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Abstract

We introduce a concept of singular Bogoliubov transformation on the abstract
boson Fock space and construct a representation of canonical commutation relations
(CCRs) which is inequivalent to any direct sum of the Fock representation. Sufficient
conditions for the representation to be irreducible are formulated. Moreover, an
example of such representations of CCRs is given.
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1 Introduction

In this paper we introduce a concept of singular Bogoliubov transformation on the ab-
stract boson Fock space over a Hilbert space H . A singular Bogoliubov transformation is
induced by a pair (S, T ) of unbounded linear operators on H obeying suitable constraints
on their domain of definition and some consistency conditions (see (4.1) and (4.2)). As
in the case of the standard bosonic Bogoliubov transformations (e.g., [11, 12, 13]), a
singular Bogoliubov transformation also yields a representation πB(D) of the canonical
commutation relations (CCRs) over a dense subspace D of H . We are interested in
conditions under which the representation πB(D) is inequivalent to any direct sum rep-
resentation of the Fock representation πF(D) of the CCRs over D . We formulate also
sufficient conditions for πB(D) to be irreducible.

One of the motivations for this work comes from representation theoretic considera-
tions on the Casimir effect [3, 7, 14]. In the paper [5], there is a suggestion (a heuristic
argument) that a representation of CCRs inequivalent to the Fock one may be associated
with the Casimir effect and one may use this representation to explain the Casimir effect
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without invoking zero-point energy. But, in this paper, we do not discuss the Casimir
effect.

The outline of the present paper is as follows. In Section 2, we recall the definition of
representation of the CCRs over a complex inner product space and state a proposition on
irreducibility of a representation of CCRs. In Section 3, we review the Fock representation
of CCRs and prove some related facts. In Section 4, we introduce a singular Bogoliubov
transformation. As mentioned above, it yields a representation πB(D) of the CCRs over
D . We prove that πB(D) is inequivalent to any direct sum representation of the Fock
representation πF(D) (Theorem 4.5). We formulate also sufficient conditions for πB(D)
to be irreducible (Theorems 4.7 and 4.8). In Section 5, we show that, for each pair
(K,L) of injective symmetric operators with suitable properties, there may exist a singular
Bogoliubov transformation and a representation πK,L(D) of the CCRs over D , which is
inequivalent to any direct sum representation of πF(D) (Theorem 5.3). We show that,
under an additional condition, πK,L(D) is irreducible (Theorem 5.4). In the last section,
we discuss an example of πK,L(D) in the case H = L2(Λ) with Λ being a finite box in
the d-dimensional Euclidean space Rd (d ≥ 2). This example may be related to a Casimir
effect which may be caused by a quantum scalar field on Λ. But, in the present paper,
we do not discuss this aspect.

2 Preliminary

For a linear operator A on a Hilbert space X , we denote by D(A) the domain of A. If A
is densely defined, then A has its adjoint; we denote it by A∗.

Let F be a complex Hilbert space and D be a dense subspace of F . Let V be a
complex inner product space with inner product 〈 , 〉V (linear in the second variable and
anti-linear in the first) and norm ‖ ·‖V (we sometimes omit the subscript V in 〈 , 〉V and
‖ · ‖V if there is no danger of confusion). Suppose that, for each f ∈ V , a densely defined
closed linear operator C(f) on F is given. Then the triple (F ,D , {C(f), C(f)∗|f ∈ V })
is called a representation of the CCRs over V if the following (i)–(iii) hold:

(i) (domain invariance) For all f ∈ V , D ⊂ D(C(f)) ∩ D(C(f)∗), C(f)D ⊂ D ,
C(f)∗D ⊂ D .

(ii) (anti-linearity in test vectors) For all f, g ∈ V and α, β ∈ C (the set of complex
numbers), C(αf + βg) = α∗C(f) + β∗C(g) on D , where, for z ∈ C, z∗ denotes the
complex conjugate of z.

(iii) (CCRs over V ) For all f, g ∈ V ,

[C(f), C(g)∗] = 〈f, g〉V , [C(f), C(g)] = 0 on D ,

where, for linear operators A and B on a Hilbert space, [A,B] := AB − BA.

Two representations (F , D , {C(f), C(f)∗|f ∈ V }) and (F ′,D ′, {C ′(f), C ′(f)∗|f ∈
V }) of the CCRs over V are said to be equivalent if there exists a unitary operator
U : F → F ′ such that, for all f ∈ V , UC(f)U−1 = C ′(f).
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For two linear operators A and B on a Hilbert space X , the symbol A ⊂ B means
that B is an extension of A, i.e., D(A) ⊂ D(B) and AΨ = BΨ, ∀Ψ ∈ D(A).

As usual, we denote by B(X ) the Banach space of everywhere defined bounded linear
operators on X .

For a set A of linear operators on a Hilbert space X , the set

A′ := {T ∈ B(X )|TA ⊂ AT,∀A ∈ A} ⊂ B(X )

is called the strong commutant of A.
The set A is said to be reducible if there is a non-trivial closed subspace M of X

(M 6= {0}, X ) such that every A ∈ A is reduced by M (i.e., PM A ⊂ APM , where PM

is the orthogonal projection onto M ). The set A is said to be irreducible if it is not
reducible.

A representation (F ,D , {C(f), C(f)∗|f ∈ V }) of the CCRs over V is said to be re-
ducible (resp. irreducible) if the set {C(f), C(f)∗|f ∈ V } is reducible (resp. irreducible).

The following fact is well known (see, e.g., [2, Proposition 5.9]):

Lemma 2.1 Let A be a set of linear operators on X .

(i) If A′ = CI := {αI|α ∈ C} (I denotes identity), then A is irreducible.

(ii) If A is an irreducible set of densely defined linear operators on X and ∗-invariant
(i.e., A ∈ A =⇒ A∗ ∈ A), then A′ = CI.

