Title: *In vitro* enzymatic activity assays implicates the existence of the chlorophyll cycle in chlorophyll b-containing cyanobacteria

Running title: chlorophyll cycle in cyanobacteria

Corresponding author; Hisashi Ito, Institute of Low Temperature Science, Hokkaido University, N19 W8, Sapporo, 060-0819, Japan, Tel; +81-11-706-5496, Fax; +81-11-706-5493, E-mail; ito98@lowtem.hokudai.ac.jp

Subject Areas: (5), (4)

Black and white figures: 2
Color figures: 5
Tables: 0
Supplementary figures: 4
Supplementary tables: 3
Title: *In vitro* enzymatic activity assays implicates the existence of the chlorophyll cycle in chlorophyll b-containing cyanobacteria

Running title: chlorophyll cycle in cyanobacteria

Authors: HyunSeok Lim, Ayumi Tanaka, Ryouichi Tanaka, Hisashi Ito

Author’s address: Institute of Low Temperature Science, Hokkaido University, Sapporo, 060-0819, Japan

Abbreviations: CAO, chlorophyllide a oxygenase; CBR, chlorophyll b reductase; Chlide, chlorophyllide; FNR, ferredoxin-NADP+ reductase; Fd, ferredoxin; HCAR, 7-hydroxymethyl chlorophyll a reductase; HMChl a, 7-hydroxymethyl chlorophyll a; HMChlide a, 7-hydroxymethyl chlorophyllide a; LHC, light-harvesting chlorophyll a/b-protein complex; NOL, NYC1-like; NYC1, non-yellow coloring 1; PCB, prochlorophyte chlorophyll b-binding protein.
Abstract
In plants, Chl a and b are interconvertible by the action of three enzymes – chlorophyllide a oxygenase, Chl b reductase (CBR), and 7-hydroxymethyl chlorophyll a reductase (HCAR). These reactions are collectively referred to as the Chl cycle. In plants, this cyclic pathway ubiquitously exists and plays essential roles in acclimation to different light conditions at various developmental stages. In contrast, only a limited number of cyanobacteria species produce Chl b, and these include *Prochlorococcus*, *Prochloron*, *Prochlorothrix*, and *Acaryochloris*. In this study, we investigated a possible existence of the Chl cycle in Chl-b synthesizing cyanobacteria by testing *in vitro* enzymatic activities of CBR and HCAR homologs from *Prochlorothrix hollandica* and *Acaryochloris* RCC1774. All of these proteins show respective CBR and HCAR activity *in vitro*, indicating that both cyanobacteria possess the potential to complete the Chl cycle. It is also found that CBR and HCAR orthologs are distributed only in the Chl b-containing cyanobacteria that habitat shallow seas or fresh water, where light conditions change dynamically, while they are not found in *Prochlorococcus* species that usually habitat environments with fixed lighting. Taken together, our results implicate a possibility that the Chl cycle functions for light acclimation in Chl b-containing cyanobacteria.

Keywords: chlorophyll, cyanobacterium, enzyme, evolution, promiscuous activity.
Introduction

Chl plays crucial roles in photosynthesis by harvesting light energy and driving electron transfer (Renger and Schlodder 2010). Photosynthetic organisms have to change their light-harvesting capacity and number of photosystems to perform efficient and safe photosynthesis under changing light environments (Dietzel et al. 2008; Webb and Melis 1995). To achieve these photosystem restructurings, synthesis and degradation of Chl must be finely regulated in response to light environments (Masuda et al. 2003; Tanaka et al. 2001). Green plants contain Chl a and Chl b, which have different absorbance spectra and contribute to the use of a wide range of light spectra (Chen 2014). Chl a is responsible for charge separation in photosynthetic reaction centers and is a major light-harvesting pigment both in the core (CP43/47 of photosystem II and PsuA/B of photosystem I) and the peripheral antenna complexes. In contrast, Chl b is responsible only for light harvesting. The localization of Chl b in light-harvesting systems is different among green plants (Kunugi et al. 2016). Photosynthetic organisms adapted to high light levels, such as Chlamydomonas and land plants, contain Chl b only in the peripheral antenna complexes, whereas Chl b exists in both the core and peripheral antenna complexes in green algae living in deep seas. The green plants alter their antenna size by changing the Chl a/b ratio (Bailey et al. 2001). When the plants grow under low light conditions, the plants have a low Chl a/b ratio and large antenna size. Therefore, the Chl a/b ratio must be regulated in response to changes in the light environment. Green plants employ various strategies to regulate the Chl a/b ratio. Chlorophyllide (Chlide) a oxygenase (CAO) is responsible for Chl b synthesis. CAO protein levels are finely regulated at the transcriptional level and protein degradation rates (Nakagawara et al. 2007; Tanaka and Tanaka 2005; Yamasato et al. 2005). Another important reaction for regulating the Chl a/b ratio is the conversion of Chl b to Chl a (Tanaka and Tanaka 2007). In this pathway, Chl b is converted to 7-hydroxymethyl chlorophyll a (HMChl a) by Chl b reductase (CBR) (Kusaba et al. 2007), followed by the reduction to Chl a by HMChl a reductase (HCAR) (Meguro et al. 2011) (Fig. 1). This pathway is responsible not only for regulation of the Chl a/b ratio, but also for the degradation of Chl b during senescence, because Chl b must be converted to Chl a before degradation (Hörtensteiner et al. 1995). Therefore, interconversion of Chl a and Chl b (the Chl cycle) plays a crucial role in various developmental stages in green plants.

Chl b is not present as free pigment but as light-harvesting Chl a/b-protein complexes (LHC) in the chloroplast. Mutant analysis with Arabidopsis (Horie et al. 2009) and rice (Kusaba et al. 2007) demonstrated that LHC is not degraded in the CBR
mutant during senescence. In vitro experiments indicate that Chl b in LHC can be a substrate of recombinant CBR (Horie et al. 2009). These experiments indicate that Chl b in LHC is the primary substrate of CBR in chloroplasts. CBR might have evolved to be able to catalyze Chl b in LHC.

Chl b is found not only in eukaryotic green plants but also in some cyanobacterial lineages, such as Prochlorococcus, Prochloron, and Prochlorothrix (Palenik and Haselkorn 1992). Recently, a novel species of Acaryochloris was found that has Chl b instead of Chl d (Partensky et al. 2018). These organisms containing Chl b do not form a single cluster in the phylogenetic tree but appear independently in the cyanobacterial lineage (Partensky et al. 2018). Cyanobacteria do not have LHC. Instead, Chl b is incorporated into the prochlorophyte Chl b-binding protein (PCB) (Bibby et al. 2003; Bumba et al. 2005), which is not phylogenetically related to LHC (La Roche et al. 1996). The localization of Chl b in Acaryochloris has not been reported, but it might be present in PCB, as in Prochlorococcus and Prochlorothrix.

Chl metabolic pathways, including biosynthesis, the Chl cycle, and degradation, have been determined (Hörtensteiner 2006; Nagata et al. 2007; Tanaka and Tanaka 2005), and major enzymes for these pathways have been identified in land plants (Hauenstein et al. 2016; Nagata et al. 2005; Shimoda et al. 2016). Pathway and enzymes of Chl biosynthesis are also determined in cyanobacteria. Although Chl degradation is an important process for cyanobacteria, the enzymes and pathway of Chl degradation have not been determined. As for the Chl cycle, Chl b is synthesized by CAO in cyanobacteria, as in green plants (Satoh and Tanaka 2006). However, it is not evident whether these cyanobacteria have a Chl b to Chl a conversion pathway because CBR and HCAR of cyanobacteria could not be proposed only by the sequence similarity and phylogenetic tree.

In this study, we constructed phylogenetic trees of CBR, HCAR, and their homologous genes, and determined the candidates of these genes in Prochlorothrix hollandica (P. hollandica) and Acaryochloris RCC1774. Then we tried to detect the enzymatic activities using the recombinant proteins of these candidate genes and found the CBR and HCAR activities, implicating the presence of the Chl cycle in cyanobacteria containing Chl b. We discuss the functions and evolution of the Chl cycle in cyanobacteria.

Results

Pigment composition of P. hollandica and Acaryochloris RCC1774

Photosynthetic pigments of P. hollandica and Acaryochloris RCC1774 were
examined by HPLC (Fig. 2A). Pigment compositions were similar to those in previous reports (Partensky et al. 2018; Takaichi et al. 2012). Elution profiles of HPLC were similar between the two organisms with some differences. *Acaryochloris* RCC1774 and *P. hollandica* have α- and β-carotene, respectively. Both of them have ε,ε-carotene (Fig. 2B). Chl *a/b* ratio of *Acaryochloris* RCC1774 and *P. hollandica* were 6.8 and 13.5, respectively. *Acaryochloris* RCC1774 accumulates divinyl protochlorophyllide *a*, which is generally a precursor of Chl biosynthesis, while *P. hollandica* does not accumulate this pigment. The absorbance spectrum of this pigment is similar to that of Chl *c*, therefore, it may function for light harvesting in *Acaryochloris* RCC1774 like it does in *Prochloron* (Larkum et al. 1994).

