Enhanced postprandial glucagon-like peptide-1 secretion during obesity development has a protective role against glucose intolerance induction in rats

Pinyo, Jukkrapong; Hira, Tohru; Hara, Hiroshi

British journal of nutrition, 122(4), 411-422

https://doi.org/10.1017/S0007114519001223

2019-08-28

Hokkaido University Collection of Scholarly and Academic Papers: HUSCAP
Enhanced postprandial glucagon-like peptide-1 secretion during obesity development has a protective role against glucose intolerance induction in rats

Jukkrapong Pinyo¹, Tohru Hira¹,²* and Hiroshi Hara¹,²,³

¹Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
²Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
³Faculty of Human Life Science, Fuji Women’s University, Isbikari 061-3204, Japan

(Submitted 4 January 2019 – Final revision received 5 April 2019 – Accepted 1 May 2019; First published online 29 July 2019)

Abstract

Glucagon-like peptide-1 (GLP-1) is an incretin hormone that regulates postprandial glycaemic response by enhancing insulin secretion. We previously demonstrated that the postprandial GLP-1 response was enhanced during the development of diet-induced obesity in rats. However, the physiological relevance of the enhanced GLP-1 response remained unclear. We aimed to determine the role of endogenous GLP-1 during obesity development. Male Sprague–Dawley rats were given either a control diet or a high-fat/high-sucrose (HFS, 30% fat and 40% sucrose, weight basis) diet with or without continuous administration of the GLP-1 receptor antagonist, exendin (9–39) (Ex9, 100 μg/d), for 5 weeks. Meal tolerance tests (MTT) were performed to assess postprandial glucose, insulin and GLP-1 responses to a liquid diet administration (15 kcal (63 kJ)/10 ml per kg body weight) every 2 weeks. The AUC of postprandial glucose in the HFS group was similar to the control group in both MTT (P = 0.9665 and P = 0.3475, respectively), whereas AUC of postprandial GLP-1 (after 4 weeks, P = 0.0457) and of insulin (after 2 and 4 weeks, P = 0.0486 and P = 0.0110) was higher in the HFS group compared with the control group. In the Ex9 group, AUC of postprandial glucose (P = 0.0297 and P = 0.0486) was higher along with a lower insulin response compared with the HFS group (P = 0.0564 and P = 0.0281). These results suggest that enhancement of the postprandial GLP-1 response during obesity development has a role in maintaining a normal postprandial glycaemic response. Hence, enhancing endogenous GLP-1 secretion by certain materials could be a potential target for prevention of glucose intolerance.

Key words: GLP-1 receptor antagonist; Glucagon-like peptide-1; Glucose intolerance; Meal tolerance test; Obesity

Chronic consumption of a diet containing high fat and high sucrose is known to cause obesity. Obesity, the cause of metabolic disorders, such as hyperglycaemia, insulin resistance and type 2 diabetes (¹–³), also affects gut hormone secretion (⁴). Glucose homeostasis is regulated by various hormones, such as glucagon, insulin, glucocorticoids and incretins (glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1 (GLP-1)). GLP-1, produced in enteroendocrine L-cells, is released in response to ingested nutrients, such as glucose, fatty acids, proteins and amino acids. Due to its incretin effect (stimulating insulin secretion), increased GLP-1 secretion plays a role in normalising the postprandial glucose homeostasis (¹¹). Incretin-based therapy is effectively used for type 2 diabetes treatment. Therefore, increasing GLP-1 secretion may be a promising target for prevention and treatment of glucose intolerance (¹²).

Up to date, a consensus on how does GLP-1 secretion/production change during the progression of diet-induced obesity (DIO) has not been established. Studies report that GLP-1 secretion is diminished during obesity development. In contrast, we previously demonstrated that GLP-1 secretion in response to normal diet administration was increased by chronic consumption of high fat and high sucrose in rats, at least in the early stage of DIO. Thus, the role of endogenous GLP-1 in the development of glucose intolerance and obesity has not been clearly identified.

The present study aims to clarify the role of endogenous GLP-1 in postprandial glycaemia during progression of DIO. For this, a GLP-1 receptor antagonist, exendin (9–39) (Ex9), was chronically delivered using an osmotic pump implanted subcutaneously in rats fed an obesogenic high-fat and high-sucrose diet. Ex9, a thirty-one-amino-acid peptide, is a specific and
competitive antagonist of the GLP-1 receptor and is widely used to block GLP-1 signalling19–22. Meal tolerance tests (MTT) using a liquid diet rather than the conventional glucose solution were conducted to assess postprandial responses of glucose, insulin and GLP-1. Simultaneously, the gastric emptying rate was evaluated during the MTT.