3 Fock Representation of CCRs and Related Facts

Let H be a complex Hilbert space and, for each n ∈ N (the set of natural numbers), ⊗n
s H

be the n-fold symmetric tensor product Hilbert space of H with convention ⊗0
sH := C.

Then the boson Fock space over H is defined to be the direct sum Hilbert space of
{⊗n

s H }∞n=0:

Fb(H ) : = ⊕∞
n=0 ⊗n

s H

=

{
Ψ = {Ψ(n)}∞n=0|Ψ(n) ∈ ⊗n

s H , n ≥ 0,
∞∑

n=0

‖Ψ(n)‖2 < ∞

}
.

The subspace

F0(H ) := {Ψ = {Ψ(n)}∞n=0|Ψ(n) ∈ ⊗n
s H , n ≥ 0 and there exists an n0 ∈ N such that

for all n ≥ n0, Ψ(n) = 0}

is dense in Fb(H ). This subspace is called the finite particle subspace of Fb(H ).
We denote by A(f) the annihilation operator with test vector f ∈ H on Fb(H ),

which is the unique densely defined closed linear operator on Fb(H ) such that its adjoint
A(f)∗, called the creation operator with test vector f , takes the following form: for all
Ψ ∈ D(A(f)∗), (A(f)∗Ψ)(0) = 0 and

(A(f)∗Ψ)(n) =
√

nSn(f ⊗ Ψ(n−1)), n ≥ 1,
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where Sn is the symmetrization operator on the n-fold tensor product ⊗nH of H . For
all f ∈ H , F0(H ) ⊂ D(A(f)) ∩D(A(f)∗) and A(f) and A(f)∗ leave F0(H ) invariant.
Moreover, {A(f), A(f)∗|f ∈ H } satisfies the CCRs over H :

[A(f), A(g)∗] = 〈f, g〉H , [A(f), A(g)] = 0, [A(f)∗, A(g)∗] = 0 (f, g ∈ H ) (3.1)

on F0(H ).
The following fact is well known (see, e.g., [2, Theorem 5.14]):

Theorem 3.1 Let D be a dense subspace of H . Then {A(f), A(f)∗|f ∈ D}′ = CI and

πF(D) := (Fb(H ), F0(H ), {A(f), A(f)∗|f ∈ D}) (3.2)

is an irreducible representation of the CCRs over D .

The representation πF(D) is called the Fock representation of the CCRs over D .
An anti-linear mapping J : H → H is called a conjugation on H if J2 = I and

‖Jf‖ = ‖f‖, f ∈ H .
The next proposition plays a basic role in the theory of representations of CCRs in

boson Fock spaces:

Proposition 3.2 Assume that H is separable. Let S and T be (not necessarily bounded)
linear operators on H with the following property: D(S)∩D(T ) includes a dense subspace
D of H such that TD is dense in H and TD := T ¹ D , the restriction of T to D , is
injective. Let J be a conjugation on H and suppose that there exists a non-zero vector
Ω ∈ Fb(H ) such that, for all Ψ ∈ F0(H ) and f ∈ D ,

〈A(Tf)∗Ψ, Ω〉 = −〈A(JSf)Ψ, Ω〉 . (3.3)

Then ST−1
D is a densely defined closable operator and its closure ST−1

D is Hilbert-Schmidt.

Proof. Let DT := TD . Then, by the present assumption, DT is dense in H .
Hence T−1

D is densely defined with D(T−1
D ) = DT . By (3.3), we have 〈A(g)∗Ψ, Ω〉 =

−
〈
A(JST−1

D g)Ψ, Ω
〉

for all g ∈ DT . Hence it follows from [1, Proposition 3.3]1 that ST−1
D

is bounded (hence closable) and ST−1
D is Hilbert-Schmidt.

Lemma 3.3 Let X and Y be (not necessarily bounded) linear operators on H such that
there exists a dense subspace D ⊂ D(X) ∩ D(Y ) and the following equation holds:

〈Xf,Xg〉 − 〈Y f, Y g〉 = 〈f, g〉 , f, g ∈ D . (3.4)

Let XD := X ¹ D . Then XD is injective and X−1
D is bounded with ‖X−1

D ‖ ≤ 1.

1In the cited proposition, it is assumed that an operator L satisfying 〈A(g)∗Ψ, Ω〉 = 〈A(JLg)Ψ, Ω〉 is
bounded. But, as is seen from the proof, it is not necessary.

4



Proof. It follows from (3.4) that, for all f ∈ D , ‖XDf‖2 = ‖f‖2 + ‖Y f‖2 ≥ ‖f‖2,
which implies the desired result.

The following proposition is new (to the author’s best knowledge) and plays a crucial
role in the present paper.

Proposition 3.4 Assume that H is separable. Let X and Y be as in Lemma 3.3 and
suppose that X is unbounded and XD is dense in H . Let Ω be a vector in Fb(H )
satisfying

〈A(Xf)∗Ψ, Ω〉 = −〈A(JY f)Ψ, Ω〉 , Ψ ∈ F0(H ), f ∈ D . (3.5)

Then Ω = 0.

