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Switching of the Dyakonov-Perel spin relaxation owing to the Rashba spin-orbit interaction (SOI) is the-
oretically studied in a semiconductor heterostructure with three quantum wells. The action of the present
spin-relaxation switching is based on the gate-voltage induced electron transfer from the central well with
vanishing Rashba SOI to the left or right well with large Rashba SOI. The spin-relaxation rate is calculated
by extending the Dyakonov-Perel theory of the spin relaxation in a single subband to that in more than one
subband in order to take into account the contribution from electrons in excited subbands at higher tem-
peratures. It is shown that the on:off ratio of the spin-relaxation rate at room temperature reaches 106 by
choosing widths and compositions of well and barrier layers so as to reduce electron population in excited
subbands, which gives an undesirable spin relaxation. The present spin-relaxation switching is expected
to improve the on:off ratio of the current in the spin-lifetime field effect transistor.

DOI: 10.1103/PhysRevApplied.13.064075

I. INTRODUCTION

A number of spin field-effect transistors have been pro-
posed and explored in spintronics [1,2]. Among them the
spin FET proposed by Datta and Das [3] has been most
extensively studied, which utilizes the precession of elec-
tron spin around the effective magnetic field Beff induced
by the Rashba spin-orbit interaction (SOI) [4–7] in a two-
dimensional (2D) electron channel. The Rashba SOI is
given by α(σxky − σykx), where σx and σy are the Pauli
spin operators, kx and ky are wave numbers, and α is the
coefficient representing the strength of the Rashba SOI.
The realization of this spin FET, however, requires the sup-
pression of the spin relaxation with respect to at least two
spin directions in order to maintain the spin precession.
Another spin FET, called spin-lifetime FET, has been pro-
posed in several papers [8–11], which uses only the spin
polarization along one direction (say, perpendicular to the
2D channel) in contrast to the Datta-Das spin FET and
therefore has the advantage that it requires the suppression
of the spin relaxation with respect to only one spin direc-
tion. In this paper we explore the method to improve the
on:off current ratio of the spin-lifetime FET.

The spin-lifetime FET switches the current on and off
by switching the spin-relaxation rate between high and
low levels. The original method [8–11] for switching the
spin-relaxation rate employs the gate-voltage dependence

*akera@eng.hokudai.ac.jp

of the Rashba coefficient α in a single symmetric quantum
well (QW), confirmed by experiments [12–14], in which
α = asoEz with Ez the electric field perpendicular to the
QW produced by the gate voltage and aso the proportional-
ity constant depending on compositions of well and barrier
semiconductors. In the Dyakonov-Perel mechanism [15–
17] the spin-relaxation rate 1/τs is given by 1/τs = bα2

(b is the proportionality constant) [18] and, consequently,
in a symmetric QW, 1/τs = b(asoEz)

2, which leads to the
switching of the spin-relaxation rate by changing the gate
voltage. The on:off ratio of 1/τs could be made arbitrar-
ily large if it is possible to maintain the value of Ez at the
infinitesimal in the off state. In a real sample, however, it
is difficult to know the exact value of the gate voltage to
make Ez vanish because details of the structure, such as the
dopant density, should have unknown deviations from the
designed value. Then each sample has an inevitable devia-
tion of Ez from 0, which we denote by �Ez, when the gate
voltage is at the value that gives Ez = 0 in the ideal struc-
ture. Therefore, the lowest spin-relaxation rate is limited to
b(aso�Ez)

2.
To overcome such limitation in the lowest spin-

relaxation rate of the spin-lifetime FET, in this paper we
propose a structure consisting of a wider QW with negli-
gible α and a narrower QW with large |α|. By placing a
thick barrier between these QWs, electrons are well local-
ized in the wider QW near Ez = 0, while they transfer
to the narrower QW by applying a large enough Ez, giv-
ing the Ez-induced switching of the Rashba coefficient
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and consequently the spin-relaxation rate. As a QW with
negligible Rashba SOI, we choose a symmetric QW,
B/W/B, with W = In0.53Ga0.47As (well layer) and B =
AlxGa1−xAsySb1−y (x = 0.3) (barrier layer) based on our
finding [19] that the proportionality constant aso (in α =
asoEz) can be made to vanish by tuning the Al fraction of
the barrier compound to a value which is close to x = 0.3
[20]. Since the Rashba SOI in this QW is suppressed even
at nonzero Ez, the lowest spin-relaxation rate and the off
current in the spin-lifetime FET can be reduced even when
Ez deviates from 0 by �Ez. As a QW with large Rashba
SOI, we choose an asymmetric QW, A/W/B, with two dif-
ferent barrier materials, A and B, where A = AlAsySb1−y
or In0.52Al0.48As, while B and W are the same as the pre-
vious QW, B/W/B. Since an asymmetric QW exhibits
a large |α| even at Ez = 0 when the well width is nar-
row [21], it may contribute to reducing the required gate
voltage for switching. Although the simplest structure real-
izing such switching action is an asymmetric double-QW
structure with A/W/B and B/W/B, we employ a symmet-
ric triple-QW structure consisting of A/W/B, B/W/B, and
B/W/A as shown in Fig. 1 since it exhibits a simpler Ez
dependence of the spin-relaxation rate; in fact, its spin-
relaxation rate is 0 at Ez = 0 (the center well is made
wider than the left and right wells so as to place electrons
in the center well at Ez = 0). A theoretical estimate for
the off value of the spin relaxation rate in the triple-QW