Material and methods

Animals and diets

Male Sprague–Dawley rats (5 weeks old, weight about 120–150 g) were purchased from Japan SLC, Inc. and given an American Institute of Nutrition-93G (control) diet23 for 1 week to adapt to their new environment before conducting the experiment. Rats were housed individually and maintained in a temperature-controlled room (22 ± 2°C) at 50 ± 5 % humidity with a standard light cycle (08.00–20.00 hours light period). All rats were given access to diet and water ad libitum.

Table 1. Experimental diet composition (g/kg of diet)

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Control</th>
<th>HFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maize starch</td>
<td>397-486</td>
<td>–</td>
</tr>
<tr>
<td>Casein*</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>Dextrinised maize starch\†</td>
<td>132</td>
<td>–</td>
</tr>
<tr>
<td>Sucrose</td>
<td>100</td>
<td>399-486</td>
</tr>
<tr>
<td>Soybean oil</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>Lard oil</td>
<td>–</td>
<td>230</td>
</tr>
<tr>
<td>Fibre (cellulose)\‡</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Mineral mixture\§</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>Vitamin mixture\§</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>L-Cystine</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Choline bitartrate</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>tert-Butylhydroquinone</td>
<td>0.014</td>
<td>0.014</td>
</tr>
<tr>
<td>Energy density</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kcal/g</td>
<td>3.96</td>
<td>5.11</td>
</tr>
<tr>
<td>kJ/g</td>
<td>16.57</td>
<td>21.38</td>
</tr>
</tbody>
</table>

HFS, high-fat-high-sucrose.

* Acid casein (Fonterra, Ltd.).
\† TK-16 (Matsutani Chemical Industry Co., Ltd.).
\‡ Just Fiber BH200FCC (Morinaga Bros., Inc.).
\§ Mineral and vitamin mixtures were prepared according to the American Institute of Nutrition 93G formulation.

Following the feeding periods of 2 and 4 weeks, MTT were conducted to determine postprandial glucose, insulin, GLP-1 and gastric emptying responses to ‘meal’ administration. Rats were fasted for 16 h before basal blood collection (0 min) and were then orally administered a liquid diet (15 kcal (63 kJ)/10 ml per kg body weight; Ensure H, Abbott) premixed with acetaminophen (100 mg/kg body weight; Sigma Aldrich). Blood samples were collected from the tail vein at 15, 30, 60, 90 and 120 min following the liquid diet administration and immediately transferred to chilled tubes containing heparin (final concentration at 50 IU/ml blood; Ajinomoto Company, Inc.) and aprotinin (final concentration at 500 Kallikrein inhibitor units (kIU)/ml blood; Wako Pure Chemical Industries, Ltd.). Blood samples were centrifuged at 2000 g for 10 min at 4°C and plasma samples were collected and stored at −80°C until further analysis. Glucose levels were measured using the Glucose CII Test Kit (Wako Pure Chemical Industries). Gastric emptying rate was assessed by the acetaminophen (paracetamol) absorption test26–28. Acetaminophen levels were determined using an acetaminophen detection kit (Kanto Chemical Co., Inc.). Plasma insulin was measured using an insulin ELISA (U-E type, AKRIN-130; Shibayagi Company Limited). The Rat Insulin ELISA assay has a range of 0.156–10 ng/ml. Antibodies in this kit are specific to insulin which cross-reacts with rat proinsulin, mouse insulin and human insulin. The intra-assay precision and inter-assay precision are <2 % and <3 %, respectively. GLP-1 concentration was determined using Multi Species GLP-1 Total ELISA Kit (EZGLP1T-36K; Merck Millipore). The GLP-1 Total ELISA detects both GLP-1 (7–36) and GLP-1 (9–36) and has no significant cross-reactivity with GLP-2, GIP, glucagon and oxyntomodulin. The minimum detection limit of the assay is 1.5 ps. The intra-assay precision and inter-assay precision are <5 % and <12 %, respectively.

Blood and tissue collection

Following a 5-week feeding period and an overnight fasting, blood samples were taken from the portal vein and abdominal aorta of rats under sodium pentobarbital anaesthesia (50 mg/kg of body weight) using a syringe filled with heparin (final concentration 50 IU/ml), aprotinin (final concentration 500 KIU/ml) and Ex9 administration. The control group was fed a control diet with continuous saline administration, the high-fat/high-sucrose (HFS) group was fed a HFS diet (30 % fat and 40 % sucrose, shown in Table 1)18,29 with continuous saline administration and the Ex9 group was also fed the HFS diet with continuous Ex9 administration for 5 weeks. Body weight and food intake were measured every 2 d. All experimental animal procedures were approved by the Hokkaido University Animal Committee, and animals were maintained in accordance with the Hokkaido University guidelines for the care and use of laboratory animals. Because we aimed to clarify the role of enhanced GLP-1 response in DIO model rats, and because the role of GLP-1 in insulin secretion is well established in normal conditions, we examined the effect of Ex9 in the HFS-fed rats, not in the control-fed rats.

