
 

Instructions for use

Title Topological quantum walk with discrete time-glide symmetry

Author(s) Mochizuki, Ken; Bessho, Takumi; Sato, Masatoshi; Obuse, Hideaki

Citation Physical Review B, 102(3), 035418
https://doi.org/10.1103/PhysRevB.102.035418

Issue Date 2020-07-13

Doc URL http://hdl.handle.net/2115/79101

Rights Copyright (2020) by The American Physical Society.

Type article

File Information PhysRevB.102.035418.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp


PHYSICAL REVIEW B 102, 035418 (2020)

Topological quantum walk with discrete time-glide symmetry
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Discrete quantum walks are periodically driven systems with discrete time evolution. In contrast to ordinary
Floquet systems, no microscopic Hamiltonian exists, and the one-period time evolution is given directly by a
series of unitary operators. Regarding each constituent unitary operator as a discrete time step, we formulate
discrete space-time symmetry in quantum walks and evaluate the corresponding symmetry protected topological
phases. In particular, we study chiral and/or time-glide symmetric topological quantum walks in this formalism.
Due to the discrete nature of time evolution, the topological classification is found to be different from that in
conventional Floquet systems. As a concrete example, we study a two-dimensional quantum walk having both
chiral and time-glide symmetries and identify the anomalous edge states protected by these symmetries.
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I. INTRODUCTION

Recently, topological phases in periodically driven systems
(Floquet systems) have attracted much attention [1–19]. A
large number of approaches to realize Floquet topological
phases have been theoretically proposed [2,4,5,11,13,14,17]
and experiments have been carried out [6,8] to engineer
Floquet systems with nontrivial topological phases. In many
cases, topological phases in Floquet systems are understood
in analogy with topological phases in static systems. Actually,
the topological classification of Floquet gapped phases with
nonspatial AZ symmetry is essentially the same as the static
counterpart [12,15,20]. On the other hand, there have been
also research interests in unique topological phases intrin-
sic to Floquet systems, in both gapped and gapless phases
[3,9,10,16,19]. For instance, anomalous gapless states are
possible in both edge and bulk due to the periodicity in
the quasienergy spectrum [9,19]. Furthermore, recently, it
was pointed out that there exist nontrivial topological phases
protected by space-time symmetry specific to time-dependent
systems such as time-glide symmetry [16,21], although the
experimental realization of such systems has not been done
yet.

Among a lot of theoretical proposals and experimental
settings for exploring Floquet topological phases, discrete
quantum walks provide a versatile platform for this purpose
[22–45]. The quantum walks are realizable in various physical
settings, where the topological numbers can be easily tuned
and the exact description of time evolution is easily obtained.
Owing to these features, various topological edge states have
been observed in quantum walks [25,38,42,43], which include
ones unique to Floquet systems, such as π energy edge states
in one-dimensional quantum walks [34,38,43] and anomalous
edge states with energy winding in two-dimensional (2D)
quantum walks [42]. While discrete quantum walks have
experimental feasibility as mentioned above, their space-time
symmetry and the corresponding symmetry protected topo-
logical phases have not been discussed yet.

It should be noted here that there exist essential distinc-
tions between ordinary Floquet systems and discrete quantum
walks, in spite of their similarity: In conventional Floquet
systems, the time-evolution operator U (k, t1 → t2) is given by
the microscopic Hamiltonian H (k, t ),

U (k, t1 → t2) = T exp

[
−i

∫ t2

t1

dτH (k, τ )

]
, (1)

where T denotes time ordering, and the one-period time evo-
lution is evaluated by U (k, 0 → T ) with the time period T in
the Hamiltonian, H (k, t + T ) = H (k, t ). In this case, space-
time symmetry is naturally defined as a symmetry operation
on the space time (k, t ) of the Hamiltonian. In contrast, in
discrete quantum walks, no microscopic Hamiltonian exists
and the one-period time evolution U (k) is given directly by a
series of unitary operators Ui,

U (k) =
∏

i

Ui(k). (2)

Therefore, space-time symmetry should be defined as an
operation on Ui(k). We also note that U (k) in quantum walks
can be topologically different from U (k, 0 → T ) in Floquet
systems. For instance, whereas any U (k, 0 → t ) in Eq. (1)
should be smoothly deformed into U (k, 0 → 0) = 1 in terms
of the winding number of U (k, 0 → t ), no such topological
constraint is assumed for Ui(k) and U (k) in Eq. (2).

In this paper, we formulate space-time symmetry in dis-
crete quantum walks and explore the corresponding sym-
metry protected topological phases. Regarding Ui(k) as a
discrete time step, we introduce a discrete version of space-
time symmetry. In particular, we study chiral and time-glide
symmetries in this formalism. Following the arguments in
Ref. [27], we identify chiral symmetry as time-reflection sym-
metry, which enables us to treat these symmetries in a unified
manner. By explicit construction of topological numbers, we
also present topological classification of quantum walks in the
presence of either or both symmetries. We find that quantum

2469-9950/2020/102(3)/035418(14) 035418-1 ©2020 American Physical Society

https://orcid.org/0000-0002-4586-1088
https://orcid.org/0000-0002-3002-1350
https://orcid.org/0000-0003-4019-9045
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.102.035418&domain=pdf&date_stamp=2020-07-13
https://doi.org/10.1103/PhysRevB.102.035418


MOCHIZUKI, BESSHO, SATO, AND OBUSE PHYSICAL REVIEW B 102, 035418 (2020)

walks may host topological numbers other than those in
conventional Floquet systems because of the aforementioned
topological difference between U (k) and U (k, t1 → t2).

We also study a model of 2D quantum walks which has
both time-glide and chiral symmetries. This model is not
fully gapped, and thus it might not be ideal to study a strong
aspect of the topological phase. Nevertheless, the system hosts
a variety of edge states protected by these symmetries. We
specify relevant topological numbers for each edge state.
Through the simulation for the time evolution of probability
of quantum walks, we also find that anomalous edge states
protected by time-glide chiral symmetry are well localized on
the boundary, even in the presence of bulk gapless modes.

This paper is organized as follows. In Sec. II, we formulate
discrete space-time symmetry in quantum walks. In particular,
we consider chiral symmetry and time-glide symmetry of
quantum walks and explain how to construct models with
these symmetries. In Sec. III, we argue anomalous topolog-
ical phases in quantum walks, which are protected by chiral
and/or time-glide symmetries. By constructing relevant topo-
logical numbers explicitly, we present the topological tables.
In Sec. IV, we examine a 2D model of quantum walks with
time-glide and chiral symmetries and show that there appear
topologically protected edge states of which origin is these
symmetries. We summarize our results in Sec. V.

II. DISCRETE TIME-GLIDE SYMMETRY: ASYMMETRIC
UNIT CONSTRUCTION

A. Chiral symmetry = time-mirror symmetry

For preparation, we first consider chiral symmetry for
quantum walks. As is shown immediately, chiral symmetry
reduces to a kind of space-time symmetry, which is a unique
feature for quantum walks.

In quantum walks, the time evolution is given by a unitary
time-step (Floquet) operator U ,

|�(t + 1)〉 = U |�(t )〉. (3)

The discrete time evolution naturally introduces a periodic
structure in time direction, where the unit cell is given by
t ∈ [0, 1]. In this picture, U can be identified as an operator
acting on the unit cell.

Chiral symmetry for quantum walks is defined as

�U�† = U †, (4)

where � is a unitary operator with �2 = 1. For unitary time
evolution, it is recast into

�U�† = U −1, (5)

which implies that the chiral operator � flips a time step of the
evolution such as

t → −t . (6)

Therefore, chiral symmetry for quantum walks can be re-
garded as time-mirror symmetry, which is an analog of mirror
reflection symmetry in time direction. Note that time-mirror
symmetry has nothing to do with ordinary time-reversal sym-
metry since � is unitary.

A viewpoint of time-mirror symmetry enables us to pro-
vide a systematic construction of chiral symmetric models.