Proof. We prove the proposition by reductio ad absurdum. Suppose that there existed
a non-zero vector Ω ∈ Fb(H ) such that (3.5) holds. Since Ran XD is dense by the
present assumption and XD is injective by Lemma 3.3, it follows from Proposition 3.2

that K := Y X−1
D is Hilbert-Schmidt. Hence K∗K is trace class. Using (3.4) and a

limiting argument, one can show that

K∗K = I − L∗L, (3.6)

where L := X−1
D . For a linear operator A, we denote by σ(A) the spectrum of A. Since

K∗K is a non-negative trace class operator, it is a non-negative compact operator. Hence
σ(K∗K)\{0} = {λn}N

n=1, where N < ∞ or N = ∞ and λn is a positive eigenvalue of K∗K
with a finite multiplicity; if N = ∞, then limn→∞ λn = 0 · · · (∗). Hence σ(L∗L) \ {1} =
{1 − λn}N

n=1.
Suppose that there existed a constant γ > 0 such that L∗L ≥ γ. Then, for all

g ∈ Ran XD , ‖X−1
D g‖2 ≥ γ‖g‖2. Hence ‖XDf‖2 ≤ γ−1‖f‖2, f ∈ D . But this contradicts

the unboundedness of X. Hence inf σ(L∗L) = 0. Hence N = ∞ and there exists a
subsequence {λnk

}∞k=1 such that limk→∞(1 − λnk
) = 0, i.e., limk→∞ λnk

= 1. But this
contradicts (∗). Thus we arrive at a contradiction.

In concluding this section, we state a fact which may be used to prove the irreducibility
of representations of CCRs. For each f ∈ H , one has a self-adjoint operator

Φ(f) :=
1√
2
(A(f)∗ + A(f)),

called the Segal field operator with test vector f . It is easy to see that Φ(f) leaves F0(H )
invariant and, for all f, g ∈ H ,

[Φ(f), Φ(g)] = iIm 〈f, g〉 on F0(H ), (3.7)

where, for a complex number z ∈ C, Im z denotes the imaginary part of z.
Let J be a conjugation on H . Then the set

HJ := {f ∈ H |Jf = f} (3.8)

is a real Hilbert space with the inner product of H . It follows that

H = {f + ig|f, g ∈ HJ}.

Let A and B be densely defined linear operators on H with the following properties
(i) and (ii):
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(i) JA ⊂ AJ , JB ⊂ BJ .

(ii) There exists a subspace E in HJ such that E ⊂ D(A)∩D(B) and, for all f, g ∈ E ,
〈Af,Bg〉 = 〈f, g〉.

Property (i) means that, for all Ψ ∈ D(A), JΨ ∈ D(A) and AJΨ = JAΨ. Hence, in
particular, A(D(A) ∩ HJ) ⊂ HJ . Similarly one has that B(D(B) ∩ HJ) ⊂ HJ .

Let

φA(f) := Φ(Af), πB(f) := Φ(iBg), f ∈ D(A) ∩ HJ , g ∈ D(B) ∩ HJ .

Then it follows from (3.7) that φA(f) and πB(g) obey the Heisenberg commutation rela-
tions over E on F0(H ): for all f, g ∈ E ,

[φA(f), πB(g)] = i 〈f, g〉 , [φA(f), φA(g)] = 0, [πB(f), πB(g)] = 0

on F0(H ). In fact, eiφA(f) and eiπB(g) obey the Weyl relations (see, e.g., [2, Theorem
5.25(ii)]):

eiφA(f)eiπB(g) = e−i〈f,g〉eiπB(g)eiφA(f), f, g ∈ E .

Lemma 3.5 Let C := A+iB. Suppose that CE is dense in H . Then {eiφA(f), eiπB(f)|f ∈
E }′ = CI. In particular, {eiφA(f), eiπB(f)|f ∈ E } is irreducible.

Proof. Let T ∈ {eiφA(f), eiπB(f)|f ∈ E }′. Then, for all f ∈ E , TeiφA(f) = eiφA(f)T and
TeiπB(f) = eiπB(f)T . By a general formula for the Weyl operator eiΦ(u) (u ∈ H )(see, e.g.,
[2, Theorem 5.25(ii)]), we have

eiΦ(Cf) = ei‖f‖2/2eiφA(f)eiπB(f), f ∈ E .

Hence it follows that TeiΦ(Cf) = eiΦ(Cf)T, f ∈ E . Recall that, for any dense subspace D
of H , {eiΦ(u)|u ∈ D} is irreducible (e.g., [2, Theorem 5.25(iv)]). Note that {eiΦ(u)|u ∈ D}
is ∗-invariant. Hence, by Lemma 2.1(ii), {eiΦ(u)|u ∈ D}′ = CI. Therefore {eiΦ(Cf)|f ∈
E }′ = CI. Hence T = αI for some α ∈ C.

4 Singular Bogoliubov Transformations and Repre-

sentations of CCRs

4.1 Definitions

Let T and S be densely defined (not necessarily bounded) linear operators on H such
that there exists a dense subspace D ⊂ D(T ) ∩ D(S) and the following equations hold:

〈Tf, Tg〉 − 〈Sf, Sg〉 = 〈f, g〉 , (4.1)

〈Tf, JSg〉 = 〈Sf, JTg〉 , f, g ∈ D , (4.2)

where J is a conjugation on H .
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For each f ∈ D , the operator

B0(f) := A(Tf) + A(JSf)∗

is a densely defined linear operator with D(B0(f)) ⊃ F0(H ) and B0(f)∗ is densely
defined with D(B0(f)∗) ⊃ F0(H ). Hence B0(f) is closable. Therefore one can define a
densely defined closed operator B(f) on Fb(H ) by

B(f) := B0(f). (4.3)

It is obvious that B(f) and B(f)∗ leave F0(H ) invariant. Moreover, using (4.1) and
(4.2), one can easily show that B(·) and B(·)∗ satisfy the CCRs over D on F0(H ): for
all f, g ∈ D ,

[B(f), B(g)∗] = 〈f, g〉 , [B(f), B(g)] = 0, [B(f)∗, B(g)∗] = 0 on F0(H ). (4.4)

Therefore

πB(D) := (Fb(H ),F0(H ), {B(f), B(f)∗|f ∈ D} (4.5)

is a representation of the CCRs over D .
The correspondence TB: (A(·), A(·)∗) 7→ (B(·), B(·)∗) is a generalization of the stan-

dard bosonic Bogoliubov transformation (see, e.g., [11, 12, 13], [9, p.316], [6, §2] and
references therein) in the sense that S or T may be unbounded and TB is not necessarily
invertible. Equation (4.1) implies that T is bounded if and only if S is bounded. Based
on this property, we say that the Bogoliubov transformation TB is singular if T or S is
unbounded (then both T and S are unbounded).