Meal tolerance tests

Following the feeding periods of 2 and 4 weeks, MTT were conducted to determine postprandial glucose, insulin, GLP-1 and gastric emptying responses to ‘meal’ administration. Rats were fasted for 16 h before basal blood collection (0 min) and were then orally administered a liquid diet (15 kcal (63 kJ)/10 ml per kg body weight; Ensure H, Abbott) premixed with acetaminophen (100 mg/kg body weight; Sigma Aldrich). Blood samples were collected from the tail vein at 15, 30, 60, 90 and 120 min following the liquid diet administration and immediately transferred to chilled tubes containing heparin (final concentration at 50 IU/ml blood; Ajinomoto Company, Inc.) and aprotinin (final concentration at 500 Kallikrein inhibitor units (kIU)/ml blood; Wako Pure Chemical Industries, Ltd.). Blood samples were centrifuged at 2000 g for 10 min at 4°C and plasma samples were collected and stored at −80°C until further analysis. Glucose levels were measured using the Glucose CII Test Kit (Wako Pure Chemical Industries). Gastric emptying rate was assessed by the acetaminophen (paracetamol) absorption test26–28. Acetaminophen levels were determined using an acetaminophen detection kit (Kanto Chemical Co., Inc.). Plasma insulin was measured using an insulin ELISA (U-E type, AKRIN-130; Shibayagi Company Limited). The Rat Insulin ELISA assay has a range of 0.156–10 ng/ml. Antibodies in this kit are specific to insulin which cross-reacts with rat proinsulin, mouse insulin and human insulin. The intra-assay precision and inter-assay precision are <2 % and <3 %, respectively. GLP-1 concentration was determined using Multi Species GLP-1 Total ELISA Kit (EZGLP1T-36K; Merck Millipore). The GLP-1 Total ELISA detects both GLP-1 (7–36) and GLP-1 (9–36) and has no significant cross-reactivity with GLP-2, GIP, glucagon and oxyntomodulin. The minimum detection limit of the assay is 1.5 ps. The intra-assay precision and inter-assay precision are <5 % and <12 %, respectively.

Blood and tissue collection

Following a 5-week feeding period and an overnight fasting, blood samples were taken from the portal vein and abdominal aorta of rats under sodium pentobarbital anaesthesia (50 mg/kg of body weight) using a syringe filled with heparin (final concentration 50 IU/ml), aprotinin (final concentration 500 KIU/ml) and Ex9 administration. The control group was fed a control diet with continuous saline administration, the high-fat/high-sucrose (HFS) group was fed a HFS diet (30 % fat and 40 % sucrose, shown in Table 1)18,29 with continuous saline administration and the Ex9 group was also fed the HFS diet with continuous Ex9 administration for 5 weeks. Body weight and food intake were measured every 2 d. All experimental animal procedures were approved by the Hokkaido University Animal Committee, and animals were maintained in accordance with the Hokkaido University guidelines for the care and use of laboratory animals. Because we aimed to clarify the role of enhanced GLP-1 response in DIO model rats, and because the role of GLP-1 in insulin secretion is well established in normal conditions, we examined the effect of Ex9 in the HFS-fed rats, not in the control-fed rats.
dipeptidyl peptidase (DPP)-IV inhibitor (final concentration 50 μmol/l; DPP4-010; Merck Millipore. Plasma was collected and stored as described above for measurements of glucose, insulin, total GLP-1, TAG and total cholesterol levels. For measurement of DPP-IV activity, blood samples were simultaneously collected from the portal vein and abdominal aorta into a syringe containing only heparin (final concentration 50 IU/ml). Total GLP-1 and insulin levels were assessed using Multi Species GLP-1 Total ELISA (EZGLP1T-36K; Merck Millipore) and Rat Insulin ELISA (AKRIN-010T; Shibayagi Company Limited) kits, respectively. Plasma TAG and cholesterol levels were measured using the TAG E-Test and Cholesterol E-Test kits (Wako Pure Chemical Industries), respectively. DPP-IV activity was measured based on the rate of surrogate substrate (Gly-Pro-p-nitroaniline; Gly-Pro-pNA) hydrolysis as described previously(29-31).

Rats were killed by exsanguination and intestinal segments were immediately dissected and washed with a cold saline solution (0.9 % NaCl). Sections (2 cm) of the jejunum, ileum and colon were taken from the middle region of each dissected segment. Caecum tissues were washed with cold saline and divided equally into two parts, and 2 cm from the middle region was collected. All intestinal samples for GLP-1 measurement were immediately frozen in liquid N2 and stored at −80°C until further analysis. Mesenteric, retroperitoneal and epididymal adipose tissues were carefully dissected and weighed to determine the visceral adipose tissue weight.