(a)

(b)

FIG. 1. (a) A triple-QW structure and the potential due to
the conduction-band offset Vc

bo(z). (b) The dependence on the
applied electric field Ez perpendicular to QWs of the normal-
ized Rashba coefficient α̃0 for an electron in the ground subband
at the electron sheet density Ns = 0. The dashed, dashed-dotted,
and dotted lines represent α̃0 of A/W/B (left), B/W/B (center),
and B/W/A (right) QWs, respectively, where A = In0.52Al0.48As,
B = AlxGa1−xAsySb1−y (x = 0.3), and W = In0.53Ga0.47As. In
the triple-QW structure α̃0 (solid line) shows a discontinuous
change when the electron makes a transfer between adjacent
QWs. Here α̃0 is normalized so that α̃0 = 1 for A/W/B at Ez = 0.

structure compared to that in a single QW, A/W/A, is
(αtriple/αsingle)

2 = (aB/W/B
so /aA/W/A

so )2 ∼ 10−3 for both A =
AlAsySb1−y and In0.52Al0.48As if we assume that αtriple =
αB/W/B at small Ez and evaluate αtriple and αsingle at the same
value of Ez = �Ez.

In evaluating the on:off ratio of the spin-relaxation rate
in the proposed triple-QW structure at room temperature,
however, we need an extension of the Dyakonov-Perel
theory for the spin-relaxation rate [15–17]. At absolute
zero electrons occupy only the ground subband of the
triple-QW structure when the electron sheet density Ns
is small enough and the original Dyakonov-Perel the-
ory for a single band (subband) [15–17] is applicable,
which gives the spin-relaxation rate proportional to the
square of α0, the Rashba coefficient in the ground sub-
band n = 0. At higher temperatures, however, electrons
also occupy excited subbands, which have different Rashba
coefficients, αn (n ≥ 1). We therefore need the formula
for the spin-relaxation rate 1/T1 that is applicable to the
case where more than one subband with different Rashba
coefficients are occupied [22].

In this paper we extend the Dyakonov-Perel theory for
the spin relaxation in a single subband to the multisub-
band case and derive the formula for the spin-relaxation
rate that is applicable to the case with electron occupation
in excited subbands. Then we employ the derived formula
to evaluate the on:off ratio of the spin-relaxation rate from
absolute zero to room temperature in triple-QW structures
with different layer widths and compositions. We show
that, in a triple-QW structure with a larger energy sepa-
ration between the ground subband and excited subbands,
the on:off ratio of the spin-relaxation rate at room tem-
perature reaches 106, which is much larger than the on:off
ratio in a single asymmetric QW (A/W/B), which has been
proposed in our previous paper [21], and that in a single
symmetric QW (A/W/A) used in the original proposal of
the spin-lifetime FET [10,11].

This paper is organized as follows. In Sec. II we describe
the model and the Hamiltonian of triple-QW structures,
based on which we derive the formula for the spin-
relaxation rate in the multisubband case in Sec. III. In
evaluating the spin-relaxation rate (Sec. IV) we first estab-
lish guidelines to achieve a higher on:off ratio of the
spin-relaxation rate in Sec. IV A, and then present results
of the spin-relaxation rate when we choose In0.52Al0.48As
as a barrier material A in Sec. IV B and AlAsySb1−y in
Sec. IV C. We compare the obtained on:off ratio of the
spin-relaxation rate in the triple-QW structure with that in
single QWs A/W/A and A/W/B in Sec. IV D. Finally, we
present conclusions in Sec. V.