The key idea is to use the concept of asymmetric unit in
crystallography. For a unit cell t ∈ [0, 1] in time, we introduce
an asymmetric unit t ∈ [0, 1/2] which generates the whole
unit cell by time-mirror reflection up to discrete time trans-
lation. Then, we assign a time-evolution operator U1 with
the asymmetric unit. Since the asymmetric unit recovers the
whole unit cell by time-mirror reflection, U1 also generates U .
Actually, applying time-mirror operation to the asymmetric
unit, we obtain another time unit t ∈ [−1/2, 0] ≈ [1/2, 1]
called orbital, on which we generate a time-evaluation opera-
tor U2 by

�U1�
† = U †

2 . (7)

Gluing together U1 and U2, we have the full time-evaluation
operator U as

U = U2U1. (8)

The obtained U automatically hosts chiral symmetry in
Eq. (4).

B. Time-glide symmetry

Now, we formulate time-glide symmetry for quantum
walks. Time-glide symmetry is an analog of glide symmetry
with partial time translation replacing partial space transla-
tion. More precisely, time-glide operation is defined by

x → gx, t → t + 1/2 (9)

on space time, where gx = (x1, . . . , xd−1,−xd ). On a mi-
croscopic Hamiltonian H (k, t ) = H (k, t + 1) of a conven-
tional Floquet system, time-glide symmetry is defined as
GTH (k, t )G†

T = H (gk, t + 1/2) [16] where GT is a unitary
operator with G2

T = 1 and gk = (k1, . . . , kd−1,−kd ). In terms
of the time-evolution operator in Eq. (1), it reads GTU (k, 0 →
1/2)G†

T = U (gk, 1/2 → 1). On the other hand, a discrete
quantum walk does not have a microscopic Hamiltonian.
Thus, instead, to define time-glide symmetry, we use the idea
of asymmetric unit, again. For a time-unit cell t ∈ [0, 1],
we have the asymmetric unit t ∈ [0, 1/2] and its orbital
t ∈ [1/2, 1] for time-glide symmetry. Then, we assign time-
evolution operators U1 and U2 with the asymmetric unit and
its orbital, respectively, where the half-time step in Eq. (9)
is interpreted as the interchange of U1 and U2. Time-glide
symmetry is defined as

GTU1(k)G†
T = U2(gk), U = U2U1, (10)

with unitary and Hermitian GT, where Ui(k) is the momentum-
space representation of Ui and U is the full time-evolution
operator.

C. Time-glide and chiral symmetries

Finally, we consider quantum walks that have both chiral
symmetry (4) and time-glide symmetry (10). The time-glide
operator GT and the chiral operator � satisfy commutation or
anticommutation relation, �GT = ηCGT� with ηC = ±1.

The asymmetric unit is useful again to construct models
with these symmetries. The symmetry operations act on space
time as

x → gx, t → t + 1/2, (11)
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for time-glide symmetry, and

t → −t, (12)

for chiral symmetry. The asymmetric unit and its orbitals un-
der these symmetries are given by t ∈ [0, 1/4], t ∈ [1/4, 1/2],
t ∈ [1/2, 3/4], and t ∈ [3/4, 1]. Corresponding to them, we
introduce time-evolution operators V1, V2, V3, and V4, which
are related to each other by symmetry

�V1�
† = V †

4 , �V2�
† = V †

3 , (13)

and

GTV1(k)G†
T = V3(gk), GTV2(k)G†

T = V4(gk). (14)

Note that V1 for the asymmetric unit can generate the time-
evolution operators for the orbitals, V2, V3, and V4. For in-
stance, applying the time-glide operator and the chiral one to
V1, we have

V2(k) = �GTV †
1 (gk)G†

T�†. (15)

The full time-evolution operator is given by

U = V4V3V2V1, (16)

which consists of the first half period part U1 and the second
one U2,

U = U2U1, U1 = V2V1, U2 = V4V3. (17)

One can easily check that U satisfies both chiral symmetry
(4) and time-glide one (10). In particular, we can reproduce
the relations (7) and (10).

III. ANOMALOUS TOPOLOGICAL PHASES

The (bulk) quasispectrum εm(k) of a quantum walk is given
by

U (k)|um(k)〉 = e−iεm (k)|um(k)〉, (18)

where m is the band index and |um(k)〉 is the corresponding
eigenstate. When the quasispectrum has a gap at ε = εb where
the ε is a specific quasienergy, we can define the single-valued
Floquet Hamiltonian HF(k) through

HF(k) = i ln U (k), (19)

where the branch cut of the logarithm is placed in the gap.
Then, if there is another gap of the quasispectrum at ε = εg

which is apart from the branch cut εb with a region in which
the quasispectrum exists between εb and εg, HF(k) also has
a gap in a usual sense; the spectrum of HF(k) is separated
above and below the gap at εg. Under this situation, the
system can be a topological insulator in a manner similar to
an ordinary static case and thus we may have topologically
protected gapless boundary states in the gap at ε = εg. On the
other hand, even when HF(k) itself does not have a gap at any
εg( �= εb), there could be gapless boundary states at the branch
cut ε = εb. The latter boundary states (so called anomalous
Floquet edge states) are intrinsic to dynamical systems, which
cannot be explained by the topology of HF(k). Below, using
the asymmetric unit construction of quantum walks, we intro-
duce topological numbers relevant to the anomalous gapless
boundary states. We summarize the results in Tables I, II,
and III. One of the chiral winding numbers for each gap

TABLE I. Topological numbers for anomalous topological
phases of chiral symmetric quantum walks. The superscript and the
argument of Z specify the topological number: Z(W)[α] indicates the
chiral winding number νd (α).

Gap Odd d Even d

ε = 0 Z(W)[β] ⊕ Z(W)[γ ] 0
ε = π Z(W)[α] ⊕ Z(W)[δ] 0

in Table I is unique to discrete quantum walks, since two
winding numbers reduce to one in ordinary Floquet systems
described by microscopic Hamiltonians. This is because we
can always smoothly deform U (k, t ) in Eq. (1) to U (k, 0) = 1,
while U (k) in Eq. (2) has no such constraint. For the same
reason, in Table III, one of the chiral winding numbers and
one of the time-glide Chern numbers for (ηC, ε) = (+1, π )
and (−1, 0) are peculiar to discrete quantum walks.

A. Chiral symmetric case

We first derive a general property of U = U2U1 with
�U1�

† = U †
2 . Without loss of generality, we here take the

basis where � is diagonal,

� =
(

1 0
0 −1

)
(20)

with the n × n identity matrix 1. If we write U1 in this basis as

U1 =
(

α β

γ δ

)
, (21)

where α, β, γ , δ are n × n matrix functions of k (here the k
dependence is implicit), then the chiral symmetry yields

U2 =
(

α† −γ †

−β† δ†

)
, (22)

and thus U is given by

U =
(

α†α − γ †γ α†β − γ †δ

−β†α + δ†γ −β†β + δ†δ

)
. (23)

From U †
1 U1 = 1, we also have

α†α + γ †γ = 1, α†β + γ †δ = 0,

β†α + δ†γ = 0, β†β + δ†δ = 1, (24)

TABLE II. Topological numbers for anomalous topological
phases of time-glide symmetric quantum walks. The superscript
and the argument of Z specify the topological number. ZTGCh[H1]
indicates the time-glide Chern number of H1. While time-glide Chern
numbers are defined at kd = 0 and π , we show only strong index
corresponding to the difference of them, where Table III is made in
the same principle.

Gap Odd d Even d

ε = εb Z(TGCh)[H1] 0
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TABLE III. Topological numbers for anomalous topological phases of time-glide and chiral symmetric quantum walks. The superscript
and the argument of Z specify the corresponding topological number. ηC = ±1 in the left column represents whether � and GT commute or
anticommute with each other, �GT = ηCGT�. Z(W)[α], Z(TGCh)[H1], and Z(TGCW)[α′] indicate the winding number νd [α], the time-glide Chern
number of H1, and the time-glide chiral winding number νd−1[α′], respectively.

