<table>
<thead>
<tr>
<th>Title</th>
<th>Detection of Increased Vascular Signal in Arthritis-Prone Rats Without Joint Swelling Using Superb Microvascular Imaging Ultrasonography</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Horie, Tatsunori; Nishida, Mutsumi; Tanimura, Shun; Kamishima, Tamotsu; Tamai, Erika; Morimura, Yutaka; Nishibata, Yuka; Masuda, Sakiko; Nakazawa, Daigo; Tomaru, Utano; Atsumi, Tatsuya; Ishizu, Akihiro</td>
</tr>
<tr>
<td>Citation</td>
<td>Ultrasound in medicine & biology, 45(8), 2086-2093</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2019-08</td>
</tr>
<tr>
<td>Doc URL</td>
<td>http://hdl.handle.net/2115/79159</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license</td>
</tr>
<tr>
<td>Rights(URL)</td>
<td>https://creativecommons.org/licenses/by-nc-nd/4.0/</td>
</tr>
<tr>
<td>Type</td>
<td>article (author version)</td>
</tr>
<tr>
<td>File Information</td>
<td>Ishizu2019.pdf</td>
</tr>
</tbody>
</table>
Detection of increased vascular signal in arthritis-prone rats without joint swelling using superb microvascular imaging ultrasonography

Tatsunori Horiea,b), Mutsumi Nishidaa,c), Shun Tanimurad), Tamotsu Kamishimae), Erika Tama\textsuperscript{e),1), Yutaka Morimura\textsuperscript{f), Yuka Nishibata\textsuperscript{f), Sakiko Masuda\textsuperscript{f), Daigo Nakazawad), Utano Tomarub), Tatsuya Atsumid), Akihiro Ishizuf)

a) Diagnostic Center for Sonography, Hokkaido University Hospital, N-14,W-5, Kita-ku, Sapporo 060-8648, Japan

b) Department of Radiological Technology, Hokkaido University Hospital, N-14,W-5, Kita-ku, Sapporo 060-8648, Japan

c) Division of Laboratory and Transfusion Medicine, Hokkaido University Hospital, N-14,W-5, Kita-ku, Sapporo 060-8648, Japan

d) Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N-15, W-7, Kita-ku, Sapporo, 060-8638, Japan
e) Department of Biomedical Science and Engineering, Faculty of Health Sciences, Hokkaido University, N-12, W-5, Kita-ku, Sapporo 060-0812, Japan

f) Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, N-12, W-5, Kita-ku, Sapporo 060-0812, Japan

g) Department of Pathology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N-15, W-7, Kita-ku, Sapporo, 060-8638, Japan

1. Current affiliation: Department of Radiology, Hiroshima Prefectural Hospital, 1-5-54, Ujinakanda, Minami-ku, Hiroshima 734-8530, Japan

Corresponding author: Akihiro Ishizu, M.D., Ph. D.

Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, N-12, W-5, Kita-ku, Sapporo 060-0812, Japan

Tel: +81-11-706-3385

Fax: +81-11-706-4916

E-mail: aishizu@med.hokudai.ac.jp
Abstract

This study aimed to determine whether ultrasonography (US) can detect increased vascular signal in the synovial tissue prior to overt synovitis in rheumatoid arthritis (RA). Env-pX rats that spontaneously develop RA-like synovitis were used. Ankle joints of 15 pre-morbid env-pX rats were observed with power Doppler and superb microvascular imaging (SMI) using an ultrahigh-frequency (8-24 MHz) probe. Signal values were counted as the number of pixels. The total number of vessels and vessel area in the synovial tissue were histologically evaluated. Dilated vessels were determined from the mean value of synovial vessels in three wild-type rats. In all env-pX rats, apparent synovial proliferation was not observed. However, vasodilation was evident. Only SMI values were significantly correlated with the number of dilated vessels ($r=0.585, p=0.022$) but not with the total number of vessels. US with SMI using ultrahigh-frequency probe can detect increased vascular signal in the synovial tissue of arthritis-prone rats.
Keywords: Animal model; Power Doppler; Rheumatoid arthritis; Superb microvascular imaging; Synovitis; Ultrasound
Introduction

Rheumatoid arthritis (RA) is a systemic autoimmune disease that causes synovitis and subsequent bone destruction. The joints affected by RA are histologically characterised by massive proliferation of synovial tissues with pronounced inflammatory cell infiltration that destroys cartilages and bones. Joint destruction by progression of synovitis reduces the quality of life in RA patients (Scott et al. 1987; Pincus et al. 1984). However, recent studies have demonstrated that early intervention in synovitis can induce persistent disease remission (Gibofsky et al. 2017). Therefore, early detection of synovitis, as well as predicting synovitis, are very important in an RA clinic.

