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 713 
Scheme S1: Polymerization mold assembly to synthesize a DN hydrogel with surface layer thickness 714 

gradient. This cross-sectional view demonstrates how the 1st network PAMPS hydrogel (blue lines, 715 

PAMPS 1-3-1) soaked in 2nd network precursor solution (red dots, AAm 2-0.1-0.1) is sandwiched 716 

between two glass plates (length: 10 cm, width: 10 cm). To form the surface layer thickness gradient, 717 

the hydrogel is surrounded by a 3D printed spacer (grey) with a height starting from 2.5 mm (h1) on 718 

the left and gradually increasing up to 4.3 mm (h2) on the right. Because h1 is thinner than the 719 

hydrogel (h = 3.4 mm), the left part of the PAMPS hydrogel is partially compressed, with a maximum 720 

compression of 50 kPa close to spacer of height h1. Close to the spacer of height h2 the excess 2nd 721 

network precursor solution forms a PAAm layer in the as-prepared state of  0.9 mm-thick at 722 

maximum (t = h2 - h). 723 

 724 

 725 

Table S1: Linear fit parameters of the PAMPS and PAAm surface density calibration curves. 726 

Linear fit parameters 1st network   2nd network 

(y = d + kx) PAMPS   PAAm 

Intercept (d) 0.084 ± 0.014  2.366 ± 1.046 

Slope (k) 116.8 ± 4.5  146.5 ± 13.9 

r² 0.9956   0.9401 

y: WM1 or WM2  ,  x: Amax × Qr 727 

 728 
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 732 
Figure S1: Molding substrate surface energy. The water contact angles of 8.5° ± 1.5° and 109.4° ± 0.8° 733 

(mean ± SD, n = 10) demonstrate the high and low surface energy of borosilicate glass and Si-PET used 734 

as molding substrates in the 2nd network synthesis, respectively. 735 

 736 
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 738 
Figure S2: Analysis of electric potential depth profiles. The electric surface potential (S) is defined 739 

as the difference in potential between the initial relative potential (0 mV) and the electric potential at 740 

the first valley of the 1st derivative at the hydrogel surface. The surface layer thickness (t) corresponds 741 

to the distance between the first valley (t1) and the last hill (t2) of the 2nd derivative in the hydrogel 742 

depth profile (Sample: DN/Glass 1-3-1/2-0.1-0.1). 743 
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Figure S3: Infrared absorption spectra and signal intensity of SN hydrogel surfaces. The variation of 747 

crosslinking degree in PAMPS (XX1: 1.5 – 9 mol%) and PAAm hydrogels (XX2: 0.1 – 4 mol%) swollen in 748 

D2O increases peak heights of spectra obtained by ATR/FT-IR, demonstrating the relation between 749 

polymer density at the surface and XX1 and XX2. With a PAMPS weight fraction (WM1, Figure S) of ~0.2 750 

wt% (corresponding to a molar concentration CM1 of 9.4 × 10-4 M), the detection limit for PAMPS is 751 

almost reached for the weakly crosslinked PAMPS hydrogel (1-1.5-1), since the peaks have intensities 752 

similar to the background signal. 753 
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Figure S4: Calibration curves to analyze PAMPS and PAAm densities at the DN hydrogel surface. To 757 

construct the calibration curves from SN PAMPS and PAAm hydrogel of PAMPS, the gravimetric 758 

polymer weight fractions of hydrogels swollen in water (WM1, WM2), the absorption peak heights of 759 

hydrogels immersed in D2O (Amax) and the relative swelling ratio, (Qr) were related to the crosslinking 760 

degree (XX1, XX2), (mean ± SD, n = 3 hydrogels per symbol). To correlate the polymer weight fractions 761 

with the absorption peak height, the ATR/FT-IR data need to be corrected by Qr because of the swelling 762 

discrepancy between water and D2O. The relative swelling ratio, Qr = (hH2O/hD2O)3 was determined by 763 

the hydrogel thickness after swelling in ddH2O (hH2O) relative to swelling thickness in deuterium oxide 764 

(hD2O). The resulting calibration curves for PAMPS and PAAm surface density based on the relation of 765 

the corrected absorbance maxima (x = Amax × Qr) to the corresponding polymer weight fraction (y = 766 

WM1, WM2) were used to quantify the polymer surface density of DN hydrogels in the main manuscript. 767 

The linear fit parameters for the calibration curve, y = kx + d (slope - k, intercept - d), are displayed in 768 

Table S1. 769 
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Figure S5: Applying compression to the PAMPS hydrogel (P = 50 kPa) during synthesis of the 2nd 772 

network to prevent the formation of a surface layer. (A) Applying normal pressure to counteract the 773 

osmotic repulsion at the hydrogel-glass interface during the 2nd network synthesis (DN/Glass-C). (B) 774 

The compressive stress-strain curves of the PAMPS hydrogel (1-XX1-1) immersed in the AAm solution 775 

(2-0.1-0.1) to determining the normal pressure. The compressive stress-strain curves (Figure S5) of the 776 

1st network hydrogel swollen in 2nd network precursor solution was performed on hydrogel discs of 1 777 

cm in diameter and 2 – 3 mm in thickness at a loading strain of 10 %/min using a tensile-compressive 778 

mechanical tester (Tensilon RTC-1310A, Orientic Co.). (C) The ATR/FT-IR spectra of the DN/Glass-C 779 

hydrogels (1- XX1-1/2-0.1-0.1) with varied 1st network crosslinker concentration XX1. The peak intensity 780 

ratio between the PAMPS (1042 cm-1) and the PAAm (1640 cm-1) reveals the surface polymer 781 

composition of the DN/Glass-C hydrogels. To choose a proper compressive pressure, the compressive 782 

stress-strain behavior of PAMPS hydrogels, immersed in AAm solution, was studied for various 783 

crosslinking degrees (XX1) of the PAMPS hydrogels. The compressive stress and fracture stress 784 

increased but the fracture strain decreased with increasing 1st network crosslinking (B). The weakest 785 

PAMPS hydrogel, with 1.5 mol% crosslinker, fractured at around 120 kPa. To make sure that the 1st 786 

network is compressed but does not fracture during the 2nd network polymerization, we applied to 787 

each differently crosslinked PAMPS hydrogel a compression of 50 kPa. This overall compression of 50 788 

kPa is low compared to the bulk modulus of these highly crosslinked SN hydrogels which is in the range 789 

of 100 ~ 1000 kPa but in each ATR/FT-IR spectrum both peaks at 1042 and 1640 cm-1, representing the 790 

1st and the 2nd network respectively, are observable (C). 791 
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