4.2 Inequivalence to any direct sum representation of the Fock
representation πF(D)

We want to find conditions under which πB(D) is inequivalent to any direct sum repre-
sentation of the Fock representation πF(D).

Lemma 4.1 Let D be a dense subspace of H and πC(D) := (F ,D , {C(f), C(f)∗|f ∈
D}) be a representation of the CCRs over D . Suppose that πC(D) is equivalent to a direct
sum representation ⊕N

n=1πF(D) of πF(D) with N < ∞ or N = ∞. Then there exists a
non-zero vector Ω ∈ ∩f∈DD(C(f)) such that C(f)Ω = 0, f ∈ D .

Proof. By the present assumption, there exists a unitary operator U from Fb(H )
to GN := ⊕N

n=1Fb(H ) such that UC(f)U−1 = ⊕N
n=1A(f), f ∈ D . Let ΩH be the Fock

vacuum in Fb(H ):

Ω
(0)
H = 1, Ω

(n)
H = 0, n ≥ 1.

Then one has

A(f)ΩH = 0, f ∈ H . (4.6)
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It is easy to see that Ψ0 := ⊕N
n=1n

−1ΩH is a non-zero vector in GN (note that, in the case
N = ∞,

∑∞
n=1 ‖n−1ΩH ‖2 =

∑∞
n=1 n−2 < ∞). By (4.6), Ψ0 ∈ D(⊕N

n=1A(f)), f ∈ D and
(⊕N

n=1A(f))Ψ0 = 0. Hence, putting Ω := U−1Ψ0, one sees that Ω ∈ ∩f∈DD(C(f)) and
C(f)Ω = 0, f ∈ D .

To state and prove results on the above mentioned inequivalence, we consider two
cases separately: the one is the case where T is bounded and the other is the case where
T is unbounded.

Lemma 4.2 Assume that H is separable. Suppose that T is bounded with TD being
dense in H and S is not Hilbert-Schmidt. Then there exist no non-zero vectors Ω ∈
∩f∈DD(B(f)) such that B(f)Ω = 0, f ∈ D .

Proof. Suppose that there existed a non-zero vector Ω ∈ ∩f∈DD(B(f)) that B(f)Ω =
0, f ∈ D . Then, for all Ψ ∈ F0(H ) and f ∈ D , (3.3) holds. Hence, by Proposition

3.2, ST−1
D is Hilbert-Schmidt. By the present assumption, TD = T is bounded. Hence

U := ST−1
D TD is Hilbert-Schmidt. One has U = S. Hence S is Hilbert-Schmidt. But this

contradicts the assumption that S is not Hilbert-Schmidt.

Theorem 4.3 Assume that H is separable. Suppose that T is bounded with TD being
dense in H and S is not Hilbert-Schmidt. Then πB(D) is inequivalent to any direct sum
representations of the Fock representation πF(D). In particular, if πB(D) is irreducible,
then πB(D) is inequivalent to πF(D).

Proof. Suppose that πB(D) were equivalent to a direct sum representation of πF(D).
Then, by Lemma 4.1, there exists a non-zero vector Ω ∈ ∩f∈DD(B(f)) such that B(f)Ω =
0, f ∈ D . But this contradicts Lemma 4.2.

We next consider the case where T is unbounded.

Lemma 4.4 Assume that H is separable. Suppose that T is unbounded and TD is dense
in H . Then there exist no non-zero vectors Ω ∈ ∩f∈DD(B(f)) such that B(f)Ω = 0, f ∈
D .

Proof. Suppose that there existed a non-zero vector Ω ∈ ∩f∈D D(B(f)) such that
B(f)Ω = 0, f ∈ D . Then (3.5) holds with X = T and Y = S. But this contradicts
Proposition 3.4.

The following theorem is one of the main results in the abstract framework of the
present paper.

Theorem 4.5 Assume that H is separable. Suppose that T is unbounded and TD is
dense in H . Then πB(D) is inequivalent to any direct sum representation of the Fock
representation πF(D). In particular, if πB(D) is irreducible, then πB(D) is inequivalent
to πF(D).

Proof. Suppose that πB(D) were equivalent to a direct sum representation of πF(D).
Then, by Lemma 4.1, there exists a non-zero vector Ω ∈ ∩f∈DD(B(f)) such that B(f)Ω =
0, f ∈ D . But this contradicts Lemma 4.4.
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4.3 Irreducibility

In this subsection, we formulate sufficient conditions for πB(D) to be irreducible. To be
as general as possible, we consider two cases. The first one uses the following condition:

Assumption (I) There exists a dense subspace D1 of H such that the following (i) and
(ii) hold:

(i) D1 ⊂ D(TT ∗) ∩ D(JSS∗J) ∩ D(ST ∗) ∩ D(JTS∗J).

(ii) T ∗D1 ⊂ D , (S∗J)D1 ⊂ D and

TT ∗ − JSS∗J = I, ST ∗J = JTS∗ on D1.

Lemma 4.6 Suppose that Assumption (I) holds. Then, for all f ∈ D1,

A(f) = B(T ∗f) − B(S∗Jf)∗ on F0(H ). (4.7)

Proof. One needs only to compute the right hand side of (4.7) using (4.3) and As-
sumption (I).

Theorem 4.7 Suppose in addition to (4.1) and (4.2) that Assumption (I) holds. Then
πB(D) is irreducible.