Although the findings that precede synovitis have not been determined yet, diverse mediators of RA, such as neutrophils, monocytes, and lymphocytes, are known to be recruited into synovial tissues by blood flow (Patel et al. 2001). Gullick et al. reported the linkage of increase blood flow signals in power Doppler (PD) ultrasonography (US) to the presence of Th17 cells, the critical initiators of synovitis, in RA joints (Gullick et al. 2010). Thus, we speculated that increased
vascular signal in the synovial tissue might be detected prior to overt synovitis in RA.

US is a well-established tool for diagnosis of RA that can evaluate the activity of synovitis (Aletaha et al. 2010; Backhaus et al. 1999; Nakagomi et al. 2013; Naredo et al. 2005). The utility of US in detecting synovitis is recognised superior to visual palpation and conventional radiography (Diaz-Torne et al. 2017; Murayama et al. 2013). Grey-scale US is used to evaluate synovial thickening (Backhaus et al. 2001; Grassi et al. 1993, 2000; Iagnocco et al. 2001; Kane et al. 2003; Karim et al. 2004; Koski et al. 1990; Manger and Kalden. 1995; Naredo et al. 2003; Schmidt et al. 2004), and PD is employed to detect blood flow in affected joints. Those findings contribute to estimate disease severity (Newman et al. 1994, 1996). PD values have been shown to represent the blood vessel area in synovial tissues (Saito et al. 2016) and well reflect response to treatment (Fukae et al. 2014; Hau et al. 2002, 1999; Ribbens et al. 2003), prognosis (Ellegaard et al 2011; Koch. 1998; Salaffi et al. 2010; Scirè et al. 2009), and bone destruction (Brown et al. 2008; Fukae et al. 2014; Ikeda et al.
2013; Peluso et al. 2011). On the contrary, the usefulness of US for detection of the preceding events of synovitis remains unclear.

Basic research using small animals is necessary for developing new drugs and for evaluating their therapeutic efficacy in RA. However, there has been no method to diagnose and estimate synovitis in small animals other than histological evaluation made after sacrifice. Although some studies attempted to evaluate arthritis in small animals using an experimental ultrasonic equipment (Clavel et al. 2008; Liao et al. 2016), the sensitivity to detect microvascular signalling does not appear to be satisfactory. Recently, US device with ultrahigh-frequency probes equipped with superb microvascular imaging (SMI) has been released for clinical use. SMI can eliminate motion artefacts through special image processing and sensitively depict blood flow with low velocity. Although SMI can detect microvasculature more sensitively than conventional PD in humans (Lim et al. 2018; Orlandi et al. 2017; Yokota et al. 2018; Yu et al. 2018), no trial has obtained findings prior to established synovitis in small animals using SMI and compared them with histology. In this study, we have verified whether
US with SMI using an ultrahigh-frequency (8-24 MHz) probe can detect increased vascular signal in the synovial tissue prior to overt synovitis in arthritis-prone rats.
Materials and Methods

Rats

Fifteen env-pX rats without macroscopic joint swelling (median age, 12 weeks old; range, 10 to 44 weeks old) and age-matched three wild-type rats (inbred WKAH rats) were enrolled. The env-pX rats are transgenic rats carrying the env-pX gene of human T-cell leukaemia virus type I and spontaneously develop inflammatory arthritis mimicking RA with production of rheumatoid factor (RF) (Yamazaki et al. 1997). The prevalence of arthritis in env-pX rats at 6 months of age is about 80%. These rats are maintained in the room where the temperature is controlled at about 22 °C at the Institute for Animal Experimentation, Hokkaido University Graduate School of Medicine. Experiments using animals were performed in accordance with the Guidelines for the Care and Use of Laboratory Animals in Hokkaido University (permission No. 10-0029, 15-0034).
Env-pX rats were sedated using inhalation anesthesia. On the left lateral decubitus position, the right ankle joint was scanned with a longitudinal view by US (Figure 1). To avoid interfering observation, the ankle joint was shaved before US. All env-pX rats were examined either by two sonographers with 8 or 32 years of experience in clinical US.