Phylogenetic analysis of the Chl cycle enzymes

CAO catalyzes the oxidation of a methyl group on Chl *a* to a formyl group (Oster et al. 2000), and it is responsible for the formation of Chl *b* in all organisms containing Chl *b* (Tomitani et al. 1999). The phylogenetic tree of CAO (Supplementary Fig. S1) demonstrates the phylogenetic relationship of these organisms. The CAO gene of green plants and cyanobacteria shares the common ancestor suggesting that the CAO gene has been transferred from an ancestral cyanobacterium to plants via the endosymbiosis event.

CBR catalyzes the reduction of a formyl group on Chl *b* to a hydroxymethyl group, which is the first step of Chl *b* to Chl *a* conversion. CBR belongs to a short-chain dehydrogenase family that has an enormous number of members and is greatly diversified (Kallberg et al. 2002). CBR homologs are widely distributed not only in green plants but also in other organisms, including red algae, diatoms, cyanobacteria, and photosynthetic bacteria (Fig. 3A). Green plants have two CBRs, Non-Yellow Coloring 1 (NYC1) and NYC1-Like (NOL), while a group of green algae, Prasinophytes (*Ostreococcus* and *Micromonas*), has only one CBR gene. Phylogenetic analysis did not clearly show to which group *Ostreococcus* and *Micromonas* CBRs belong. These CBRs have no membrane-spanning helix, which is a characteristic feature of NOL, suggesting that they belong to the NOL members.

CBR homologs of red algae and diatoms are most closely related to green plant CBRs phylogenetically, although they do not produce Chl *b*. Interestingly, green sulfur bacteria also have CBR homologs. Genes highly homologous to CBR were found only in photosynthetic organisms, suggesting that homologous genes are related to photosynthesis. CBR homologs of *P. hollandica* and *Acaryochloris* RCC1774 were most distantly related to green plant CBRs phylogenetically in this tree and formed a
cluster with other cyanobacterial CBR homologs (Fig. 3A), although these two cyanobacteria have Chl b. This distribution profile of cyanobacterial CBR homologs does not indicate whether they are genuine orthologs that encode functional CBR or not.

In the Chl cycle, HMChl α is converted to Chl α by HCAR. We retrieved its homologous genes using Arabidopsis HCAR (AT1G04620) as a query. Many homologous proteins were found in photosynthetic eukaryotes and cyanobacteria. The phylogenetic tree of these proteins was separated into two clusters, one is HCAR and the other is 8-vinyl reductase (BciB, also known as F-DVR) (Ito et al. 2008; Liu and Bryant 2011). Green plants have HCAR but not BciB because they employ BciA (also known as N-DVR) instead of BciB. Cyanobacteria use BciB instead of BciA, and most of them have neither Chl b nor HCAR. However, cyanobacteria containing Chl b, *P. hollandica* and *Acaryochloris* RCC1774, have two homologous genes, one of which belongs to the HCAR cluster and the other to the BciB cluster (Fig. 3B). This phylogenetic analysis implicates that *P. hollandica* and *Acaryochloris* RCC1774 have HCAR.

Enzymatic analysis of the candidate genes of *P. hollandica* and *Acaryochloris* RCC1774

To clarify whether CBR homologs of *P. hollandica* and *Acaryochloris* RCC1774 have CBR activity or not, the recombinant proteins encoded by these genes were expressed in *E. coli*. Immunoblotting analysis showed that these proteins were successfully expressed in *E. coli* and found in a soluble fraction (Fig. 4).

In *P. hollandica*, we found one candidate gene, WP_081599361, for a potential CBR gene by phylogenetic analysis. When the recombinant protein of WP_081599361 was incubated with Chl b, we detected two new peaks in the HPLC chromatograms for pigment analysis (Fig. 5A, line 5), neither of which were found in the negative control experiment (Fig. 5A, line 4). The retention times and absorption spectra of Peak 1 and Peak 2 matched those of HMChl α and its C13-2 epimer form, i.e. HMChl α'. The activity was diminished by depletion of NADPH (Fig. 5A, line 6) indicating that the protein uses NADPH as a reductant like Arabidopsis CBR.

Acaryochloris RCC1774 has two candidates, WP_110987898 and WP_110986784, for a potential CBR gene. It should be noted that the PZD74811 locus encodes a peptide sequence similar to the second half of the CBR sequences, but it appears to lack the first half. Therefore, we did not include this gene for further analysis. We examined the recombinant protein of WP_110986784 activity and found its CBR activity (Fig 5A, line 7). When NADPH was omitted from the assay mixture, these two peaks did not
appear (Fig. 5A, line 8), which indicate that the appearance of these peaks are dependent on enzymatic activity. Taken together, we concluded that the gene product of *Acaryochloris* RCC1773 WP_110986784 has CBR activity. In contrast, we could not detect CBR activity with the gene product of WP_110987898.

These results indicate that *P. hollandica* and *Acaryochloris* RCC1774 have CBR orthologs. A significant amount of the epimer type of HMChl a was formed after incubation of Chl a with *P. hollandica* and *Acaryochloris* RCC1774 CBRs (Fig. 5A). In contrast, HPLC analysis showed that Chl a’ (an epimer of Chl a) was not accumulated in a large amount in cells (Fig. 2). We speculate that production of this epimer could be derived from Chl b’ produced by incubation with *E. coli* lysate, and then it was converted to HMChl a’ by CBR. Alternatively, the discrepancy could be explained by assuming some mechanism that suppresses the CBR-mediated formation of HMChl a’ in the cell.

Phylogenetic analysis suggests that *P. hollandica* WP_017711629 and *Acaryochloris* RCC1774 WP_110987361 are HCARs. Recombinant proteins of these genes were expressed in *E. coli*, and the cell extract was incubated with HMChl a. HPLC analysis showed that HMChl a was converted to Chl a by these proteins (Figs. 6A, line 6 and line 8). The production of Chl a was also confirmed by the detection of the pigment by fluorescence at 680 nm with excitation at 430 nm (Supplementary Fig. S2). These results indicate that the gene products of *P. hollandica* WP_017711629 and *Acaryochloris* RCC1774 WP_110987361 have HCAR activity. Taken together, it is shown that *P. hollandica* and *Acaryochloris* RCC1774 have the potential to complete the Chl cycle.

Catalytic specificity of HCAR and BciB

Previous studies showed that HCAR and BciB show sequence similarity (Ito and Tanaka 2014). A phylogenetic analysis indicates that HCAR arose within the cluster of BciB during evolution. Interestingly, it was shown that cyanobacterial BciB has promiscuous HCAR activity (Ito and Tanaka 2014), which might have enabled the enzyme evolution from BciB to HCAR. In contrast, green plant HCAR has no 8-vinyl reductase activity, although these two enzymes have high sequence similarity, which is hypothesized to be a result of evolitional fitting to the new substrate (HMChl a) (Ito and Tanaka 2014). We hypothesized that promiscuous activity (such as HCAR activity in *Synechocystis* BciB) is only subjected to evolitional selection when this activity competes with the genuine activity, such as that in green algae and plants. To test this hypothesis, we examined the substrate specificity of the four gene products,
Acaryochloris RCC1774 BciB (PZD72398), P. hollandica BciB (WP_044076442), Acaryochloris RCC1774 HCAR (WP_110987361), and P. hollandica HCAR (WP_017711629). As a control experiment, Synechocystis PCC6803 (hereafter Synechocystis) BciB (Slr1923) was used in the HCAR and BciB assays. In this study, the same volumes of the soluble fraction of E. coli lysate were used for the enzymatic assay. Exceptionally, the extract containing recombinant Synechocystis BciB was diluted by four times to adjust the protein levels (Fig. 4), because the protein level of Synechocystis BciB was much higher than those of other proteins.

We tested promiscuous HCAR activity of BciB from P. hollandica and Acaryochloris RCC1774. Instead of HMChl a, we used 7-hydroxymethyl chlorophyllide a (HMChlide a) for the HCAR assay of BciB because our previous experiment (Ito and Tanaka 2014) showed that Synechocystis BciB prefers this pigment to HMChl a in the in vitro HCAR assay. We confirmed that the recombinant BciB proteins of P. hollandica and Acaryochloris RCC1774 are able to use Chlide as a substrate for 8-vinyl group reduction (BciB) reaction (Supplementary Fig. S3). After incubation of BciB proteins of P. hollandica and Acaryochloris RCC1774 with HMChlide a, Chlide a was not detected (Fig. 7B, line 3 and line 4), whereas BciB of Synechocystis produced Chlide a after incubation (Fig. 7B, line 5).