Proof. Let Z ∈ {B(f), B(f)∗|f ∈ D}′. Then Z ∈ B(Fb(H )) and for all f ∈ D ,
ZB(f) ⊂ B(f)Z, ZB(f)∗ ⊂ B(f)∗Z. By using (4.7), one can show that, for all Φ, Ψ ∈
F0(H ) and f ∈ D1,

〈Φ, ZA(f)Ψ〉 = 〈A(f)∗Φ, ZΨ〉 .

Since F0(H ) is a core for A(f)∗, it follows that ZΨ ∈ D(A(f)∗∗) = D(A(f)) and
A(f)ZΨ = ZA(f)Ψ. Since F0(H ) is a core for A(f), this implies that ZA(f) ⊂ A(f)Z.
Similarly one has ZA(f)∗ ⊂ A(f)∗Z for all f ∈ D1. Hence Z ∈ {A(f), A(f)∗|f ∈ D1}′.
By Theorem 3.1, {A(f), A(f)∗|f ∈ D1}′ = CI. Hence {B(f), B(f)∗|f ∈ D}′ = CI.
Therefore, by Lemma 2.1(i), {B(f), B(f)∗|f ∈ D} is irreducible.

Another criterion for the irreducibility of πB(D) is given as follows:

Theorem 4.8 Suppose in addition to (4.1) and (4.2) that

JS ⊂ SJ, JT ⊂ TJ.

Let DJ := D ∩HJ , R := (1 + i)T + (1− i)S and suppose that RDJ is dense in H . Then
πB(D) is irreducible.

Proof. Let Z ∈ {B(f), B(f)∗|f ∈ D}′. Then it is easy to see that, for all f ∈ DJ ,

1√
2
(B(f)∗ + B(f)) = φT+S(f),

i√
2
(B(f)∗ − B(f)) = πT−S(f)

on F0(H ). Hence, in the same way as in the proof of Theorem 4.8, one can show that
ZφT+S(f) ⊂ φT+S(f)Z and ZπT−S(f) ⊂ πT−S(f)Z. Since φT+S(f) and πT−S(f) are self-
adjoint, it follows that ZeiφT+S(f) = eiφT+S(f)Z and ZeiπT−S(f) = eiπT−S(f)Z. Note that
T + S + i(T − S) = R. Hence, by Lemma 3.5, Z = αI for some α ∈ C. Thus πB(D) is
irreducible.
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5 A General Class of Singular Bogoliubov Transfor-

mations

In this section, we introduce a general class of singular Bogoliubov transformations. Let
K and L be injective (not necessarily bounded) symmetric operators on a Hilbert space
H such that

DK,L := D(K−1L) ∩ D(KL−1) (5.1)

is dense in H and, for a conjugation J on H ,

JK ⊂ KJ, JL ⊂ LJ. (5.2)

Then one can define densely defined linear operators

T± :=
1

2
(K−1L ± KL−1) (5.3)

with D(T±) = DK,L. It follows from (5.2) that

JT± ⊂ T±J.

Lemma 5.1 For all f, g ∈ DK,L,

〈T+f, T+g〉 − 〈T−f, T−g〉 = 〈f, g〉 , (5.4)

〈T+f, JT−g〉 = 〈T−f, JT+g〉 . (5.5)

Proof. This follows from direct computations, where the symmetry of K and L are
used.

Remark 5.2 Operators of type T± with K and L being injective self-adjoint operators
such that K−1L and KL−1 are bounded are introduced in [1, Lemma 5.8]. But here we
are mainly interested in the case where T± are unbounded.

Let D be a dense subspace of H such that D ⊂ DK,L. Then, as in Section 4, one can
define a densely defined closed linear operator

BK,L(f) := A(T+f) + A(JT−f)∗, f ∈ D (5.6)

and see that

πK,L(D) := (Fb(H ),F0(H ), {BK,L(f), BK,L(f)∗|f ∈ D} (5.7)

is a representation of the CCRs over D .
Note that, if T+ or T− is unbounded, then the correspondence: (A(·), A(·)∗) 7→

(BK,L(·), BK,L(·)∗) is a singular Bogoliubov transformation. Thus, for each pair (K,L) of
injective symmetric operators with additional properties, there exists a singular Bogoli-
ubov transformation.

A simple application of Lemma 4.4 and Theorem 4.5 yields the following theorem:
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Theorem 5.3 Let H be separable. Suppose that T+ is unbounded and T+D is dense.
Then:

(i) There exists no non-zero vector Ω ∈ ∩f∈DD(BK,L(f)) such that BK,L(f)Ω =
0, f ∈ D .

(ii) The representation πK,L(D) is inequivalent to any direct sum representation of
the Fock representation πF(D). In particular, if πK,L(D) is irreducible, then πK,L(D)
is inequivalent to πF(D).

With regard to irreducibility of πK,L(D), we have the following result.

Theorem 5.4 Suppose that (K−1L + iKL−1)(D ∩ HJ) is dense in H . Then πK,L(D)
is irreducible.

Proof. We need only to apply Theorem 4.8 to the case where T = T+, S = T−. In this
case R = K−1L + iKL−1.

6 An Example

In this section we show by an explicit construction that there exists a pair (K,L) of
symmetric operators and a conjugation J , satisfying conditions described in Section 5 so
that the conclusions of Theorems 5.3 and 5.4 hold.

The example given below is related to a construction of two quantum scalar fields on
the finite box

Λ := (0, L)d−1 × (0, Ld) = {x = (x1, . . . , xd)|x1, . . . , xd−1 ∈ (0, L) , xd ∈ (0, Ld)} (6.1)

in the d-dimensional Euclidean space Rd with d ≥ 2, L > 0 and Ld > 0.

Remark 6.1 There may be another choice of Λ. For example Λ = Rd−1 × (0, Ld). But,
in this paper, we restrict ourselves to the case given above.