The ultrasonic equipment used was Canon Aplio™ i800 (Canon Medical Systems, Otawara, Tochigi, Japan) equipped with PLI-2004X (8-24 MHz). All images were acquired at a fixed depth of 1.25 cm, and they were not magnified during the observation. The frame rate and the velocity range of PD and SMI were 11 frame/s, 1.6 cm/s, and 26 frame/s, 0.5 cm/s, respectively. The frequency used for both PD and SMI were 12 MHz. The gain was set to the maximum value of the discrepancy in which the noise disappeared. PD and SMI values were determined as the number of pixels at a width of about 5 mm between the tibia and the metatarsal bone. True blood flow signal was distinguished from noise as a pulsatile flow during the careful observation. Because the delineation of the
boundary of the synovium was thought to be difficult, we defined that blood flow
signals detected in the articular space as fine signals were blood flow signals in
the synovium. Continuing signals from the proximal to the distal part right below
the skin that run through horizontally were excluded as extra-articular normal
blood flow signals. First, the ankle joint was visualised by identifying the tibia,
tarsal bones, and metatarsal bone in grey-scale image, and sweep scan was then
performed covering the entire ankle joint with PD and SMI. When the region with
the most prominent blood flow signalling was detected, findings were captured at
still images.

Quantitative SMI and PD values (summation of the number of coloured
pixels in the joint) of US images were determined using ImageJ 1.50i
(http://allpcworld.com/download-imagej-1-50i-free/) in manually defined region of
interest.

Histological assessment
All env-pX rats were sacrificed immediately after completion of US scanning. Haematoxylin and eosin (HE) staining was performed for the longitudinal sections of the ankle joint. Total vessels in the synovial tissue were counted in the HE specimens. Dilated vessels were defined as vessels with area larger than 20,090 µm², which represented the mean plus standard deviation (SD) value of synovial vessels in three age-matched wild-type rats.

Statistical analysis

Wilcoxon-signed rank test and Mann-Whitney U-test were performed, and p-value < 0.05 was considered significant. Correlation between two continuous variables was assessed using Pearson’s correlation coefficients. For statistical evaluation, SPSS version 22.0 (IBM, New York, NY, USA) and GraphPad Prism Software (ver.7.02, GraphPad Software, San Diego, CA, USA) were used.
Results

Detection of vascular signal in the synovial tissue of env-pX rats without established synovitis by US

In all env-pX rats examined (n=15), apparent synovial thickening was not detected with grey-scale US, and there was no histologically proven synovitis, such as inflammatory cell infiltration and bone erosion. PD and SMI values and total number of vessels and dilated vessels in the 15 env-pX rats are shown in Table 1. Blood flow signal was detected in 8 and 12 env-pX rats with PD and SMI, respectively. Representative histological and US findings are shown in Figure 2 (rat No. 2) and Figure 3 (rat No. 11).

Vasodilation in the synovial tissue of env-pX rats without established synovitis

Although there was no significant difference in the synovial vascular areas between env-pX rats and age-matched wild-type rats \((p=0.601)\), many vessels with large area were found in the env-pX rats (Figure 4A). Therefore, we
analyzed dilated and non-dilated vessels. Although the vascular areas of non-
dilated vessels in the env-pX synovial tissues (8,197 ± 4,728 μm²) were
comparable with those in the wild-type synovial tissues (9,665 ± 4,766 μm²)
\((p=0.059, \text{Figure 4B}) \), the vascular areas of dilated vessels in the env-pX synovial
tissues (45,610 ± 25,203 μm²) were significantly larger than those in the wild-type
synovial tissues (27,481 ± 8,842) \((p=0.013, \text{Figure 4C}) \). These findings suggested
that vasodilation occurred in the env-pX synovial tissues prior to the
establishment of synovitis.

Correlation of SMI values with the numbers of dilated vessels in the
synovial tissue of env-pX rats without established synovitis