Subsequently, we tested the 8-vinyl reductase (BciB) activity of HCAR recombinant proteins. After incubation of HCARs of P. hollandica and Acaryochloris RCC1774 with divinyl Chl a, the monovinyl form of Chl a was not detected (Fig. 6B). We noted that the absorbance spectra of minor peaks (Peak 3 and Peak 4) were similar to those of divinyl Chl a (Fig. 6C), indicating that they are most likely divinyl Chl a’, which might have been formed during the assay. The lack of promiscuous BciB activity in HCAR recombinant proteins was also examined using divinyl Chlide a as a substrate. We confirmed that these proteins are able to reduce HMChlide a (Supplementary Fig. S4, line 5 and line 7) in our assay conditions, suggesting that they accept Chlide a as a substrate. The monovinyl form of Chlide a was not detected after the 8-vinyl reductase (BciB) assay (Supplementary Fig. S4, line 12 and line 13). The results show that P. hollandica and Acaryochloris RCC1774 HCARs do not have BciB activity in these assay conditions. Collectively, our results indicate that HCAR from P. hollandica and Acaryochloris RCC1774 did not show detectable promiscuous activity. These results support our evolutionary fitting hypothesis mentioned above.

Discussion

Chl cycle in cyanobacteria containing Chl b
We showed in this report that cyanobacteria containing Chl b, *P. hollandica* and *Acaryochloris* RCC1774, have CAO, CBR, and HCAR orthologs, and the latter two of them showed CBR and HCAR enzymatic activities, respectively (Figs. 5 and 6). These results indicate that cyanobacteria containing Chl b has the potential to complete the Chl cycle. *Acaryochloris* RCC1774 and *P. hollandica* grow in shallow seas and fresh water, respectively, where light conditions change dynamically. It is likely that these two organisms need to control the antenna size in response to light conditions, as in green algae. In *P. hollandica*, Chl b is localized in Chl a/b-binding proteins (encoded by PCB genes) which are not related to LHC (Bumba et al. 2005; Herbstová et al. 2010). The antenna size and Chl a/b ratio are dynamically changed in response to light intensity in *P. hollandica* (Burger-Wiersma and Post 1989). However, the mechanisms of antenna size regulation are different between *P. hollandica* and green plants, because the Chl a/b ratio becomes low under high light conditions in *P. hollandica* (Burger-Wiersma and Post 1989) but high in green plants. There are no reports concerning the changes in Chl a/b ratio in *Acaryochloris* RCC1774 while other *Acaryochloris* species containing Chl d change Chl d/a ratios in response to light conditions (Duxbury et al. 2009). If a change in the Chl a/b ratio is linked to the antenna size regulation in those cyanobacteria, the Chl cycle might play a role in light acclimation.

In plants, the Chl b-to-a conversion is an important step for Chl breakdown during leaf senescence (Kusaba et al. 2007), because the Chl-degrading enzymes of plants cannot catabolize Chl b-type pigments that contain a formyl group at the C7 position. It is tempting to speculate that the Chl cycle could also play an important role in Chl b degradation in cyanobacteria containing Chl b. Physiological and genetic evidence will be necessary to determine if the Chl cycle functions for light acclimation and Chl degradation in these cyanobacteria.

We could not find any HCAR or BeiB homologs in *Prochlorococcus*. This cyanobacterium uses divinyl Chl instead of monovinyl Chl (Barrera-Rojas et al. 2018), therefore, a lack of BeiB homologs would be reasonable. Our analysis presented in this study indicates that *Prochlorococcus* does not have the Chl cycle either. It is reported that *Prochlorococcus* has evolved into high-light and low-light-adapted strains (Rocap et al. 2003), which have genetically adapted to different light niches. The low-light-adapted *Prochlorococcus* strain is found in deep seas. It has a large number of PCB genes and a low Chl a/b ratio. In contrast, the high-light-adapted *Prochlorococcus* strain has a high Chl a/b ratio. Therefore, there is no strong demand for an ability to change their antenna size dynamically. It is also reported that *Prochlorococcus* evolved to reduce their genome size to decrease the demand of nitrogen in oligotrophic
environments (García-Fernández et al. 2004), which might also account for the absence of the Chl cycle in *Prochlorococcus*.

One potential drawback in losing the Chl cycle might be the loss of the ability to degrade Chl *b*. This is because one of the enzymes of Chl degradation pathway (pheophorbide *a* oxygenase) does not catalyze oxidation of the substrate if the pheophorbide has a formyl group on C7 position (Hörtensteiner et al. 1995). At present, it is not clear whether *Prochlorococcus* has a novel Chl *b*-to-*a* conversion pathway, or a distinct Chl breakdown pathway which is able to catabolize Chl *b* without converting it to Chl *a*. It is also possible to speculate that cyanobacterial pheophorbide *a* oxygenase accepts Chl *b*-derived pigments, as *Auxenochlorella protothecoides* (*Chlorella protothecoides*) produces red Chl catabolites with the C7 formyl group (Iturraspe et al. 1994). Otherwise, it is also possible to assume that the bacterium simply excretes Chl *b*-type molecules. Further studies are needed to elucidate Chl degradation in *Prochlorococcus*.

Acaryochloris containing Chl *b* has the genes having the enzymatic activities to complete the Chl cycle by which Chl *a* and Chl *b* are interconverted. Other *Acaryochloris* produces Chl *d* instead of Chl *b* (Partensky et al. 2018). These *Acaryochloris* are expected to have the interconversion pathway of Chl *a* and Chl *d*, which would be beneficial for altering the Chl *a/d* ratio corresponding to the intensity of far-red light (Duxbury et al. 2009). It should be noted that *Acaryochloris marina* has both *BciA* and *BciB* and these two genes are considered to be involved in Chl biosynthesis (Chen et al. 2016). Identification of the enzymes responsible for the Chl *a* and Chl *d* interconversion is indispensable for understanding the acclimation of *Acaryochloris* containing Chl *d*.

Evolution of the enzymes of the Chl cycle

It is suggested that the promiscuous activity of the enzymes is kept at a low level if the activity is harmful to the cells (Khersonsky and Tawfik 2010). The BciB of *Synechocystis* high sequence similarity to green plant HCAR and the BciB has promiscuous HCAR activity (Ito and Tanaka 2014). This promiscuous activity is not harmful to cyanobacteria because they do not have the substrate (HMChl *a*) for this promiscuous activity in the cell. This broad substrate specificity and catalytic activity would contribute to the enzyme to have high catalytic activity of the primary reaction because high specificity accompanies the low catalytic activity (Khersonsky and Tawfik 2010). In this study, *Synechocystis* BciB showed promiscuous HCAR activities, while neither of *P. hollandica* and *Acaryochloris* RCC1774 BciBs showed this activity in our
assay conditions. Nevertheless, possibility cannot be excluded that these BciB homologs show HCAR under different assay conditions.

Khersonsky and Tawfik (2010) assume that if a promiscuous activity is harmful, the enzyme evolves to lose this activity. In contrast, if the promiscuous activity is not harmful, the activity will be retained (Khersonsky and Tawfik 2010). We hypothesize that the BciB of *P. hollandica* and *Acaryochloris RCC1774* have evolved to gain higher substrate specificity and have lost their promiscuous HCAR activity, in contrast to *Synechocystis* BciB. We speculate that having both genuine and promiscuous HCAR activities in the same cell might interfere with the regulation of the Chl cycle in Chl-*b* containing cyanobacteria, while promiscuous HCAR activity should not have any harm in Chl *b*-less cyanobacteria. The same phenomenon is observed with HCAR of the green plants and cyanobacteria containing Chl *b*. These HCARs have no BciB activity because these organisms have another 8-vinyl reductase.

Our phylogenetic analysis (Fig. 3B) shows that BciB and HCAR homologs form different clades. One scenario to explain this result is that BciB was duplicated in a cyanobacterium and evolved to possess more specific substrate recognition ability of HMChl *a* in Chl *b*-containing cyanobacteria. It is possible to assume that a common ancestor of Chl *b*-containing cyanobacteria had a duplicated BciB ortholog, or that a BciB ortholog which had HCAR activity was horizontally transferred to one of the ancestors of Chl *b*-containing cyanobacteria. HCARs of cyanobacteria and green plants form a single cluster, suggesting that green plant HCAR evolved from cyanobacterial HCAR. Considering the similar tree topologies of CAO and HCAR sequences, it is tempting to hypothesize that HCAR might be transferred with CAO during an endosymbiotic event.

The phylogenetic tree of CBR is more complicated: CBRs do not form a single cluster (Fig. 3A). It is not evident from the phylogenetic tree whether green plant CBR is derived from cyanobacterial CBR or appeared independently. In either case, green plant CBR is assumed to be derived from cyanobacterial genes. In eukaryotes, red algae and brown algae have homologs of green plant CBR. The tree topology of CBR indicates that CBR homologs of red and brown algae are evolved from CBR. It is not clear at this stage whether an ancestor of those algae that do not produce Chl *b* but contain CBR homologs had synthesized Chl *b* or not. It should be noted that we also found homologs in green filamentous photosynthetic bacteria. A plausible explanation for the distribution of CBR homologs in the organisms that do not produce Chl *b* would be that those organisms obtain CBR homologs by either vertical or horizontal transfer at a certain stage of evolution, but they evolved to show other enzymatic activities than the
reduction of Chl b. It is known that the short-chain dehydrogenase family to which CBR belongs shows remarkable diversification to catalyze various reactions (Kavanagh et al. 2008). The distribution of CBR may illustrate one example of such diversification of the short-chain dehydrogenase family.