We denote by ∆D the Dirichlet Laplacian for Λ on L2(Λ) (see, e.g., [10, p.263] for the
definition of ∆D).2 The operator −∆D is a non-negative self-adjoint operator. Let

Γ :=

{
k = (k1, . . . , kd)

∣∣ kj ∈
π

L
N, j = 1, . . . , d − 1, kd ∈ π

Ld

N
}

where αN := {αn|n ∈ N} (α ∈ R). It is well known that the spectrum σ(−∆D) of −∆D

is purely discrete with
σ(−∆D) = {k2|k ∈ Γ}.

2One can consider also Laplacians with other boundary conditions. But, in the present paper, we
treat only the Dirichlet Laplacian for simplicity.
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An eigenvector of −∆D with eigenvalue k2 is given by

ϕk(x) :=
d∏

j=1

ϕkj
(xj), x = (x1, . . . , xd) ∈ Λ (6.2)

with

ϕkj
(xj) :=

√
2

L
sin(kjxj), xj ∈ (0, L), j = 1, . . . , d − 1, (6.3)

ϕkd
(xd) :=

√
2

Ld

sin(kdxd), xd ∈ (0, Ld). (6.4)

It is well known that {ϕk|k ∈ Γ} is a complete orthonormal system (CONS) of L2(Λ).
Let m ≥ 0 be a constant and

h := (−∆D + m2)1/2, (6.5)

Then we have

hϕk = ω(k)ϕk, k ∈ Γ, (6.6)

with

ω(k) :=
√

k2 + m2. (6.7)

Hence the spectrum of h is purely discrete with

σ(h) = {ω(k)|k ∈ Γ}. (6.8)

Note that

0 < ω(k)−1 ≤ 1√(
π
L

)2
(d − 1) +

(
π
Ld

)2
, k ∈ Γ. (6.9)

Hence h−1 ∈ B(L2(Λ)).
We set

L2
real(Λ) := {f ∈ L2(Λ)|f ∗ = f},

the real Hilbert space of real elements in L2(Λ). For all α ∈ R and f ∈ D(hα), we have

hαf =
∑
k∈Γ

ω(k)α 〈ϕk, f〉ϕk

in the sense of L2(Λ)-convergence. Hence

hαD(hα) ∩ Lreal(Λ) ⊂ L2
real(Λ). (6.10)

We next consider the case where a “wall”

Wa := {x ∈ Λ|xd = a} (6.11)
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perpendicular to the xd-axis is placed in Λ with 0 < a < Ld. In this case Λ is decomposed
as follows:

Λ = Λ1 ∪ Wa ∪ Λ2, (6.12)

where

Λ1 := {x ∈ Λ|0 < xd < a}, Λ2 := {x ∈ Λ|a < xd < Ld}. (6.13)

This decomposition of the box Λ induces the orthogonal decomposition

L2(Λ) = L2(Λ1) ⊕ L2(Λ2) (6.14)

of the Hilbert space L2(Λ). But one should note that the Dirichlet Laplacian ∆D cannot
be reduced by L2(Λ`) (` = 1, 2).

In what follows, we assume the following:

Assumption (a) L2/L2
d ∈ Q (the set of rational numbers) and a2/L2

d 6∈ Q

Let Λ1 and Λ2 be given by (6.13) and ∆` be the Dirichlet Laplacian for Λ` (` = 1, 2).

For each k ∈ Γ and ` = 1, 2, we define functions ψ
(`)
k on Λ` as follows:

ψ
(1)
k (x) :=

(
d−1∏
j=1

ϕkj
(xj)

)
ψ

(1)
kd

(xd), x ∈ Λ1, (6.15)

ψ
(2)
k (x) :=

(
d−1∏
j=1

ϕkj
(xj)

)
ψ

(2)
kd

(xd), x ∈ Λ2, (6.16)

where

ψ
(1)
kd

(xd) :=

√
2

a
sin

Ldkdxd

a
, xd ∈ (0, a), (6.17)

ψ
(2)
kd

(xd) :=

√
2

L − a
sin

Ldkd(xd − a)

Ld − a
, xd ∈ (a, Ld). (6.18)

The set {ψ(`)
k }k∈Γ is a CONS of L2(Λ`).

Using the Dirichlet Laplacian ∆` for Λ` (` = 1, 2), we introduce a non-negative self-
adjoint operator

ha,` := (−∆` + m2)1/2 (6.19)

on L2(Λ`) and define

ha := ha,1 ⊕ ha,2 (6.20)

relative to the decomposition (6.14).

13



Let

ω1(k) :=
√

k2
1 + · · · + k2

d−1 + (Ldkd/a)2 + m2,

ω2(k) :=
√

k2
1 + · · · + k2

d−1 + (Ldkd/(Ld − a))2 + m2, k ∈ Γ.

Then we have

ha,`ψ
(`)
k = ω`(k)ψ

(`)
k , k ∈ Γ. (6.21)

By (6.14), each f ∈ L2(Λ) is written as

f = f (1) + f (2)

or f = (f (1), f (2)), where
f (`) := χΛ`

f ∈ L2(Λ`)

with χΛ`
being the characteristic function of Λ`.

The direct sum operator

−∆12 := (−∆1) ⊕ (−∆2)

is a non-negative self-adjoint operator on L2(Λ). By functional calculus, we have

(−∆12)
1/2 = (−∆1)

1/2 ⊕ (−∆2)
1/2. (6.22)

Lemma 6.2 D((−∆12)
1/2) ⊂ D((−∆D)1/2) and, for all f ∈ D((−∆12)

1/2),

‖(−∆D)1/2f‖ = ‖(−∆12)
1/2f‖. (6.23)

In particular, (−∆D)1/2(−∆12)
−1/2 is in B(L2(Λ)).