SMI values were significantly larger than PD values \((p=0.002) \) and
correlated with the number of dilated vessels \((r=0.585, p=0.022) \) but not those of
the total vessels \((p=0.762) \) in the synovial tissue (Figure 5). The number of dilated
vessels was not correlated with PD values \((p=0.130) \).
Our results demonstrate the detection of presumably increased vascular signal in the synovial tissue prior to the establishment of synovitis in arthritis-prone rats by US with SMI using an ultrahigh-frequency probe. SMI appears to be superior to PD to detect increase in synovial vascular signal. Conventional PD uses wall filter to exclude motion artifacts. However, SMI hires a new algorithm adapted to remove clutter noise by analyzing tissue motion. Microvascular blood flow with low velocity has been thought to be hardly detected by conventional PD, because low velocity in small vessels is usually buried in noise. However, SMI can successfully detect this blood flow without blooming from the vascular cavity. The blood flow velocity in the synovium has never been clarified. The lowest blood flow velocity that could be measured by PD in a basic experimental model depends on the diameter of the vessels and US machines (Cate et al. 2013). It ranged from 0.01 to 0.4 cm/s in vessels with a diameter of 150 to 2000 μm. However, the measurement of the blood flow velocity by SMI neither in a phantom model nor in the synovium has been reported. Although SMI could detect quite a
low-velocity blood flow, a detailed limitation of the lowest velocity detected by SMI has remained unclear.

There are few reports on human subjects demonstrating the superiority of SMI over PD in terms of detection of vascularity with improved resolution and sensitivity, which may contribute to earlier detection of active inflammation and to have significant impact on treatment paradigms (Yokota et al. 2018; Lim et al. 2018; Orlandi et al. 2017; Yu et al. 2018). To the best of our knowledge, this is the first small animal study to prove similar findings with pathological correlations. The implication of this work is possible application of this method to future drug design for arthritides by enhancing drug efficacy.

Interestingly, SMI values were significantly correlated with the number of dilated vessels but not the total number of vessels in the synovial tissue. This suggests that dilated vessels but not all vessels contribute to the substantial blood flow. Similar relationship between PD values and synovial vessels in long-standing RA patients has been reported (Schmidt et al. 2000; Saito et al. 2016). Koski hypothesized that this is attributed to the stage of congestion (hyperemia).
in the tissue rather than to the increased number of the vessel (Koshi 2012). Unfortunately, the regulation of synovial perfusion, namely, the exact mechanism on how resistance and/or compliance of the vessels are altered at the initial stage of synovitis, is largely unknown. However, when we consider that the SMI signal is correlated to the perfusion, it may be a cause of synovitis.

There were two possible reasons for the positive blood flow signals in rat numbers 6 and 12 by SMI, the joints with zero dilated vessels in pathological specimens. First of all, pathological specimens did not necessarily coincide with US planes. US scan was done comprehensively, and US images have a certain thickness. On the contrary, the pathological specimen was made by a fixed plane as the median of the ankle joints. These facts suggest that US has higher sensitivity to detect blood flow signals than one slice of a pathological specimen. The second possibility was that the signal detected by SMI might capture normal vessels that were not in the joints.

A limitation of this study is that cross-sectional images obtained by US do not necessarily coincide with histological specimens. However, we observed
relatively small joints, and US images had certain thickness, the 24 MHz matrix
array probe that we used had presumably less than 5 mm beam width in one US
image plane (no disclosure of specifications of US beam forming) so that US
images obtained by our study nearly covered the ankle joints of rats.

Another limitation is a lack of follow-up study. To compare the US
findings with histology, we had to sacrifice rats immediately after US scanning.
Prospective studies are needed to confirm the association between initial
increase in synovial blood flow detected by US and future development of
synovitis in rats. In our pilot study using env-pX rats, blood flow was initially
detected in the synovium, and synovial thickening followed 2 weeks later
(unpublished data). We believe that increase in synovial blood flow induced by
vasodilation triggers the initiation of synovitis.

In addition, the usage of a single animal model is also a critical limitation
in this study. Although env-pX rats are suitable models of RA (Yamazaki et al.
1997), reproducibility of results should be determined using other RA models.
Conclusion

Despite the limitations, our study demonstrated that SMI can detect increase in synovial blood flow prior to overt synovitis and gave us a motivation to perform this experiment on human joints. Prediction and early diagnosis of synovitis are inevitable to achieve complete and persistent remission of RA.

Acknowledgements

We are grateful to Mr. Hiraku Shida (Tonan Hospital, Sapporo, Japan) for technical assistance.
References

Cate TD, Luime JJ, van der Ven M, Hazes JMW, Kooiman K, de Jong N, Bosch GJ. Very different performance of power Doppler modalities of several ultrasound

Ellegaard K, Christensen R, Torp-Pedersen S, Terslev L, Holm CC, Kønig MJ, Jensen PS, Danneskiold-Samsøe B, Bliddal H. Ultrasound Doppler measurements predict success of treatment with anti-TNF-α drug in

Hau M, Kneitz C, Tony HP, Keberle M, Jahns R, Jenett M. High resolution ultrasound detects a decrease in pannus vascularisation of small finger joints in

collagen vascular and autoimmune diseases in transgenic rats carrying the env-

Figure Legends

Fig. 1. Rat ankle joint

A: Rat lower leg.