II. MODEL AND HAMILTONIAN

We consider a symmetric triple-QW structure, schemat-
ically shown in Fig. 1, which consists of A/W/B (left),
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B/W/B (center), and B/W/A (right) QWs, where A, B,
and W are semiconductors with the zinc-blende structure.
We choose W = In0.53Ga0.47As as the well material, B =
AlxGa1−xAsySb1−y (x = 0.3) as the inner barrier material,
and A = AlAsySb1−y or In0.52Al0.48As as the outer barrier
material (the fraction of As, y, is determined so that the
layer is lattice matched to InP). The Rashba coefficient
α0 in the ground subband of the B/W/B QW, which is
plotted as a function of Ez, the applied electric field per-
pendicular to QWs, by a dashed-dotted line in Fig. 1(b), is
close to 0 [19], while |α0| of the A/W/B (dashed line) and
B/W/A (dotted line) QWs are large even at Ez = 0 [21].
In the triple QW, the electron transfer takes place from the
left QW to the center QW and subsequently to the right
QW upon changing the force on an electron, Fz = −eEz
(e > 0), from negative to positive; consequently, α0 shows
discontinuous changes, shown in Fig. 1(b), leading to the
Ez-induced switching of the spin-relaxation rate. In the fol-
lowing we calculate the spin-relaxation rate as a function
of Ez in the case where excited subbands are occupied
by electrons when the electron sheet density Ns or the
temperature is raised.

The Hamiltonian H for a conduction-band electron
confined in a triple-QW structure is

H = HQW + H so
W + Vimp, (1)

where HQW describes the motion of an electron in the
triple-QW potential, VW(z), H so

W is the Rashba SOI induced
by VW(z), and Vimp is the potential produced by ran-
domly distributed impurities. The QW Hamiltonian HQW
is given by

HQW = p̂2

2m
+ VW(z), (2)

where p̂ = (p̂x, p̂y , p̂z) = −i�∇ = −i�(∇x, ∇y , ∇z) and m
is the effective mass of the conduction band. The potential
VW(z) is

VW(z) = Vc
bo(z) + Ves(z). (3)

Here Vc
bo(z) is the potential due to conduction-band offsets

at interfaces between different layers and is given by

Vc
bo(z) = �EA

c hA(z) + �EB
c hB(z), (4)

where

h�(z) =
{

1 for z in barrier �(� = A, B),
0 otherwise, (5)

and conduction band offsets are defined by �E�
c = E�

c − Ec
with Ec (E�

c) the energy of the conduction-band bottom
in In0.53Ga0.47As (barrier semiconductor �). The potential

Ves(z) [the second term of VW(z)] is the electrostatic poten-
tial, which is created by the charge density due to electrons
within the triple-QW structure and donors outside of the
structure and by the applied electric field Ez and is to be
calculated self-consistently by the Hartree approximation
when Ns �= 0. We apply the periodic boundary conditions
in the x and y directions. Then each eigenstate of HQW
is labeled by the subband index, n = 0, 1, 2, . . ., the wave
vector in the x-y plane, k = (kx, ky), and the z compo-
nent of the spin, σ = ±1 (σ =↑, ↓). The corresponding
eigenvector |nkσ 〉 satisfies

HQW|nkσ 〉 = εnkσ |nkσ 〉, (6)

where the eigenenergy is

εnkσ = εn + �
2k2/2m, (7)

with k = |k|. Here εn is the eigenvalue of the Hamiltonian
associated with the motion along the z direction,

[
p̂2

z

2m
+ VW(z)

]
|n〉 = εn|n〉, (8)

where |n〉 is the corresponding eigenvector.
The SOI, H so

W , is induced by the valence band offsets and
the electrostatic potential Ves(z) [23–25] and is given by

H so
W = a(z)(σxk̂y − σy k̂x), (9)

where (k̂x, k̂y) = (p̂x, p̂y)/� and

a(z) = (ηA
v �EA

v − ηA
s �EA

s )∇zhA

+ (ηB
v �EB

v − ηB
s �EB

s )∇zhB + η∇zVes. (10)

The expectation value of H so
W is of the form of the Rashba

SOI [4–7], i.e.,

Rnk ≡ 〈nk|H so
W |nk〉 = αn(σxky − σykx) (11)

with αn the subband-dependent coefficient defined by

αn = 〈n|a(z)|n〉. (12)

The factors η�
v , η�

s (� = A, B), and η in Eq. (10) are given by

η�
v = P2

3
1

Eg(Eg − �E�
v)

, (13)

η�
s = P2

3
1

Es
g(Es

g − �E�
s )

, (14)

η = P2

3

[
1

(Eg)2 − 1
(Es

g)
2

]
. (15)

Here band gaps are defined by Eg = Ec − Ev and
Es

g = Ec − Es, while valence-band offsets are given by
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�E�
v = E�

v − Ev and �E�
s = E�

s − Es with Ev (E�
v) the

energy of the valence-band top and Es (E�
s ) that of the

split-off-band top in the well semiconductor W (barrier
semiconductor �). The Kane matrix element [26] P is
defined by

P = −i
�

m0
〈S|p̂x|X 〉, (16)

where m0 is the electron rest mass, while |S〉 and |X 〉
are the s-type wave function at the conduction-band bot-
tom and the p-type wave function at the valence-band top,
respectively.