Proof. Let f = f (1) + f (2) ∈ D((−∆12)
1/2). Then, by the definition of ∆`, there exists

a sequence {f (`)
n }∞n=1 in C∞

0 (Λ`) such that f
(`)
n → f (`) (n → ∞) and

‖(−∆`)
1/2f (`)‖2 = lim

n→∞

d∑
j=1

‖∂jf
(`)
n ‖2,

where ∂j := ∂/∂xj. Hence, letting fn := f
(1)
n + f

(2)
n , we see that fn ∈ C∞

0 (Λ) and fn → f
(n → ∞),

lim
n→∞

d∑
j=1

‖∂jfn‖2 = ‖(−∆1)
1/2f (1)‖2 + ‖(−∆2)

1/2f (2)‖2 = ‖(−∆12)
1/2f‖2.

Therefore f ∈ D((−∆D)1/2) (hence D((−∆12)
1/2) ⊂ D((−∆D)1/2)) and (6.23) holds.

We next study relations between h and ha.

Lemma 6.3
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(i) D(ha) ⊂ D(h) and hh−1
a is in B(L2(Λ)).

(ii) D(h
1/2
a ) ⊂ D(h1/2) and h1/2h

−1/2
a is in B(L2(Λ)).

Proof. (i) It follows from functional calculus that

D(h) = D((−∆D)1/2), D(ha) = D((−∆12)
1/2).

Hence, by Lemma 6.2, D(ha) ⊂ D(h). Hence D(hh−1
a ) = L2(Λ) and hh−1

a ∈ B(L2(Λ)).3

(ii) By part (i), h is ha-bounded. Since h and ha are non-negative self-adjoint operators,

it follows from a general theorem ([8, Theorem X.18(a)]) that h1/2 is h
1/2
a -bounded. Hence

D(h
1/2
a ) ⊂ D(h1/2) and h1/2h

−1/2
a is bounded with D(h1/2h

−1/2
a ) = L2(Λ).

For convenience, we extend each eigenfunction ψ
(`)
k of ha,` (k ∈ Γ) to a function on Λ

in the following way:

ψ̃
(`)
k (x) :=

{
ψ

(`)
k (x) if x ∈ Λ`

0 if x ∈ Λ \ Λ`
. (6.24)

Similarly we denote by ψ̃
(`)
kd

(` = 1, 2) the extensions of the functions ψ
(1)
kd

and ψ
(2)
kd

to
(0, Ld).

By functional calculus, we have for all α > 0

hα
a ψ̃

(`)
k = ω`(k)αψ̃

(`)
k , ` = 1, 2, k ∈ Γ. (6.25)

For each (k,p) ∈ Γ × Γ and ` = 1, 2, we define

γ
(`)
kp :=

〈
ϕk, ψ̃(`)

p

〉
. (6.26)

It follows from (6.2), (6.15) and (6.16) that

γ
(`)
kp =

(
d−1∏
j=1

δkjpj

)〈
ϕkd

, ψ̃(`)
pd

〉
. (6.27)

We set

c1 :=
Ld

a
, c2 :=

Ld

Ld − a
. (6.28)

Lemma 6.4 For all kd, pd ∈ (π/Ld)N,〈
ϕkd

, ψ̃(1)
pd

〉
=

2√
Lda

(−1)Ldpdc1pd sin(akd)

k2
d − c2

1p
2
d

, (6.29)〈
ϕkd

, ψ̃(2)
pd

〉
= − 2√

Ld(Ld − a)

c2pd sin(akd)

k2
d − c2

2p
2
d

. (6.30)

3The following fact is well known (which follows from the closed graph theorem): let A and B be closed
linear operators on a Banach space X . Suppose that D(A) ⊂ D(B) and A is bijective. Then BA−1 is
in B(X ).
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Proof. By (6.4) and (6.17), we have〈
ϕkd

, ψ̃(1)
pd

〉
=

2√
Lda

∫ a

0

sin(kdxd) sin(c1pdxd)dxd.

Then, by direct computations, we obtain (6.29). Similarly one can prove (6.30).

Lemma 6.5 D(h
1/2
a ) $ D(h1/2).

Proof. By functional calculus, for all k ∈ Γ, ϕk ∈ D(h1/2) with

h1/2ϕk = ω(k)1/2ϕk.

It is sufficient to show that, for some k0 ∈ Γ, ϕk0 6∈ D(h
1/2
a ). Let k ∈ Γ be such that

ϕk ∈ D(h
1/2
a ). Then, by the fact that {ψ̃(`)

p |` = 1, 2, p ∈ Γ} is a CONS of L2(Λ), we have

sk :=
2∑

`=1

∑
p∈Γ

∣∣∣〈ψ̃(`)
p , h1/2

a ϕk

〉∣∣∣2 = ‖h1/2
a ϕk‖2 < ∞.

By the symmetry of h
1/2
a and (6.25), we have〈
ψ̃(`)

p , h1/2
a ϕk

〉
=

〈
h1/2

a ψ̃(`)
p , ϕk

〉
= ω`(p)1/2γ

(`)
kp.

Hence

sk =
2∑

`=1

∑
p∈Γ

ω`(p)
∣∣∣γ(`)

kp

∣∣∣2 .

Using (6.27), we have

sk =
2∑

`=1

∑
pd∈(π/Ld)N

ω`(k̃, pd)
∣∣∣〈ϕkd

, ψ̃(`)
pd

〉∣∣∣2 ,

where

k̃ := (k1, . . . , kd−1) ∈
(π

L
N

)d−1

.