Measurement of glucagon-like peptide-1 content in intestinal tissue

An ethanol–acid solution was prepared by mixing absolute ethanol, water and 12 % HCl at a ratio of 74:25:1(32). Tissues samples were submerged in the ethanol acid solution (5 ml/g tissue) and homogenised at 25 000 rpm (Ultra-Turrax homogeniser T18, IKA) for 2 min. Homogenised samples were placed at 4°C for 24 h. After 24 h, aliquots (150 μl) of homogenate were stored separately at −30°C until protein analysis. The remaining homogenate was centrifuged at 2000 g for 20 min. The supernatant was collected and stored at −80°C until analysed. Protein and GLP-1 content were measured using Lowry’s protein assay and Multi Species GLP-1 Total ELISA kit (EZGLP1T-36K; Merck Millipore), respectively. Homogenate samples were diluted 30-fold for protein measurement, whereas the supernatant was diluted 500- or 1000-fold (colon only) for GLP-1 measurement.

Statistical analysis

Sample size was calculated based on the experimental design (two-way repeated-measures ANOVA) for MTT to determine the role of endogenous GLP-1 in glucose homeostasis as the primary outcome measure using G*Power software (version 3.1.9.2) following the power = 0.8, significant level = 0.05 and effect size = 0.25. According to Cohen’s effect size conventions for ANOVA F tests(33), we used medium effect size for the total sample size calculation(34,35). Hence, the total number of rats was calculated as twenty-four (eight rats/group) in the present study. Results are presented as means with their standard errors. Significant effects of time, treatment and the interactions of time and treatment were assessed by two-way repeated ANOVA in the MTT results. One-way ANOVA, Tukey–Kramer’s test or Student’s t test were used to determine significant differences among treatment groups with P < 0.05 considered statistically significant. Data were statistically analysed using JMP pro version 13.0 software (SAS Institute, Inc.).

Results

Body weight, energy intake and tissue weights

There were no significant differences in the initial body weights of the rats between groups (182-1 (st. 2.5) to 184-0 (st. 2.7) g, P = 0.9000). At the end of the 5-week feeding period, average body weights of the HFS (P = 0.0054) and Ex9 (P = 0.0209) groups were significantly higher than the control group (Fig. 1(A)). HFS and Ex9 groups had higher body weight gain (P = 0.0008 and P = 0.0030), energy intake (P = 0.0011 and P = 0.0073), visceral adipose tissue weights (P = 0.0005 and P = 0.0069) (mesenteric (P = 0.0091 and P = 0.0473), epididymal (P = 0.0007 and P = 0.0078) and retroperitoneal (P = 0.0002 and P = 0.0030)) and liver weight (P = 0.0003 and P = 0.0007) than the control group (Fig. 1(B)-(H)). No significant differences were observed between the HFS and Ex9 groups in any parameters.

Basal glucose, insulin and glucagon-like peptide-1 levels

After the 2- and 4-week feeding periods, rats were fasted overnight (16 h) before conducting the MTT. No significant differences were observed in any of the measured parameters after 2 and 4 weeks (Fig. 2). Basal glucose (P = 0.4547) and GLP-1 (P = 0.1243) levels did not differ between any groups (Fig. 2(D) and (F)), whereas the basal insulin level tended to be higher in the HFS group compared with the control group (P = 0.0587) after 4 weeks (Fig. 2(E)).

Postprandial glycaemic, insulin, glucagon-like peptide-1 and gastric emptying responses during meal tolerance tests after a 2-week feeding period

Postprandial aniline; Gly-Pro-pNA hydrolysis as described previously(29-31). Tissues samples were submerged in the ethanol acid solution (5 ml/g tissue) and homogenised at 25 000 rpm (Ultra-Turrax homogeniser T18, IKA) for 2 min. Homogenised samples were placed at 4°C for 24 h. After 24 h, aliquots (150 μl) of homogenate were stored separately at −30°C until protein analysis. The remaining homogenate was centrifuged at 2000 g for 20 min. The supernatant was collected and stored at −80°C until analysed. Protein and GLP-1 content were measured using Lowry’s protein assay and Multi Species GLP-1 Total ELISA kit (EZGLP1T-36K; Merck Millipore), respectively. Homogenate samples were diluted 30-fold for protein measurement, whereas the supernatant was diluted 500- or 1000-fold (colon only) for GLP-1 measurement.

Statistical analysis

Sample size was calculated based on the experimental design (two-way repeated-measures ANOVA) for MTT to determine the role of endogenous GLP-1 in glucose homeostasis as the primary outcome measure using G*Power software (version 3.1.9.2) following the power = 0.8, significant level = 0.05 and effect size = 0.25. According to Cohen’s effect size conventions for ANOVA F tests(33), we used medium effect size for the total sample size calculation(34,35). Hence, the total number of rats was calculated as twenty-four (eight rats/group) in the present study. Results are presented as means with their standard errors. Significant effects of time, treatment and the interactions of time and treatment were assessed by two-way repeated ANOVA in the MTT results. One-way ANOVA, Tukey–Kramer’s test or Student’s t test were used to determine significant differences among treatment groups with P < 0.05 considered statistically significant. Data were statistically analysed using JMP pro version 13.0 software (SAS Institute, Inc.).