The impurity potential Vimp(r) with r = (x, y, z) is the
potential originating from impurities that are distributed
uniformly and randomly in the triple-QW structure. We
take the reference point of Vimp(r) so that

∫
Vimp(r)dxdy =

0. Therefore, its matrix elements diagonal in k are 0:

〈n′kσ |Vimp|nkσ 〉 = 0. (17)

Furthermore, we assume that Vimp(r) is written as the
summation of potentials due to each impurity:

Vimp(r) =
∑

i

u(r − ri) (18)

with ri the position vector of the ith impurity.

III. FORMULA FOR THE SPIN-RELAXATION
RATE

In this paper we consider the Dyakonov-Perel spin
relaxation in a (110)-oriented QW structure for the spin
polarization in the [110] direction (z direction) (denoted
by Sz) assuming that Sx = Sy = 0 and Sz �= 0. Then the
Dyakonov-Perel spin relaxation of Sz is caused by the
Rashba SOI alone since the Dresselhaus SOI [27] pro-
duces the effective magnetic field along z in a (110) QW
[17,19,28,29] (see note [30] with regard to off-diagonal
components of the spin relaxation rate tensor [31]). The
spin-relaxation time τs or the spin-relaxation rate τ−1

s for
Sz is obtained from

dSz

dt
= −Sz

τs
, (19)

in which Sz is defined by the sum of sz = (�/2)σz of each
electron and is given by

Sz = tr(ρsz), (20)

using the density operator ρ for one-electron states [32].
Here tr(·) is the trace operation with respect to one-electron

states. The time derivative dSz/dt is evaluated by the
equation of motion for ρ [32]:

i�
dρ

dt
= [H , ρ]. (21)

Now we calculate Sz and dSz/dt by choosing the following
unperturbed Hamiltonian H0 and the perturbation V :

H = H0 + V , H0 = HQW + H so
W , V = Vimp.

(22)

Using the eigenvectors of HQW, |nkσ 〉, as basis vectors, Sz
is expressed as

Sz = �

2

∑
nkσ

〈nkσ |ρσz|nkσ 〉 = �

2

∑
nkσ

σ 〈σ |fnk|σ 〉, (23)

in which we have introduced an operator in the spin space:

fnk = 〈nk|ρ|nk〉. (24)

In order to obtain dSz/dt, we derive the equation of motion
for fnk. Here we employ the interaction representation such
that

ρI (t) = U†(t)ρ(t) U(t), VI (t) = U†(t)V(t) U(t),
(25)

where

U(t) = exp
(

1
i�

H0t
)

. (26)

Then we obtain, from Eq. (21),

dρI

dt
= 1

i�
[VI , ρI ]. (27)

By integrating both sides of this equation from t0 to t, we
have

ρI (t) = ρI (t0) +
∫ t

t0
dt′

1
i�

[VI (t′), ρI (t′)]. (28)

Substituting this into Eq. (27), we have, up to the second
order of V ,

dρI

dt
= 1

i�
[VI (t), ρI (t0)] − 1

�2

∫ t

t0
dt′{VI (t), [VI (t′), ρI (t)]}.

(29)

Writing ρI (t) on the left-hand side of the equation in terms
of ρ(t), we obtain

dρ

dt
= 1

i�
[H0, ρ] + 1

i�
U(t)[VI (t), ρI (t0)]U†(t) + J (t)

(30)
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with

J (t) = − 1
�2

∫ t

t0
dt′U(t){VI (t), [VI (t′), ρI (t)]}U†(t). (31)

To obtain the equation of motion for fnk, we evaluate
diagonal matrix elements 〈nk| · · · |nk〉 of each term in
Eq. (30). In calculating 〈nk|[H so

W , ρ]|nk〉 we employ the
approximation that

〈n′k|ρ|nk〉 = 0 (n �= n′), (32)

which is valid when the energy difference εn′k,−σ −
εnkσ is large compared to the absolute value of
〈n′k, −σ |H so

W |nkσ 〉. In evaluating terms with VI in
Eq. (30), we take the average with respect to the x and
y coordinates of each impurity and use Eq. (17). Then we
obtain

dfnk

dt
= 1

i�
[Rnk, fnk] + Jnk (33)

with Jnk = 〈nk|J (t)|nk〉. In evaluating Jnk we neglect H so
W

according to the Dyakonov-Perel theory [16] and take the
limit of t0 → −∞. Then Jnk reduces to

Jnk =
∑
n′k′

[−Wn′k′,nkfnk(t) + Wnk,n′k′ fn′k′(t)], (34)

where Wn′k′,nk is the spin-independent transition rate from
nk to n′k′ given by

Wn′k′,nk = 2π

�
|〈n′k′ ∣∣Vimp

∣∣ nk〉|2δ(εn′k′ − εnk), (35)

which is proportional to the impurity volume density since
it reduces to the summation of the transition rate at each
impurity after the average with respect to the x and y
coordinates of each impurity is taken.