ηC Gap Odd d Even d

+1 ε = 0 Z(W)[β] Z(TGCW)[β ′]
ε = π Z(W)[α] ⊕ Z(W)[δ] ⊕ Z(TGCh)[H1] ⊕ Z(TGCh)[H ′

1] 0

−1 ε = 0 Z(W)[β] ⊕ Z(W)[γ ] ⊕ Z(TGCh)[H1] ⊕ Z(TGCh)[H ′
1] 0

ε = π Z(W)[α] Z(TGCW)[α′]

which lead to

U − 1 =
(−2γ †γ 2α†β

−2β†α −2β†β

)
(25)

and

U + 1 =
(

2α†α 2α†β

−2β†α 2δ†δ

)
. (26)

Equations (25) and (26) imply the following lemma.
Lemma U has a quasispectrum gap at ε = 0 (ε = π ) if

and only if detγ · detβ �= 0 (detα · detδ �= 0).
Equivalently, Lemma can be rephrased as Lemma’.
Lemma’ U has an eigenstate with ε = 0 (ε = π ) if and

only if detγ · detβ = 0 (detα · detδ = 0).
Lemma’ is proved as follows. Consider an eigenstate |0〉 of

U with the quasienergy ε = 0,

U |0〉 = |0〉. (27)

Here |0〉 can be an eigenstate of � at the same time: Indeed,
from chiral symmetry (4), we have U |0〉 = �†U †�|0〉, and
thus Eq. (27) implies U�|0〉 = �|0〉. Therefore, by consid-
ering (1 ± �)|0〉 as |0〉, we have a simultaneous eigenstate of
U and � with the eigenvalues ε = 0 and � = ±1.

If |0〉 has the eigenvalue of � = 1, |0〉 takes the form of
(ξ, 0)T. Then, Eqs. (25) and (27) lead to

(U − 1)|0〉 =
(−2γ †γ

−2β†α

)
ξ = 0. (28)

Therefore, ξ is nontrivial if and only if detγ †γ = 0 and
detβ†α = 0. From Eq. (24), the latter condition detβ†α = 0
follows from the former one detγ = 0, and thus we have
|0〉 with � = 1 if and only if detγ = 0. In a similar manner,
we can also prove that |0〉 with � = −1 exists if and only
if detβ = 0. Combining these results, we find that |0〉 exists
if and only if detγ · detβ = 0. Using Eq. (26), we can also
prove that an eigenstate of U with ε = π exists if and only if
detα · detδ = 0.

The above Lemma implies that if the system hosts a gap at
ε = 0 (ε = π ), γ and β (α and δ) are elements of GL(n,C).
Because of the nontrivial homotopy for GL(n,C),

πd (GL(n,C)) =
{
Z, for odd d

0, for even d
, (29)

we can define the winding numbers [46]

νd=2p+1[u] = p!

(2π i)p+1(2p + 1)!

∫
BZ

tr[(u−1du)2p+1], (30)

where u = α, β, γ and δ for d = 2p + 1 with integer p. The
winding numbers νd [γ ] and νd [β] (νd [α] and νd [δ]) for γ

and β (α and δ) are defined if the system has a gap at ε = 0
(ε = π ) and the space dimension d is odd. From the bulk-
boundary correspondence, we expect the existence of gapless
boundary states in the gap at ε = 0 (ε = π ) if νd [γ ] and/or
νd [β] (νd [α] and/or νd [δ]) are nonzero. The bulk-boundary
correspondence is proved when some restrictions on winding
numbers are imposed [10,27]. It should be noted here that only
a single gap either at ε = 0 or ε = π is required to define these
winding numbers, thus the obtained gapless boundary states
are intrinsic to dynamical systems.

B. Time-glide symmetric case

For a time-glide symmetric system, we can define a topo-
logical number if U (k) has a gap of the quasienergy spec-
trum on the glide symmetric plane. To see this, consider
U (k) on the glide symmetric plane at k = kG, where kG =
(k1, . . . , kd−1, 0) or (k1, . . . , kd−1, π ). From Eq. (10), we have

U (kG) = GTU1(kG)GTU1(kG), (31)

where we used G†
T = GT. This relation leads to

HF(kG) = 2H1(kG), (mod 2π ), (32)

where

HF(kG) = i ln U (kG), (33)

H1(kG) = i ln GTU1(kG). (34)

When U (kG) has a gap at ε = εb, from Eq. (32), we can regard
H1(kG) as a single valued matrix function with the branch cut
of the logarithm in Eq. (34) at ε = εb/2, which has a gap at
ε = εb/2 + π . Therefore, H1(kG) defines an insulator and the
corresponding topological number.

Since no symmetry is imposed on H1(kG), the relevant
topological number is the Chern number [47] on kG, which
we call time-glide Chern number:

ChTG
p = 1

p!

(
i

2π

)p ∫
BZ|kd =0/π

tr F p, (35)

where d = 2p + 1 and F is the curvature

F = dA + A2, [A]lm = 〈ψl |dψm〉, (36)

for eigenstates |ψl〉 , |ψm〉 of H1(kG) with eigenenergies
εl , εm ∈ [εb/2, εb/2 + π ]. The trace in Eq. (35) is taken for
all the eigenstates within [εb/2, εb/2 + π ].
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The time-glide Chern number is well defined if the dimen-
sion of the glide symmetric plane is even (namely if d is
odd). The time-glide Chern number cannot change as long as
HF(kG) keeps the branch cut at ε = εb open. Therefore, if it is
nonzero and the system has a boundary keeping the time-glide
symmetry, gapless boundary states appear at ε = εb. On the
other hand, if d is even, there is no topological number for
H1(kG).

Here we should note that HF(kG) can be gapless even if
H1(kG) has a gap. Then, the ordinary Chern number of HF(kG)
can change its value keeping the branch cut at ε = εb open.
Therefore, the Chern number of HF(kG) is not relevant to
anomalous topological numbers which cannot be changed as
long as the branch cut at ε = εb is open.

C. Time-glide and chiral symmetric case

Only gaps at ε = 0, π are consistent with the coexistence
of time-glide and chiral symmetries. In the presence of either
of these gaps, topological numbers can be constructed from
the half period part of the time-evolution operator. For U =
V4V3V2V1, the first (second) half period part is U1 = V2V1

(U2 = V4V3). From Eqs. (13) and (14), they satisfy

�U1(k)�† = U †
2 (k), GTU1(k)G†

T = U2(gk). (37)

When the space dimension d is odd, using the first (second)
equation in Eq. (37), U1 gives the winding numbers (the
time-glide Chern number) as shown in Sec. III A (Sec. III B).
However, the second (first) equation in Eq. (37) gives ad-
ditional constraints on the winding numbers (the time-glide
Chern number). The constraints depend on the commutation
relation between � and GT. We discuss the constraints in Secs.
IIIC1 and IIIC3. On the other hand, when d is even, U1 does
not provide any strong topological number.

We can also consider another time-evolution operator

U ′ = U ′
2U

′
1, (38)

where U ′
1 and U ′

2 are defined as

U ′
1 = V1V4, U ′

2 = V3V2, (39)

respectively. Since U ′ is unitary equivalent to U , i.e., U ′ =
V †

4 UV4, U ′ has the same quasispectra as U . As a result, U ′
also provides topological numbers for anomalous edge states.
From Eqs. (13) and (14), the first and the second half period
parts obey

�U ′
2(k)�† = U ′†

2 (k), �U ′
1(k)�† = U ′†

1 (k), (40)

GTU ′
2(k)G†

T = U ′
1(gk). (41)

Then, we also obtain

�GTU ′
1(k)G†

T�† = U ′†
2 (gk), (42)

which implies a variation of chiral symmetry (we call it time-
glide chiral symmetry) on the glide symmetric plane k = kG,

�GTU ′
1(kG)G†

T�† = U ′†
2 (kG). (43)

When d is odd, from Eq. (41), U ′
1 gives the time-glide

Chern number in a manner similar to U1. On the other hand,
when d is even, U ′

1(kG) defines a (d − 1)-dimensional wind-
ing number on the (d − 1)-dimensional glide symmetric plane

k = kG by using the time-glide chiral symmetry in Eq. (43).
As we shall discuss in Secs. IIIC1, IIIC2, IIIC3, and IIIC4,
both the topological numbers are subject to the constraints
originating from the remaining symmetry.