Results

Body weight, energy intake and tissue weights

There were no significant differences in the initial body weights of the rats between groups (182-1 (st. 2.5) to 184-0 (st. 2.7) g, P = 0.9000). At the end of the 5-week feeding period, average body weights of the HFS (P = 0.0054) and Ex9 (P = 0.0209) groups were significantly higher than the control group (Fig. 1(A)). HFS and Ex9 groups had higher body weight gain (P = 0.0008 and P = 0.0030), energy intake (P = 0.0011 and P = 0.0073), visceral adipose tissue weights (P = 0.0005 and P = 0.0069) (mesenteric (P = 0.0091 and P = 0.0473), epididymal (P = 0.0007 and P = 0.0078) and retroperitoneal (P = 0.0002 and P = 0.0030)) and liver weight (P = 0.0003 and P = 0.0007) than the control group (Fig. 1(B)-(H)). No significant differences were observed between the HFS and Ex9 groups in any parameters.

Basal glucose, insulin and glucagon-like peptide-1 levels

After the 2- and 4-week feeding periods, rats were fasted overnight (16 h) before conducting the MTT. No significant differences were observed in any of the measured parameters after 2 and 4 weeks (Fig. 2). Basal glucose (P = 0.4547) and GLP-1 (P = 0.1243) levels did not differ between any groups (Fig. 2(D) and (F)), whereas the basal insulin level tended to be higher in the HFS group compared with the control group (P = 0.0587) after 4 weeks (Fig. 2(E)).

Postprandial glycaemic, insulin, glucagon-like peptide-1 and gastric emptying responses during meal tolerance tests after a 2-week feeding period

In this experiment, an MTT using a liquid diet was conducted to determine postprandial glucose, insulin, GLP-1 and gastric emptying during obesity development. After a 2-week feeding period, postprandial glucose levels in the Ex9 group were tended to be higher compared with the HFS and control groups from 30 to 60 min. The glucose level at 90 min (P = 0.0079) and AUC (P = 0.0337) in the Ex9 group were significantly higher than the control group (Fig. 3(A) and (B)). The postprandial insulin level at 15 min in the HFS group was significantly higher than the control group (P = 0.0216), whereas the Ex9 group showed an intermediate level between the HFS and control groups (Fig. 3(C)). The AUC of insulin in the HFS group was larger than in the control groups (P = 0.0486) (Fig. 3(D)). Postprandial GLP-1 secretion following liquid diet administration in the HFS (P = 0.3829) and Ex9 (P = 0.5708) groups was slightly higher than in the control group (Fig. 3(E) and (F)). There was a significant effect of treatment (P < 0.05) on the GLP-1 response assessed by two-way repeated-measures ANOVA. Changes in
plasma acetaminophen concentrations were not different between treatments (Fig. 3(G)).

Postprandial glycaemic, insulin, glucagon-like peptide-1 and gastric emptying responses during meal tolerance tests after 4-week feeding period

Postprandial glucose levels in the Ex9 group were slightly higher than the control group (15–90 min) and significantly (120 min) \((P=0.0241)\) higher than the control group following administration of the liquid diet (Fig. 4(A)). The AUC of glucose in the Ex9 group was significantly higher than in the control group \((P=0.0036)\) (Fig. 4(B)), while the HFS group had a similar glycaemic response compared with the control group \((P=0.3475)\). In contrast to the glucose response, the HFS group had a higher level of insulin secretion than the other groups \((P=0.0081)\) (Fig. 4(C) and (D)). Basal GLP-1 levels in the HFS \((P=0.1088)\) and Ex9 \((P=0.3791)\) groups were slightly increased compared with that in the control group. But GLP-1 levels at 60 \((P=0.0395)\) and 90 min \((P=0.0422)\) in the HFS group and at 90 min in Ex9 group \((P=0.0343)\) became significantly higher than the control group, demonstrating that the postprandial GLP-1 response was larger in the HFS and Ex9 groups than the control group (Fig. 4(E)). Significant effects of treatment on postprandial glycaemia, insulin and GLP-1 secretion were detected by two-way repeated-measures ANOVA in both MTT (Figs. 3 and 4). Plasma acetaminophen responses at all time points in the HFS and Ex9 groups were similar to the control group (Fig. 4(G)).
Plasma parameters after 5-week feeding period

