hallucinations [87]. NBM cholinergic input
is known to modulate the visual cortical firing rate and improve visual discrimination
[88, 89]. NBM signals seem to be a facilitator rather than an initiator [83].

In PD, early studies suggested that hallucinations were induced by the dopaminer-
gic treatment, referred to as ”levodopa psychosis” [90, 91], but some studies challenged
this issue [92, 93, 47]. Indeed, hallucinations were known before the pre-levodopa era
[94]. Nevertheless, the role of dopamine itself remains controversial, suggesting a role in
promoting hallucinations rather than in isolated inducing [58].

2.3 Mathematical models for synaptic plasticity

Information transmission between neurons occurs via synapses. A spike generated from
a presynaptic neuron changes the membrane potential of the postsynaptic neuron. This
fluctuation difference can be regarded as a synaptic strength and leads to alter the average
firing rates. A synaptic strength itself changes depending on the activities of pre- and
post- synaptic neuron. In neuroscience, such synaptic change between neurons is a funda-
mental mechanism of learning for experience-dependent behavior. Current experimental
and theoretical findings of synaptic plasticity are following Hebbian postulate, which is
summarized as ”cells that fire together wire together” [95].

A mathematical formulation of Hebbian plasticity can be divided into a rate-based or
a spike timing-based learning rule [96]. The former is adopted in this paper because our
targeting neurons are considered to represent information as firing rates (see Section 2.1).
This section outlines several rate-based learning rules, including generalized Hebbian rules
and metaplasticity. These formulations are useful to classify our proposed learning rule.
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2.3.1 Rate-based local learning rule

We consider a simple neural model that consists of M input neurons, whose activity
is described by an M-dimensional vector, x € RM, and a single output neuron, whose
membrane potential, v(z) € R is defined by the following equation.

u(z) = ijwj, (2.1)

where w; € R is the synaptic weight from j th input neuron to the output neuron and
0 € R denotes the bias. The first term, u(z) € R represents an activity from input z.

One property of Hebbian plasticity is a "locality”, which means that the change of
synaptic weight w; depends only on itself, the pre-synaptic activity x; (j-th component
of z) and the post-synaptic activity u. This is generally expressed as follows.

Ti
dt

where F'is an undetermined function. This equation implies that each synaptic weight
w; evolves from initial weights w;(0). This learning rule is called a rate-based learning
rule because x; and u are regarded as the averaged firing rate, but is should be cared to
the correspondences with experiments due to their negative values.

w;i(t) = F(xj,u(x),w;), (j=1,..,M), (2.2)

2.3.2 Linear Hebbian rule

The other property of Hebbian plasticity is a ”cooperativity”, which implies that the
synaptic weight is strengthened when pre- and postsynaptic neurons get active simulta-
neously. The simplest form is a linear Hebbian rule, which is represented by F' = z;u.
When considering a finite set of input patterns X = {#*}X | where K is the number of
input patterns. We simply denote here u(z*), v(z*) by u*,v*, respectively. Then, a linear
Hebbian rule is described by

d ~ .
7 w;(t) => b (=1, M) (2.3)
k=1

This equation can be rewritten as

T%w(t) = Xu=XX"w, (2.4)
where w = (wy,...,wy)T € RM, u = (u!,...,uf) € RE, and X € RM™*K is the matrix
whose k th column is z¥. Since X X7 is a positive-semidefinite matrix, trajectories fol-
lowing this equation diverge exponentially. The instability due to positive feedback of the
Hebbian rule is derived from this fact [97]. Theoretical and experimental approaches to
homeostatic plasticity as a stabilizing mechanism have been actively pursued [98].

The natural way for stabilizing of learning is to introduce a constraint that keeps the
overall synaptic weight constant. There are several variations on this approach [99, 100],
but one systematic approach is taken by Miller and Mackey [97]. They showed that
learning could converge or diverge depending on synaptic constraints. In the case of
convergence, the weight strength is stabilized at the principal component of the correlation
matrix X X7,
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2.3.3 Generalized Hebbian rules and metaplasticity

First, we introduce a generalized Hebbian rule which is a generalization of the linear

Hebbian rule Eq. (2.4).
d

T%w(t) = Xg(u), (2.5)
where g(u) = (g1(u), ..., g (u))T is a vector-valued function. A function gz : RX — R is
an undetermined function. When g, (u) = u*, this equation is equal to the linear Hebbian
rule.

The other way has been proposed to satisfy both the stabilization of learning and the
acquisition of stimulus selectivity. The Bienenstock-Cooper-Monroe (BCM) rule achieves
these properties and is one of the generalized Hebbian rules with the following function
(101, 102].

gel1) = pla® ) (uF — W(w), (2.6)

where U(u) = E[u?] =3, p(z*)(u*)?, and p(z*) is the probability that a certain pattern
z* is fed during learning. We consider that p(z*) > 0 for any k and >, p(z*) = 1. ¥(u) is
referred to as the sliding threshold, which is the post-synaptic activity dependent threshold
at which synaptic weights increase or decrease. This effect is known experimentally as
meta-plasticity [103]. After learning converges, an output neuron responds selectively to
only one of the K input patterns.

Our proposed learning rule is one of the generalized Hebbian rules with a sliding
threshold whose function g differs from the BCM rule (see Subsection 4.1). Our proposed
learning rule realizes selective response to one or more input patterns, unlike the BCM
rule. Different functional properties appear depending on the function g. A systematic
study applying the generalized Hebbian rule to natural images reported that a receptive
field such as a simple cell in V1 could be obtained with a wide range of nonlinear functions
g, but not linear Hebbian rule [104].

2.4 Working Hypothesis

2.4.1 Previous computational studies related to hallucinations

Computational models of CVH are in their early stages, but provide insights for the
generation of hallucinatory images or functional changes in the preservation or damage of
networks [14]. Here, we describe four different approaches and specific examples. First,
the effect of acetylcholine in DLB patients was studied using a recurrent neural network
for associative memory [105, 106]. These studies have supported the hypothesis that the
deficit of acetylcholine alters the landscape of attractor dynamics and evokes the internal
templates of visual objects.