Materials and Methods

Phylogenetic tree analysis
The protein sequences were obtained from the data bases Phytozome (https://phytozome.jgi.doe.gov/pz/portal.html) and NCBI (https://www.ncbi.nlm.nih.gov/). We used a broad variety of organisms from prokaryotes to green plants to construct a reasonable phylogenetic tree. CBR, HCAR, and its homolog sequences were digested by M-Coffee and evaluated (Moretti et al. 2007). In the M-Coffee analysis, we only employed the amino acid residues which assessed the “good” (displayed by red color) and the leftovers, which were tagged either “BAD” or “AVG,” were clipped off from the alignment in each protein (Supplementary Tables S1 and S2). The phylogenetic trees were constructed by using the maximum likelihood model and IQ-TREE version 1.6.9 (Trifinopoulos et al. 2016). Phylogenetic analysis was operated based on the 1,000 bootstrap replicates in ultrafast mode. The best-fitting amino acid substitution model was searched and employed automatically; LG+G4 was applied for both proteins.

Strains and culture conditions

Acaryochloris RCC1774 was obtained from the Roscoff Culture Collection. Acaryochloris RCC1774 and P. hollandica were grown in IMK medium (Nihon Pharmaceutical) and BG11 medium at 23°C under a 16-h photoperiod at a light condition of 2.5 µmol photons m⁻² s⁻¹ without shaking.

Extraction and analysis of pigments
Cells were harvested by centrifuging at 20,000 g for 1 min. The pellet was suspended in methanol and centrifuged at 20,000 g for 10 min. The supernatant was immediately subjected to HPLC equipped with a diode array detector (SPD-M10A, Shimadzu) or a fluorescence detector (RF-20A, Shimadzu). The pigments were separated through a Symmetry C8 column (4.6 × 150 mm, Waters) with a gradient from eluent A (methanol:acetonitrile:aqueous pyridine solution [0.25 M pyridine] [50:25:25 v:v:v] to eluent B (methanol:acetonitrile:acetone [20:60:20 v:v:v] at a flow rate of 1 ml min⁻¹ at 40°C (Shimoda et al. 2016). Detected peaks of each pigment at 440 nm were identified.
by their retention time and absorption spectrum. Absorption spectrum of each peak was corrected from the background absorbance.

Cloning of CBR, HCAR, and BciB from Acaryochloris RCC1774 and P. hollandica

Each coding region of CBR, HCAR, and BciB derived from *Acaryochloris* RCC1774 (WP_110986784.1, PZD72038.1, and PZD72398.1) and *P. hollandica* (WP_081599361.1, WP_017711629.1, and WP_044076442.1) were amplified by polymerase chain reaction from the genomic DNA of each species. The primers used for amplification are shown in Supplementary Table S3. Amplified genes are cloned into pET-30a (+) vectors (Novagen) containing a His6 tag at the C terminus using the NdeI and XhoI sites through an in-fusion cloning system (Clontech). *Synechocystis* BciB (Slr1923) was prepared as reported previously (Ito et al. 2008).

Expression and detection of recombinant proteins

The constructed plasmids for protein expression were introduced into *E. coli* (BL21). *E. coli* was grown and recombinant protein was expressed in an auto-induction medium (Studier 2005) at 18°C with 130 rpm shaking. When the cell was fully saturated, 500 μl of the cell was harvested by centrifuge at 20,000 g for 2 min. The pellet was resuspended with 500 μl of BugBuster Protein extraction reagents (Novagen) with 0.1% benzonase (Novagen). Immunoblotting analysis was employed to determine the expression of the recombinant proteins because expression levels were too low to be detected by Coomassie Blue Brilliant staining. After centrifugation at 20,000 g for 10 min, the supernatant of the *E. coli* lysate was mixed with the same amount of sample buffer for SDS-PAGE (125 mM Tris-HCl, pH 6.8, 4% [w/v] SDS, 10% [w/v] sucrose, 5% [v/v] 2-mercaptoethanol, and a little bit of bromophenol blue), and subjected to SDS-PAGE. For immunoblotting analysis, proteins were transferred to a polyvinylidene difluoride film. Using the antibodies for Histidine tag (Anti-His-tag mAb-HRP-DirecT, MBL) and Western Lighting Plus-ECL (PerkinElmer Life Science), proteins were detected by fluorescence imaging.

Preparation of the Chl derivatives

Divinyl Chl was prepared from a *Synechocystis* mutant that lacks BciB (Slr1923) (Ito et al. 2008). HMChl a was prepared through the reduction of Chl b using NaBH₄ according to a previous report (Holt 1959). Chlide derivatives were prepared by removing phytol chain through hydrolysis by chlorophyllase (Ito and Tanaka 2014).
Enzyme assay

E. coli lysate (50 µl) prepared as described above was used for enzymatic assay. For CBR analysis, we added 1 µl of 50 mM NADPH. For HCAR and BciB analysis, we provided 1 µl of spinach ferredoxin-NADP⁺ reductase (FNR) (0.1 mg ml⁻¹, Sigma-Aldrich), 1 µl of spinach ferredoxin (Fd) (1 mg ml⁻¹, Sigma-Aldrich), and 1 µl of 50 mM NADPH to *E. coli* lysate. The pigments were solubilized with DMSO and used 0.5 µl of the solution, which contains 500 pmol of pigments. The mixture was incubated at 37°C for 1 h, and the reaction was stopped by adding 200 µl of acetone. After centrifugation at 20,000 g for 10 min, the supernatant was analyzed by HPLC.
Funding: This work was supported by Japan Society for the Promotion of Science, KAKENHI Grant Number 15H04381 (to A. T.), 16H06554 and 17K07431 (to R. T.), and 17K07430 (to H. I).

Disclosures: Conflicts of interest: No conflicts of interest declared.

Acknowledgements: We thank Dr. Atsushi Takabayashi (Hokkaido University) for assistance with phylogenetic analysis.

References

Legends to figures

Fig. 1 Chl metabolic pathway.
Outline arrow, black arrow, and dash arrow represent Chl synthesis pathway, Chl cycle, and Chl degradation pathway, respectively. Dashed circle indicates the reaction site. Chl Syn, Chl synthase.

Fig. 2 Pigment compositions of *Acaryochloris* RCC1774 and *P. hollandica*.
A) HPLC profiles of the pigment monitored at 440 nm. The peaks were identified by their retention time and spectrum. a, possible caloxanthin (monohydroxy-zeaxanthin) (Partensky et al. 2018).
B) The absorption spectrum of ε,ε-carotene detected in *Acaryochloris* RCC1774.

Fig. 3 Phylogenetic trees of CBR, HCAR, and BciB.
The phylogenetic trees were constructed by maximum likelihood. The numbers at each node represent the bootstrap value and the number of amino acid substitutions per site is illustrated by the scale bar.
A) Phylogenetic tree of CBR. *Arabidopsis* NYC1 (AT4G13250); *Arabidopsis* NOL (AT5G04900); *Oryza sativa Japonica* Group NOL (XP_015628274.1); *Oryza sativa Japonica* Group NYC1 (XP_015621887.1); *Klebsormidium nitens* NYC1 (GAQ77737.1); *Klebsormidium nitens* NOL (GAQ87774.1); *Coccomyxa subellipsoidea* C-169 NYC1 (XP_005652224.1); *Coccomyxa subellipsoidea* C-169 NOL (XP_005646276.1); *Pelodictyon phaeoclathratiforme* (WP_012508106.1); *Ostreococcus lucimarinus* CCE9901(XP_001415854.1); *Micromonas commoda* (XP_002508859.1); *Chlamydomonas reinhardtii* NYC1 (XP_001697080.1); *Chlamydomonas reinhardtii* NOL (XP_001701347.1); *Vitrella brassicaformis* CCMP3155 (CEM24690.1); *Candidatus Heimdallarchaeota archaeon* AB_125 (OLS31532.1); *Chondrus crispus* (XP_005716045.1); *Chlorobaculum tepidum* (WP_010932815.1); *Chlorobaculum limnaeum* (WP_069809375.1); *Fistulifera solaris* (GAX23003.1); *Prochlorothrix hollandica* (WP_081599361.1); *Acaryochloris* RCC1774 (1) (WP_110987898.1);
Acaryochloris RCC1774 (2) (WP_110986784.1); Synechocystis PCC6803 (WP_041428273.1).

B) Phylogenetic tree of BciB and HCAR. Chlamydomonas reinhardtii (PNW76723.1); Micromonas commoda (XP_002503439.1); Ostreococcus lucimarinus CCE9901 (XP_001416225.1); Coccomyxa subellipsoidea C-169 (XP_005648937.1); Klebsormidium nitens (GAQ88093.1); Physcomitrella patens (XP_024368500.1); Selaginella moellendorffii (XP_024538910.1); Oryza sativa Japonica Group (XP_015636785.1); Arabidopsis HCAR (AT1G04620.1); Acaryochloris RCC1774 HCAR (WP_110987361.1); Prochlorothrix hollandica HCAR (WP_017711629.1); Acaryochloris RCC1774 BciB (PZD72398.1); Prochlorothrix hollandica BciB (WP_044076442.1); Synechocystis PCC6803 (WP_010873198.1); Cyanidioschyzon merolae strain 10D (XP_005534820.1); Galdieria sulphuraria (XP_005706147.1); Chloroherpeton thalassium (WP_012499756.1); Chlorobium limicola (WP_059139293.1); Pelodictyon phaeoclathratiforme BU-1 (ACF44893.1).