1. Case with odd space dimension d and [�,GT] = 0

We first consider the case with odd d and [�,GT] = 0.
When � and GT commute with each other, we can take the
basis where both � and GT are block diagonal,

� =
(

1 0

0 −1

)
, GT =

(
g+ 0

0 g−

)
. (44)

Denoting U1(k) in the basis of Eq. (44) as

U1 =
(

α β

γ δ

)
, (45)

we have the following relations from Eq. (37),

g+α(k)g†
+ = α†(gk), g+β(k)g†

− = −γ †(gk),

g−γ (k)g†
+ = −β†(gk), g−δ(k)g†

− = δ†(gk).
(46)

The relations restrict possible winding numbers of the system:
When d is odd and the system has a gap at ε = 0 (ε = π ),
from Lemma in Sec. II A, the winding numbers ν[γ ] and
ν[β] (ν[α] and ν[δ]) are well defined. Equation (46) gives the
constraint ν[β] = ν[γ ]. (No constraint is obtained for ν[α]
and ν[δ].)

For odd d , the system also has the time-glide Chern num-
ber, namely the Chern number of H1(kG) = i ln GTU1(kG).
However, there exists an additional constraint: From Eq. (37),
we also have

�GTU1(kG)G†
T�† = U †

1 (kG). (47)

In the present case with [�,GT] = 0, Eq. (47) implies the
chiral symmetry for H1(kG),

�e−iH1(kG )�−1 = eiH1(kG ), (48)

which indicates that the time-glide Chern number is identi-
cally zero when the system has a gap at ε = 0. Actually, in
this case, H1(k) has two gaps at ε = 0 and π , and thus the
chiral symmetry in Eq. (48) interchanges two bands of H1(kG)
separated by these gaps. As a result, the Chern number of
H1(kG) becomes zero. On the other hand, the time-glide Chern
number may survive if the system has a gap only at ε = π . In
this case, H1(kG) has gaps at ε = π/2 and 3π/2. Since chiral
symmetry in Eq. (48) maps bands of H1(kG) inside these gaps
to themselves, Eq. (48) does not give any constraint on the
time-glide Chern number.

The system may have another time-glide Chern number:
From Eq. (41) and G†

T = GT, U ′(kG) is recast into

U ′(kG) = GTU ′
1(kG)GTU ′

1(kG). (49)

Thus, in a similar manner to U1(kG), we can define the time-
glide Chern number as the Chern number of H ′

1(kG) defined
below,

H ′
1(kG) = i ln GTU ′

1(kG). (50)
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Note that Eq. (40) and [�,GT] = 0 lead to a variation of chiral
symmetry for H ′

1(kG),

�GTe−iH ′
1(kG )G†

T�† = eiH ′
1(kG ), (51)

which implies that the time-glide Chern number is zero when
the system has a gap at ε = 0. Therefore, we have this second
time-glide Chern number only when the system has a gap at
ε = π .

2. Case with even space dimension d and [�,GT] = 0

When d is even, using chiral symmetry in Eq. (43) and
Lemma in Sec. III A, we can define a winding number, which
we call time-glide chiral winding number, from an element
of U ′

1(kG). This topological number is also subject to a con-
straint. To see this, we take the basis where �GT is diagonal,

�GT =
(

1 0
0 −1

)
, (52)

and denote U ′
1(kG) in this basis as

U ′
1 =

(
α′ β ′

γ ′ δ′

)
, (53)

where the dependence of kG is implicit. From time-glide chiral
symmetry in Eq. (43), U ′

2(kG) is written as

U ′
2 =

(
α′† −γ ′†

−β ′† δ′†

)
. (54)

Since GT commutes with �GT, GT can be written as

GT =
(

g′
+ 0
0 g′

−

)
, (55)

and thus Eq. (41) leads the constraints

g′
+α′g′†

+ = α′†, g′
+β ′g′†

− = −γ ′†,

g′
−γ ′g′†

+ = −β ′†, g′
−δ′g′†

− = δ′†.
(56)

Replacing � and U with �GT and U ′, we can apply Lemma
in Sec. III A to the present case. Thus, if U ′(kG) has a gap at
ε = 0 (ε = π ), we can define the (d − 1)-dimensional wind-
ing numbers νd−1[β ′] and νd−1[γ ′] (νd−1[α′] and νd−1[δ′])
in the (d − 1)-dimensional glide symmetric subspace. How-
ever, from Eq. (56), it holds that νd−1[α′] = νd−1[δ′] = 0
and νd−1[β ′] = −νd−1[γ ′]. Consequently, we have a unique
winding number νd−1[β ′] = −νd−1[γ ′] if U ′(kG) has a gap at
ε = 0.

3. Case with odd space dimension d and {�,GT} = 0

When � and GT anticommute with each other, we can take
the basis where � is diagonal and GT is off-diagonal,

� =
(

1 0
0 −1

)
, GT =

(
0 g+

g− 0

)
. (57)

Taking U1(k) in this basis as

U1 =
(

α β

γ δ

)
, (58)

we have the following constraints from Eq. (37),

g+δ(k)g†
+ = α†(gk), g+γ (k)g†

− = −γ †(gk),

g−β(k)g†
+ = −β†(gk), g−α(k)g†

− = δ†(gk).
(59)

These relations restrict possible winding numbers of U1(k):
When d is odd and the system has a gap at ε = 0 (ε = π ),
from Lemma in Sec. III A, the winding numbers νd [β] and
νd [γ ] (νd [α] and νd [δ]) are well defined. Equation (59) gives
no constraint for ν[β] and ν[γ ], while it gives ν[α] = ν[δ].
For odd d , we can also define the time-glide Chern number,
but it can be nonzero only when the system has a gap at
ε = 0. Because of the anticommutation relation {�,GT} = 0,
Eq. (47) leads to

�e−i[H1(kG )−π/2]�−1 = ei[H1(kG )−π/2], (60)

from which we find that the time-glide Chern number be-
comes zero when the system has a gap at ε = π . We also have
another time-glide Chern number, using H ′

1(kG) in Eq. (50).
In the present case, Eqs. (40) implies

�GTe−i[H ′
1(kG )−π/2]G†

T�† = ei[H ′
1(kG )−π/2], (61)

from which the time-glide Chern number becomes zero for a
gap at ε = π .

4. Case with even space dimension d and {�,GT} = 0

Finally, we discuss constraints for the time-glide chiral
winding number, which is defined by using time-glide chiral
symmetry in Eq. (43). Since �GT and GT anticommute with
each other, we can take the basis with

�GT =
(

1 0
0 −1

)
, GT =

(
0 g′

+
g′

− 0

)
. (62)

Denoting U ′
1(kG) in this basis as

U ′
1 =

(
α′ β ′
γ ′ δ′

)
, (63)

we have constraints

g′
+δ′g′†

+ = α′†, g′
+γ ′g′†

− = −γ ′†,

g′
−β ′g′†

+ = −β ′†, g′
−α′g′†

− = δ′†,
(64)

and thus νd−1[β ′] = νd−1[γ ′] = 0 and νd−1[α′] = −νd−1[δ′].
Noting that the presence of νd−1[α′] and νd−1[δ′] is ensured
by the gap at ε = π , the time-glide chiral winding number is
nonzero only when the system has a gap at ε = π .