Second, there are several computational studies based on the hypothesis that CVH
reflects the internal representation of the visual system. One computational study using
a Boltzman machine, which is a generative model of the recurrent network, has supported
the hypothesis that the loss of visual input and a homeostasis effect evoke the internal
representation template [107]. Multilayer feedforward neural networks, including convo-
lutional neural networks, are considered to be the most plausible models of the human
visual system in terms of functional and physiological aspects [108]. One study gener-
ated psychedelic hallucinatory images by updating input images to make a specific layer



CHAPTER 2. BACKGROUND 11

of neural networks more active [109]. This approach makes it possible to reproduce the
hallucinatory experience in human subjects [110].

Third, the most referenced computational framework in hallucinations follows the con-
cept of Bayesian inference or predictive coding [111, 112, 113]. The Bayesian inference
derives a posterior distribution from a likelihood and a prior distribution. In this con-
text, the likelihood is assumed bottom-up information such as sensory evidence, and the
prior distribution is assumed top-down information such as the expectation of cause. Hal-
lucinations are caused by a lack of bottom-up information and/or a strong dependence
on top-down information. A Bayesian modeling approach for estimating behavioral data
from the hallucination-induced experiment shows that a parameter determining the bal-
ance between prior and likelihood is sufficient to distinguish between non-hallucinators
and hallucinators, suggesting over-weighting to the subject’s prior [114]. There is also
an attempt to formulate the cholinergic effect as the precision of the sensory evidence
(115, 111, 116].

Finally, computational hallucinations by conduction disturbance between functionally
distinct networks were investigated [117, 118]. As these authors describe, the blockage
of information from the early visual cortex to PFC generates predictions about object
identity that is different from that of the external world, resulting in CVH. Our working
hypothesis and model extends the concept of conduction disturbance.

2.4.2 Network self-reorganization as a working hypothesis

This study hypothesizes that consistently reported damage in the visual cortex is the
core mechanism of CVH in DLB patients, as discussed in Section 2.2. However, why
does specific increased activity occur in the higher visual cortex during CVH as a result?
Perhaps there is a compensatory mechanism [119, 14] whereby top-down information is
used to compensate for the lack of bottom-up information. To test this scenario, we as-
sume synaptic plasticity as the compensation mechanism. Fig. 2.2 facilitates an intuitive
understanding of our working hypothesis. This study treats an output network as IT, a
bottom-up network as early visual cortices, and a top-down network as VLPFC/OFC,
but the other brain area might also be considered as one of the candidate. The functional
role of each network in visual processing is described in Section 2.1. We are interested in
the effects of selective loss of the synapses from the bottom-up network, and in how the
plasticity of synapses (including those of the top-down network) might change the neural
activity.

Similar scenario of our working hypothesis has been proposed in a large body of
hallucination literature [15, 77, 64, 12], but few details of the neural mechanism have
been discussed. On the other hand, there is a discussion on phantom perceptions due to
the network reorganization, suggesting potential neural mechanisms or representation, as
described below.

2.4.3 Reorganization phenomena

Understanding the functional recovery of behavior by neural plasticity is an essential
theme in neuroscience because of its benefit to disease [120]. Neural plasticity reflects
a complicated mechanism on a micro to macro scale and includes the contribution of
experience-dependent synaptic plasticity [121]. Neural plasticity can be viewed as adap-
tive when it relates to gain of function or as maladaptive when it relates to negative
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Figure 2.2: Network self-reorganization hypothesis that explains CVH. In this
hypothesis, I'T activities depend on bottom-up information, which reflects the external
sensory information, in the normal condition. Then IT activities depend on top-down in-
formation due to the loss of bottom-up information and the subsequent self-reorganization
process. Red cross marks represent damage in the corresponding parts. Blue and orange
arrows represent the influence of bottom-up and top-down information. The thickness of
an arrow represents the strength of these influences.
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consequences of function [120].

One example of experience-dependent reorganization is an ocular dominance shift
associated with V1 neurons after monocular deprivation [122]. Responses in V1 neurons to
stimuli presented to the deprived eye are depressed despite responded before deprivation.
The BCM rule was developed to explain this phenomenon [101, 123].

Another example is the phantom limb, in which amputees perceive their lost limbs
[124, 125]. Onme famous scenario is the reorganization of the topographic map of the
primary somatosensory cortex (S1) [126]. According to this scenario, hand amputation
leads to the invasion of the face region adjacent to the hand region in S1, and face
stimulation causes missing hand perception. However, nonfacial stimuli also produce lost
arm perception [127, 128], suggesting a reorganization of some places through the afferent
pathway leading to S1 [125].

The unique nature of this scenario is that the inputs that activate the neuron change
with the reorganization, but the representation of the neuron remains [129, 130]. In fact,
S1 activation by motor control [131] or microstimulation [132] have shown that representa-
tions persist over decades. The preservation of the representation after the reorganization
is one of our assumptions in this study (see Section 3.4). Phantom perception in other
modalities may also be a reorganization process associated with deafferentation [133].



Chapter 3

Method

In Section 3.1, we consider a self-organization principle as the maximization of mutual
information. In Section 3.2, we formulate two types of self-reorganization process. In
Section 3.3, we consider both bottom-up and top-down patterns with an assumption re-
garding conditioning effects such that top-down patterns co-occur with the corresponding
bottom-up patterns during the learning process. In Section 3.4, we define a measure of
CVH, which implies how much a bottom-up pattern is reconstructed from the output
population activity when the corresponding top-down pattern is fed.

3.1 Information maximization with stochastic binary
unit

We consider a simple neural model that consists of M input neurons, whose activity is
described by an M-dimensional vector, x € RM and a single output neuron, for which the
state is described by a binary value, y € {0,1} = ). The membrane potential v(x) € R
is defined by the following equation.

v(x) =u(x)+0, ulx)= ijwj, (3.1)

where w; € R is the synaptic weight from j th input neuron to the output neuron and
6 € R denotes the bias. The first term, u(zx) € R represents an activity from input z.
The firing probability of the output neuron is defined by

ply = 1fz) = f(v(z)), (3.2)
where f(v) = m is a sigmoid function. Here, we consider a finite set of input
patterns X = {2*}X | where K is the number of input patterns. We simply denote here
u(x¥), v(x¥) by u*, v¥, respectively. The probabilities of the occurence of input pattern x*
are denoted by p(x*). Mutual information between input and output patterns is defined
by

12:,9) = 33 pla, ) log 228 (33)

== p(x)p(y)’

where p(z,y) denotes the joint probability distribution, and p(y) = >__ ., p(z,y) denotes
the marginal probability distribution. To derive the learning equation, we assume that

14
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the synaptic weights change to maximize the mutual information by the gradient method.
Then, synaptic weights w; evolve from initial weights w;(0) in the following way.
dw;(t) 0I(X;))
- _

— =1 M A
7 awj,(J sy M) (3.4)

where 7 > 0 is a time constant. This learning equation can be compared with conventional
synaptic plasticity rule by calculating the gradient of mutual information (see Section 4.1).
In numerical calculations of Eq. (3.4), we used the following discrete dynamical system.