Blood samples were collected from the portal vein and abdominal aorta after overnight fasting to measure fasting gut hormone levels and other parameters. Consistent with postprandial GLP-1 secretion at 4 weeks, both the HFS (P = 0.0011) and Ex9 (P = 0.0113) groups showed significantly higher GLP-1 concentrations compared with the control group (Fig. 5(C)). DPP-IV activity in both the portal vein (P = 0.5414) and abdominal aorta (P = 0.3735) was not different among the groups (Figs. 5(D) and 6(E)). Glucose levels were significantly higher in the Ex9 group compared with the HFS and control groups, both in the portal vein (P = 0.0022) and abdominal aorta (P = 0.0252) (Figs. 5(A) and 6(A)). Similar to the postprandial insulin response, portal/aorta insulin levels in the HFS group were higher than in the control group (P = 0.0198 and P = 0.0431), while the Ex9 group had an intermediate value between the HFS and control groups (Figs. 5(B) and 6(B)). TAG and cholesterol levels in the HFS (P = 0.0416 and P = 0.0116) and Ex9 (P = 0.0569 and P = 0.0611) groups were higher than in the control group Fig. 6(C) and (D)).

Discussion

The primary purpose of the present study was to determine the physiological relevance of increased/decreased postprandial GLP-1 secretion during development of DIO or glucose intolerance. We found that normalisation of the postprandial glycaemic response was accompanied by an increase in insulin and GLP-1 secretion in rats fed an HFS diet, whereas continuous GLP-1 receptor antagonist administration caused glucose intolerance. These results indicate that enhancement of the postprandial
Fig. 3. Postprandial glucose, insulin, glucagon-like peptide-1 (GLP-1) response and gastric emptying rate during meal tolerance tests (MTT) after a 2-week feeding period of control and high-fat/high-sucrose (HFS) diets with or without continuous exendin (9–39) (Ex9) administration. Rats were provided a control or HFS diet with either saline or Ex9 administration (100 μg/d) for 2 weeks before conducting MTT. After an overnight fasting, blood samples were collected from the tail vein before (0 min) and after oral administration of a liquid diet (Ensure H, 10 ml/kg body weight). Values are means, with standard errors represented by vertical bars (n = 8–9 rats in each group). a,b Mean values with unlike letters were significantly different between treatments (P < 0.05, Tukey–Kramer’s test). † Significant differences between mean values of the HFS and Ex9 groups (P < 0.05, Student’s t test). NS indicates that there was no significant difference among treatments. TI, time; TR, treatment.

* To convert glucose in mg/dl to mmol/l, multiply by 0.0555.
Fig. 4. Postprandial glucose, insulin, glucagon-like peptide-1 (GLP-1) responses and gastric emptying rate during meal tolerance tests (MTT) after a 4-week feeding period of control and high-fat/high-sucrose (HFS) diets with or without continuous exendin (9–39) (Ex9) administration. Rats were provided a control or HFS diet with either saline or Ex9 administration (100 μg/d) for 4 weeks before conducting MTT. After an overnight fasting, blood samples were collected from the tail vein before (0 min) and after oral administration of a liquid diet (Ensure H, 10 ml/kg body weight). Values are means, with standard errors represented by vertical bars (n = 8–9 rats in each group). a,b Mean values with unlike letters were significantly different between treatments (P < 0.05, Tukey–Kramer’s test). † Significant differences between mean values of the HFS and Ex9 groups (P < 0.05, Student’s t test). TI, time; TR, treatment. * To convert glucose in mg/dl to mmol/l, multiply by 0.0555.
GLP-1 response plays an important role in preventing glucose intolerance development during DIO.

In general, a high-fat and/or high-sucrose diet has been used to establish obesity and metabolic disorder animal models. In this experiment, rats were fed an HFS diet (40% fat and 30% sucrose) for 5 weeks in order to monitor chronic changes in postprandial glucose, insulin and GLP-1 responses during progression of DIO. Our results suggest that a diet containing high fat and high sucrose establishes obesity in an animal model, even in a shorter period (5 weeks) than generally employed (8–12 weeks or longer). However, body weight, body weight gain and visceral adipose tissue weight in the HFS and Ex9 groups were similar levels. It can be assumed that longer experimental periods are required to observe the effect of blocking endogenous GLP-1 signal on these parameters.

Postprandial glycaemic and insulin responses are generally assessed using a classical OGTT. In the present study, gastric emptying rates were unchanged by the chronic HFS diet with or without Ex9 compared with the control group; therefore, enhanced GLP-1 responses in the HFS and Ex9 groups cannot be explained by differences in the rate of nutrient load into the small intestine from the stomach. Although Ex9 has been previously reported to accelerate gastric emptying, the results suggest the role of endogenous GLP-1 as incretin hormone, independently of effect on gastric emptying. In addition, the gastric emptying rate is regulated by various factors such as ghrelin, serotonin, CCK, PYY, not only on GLP-1. In line with our study, gastric emptying was not changed by Ex9 treatment. Increased GLP-1 production in the ileum may contribute to the increased GLP-1 secretion. It is also speculated that the sensitivity of L-cells to luminal nutrients was increased following chronic consumption of a high-fat and high-sucrose diet. No significant differences were observed in GLP-1 concentration in the other intestinal segments, suggesting that L-cells located in the ileum segment are more susceptible to chronic obesogenic diet feeding than other intestinal segments. It could be implied that the ileum might play an important role in postprandial GLP-1 release. This was supported by the findings that postprandial GLP-1 secretion is stimulated by luminal