Since dfnk/dt, which determines dSz/dt, is given in
Eq. (33) by fnk, we solve Eq. (33) for fnk up to the
first order of Rnk. We express H so

W [Eq. (9)] and Rnk =
〈nk|H so

W |nk〉 [Eq. (11)] by the effective magnetic field
operator �̂ = (�̂x, �̂y , 0) [16] and its expectation value
�n(k) ≡ 〈nk|�̂|nk〉, respectively:

H so
W = �

2
�̂ · σ , Rnk = �

2
�n(k) · σ . (36)

Then the strength of the effective magnetic field is given
by

�n(k) = |�n(k)|, (37)

which does not depend on the direction of k. The two terms
on the right-hand side of Eq. (33) show that the relative

strength of the SOI is given by a dimensionless constant
�τ with � the typical value of �n for various subbands
and τ the mean free time between successive impurity scat-
terings. According to Dyakonov and Perel [16], we expand
fnk with respect to �τ and retain terms of the zeroth order
and first order in �τ :

fnk = f (0)
nk + f (1)

nk . (38)

Because dfnk/dt is proportional to 1/τs ∼ �2τ , as we
will see later from the obtained f (0)

nk and f (1)
nk , Eq. (33)

becomes, in the zeroth order with respect to �τ ,∑
n′k′ Wn′k′,nk(−f (0)

nk + f (0)

n′k′ ) = 0, which is satisfied if f (0)
nk

is a function of εnk. Here we choose f (0)
nk to be a thermal-

equilibrium distribution with nonzero Sz:

f (0)
nk = 1

2 I [f↑(εnk) + f↓(εnk)] + 1
2σzfz(εnk). (39)

Here I is the unit matrix and fz(εnk) is the difference in
distribution between spin-up and spin-down electrons, i.e.,

fz(εnk) = f↑(εnk) − f↓(εnk), (40)

with the spin-dependent Fermi-Dirac distribution function,

fσ (ε) =
[

1 + exp
(

ε − μσ

kBT

)]−1

. (41)

The spin-dependent chemical potential, μσ , gives rise to
the spin polarization Sz:

Sz = �

2

∑
nkσ

σ 〈σ |f (0)
nk |σ 〉 = �

2

∑
nk

fz(εnk). (42)

In the first order with respect to �τ , Eq. (33) becomes

1
i�

[Rnk, f (0)
nk ] +

∑
n′k′

Wn′k′,nk(−f (1)
nk + f (1)

n′k′ ) = 0, (43)

which is the equation for f (1)
nk . Since we obtain

[Rnk, f (0)
nk ] = −iαnfz(εnk)(σxkx + σyky) using Eq. (11),

Eq. (43) has a solution of the form

f (1)
nk = τn

i�
[Rnk, f (0)

nk ] (44)

with a relaxation time τn(k) independent of the direction
of k when Wn′k′,nk is an even function of θ , the angle of k′
relative to k. The relaxation time τn(ε) for each subband is
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determined by

Pn(ε)τn(ε) −
∑

n′
Qnn′(ε)τn′(ε)

αn′kn′(ε)

αnkn(ε)
= 1 (45)

with

Pn(ε) =
∑
n′k′

Wn′k′,nk, Qnn′(ε) =
∑

k′
Wn′k′,nk cos θ ,

(46)

where kn(ε) is the value of |k| satisfying εnk = ε.
The time derivative of Sz is calculated from the solution

of fnk by

dSz

dt
= �

2

∑
nkσ

σ

〈
σ

∣∣∣∣dfnk

dt

∣∣∣∣σ
〉
, (47)

with Eq. (33). The collision term in Eq. (33) does
not contribute to dSz/dt because

∑
nk Jnk = 0. Since∑

k[Rnk, f (0)
nk ] = 0 and [Rnk, f (1)

nk ] = −2i�−1τn(εnk)α
2
nk2σz

fz(εnk), we obtain

dSz

dt
= −2�

−1
∑
nk

τn(εnk)α
2
nk2fz(εnk). (48)

Substituting dSz/dt derived here and Sz in Eq. (42) into
Eq. (19), we obtain the spin-relaxation time τs. When
|μ↑ − μ↓| � kBT, τs becomes independent of μ↑ − μ↓
and is given by