01(X;))

t},—l — t /\
v + 811)]‘

; ; , (3.5)
where A > 0 is a learning rate.

For clarity, we define the preference for input patterns that gives rise to the definition
of pattern selectivity for input patterns.

Definition 1. For input pattern z*, the output neuron is said to possess a preference if
v* > 0 and to possess no preference if v¥ < 0. In the preference situation, the value ”1”
15 allocated to the output neuron; otherwise, ”0” is allocated. Then, the pattern selectivity
for input patterns X is defined by the sequence of elements in {0,1}.

For example, if the output neuron has preference only for input pattern 2!, the pattern
selectivity is expressed as 710 ---0”.

3.2 Self-reorganization process

We consider the situation that the network was damaged in some parts of synapses be-
tween input and output neurons, and then the network learning starts again from those
damaged conditions. In the present study, this situation is called self-reorganization
(SRO). The procedure for the computational study is divided into three phases: ”self-
organization” (SO) phase, "damage” phase, and ”self-reorganization” (SRO) phase. At
the SO phase, every synaptic weight w;(t) changes to follow the learning rule Eq. (3.4)
from initial state w;(0) until a certain finite time 7. At the damage phase after the SO
phase, ¢ connections among all are randomly selected and set to 0. This procedure is
described by

wi(T) —0, (Vj€Q), (3.6)

where a set ) consists of indices of selected connections. This manipulation is assumed to
correspond to the synaptic loss in the physiological situation. At the SRO phase after the
damage phase, synaptic weight w;(t) changes to follow the learning rule Eq. (3.4) until a
certain finite time 7”. Here, we consider two types of SRO cases depending on whether
or not the damaged connections also change, referred to as ”weakening” and ”cutting”,
respectively. Thus, weakening and cutting are used as terms of the SRO phase in the
present study. In particular, the latter procedure is described by

waj(t) _ oI(X;Y)

XY T .
7 o, (VjieQ t>1), (3.7)

where a set (2 consists of indices of non-selected connections, that is Q = {1,..., M} — Q.

Fig.3.1 shows the schematic diagrams in these four phases including two types for the
SRO phase.
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“SO” “Weakening”

“Cutting”

1%

Figure 3.1: Four phases in the SRO procedure: "SO” phase, "damage” phase, ”weak-
ening” phase, and ”cutting” phase. Red-colored connections between input and output
neurons represent development to follow the learning rule. Blank connections represent

non-development. Blue-colored connections denote damaged connections. Black-colored
connections denote undamaged connections.
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3.3 Bottom-up and top-down patterns

We consider two different networks, that is, bottom-up network « and top-down network
B, as shown in Fig.3.2A. To consider the situation in which each network represents
typical population activities, network o represents basis patterns {a!}£ |, which have null
elements aé- =0 for j € {My +1,..,2My}. My is the number of input neurons in
each network. Network (3 represents basis patterns {3'}Z,, which have null elements
ﬂjl. =0 for j € {1,...,My}. Here, L is the number of basis patterns. We assume such
population activities of bottom-up network reflect information on visual objects such as
people and animals, and ones of top-down network reflect information on the context of
the visual scene to facilitate activation of the visual object. In anticipation of such effects,
the following conditional effects were considered. Each bottom-up pattern appears alone,
whereas each top-down pattern appears with only the corresponding bottom-up pattern
during learning. Then, the input patterns are expressed by

Pl =al+ 4 (1=1,..,L)
{ 2% = af (I=1,..,L). (3:8)

The example of these basis patterns and input patterns are expressed as image patterns
in Fig.2.1B. These image patterns are treated as vectors.

To guarantee statistical robustness and symmetry, in addition to these image patterns,
normalized patterns generated by a Gaussian distribution were taken into account in such
a way that &/ ~ N(0,1) for j € {1,---, Mg}, as = 0 for j € {My +1,---,2My} and

ol = 5‘—‘ Where |-| is a Euclidean norm and N (0, 1) denotes a Gaussian distribution with
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Network a Network 3
Bottom-up Patterns {a%, a2, } Top-down Patterns {8, 82,--- }

B Basis Patterns

Input Patterns
x! x2 x3 xt x5 x® X7«

GO L1 O + 58

Figure 3.2: (A) Structure of network «, which is responsible for bottom-up patterns and
network (3, which is responsible for top-down patterns. (B) Image patterns with 14 x 14
pixels, which were used for the present study. The upper row represents basis patterns,
where the left four patterns as bottom-up patterns, which represent the visual image, and
the right four patterns as top-down patterns, which represent the indices of the context
of the visual scene. The lower row indicates input patterns in the learning constructed by
the visual images with and without contextual patterns. The central 10 x 10 pixels in each
box were used for the representation of the activity of network a.. The peripheral 96 pixels
in each box and additional 4 zero entries were used for the representation of the activity of
network 5. Every white pixel has the value 0, and every black pixel has a positive constant
value scaled to normalize the activity of each pattern. Here, patterns are orthogonalized
with each other, because patterns are constructed to guarantee non-overlapping between
any different patterns.

-
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mean 0 and variance 1. Regarding the A3, BJZ ~ N(0,1) for j € {Mpy +1,---,2My},
B;-:Oforj e{l,,---, My} andﬁl:‘%.

3.4 Decoding the population activity

Population of Output Neurons

R(x) x'

11000000

wree 000 werot |

Figure 3.3: A schematic diagram for the decoding method. A pattern R(z) is
reconstructed from the activity of output population, which is composed of neurons spec-
ified by several types of pattern selectivity, when a pattern x is fed to input units. Several
circles in the output population denote one example of the firing activity from each type of
pattern selectivity. In this case, a thick red circle denotes high firing activity. A solid red
circle denotes mild firing activity. A black circle denotes no firing activity. The agreement
R(z; ') is evaluated by the template matching between a reconstructed pattern R(x) and
a referenced pattern x’. Receptive field W and projective field WP are introduced to
reconstruct a pattern (details in the text).