IV. 2D MODEL WITH TIME-GLIDE AND CHIRAL
SYMMETRIES

As an example, we construct a concrete model with time-
glide symmetry and chiral symmetry based on asymmetric
unit construction in Sec. II and explore topological phases of
the model. We examine quantum walks of particles with two
internal states σ = ±, in the two-dimensional square lattice.
The system is described by

|�(t )〉 =
∑
r,σ

ψσ (r, t ) |r〉 ⊗ |σ 〉 , (65)
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where r = (x, y) represents the position of the walker in the
lattice and σ = ± denotes their internal states. For the stan-
dard quantum walks, the time-evolution operator U consists
of the coin and shift operators. In the vector basis of |σ 〉,
|+〉 = (0, 1)T, and |−〉 = (1, 0)T, the coin operators Cj (θ )
( j = 1, 2) are given by

Cj (θ ) =
∑

r

|r〉 〈r| eiθσ j = eiθσ j . (66)

The coin operators rotate the internal states of walkers. The
position of walkers is changed by the shift operators S±

r (r =
x, y),

S±
x =

∑
r

(|r ± x̂〉〈r| ⊗ |±〉〈±| + |r〉〈r| ⊗ |∓〉〈∓|), (67)

S±
y =

∑
r

(|r ± ŷ〉〈r| ⊗ |±〉〈±| + |r〉〈r| ⊗ |∓〉〈∓|), (68)

where x̂ and ŷ are the unit vectors in the x and y directions,
respectively. In the momentum space, these operators are
given by

Cj (θ ) = 〈k|Cj (θ ) |k〉 = eiθσ j , (69)

S±
r (k) = 〈k| S±

r |k〉 = e±i kr
2 ei kr

2 σ3 , (70)

where r = x, y.
Now we construct a two-dimensional quantum walk that

supports both time-glide and chiral symmetries. As explained
in Sec. II C, such a model is obtained systematically from a
unitary operator V1. We consider the following V1,

V1 = C2

(
−θ2

2

)
S−

y C1

(
−θ1

2

)
C1

(
π

4

)
S+

x C1

(
−π

4

)
(71)

with the time-glide and chiral operators given by

GT = σ2, � = σ1. (72)

In the momentum space, V1 is represented as

V1(k) = C2

(
−θ2

2

)
S−

y (k)C1

(
π

4
− θ1

2

)
S+

x (k)C1

(
−π

4

)

= ei
kx−ky

2 C2

(
−θ2

2

)
Z

(
ky

2

)
C1

(
−θ1

2

)
Y

(
kx

2

)
, (73)

where Z ( ky

2 ) = ei
ky
2 σz and Y ( kx

2 ) = ei kx
2 σy . From Eqs. (13) and

(14), we obtain

V2(k) = e−i
kx+ky

2 Y

(
kx

2

)
C1

(
−θ1

2

)
Z

(
ky

2

)
C2

(
−θ2

2

)
, (74)

V3(k) = ei
kx+ky

2 C2

(
−θ2

2

)
Z

(
ky

2

)
C1

(
θ1

2

)
Y

(
kx

2

)
, (75)

V4(k) = e−i
kx−ky

2 Y

(
kx

2

)
C1

(
θ1

2

)
Z

(
ky

2

)
C2

(
−θ2

2

)
. (76)

The full time-evolution operator U and its unitary equivalent
partner U ′ are given by U = V4V3V2V1 and U ′ = V3V2V1V4,
respectively. In the present case, their first half period parts

FIG. 1. (a) A dispersion relation εk for the homogeneous system
with θ1 = −2π/7, θ2 = −7π/10. The same dispersion relation εk

which is mapped on (b) kx-ε plane and (c) ky-ε plane.

are

U1(k) = e−ikyY

(
kx

2

)
C1

(
−θ1

2

)
Z

(
ky

2

)

× C2(−θ2)Z

(
ky

2

)
C1

(
−θ1

2

)
Y

(
kx

2

)
, (77)

U ′
1(k) = C2

(
−θ2

2

)
Z

(
ky

2

)
C1

(
−θ1

2

)

× Y (kx )C1

(
θ1

2

)
Z

(
ky

2

)
C2

(
−θ2

2

)
. (78)

A. Bulk Dirac points

We first examine the bulk quasienergy of the system.
Figure 1 shows the quasienergy εk of our model for a specific
values of θ1 and θ2. We find that there are four Dirac points
with ε = 0 and ε = π , respectively. The Dirac points with
ε = 0 are located at (kx, ky) = (X, 0), (π + X, 0), (−X, π ),
and (π − X, π ) with X = tan−1[sin(θ2)/ cos(θ1) cos(θ2)], and
those with ε = π are at (kx, ky) = (0,±π/2) and (π,±π/2)
for arbitrary θ1 and θ2. See Appendix A for details.

These Dirac points are protected by a (weak) topological
number associated with chiral symmetry in Eq. (4). To see
this, we rewrite U (k) in terms of the Floquet Hamiltonian
HF(k),

U (k) = e−iHF (k) = cos HF(k) − i sin HF(k). (79)

Since Eq. (4) implies the conventional chiral symmetry for
sin HF(k),

� sin HF(k)�−1 = − sin HF(k), (80)
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(a) (b)

FIG. 2. The positions and topological charges of Dirac points,
(a) for ε = 0 and (b) for ε = π . In (a), Dirac points are located
at (kx, ky ) = (X, 0), (π + X, 0), (−X, π ), and (π − X, π ) where
X is defined as X = tan−1[sin(θ2)/ cos(θ1) cos(θ2)]. The figure is
described in the case −π/2 < X < 0. In (b), the Dirac points are
at (kx, ky ) = (0, ±π/2) and (π,±π/2).

one can define the one-dimensional winding number

ν1 := i

4π

∮
C

tr[�(sin HF(k))−1d (sin HF(k))], (81)

where C is a circle enclosing the Dirac point. Note that
(sin HF(k))−1 is well defined on C since the quasienergy on
C has a gap at ε = 0 and π .

For the calculation of ν1, it is convenient to take the basis
where � is diagonal,

� =
(

1 0
0 −1

)
. (82)

In this basis, U (k) has the following form

U (k) =
(

A(k) B(k)
−B†(k) D(k)

)
,

A(k) = A†(k), D(k) = D†(k),

(83)

because of chiral symmetry (4). Since sin HF(k) anti-
commutes with �, the off-diagonal part of U (k) gives
[sin HF(k)]. In the same way, since [cos HF(k)] commutes
with �, the diagonal part of U (k) gives [cos HF(k)]. Thus, we
have

−i sin HF(k) =
(

0 B(k)
−B†(k) 0

)
, (84)

from which we obtain

ν1 = 1

2π
Im

[∮
C

d ln det B(k)

]
. (85)

This topological number is nonzero for each of Dirac points,
as summarized in Fig. 2.

In terms of U1 = V2V1, ν1 is given as follows. Denoting U1

in the basis of Eq. (82) as Eq. (21), from the relation sin HF =
i(U − U †)/2, we have

B(k) = 2α†(k)β(k) = −2γ †(k)δ(k). (86)

This equation implies that

ν1 = ν1[β] − ν1[α] = ν1[δ] − ν1[γ ], (87)

where ν1[α], ν1[β], ν1[γ ], ν1[δ] are the one-dimensional
winding numbers of α, β, γ , and δ in the contour C. Lemma in

TABLE IV. A table of various winding numbers studied in
Sec. IV B. The left column represents the wave number which is fixed
as a parameter. The first row in the third and fourth columns shows
symmetries which are origins of corresponding winding numbers.
Note that, while νc

1 in Eq. (91) depends on kx , its value only takes
νc

1 = ±1 at |kx| = |π/2| or νc
1 = 0 at kx = 0, π .