Fig. 4 Immunoblotting analysis of recombinant proteins using a specific antibody against histidine tag. Candidate genes of CBR, HCAR or BciB were expressed in E. coli and soluble fraction of the cell lysate was analyzed by immunoblotting. The markers for molecular size are show in the left side. The cell lysate of E. coli having an empty vector (pET30a) was employed for the negative standard. PhCBR, P. hollandica CBR; AcaCBR, Acaryochloris RCC1774 CBR; PhHCAR, P. hollandica HCAR; AcaHCAR, Acaryochloris RCC1774 HCAR; PhBciB, P. hollandica BciB; AcaBciB, Acaryochloris RCC1774 BciB; SynBciB, Synechocystis BciB; AtNOL, Arabidopsis NOL; AtHCAR, Arabidopsis HCAR.

Fig. 5 Enzymatic analysis of CBR of P. hollandica and Acaryochloris RCC1774. A) HPLC profiles of the pigments after incubation of Chl with recombinant proteins. Chl b was incubated with the lysate of E. coli expressing PhCBR and AcaCBR with or without NADPH. Detected peaks of each pigment at 440 nm were identified by their retention time and absorption spectrum. Arabidopsis NOL was used as a positive control. 1, Chl b; 2, HMChl a; 3, lysate of E. coli expressing Arabidopsis NOL and Chl b, incubated with NADPH; 4, lysate of E. coli having pET30a and Chl b, incubated with NADPH; 5, lysate of E. coli expressing PhCBR and Chl b, incubated with NADPH; 6, lysate of E. coli expressing PhCBR and Chl b, incubated without NADPH; 7, lysate of E. coli expressing AcaCBR and Chl b, incubated with NADPH; 8, lysate of E. coli
expressing AcaCBR and Chl \(b \), incubated without NADPH. AtNOL, Arabidopsis NOL; PhCBR, \(P. \) \(hollandica \) CBR; AcaCBR, \(Acaryochloris \) RCC1774 CBR.

B) The absorption spectrum of HMChl \(a \), where Peak 1 and Peak 2 were found in the reaction mixture of the lysate of \(E. \) \(coli \) expressing PhCBR and NADPH, as illustrated in A.

Fig. 6 Enzymatic analysis of HCAR of \(P. \) \(hollandica \) and \(Acaryochloris \) RCC1774.

A) HPLC profiles of the pigments after incubation of Chl with recombinant proteins. HMChl \(a \) was incubated with the lysate of \(E. \) coli expressing PhHCAR and AcaHCAR with and without NADPH, FNR and Fd. Detected peaks of each pigment at 440 nm were identified by their retention time and absorption spectrum. 1, HMChl \(a \); 2, Chl \(a \); 3, divinyl Chl \(a \); 4, lysate of \(E. \) coli having Arabidopsis HCAR and HMChl \(a \), incubated with NADPH, FNR and Fd; 5, lysate of \(E. \) coli having pET30a and HMChl \(a \), incubated with NADPH, FNR and Fd; 6, lysate of \(E. \) coli expressing PhHCAR and HMChl \(a \), incubated with NADPH, FNR and Fd; 7, lysate of \(E. \) coli expressing PhHCAR and HMChl \(a \), incubated without reductant; 8, lysate of \(E. \) coli expressing AcaHCAR and HMChl \(a \), incubated with NADPH, FNR, and Fd; 9, lysate of \(E. \) coli expressing AcaHCAR and HMChl \(a \), incubated without reductant. DV-Chl \(a \), divinyl Chl \(a \). AtHCAR, Arabidopsis HCAR; PhHCAR, \(P. \) \(hollandica \) HCAR; AcaHCAR, \(Acaryochloris \) RCC1774 HCAR.

B) HPLC profiles of the pigments after incubation of Chl with recombinant proteins. Divinyl Chl \(a \) was incubated with the lysate of \(E. \) coli expressing PhHCAR, AcaHCAR and SynBciB with NADPH, FNR and Fd. Detected peaks of each pigment at 440 nm were identified by their retention time and absorption spectrum. 1, lysate of \(E. \) coli expressing PhHCAR and divinyl Chl \(a \), incubated with NADPH, FNR, and Fd; 2, lysate of \(E. \) coli expressing AcaHCAR and divinyl Chl \(a \), incubated with NADPH, FNR, and Fd; 3, lysate of \(E. \) coli expressing SynBciB and divinyl Chl \(a \), incubated with NADPH, FNR, and Fd. SynBciB, Synechocystis BciB.

C) The absorption spectrum of Chl \(a \), where Peak 1 and Peak 2 were found in the reaction mixture of the lysate of \(E. \) coli expressing PhHCAR and AcaHCAR with reductant, as illustrated in A, and Peak3, Peak 4 and Peak 5 were found in the reaction mixture of the lysate of \(E. \) coli expressing PhHCAR, AcaHCAR and SynBciB with reductant, as illustrated in B.

Fig. 7 Enzymatic analysis of BciB of \(P. \) \(hollandica \) and \(Acaryochloris \) RCC1774.

A) HPLC profiles of the pigments after incubation of Chl with recombinant proteins.
Divinyl Chl \(a\) was incubated with the lysate of \(E. coli\) expressing PhBciB and AcaBciB with or without NADPH, FNR and Fd. Detected peaks of each pigment at 440 nm were identified by their retention time and absorption spectrum. 1, Divinyl Chl \(a\); 2, Chl \(a\); 3, lysate of \(E. coli\) having pET30a and divinyl Chl \(a\), incubated with NADPH, FNR, and Fd; 4, lysate of \(E. coli\) expressing PhBciB and divinyl Chl \(a\), incubated with NADPH, FNR, and Fd; 5, lysate of \(E. coli\) expressing PhBciB and divinyl Chl \(a\), incubated without reductant; 6. lysate of \(E. coli\) expressing AcaBciB and divinyl Chl \(a\), incubated with NADPH, FNR, and Fd; 7, lysate of \(E. coli\) expressing AcaBciB and divinyl Chl \(a\), incubated without reductant.

B) HPLC profiles of the pigments after incubation of Chlide with recombinant proteins. HMChlide \(a\) was incubated with the lysate of \(E. coli\) expressing PhBciB, AcaBciB and SynBciB with NADPH, FNR and Fd. Detected peaks of each pigment at 680 nm fluorescence were identified by their retention time. The arrow indicates the produced Chlide \(a\). 1, HMChlide \(a\); 2, Chlide \(a\); 3, lysate of \(E. coli\) expressing PhBciB and HMChlide \(a\), incubated with NADPH, FNR, and Fd; 4, lysate of \(E. coli\) expressing AcaBciB and HMChlide \(a\), incubated with NADPH, FNR, and Fd; 5, lysate of \(E. coli\) expressing SynBciB and HMChlide \(a\), incubated with NADPH, FNR, and Fd. DV-Chl, divinyl Chl \(a\); PhBciB, \(P. hollandica\) BciB; AcaBciB, \(Acaryochloris\) RCC1774 BciB; SynBciB, Synechocystis BciB.

C) The absorption spectrum of Chl \(a\), where Peak 1, Peak 2 and Peak 3 were found in the reaction mixture of the lysate of \(E. coli\) expressing PhBciB and AcaBciB with or without reductant, as illustrated in A.
Supplementary Fig. S1 Phylogenetic trees of CAO.
The phylogenetic trees were constructed by maximum likelihood. The numbers at each node represent the bootstrap value and the number of amino acid substitutions per site is illustrated by the scale bar. *Arabidopsis thaliana* TIC55 (AT2G24820.1); *Oryza sativa* (LOC_Os10g41780.1); *Chlamydomonas reinhardtii* (AAX54904.1); *Coccomyxa subellipsoidea* C-169 (XP_005644725.1); *Acaryochloris RCC1774* (WP_110987895.1); *Prochlorothrix hollandica* (P_017713323.1); *Arabidopsis thaliana* (AT1G44446); *Prochloron didemni* (BAA82483.1); *Klebsormidium nitens* (GAQ77793.1); *Physcomitrella patens* (XP_024360531.1); *Selaginella moellendorffii* (XP_002990495.2).
Supplementary Fig. S2 Enzymatic analysis of HCAR of *P. hollandica* and *Acaryochloris* RCC1774 with HMChl a.