In the present study, we distinguish between the ”stimulus” that activates a certain
neuron and the ”stimulus” that the activity of the neuron represents. The former concept
is referred to as receptive fields (RF) and the latter one as projective fields (PF) in this
study. In order to deal with this situation computationally, the following procedure is
considered and the overall schematic diagram is shown in Fig.3.3.

First, we consider the generation of a reconstructed pattern from the activity of the
output population when pattern x is fed. Here, we introduce the concept of the receptive
field (RF) w*® € RM and the projective field (PF) w!™ € RM of output neuron i. Then,
a reconstructed pattern R(z) € RM is defined by

N

R(w) = f(o](z))wl™, (3.9)
i=1
where v]*“(z) = Zj\il wis°r; + 0, wif® is a synaptic weight from j th input neuron to i th
output neuron.
To quantify the content of a reconstructed pattern, we employ a template match-
ing procedure; that is, the agreement R(x;z’) between reconstructed pattern R(z) and
reference pattern 2’ is defined by

R(z;2") = R(x) -2’ = Zn(m; '), (3.10)

i=1



CHAPTER 3. METHOD 19

where R(z) -2 is an inner product of R(x) and 2/, and r;(x; 2') = f(v(z))ul"’(2’) is the

contribution of i th neuron to R(z;z’), where u!"’(z') = Zj\il wy; wh, wii’ is a synaptic
weight from ¢ th output neuron to j th component of reconstructed pattern.

We examine how much single bottom-up pattern ! is reconstructed when the corre-
sponding top-down pattern 3! is fed. This measure is defined by R(3%; al), referred to as
the term ”hallucination quality” (HQ). We are interested in how HQ changes in the SRO
process. Regarding the RF, we consider the case in which the synaptic weights at that
time are used after each set of four phases, SO, damage, weakening and cutting phase.
However, regarding the PF, we compare two cases to determine whether synaptic weights
at that time or synaptic weights after the SO phase are used after each set of four phases.
In the former case, the neuron is considered to represent pattern selectivity at that point.
In the latter case, the neuron represents pattern selectivity at pre-reorganization. The
discrepancy between RF and PF might be a hallucination problem (see Section 4.1 or

Subsection 2.4.3).



Chapter 4

Result

In Section 4.1, we discuss the fundamental mathematical properties of the proposed learn-
ing rule. In Section 4.2, we reformalize self-reorganization process. In Section 4.3, neurons
that undergo a shift in activity from a bottom-up pattern to the corresponding top-down
pattern after the occurrence of selective damage on the bottom-up network. Furthermore,
in Section 4.4, this change can be explained in terms of state transitions. In Section 4.5,
a single bottom-up pattern appears in the reconstructed pattern, which is generated by
output population activity when the corresponding top-down pattern is fed with a specific
projective field.
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Figure 4.1: Pattern selectivity and learning trajectories in two-dimensional
weight space. (A) Two hyperplanes H!, H? (details in the text) are depicted for two
input patterns x!, 2%, respectively. As typical, this is shown in seven points, for which
bar graphs demonstrate firing probabilities p(y = 1|z') and p(y = 1]|z?). (B) Quantity of
mutual information is shown in a color bar. Dynamical trajectories starting from some
initial conditions on weight space are drawn. Degenerate fixed point (details in the text)
is depicted and same seven points as in (A) are illustrated.
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4.1 Dynamics of synaptic weights

In understanding the relationship between synaptic weights and pattern selectivity of
output neuron, hyperplane H* = {w € RM|v* = 0} for pattern 2 on weight space is an
informative object. Fig.4.1A shows the firing probabilities p(y = 1|z) at certain places
of the two-dimensional weight space (inlet simply indicates a magnification of one figure)
and two hyperplanes (yellow and blue lines) defined by a null membrane potential of the
corresponding input pattern. There are four regions divided by two hyperplanes, each
of which corresponds to one of the types of pattern selectivity, as the hyperplane is a
boundary of the pattern selectivity by definition.

We can derive the following learning equation by calculating the gradient of mutual

information Eq. (3.3).
K

P =3 (o) = Xolo), (4.1)
k=1

where w = (wy, ...,wy )T € RM| X € RM*E ig the matrix whose k th column is z*, and
g(v) = (g1(v), ..., g (v))T is a vector-valued function. gy(v) = p(zF)f/'(v*)(v* — ¥(v)) is
derived by using a formula log - S (U()v) =v. U(v) = log i Ezzé; is a meta-plasticity term
that controls the overall firing activity such as the sliding threshold in the BCM rule
[101] . In general, the conventional rate-based synaptic plasticity rule is expressed as the
combination of the presynaptic neural activities z, the postsynaptic neural activity u, and
the synaptic weights w (see Section 2.3 or [96]). This learning rule is therefore one of the
rate-based synaptic plasticity rules.

Fig.4.1B shows the quantity of mutual information on weight space by providing the
same two input patterns as in Fig.4.1A. Compared with the two figures, it is apparently
seen that two regions of high mutual information (yellow regions) realize the pattern
selectivity 710”7 or 701”. Fig.4.1B also shows that every trajectory converges to either of
these two regions. There is a degenerate fixed point of Eq. (4.1) (green line) that consists
of an infinite set of fixed points. The reason for the degeneration is that Jacobian matrix
at this fixed point has a zero eigenvalue. Convergence regions of trajectories are divided
by this fixed point. Concerning this fixed point, the next proposition is proved.

Proposition 1. If K < M and input patterns are linearly independent, the fized point of
Eq. (4.1) is the set

Wep = {w e RY|X"w =al,a e R, 1= (1,..,1)" € R¥} (4.2)
, which is unstable.

This proof is given in Appendix A. In the case that K > M, Wgp is unstable and
other fixed points appear depending on X.

However, this proposition does not address the pattern selectivity of an output neuron,
which is established after learning. The next proposition is related to the number of types
of pattern selectivity.

Proposition 2. If K < M and the input patterns are linearly independent, the number
of convergence regions of Eq. (4.1) is 25 — 2. Each convergence region corresponds to
one type of pattern selectivity.

Even though this statement has not been proven yet, our numerical results strongly
suggest that this proposition is true. Although the possible number of types of pattern
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selectivity is 2% when K < M and input patterns are linearly independent, two types of
pattern selectivity 700---0” and ”11---1” will not appear after learning. For example,
there are no convergence regions related to 700” and ”11” in Fig.4.1B.