Fixing Gap Chiral symmetry Time-glide chiral symmetry

kx ε = 0 νc
1 = ±1, 0 undefined

kx ε = π zero undefined
ky ε = 0 zero undefined
ky ε = π zero ν

tgc
1 = ±1

Sec. III A ensures that det β and det γ (det α and det δ) do not
become zero when the gap at ε = 0 (ε = π ) is open on C. We
find that ν1[β] and ν1[γ ] (ν1[α] and ν1[δ]) are nontrivial if the
contour C encloses a Dirac point at ε = 0 (ε = π ). Equation
(87) results in

ν1 = ν1[β] − ν1[γ ]

2
− ν1[α] − ν1[δ]

2
, (88)

which we use in Sec. IVB2.
Dirac points indicated by red circles and blue squares

have the opposite topological charges denoted as ±ν0
1 and

±νπ
1 in each figure. Green vertical arrows represent integral

paths when we calculate winding numbers fixing kx at some
value, where right ones (kx is fixed at kB) are directed to the
opposite direction to the left ones. Since horizontal arrows
cancel out each other due to the 2π periodicity of ky, the sum
of topological charges enclosed by the paths (named as C0

for ε = 0 and Cπ for ε = π ) corresponds to the difference
between winding numbers with kx = kA and kB.

B. Winding numbers

Since d is even and {GT, �} = 0, if there exists a gap at
ε = π , we can characterize the system by the time-glide chiral
winding number, as shown in Table III. Also, by fixing kx or ky

as a parameter, we can regard the two-dimensional system as
a one-dimensional chiral symmetric one, which hosts winding
numbers in Table I. The values of winding numbers are listed
in Table IV.

1. Winding numbers from time-glide chiral symmetry

We calculate winding numbers whose origin is time-
glide chiral symmetry, ν1[α′], on time-glide chiral symmetric
planes, ky = 0, π . When kx is fixed at some value, there is
no winding number from time-glide chiral symmetry, since
preserving time-glide chiral symmetry is impossible when we
integrate out ky. Fixing ky = 0 and integrating out kx, the
winding number becomes

ν
tgc
1 = ν1(α′) = sign[sin(θ1) cos(θ2)] at ky = 0, (89)

which predicts the number of edge states with ε = π . See
Appendix A for the explicit form of α′(kx, ky = 0). In the case
of ky = π , the winding number becomes the same as ν

tgc
1 .

This relation can be understood by the additional symmetry
for this model U ′

1(kx, ky + π ) = U ′
2(−kx, ky). The winding
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FIG. 3. θ1 and θ2 dependence of winding numbers (ν tgc
1 , νc

1 ),
defined at ky = 0 and kx = π/2, respectively. +1 (−1) is represented
as + (−). The black asterisk represents fixed parameters (θL

1 , θL
2 )

and (θB
1 , θB

2 ) in both Fig. 5 and Fig. 7. Red circles marked (a)–
(d) represent parameters (θR

1 , θR
2 ) used in Fig. 5. Blue squares marked

(a) and (b) are parameters (θT
1 , θT

2 ) used in Fig. 7.

number obeys the following

ν1[α′(kx, 0)] = −ν1[α′†(kx, 0)]

= −ν1[α′(−kx, π )] = ν1[α′(kx, π )]. (90)

In the first equality, we used Eq. (54) at k = kG and a
general relation of winding numbers ν1[α′] = −ν1[α′†]. In the
second equality, we used the additional symmetry constraint.
In the last equality, we used the fact that the winding number
flips when we flip the integral path. For ε = 0, there is no
winding number from time-glide chiral symmetry as shown in
Table III. Also, as mentioned in Sec. IV A, for ky = 0 and π ,
energy gaps close at ε = 0 in the present model. Therefore,
we cannot define the winding number related to edge states
with ε = 0 originating from time-glide chiral symmetry at
ky = 0, π . The value of ν

tgc
1 depends on θ1 and θ2, as is

described in Fig. 3. We also remark that the winding number
originating from time-glide chiral symmetry is not related to
Dirac points of the Floquet Hamiltonians in Fig. 2 since time-
glide symmetry cannot be defined for the (time independent)
Floquet Hamiltonians.

2. Winding numbers from chiral symmetry

First, we consider the case of ε = 0 fixing kx as a pa-
rameter. Although there are two types of winding numbers,
we consider only one type of winding number for each
gap. This is because unitary U1(k) always satisfies ν1[α] −
ν1[β] − ν1[γ ] + ν1[δ] = 0 from Eq. (24) and ν1[α] + ν1[β] +
ν1[γ ] + ν1[δ] = −4 is satisfied for arbitrary parameters in the
present model. From the above two conditions, two winding
numbers in Table I are related by ν1[γ ] + 1 = −ν1[β] − 1 in
our model. Then, we define a winding number for ε = 0 as

νc
1 = ν1[β] − ν1[γ ]

2
(91)

in the basis where � becomes σ3. θ1, θ2, and ky dependence
of β(k) and γ (k) is written in Appendix A. Although the
winding number in Eq. (91) can be calculated at arbitrary kx, it
is sufficient to calculate the winding number at kx = 0, ±π/2,
and π . This is because the value of the winding number
changes at Dirac points and Dirac points are located as shown
in Fig. 2(a). Substituting the specific wave numbers into β(k)
and γ (k) and integrating out ky, the value of νc

1 becomes

νc
1 = ∓sign[cos(θ1)] at kx = ±π

2
, (92)

νc
1 = 0 at kx = 0, π. (93)

νc
1 depends on θ1 as shown in Fig. 3 at kx = π/2, while νc

1 = 0
for arbitrary θ1 and θ2 at kx = 0, π . For ε = π , we consider
a winding number ν1[α]−ν1[δ]

2 in the same way as the case of
ε = 0. It is sufficient to consider the winding number at kx =
±π/2, since Dirac points are arranged as shown in Fig. 2(b).
Then, we find that the winding number becomes zero (ν1[α]
and ν1[δ] become −1) for arbitrary θ1, θ2, and kx.

Here, we mention the relation between topological charges
of Dirac points in Eq. (88) and winding numbers originating
from chiral symmetry in Eq. (91), by considering closed
integral paths C0 and Cπ enclosing Dirac points in Fig. 2. We
note that the path Cπ always encloses even numbers of Dirac
points, while the path C0 is not the case. Here, the vertical line
with the upward arrow is identical to the integration path for
the winding number at kx = kA, while the vertical line with
the downward arrow is the opposite direction of the path for
that at kx = kB. Further, integrals along the two horizontal
lines cancel out each other due to 2π periodicity of ky. Then,
the difference between winding numbers with kx = kA and
kx = kB, related to edge states at ε = 0 (ε = π ), becomes total
topological charges of Dirac points enclosed by C0 (Cπ ). This
is the reason why the winding number νc

1 is not equal to zero
between two Dirac points with opposite topological charges
for ε = 0 [Fig. 2(a)]. In the case of ε = π , the total topological
charges of Dirac points enclosed by integral paths are always
zero, which ensures that the winding number ν1[α]−ν1[δ]

2 is
always zero [Fig. 2(b)].

When ky is fixed as a parameter, the winding numbers
ν1[β]−ν1[γ ]

2 for ε = 0 and ν1[α]−ν1[δ]
2 for ε = π are zero with

arbitrary θ1, θ2. This behavior of winding numbers can also
be understood from topological charges and positions of Dirac
points in Fig. 2, in the same way as the case of fixing kx.

C. Edge states

Here we study the edge states at interfaces between two
quantum walks with different parameters θ1, θ2.

1. Edge states protected by time-glide chiral symmetry

Edge states originating from time-glide chiral symmetry
are expected to appear at (ky, ε) = (0, π ) and (π, π ). Making
θ1 and θ2 position dependent, we can vary ν

tgc
1 spatially,

since the value of ν
tgc
1 depends on θ1 and θ2 as in Fig. 3. In

order to study the edge modes protected by time-glide chiral
symmetry, we consider the case where rotation angles depend
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(a) (b)

FIG. 4. Systems with boundaries in the (a) x and (b) y direction.
In both cases (a) and (b), periodic boundary conditions are imposed
in both directions x and y. In (a), where (θ1, θ2) change at x = Nx/2,
the green dashed line represents the reflection axis in the y direction
by time-glide symmetry. In (b), parameters (θ1, θ2 ) change at y =
Ny/2.

only on x as described in Fig. 4(a),

θ j (x) =
{

θL
j (1 � x � Nx/2)

θR
j (Nx/2 + 1 � x � Nx )

, j = 1, 2, (94)

where an even number Nx is the number of lattices in the x
direction. Since periodic boundary conditions are imposed on
x and y directions, there are two boundaries at x = 0 and Nx/2
where θ j (x) change values.