1
τs

=
[ ∞∑

n=0

f (εn)

]−1 ∞∑
n=0

∫ ∞

εn

dε

(
−df

dε

)
�2

n(ε)τn(ε),

(49)

where f (ε) is the Fermi-Dirac distribution function with
spin-independent chemical potential μ = μ↑ = μ↓. In our
triple-QW structure, Fig. 1 shows that the effective mag-
netic field strength in the ground subband, �0 = (2/�)α0k,
is almost 0 in the vicinity of Ez = 0 (off region) and there-
fore the spin relaxation in the off region is caused by
electrons in excited subbands through terms of n ≥ 1 in
Eq. (49). Considering such contributions from excited sub-
bands is indispensable in accurately evaluating the on:off
ratio of the spin relaxation rate.

IV. CALCULATED RESULTS OF THE
SPIN-RELAXATION RATE

A. Guidelines for improving the on:off ratio of the
spin-relaxation rate

Our goal in this paper is to propose a quantum well
structure which realizes a higher on:off ratio of the spin-
relaxation rate in the temperature range from absolute

zero to room temperature. For this purpose, we use the
Ez-induced electron transfer from a QW with negligible
Rashba SOI (B/W/B in the center) at Ez ∼ 0 to a QW
with large Rashba SOI (A/W/B and B/W/A in the left and
right, respectively) at large |Ez|, as explained in the Intro-
duction, where the well material W is In0.53Ga0.47As, one
barrier material B is AlxGa1−xAsySb1−y (x = 0.3) whose
composition is adjusted to give aso ≈ 0, and another barrier
material A is In0.52Al0.48As in Sec. IV B and AlAsySb1−y
in Sec. IV C. To obtain a larger Rashba SOI in A/W/B and
B/W/A, we choose a narrower well width [21].

At higher temperatures, electrons occupy excited sub-
bands. Electrons in some excited subbands have a large
probability density in the left or right well even in the
vicinity of Ez = 0 and are subject to significant spin relax-
ation. In order to suppress such undesired spin relaxation
in the off region, we need to decrease the electron popu-
lation in excited subbands by increasing the energy sepa-
ration between the ground and excited subbands. This can
be implemented by increasing the center-well width and
decreasing the widths of the left and right wells.

It is also desirable to reduce the magnitude of the electric
field, Etrans

z , at which the electron transfer occurs from the
center to left (or right) well. The required value of Etrans

z can
be roughly estimated from eEtrans

z �zwell = �εwell, where
�zwell is the distance between the center and left wells and
�εwell is the difference in energy of the lowest bound state
between the center and left wells at Ez = 0. Thus, we can
reduce Etrans

z by increasing the width of barrier B.

B. A triple-quantum-well structure with
A = In0.52Al0.48As

First we adopt In0.52Al0.48As as a barrier material A. In
Fig. 2 we present a triple-QW structure designed according
to the guidelines in Sec. IV A: the width of the center well
is much larger than that of the left and right wells.

In calculating the spin-relaxation rate, we assume that
the range of impurity potential is short compared to the

z

0.52 eV 0.52 eV

A A

c
bo

V
0.86 eV 0.86 eV

W W WB B
12 nm

20 nm 20 nm

4 nm 4 nm

FIG. 2. A triple-QW structure and the potential due to
the conduction-band offset Vc

bo(z). Barrier materials A =
In0.52Al0.48As, B = AlxGa1−xAsySb1−y (x = 0.3), and a well
material W = In0.53Ga0.47As.
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Fermi wavelength, so that

u(r) = u0δ(r). (50)

Then we choose, as units of the momentum-relaxation time
and the spin-relaxation time, τp0 and τs0, given by

1
τp0

= nimpu2
0

m
�3a∗

B
, (51)

1
τs0

= 106 η2(Ry∗)2

�2(a∗
B)4 τp0 = 106 η2�(Ry∗)2

nimpu2
0m(a∗

B)3
, (52)

respectively with nimp the impurity volume density. Here
a∗

B = �2ε/(me2) and Ry∗ = �2(a∗
B)−2/(2m), which we use

as units of length and energy, respectively, with ε the static
dielectric constant. Their values are a∗

B = 17.1 nm and
Ry∗ = 3.04 meV in In0.53Ga0.47As.

In Fig. 3 we present the spin-relaxation rate 1/τs of the
triple-QW structure shown in Fig. 2 at T = 0 K as a func-
tion of Ez for three values of Ns, the electron sheet density:
Ns/(1011 cm−2) = 4, 5, and 6. When Ns is nonzero, the
electron transfer from the center to the left or right well
and the resulting increase of the spin-relaxation rate from
“off” to “on” values take place in an Ez range proportional
to Ns, followed by a discontinuous increase at a value of Ez,
which we denote by Eon

z . We assign the larger value of 1/τs
at Ez = Eon

z to be the “on” value of the spin-relaxation rate
and choose 1/τs at Ez = Eoff

z = 0.1Eon
z as the “off” value

of the spin-relaxation rate. Then the on:off ratio of the
spin-relaxation rate becomes 106, which weakly depends
on Ns.