4.2 Dynamical differences between weakening and
cutting

Because the dynamics of w is not useful for considering the learning dynamics after the
damages of connections, we rewrite Eq. (4.1) by multiplying X7 on both sides.

— =XTX 4.3

P2 XX, (43)

where v = (v!,...,v%)T € RE and (k,l)-element of X7 X is 2% - 2'. At the damage phase,
v* is also changed by Eq. (3.6) in the following way.

ot = Z x?wj +0, (4.4)

jeQ

where ©* implies v* after damage. At the weakening phase, v changes to follow Eq. (4.3)
from the point Eq. (4.4). However, at the cutting phase, it is necessary to modify Eq.
(4.3) because only undamaged connections change. If we consider {5;}7,¢ = Q, which is
the set of indices of undamaged connections and z" = (¢} ,---, 2% ), which is the k th
input pattern affected by cutting connections, then v changes to follow the equation

dv S
T— = XTXg(v), (4.5)
dt
where X € R(M=9*K i5 the matrix whose k th column is Z®. This implies that not only
the initial points of trajectory but also the vector field itself changes at the cutting phase.
Concerning the effects of damage for #* and z* - ', the next proposition is proved.

Proposition 3. For every ¢ < M, the expected value of 0% is

E[t") = (1 — %)(vk —6) +6. (4.6)

For every ¢ < M, the expected value of 7' - T is

Bzt ] =(1- %)xk 2. (4.7)
The proof is given in Appendix A. Therefore, the degree of damage linearly depends

on the number of damaged connections c.

4.3 Over-compensation through SRO

Here, we consider the case of selective damage to the bottom-up network a for 100 out-
put neurons which have a specific type of pattern selectivity, ”11000000”, 10000000,
and 701000000” after the SO phase. We do not consider symmetrical types of pattern
selectivity, such as 700110000” for ”11000000” because they show similar change in the
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following results. Other types of pattern selectivity are not considered in the present
study. To get an output neuron with a specific type of pattern selectivity after the SO,
we set specific initial weights before the SO phase described in Appendix B. Parameters
used for numerical simulation are described in Appendix B.

Fig.4.2A shows the change rate of pattern selectivity with respect to a parameter
¢, which indicates the number of the damaged connections. After the cutting phase,
neurons, whose pattern selectivity changes from ”11000000” to ”10000000” increases with
c. However, after the weakening phase, there is no such change. after the cutting phase,
neurons, whose pattern selectivity changes from ”01000000” to ”00000000” appear for
some large c. Only in this case, we need to discuss the delicate characteristics latent in
the learning rule (see Appendix B).

Fig.4.2B shows the changes in activity u from each basis pattern {a!}} ;| and {5'}},
with respect to c. After the damage phase, the activity u(a!), which indicate the activity
from bottom-up pattern o seems to change linearly with respect to ¢ (top three figures
in Fig.4.2B). Proposition 3 tells us about this change. After both SRO phases, neurons
specified by ”11000000” have a tendency that u(a') decreases and u(S') increases with
¢, each of which indicates the activity from bottom-up pattern o' and top-down pattern
B, respectively (two left figures from the bottom in Fig.4.2B). Moreover, significant
discontinuous changes appear only after the cutting phase, caused by the neurons whose
pattern selectivity changes from ”11000000” to ”10000000”.

Fig.4.2C shows typical synaptic weights of output neurons after each phase. In par-
ticular, a neuron whose pattern selectivity does not change from ”11000000” after the
cutting phase has positively valued synaptic weights to bottom-up pattern o' (Fig.4.2C-
i). A neuron whose pattern selectivity changes to ”10000000” from ”11000000” during
the cutting phase has negatively valued synaptic weights to a! and larger positive val-
ued synaptic weights to top-down pattern 8! than ones after the SO phase (Fig.4.2C-ii).
Because image patterns have only non-negative values, these results provide an intuitive
explanation for activity u, which is calculated by the inner product between image pattern
and synaptic weights.

To sum up, when the damage is small to some extent, the compensation mechanism
works to recover the activation from the bottom-up pattern. However, when the damage
is sufficiently large, the compensation mechanism works to reduce the activation from a
bottom-up pattern and enhance the activation from the corresponding top-down pattern.

4.4 Over-compensation from the viewpoint of state
transition

The above computation results can be understood by the framework discussed in Section
4.2. Here, we use normalized Gaussian input patterns. The procedure to obtain the
following results is described in Appendix B, in which the most important point is that
convergence property after SRO is characterized only by two variables (v!, v?), represent-
ing membrane potentials for input pattern z! and z2. We numerically calculated SRO
processes with the same parameters in Section 4.3.

Fig.4.3A shows the convergence regions for each pattern selectivity on phase space
(vl,v?). These figures can be better understood by comparing with the change rate
of pattern selectivity shown in Fig.4.3B. For example, when focusing on the SRO that
occurred in neurons with pattern selectivity of ”11000000” after damage to network «
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Figure 4.2: Effect of SRO after damage to network « for specific type of pattern
selectivity. (A) For each ¢, the rate of 100 output neurons for which pattern selectivity
has changed after each phase. Each column corresponds to ”11000000”,”10000000”, and
”01000000” after the SO phase from left to right. (B) Each dot represents activity u from
each pattern. Each line and shading region represents the mean and standard deviation
of u respectively. Each column corresponds to the same pattern selectivity as in (A).
Each row corresponds to three phases, “damage”, “weakening”, and” cutting” from top
to bottom. (C) Typical synaptic weights of a specific output neuron at four phases when
¢ = 80. (i) Synaptic weights of a neuron whose pattern selectivity remains ”11000000”
after the SO, weakening and cutting phase. (ii) Synaptic weights of a neuron whose
pattern selectivity remains ”11000000” after the SO and weakening phase, but changes
to 710000000” after the cutting phase. (iii) Synaptic weights of a neuron whose pattern
selectivity remains ”10000000” after the SO, weakening and cutting phase. (iv) Synaptic
weights of a neuron whose pattern selectivity remains ”01000000” after the SO, weakening,
and cutting phase.
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Figure 4.3: Convergence regions on phase space constructed by membrane po-
tential and the change rate for the specificity of pattern selectivity. (A) On
phase space (v!,v?), the convergence regions for the four types of pattern selectivity,
”711000000”,”10000000”, 7010000007, and others are shown. Values (v', v?) for every neu-
ron after the damage phase are shown as dots which are classified by color based on the
pattern selectivity after SRO. The black arrows indicate the direction in which each dot
moves after network damage. The left column indicates the case of “weakening”, and the
right column shows the case of “cutting”. The upper row indicates the damage to network
a, and the lower row demonstrates the damage to network 5. (B) The change rate of
pattern selectivity of some specific 100 output neurons for each ¢. (i) For neurons whose
pattern selectivity is 11000000 after damage to network «. (ii) For neurons whose pat-
tern selectivity is 710000000” after damage to network . (iii) For neurons whose pattern
selectivity is 701000000” after damage to network [.
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(dark blue dots in the upper two figures in Fig.4.3A), the states of the neuron go down
from the upper right to lower left depending on parameter c. At the weakening phase, no
dots cross the boundary of convergence region of pattern selectivity; thus, specificity via
SRO never changes for all values of parameter ¢ (Fig.4.3B-1). However, at the cutting
phase, some dots cross the boundary (invasion from light blue to light red regions), which
gives rise to change of pattern selectivity to ”10000000” through the SRO processes. This
is because convergence regions are altered in comparison with weakening phase due to the
change in vector fields. The other cases are explained in the same way except for one case
of 701000000”, cutting phase, and damage to network « (black dots in the upper right in
Fig.4.3A).