HMChl a was incubated with the lysate of *E. coli* expressing AtHCAR, PhHCAR and AcaHCAR with or without NADPH, FNR, and Fd. Detected peaks of each pigment at 680 nm fluorescence with 430 nm excitation were identified by their retention time. 1, Chl a; 2, HMChl a; 3, lysate of *E. coli* expressing AtHCAR and HMChl a, incubated with NADPH, FNR and Fd; 4, lysate of *E. coli* having pET30a and HMChl a, incubated with NADPH, FNR and Fd; 5, lysate of *E. coli* expressing PhHCAR and HMChl a, incubated with NADPH, FNR and Fd; 6, lysate of *E. coli* expressing PhHCAR and HMChl a, incubated without reductants; 7, lysate of *E. coli* expressing AcaHCAR and HMChl a, incubated with NADPH, FNR and Fd; 8, lysate of *E. coli* expressing AcaHCAR and HMChl a, incubated without reductants. AtHCAR, Arabidopsis HCAR; PhHCAR, *P. hollandica* HCAR; AcaHCAR, *Acaryochloris* RCC1774 HCAR.
Supplementary Fig. S3 Enzymatic analysis of BciB of *P. hollandica*, *Acaryochloris* RCC1774 and Synechocystis with divinyl Chlide *a*.

Divinyl Chlide *a* was incubated with the lysate of *E. coli* expressing PhBciB, AcaBciB and SynBciB with or without NADPH, FNR, and Fd. Detected peaks of each pigment at 680 nm fluorescence with 430 nm excitation were identified by their retention time. 1, Divinyl Chlide *a*; 2, Chlide *a*; 3, lysate of *E. coli* having pET30a and divinyl Chlide *a*, incubated with NADPH, FNR and Fd; 4, lysate of *E. coli* expressing PhBciB and divinyl Chlide *a*, incubated with NADPH, FNR and Fd; 5, lysate of *E. coli* expressing PhBciB and divinyl Chlide *a*, incubated without reductants; 6, lysate of *E. coli* expressing AcaBciB and divinyl Chlide *a*, incubated with NADPH, FNR and Fd; 7, lysate of *E. coli* expressing AcaBciB and divinyl Chlide *a*, incubated without reductants; 8, lysate of *E. coli* expressing SynBciB and divinyl Chlide *a*, incubated with NADPH, FNR and Fd; 9, lysate of *E. coli* expressing SynBciB and divinyl Chlide *a*, incubated without reductants. DV-Chlide *a*, divinyl Chlide *a*; PhBciB, *P. hollandica* BciB; AcaBciB, *Acaryochloris* RCC1774 BciB; SynBciB, Synechocystis BciB.
Supplementary Fig. S4 Enzymatic analysis of HCAR of P. hollandica, Acaryochloris RCC1774 and Synechocystis BciB with HMChlide a and divinyl Chlide a.

HMChlide a and divinyl Chlide a were incubated with the lysate of E. coli expressing PhHCAR, AcaHCAR and SynBciB with or without NADPH, FNR, and Fd. Detected peaks of each pigment at 680 nm fluorescence with 430 nm excitation were identified by their retention time. The arrows indicate the produced Chlide a. 1, Divinyl Chlide a; 2, HMChlide a; 3, Chlide a; 4, lysate of E. coli having pET30a and HMChlide a, incubated with NADPH, FNR and Fd; 5, lysate of E. coli expressing PhHCAR and HMChlide a, incubated with NADPH, FNR and Fd; 6, lysate of E. coli expressing PhHCAR and HMChlide a, incubated without reductants; 7, lysate of E. coli expressing AcaHCAR and HMChlide a, incubated with NADPH, FNR and Fd; 8, lysate of E. coli expressing AcaHCAR and HMChlide a, incubated without reductants; 9, lysate of E. coli expressing SynBciB and HMChlide a, incubated with NADPH, FNR and Fd; 10, lysate of E. coli expressing SynBciB and HMChlide a, incubated without reductants; 11, lysate of E. coli expressing SynBciB and divinyl Chlide a, incubated with NADPH, FNR and Fd; 12, lysate of E. coli expressing PhHCAR and divinyl Chlide a, incubated with NADPH, FNR and Fd; 13, lysate of E. coli expressing AcaCBR and divinyl Chlide a, incubated with NADPH, FNR and Fd. DV-Chlide a, divinyl Chlide a; PhHCAR, P. hollandica HCAR; AcaHCAR, Acaryochloris RCC1774 HCAR; SynBciB, Synechocystis BciB.
<p>| AT4G13250 Arabidopsis_NYC1 | AGPRNVVTGSTRGLGKALAREFLLSSGDRIVTSRSSVESVDMTVKELE----QKVGVGACDVCVCPEDVEKLSNFAVKEGSIINWINAGTNKGFQFPLLEFEEIDI TQIVSTNLGSLCTRGAMDVMRQHGHIFNMDGAGSSSTPLTVAGYSTKCGLRFQHGSIVKESNVGLHTASPGMVLTELLSSGICELPETVARTLVPMPR|
| WP_110987898.1 [Acaryochloris sp. RCC1774] | LQGRTAVTGSTRGILGMLAQAQMLAAANGSVVSSRSSETGAVCQYLEAQTLNAQLMIGMTCCDVTSLQGVEQLLAATKIERFGQIDWINAGIAASPQAYQTLIDPIER WKRQQVTQNTLYGHTTVALQHMLERNGKIVNFGADRSDSVYGMYSAYATSKSAVRRTFLVMAEYISILGLRPGLGATDLMTKILFPPAEIQQTIVKMVS |
| WP_081599361.1 [Prochlorothrix hollandica] | LQHRTVTGSTRGILGMLAQAQMLAAANGSVVSSRSSETGAVCQYLEAQTLNAQLMIGMTCCDVTSLQGVEQLLAATKIERFGQIDWINAGIAASPQAYQTLIDPIER WKRQQVTQNTLYGHTTVALQHMLERNGKIVNFGADRSDSVYGMYSAYATSKSAVRRTFLVMAEYISILGLRPGLGATDLMTKILFPPAEIQQTIVKMVS |
| WP_110986784.1 [Acaryochloris sp. RCC1774] | LQDRVAVVTGSTQGGGILGAAQKAAAGAVVSSRSQGAAAVLPQOLDEEQVFGQLCPDVFADPEQVENLAAQTGTRFQIDWVFNANSVNRFYGPADLDPIDH WHEVINTNLGAYMTLARMLPDRGKINLGLGAQDQGDSYLSYAYSATAAAARRLTLVAAEDYGISVLMNPGLFSTQLTTKLWATSTPETIAQTAVRVAS |
| WP_041428273.1 [Synechocystis PCC6830] | LDGKVAVVTGSQKAGIAEIKHLAGEGAAAVVNYSSKEGADRVDVEIEDIVCAIAVQAANVAKAOAOILQFAETKQAGKLDLXNVNAGIY YSFPLEGITEEHFYQFDLQGILGLLNISSQAPSVKYGVQAS ISINISIVSTLTPANSLYNATKAADVDAITKSALKELNVRSNIPGMVETEGRAT-------RQVEAITPLGR |
| OLS31502.1 [Candidatus Heimdallarchaeota archaeon AB_125] | ---MKVVTGSSSUGGYALAKEFAKGYDQIVIASSRNQSDVDKAVEEIKEDIVCAIAVQAANVAKAOAOILQFAETKQAGKLDLXNVNAGIY YSFPLEGITEEHFYQFDLQGILGLLNISSQAPSVKYGVQAS ISINISIVSTLTPANSLYNATKAADVDAITKSALKELNVRSNIPGMVETEGRAT-------RQVEAITPLGR |
| ATG04900 Arabidopsis_NOL | TPPYNITLGTGSKIGYALAREFLLKAGDNVICSRSARQETAVQSLK----EHVWGKDVCVTEGKDVRQELVAYSQKNLKYIDWINAGSNAYFKPLAESD DLEJVEKTNLGLPMCREAMNMMILQTSGHIFNIDAGSDGRRTPFRAAYGAT KRSSVHILTQLSAELVVHNLSPGMVVTDDLMSGVLaEPAEVAEYLVPNI R |
| XP_015628274.1 [Oryza sativa Japonica Group] NOL | VPPYNVTLTGSKIGYALAREFLLKAGDNVICSRSARQETAVQSLK----EHVWGKDVCVTEGKDVRQELVAYSQKNLKYIDWINAGSNAYFKPLAESD DLEJVEKTNLGLPMCREAMNMMILQTSGHIFNIDAGSDGRRTPFRAAYGAT KRSSVHILTQLSAELVVHNLSPGMVVTDDLMSGVLaEPAEVAEYLVPNI R |
| GAQ87774.1 [Klebsormidium nitens] NOL | SPPYNVVTGSSKIGLALAKQFLLAAGDRVCLCARFARDSQLEAQKEFEEK EKQTLAWATDXVAAEVADLANAFKQAMGHVDVWINAGSNATNAYKPLVES DEDIEQIVATNTLVMCLQRMCCQAIKLMQKGGHIFNMDAGAGDNPTTPRFAAYGATKRGLAQFTKLQAEVNVTVVHLSPGMVMTDDLMSGIALAPVADLVPNI R |
| XP_005646276.1 [Coccomyxa subellipsoidea C-169] NOL | QPPYNVVTGTGKGVRALAKFRLGADSVICSRSRDVNGTRELDGFSK ARIKGVCMNNMKPDGVDASFANYADTLGTVDWINAGSGNYKTLAESD ADLINIVETNVGLTMGCLCEAIRMQDRGQHRHINMDGANADGTPFRAAYGATKRGLMQSLKQAEVNVTVVHLSPGMVMTDDLMAGCLADPPEEVAAYLVPNI R |</p>
<table>
<thead>
<tr>
<th>[Oryza sativa Japonica Group] NYC1</th>
<th>AGPRNVVITGSTRGLGKALAREFLLSGDRVVIASRSPESVLTQINELE----EKVVGTSCDVCKPEDVKKLVNFANKDELGSIDWINNAAGTNGFRPLVNSDEDISPIVSTNLVGSLCLTREAMNMQHQQGHVFNMDSGSSSTPLTAVYGSTKCGLRQFQAASLKLKESKVGHTASPQMLTDDLSSGLICLPETVARTVPRMR</th>
</tr>
</thead>
<tbody>
<tr>
<td>XP_001415854.1 [Ostreococcus lucimarinus CCE9901]</td>
<td>SEAQRVLITGSTRGLGYELAKSFLKRGDAVFVTSSDVKREVGRLRDARVAGVAADVRAESVEAMAAACCEAEFGGVDVWVNNASNYDNEPDATPEVEEIILTNSLGSLLCTRQAIAKTMKATRGFVNFMEGSDGAATRKFAAYGHTKAGMSQALKATMEVLKIVHTISPGMVFELEISSGRDSQGRNALAEPAAEQIVDKLKVAAILTDPDVALRKMFG</td>
</tr>
<tr>
<td>XP_002508859.1 [Micromonas commoda]</td>
<td>VS-QRILITGSTRGLGFELARSFLARGDKFVTSRDAAKVSDAVATLR----ESVAGLEADVSZSAVAMACVDAGFGGDVWINSAAGSGYDYNLEEADPSVLEEVVTNSLGSLLCTRQAIAKTMKTSGGFHNMEGAGSDFATRKFAYGHTKAGMAQLSKTMAELPIGVHTISPGMVFELEISSGALAEPADSTALIVEKLK</td>
</tr>
</tbody>
</table>
Table S2. The trimmed sequence list of BciB and HCAR