The “off” spin-relaxation rate at T = 0 K strongly
depends on the deviation of the Al fraction x in barrier
material B (AlxGa1−xAsySb1−y) from the value x0 where
the Rashba SOI exactly vanishes in the B/W/B single QW:
it is approximately x0 ≈ 0.28511. In Fig. 4 we present the

(a) (b)

FIG. 3. Electron sheet density Ns dependence of the spin-
relaxation rate 1/τs at T = 0 K as a function of the perpendicular
electric field Ez . Barrier material A is In0.52Al0.48As. Plotted in
(a) linear scale and (b) semilogarithmic scale.

FIG. 4. Decreased spin-relaxation rate 1/τs (plotted in
semilogarithmic scale) as the Al fraction x in barrier mate-
rial B (AlxGa1−xAsySb1−y ) approaches the exact value, x0(≈
0.285 11), which gives the vanishing Rashba SOI in the B/W/B
single QW. Barrier material A is In0.52Al0.48As.

spin-relaxation rate at x = 0.285 11, 0.29, and 0.3 when
Ns = 4 × 1011 cm−2 and T = 0 K.

In Fig. 5 we present the temperature dependence of the
spin-relaxation rate at Ns = 4 × 1011 cm−2. As the tem-
perature is elevated to room temperature, the on:off ratio of
the spin-relaxation rate decreases to 101 owing to contribu-
tions of excited subbands to the “off” spin-relaxation rate.
Although in Fig. 5 we have presented the spin-relaxation
rate at x = 0.3, it shows little difference between x = 0.3
and x = x0 at T ≥ 100 K.

C. A triple-quantum-well structure with
A = AlAsy Sb1−y

Next we adopt AlAsySb1−y as a barrier material A. Since
AlAsySb1−y gives a larger conduction-band offset at the
W/A interface compared to In0.52Al0.48As, the B/W/A QW
in this case can support a higher-energy bound state at a

(a) (b)

FIG. 5. Temperature dependence of the spin-relaxation rate
1/τs as a function of the perpendicular electric field Ez . Temper-
ature values are T[K] = 0, 50, 100, and 300. Barrier material A is
In0.52Al0.48As. Plotted in (a) linear scale and (b) semilogarithmic
scale.
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FIG. 6. A triple-QW structure and the potential due to
the conduction-band offset Vc

bo(z). Barrier materials A =
AlAsySb1−y , B = AlxGa1−xAsySb1−y (x = 0.3), and a well
material W = In0.53Ga0.47As.

narrower well width, which allows the design of a triple-
QW structure with reduced electron population in excited
subbands in the low Ez region. In Fig. 6 we present such a
triple-QW structure.

In Fig. 7 we present the temperature dependence of the
spin-relaxation rate of the triple-QW structure shown in
Fig. 6 at Ns = 4 × 1011 cm−2. Even at room temperature,
the on:off ratio of the spin-relaxation rate attains a high
value of 106 owing to reduced contributions of excited
subbands to the “off” spin-relaxation rate.

D. Comparison with single quantum wells

The room-temperature on:off ratio of the spin-relaxation
rate, 106, attained in the triple-QW structure (see Fig. 6)
is orders of magnitude larger than those in single QWs,
as shown in Fig. 8, in which we present the compari-
son of the room-temperature spin-relaxation rate at Ns =
4 × 1011 cm−2 in the triple QW with those in a symmetric
QW, A/W/A, and an asymmetric QW, A/W/B: materials A,

(a) (b)

FIG. 7. Temperature dependence of the spin-relaxation rate
1/τs as a function of the perpendicular electric field Ez . Temper-
ature values are T[K] = 0, 50, 100, and 300. Barrier material A is
AlAsySb1−y . Plotted in (a) linear scale and (b) semilogarithmic
scale.

(a) (b)

FIG. 8. Room-temperature spin-relaxation rate 1/τs as a func-
tion of the perpendicular electric field Ez (plotted in semiloga-
rithmic scale) in the triple QW with AlAsySb1−y in outer barriers
(Fig. 6) is compared to that in single QWs, (a) A/W/A and
(b) A/W/B, where materials A, B, and W are the same as those
in the triple QW. The well width L of A/W/A is 4.5 nm (the
on:off ratio of 1/τs shows little difference between L = 4.5 nm
and L = 50 nm). The spin-relaxation rate 1/τs of A/W/B is pre-
sented for three values of the well width, L = 30, 40, and 50
nm.