It is found that the change rate of pattern selectivity of neurons specified by
711000000” after damage to network a (Fig.4.3B-i) has the same tendency as those
of the image patterns (left figure of Fig.4.2A), as the vector fields change in the same way
with respect to ¢. We also found the same tendency to change in activity u from each
pattern (data not shown).

From these observations, the mechanism of over-compensation can be understood in
the following way. When the damage is small, v tends to fall inside the original convergence
region, returning to the original state. Therefore, the original activation is recovered
through SRO. However, when the damage is sufficiently large, on the other hand, v tends
to fall outside the original convergence region, which brings about the deterioration of the
original activity due to another pattern selectivity, thereby increasing the other activity

through SRO.

4.5 Reconstructed patterns and contributions to
change of HQ

First, we consider the reconstructed patterns from the population activity of 1200 output
neurons, which are composed of 100 output neurons for each of the 12 types of pattern
selectivity, 7110000007, 7100000007, 701000000”, and other 8 symmetrical types of pattern
selectivity, in the case of damage to network «. The same image patterns and parameters
are used for the numerical simulation as in Section 4.3. Fig.4.4A shows an input pattern
and four reconstructed patterns after each phase. In the first case of PF, in which synaptic
weights after the SO phase are used as a projective field (PF), a bottom-up pattern o
corresponding to the top-down pattern 3’ is reconstructed after both SRO phases when
¢ = 90 but is not reconstructed when ¢ = 30. Thus, if the post-reorganization activity
from the top-down pattern is read out as pre-reorganized activity with this specific PF,
then the corresponding bottom-up pattern appears in the reconstructed pattern. In the
second case of PF, in which synaptic weights at that time are used as PF, corresponding
bottom-up patterns appear only after the weakening phase when ¢ = 90.

Next, we consider hallucination quality (HQ), R(S'; a!), which is a measure of how
much the bottom-up pattern o! appears in the reconstruction pattern when the corre-
sponding top-down pattern ' is fed in the SRO process. Fig.4.4B shows a change in one
of HQ, R(B'; ') depending on c after each set of four phases (black lines of four different
line styles). As expected, in the first case of PF, HQ increases with ¢ after two SRO
phases, whereas in the second case of PF, HQ increases only after the weakening phase.
The difference in HQ after the cutting phase for different PF's is determined by whether
there are null connections to network « or not. Interestingly, HQ after the damage phase
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never changes in the first case of PF as the activity from S, () does not change after
damage to network «, and synaptic weights after the SO phase are used as PF after the
damage phase.

It is possible to determine which types of pattern selectivity are responsible for HQ
because it can be calculated by a linear sum of the contribution r;(5%; a!) (see definition
in the Section 3.4). Fig.4.4B also shows the amount of the contributions r;(5%;a!) in
neurons with a specific type of pattern selectivity. Only the change from ”11000000”
(red bars) contributes to the change of HQ with both PF cases. Therefore, as discussed
in Section 4.3, changes in activities from a bottom-up pattern o to the corresponding
top-down pattern 3' among neurons with pattern selectivity of ”711000000” contribute to
an increase in HQ.

One might assume that these results depend on the activation function of the output
population, which is f(v) in this case, or the variety of output neurons. In the first case
of PF, it can be shown that the presence of the neuron whose activity shifts from the
bottom-up pattern to the corresponding top-down pattern, such as the neuron specified
by 711000000” contributes to the increase in HQ if the activation function is a strictly
monotonically increasing function.
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Figure 4.4: Decoding the population activity from 12 types of output neurons
when a top-down pattern is fed. (A) Input pattern and reconstructed patterns after
each set of four phases ”SO”, "damage”, "weakening”, and ”cutting”. The left column
indicates the first case of the projective field (PF), in which synaptic weights after the
SO phase are used as PF. The right column indicates the second case of PF, in which
synaptic weights at that time are used. The upper row indicates the case in which ¢ = 30.
The lower row indicates the case in which ¢ = 90. (B) One of "hallucination quality”
(HQ), R(8%; a') depending on ¢, which is a measure of how much a bottom-up pattern
a' is reconstructed. The black four lines represent HQ after each set of four phases.
Each bar graph shows the amount of contribution r;(3';a!) in neurons with a specific
type of pattern selectivity. The four bars on each ¢ correspond to the four phases from
left to right. The left and right column indicate the first case and the second case of
PF, respectively. The sum of each color bar matches each R(S';al) (each black line), as
R(B;a') is a linear sum of r;(8%; at).
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Discussion

5.1 Correspondence with clinical and neuroimaging
findings

We used a computational model to examine the possibility that CVH in DLB occur
when top-down information is used to compensate for the loss of bottom-up information.
We examined how synaptic plasticity, including the plasticity of synapses in the top-
down network, enables self-reorganization. We showed that the percentage of neurons
which undergo a change in activity from the bottom-up pattern to the corresponding
top-down pattern increased with the extent of synaptic loss through self-reorganization.
Before reorganization, these neurons show sufficient increased activity for a particular
bottom-up pattern and mild increased activity for the corresponding top-down pattern.
After reorganization, in contrast, these neurons show decreased activity for the bottom-up
pattern and sufficient increased activity for the top-down pattern. In general, a significant
discontinuous shift in activity was observed, depending on the input patterns, the extent
of damage, and the types of pattern selectivity, which can be understood in terms of state
transitions.