Dispersion relations as functions of ky are shown in Fig. 5
for several sets of θR

1 and θR
2 by fixing the values of θL

1 and θL
2 .

Comparing the dispersion relations for homogeneous systems
in Fig. 1(c), we can recognize that edge states appear at
(ky, ε) = (0, π ) and (π, π ) in Figs. 5(a) and 5(c), while they
do not appear in Figs. 5(b) and 5(d). We confirm that these
states are edge states localized near the boundaries. [We note
that although edge states originating from extra symmetry
appear at (ky, ε) = (±π/2, 0) in Figs. 5(c) and 5(d), we
do not focus on them in this section. See Appendix B for
details.] In Figs. 5(a) and 5(c), edge states at (ky, ε) = (0, π )
have fourfold degeneracy. We see from Fig. 3 that |(ν tgc

1 )L −
(ν tgc

1 )R| = 2 in the case of Figs. 5(a) and 5(c), where (ν tgc
1 )L

and (ν tgc
1 )R are winding numbers in the left and right regions,

respectively, while |(ν tgc
1 )L − (ν tgc

1 )R| = 0 in the other cases.
We remark that the number of edge states predicted by the
bulk-edge correspondence becomes twice |(ν tgc

1 )L − (ν tgc
1 )R|

because of the presence of two boundaries at x = 0 and Nx/2.
Therefore, ν

tgc
1 correctly predicts the number of edge states,

in other words, we confirm the bulk-edge correspondence for
the winding number ν

tgc
1 originating from time-glide chiral

symmetry. Accordingly, we clarify that the origin of edge
states at ε = π is time-glide chiral symmetry. It is a theoreti-
cally new result that there are edge states at ε = π protected
by time-glide chiral symmetry when gap closing points exist
at ε = π , compared with classification in Ref. [16] focusing
on cases where bulk spectrum have the energy gap around
ε = π . When ky �= 0, π , the winding number originating from
time-glide chiral symmetry in Eq. (43) is not defined, and the
edge states at (ky, ε) = (0, π ) deviate from ε = π away from
ky = 0 and π . As a result, the group velocity of edge states

FIG. 5. Numerically obtained quasienergies. In (a) and (c), edge
states with ε = π are protected by time-glide chiral symmetry. In
the left region, black region in Fig. 4(a), θL

1 and θL
2 are fixed as

θL
1 = −2π/7, θL

2 = −7π/10 and the system size is Nx = 160, Ny =
120. Periodic boundary conditions are imposed for both x and y
direction. Parameters in the right region are (a) θR

1 = 2π/3, θR
2 =

−12π/13, (b) θR
1 = −π/3, θR

2 = 11π/13, (c) θR
1 = −2π/3, θR

2 =
4π/13, (d) θR

1 = π/3, θR
2 = −3π/13, which are plotted as red

circles in Fig. 3. Note that there are gap closing points at (ky, ε) =
(±π/2, π ).

is not equal to zero, which is different from that of flat bands
from chiral symmetry discussed in Sec. IVC2.

Figure 6(a) shows the time evolution of probabilities of
a walker when edge states at ε = π exist. We can clearly
see that two peaks of probabilities propagate in the opposite
directions along the boundary near x = Nx/2, which reflects
the existence of edge states with nonzero group velocity.
Figure 6(b) shows the time evolution when there are no
edge states. Probabilities diffuse in both x and y directions,
and there are no outstanding peaks in Fig. 6(b). Compar-
ing Figs. 6(a) and 6(b), it is clear that the propagation of
probability peaks along the boundary in Fig. 6(a) is due to
the existence of edge states. Note that, in the dynamics of a
2D quantum walk with different topological phases studied
in Ref. [42], a peak of probabilities propagates only to one
direction, which is different from the behavior observed in
Fig. 6(a).

2. Edge states protected by chiral symmetry

Edge states which are protected by chiral symmetry in
Eq. (4) emerge when we make boundaries to the y direction,

θ j (y) =
{

θB
j (1 � y � Ny/2)

θT
j (Ny/2 + 1 � y � Ny)

, j = 1, 2, (95)
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(a)

(b)

FIG. 6. The probability distributions of |ψ (t )〉, |ψ (x, y, t )|2 = |ψ+(x, y, t )|2 + |ψ−(x, y, t )|2. In (a) and (b), parameters are the same with
Figs. 5(a) and 5(b) respectively, that is, edge states with ε = π exist in (a) and there are no edge states in (b). The initial state is |ψ (0)〉 =
|x = 11, y = 10, σ = −〉 and Nx = Ny = 20 in both (a) and (b). White dashed lines represent the boundary at which parameters (θ1, θ2) change.

as in Fig. 4(b). We call the region of 1 � y � Ny/2 and
Ny/2 + 1 � y � Ny as the top region and bottom region,
respectively.

Since the winding number in Eq. (91) remains ±1 for a
finite range of kx, there appear flat bands at ε = 0. Figure 7
shows quasienergies ε as functions of kx, in systems shown
in Fig. 4(b). In Figs. 7(a) and 7(b), two Dirac points closest
to kx = π/2 labeled as B originate from the bulk spectrum in
the bottom region. The other two Dirac points labeled as T are
that of the top region. The system in Fig. 7(a) has νc

1 = −1
in the bottom region and νc

1 = +1 in the top region, as shown
in Fig. 3. As predicted from the bulk-edge correspondence,
there appear flat bands at ε = 0 between Dirac points. The
eigenstates with ε = 0 between two Dirac points B and B
have fourfold degeneracy, which is also consistent with the
bulk-edge correspondence since there are two boundaries. As
we explained in Sec. IVB2, the winding numbers at kx = 0, π

are zero. Varying kx from π/2 to 0 or π and passing through
one nearest Dirac point B, the winding number of the bottom
region changes from −1 to 0. Then, the ε = 0 degeneracy at
the specific kx becomes 2, since the winding number in the top
region is still −1. After a second Dirac point T is passed, the
flat band vanishes, since winding numbers are zero in both
regions. In Fig. 7(b), νc

1 = −1 in both regions. Therefore,
flat bands cancel out around kx = π/2, between two Dirac
points labeled as B. On the other hand, there are flat bands
in the kx range where the winding number is 0 in the bottom
region and −1 in the top region, between two Dirac points
B and T, one is that of the bottom region and the other is
that of the top region. The flat bands in Fig. 7 correspond to
Fermi arcs in Dirac semimetals, since the behavior of winding
numbers can be understood from topological charges of Dirac
points, as explained in Sec. IVB2. While flat bands have

FIG. 7. Numerically obtained quasienergies. Flat bands at ε = 0
connect Dirac points, corresponding to Fermi arcs of Dirac semimet-
als. In the bottom region, the black region in Fig. 4(b), θB

1 and θB
2

are fixed as θB
1 = −2π/7, θB

2 = −7π/10 and the system size is
Nx = 160, Ny = 120. Periodic boundary conditions are imposed for
both x and y directions. Parameters in the top region are (a) θT

1 =
8π/9, θT

2 = −8π/11, (b) θT
1 = 2π/9, θT

2 = 9π/11, which are plot-
ted as blue squares in Fig. 3.
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been discussed in quantum walks [36], the correspondence
to Fermi arcs is firstly stated in this work by clarifying the
relation between Dirac points in the bulk and flat bands
on the edge. In Fig. 7(b), there also appear edge states at
(kx, ε) = (0, 0) and (π, 0). We explain the origin of them in
Appendix B.