Fig. 5. Portal glucose, insulin, glucagon-like peptide-1 (GLP-1) levels and dipeptidyl peptidase (DPP)-IV activity after a 5-week feeding period of test diets with or without continuous exendin (9–39) (Ex9) administration. Rats were provided a control or high-fat/high-sucrose (HFS) diet with either saline or Ex9 administration (100 μg/d) for 5 weeks. Blood samples from the portal vein and abdominal aorta were collected under sodium pentobarbital anaesthesia (50 mg/kg body weight) after overnight fasting (16 h). Values are means, with standard errors represented by vertical bars (n = 8–9 rats in each group). a,b Mean values with unlike letters were significantly different between treatments (P < 0.05, Tukey–Kramer’s test). NS indicates that there was no significant difference among treatments. * To convert glucose in mg/dl to mmol/l, multiply by 0.0555.

GLP-1 response plays an important role in preventing glucose intolerance development during DIO.

In general, a high-fat and/or high-sucrose diet has been used to establish obesity and metabolic disorder animal models. In this experiment, rats were fed an HFS diet (40% fat and 30% sucrose) for 5 weeks in order to monitor chronic changes in postprandial glucose, insulin and GLP-1 responses during progression of DIO. Our results suggest that a diet containing high fat and high sucrose establishes obesity in an animal model, even in a shorter period (5 weeks) than generally employed (8–12 weeks or longer). However, body weight, body weight gain and visceral adipose tissue weight in the HFS and Ex9 groups were similar levels. It can be assumed that longer experimental periods are required to observe the effect of blocking endogenous GLP-1 signal on these parameters.

Postprandial glycaemic and insulin responses are generally assessed using a classical OGTT. In the present study, gastric emptying rates were unchanged by the chronic HFS diet with or without Ex9 compared with the control group; therefore, enhanced GLP-1 responses in the HFS and Ex9 groups cannot be explained by differences in the rate of nutrient load into the small intestine from the stomach. Although Ex9 has been previously reported to accelerate gastric emptying, the results suggest the role of endogenous GLP-1 as incretin hormone, independently of effect on gastric emptying. In addition, the gastric emptying rate is regulated by various factors such as ghrelin, serotonin, CCK, PYY, not only on GLP-1. In line with our study, gastric emptying was not changed by Ex9 treatment. Increased GLP-1 production in the ileum may contribute to the increased GLP-1 secretion. It is also speculated that the sensitivity of L-cells to luminal nutrients was increased following chronic consumption of a high-fat and high-sucrose diet. No significant differences were observed in GLP-1 concentration in the other intestinal segments, suggesting that L-cells located in the ileum segment are more susceptible to chronic obesogenic diet feeding than other intestinal segments. It could be implied that the ileum might play an important role in postprandial GLP-1 release. This was supported by the findings that postprandial GLP-1 secretion is stimulated by luminal

GLP-1 response plays an important role in preventing glucose intolerance development during DIO.

In general, a high-fat and/or high-sucrose diet has been used to establish obesity and metabolic disorder animal models. In this experiment, rats were fed an HFS diet (40% fat and 30% sucrose) for 5 weeks in order to monitor chronic changes in postprandial glucose, insulin and GLP-1 responses during progression of DIO. Our results suggest that a diet containing high fat and high sucrose establishes obesity in an animal model, even in a shorter period (5 weeks) than generally employed (8–12 weeks or longer). However, body weight, body weight gain and visceral adipose tissue weight in the HFS and Ex9 groups were similar levels. It can be assumed that longer experimental periods are required to observe the effect of blocking endogenous GLP-1 signal on these parameters.