By Lemma 6.4, we have

lim
pd→∞

∣∣∣pd

〈
ϕkd

, ψ̃(1)
pd

〉∣∣∣2 =
4 sin2(akd)

Ldac2
1

. lim
pd→∞

∣∣∣pd

〈
ϕkd

, ψ̃(2)
pd

〉∣∣∣2 =
4 sin2(akd)

Ld(Ld − a)c2
2

.

Now let k0 := (k̃, kd) with k̃ ∈ ((π/L)N)d−1 arbitrary and kd = π/Ld. Then 0 < akd < π.
Hence sin akd 6= 0. Therefore there exists a constant C > 0 such that∣∣∣〈ϕkd

, ψ̃(`)
pd

〉∣∣∣2 ≥ C

c`p2
d

.
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Note that
ω`(k̃, pd) ≥ c`pd.

Hence

sk0 ≥ C
∑

pd∈(π/Ld)N

1

pd

= ∞.

Thus ϕk0 6∈ D(h
1/2
a ).

The following fact shows a singular nature of the pair (h, ha) of one-particle Hamilto-
nians:

Lemma 6.6 The operator h−1/2h
1/2
a is unbounded.

Proof. Let T := h−1/2h
1/2
a . We prove the unboundedness of T by reductio ad absur-

dum. Suppose that T were bounded. Since D(T ) = D(h
1/2
a ), T is densely defined. Hence

it is closable and the closure T is in B(L2(Λ)). We have T ∗ = (T )∗. Hence D(T ∗) = L2(Λ).

Since h−1/2 is bounded with D(h−1/2) = L2(Λ), it follows that T ∗ = (h
1/2
a )∗(h−1/2)∗ =

h
1/2
a h−1/2. This implies that D(h1/2) ⊂ D(h

1/2
a ) and D(T ∗) = h1/2D(h

1/2
a ). But this con-

tradicts Lemma 6.5.

Lemma 6.7 Let

S± :=
1

2
(h−1/2h1/2

a ± h1/2h−1/2
a ). (6.31)

Then S± are unbounded.

Proof. This follows from Lemma 6.3(ii) and Lemma 6.6.

Note that

Da := D(S+) = D(S−) = D(h1/2
a ). (6.32)

We denote by CΛ the complex conjugation on L2(Λ):

CΛf := f ∗, f ∈ L2(Λ).

Then it is easy to see that, for all α ∈ R,

CΛhα ⊂ hαCΛ, CΛhα
a ⊂ hα

aCΛ.

Hence

CΛS± ⊂ S±CΛ. (6.33)

The next lemma follows from Lemma 5.1 and (6.33):
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Lemma 6.8 For all f, g ∈ Da, the following equations hold:

〈S+f, S+g〉 − 〈S−f, S−g〉 = 〈f, g〉 , (6.34)

〈S+f, S−g〉 = 〈S−f, S+g〉 . (6.35)

Lemma 6.9 The range Ran S+ of S+ is dense in L2(Λ).

Proof. It is sufficient to show that the orthogonal complement (Ran S+)⊥ of Ran S+

is {0}. Let g ∈ (Ran S+)⊥. Then, for all f ∈ D(h
1/2
a ), 〈S+f, g〉 = 0, which implies that〈

h
1/2
a f, h−1/2g

〉
= −〈Gf, g〉 with G := h1/2h

−1/2
a . By Lemma 6.3(ii), G is bounded. Hence

〈Gf, g〉 = 〈f,G∗g〉. Hence h−1/2g ∈ D(h
1/2
a ) and h

1/2
a h−1/2g = −G∗g. Hence g = −GG∗g,

which implies that ‖g‖2 = −‖G∗g‖2 ≤ 0. Therefore g = 0. Thus (Ran S+)⊥ = {0}.

Lemma 6.10 (h−1/2h
1/2
a + ih1/2h

−1/2
a )(Da ∩ L2

real(Λ)) is dense in L2(Λ).

Proof. Suppose that there exists an element g ∈ L2(Λ) such that, for all f ∈ Da ∩
Lreal(Λ),

〈
g, (h−1/2h

1/2
a + ih1/2h

−1/2
a )f

〉
= 0 · · · (∗). Since CΛh

1/2
a ⊂ h

1/2
a CΛ, it follows

that, each f ∈ Da is written f = f1 + if2 with f1 and f2 being in Da ∩ Lreal(Λ). Hence

(∗) extends to all f ∈ Da. Let G := h1/2h
−1/2
a . Then, by Lemma 6.3(ii), G is bounded.

Hence it follows that, for all f ∈ Da = D(h
1/2
a ),

〈
h−1/2g, h

1/2
a f

〉
= 〈iG∗g, f〉. This implies

that h−1/2g ∈ D(h
1/2
a ) and h

1/2
a h−1/2g = iG∗g. Hence g = iGG∗g, which implies that

‖g‖2 = i‖G∗g‖2. Hence ‖g‖2 = 0, implying that g = 0. Thus the desired result follows.

We now define

b(f) := a(S+f) + a(CΛS−f)∗, f ∈ Da. (6.36)

Theorem 6.11 The triple

πb(Da) := (Fb(L
2(Λ)),F0(L

2(Λ)), {b(f), b(f)∗|f ∈ Da}).

is a representation of the CCRs over Da. Moreover, the following (i) and (ii) hold:

(i) There exists no non-zero vector Ω ∈ ∩f∈DaD(b(f)) such that b(f)Ω = 0, f ∈ Da.

(ii) The representation πb(Da) is irreducible and inequivalent to the Fock represen-
tation πF(Da).

Proof. (i) By Lemma 6.9, we can apply Theorem 5.3(i) to the case where K = h1/2,

L = h
1/2
a , J = CΛ and T+ = S+. Then the desired result follows.

(ii) The irreducibility of πb(Da) follows from Lemma 6.10 and an application of The-
orem 5.4. The inequivalence of πb(Da) to πF(Da) is due to an application of Theorem 5.3
(ii).
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