<table>
<thead>
<tr>
<th>Accession</th>
<th>Organism</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>PNW76723.1 [Chlamydomonas reinhardtii]</td>
<td>PGSSYPAKEHCSNCGLCYYAHVKDACAFLGGMSRIELEERHVGRGRDVLSDLDELHPFGVTAAGYAAANVPGQVGQWTGIVTGQIAEMLQSGKVDAVVCVQSDENDRFTPKPVRVARTVEDIIKARGVKTPLSPNVLNVTALQVKKLFIGVGCQVQLRSIPHLGLEYKLGVGTNCVDNGPRKGLDKFLKAASTRPDQHALHYEMQDYRVHVKHDT---GS--FEYVPYPYFCLPNELDPVSCYCFDNPNADIVMGYMGVPHTSHPQYVVMRNDNGRELLRGLQLITPTVSTGDRGRGIVMTQTVASDDEAPRPLGNLAMELNLIGPKGEFGKYSIDYHYIRNYIPSFAKKIVQYDWDK</td>
<td></td>
</tr>
<tr>
<td>XP_002503439.1 [Micromonas commoda]</td>
<td>PGGNYPAKEHCSQCGLCYYAHVKDACAFLGGMSRIELEPTVHGRRGRDDLNDERMRLGVDVFYAKRVRPGAQWTGIVTSIAEMLKSQKVEGVVCASPDNNAMHPILLA TTVEELSKGKPSLNLSLAEVEARGKLKVLMIGVCAVQALRSVKYLGLEYLMGTNCTDNRGKETLSKFLENASDTPVHVEFMDQYVQVHKLHD---GS--FEKVPYPYFCLPNKLDVKTPLSVCYCFDNPNADIVMGYMGVPHTSHPQYVVTNRNENRGERKEMDFMIRGDCDVTTPSIVSGKPEFVKFTQTVSDDEAPLPGKAIWLLEKIGPKGEFGKYSIDHYIRNYVIPYALARLVDVNYY</td>
<td></td>
</tr>
<tr>
<td>XP_001416225.1 [Ostreococcus lucimarinus CCE9901]</td>
<td>PGSAAYPAEHCSCEGLCHVARKRVECAFLGQQSRIELEPTPVHVGRASAPSDESRLQGVALE- TTYGAMRTVPVDAQWTGIVTSVALAALRSAVAEGVVCASREDSSAPRILATTEEELSKARVKSPLSNLSLAEVEARGKLKVLMIGVCAVQALRSVKYLGLEYLMGTNCTDNRGKETLSKFLENASDTPVHVEFMDQYVQVHKLHD---GS--FEKVPYPYFCLPNKLDVKTPLSVCYCFDNPNADIVMGYMGVPHTSHPQYVVTNRNENRGERKEMDFMIRGDCDVTTPSIVSGKPEFVKFTQTVSDDEAPLPGKAIWLLEKIGPKGEFGKYSIDHYIRNYVIPYEAKRVRDVTYEDV</td>
<td></td>
</tr>
<tr>
<td>XP_005648937.1 [Coccomyxa subellipsoidea C-169]</td>
<td>EGSTYPAKQKFSCHGCYLIYTAHVKDACAFLGGMSKESLEEQVYHVGHRRDLDSLDDLHPFGVED-MMYALNTPPPQAQWTGIVTGQIAEMLQSGQVEAVCVQNDDEARDFSKPFV ARCKEDELKAKGVKTPDLSPNLTALTEALAVKLLFIGV----- QALRSVKYLGLEYLVLGTCVDNGPREGLEKFLNASSDPTVLHYEFMQDYRVIKHD---GS--FEYVPYPYFCLPNELDPVSCYCFDNPNADIVMGYMGVPHTSHPQVITRNRAGRAMMDAVKPRLLKLPMAADGRTFPVMQTGLSDDAPRFPWGNIAKVLTWLBPKGIENFYMGSIDYHYIRNYVIPYETAKRVRDVTYEDV</td>
<td></td>
</tr>
</tbody>
</table>
GAQ88093.1 [Klebsormidium nitens]

PGSAYPAKEHCSNCGLCYVAHVKAFIGACFLGGMRSVEDLEPRVHHRGRGDPSL DDAHFGVHKE- MLYAKKTNPIEGAQWTGIVTGIAMELMRSGKVDHAVCVQSDPDRFKPKPVL ARTPEEVLAARGVKTPLSPLNLALVEAGYKRLLFCCGVCQVQALRVSQH LGLEKLYVLGTCNDNPRAGLEKFLNAADEPSTVLHYESMQDYKVHLKHLD---GR-- NEEVPYFCLPADDLKDVPSCYTCFDYNTNLGDLVQMGVTPRHPQYTVVR NDRGAEMLDLVRN- QLEITPTVSSGDRKSFVLETVKADDKAPAPLFIGINAIAWVLDKGPKGLEFGRY SIDYHFIIRRNIYIPAYAQRNYCVNK

XP_024368500.1 [Physcomitrella patens]

PGSTYPADCHCSCQGLCYIAHVKAFIGACFLGGMRSIEVLEPKVHHRGRNPSM EDLFFGVHVED- MLYARKTEPVEAQWTGIVTTIAMELMRKDMADVICVSQSDPRFKPKPVL ARTPEEVLAARGVKTPLSPLNLALVEAGYKRLLFCCGVCQVQALRVSQH LGLEKLYVLGTCNDNPRQGLDKFLKAASDPDTVLHYESMQDYKVHLKHLD---GR-- NEEVPYFCLPADDLKDVPSCYTCFDYNTNLGDLVQMGVTPRHPQYTVVR NGRKEMDLVLRNP- LLVDVPTISSGNRGPFGVMETVKADDKAPAPRFVINIAWLLNLVGPKGLEFGRY YSLDYHINTIRNYIPYSYAKLVSEYKNN

XP_024538910.1 [Selaginella moellendorfii]

PGSTYPAKEFSCSHCGLCYIAHVKAFIGACFLGGMKTVEAMPEVHGRARDVKSLL DELYFGVHEE- LLYARKIEPVKGAQWTGIVAIAIEMLKTKRVEAVICVSQSDPRFRTPRVLART TPEEILARAGVKTPLSPLNLALVEAGYKLLFCGVCQVQALRAVYLG LGLEKLYVLGTCNDNPRQGLDKFLRAASDQPQTVLHYESMQDYKVHLKHLD--GR-- MEEVPYFCLPASDLKDVPSCYTFCDYNTNLGDLVQMGVPGPVQHPQYTVVR NERGKEMDLVLRN- LLVEVTPTISGDDRPFGVETKADDDAPAPRFVINIAWLLNLVGPKGLEFGRY SLDYHINTIRNYIPSYKELVEKYN

XP_015636785.1 [Oryza sativa Japonica Group]