Postprandial glycaemic and insulin responses are generally assessed using a classical OGTT. In the present study, gastric emptying rates were unchanged by the chronic HFS diet with or without Ex9 compared with the control group; therefore, enhanced GLP-1 responses in the HFS and Ex9 groups cannot be explained by differences in the rate of nutrient load into the small intestine from the stomach. Although Ex9 has been previously reported to accelerate gastric emptying, the results suggest the role of endogenous GLP-1 as incretin hormone, independently of effect on gastric emptying. In addition, the gastric emptying rate is regulated by various factors such as ghrelin, serotonin, CCK, PYY, not only on GLP-1. In line with our study, gastric emptying was not changed by Ex9 treatment. Increased GLP-1 production in the ileum may contribute to the increased GLP-1 secretion. It is also speculated that the sensitivity of L-cells to luminal nutrients was increased following chronic consumption of a high-fat and high-sucrose diet. No significant differences were observed in GLP-1 concentration in the other intestinal segments, suggesting that L-cells located in the ileum segment are more susceptible to chronic obesogenic diet feeding than other intestinal segments. It could be implied that the ileum might play an important role in postprandial GLP-1 release. This was supported by the findings that postprandial GLP-1 secretion is stimulated by luminal
OGTT-induced glucose intolerance in rats (48). Overnight fasting contents on L-cells in the proximal ileum (44, 45). In the present study, we previously did not observe impaired glycaemic insulin sensitivity, compared with relatively shorter (51). But prolonged fasting may affect glycaemic response and improve glucose intolerance in rats (18). That result (6-h fasting) and the present result (overnight fasting) suggest that postprandial glucose tolerance was partially maintained in rats fed the HFS diet, regardless of fasting periods. It can be concluded that elevation of postprandial GLP-1 plays an important role in the prevention and amelioration of glucose intolerance during DIO through increasing insulin responses. Hence, enhancing endogenous GLP-1 secretion could be a potential target for prevention of glucose intolerance and obesity development.

After a 5-week feeding period, the fasting glucose level in the HFS group was similar to the level of the control group, whereas fasting GLP-1 and insulin levels were elevated in the HFS group. In the Ex9 group, the fasting glucose level was higher with a partially lower insulin level compared with the HFS group. These results demonstrate that not only postprandial GLP-1 but also fasting GLP-1 plays an important role in the prevention of blood glucose elevation. Similar elevations in fasting TAG and cholesterol levels in the HFS and Ex9 groups suggest that endogenous GLP-1 does not directly affect dyslipidaemia under the experimental conditions.

Liquid diet Ensure H contains nutrients such as carbohydrates, proteins, lipids, vitamins and minerals, which are used for nutrient preservation after surgery or as nutritional support. It has been reported that GLP-1 secretion is stimulated by proteins, lipids, and carbohydrates. Compensatory elevations of GLP-1 by Ex9 have not always been found in previous studies (46, 47). Although both the HFS and Ex9 groups showed elevated postprandial GLP-1 secretion compared with the control group, postprandial insulin secretion was diminished in the Ex9 group compared with the HFS group. These results clearly demonstrate that GLP-1 secretion is stimulated by both high-fat and high-sucrose feeding groups (HFS and Ex9) and that GLP-1 has an important role in the prevention and amelioration of glucose intolerance during DIO through increasing insulin responses.

Fig. 6. Aortic glucose, insulin, TAG, cholesterol levels and dipeptidyl peptidase-IV (DPP-IV) activity in abdominal aorta after a 5-week feeding period of test diets with or without continuous exendin (9–39) (Ex9) administration. Rats were provided a control or high-fat/high-sucrose (HFS) diet with either saline or Ex9 administration (100 μg/d) for 5 weeks. Blood samples from the portal vein and abdominal aorta were collected under sodium pentobarbital anaesthesia (50 mg/kg body weight) after overnight fasting (16 h). Values are means, with standard errors represented by vertical bars (n = 8–9 rats in each group). * Mean values with unlike letters were significantly different between treatments (P < 0.05, Tukey-Kramer’s test). NS indicates that there was no significant difference among treatments. * To convert glucose from mg/dl to mmol/l, multiply by 0.0555; to convert TAG in mg/dl to mmol/l, multiply by 0.0113; to convert cholesterol from mg/dl to mmol/l, multiply by 0.0259.
carbohydrates, TAG and fatty acids. In this experiment, the effect of specific diet components that stimulate postprandial GLP-1 secretion still has not been investigated. Thus, examining a single nutrient during an MTT is needed in future studies to determine the adaptive changes of single-nutrient-induced postprandial GLP-1 secretion during development of DIO.

Conclusions

The postprandial glycaemic response in the HFS group was similar to the control group, whereas postprandial GLP-1 and insulin secretion were increased in the HFS group. In the Ex9 group, which blocked the GLP-1 signal, the postprandial glycaemic response was elevated with a lower insulin response compared with the HFS group. It could be concluded that enhancement of postprandial GLP-1 induction by chronic feeding of an obesogenic diet has a role in maintaining normal postprandial glycaemia in diet-induced obese rats.

Acknowledgements

This work was supported by JSPS KAKENHI grant number 16K07725.

J. P., T. H. and H. H. designed the research; J. P. conducted the research and analysed the data; J. P. and T. H. wrote the paper; T. H. had primary responsibility for the final content. All authors read and approved the final manuscript.

The authors declare that they have no conflicts of interest.

References

Glucagon-like peptide-1 and obesity development

23. Reeves PG (1997) Components of the AIN-93 diets as improve-