This partly explains the results of neuroimaging during CVH in PD [9, 10] and eye
disease [61, 62] by the occurrence of specific IT population activity since our computational
results imply that, after reorganization, specific I'T neurons show significantly increased
activity triggered by the top-down input without bottom-up input. There is limited direct
evidence that the source of IT activity comes from outside IT during CVH [64], including
the co-occurrence increased activity in the frontal region [10, 62]. As indirect evidence,
DLB patients tend to see CVH on the meaningless external environment, which is called
pareidolias [11, 12]. This illusion might reflect the top-down facilitation with contextual
indices of the background scene [16, 12]. Consistent with the decreased activity for the
bottom-up pattern after reorganization, there are reports for decreased activity in the
higher visual cortex for complex visual objects in DLB [76] and clinical assessment using
silhouette visual images in PD [15].

This shift in activity before and after reorganization could give rise to CVH: the repre-
sentation of the bottom-up pattern by I'T neurons before reorganization is retained after
reorganization, and a sensation of the bottom-up pattern is induced by I'T neural activity
evoked by the top-down pattern. In the present study, projective fields are characterized
by the kind of pattern the neurons represent, rather than by their effects on downstream
neurons as in the original computational study [134]. The discrepancy between the recep-
tive and projective fields associated with reorganization has been discussed previously in

29
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the context of phantom limb sensations [130].

Assuming that the bottom-up pattern reflects external visual input and the top-down
pattern reflects the internal representation of visual objects (e.g., expectation), our ap-
proach seems consistent with the misattribution model, which states that hallucinations
are the misattribution of mental visual imagery to external visual input [15, 135]. Several
studies support such a phenomenological mechanism in PD patients [15, 136]. The for-
mation of mental imagery in the visual cortex has considerable overlap with the activity
during perception [137]. However, because the electrophysiological properties of mental
imagery at the cellular level are still unknown, it is difficult to determine whether our
results reflect perception or mental imagery.

In DLB, a-synuclein aggregates have been located at presynapses; this abnormality
may lead to the loss of postsynaptic dendrite spines [80]. White matter loss in the infe-
rior longitudinal fasciculus or occipito-parietal regions might also be associated with this
pathological finding [81, 82]. Although there is no evidence of synaptic plasticity as a
compensatory mechanism in DLB per se, it does appear to play this role in many neuro-
logical conditions [138]. As indirect evidence of this, hyperconnectivity between the visual
cortex and hippocampus or amygdala has been reported in patients with schizophrenia
[139, 140], though not yet in those with DLB. From a theoretical viewpoint, as shown
in the present study, synaptic damage can destabilize the dynamics of synaptic plasticity
and prevent convergence to an original stable state.

It has been suggested that CVH are caused by a combined dysfunction of multiple
distributed visual systems, particularly in DLB [2, 3, 4]. In the present study, we did
not incorporate clinical or imaging findings, such as changes in attentional control or
executive function [135, 64]. This is because it is not clear how these functions work at
the cellular level during CVH. At the cellular level, one possibility is that the effect of gate
modification on the firing rate of acetylcholine might influence hallucinations [141]. To
address multiple dysfunction in the computational study, one obvious line of investigation
would be to examine the interaction between functional modules and the effect of lesions
[118]. The present study could serve as the basic framework for such a extension.

These experimental findings were referred not only from CVH in patients with DLB
but also with other diseases or experience of hallucinations in other sensory modalities.
If there is a common neural mechanism for hallucinations, our computational results
provide new insights into data that have hitherto not been experimentally validated on
patients with DLB. Furthermore, understanding the cognitive and neural mechanisms
underlying the experience of hallucinations not only has considerable clinical significance
but also provides insight into the veridical perception [142, 50]. To address this challenging
problem, we expect that a computational approach is important and useful for generating
hypotheses and getting an intuition of neural activities [14].

5.2 Computational implementation of CVH

To determine the fundamental mathematical structure of the mechanism of CVH, we
adopted a rather abstract computational model in the present study. There is room for
improvement in the treatment of the top-down mechanism and network architecture.
We have simply considered the top-down mechanism to be typical population ac-
tivities, with top-down patterns representing the context of a visual scene to facilitate
activation of the visual object [16, 36]. As a computational assumption, the top-down
patterns co-occur with the corresponding bottom-up patterns during the learning process,
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but, as far as we know, related evidence is unclear.

A completely different approach for top-down architecture is Bayesian estimation [143].
For example, a Bayesian computational study of the false perception of DLB patients was
found in the literature [116]. While such an approach has considerable explanatory power,
especially with regard to functions such as expectations and anticipation, it is unclear that
it can be tested experimentally [144].

Our network architecture could be extended in a variety of ways; however, the observa-
tional results would not necessarily be the same. For example, our results depended con-
siderably on the characteristics of the convergence region of the learning rule (proposition
2). Therefore, the activity shift from a specific bottom-up pattern to the corresponding
top-down pattern might not be obtained in the same setting with other local learning
rules, such as the linear Hebbian rule with constraints [97] or the BCM rule [101].

Although computational models for synaptic plasticity have been studied for a long
time [99], no single mechanism for the specific functions of the neural system has gained
universal acceptance [104, 145]. For example, to maintain a cell assembly within a rec-
curent network, it is necassary to incorporate multiple factors as a synaptic plasticity
[146, 147, 148]. Assuming CVH as the destabilized spontaneous activity within the I'T
population, such mechanisms might contribute to the generation. Several future direc-
tions of research are therefore possible, such as developing more physiologically realistic
models, or studying exactly how plasticity affects self-reorganization. We expect other

mathematical structures useful for explaining cognitive abnormality in mental disorder,
not only CVH.



Appendix A

Proof of Proposition 1. At first, we can derive two formula by using the property of the
sigmoid function. Here, we use the term E[-] as the mean of the distribution p(2*). For
every a € R,

¥(a.0) =0, 5.)
ov
j
where W(v!, -+, v) = log 2L

Note that Ker(X) is only the origin of R¥ since input patterns {x*}£ | are linearly
independent. Then, we obtain the following relation about fixed point by using Eq. (5.1).