V. SUMMARY

We have studied Floquet topological phases of discrete
quantum walks with time-glide symmetry, chiral symmetry,
or both of them. Identifying chiral symmetry as a discrete
version of time-reflection symmetry and using the concept of
asymmetric unit in time direction, we have shown the way
of constructing models which have these symmetries. Based
on the discrete space-time symmetries, we have clarified
topological numbers which characterize anomalous topolog-
ical phases intrinsic to Floquet systems. Topological numbers
which we have revealed include ones which are not men-
tioned in Ref. [16]. This is because discrete quantum walks
without microscopic Hamiltonians are topologically distinct
from ordinary Floquet systems which are described by time-
dependent Hamiltonians. Our first comprehensive study on
space-time symmetries and resulting topological phases in
discrete quantum walks not only has theoretical novelty but
also helps observations of edge states peculiar to discrete
Floquet systems, whose origin is these symmetries, since
quantum walks are feasible experimental platforms to explore
Floquet topological phases.

Using the asymmetric unit construction, we have made
a model of two-dimensional quantum walks, which satisfies
time-glide symmetry and chiral symmetry. We have calcu-
lated winding numbers and have shown that there are two
types of edge states. One type of edge states is protected
by time-glide chiral symmetry, which appears when there are
boundaries only in the x direction. Since the edge states have
nonzero group velocities, two peaks of probabilities propagate
in two opposite directions along the boundary, which can be
observed in experiments. While Ref. [16] classifies Floquet
topological phases when bulk spectrum are fully gapped
around ε = π , in our model, robust edge states protected
by time-glide chiral symmetry appear even when bulk gaps
are closed at ε = π . The other type of edge states is the
flat band, appearing when boundaries exist in the y direction
and time-glide symmetry is broken, while chiral symmetry is
preserved. Existence or absence of flat bands are understood
from topological charges of Dirac points. The flat bands
correspond to Fermi arcs in Dirac semimetals since the way
of understanding is the same with Fermi arcs as explained
in Sec. IVB2, which is first stated in quantum walks. While
a linear combination of chiral winding numbers in Table I
and a time-glide chiral winding number in Table III lead
to the existence of edge states in our model, it should be
interesting to explore phenomena related to other topological
numbers in discrete quantum walks, such as linear combi-
nations of chiral winding numbers different from Eq. (91),
time-glide chiral winding numbers when GT and � commute,
or time-glide Chern numbers in systems with odd d , as future
works.
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APPENDIX A: MATRIX COMPONENTS OF U (k), U ′
1(k),

AND U1(k) FOR OBTAINING ε(k), ν
tgc
1 , AND νc

1

From Eqs. (73)–(76), the matrix components of the two by
two time-evolution operator U (k) = V4(k)V3(k)V2(k)V1(k) are

U (1,1)(k) = (a + b + c)2 − (d + e + i f )2, (A1)

U (1,2)(k) = 2(a + b)(d + e) + 2c f , (A2)

U (2,2)(k) = [U (1,1)(k)]∗, U (2,1)(k) = −U (1,2)(k), (A3)

where a, b, c, d, e, f are defined as

a = cos(θ1) cos(θ2) cos(kx ) cos(ky), (A4)

b = sin(θ2) sin(kx ), (A5)

c = cos(θ2) sin(ky), (A6)

d = cos(θ1) cos(θ2) sin(kx ) cos(ky), (A7)

e = − sin(θ2) cos(kx ), (A8)

f = sin(θ1) cos(θ2) cos(ky). (A9)

Here, U (i, j)(k) denotes the (i, j) component of U (k). Due
to the structure of U (k) in Eq. (A3) and det(U (k)) = 1, the
condition for εk = 0 is U (1,1)(k) = U (2,2)(k) = 1. Then, sub-
stituting ky = 0 into Eqs. (A1)–(A9), the condition becomes

sin(kx − X ) = 0, tan(X ) = sin(θ2)

cos(θ1) cos(θ2)
. (A10)

Therefore, gap closing points always exist at (kx, ky, ε) =
(X, 0, 0) and (π + X, 0, 0). In the case of ky = π , there are
also gap closing points at (−X, π, 0) and (π − X, π, 0),
which is derived in the same way.

In order to obtain winding numbers, we also need matrix
components of U ′

1(k) = V1(k)V4(k) and U1(k) = V2(k)V1(k).
Calculating ν

tgc
1 in Eq. (89), we integrate α′(kx, ky = 0), which

becomes

α′(kx, 0) = a cos(kx − b) + ic sin(kx ), (A11)

a =
√

cos2(θ2) + cos2(θ1) sin2(θ2), (A12)

tan(b) = cos(θ1) sin(θ2)

cos(θ2)
, c = sin(θ1). (A13)

The above equations tell us that the value of ν
tgc
1 depends on

the sign of cos(θ2) and sin(θ1). Calculating νc
1 in Eq. (91),

we change the basis to make chiral operator σ3, i.e., apply a
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unitary transformation with e
π
4 σ2 . Then, from Eqs. (73) and

(74), β(k) and γ (k) become

β(k) = e−iky cos(θ2)[cos(θ1) cos(ky) − i sin(ky)], (A14)

γ (k) = e−iky cos(θ2)[cos(θ1) cos(ky) + i sin(ky)], (A15)

at kx = π/2, which results in θ1 dependence of νc
1.

APPENDIX B: ADDITIONAL SYMMETRIES AND
RESULTING WINDING NUMBERS

The system has an additional symmetry at ky = ±π/2. For
simplicity, we focus only on ky = π/2. Substituting ky = π/2
into U ′(k), we obtain

U ′
(

kx,
π

2

)
= −Ũ2(kx )Ũ1(kx ), (B1)

Ũ1(kx ) = C1

(
θ2

2

)
Z (kx )C1

(
−θ2

2

)
, (B2)

Ũ2(kx ) = C1

(
−θ2

2

)
Z (−kx )C1

(
θ2

2

)
, (B3)

with a unitary transformation by ei( θ1
2 − π

4 )σ1 ei π
4 σ3 . Ũ1(kx ) and

Ũ2(kx ) satisfy

σ3Ũ1(kx )σ3 = Ũ †
2 (kx ). (B4)

Based on the additional symmetry in Eq. (B4), we can obtain
a winding number of

[Ũ1(kx )](1,1) = cos(kx ) + i cos(θ2) sin(kx ), (B5)

which corresponds to a winding number for ε = π in Table I.
At ky = −π/2, the winding number has the opposite sign
to that at ky = π/2. The origin of edge states at (ky, ε) =
(±π/2, 0) in Figs. 5(b) and 5(c) is the symmetry in Eq. (B4)
or the resulting winding number, since there is the minus
sign in the right hand side of Eq. (B1). At ky = ±π/2, the
energy gap always closes at ε = π . Therefore, we cannot
define the winding number related to edge states with ε = π

at ky = ±π/2.
The system also has an additional symmetry at kx = 0, π .

Substituting kx = 0 and ignoring e±iky which cancel out,
U ′

1(0, ky) and U ′
2(0, ky) are the same operator,

U ′
1(0, ky) = U ′

2(0, ky) = C2

(
−θ2

2

)
e−ikyσ1C2

(
−θ2

2

)
, (B6)

with a unitary transformation by ei π
4 σ2 . Since U ′

1(0, ky) satis-
fies

σ3U
′
1(0, ky)σ3 = [U ′

1(0, ky)]†, (B7)

we can obtain a winding number of

[U ′
1(0, ky)](1,2) = − sin(θ2) cos(ky) − i sin(ky), (B8)

which is a winding number in Table I for ε = 0. Edge states
at (kx, ε) = (0, 0) in Fig. 7(b) originate from the winding
number of [U ′

1(0, ky)](1,2) in Eq. (B8). At kx = π , there appear
edge states in the same way.
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