B, and W are the same as those in the triple QW (see Fig. 6).
We find that the “off” spin-relaxation rate is remarkably
reduced in the triple QW compared to A/W/A, as expected
and explained in the Introduction. In addition, the “on”
spin-relaxation rate is significantly enhanced in the triple
QW compared to both A/W/A and A/W/B owing to the
large Rashba SOI in a narrow asymmetric QW (left and
right wells in the triple QW).

V. CONCLUSIONS

We propose the switching of the spin-relaxation rate
by the gate-voltage induced electron transfer between one
QW with negligible Rashba SOI and another with large
Rashba SOI. We design a triple-QW structure so as to
achieve a high on:off ratio of the spin-relaxation rate in the
present switching action and realize a room-temperature
on:off ratio of 106 by reducing the electron population in
excited subbands. This value of on:off ratio is orders of
magnitude larger than those in single QWs. In calculating
the spin-relaxation rate we extend the Dyakonov-Perel the-
ory [15–17] in order to take into account the contribution
from excited subbands.

Electron transfer between two QWs and the resulting
change in electronic properties have been studied for a
long time [33–37]. In this paper we employ the interwell
electron transfer for switching the Rashba SOI and the
spin-relaxation rate. Here we propose two more examples
in spintronics of the switching by the interwell electron
transfer.

(1) Switching of the direction and the magnitude of
the current-induced spin polarization (called the Edelstein

064075-8
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effect) [38,39] by the electron transfer between two QWs
with different Rashba coefficients.

(2) Switching of the precession direction and frequency
of an electron spin in a magnetic field by the electron
transfer between two QWs with different g factors. A pos-
itive (negative) g factor in a QW can be realized by using
direct-band-gap semiconductors InP [40–42] ((In,Ga)As
[42–45]) as a well material.

One of important performance characteristics of the inter-
well electron transfer is the time required for an electron to
transfer between wells. We estimate the frequency of the
interwell transfer, ωtr, from the energy separation, Eb−ab,
between the bonding and antibonding states formed of
bound states in neighboring wells by the formula �ωtr =
Eb−ab. The estimated value of ωtr in the triple-QW structure
in Fig. 6 is of the order of 0.1 GHz.

In this paper we consider only the impurity scattering
in evaluating the momentum relaxation for the Dyakonov-
Perel spin relaxation. It is well known that at room
temperature the phonon scattering makes a significant
contribution to the momentum relaxation. In fact, a previ-
ous theoretical study [46] calculated the Dyakonov-Perel
spin-relaxation rate with the phonon scattering taken into
account as a source of the momentum relaxation. However,
we expect that the present estimate for the on:off ratio of
the spin-relaxation rate will be little affected by consider-
ing the momentum relaxation due to the phonon scattering
in addition to that due to the impurity scattering since it
is mainly determined by orders of magnitude differences
in the Rashba SOI strength and in the electron population
between the central and left (and right) QWs.
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[1] I. Žutić, J. Fabian, and S. D. Sarma, Spintronics: Funda-
mentals and applications, Rev. Mod. Phys. 76, 323 (2004).

[2] D. D. Awschalom and M. E. Flatté, Challenges for semi-
conductor spintronics, Nat. Phys. 3, 153 (2007).

[3] S. Datta and B. Das, Electronic analog of the electro-optic
modulator, Appl. Phys. Lett. 56, 665 (1990).

[4] E. I. Rashba, Properties of semiconductors with an
extremum loop. 1. Cyclotron and combinational resonance
in a magnetic field perpendicular to the plane of the loop,
Sov. Phys. Solid State 2, 1109 (1960).

[5] F. J. Ohkawa and Y. Uemura, Quantized surface states of
a narrow-gap semiconductor, J. Phys. Soc. Jpn. 37, 1325
(1974).

[6] Y. A. Bychkov and E. I. Rashba, Oscillatory effects and
the magnetic susceptibility of carriers in inversion layers,
J. Phys. C 17, 6039 (1984).

[7] Y. A. Bychkov and E. I. Rashba, Properties of a 2D elec-
tron gas with lifted spectral degeneracy, JETP Lett. 39, 78
(1984).

[8] J. Schliemann, J. C. Egues, and D. Loss, Nonballistic
Spin-Field-Effect Transistor, Phys. Rev. Lett. 90, 146801
(2003).

[9] X. Cartoixà, D. Z.-Y. Ting, and Y.-C. Chang, A reso-
nant spin lifetime transistor, Appl. Phys. Lett. 83, 1462
(2003).

[10] K. C. Hall, W. H. Lau, K. Gündoğdu, M. E. Flatté, and
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