™) (Vk) (5.3)
= v =---=0v" =VY(q,...,a) =a (Va €R).

Then, fixed point is the set Wpp = {w € RM|XTw + O =al,a € R} .
Next, we will demonstrate the stability of this fixed point. Jacobi matrix DF(w) of
Eq. (4.1) is caluculated
DF(w) = XG, (5.4)

where (j, k)-element of matrix G is ag’“—w(:). Using Eq. (5.2), this element at fixed point
w* € Wgp is

g (kY g k

D a,....a) = pla) () — Ela]). (5.5

811}]‘

Then, Jacobi matrix at fixed point w* € Wgp is

plahzy  pa)af o p(a)af a1 — Elz1]  ah— Elzs] -+ zy — Elwy]
p(zhzl  px?zi - p(aF)zk 22 — Elz1] 23— Elza] -+ 2% — Elzm]
DF(w*) = f(a)
p(aV)z, ple?)22, - pla¥)k o — Elz1] 2K —Elzs] -+ ¥ — Elzum]
= f'(@)El(x — Efz])(z — Elz])"]

(5.6)
where E[(x — E[z])(z — E[z])"] is the covariance matrix of input patterns, which contains
(i,7)-element as E[(x;x;) — E[x;|E[x;]]. Therefore, the Jacobi matrix is positive semi-
definite at a fixed point.

[

Proof of Proposition 3. Consider the real values {¢;}/ j=1, and the summation 7" = E;w tj.
Then, take ¢ values (t;,,j,, ..., t;,) randomly from these values and consider the summation
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T, = > 7tj. Then if we represent the expected value of T, as E[T.], we can show E[T,] =
e,
At first, we show the following equation.

M

M M
Yoo Yttt =P (5.7)

J1=1j2=1,j27#j1 Je=Ljec#j1ssde—1

where P, = % and M! is the factorial of M. It can be shown by induction. When

c=1,%;ty =T Whenc+1,

M

M M
DX X tattatethott,

J1=1j2=1,jo#j1 Jet1=LJcF#J1,nJc

M M M
=> > - > (M —c)(tj, +tj, + - +15) +T = (G, +t5, + -+ 1)
J1=1j2=142#j1  je=1,jc#j1,--,Je—1
M M M M M M
=(M-c—1)> > - > (b Ftp ot )+ >, > T
J1=1j2=1,j2#j1 Je=LJc#j1s1Je—1 J1=1j2=1,j2#j1 Je=1,jc#J1sJe—1

= (M —c— l)CM71P671T+ mP.T

=(c+1)(M —c)p—1PeaT

=(c+1)p-1P.T.

Therefore, Eq. (5.7) holds. Using Eq. (5.7) and joint probability p(t;,, ..., t.) = 15

mPe?
M
MP D ittt
J1=1 ja=1,52#51 Je=1JeFj1, s Je—1
c—1Pe T
MPC

= T (5.8)

E [TC] =

_ kol
Regarding v*, assume t; = w;x; % Regarding x* - z!, assume ¢; = = ;1.
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Parameters for numerical simulations

We set the synaptic weights to target initial values vy, € R to get an output neuron
that has a specific type of pattern selectivity after the SO phase.

w(0) = X(XTX)  vrgr, (5.9)

where (X7 X)~!is the inverse matrix of X7 X. For each ¢ and each pattern selectivity, 100
output neurons are generated by the setting following initial points, vy, = (0,0,0,---.,0)
for 711000000”, v, = (0,0, ---,6) for 710000000”, v4e, = (6,5,6,---,0) for ”01000000”
from Eq. (5.9). For symmetrical types of pattern selectivity, symmetrical initial target
values are used. For example, considering ”"00110000” which can be considered as a
symmetrical type of pattern selectivity with ”11000000”, v, = (0,6,0,0,0,---,0) which
can be considered to be symmetrical values in which vy, = (0,0,6, -+, 0) are used. Other
parameters are set to My = 100, p(z¥) = 1/K, A = 20.0, T = 500, and T" = 1000.

Procedure for visualizing convergence regions

We consider the dynamics of membrane potentials discussed in Subsection 3.2. Although
the actual dimension of v is 2L, two dimensions are sufficient to characterize the SRO
process for some pattern selectivity. Here, normalized Gaussian input patterns are con-
sidered. If My is sufficiently large, a* - ol ~ 0 (k # 1) and 8% - 8 ~ 0 (k # [). Following
this property, we consider the specific coefficient case.

AO - 0
O A - O
XTx=|_ " _ ,A:(‘“ “3), (5.10)
: e a3 az
OO0 - A

where every element of O € R?*? is zero and ay, as, a3 € R. Then, we consider the dy-
namics of v with coefficients Eq. (5.10) from initial points v'(0) = v}, v*(0) = v3,v3(0) =

- = v?5(0) = v3. We can visualize convergence regions such as Fig.4.3A by classifying
the initial points (v, v9) based on the pattern selectivity after convergence with appro-
priate parameters such as v3,a;,as,az. In the case of weakening, it is sufficient to fix
a; = 2,as = 1,a3 = 1 and adjust only v3. However, in the case of cutting, since the
value of the coefficient differs at each point, we adopt them near the boundary of the

convergence regions.
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701000000” at the cutting phase

Note that the same coefficients Eq. (5.10) are used for image patterns as they have no
overlap each other and are normalized. When network « is damaged and c is near to
My, we can observe two SRO cases for a neuron with 701000000”, which converges to
one pattern except 700000000 or which converges to ”700000000” after sufficient time 7".
The former case is simply a problem of convergence time. The latter case is a problem of
the relation between the zero coefficient, the order of v, and the role of W.

In particular, when ¢ = My, v = 6 and v*~! < v? for each [ since u(a!) = 0 and
u(B) < 0 after the SO phase (see for example, figure after the damage phase with ¢ = 0
of Fig.4.2B). Then, the order v*~! < ¥ < v? is given. At first glance, v? seems to
increase and v?~! seems to decrease owing to gy > 0 and gy_; < 0 at these points, but
the coefficient az = 0 makes v?(t) remain at this point; thus, v~ continues to decrease
and v* remains at 6, such that pattern selectivity remains ”00000000” indefinitely.
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