B: Loupe view of the haematoxylin and eosin staining section.

C: X-ray image showing anatomical orientation of the joint.

D: Grey-scale ultrasound scan showing the ankle joint with the tibia, tarsal bones, and metatarsal bone.

T: Tibia, M: Metatarsal bone.

Fig. 2. Representative findings (rat No. 2)

The tibia, tarsal bones, and metatarsal bone in the ankle joint are seen in the sagittal plane of the haematoxylin and eosin specimen (×20) (A), grey-scale image (B), PD image (C), and SMI (D). A: Only one dilated vessel is seen in the specimen (yellow arrow head) B: Grey-scale image shows no thickening of the synovium. C: PD image shows no blood flow. D: SMI shows no blood flow.

PD, power Doppler; SMI, superb microvascular imaging
Fig. 3. Representative findings (rat No. 11)

The tibia, tarsal bones, and metatarsal bone in the ankle joint are seen in sagittal view of the haematoxylin and eosin specimen (×20) (A), grey-scale image (B), PD image (C), and SMI (D). A: Three dilated vessels are seen in the specimen (yellow arrow heads). B: Grey-scale image shows no thickening of the synovium. C: PD image shows blood flow (arrows). D: SMI shows blood flow (arrows). SMI depicted greater pixel counts (4,570) than PD (2,865).

PD, power Doppler; SMI, superb microvascular imaging

Fig. 4. Comparison of vessel areas in the synovial tissues between wild-type and env-pX rats.

(A) Comparison of areas of all vessels in the synovial tissues between wild-type rats (55 vessels in 3 rats) and env-pX rats (153 vessels in 15 rats). (B) Comparison of areas of non-dilated vessels in the synovial tissues between wild-type rats (48 vessels in 3 rats) and env-pX rats (123 vessels in 15 rats). (C)
Comparison of areas of dilated vessels in the synovial tissues between wild-type rats (7 vessels in 3 rats) and env-pX rats (30 vessels in 15 rats).

Fig. 5. Correlation between PD and SMI values and numbers of total and dilated vessels

SMI values were significantly correlated with the numbers of dilated vessels ($r=0.585$, $p=0.022$) but not with the total number of vessels ($p=0.762$) in the synovial tissue. The numbers of dilated vessels were not correlated with PD values ($p=0.130$).

PD, power Doppler; SMI, superb microvascular imaging
Table 1. PD and SMI values and numbers of total and dilated vessels in env-pX rats

<table>
<thead>
<tr>
<th>Rat number</th>
<th>PD values [pixels]</th>
<th>SMI values [pixels]</th>
<th>Number of total vessels</th>
<th>Number of dilated vessels(^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1,504</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1,780</td>
<td>11</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>222</td>
<td>26</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>518</td>
<td>2,094</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>2,384</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>756</td>
<td>3,637</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>807</td>
<td>1,793</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td>2,865</td>
<td>4,570</td>
<td>14</td>
<td>3</td>
</tr>
<tr>
<td>12</td>
<td>994</td>
<td>1,291</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>2,507</td>
<td>4,368</td>
<td>12</td>
<td>4</td>
</tr>
<tr>
<td>14</td>
<td>813</td>
<td>4,054</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>15</td>
<td>483</td>
<td>954</td>
<td>14</td>
<td>3</td>
</tr>
</tbody>
</table>

\(^a\) Dilated vessels were defined as vessels with area larger than 20,090 µm\(^2\), which represented the mean + SD value of wild-type synovial vessels.

PD, power Doppler; SMI, superb microvascular imaging
Figure 2
Figure 4

Areas of all vessels (μm²)

- A: Wild-type vs. env-pX: p=0.602
- B: Wild-type vs. env-pX: p=0.059
- C: Wild-type vs. env-pX: *p=0.011

Areas of non-dilated vessels (μm²)

Areas of dilated vessels (μm²)
Figure 5

PD/Total vessels

- $r = 0.156$
- $p = 0.578$

SMI/Total vessels

- $r = 0.086$
- $p = 0.762$

PD/Dilated vessels

- $r = 0.409$
- $p = 0.130$

SMI/Dilated vessels

- $r = 0.585$
- $*p = 0.022$