PGGVYPAKDHCSQCGLCYIAHVKNACFLGGMRSVEDLEPLVHHRGRKQD- MDEMYFGVYEEQ- LLYARKMKPVEAQWTGIVTTIAMELMKANMDAVCVQSDPDDRPLAPMV LARTPDEVIAAKGKPLSPLNLALVEAGYKRLLFCCGVCQVQALRVSYK YLGLEKLYVLGTCNDNPRQGLDKFLKAASEPSTVLHYESMQDYKVHLKHLD--GH-- IEEVYFCLPADDLKDVPSCYTFCDYNTNLGDLVQMGVPTQHPQYTVVRNDE RERGKMLSVEG- LLLSTPTVSSGVRQPFVIETVKADDEAPAPTFVINIAFLLNLVGPKGLEFARYS LDYHINTIRNYIPSYAKLVSEYKD
FSIDSHFTNRNYVPEFAKRIVAQYQLP

WP_010873198.1
[Synechocystis PC C6803]
PGSPRPAKELCSDCGLCYIHYVKKEACAFIN--QFQDHLLEEQTGHGRSRELKGDEVFYVGQHK-MLTAQKKEPIPAAQWQTGIVSTGCEMLNKGLVEGVVCQVNTPEDFRPQPVVIA
RTPAELAAKVNPKLPSNLNSLVEEVEKSLKRLILQGVCLQALRAVQKLG
LEKLYVLGTCPVDNVSRAQLKQFLTETTSRSPETVYVYEMFQDREVHRFKHED---ELYPFGLKTNQLKEVPSCMSCFDYVNGLADLVVGYMGAP--GWQLVLVRNQTGQEMDLVQD--LHIGQVSSSGDRHQAVQQGITAYDKATLMPMWAKIMGLVIDKIGPTGLEYARFS
IDSHFTNRNYVPEFAKRIVAQYQLP

XP_005534820.1
[Cyanidioschyzon merolae strain 10D]
DTKVYPAKSLCSHCGLCYIHYVKDECAFLN--QHIAELEQVKVHGRSLDASEELYFGVQ-SMLVARKKCPQAOGWTGVSSSLAIAMELSGLVEGVVCQVSSKDRDFKPVPVIA
RNRAEILARVNKPPLSNVLDAVERSESGKRLFLFGVQCVEALRSEDLRG
EKLYVLGTPCVDNVTQAGLQKFLDSTSSPETVYVYEFMQDREVHFHHDDG
PGRKWDEIYPPFANALNLQKEVPSCLSCFDYVNGLADLVVGYMGAP--GWQLVLVARNETGLEMELARQCGLEEGPVDAQGDRRAAVQQSITAYDRATLP
RWAIEFLAIIGKIPKGLEYARFSIDSHFTNRNYVPEFARQYSIVKYP

XP_005706147.1
[Galdieria sulphuraria]
DTROQPAKSLCSHCGLCFIHYVKDSCAFLN--QHISELETVHGKSIRDLEVENELYFGVHNL-MIAARRKKQLPQGAQWSGIVTSIATRLLEGTKVQGIVCVRNDEQDFRQPVPVLA
TPPEEYASRVKNTPLSNVLDAVTEASIGAIGHTIVGQVQVIAELRSEIYGLLE
KLYVLGTPCVDNVTNRKGLDKFLRTSTSPDVTVYHEFMDQDREVHFHHDDGGP
GKWTEIVPFFGLKTNELKDIPSCLSCFDYVNSLADLVVGYMGAP--GWQWIVVNEIGMELMDLVSS--IETMLSSSGNRLQAVQNSIPADKGTLPMWIAQLLGVVIDKLPGKLEYARFS
IDSHFTNRNYVPEARYAKKQYQLP

WP_012499756.1
[Chlororherpeton thalassium]
DKQKGKREALCSSCGLCPAESIQSCVFV--GWLGGLGELSELFGERPNPSNFEESRFGITKK-RFVAQLKNPPIPAQWSGISITRICTKALESFGVEGVVAVQNSQDDDIFVPVKVLATS
TADVFKAKGNKPLAPSLALGAEYEKIKLRLLVGCAPCHVHLDFYPDYLDKAE
EIJYVLGIPCTDNVKPKEKLWRILERISSSHQTLCHYEFMQDFQVHLKHHDN---GR-IEKVPYFSLPQELSQIYFSCMSFDYVNSLADLVGILAPNEKRFQWVLLRTEK
GEELFFVVED-ELEDTVETETGSDDAREAVKMNVERTEQLRIPIVGKLITYMMKKGPKGLEYARFS
YTDDFLIRNYPVKHYYKVLEYGYGIP

WP_059139293.1
[Chlorobium limicola]–
LENPRFDEPLCSCRCGLCATAELSKSCVFNT--GWLGHEERLFIQRTRNMHADELRFGHISSER-
RFNAVMKKPLEGQAQWSGIITAISTKALQTGLVDGVVTLQGTD--TTQPKAVLATTAAEHHARANGKPKVLPSPVLQALHTAWKKKVKLLLTVGASCHHVHLRDFPWLDGVELYVVGIPCTDNLPEAHLKWFRHISRPSTVNLNEFMQDY
KHIVHST---GR--VEKIPFSLPAALVKKVKVNCMSFCFDYVNLADTVGYPAGAPEQWVILVRTDK
GKLLCDLVK
DISYRPEGTSGDSFGAVKAKSIQPTIYPSLFFFGLLALKAKKGPRGIEFARYSDIHARNYVPEHHIRDVLVQYNT
ACF44893.1 [Pelodictyon phaeoclathratiforme BU-1]

PVKESLSCVFRC--GWVENHEKRIFGRVNRPDDSDELRFGISLK
RFNATLKKPVNGAQWSGIITRISTMALQTNLVDAVLTLHGE---
PLQPKAVLAKTAQDIHEARGNKPVLSVPVLQALHTAYREKTRSSLVVGAAACHV
HMVRDFPYPFADLDLYIVGIPCTDNLEPSHLQWVFNISKNPETVINFEFMQDYR
VHILHKA---GK--
VEKIPFFCLPSAVMKVVSCLSCFDYINSLSDITVGYLGAPNRKTQWIIVRTER
GEKLLDLIND--
EIETSPEVFFGDSSHSAVQAALQPTLMPAMPKWLGIYLSRKAKSGPGGTEFAK
YSIDIIAHRNFVPTHIYDLSSQYDLS
<table>
<thead>
<tr>
<th></th>
<th>Forward</th>
<th>Reverse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acaryochloris</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RCC1774 CBR</td>
<td>AAGGAGATACATATGCAGTATCCTACTTAC</td>
<td>GGTGGTGGTGCACATGATGGGCTGAACTTTTGCTCA</td>
</tr>
<tr>
<td>P. hollandica</td>
<td>AAGGAGATACATATGCTATATCCCTATGTTGTC</td>
<td>GGTGGTGGTGCACATGATGGGCTGAACTTTTGCTCA</td>
</tr>
<tr>
<td>HCAR</td>
<td>AAGGAGATACATATGAGCATGACTGATTG</td>
<td>GGTGGTGGTGCACATGATGGGCTGAACTTTTGCTCA</td>
</tr>
<tr>
<td>BciB</td>
<td>AAGGAGATACATATGCTAAATTGAGTTG</td>
<td>GGTGGTGGTGCACATGATGGGCTGAACTTTTGCTCA</td>
</tr>
<tr>
<td>Acaryochloris</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RCC1774 HCAR</td>
<td>AAGGAGATACATATGCCAGGATCCGTTGAGCAGGCAAGCACG</td>
<td>GGTGGTGGTGCACATGATGGGCTGAACTTTTGCTCA</td>
</tr>
<tr>
<td>P. hollandica</td>
<td>AAGGAGATACATATGCCAGGATCCGTTGAGCAGGCAAGCACG</td>
<td>GGTGGTGGTGCACATGATGGGCTGAACTTTTGCTCA</td>
</tr>
<tr>
<td>HCAR</td>
<td>AAGGAGATACATATGCCAGGATCCGTTGAGCAGGCAAGCACG</td>
<td>GGTGGTGGTGCACATGATGGGCTGAACTTTTGCTCA</td>
</tr>
<tr>
<td>Acaryochloris</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RCC1774 BciB</td>
<td>AAGGAGATACATATGCCAGGATCCGTTGAGCAGGCAAGCACG</td>
<td>GGTGGTGGTGCACATGATGGGCTGAACTTTTGCTCA</td>
</tr>
<tr>
<td>P. hollandica</td>
<td>AAGGAGATACATATGCCAGGATCCGTTGAGCAGGCAAGCACG</td>
<td>GGTGGTGGTGCACATGATGGGCTGAACTTTTGCTCA</td>
</tr>
<tr>
<td>BciB</td>
<td>AAGGAGATACATATGCCAGGATCCGTTGAGCAGGCAAGCACG</td>
<td>GGTGGTGGTGCACATGATGGGCTGAACTTTTGCTCA</td>
</tr>
</tbody>
</table>

Table S3. The list of primer sets for cloning each protein